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Abstract

Hybrid dynamic spatial approximation treesare recently proposed data structures for search-
ing in metric spaces, based on combining the concepts of spatial approximation and pivot based
algorithms. These data structures are hybrid schemes, withthe full features of dynamic spatial
approximation trees and able of using the available memory to improve the query time. It has
been shown that they compare favorably against alternativedata structures in spaces of medium
difficulty.

In this paper we complete and improve hybrid dynamic spatialapproximation trees, by pre-
senting a new search alternative, an algorithm to remove objects from the tree, and an improved
way of managing the available memory. The result is a fully dynamic and optimized data structure
for similarity searching in metric spaces.
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1 Introduction

“Proximity” or “similarity” searching is the problem of looking for objects in a set close enough to
a query. This has applications in a vast number of fields. The problem can be formalized with the
metric space model[2]: There is a universeU of objects, and a positive real-valued distance functiond : U� U �! R+ defined among them, which satisfies the metric properties:strict positiveness
(d(x; y) = 0 , x = y), symmetry(d(x; y) = d(y; x)), andtriangle inequality(d(x; z) 6 d(x; y) +d(y; z)). The smaller the distance between two objects, the more “similar” they are. We have a finite
databaseS � U that can be preprocessed to build an index. Later, given aqueryq 2 U, we must
retrieve all similar elements in the database. We are mainlyinterested in therange query: Retrieve all
elements inS within distancer to q, that is,fx 2 S; d(x; q) 6 rg.

Generally, the distance is expensive to compute, so one usually defines the search complexity as
the number of distance evaluations performed. Proximity search algorithms build anindexof the
database to speed up queries, avoiding the exhaustive search. Many of these indexes are based on
pivots (Section 2).

In this paper we complete and improve a hybrid index for metric space searching built on the
dsa–tree[3], an index supporting insertions and deletions that is competitive in spaces of medium
difficulty, but unable of taking advantage of the available memory. This was enriched with a pivoting
scheme in [1]. Pivots use the available memory to improve query time, and in this way they can beat
any other structure, but too many pivots are needed in difficult spaces. Our new structure was still
dynamic and made better use of memory, beating bothdsa-treesand basic pivots. Now we present a
new search alternative, a deletion algorithm, and a way of managing the available memory forhybrid
dynamic spatial approximation trees. In this way we complete and improve our previous work [1].

2 Pivoting Algorithms

Essentially, pivoting algorithms choose some elementspi from the databaseS, and precompute and
store all distancesd(a; pi) for all a 2 S. At query time, they compute distancesd(q; pi) against the
pivots. Then thedistance by pivotsbetweena 2 S andq gets defined asD(a; q) = maxpi jd(a; pi)�d(q; pi)j.

It can be seen thatD(a; q) 6 d(a; q) for all a 2 S; q 2 U. This is used to avoid distance
evaluations. Eacha such thatD(a; q) > r can be discarded because we deduced(a; q) > r without
actually computingd(a; q). All the elements that cannot be discarded this way are directly compared
againstq.

Usually pivoting schemes perform better as more pivots are used, this way beating any other index.
They are, however, better suited to “easy” metric spaces [2]. In hard spaces they need too many pivots
to beat other algorithms.

3 Dynamic Spatial Approximation Trees

In this section we briefly describe dynamicsa–trees(dsa-treesfor short), in particular the version
calledtimestamp with bounded arity[3], on top of which we build.



3.1 Insertion Algorithm

Thedsa–treeis built incrementally, via insertions. The tree has a maximum arity. Each tree nodea
stores a timestamp of its insertion time,time(a), and its covering radius,R(a), which is the maximum
distance to any element in its subtree. Its set of children iscalledN(a), theneighborsof a. To insert
a new elementx, its point of insertion is sought starting at the tree root and moving to the neighbor
closest tox, updatingR(a) in the way. We finally insertx as a new (leaf) child ofa if (1) x is closer
to a than to anyb 2 N(a), and (2) the arity ofa, jN(a)j, is not already maximal. Neighbors are stored
left to right in increasing timestamp order. Note that the parent is always older than its children.

3.2 Range Search Algorithm

The idea is to replicate the insertion process of elements toretrieve. That is, we act as if we wanted to
insertq but keep in mind that relevant elements may be at distance up to r from q, so in each decision
for simulating the insertion ofq we permit a tolerance of�r. So it may be that relevant elements were
inserted in different children of the current node, and backtracking is necessary.

