Run-Length FM-index (Extended Abstract)

Veli Mäkinen¹ and Gonzalo Navarro²

² Dept. of Computer Science, Univ. of Helsinki, Finland. ² Dept. of Computer Science, Univ. of Chile, Chile.

Abstract. The FM-index is a succinct text index needing only $O(H_k n)$ bits of space, where n is the text size and H_k is the kth order entropy of the text. Hidden in the sublinear factor lies an exponential dependence on the alphabet size, σ . In this paper we show how the same ideas can be used to obtain an index needing $O(H_k n)$ bits of space, with the constant factor depending only logarithmically on σ . Our space complexity becomes better as soon as $\sigma \log \sigma > \log n$, which means in practice for all but very small alphabets, even with huge texts. We retain the same search complexity of the FM-index.

1 FM-index

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which produces a permutation of the original text, denoted by $T^{bwt} = bwt(T)$. String T^{bwt} is a result of the following forward transformation: (1) Append to the end of T a special end marker \$, which is lexicographically smaller than any other character; (2) form a conceptual matrix \mathcal{M} whose rows are the cyclic shifts of the string T\$, sorted in lexicographic order; (3) construct the transformed text L by taking the last column of \mathcal{M} . The first column is denoted by F.

The suffix array \mathcal{A} of text T\$ is essentially the matrix $\mathcal{M}: \mathcal{A}[i] = j$ iff the *i*th row of \mathcal{M} contains string $t_j t_{j+1} \cdots t_n \$ t_1 \cdots t_{j-1}$. Given the suffix array, the search for the occurrences of the pattern $P = p_1 p_2 \cdots p_m$ is trivial. The occurrences form an interval [sp, ep] in \mathcal{A} such that suffixes $t_{\mathcal{A}[i]} t_{\mathcal{A}[i]+1} \cdots t_n$, $sp \leq i \leq ep$, contain the pattern as a prefix. This interval can be searched for using two binary searches in time $O(m \log n)$ [5].

The suffix array of text T is represented implicitly by T^{bwt} . The novel idea of the FM-index is to store T^{bwt} in compressed form, and to simulate a *backward search* in the suffix array as follows:

Algorithm FM_Search($P[1, m], T^{bwt}[1, n]$) (1) c = P[m]; i = m;(2) $sp = C_T[c] + 1; ep = C_T[c + 1];$ (3) while ($sp \le ep$) and ($i \ge 2$) do (4) c = P[i - 1];(5) $sp = C_T[c] + Occ(T^{bwt}, c, sp - 1) + 1;$ (6) $ep = C_T[c] + Occ(T^{bwt}, c, ep);$ (7) i = i - 1;(8) if (ep < sp) then return "not found" else return "found (ep - sp + 1) occs".

The above algorithm finds the interval [sp, ep] of \mathcal{A} containing the occurrences of the pattern P. It uses the array C_T and function Occ(X, c, i), where $C_T[c]$ equals the number of occurrences of characters $\{\$, 1, \ldots, c-1\}$ in the text T and Occ(X, c, i) equals the number of occurrences of character c in the prefix X[1, i].

Ferragina and Manzini [3] go on to describe an implementation of $Occ(T^{bwt}, c, i)$ that uses a compressed form of T^{bwt} ; they show how to compute $Occ(T^{bwt}, c, i)$ for any c and i in constant time. However, to achieve this they need exponential space (in the size of the alphabet).

2 Run-Length FM-Index

Our idea is to exploit run-length compression to represent T^{bwt} . An array S contains one character per run in T^{bwt} , while an array B contains n bits and marks the beginnings of the runs.

Definition 1. Let string $T^{bwt} = c_1^{\ell_1} c_2^{\ell_2} \dots c_{n'}^{\ell_{n'}}$ consist of n' runs, so that the *i*-th run consists of ℓ_i repetitions of character c_i . Our representation of T^{bwt} consists of string $S = c_1 c_2 \dots c_{n'}$ of length n', and bit array $B = 10^{\ell_1 - 1} 10^{\ell_2 - 1} \dots 10^{\ell_{n'} - 1}$.

