Fully Dynamic and Memory-Adaptative Spatial
Approximation Trees

Diego Arroyueld Gonzalo Navarrd Nora Reyes
'Depto. de Inforratica 2 Center for Web Research
Universidad Nacional de San Luis Dept. of Computer Science
Ejéercito de los Andes 950 University of Chile
San Luis, Argentina Blanco Encalada 2120, Santiago, Chile
{darroy,nreye$@unsl.edu.ar gnavarro@dcc.uchile.cl
Abstract

Hybrid dynamic spatial approximation trease recently proposed data structures for search-
ing in metric spaces, based on combining the concepts aabpaproximation and pivot based
algorithms. These data structures are hybrid schemes,tétfull features of dynamic spatial
approximation trees and able of using the available menwiynprove the query time. It has
been shown that they compare favorably against alterndtit@ structures in spaces of medium
difficulty.

In this paper we complete and improve hybrid dynamic spatigroximation trees, by pre-
senting a new search alternative, an algorithm to removectbjrom the tree, and an improved
way of managing the available memory. The result is a fullyaidyic and optimized data structure
for similarity searching in metric spaces.

Key Words: databases, data structures, algorithms, metric spaces.

*This work was partially supported by CYTED VII.19 RIBIDI Rezt (all authors) and Millenium Nucleus Center for
Web Research, Grant P01-029-F, Mideplan, Chile (secoraut

1 Introduction

“Proximity” or “similarity” searching is the problem of ldang for objects in a set close enough to
a query. This has applications in a vast number of fields. Thblpm can be formalized with the
metric space mod¢P]: There is a univers#l of objects, and a positive real-valued distance function
d : UxU — RT defined among them, which satisfies the metric propersésct positiveness
(d(z,y) = 0 & x = y), symmetry(d(z,y) = d(y, z)), andtriangle inequality(d(z, z) < d(z,y) +
d(y, z)). The smaller the distance between two objects, the moneil&at’ they are. We have a finite
databases C U that can be preprocessed to build an index. Later, givgnesyq € U, we must
retrieve all similar elements in the database. We are maitdyested in theange query Retrieve all
elements inS within distancer to ¢, thatis,{z € S, d(x,q) < r}.

Generally, the distance is expensive to compute, so ondlyisigdines the search complexity as
the number of distance evaluations performed. Proximigrgdealgorithms build amdex of the
database to speed up queries, avoiding the exhaustivehsddiemy of these indexes are based on
pivots (Section 2).

In this paper we complete and improve a hybrid index for mmetpace searching built on the
dsa—tre€[3], an index supporting insertions and deletions that impetitive in spaces of medium
difficulty, but unable of taking advantage of the availablemory. This was enriched with a pivoting
scheme in [1]. Pivots use the available memory to improveygtiee, and in this way they can beat
any other structure, but too many pivots are needed in diffspaces. Our new structure was still
dynamic and made better use of memory, beating de#htreesand basic pivots. Now we present a
new search alternative, a deletion algorithm, and a way afagiag the available memory faybrid
dynamic spatial approximation treek this way we complete and improve our previous work [1].

2 Pivoting Algorithms

Essentially, pivoting algorithms choose some elemegnfsom the databasg, and precompute and
store all distances(a, p;) for all a € S. At query time, they compute distancég;, p;) against the
pivots. Then thalistance by pivotbetweem € S andq gets defined a®(a, ¢) = max,, |d(a, p;) —
d(q,pi)|-

It can be seen thaD(a,q) < d(a,q) foralla € S, ¢ € U. This is used to avoid distance
evaluations. Each such thatD(a, ¢) > r can be discarded because we dedieeq) > r without
actually computingl(a, q). All the elements that cannot be discarded this way are ttireeampared
againsty.

Usually pivoting schemes perform better as more pivots see€l Lthis way beating any other index.
They are, however, better suited to “easy” metric spacesiidjard spaces they need too many pivots
to beat other algorithms.

3 Dynamic Spatial Approximation Trees

In this section we briefly describe dynanse—treegdsa-treesfor short), in particular the version
calledtimestamp with bounded arif@], on top of which we build.