Note that, at the time an elementx was inserted, a nodea may not have been chosen as its
parent because its arity was already maximal. So, at query time, we must choose the minimum
distance tox only amongN(a). Note also that, whenx was inserted, elements with higher times-
tamp were not yet present in the tree, sox could choose its closest neighbor only among older
elements. Hence, we consider the neighborsfb1; : : : ; bkg of a from oldest to newest, disregard-
ing a, and perform the minimization as we traverse the list. That is, we enter into subtreebi ifd(q; bi) 6 min (d(q; b1); : : : ; d(q; bi�1)) + 2r.

We use timestamps to reduce the work inside older neighbors.Say thatd(q; bi) > d(q; bi+j) + 2r.
We have to enter subtreebi anyway becausebi is older. However, only the elements with timestamp
smaller thantime(bi+j) should be considered when searching insidebi; younger elements have seenbi+j and they cannot be interesting for the search if they are insidebi. As parent nodes are older than
their descendants, as soon as we find a node inside subtreebi with timestamp larger thantime(bi+j)
we can stop the search in that branch.

Algorithm 1 performs range searching. Note that, except in the first invocation,d(a; q) is already
known from the invoking process.

3.3 Deletion Algorithm

To delete an elementx, the first step is to find it in the tree. In which follows, we do not consider the
location of the object as part of the deletion problem, although in [3] we have shown how to proceed
if necessary. It should be clear that a tree leaf can always beremoved without any complication, so
we focus on how to remove internal tree nodes.

The deletion of elements byrebuilding subtreesensures that the resulting tree is exactly as if the
deleted element had never been inserted. Thus, no degradation can occur due to repeated deletions.
In such algorithm, when nodex 2 N(a) is deleted, we disconnectx from the main tree. Hence all its
descendants must be reinserted. Moreover, elements in the subtree ofa that are younger thanx have
been compared againstx to decide their insertion point. Therefore, these elements, in absence ofx,
could choose another path if we reinsert them into the tree. Then, we retrieve all the elements younger



RANGE SEARCH (Nodea; Queryq; Radiusr; Timestampt)
1. if time(a) < t ^ d(a; q) 6 R(a) + r then
2. if d(a; q) 6 r then reporta
3. dmin  1
4. for bi 2 N(a) in increasing timestamp orderdo
5. if d(bi; q) 6 dmin + 2r then
6. k  min fj > i; d(bi; q) > d(bj ; q) + 2rg
7. RANGE SEARCH(bi; q; r; time(bk))
8. dmin  minfdmin; d(bi; q)g

Algorithm 1: Range query algorithm on adsa–treewith roota.

thanx that descend froma (i.e. those whose timestamp is greater, which includes its descendants)
and reinsert them into the tree, leaving the tree as ifx had never been inserted.

If we reinsert the elements younger thanx like completely new elements, that is if they get fresh
timestamps, we must search the appropriate point of reinsertion beginning at tree root. On the other
hand, if we maintain their timestamp we can start the reinsertion process froma, so we can save
many comparisons. In order to leave the resulting tree exactly as if x never had been inserted, we
must reinsert the elements in the original order, that is, the elements must be reinserted in increasing
order of timestamp.

Therefore, when nodex 2 N(a) is deleted we retrieve all the elements younger thanx from the
subtree rooteda, then disconnect them from the main tree, sort them in increasing order of timestamp
and reinsert them one by one, searching their reinsertion point from a.

Note that in this method the covering radii can become overestimated, because they are never
reduced due to a deleted element. If we delete an elementx, everya 2 A(x) such thatx was the
farthest element in its subtree will possibly have itsR(a) overestimated. In spite of it, this problem
does not seem to affect much search performance since it doesnot significantly degrade over time
(see [4] for more details).

4 Fully Dynamic Sa–trees with Pivots

Hybrid dynamic sa–treeswere defined in [1], although without handling deletions. Wereview some
of their main features and then present a deletion algorithm.

Pivoting techniques can trade memory space for query time, but they perform well on easy spaces
only. A dsa–tree, on the other hand, is suitable for searching spaces of medium difficulty. However,
it uses a fixed amount of memory, being unable of taking advantage of additional memory to improve
query time. The idea is to obtain a hybrid data structure thatgets the best of both worlds, by enriching
dsa–treeswith pivots. The result is better than both building blocks.