It is clear that S and B contain enough information to reconstruct T^{bwt} : $T^{bwt}[i] = S[rank(B,i)]$, where rank(B,i) is the number of 1's in $B[1 \dots i]$ (so rank(B,0) = 0). Function rank can be computed in constant time using o(n) extra bits [4, 6, 2]. Hence, S and B give us a representation of T^{bwt} that permits us accessing any character in constant time and requires at most $n' \log \sigma + n + o(n)$ bits. The problem, however, is not only how to access T^{bwt} , but also how to compute $C_T[c] + Occ(T^{bwt}, c, i)$ for any c and i.

In the following we show that the above can be computed by means of a bit array B', obtained by reordering the runs of B in lexicographic order of the characters of each run. Runs of the same character are left in their original order. The use of B' will add n + o(n) bits to our scheme. We also use C_S , which plays the same role of C_T , but it refers to string S.

Definition 2. Let $S = c_1 c_2 \ldots c_{n'}$ of length n', and $B = 10^{\ell_1 - 1} 10^{\ell_2 - 1} \ldots 10^{\ell_{n'} - 1}$. Let $p_1 p_2 \ldots p_{n'}$ be a permutation of $1 \ldots n'$ such that, for all $1 \le i < n'$, either $c_{p_i} < c_{p_{i+1}}$ or $c_{p_i} = c_{p_{i+1}}$ and $p_i < p_{i+1}$. Then, bit array B' is defined as $B' = 10^{\ell_{p_1} - 1} 10^{\ell_{p_2} - 1} \ldots 10^{\ell_{p_{n'}} - 1}$.

We now give the theorems that cover different cases in the computation of $C_T[c] + Occ(T^{bwt}, c, i)$ (see [7] for proofs). They make use of *select*, which is the inverse of *rank*: select(B', j) is the position of the *j*th 1 in B' (and select(B', 0) = 0). Function *select* can be computed in constant time using o(n) extra bits [4, 6, 2].

Theorem 1. For any $c \in \Sigma$ and $1 \leq i \leq n$, such that $T^{bwt}[i] \neq c$, it holds

$$C_T[c] + Occ(T^{bwt}, c, i) = select(B', C_S[c] + 1 + Occ(S, c, rank(B, i))) - 1$$

Theorem 2. For any $c \in \Sigma$ and $1 \leq i \leq n$, such that $T^{bwt}[i] = c$, it holds

$$C_T[c] + Occ(T^{bwt}, c, i) = select(B', C_S[c] + Occ(S, c, rank(B, i))) + i - select(B, rank(B, i)).$$

Since functions rank and select can be computed in constant time, the only obstacle to use the theorems is the computation of Occ over string S.

Instead of representing S explicitly, we will store one bitmap S_c per text character c, so that $S_c[i] = 1$ iff S[i] = c. Hence $Occ(S, c, i) = rank(S_c, i)$. It is still possible to determine in constant time whether $T^{bwt}[i] = c$ or not: an equivalent condition is $S_c[rank(B, i)] = 1$.

According to [8], a bit array of length n' where there are f 1's can be represented using $\log \binom{n'}{f} + o(f) + O(\log \log n')$ bits, while still supporting constant time access and constant time rank function for the positions with value 1. It can be shown (see [7]) that the overall size of these structures is at most $n'(\log \sigma + 1.44 + o(1)) + O(\sigma \log n')$.

We have shown in [7] that the number of runs in T^{bwt} is limited by $2H_kn + \sigma^k$. By adding up all our space complexities we obtain $2n(H_k(\log \sigma + 1.44) + 1 + o(1)) + O(\sigma \log n) = 2nH_k \log \sigma(1 + o(1))$ bits of space if $\sigma = O(n/\log n)$.

References

- 1. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. DEC SRC Research Report 124, 1994.
- 2. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
- 3. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In *Proc. FOCS'00*, pp. 390-398, 2000.
- 4. G. Jacobson. Succinct Static Data Structures. PhD thesis, CMU-CS-89-112, Carnegie Mellon University, 1989.
- U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM J. Comput., 22, pp. 935-948, 1993.
- 6. I. Munro. Tables. In Proc. FSTTCS'96, pp. 37-42, 1996.
- 7. V. Mäkinen and G. Navarro. New search algorithms and time/space tradeoffs for succinct suffix arrays. Technical report C-2004-20, Dept. Computer Science, Univ. Helsinki, April 2004.
- 8. R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proc. SODA'02, pp. 233-242, 2002.