3.1 Insertion Algorithm

The dsa-—trees built incrementally, via insertions. The tree has a maxmarity. Each tree node
stores a timestamp of its insertion timéne(a), and its covering radiug?(a), which is the maximum
distance to any element in its subtree. Its set of childrealied N (a), theneighborsof a. To insert

a new element, its point of insertion is sought starting at the tree roat armoving to the neighbor
closest tar, updatingR(a) in the way. We finally insert as a new (leaf) child of if (1) = is closer

to a than to any) € N(a), and (2) the arity ofi, | N ()|, is not already maximal. Neighbors are stored
left to right in increasing timestamp order. Note that theepais always older than its children.

3.2 Range Search Algorithm

The idea is to replicate the insertion process of elementtti@ve. That is, we act as if we wanted to
insertq but keep in mind that relevant elements may be at distance ufyém ¢, so in each decision
for simulating the insertion of we permit a tolerance afr. So it may be that relevant elements were
inserted in different children of the current node, and vadking is necessary.

Note that, at the time an elementwas inserted, a node may not have been chosen as its
parent because its arity was already maximal. So, at querg, tive must choose the minimum
distance tar only amongN (a). Note also that, whem was inserted, elements with higher times-
tamp were not yet present in the tree, sa@ould choose its closest neighbor only among older
elements. Hence, we consider the neighb@rs. .., b.} of a from oldest to newest, disregard-
ing a, and perform the minimization as we traverse the list. Thatne enter into subtreg if
d(q,b;) < min (d(q,b),...,d(q,b;i_1)) + 2r.

We use timestamps to reduce the work inside older neighBensthati(q, b;) > d(q, biy;) + 2.

We have to enter subtréganyway becausg is older. However, only the elements with timestamp
smaller thartime(b; ;) should be considered when searching indigdgounger elements have seen
b;+; and they cannot be interesting for the search if they arelési As parent nodes are older than
their descendants, as soon as we find a node inside sbbtréth timestamp larger thatime (b ;)

we can stop the search in that branch.

Algorithm 1 performs range searching. Note that, excephénfirst invocationd(a, ¢) is already
known from the invoking process.

3.3 Deletion Algorithm

To delete an element, the first step is to find it in the tree. In which follows, we dat consider the
location of the object as part of the deletion problem, altitoin [3] we have shown how to proceed
if necessary. It should be clear that a tree leaf can alwaysieved without any complication, so
we focus on how to remove internal tree nodes.

The deletion of elements bgbuilding subtreegnsures that the resulting tree is exactly as if the
deleted element had never been inserted. Thus, no degnadain occur due to repeated deletions.
In such algorithm, when nodec N (a) is deleted, we disconnectfrom the main tree. Hence all its
descendants must be reinserted. Moreover, elements inbwes ofa that are younger than have
been compared againsto decide their insertion point. Therefore, these elementabsence of,
could choose another path if we reinsert them into the treenTwe retrieve all the elements younger

RANGE SEARCH (Nodea, Queryq, Radiusr, Timestamp)
1. if time(a) <t A d(a,q) < R(a)+r then
2. if d(a,q) < r thenreporta
dynin + 00
for b; € N(a) inincreasing timestamp ordeto
if d(bi, q) < dpin + 27 then
k< min{j >4, d(b;,q) > d(b;,q) + 2r}
RANGE SEARCH(b;, q, , time(bg))
dmm < min {dmm, d(bi, q)}

©ONo Ok

Algorithm 1: Range query algorithm ondsa—treewith roota.

thanz that descend from (i.e. those whose timestamp is greater, which includesassehdants)
and reinsert them into the tree, leaving the tree ashidd never been inserted.

If we reinsert the elements younger thahke completely new elements, that is if they get fresh
timestamps, we must search the appropriate point of reéiosdyeginning at tree root. On the other
hand, if we maintain their timestamp we can start the retiseprocess fronu, so we can save
many comparisons. In order to leave the resulting tree Bxastif x never had been inserted, we
must reinsert the elements in the original order, that s eflements must be reinserted in increasing
order of timestamp.