We choose different pivots for each tree node, such thatwe do not need any extra distance evalu-
ations against pivots, either at insertion or search time. Recall that, after we find the insertion point
of a new elementx, sayx 2 N(a), x has been compared against all its ancestors in the tree, all the



siblings of its ancestors, and its own siblings inN(a). At query time, when we reach nodex, some
distances betweenq and the aforementioned elements have also been computed. So, we can use (some
of) these elements as pivots to obtain better search performance, without introducing extra distance
computations. Next we present different ways to choose the pivots of each node.

4.1 H–DSAT1: Using Ancestors as Pivots

A natural alternative is to regard the ancestors of each nodeas its pivots. LetA(x) be the set of
ancestors ofx 2 S. We defineP (x) = f(pi; d(x; pi)); pi 2 A(x)g. This set is computed during
insertion ofx, by storing some of the distance evaluations computed in this process. We storeP (x)
at each nodex and use it to prune the search.

4.1.1 Insertion Algorithm

To insert an elementx, we setP (x) = ; and begin searching for the insertion point ofx. For each
nodea we choose in our path, we add(a; d(x; a)) to P (x). When the insertion point ofx is found,P (x) contains the distances to the ancestors ofx. Note that we do not perform any extra distance
evaluations to buildP (x). Thus, the construction cost of a H–DSAT1 is the sameof adsa–tree.

4.1.2 Range Search Algorithm

For range searching, we modify thedsa-treealgorithm to use the setP (x) stored at each tree nodex.
We recall that, given a set of pivots, the distance by pivotsD(a; q) is a lower bound ford(a; q).

Consider again Algorithm 1. If at step 1 it holds thatD(a; q) > R(a) + r, then surelyd(a; q) >R(a)+ r, and hence we can stop the search at nodea without actually evaluatingd(a; q). An elementa in S is said to befeasiblefor queryq if D(a; q) 6 R(a) + r. That is, is feasible thata or some
element in its subtree lies within the search radius ofq.

At search time,D(a; q) can be computed without additional evaluations ofd. Suppose that we
reach nodepk of the structure and want to decide if the search must follow into the subtree ofx 2N(pk). At this point, we have computed all distancesd(q; pi); pi 2 A(x). If A(x) = fp1; : : : ; pkg,
then these distances ared(q; p1); : : : ; d(q; pk). As the setP (x) = f(p1; d(x; p1)); : : : ; (pk; d(x; pk))g
is stored in the node ofx, then the distancesd(x; pi) andd(q; pi) needed to computeD(x; q) are
present, at no extra costs.

The distancesd(q; pi) are stored in a stack as the search goes up and down the tree. The setsP (x)
are also stored in root-to-x order, for example in a linear array, so that references to the pivots inP (x)
(first component of pairs) are unnecessary to correctly computeD, and we save space.

The covering radius feasible neighborsof nodea (feasible neighbors), denotedF (a), are the
neighborsb 2 N(a) such thatD(b; q) 6 R(b) + r. The other neighbors are said to beinfeasibles.

At search time, if we reach nodea, only the feasible neighbors ofa could be taken into account, as
other subtrees can be discarded completely. Observe that these subtrees have been discarded usingD
and notd and, as we have explained,D is computed for free. However, it does not immediately follow
that we obtain for sure an improvement in search performance. The reason is that infeasible nodes
still serve to reducedmin in Algorithm 1, which in turn may save us entering into younger siblings.
Hence, by saving computations against infeasible nodes, wemay have to enter into new siblings later.
This is an intrinsic price of our method.



RANGE SEARCH H–DSAT1 (Nodea; Queryq; Radiusr;Timestampt)
1. if time(a) < t ^ d(a; q) 6 R(a) + r then
2. if d(a; q) 6 r then reporta
3. dmin  1
4. F (a) fb 2 N(a); D(b; q) 6 R(b) + rg
5. for bi 2 N(a) in increasing timestamp orderdo
6. if bi 2 F (a) ^ D(bi; q) 6 dmin + 2r then
7. if d(bi; q) 6 dmin + 2r then
8. k  min fj > i; d(bi; q) > d(bj ; q) + 2rg
9. RANGE SEARCH H–DSAT1(bi ; q; r; time(bk))
10. if d(bi; q) has already been computedthen dmin  min fdmin; d(bi; q)g

Algorithm 2: Range searching for queryq with radiusr in a H–DSAT1 with roota.