Therefore, when node € N(a) is deleted we retrieve all the elements younger thdrom the
subtree rooted, then disconnect them from the main tree, sort them in irstngeorder of timestamp
and reinsert them one by one, searching their reinsertiort rom a.

Note that in this method the covering radii can become otienased, because they are never
reduced due to a deleted element. If we delete an elemesterya € A(x) such thatr was the
farthest element in its subtree will possibly haveRts:) overestimated. In spite of it, this problem
does not seem to affect much search performance since itriesgnificantly degrade over time
(see [4] for more detalls).

4 Fully Dynamic Sa—trees with Pivots

Hybrid dynamic sa—treesere defined in [1], although without handling deletions. M&ew some
of their main features and then present a deletion algorithm

Pivoting techniques can trade memory space for query tiotehy perform well on easy spaces
only. A dsa—treeon the other hand, is suitable for searching spaces of medifficulty. However,
it uses a fixed amount of memory, being unable of taking adgnof additional memory to improve
query time. The idea is to obtain a hybrid data structuredgbtg the best of both worlds, by enriching
dsa—treewvith pivots. The result is better than both building blocks.

We choose different pivots for each tree node, suchwieatio not need any extra distance evalu-
ations against pivotseither at insertion or search time. Recall that, after we fire insertion point
of a new element, sayr € N(a), 2 has been compared against all its ancestors in the tre&eall t

siblings of its ancestors, and its own siblingshtia). At query time, when we reach node some
distances betweenand the aforementioned elements have also been computede $an use (some
of) these elements as pivots to obtain better search peafurey without introducing extra distance
computations. Next we present different ways to chooseitleggof each node.

4.1 H-DsAT1: Using Ancestors as Pivots

A natural alternative is to regard the ancestors of each asdés pivots. LetA(z) be the set of
ancestors of € S. We defineP(z) = {(p;, d(z,p;)), p; € A(x)}. This setis computed during
insertion ofz, by storing some of the distance evaluations computed shptacess. We storB(z)
at each node and use it to prune the search.

4.1.1 Insertion Algorithm

To insert an element, we setP(z) = () and begin searching for the insertion pointzofFor each
nodea we choose in our path, we add, d(x,a)) to P(z). When the insertion point of is found,
P(z) contains the distances to the ancestors.oNote that we do not perform any extra distance
evaluations to build®(x). Thus, the construction cost of a HsBrl isthe samef adsa—tree

4.1.2 Range Search Algorithm

For range searching, we modify thlea-treealgorithm to use the sdt(z) stored at each tree node
We recall that, given a set of pivots, the distance by pi®fs, ¢) is a lower bound for(«,).

Consider again Algorithm 1. If at step 1 it holds thata, ¢) > R(a) + r, then surelyi(a, ¢) >
R(a) + r, and hence we can stop the search at nodéhout actually evaluating(a, ¢). An element
a in S is said to befeasiblefor queryq if D(a,q) < R(a) + r. That is, is feasible that or some
element in its subtree lies within the search radiug. of

At search timeD(a, ¢) can be computed without additional evaluationsiofSuppose that we
reach nodey, of the structure and want to decide if the search must follaw the subtree of ¢
N(px). At this point, we have computed all distanc&s, p;), p; € A(x). If A(x) = {p1,...,px}s
then these distances atéy, p1),...,d(q, pr). As the setP(z) = {(p1,d(z, p1)),. .., (pr,d(z,pk))}
is stored in the node of, then the distanced(z, p;) andd(q, p;) needed to comput®(z, q) are
present, at no extra costs.

The distanced(q, p;) are stored in a stack as the search goes up and down the teesefER ()
are also stored in root-te-order, for example in a linear array, so that referencesaiyots inP(z)
(first component of pairs) are unnecessary to correctly eteip, and we save space.