Now we present a new search alternative not devised in [1]. The idea is to useD along with the
hyperplane criterionto save distance computations at search time. For any feasible elementbi such
thatD(bi; q) > dmin + 2r, it holds thatd(bi; q) > dmin + 2r. Hence, we can stop the search in the
feasible nodebi without evaluatingd(bi; q).

In which follows we present different alternatives of the search algorithm. The Algorithm 2 shows
the first alternative.

However, in step 8 we run into the risk of comparing infeasible elements againstq. This is done
in order to use timestamp information as much as possible, but it introduces the undesired effect of
reducing the benefits of pivots in our data structure. We present some improvements to this weakness.

Optimizing using D. We make use ofD at search time not only to determine the feasibility of
a node and prune the search space saving distance evaluations, but also to decrease the number of
infeasible elements that are compared directly againstq in step 8 of the algorithm. We search insidebi using the timestampt of a younger siblingbk of bi. Fortunately, some of the necessary comparisons
can be saved by making use ofD. The key observation is thatd(bi; q) 6 D(bj; q) + 2r impliesd(bi; q) 6 d(bj; q) + 2r, so if d(bi; q) 6 D(bj; q) + 2r we can conclude thatbj is not of interest in
step 8, hence saving the computation ofd(bj; q). Although we save some distance computations and
obtain the same result, still there will be infeasible elements compared againstq. We call H–DSAT1D
this search method.

Using Timestamps of Feasible Neighbors. The use of timestamps is not essential for the correct-
ness of the algorithms. Any larger value would do, although the optimal choice is to use the smallest
correct timestamp. Another alternative is to compute a safeapproximation to the correct timestamp,
but ensuring that no infeasible elements are ever compared againstq. Note that every feasible neighbor
of a node will be compared againstq inevitably. If forbi 2 F (a) it holds thatd(bi; q) 6 dmin+2r, then
we compute the oldest timestampt among the reduced setfbi+j 2 F (a); d(bi; q) > d(bi+j; q)+ 2rg,
and stop the search insidebi at nodes whose timestamp is newer thant. This ensures that only feasible



elements are compared againstq, and under that condition it uses as much timestamping information
as possible. We call H–DSAT1F this alternative.

4.1.3 Deletion Algorithm

We adapt the algorithm ofrebuilding subtrees[4] to delete an elementx 2 N(a) from the tree, such
that it takes into account the existence of pivots. The reinsertion process involve distance evaluations,
some of which are already precomputed as pivot information.We show how to take advantage of this.

Note thata is a pivot of every element in its subtree. In other words, thedistanced(b; a) has been
stored inP (b), for everyb in the subtree ofa. As a result, we can save at least one distance evaluation
for each element to be reinserted. Furthermore, ify is an older sibling ofx, andy is a pivot (ancestor)
of b then we can save the distance evaluationd(b; y) when reinsertingb.

As P (b) is stored using a linear array, the position ofd(b; a) in P (b) can be easily computed. Ifa
lies at leveli of the tree, thend(b; a) is at positioni of the array.

It is important to note that, after reinsertingb, the nodea and the ancestors ofa will be ancestors
of b. Then, we must keep inP (b) the distances betweenb and the ancestors ofa. The other distances
in P (b) are discarded before reinsertingb. Finally, the new setP (b) is completed using some of the
distance evaluations produced at reinsertion time.

The deletion process ofx 2 N(a) can be resumed as follows. We retrieve all the elements younger
thanx from the subtree rooteda, then disconnect them from the main tree, discard the distances to the
pivots that are not of interest after reinserting the node, sort the nodes in increasing order of timestamp
and reinsert them one by one (reusing some distances inP ), searching their reinsertion point froma.

The result is very important: we do not introduce extra distance evaluations in the deletion process,
and even more, the deletion cost can be reduced by using pivots.

4.2 H–DSAT2: Using Ancestors and their Older Siblings as Pivots

We aim at using even more pivots than H–DSAT1, to improve even more the search performance. At
search time, when we reach a nodea, q has been compared against all the ancestors and some of the
older siblings of ancestors ofa. Hence, we use this extended set of pivots for each nodea.