The covering radius feasible neighbof nodea (feasible neighbors), denotdd(a), are the
neighbors) € N(a) such thatD(b, ¢) < R(b) + r. The other neighbors are said toibéasibles

At search time, if we reach nodg only the feasible neighbors afcould be taken into account, as
other subtrees can be discarded completely. Observe #s# gubtrees have been discarded uding
and notd and, as we have explainell,is computed for free. However, it does not immediately fwllo
that we obtain for sure an improvement in search performaiibe reason is that infeasible nodes
still serve to reducd,,;, in Algorithm 1, which in turn may save us entering into youngiblings.
Hence, by saving computations against infeasible nodemayehave to enter into new siblings later.
This is an intrinsic price of our method.

RANGE SEARCH H-DsAT1 (Nodea, Queryq, Radiusr, Timestamp)

1. if time(a) <t A d(a,q) < R(a)+r then

2. if d(a,q) < r thenreporta

3. dmm — o0

4. F(a) < {b € N(a), D(b,q) < R(b) +r}

5. for b; € N(a) inincreasing timestamp ordeto

6. if b; € F(a) A D(b;,q) < dpmin + 2r then

7. if d(b;,q) < dmin + 2r then

8. k< min{j >, d(b;,q) > d(b;,q) + 2r}

9. RANGE SEARCH H-DsAT1(b;, q, r, time(by))

10. if d(b;, q) has already been computtten d,,,;,, < min {dy,in, d(b;,q)}

Algorithm 2: Range searching for quegywith radiusr in a H—DsAT1 with roota.

Now we present a new search alternative not devised in [1¢. idéa is to us® along with the
hyperplane criteriorto save distance computations at search time. For any feaddment; such
that D(b;, q) > dpin + 2r, it holds thatd(b;, ¢) > din + 2. Hence, we can stop the search in the
feasible nodeé, without evaluatingl(b;, q).

In which follows we present different alternatives of tharef algorithm. The Algorithm 2 shows
the first alternative.

However, in step 8 we run into the risk of comparing infeasilements againgt This is done
in order to use timestamp information as much as possibtdat miroduces the undesired effect of
reducing the benefits of pivots in our data structure. Wegaresome improvements to this weakness.

Optimizing using D. We make use ofD at search time not only to determine the feasibility of
a node and prune the search space saving distance evadydiudralso to decrease the number of
infeasible elements that are compared directly agaginsstep 8 of the algorithm. We search inside
b; using the timestampof a younger sibling, of b,. Fortunately, some of the necessary comparisons
can be saved by making use Df The key observation is thak(b;, q) < D(b;,q) + 2r implies
d(bi,q) < d(bj,q) + 2r, soifd(b;,q) < D(bj,q) + 2r we can conclude thai; is not of interest in
step 8, hence saving the computatiori@f;, ¢). Although we save some distance computations and
obtain the same result, still there will be infeasible elataeompared againgt We call H-DsAT1D

this search method.

Using Timestamps of Feasible Neighbors. The use of timestamps is not essential for the correct-
ness of the algorithms. Any larger value would do, althoughdptimal choice is to use the smallest
correct timestamp. Another alternative is to compute a apfgoximation to the correct timestamp,
but ensuring that no infeasible elements are ever compgeadsd;. Note that every feasible neighbor
of a node will be compared againgnevitably. If forb;, € F(a) it holds thatd(b;, ¢) < dpin+2r, then

we compute the oldest timestampmong the reduced s@l;; € F(a), d(bi,q) > d(biy;,q) + 21},

and stop the search insitieat nodes whose timestamp is newer thahhis ensures that only feasible

elements are compared agaigsand under that condition it uses as much timestampingrmeton
as possible. We call H-ExT1F this alternative.

4.1.3 Deletion Algorithm

We adapt the algorithm a&building subtree§4] to delete an element € N(a) from the tree, such
that it takes into account the existence of pivots. The eztien process involve distance evaluations,
some of which are already precomputed as pivot informatiémshow how to take advantage of this.

Note thata is a pivot of every element in its subtree. In other words diséancei(b, a) has been
stored inP(b), for everyb in the subtree ofi. As a result, we can save at least one distance evaluation
for each element to be reinserted. Furthermorgjsfan older sibling of:, andy is a pivot (ancestor)
of b then we can save the distance evaluatifiny) when reinserting.

As P(b) is stored using a linear array, the positioni¢,) in P(b) can be easily computed. df
lies at leveli of the tree, ther(b, a) is at positior; of the array.

It is important to note that, after reinsertihgthe node: and the ancestors afwill be ancestors
of b. Then, we must keep iR (b) the distances betweérand the ancestors of The other distances
in P(b) are discarded before reinsertingFinally, the new seP(b) is completed using some of the
distance evaluations produced at reinsertion time.

The deletion process afe N(a) can be resumed as follows. We retrieve all the elements yaung
thanz from the subtree rooted then disconnect them from the main tree, discard the distato the
pivots that are not of interest after reinserting the node,tee nodes in increasing order of timestamp
and reinsert them one by one (reusing some distancB}, isearching their reinsertion point from

The resultis very important: we do not introduce extra aiséeevaluations in the deletion process,
and even more, the deletion cost can be reduced by usingpivot

4.2 H-DsAT2: Using Ancestors and their Older Siblings as Pivots

We aim at using even more pivots than HsAY1, to improve even more the search performance. At
search time, when we reach a nade has been compared against all the ancestors and some of the
older siblings of ancestors af Hence, we use this extended set of pivots for each node

4.2.1 Insertion Algorithm

The only difference in a H-BAT2 is in the P(x) sets we compute. Let € S and A(z) =
{p1,...,pr} be the set of its ancestors, wheras the ancestor at tree levielNote thaty,,; € N(p;
Hence,(b, d(z,b)) € P(z)ifand onlyif (1)b € A(x), or (2)p;, piy1 € A(x)ANb € N(p;) Atime(b)
time(pit1)-

).
<

4.2.2 Range Search Algorithm

For range searching, to compuigz, ¢) we need the distances betwegand the pivots of: stored

in a stack. But it is possible that some of the pivotsdfave not been compared againdiecause
they were infeasible. In order to retain the same pivot ooddr(x), we push invalid elements into
the stack when infeasible neighbors are foufidis then computed having this in mind. We define
the same variants of the search algorithm for KALR2, which only differ from H-BAT1 in the way

of computingD.

4.2.3 Deletion Algorithm

Now suppose we want to delete an element N(a) in H-DSAT2. Again,a is a pivot of each
element in the subtree rooted. Thus, we can avoid at least one distance evaluation foregiein

be reinserted. But we can do more. The comparigdny) can be avoided, for aly € N(a) older
thanz, since those distances have been store(f). The process of computing the position of the
distances inP(b) is not so direct as before: these must be computed as weveethie nodes to be
reinserted. Because of the features of HALR, it is possible that the deletion cost can be reduced
even more.

5 Limiting the Use of Storage

In practice, available memory is bounded. Our data strestuas have been defined, use memory in
a non-controlled way (each node uses as much pivots as tmatidefrequires). This fact rules out
our solutions for many real-life situations. We show how tiast the structures to fit the available
memory. The idea is to restrict the number of pivots storeeia@ich node to a value by holding a
subset of the original set of pivots. As a result, the datacsires lose some performance at search
time. A way of minimizing such degradation is to choose a ‘@joget of pivots for each node.

5.1 Choosing Good Pivots

We study empirically the features of the pivots that disedethents at search time. In our experiment,
each time a pivot discards an element, we mark that pivonffare details see Section 6).

Because of the insertion process of HsAY1, the latest pivots of a node should be good since
they are close, and hence good representatives, of the nddeverify experimentally that most
discards using pivots were due to the latter ones. Figureft) @hows that a small number of latter
pivots per node suffices. In dimension 5, about 10 pivots peerdiscard all the elements that can
be discarded using pivots. In higher dimensions, even lesdspare needed. We call H-HAT1 &
Latest to this alternative.