4.2.1 Insertion Algorithm

The only difference in a H–DSAT2 is in theP (x) sets we compute. Letx 2 S andA(x) =fp1; : : : ; pkg be the set of its ancestors, wherepi is the ancestor at tree leveli. Note thatpi+1 2 N(pi).
Hence,(b; d(x; b)) 2 P (x) if and only if (1)b 2 A(x), or (2)pi; pi+1 2 A(x)^b 2 N(pi)^time(b) <time(pi+1).
4.2.2 Range Search Algorithm

For range searching, to computeD(x; q) we need the distances betweenq and the pivots ofx stored
in a stack. But it is possible that some of the pivots ofx have not been compared againstq because
they were infeasible. In order to retain the same pivot orderof P (x), we push invalid elements into
the stack when infeasible neighbors are found.D is then computed having this in mind. We define
the same variants of the search algorithm for H–DSAT2, which only differ from H–DSAT1 in the way
of computingD.



4.2.3 Deletion Algorithm

Now suppose we want to delete an elementx 2 N(a) in H–DSAT2. Again,a is a pivot of each
elementb in the subtree rooteda. Thus, we can avoid at least one distance evaluation for element to
be reinserted. But we can do more. The comparisond(b; y) can be avoided, for ally 2 N(a) older
thanx, since those distances have been stored inP (b). The process of computing the position of the
distances inP (b) is not so direct as before: these must be computed as we retrieve the nodes to be
reinserted. Because of the features of H–DSAT2, it is possible that the deletion cost can be reduced
even more.

5 Limiting the Use of Storage

In practice, available memory is bounded. Our data structures, as have been defined, use memory in
a non-controlled way (each node uses as much pivots as the definition requires). This fact rules out
our solutions for many real-life situations. We show how to adapt the structures to fit the available
memory. The idea is to restrict the number of pivots stored ineach node to a valuek, by holding a
subset of the original set of pivots. As a result, the data structures lose some performance at search
time. A way of minimizing such degradation is to choose a “good” set of pivots for each node.

5.1 Choosing Good Pivots

We study empirically the features of the pivots that discardelements at search time. In our experiment,
each time a pivot discards an element, we mark that pivot (formore details see Section 6).

Because of the insertion process of H–DSAT1, the latest pivots of a node should be good since
they are close, and hence good representatives, of the node.We verify experimentally that most
discards using pivots were due to the latter ones. Figure 1 (left) shows that a small number of latter
pivots per node suffices. In dimension 5, about 10 pivots per node discard all the elements that can
be discarded using pivots. In higher dimensions, even less pivots are needed. We call H–DSAT1 k
Latest to this alternative.
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The ancestors of a node are close to it, but the siblings of theancestors are not necessarily close.
So we expect that using thek latest pivots in H–DSAT2 (H–DSAT2 k Latest) does not perform as
well as before. An obvious alternative is H–DSAT2 k Nearest, which uses thek nearest pivots, not
thek latest. Figure 1 (right) confirms that less nearest pivots are needed to discard the same number
of nodes as latest pivots. However, note that for H–DSAT2 k Nearest we need to store the references
to the pivots in order to computeD. Hence, given a fixed amount of memory, this alternative must
use less pivots per node than the others.

We have introduced a parameterk in our data structures, which can be easily tuned since it depends
on the available memory. Whenk = 0 the data structure becomes the originaldsa–tree, and whenk =1 it becomes our unrestricted data structures of Section 4.

5.2 Choosing Good Nodes

The dual question is whether some tree nodes profit more from pivots than others. We experimentally
study the features of the elements that are discarded using pivots. The result is that, for all the
metric spaces used, the discarded elements are located nearthe leaves in the tree. In the vector space
of dimension 5, the percentage varies from 40% to 60% (depending of the query radius), while in
the space of dimension 15, almost the 100% of the elements discarded by pivots are leaves. In the
dictionary this percentage varies from 80% to 90%.

The reason is that the covering radii of the nodes decrease aswe go down in the tree, being zero
in the leaves. As the covering radius infeasibility condition for a nodea isD(a; q) > R(a) + r, the
probability of discardinga increases whenR(a) decreases.