Percentage of elements discarded by differents choices of Percentage of elements discarded by differents choices of
pivots in H-Dsatl for n=100,000 vectors, dim. 5, arity 4 pivots in H-Dsat2 for n=100,000 vectors, dim. 15, arity 32

100 T T T = R ECR: 100
90 i 90
80 |-
70 b
60 1
50 .
40 | .
30 4

80 B
70 B

60 4
50 | 1
40 4

Percentage discarded by pivots
Percentage discarded by pivots

Retrieve 0.01% —— 20 - Latest b
30 - Retrieve 0.1% —>— A 10 F Nearest -------- i
Retrieve 1% —&— e Random ---------
20 1 1 1 1 1 1 1 1 1 O - 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 90 100
Number of pivots Number of pivots

Figure 1: Percentage of elements discarded using the [aiteds in H-DsAT1 (left), and using the
latest and nearest pivots in HsBT2 (right).

The ancestors of a node are close to it, but the siblings dcditicestors are not necessarily close.
So we expect that using thelatest pivots in H-BAT2 (H-DsAT2 k Latest) does not perform as
well as before. An obvious alternative is HsBr2 £ Nearest, which uses thenearest pivots, not
the k latest. Figure 1 (right) confirms that less nearest pivasaeded to discard the same number
of nodes as latest pivots. However, note that for HALR2 k& Nearest we need to store the references
to the pivots in order to computB. Hence, given a fixed amount of memory, this alternative must
use less pivots per node than the others.

We have introduced a parameten our data structures, which can be easily tuned since gioidp
on the available memory. Whén= 0 the data structure becomes the origidsh—trege and when
k = oo it becomes our unrestricted data structures of Section 4.

5.2 Choosing Good Nodes

The dual question is whether some tree nodes profit more freoisthan others. We experimentally
study the features of the elements that are discarded usimtsp The result is that, for all the
metric spaces used, the discarded elements are locatethadeaves in the tree. In the vector space
of dimension 5, the percentage varies from 40% to 60% (depgraf the query radius), while in
the space of dimension 15, almost the 100% of the elemertardisd by pivots are leaves. In the
dictionary this percentage varies from 80% to 90%.

The reason is that the covering radii of the nodes decrease g® down in the tree, being zero
in the leaves. As the covering radius infeasibility coratitfor a nodez is D(a, q) > R(a) + r, the
probability of discarding: increases wheR(a) decreases.

Suppose that we restrict the number of pivots per node to @eval As leaves are discarded
more frequently than internal nodes, we consider an altiemthat profits from this fact when using
limited memory. The idea is to move the storage of pivots eéldaves smoothly and dynamically.

We have a parameter which is0 < p < 1. rho allows us to determine the number of pivots per
node such thatl) internal nodes havgk pivots (unless they do not have so many to choose)(2nd
external nodes have all the pivots that the scheme pernmilisqsithere is not enough available space).
The way to implement this is as follows: When an external noefsomes internal it retainsg: of its
pivots, and it yields the others to the public repository] aen a new external node appears it takes
from the repository all the pivots that it needs (whenever#pository has that many, in other case it
takes all the available ones).

In this way, each new element attempts to take a number ofgegoclose as possible to its original
number of pivots, and memory usage tends to move dynamicelhe leaves. The paramejeallows
us to control the degree of movement of storage to the ledNete that wherp = 0, all the pivots
move to the leaves, and when= 1 the memory management has no effect.

Figure 2 shows the experimental query cost for HALR £ Nearest, in the vector space of di-
mension 15, using = 5 andk = 35 pivots, and values, 0.1, 0.5, and1 for p. In this metric space,
we get the best performance wijth= 0.

6 Experimental Results

In this section we present a series of experiments perfoomexair data structures. We have evaluated
our structures in three metric spaces. First, a dictiond69¢069 English words under edit distance

Query cost for H-Dsat2 and memory management, Query cost for H-Dsat2 and memory management,
for k = 5 pivots, n = 100,000 vectors, dim. 15, arity 32 for k = 35 pivots, n = 100,000 vectors, dim. 15, arity 32

85 T 85 T
80 R
75 B
70 B
65 b
60 - B

55 B
50 rho=0.0 ——
rho=0.1 —<—

rho=0.0 ——
rho=0.1 —=—

Percentage of database examined
(2]
o
T

Percentage of database examined

45 - rho=0.5 —&— 40 rho=05 —&— |
rho=1.0 —e— i rho=10 —&—
40 L 35 L
0.01 0.1 1 0.01 0.1 1
Percentage of database retrieved Percentage of database retrieved

Figure 2: Performance of H-$xT2 k Nearest with memory management, and various values of
We selected values @f = 5 pivots (left) andk = 35 pivots (right).

(minimum number of character insertions, deletions andtsuibions to make the strings equal), of
interest in spelling applications. The other spaces atairetary cubes in dimensions 5 and 15 under
Euclidean distance, using 100,000 uniformly distributaadom points. We treat these just as metric
spaces, disregarding coordinate information.

In all cases, we left apart 100 random elements to act asegpudrhe data structures were built 20
times varying the order of insertions. We tested arities, 4,63 and 32. Each tree built was queried
100 times, using radii 1 to 4 in the dictionary, and radiiiesting 0.01%, 0.1%, and 1% of the set in
vector spaces.

In [1] we show that H-BAT1F outperformed H-BAT1D, clearly in the dictionary and slightly
in vector spaces. The results are similar on KHALR. Also we show experimentally that our struc-
tures are competitive, as our best versions of HBATL and H-DsAT2 largely improve upomisa—
trees This shows that our structures make good use of extra memdénDSAT2 can use more
memory than H-BAT1, and hence its query cost is better.

However, there is a price in memory usage, e.g., HATL needs 1.3 to 4.0 times the memory of
dsa—tree while H-DsSAT2 requires 5.2 to 17.5 times. Hence the interest in compdrawgwell our
structures use limited memory compared to others. FiguredFaure 4 compare against a generic
pivot data structure, using the same amount of memory inaakés. We also showdsa—treeas a
reference point, as it uses a fixed amount of memory. In easyespdimension 5 or dictionary) we
do better when there is little available memory, but in disien 15 H-BAT2 is always the best.
More pivots are needed to beat HsEx in harder problems.

7 Conclusions

In this paper we have completed a hybrid scheme for simjlaetrching in metric spaces. Such
scheme is basically dsa—tree except that a set of pivots is associated with each node. s&he

of pivots of each node is chosen in such a way that no extrardistevaluations are introduced at
insertion time: we only save some of the distance computatibat occur when inserting a new
element. At search time, when we reach a node, we use pivptsite the search space for free.

Query cost for radius retrieving 0.01% of database Query cost for radius retrieving 0.01% of database

n=100,000 vectors, dim. 5 n=100,000 vectors, dim. 15
B 9 T T T T T T T T T 3 100 T T T T T T T T T m|
£ 8r H-Dsat2 latest —e— B £
£ H-Dsat2 nearest —=— E 90 H-Dsat2 latest —o— 4
% 7r H-Dsatl latest —=— % H-Dsat2 nearest —=—
v 6 Pivots —x— i by 80 H-Dsatl latest —&—
& Dsat —=— 2 Pivots —¢—
S 5t Bl g 701 Dsat —>— 1
© ©
S 4t 4 3
] G
e 3r 7 o
IS I
£ 15
1 —g\t ~ - o B g
[bl = [9]
o 0 , M , M , " , a 30 1 1 1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of pivots in H-Dsat2 latest Number of pivots in H-Dsat2 latest
Query cost for radius retrieving 0.1% of database Query cost for radius retrieving 0.1% of database
n=100,000 vectors, dim. 5 n=100,000 vectors, dim. 15
B 25 T T T T T T T T T 3 100 T T T T T T T T T m|
5o et Rl I N Tomeae I
I + - B S R
s H-Dsatl latest —&— x 90 r H-Dsai2 nearest B
Pi o H-Dsatl latest —&—
@ ivots —*— 2 g5 | ° i
2 15l Dsat —*— | a Pivots ——¢—
g £ 80 Dsat —<— |
© ©
o 10 k- B ° 75 [
o o 70t .
g 5l] g 65 ' & = = g 1
S - — - A R * o 60 — &]
A A S S S-S T SN S S S S—r—
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of pivots in H-Dsat2 latest Number of pivots in H-Dsat2 latest
Query cost for radius retrieving 1% of database Query cost for radius retrieving 1% of database
n=100,000 vectors, dim. 5 n=100,000 vectors, dim. 15
B 50 T T T T T T T T T 3 100 T T T T T T T T T m|
£ 45 | H-Dsat2 latest —o— £ o8} 1
£ a0 - H-Dsat2 nearest —=— | £
x H-Dsatl latest —&— g 96 - b
$ 35 b Pivots —x— - $ 94 + I
] Dsat —=— 7]
8 30rF 7 S 92 | B
IS o]
T 25 B = 90 F 2
3 3 H-Dsat2 latest —e—
5 201 7] 5 88 [H-Dsat2 nearest —=— |
g 15 + B o 86 H-Dsatl latest —&— -
g 10 k B g 84 + = = = = Pivots —x— |
8 — ——o . S gt g\@\a‘ Dsat —<— |
&) . . . g‘_’ 80 I I I 1 I 1 I 1 M
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of pivots in H-Dsat2 latest Number of pivots in H-Dsat2 latest