Suppose that we restrict the number of pivots per node to a value k. As leaves are discarded
more frequently than internal nodes, we consider an alternative that profits from this fact when using
limited memory. The idea is to move the storage of pivots to the leaves smoothly and dynamically.

We have a parameter�, which is0 6 � 6 1. rho allows us to determine the number of pivots per
node such that:(1) internal nodes have�k pivots (unless they do not have so many to choose), and(2)
external nodes have all the pivots that the scheme permits (unless there is not enough available space).
The way to implement this is as follows: When an external nodebecomes internal it retains�k of its
pivots, and it yields the others to the public repository, and when a new external node appears it takes
from the repository all the pivots that it needs (whenever the repository has that many, in other case it
takes all the available ones).

In this way, each new element attempts to take a number of pivots as close as possible to its original
number of pivots, and memory usage tends to move dynamicallyto the leaves. The parameter� allows
us to control the degree of movement of storage to the leaves.Note that when� = 0, all the pivots
move to the leaves, and when� = 1 the memory management has no effect.

Figure 2 shows the experimental query cost for H–DSAT2 k Nearest, in the vector space of di-
mension 15, usingk = 5 andk = 35 pivots, and values0, 0:1, 0:5, and1 for �. In this metric space,
we get the best performance with� = 0.

6 Experimental Results

In this section we present a series of experiments performedon our data structures. We have evaluated
our structures in three metric spaces. First, a dictionary of 69,069 English words under edit distance
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Figure 2: Performance of H–DSAT2 k Nearest with memory management, and various values of�.
We selected values ofk = 5 pivots (left) andk = 35 pivots (right).

(minimum number of character insertions, deletions and substitutions to make the strings equal), of
interest in spelling applications. The other spaces are real unitary cubes in dimensions 5 and 15 under
Euclidean distance, using 100,000 uniformly distributed random points. We treat these just as metric
spaces, disregarding coordinate information.

In all cases, we left apart 100 random elements to act as queries. The data structures were built 20
times varying the order of insertions. We tested arities 4, 8, 16, and 32. Each tree built was queried
100 times, using radii 1 to 4 in the dictionary, and radii retrieving 0.01%, 0.1%, and 1% of the set in
vector spaces.

In [1] we show that H–DSAT1F outperformed H–DSAT1D, clearly in the dictionary and slightly
in vector spaces. The results are similar on H–DSAT2. Also we show experimentally that our struc-
tures are competitive, as our best versions of H–DSAT1 and H–DSAT2 largely improve upondsa–
trees. This shows that our structures make good use of extra memory. H–DSAT2 can use more
memory than H–DSAT1, and hence its query cost is better.

However, there is a price in memory usage, e.g., H–DSAT1 needs 1.3 to 4.0 times the memory of
dsa–tree, while H–DSAT2 requires 5.2 to 17.5 times. Hence the interest in comparinghow well our
structures use limited memory compared to others. Figure 3 and Figure 4 compare against a generic
pivot data structure, using the same amount of memory in all cases. We also show adsa–treeas a
reference point, as it uses a fixed amount of memory. In easy spaces (dimension 5 or dictionary) we
do better when there is little available memory, but in dimension 15 H–DSAT2 is always the best.
More pivots are needed to beat H–DSAT in harder problems.

7 Conclusions

In this paper we have completed a hybrid scheme for similarity searching in metric spaces. Such
scheme is basically adsa–tree, except that a set of pivots is associated with each node. Theset
of pivots of each node is chosen in such a way that no extra distance evaluations are introduced at
insertion time: we only save some of the distance computations that occur when inserting a new
element. At search time, when we reach a node, we use pivots toprune the search space for free.
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Figure 3: Query cost of H–DSAT1F and H–DSAT2F versus a pivoting algorithm, in vector spaces.

We study the way to choose good pivots when the amount of memory is limited. Several alterna-
tives are explored and evaluated.

In this paper we have also presented a method to delete elements from ahybrid dynamic spatial
approximation tree. This method has shown to be better than that of the original method over a
dsa–tree.

The outcome is a fully dynamic data structure that can be managed through insertions and dele-
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Figure 4: Query cost of H–DSAT1F and H–DSAT2F versus a pivoting algorithm, in the dictionary.

tions over arbitrarily long periods of time without any reorganization, and that can take advantage of
available memory to improve search and deletion costs.
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