Figure 3: Query cost of H-BAT1F and H-ZAT2F versus a pivoting algorithm, in vector spaces.

We study the way to choose good pivots when the amount of meiméimited. Several alterna-
tives are explored and evaluated.

In this paper we have also presented a method to delete eiefne@m ahybrid dynamic spatial
approximation tree This method has shown to be better than that of the origirethad over a
dsa—tree

The outcome is a fully dynamic data structure that can be gethéhrough insertions and dele-

Query cost for radius 2, n=69,069 words Query cost for radius 3, n=69,069 words
45 T T T T T T T T T 65 T T T T T T T T T

40 -
35
30
25 +

60 [

H-Dsat2 latest —e—
H-Dsat2 nearest —=—
H-Dsatl latest —&—
50 Pivots ——
Dsat —<—

45 b]

55

20 | H-Dsat2 latest —e—
15 L H-Dsat2 nearest —=—

H-Dsatl latest —&—
10 +

40 - 4

Pivots —x— | 35 - 1

Dsat —=—

Percentage of database examined
Percentage of database examined

30 - b

0 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 650 0 5 10 15 20 25 30 35 40 45 650

Number of pivots in H-Dsat2 latest Number of pivots in H-Dsat2 latest

Query cost for radius 4, n=69,069 words
80 -

T T T T T T T T T

75

70 L H-Dsat2 latest —e— B
H-Dsat2 nearest —#—
H-Dsatl latest —=—
65 Pivots —x— 4
Dsat —<—

60 -

55 -

Percentage of database examined

50 L 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 650

Number of pivots in H-Dsat2 latest

Figure 4. Query cost of H-BAT1F and H-ZAT2F versus a pivoting algorithm, in the dictionary.

tions over arbitrarily long periods of time without any rganization, and that can take advantage of
available memory to improve search and deletion costs.

References

[1] D. Arroyuelo, F. Muiioz, G. Navarro, and N. Reyes. Memagptative dynamic spatial approx-
imation trees. InProceedings of the 10th International Symposium on Strirggéssing and
Information Retrieval (SPIRE 2003)NCS. Springer, 2003. To appear.

[2] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. MaifmquProximity searching in metric
spacesACM Computing Survey83(3):273-321, September 2001.

[3] G. Navarro and N. Reyes. Fully dynamic spatial approXioratrees. InProceedings of the 9th
International Symposium on String Processing and InforomaRetrieval (SPIRE 2002).NCS
2476, pages 254-270. Springer, 2002.

[4] G. Navarro and N. Reyes. Improved deletions in dynamatiabapproximation trees. IAroc. of
the XXIII International Conference of the Chilean Compuseience Society (SCCC'03EEE
CS Press, 2003. To appear.

