
Run-Length FM-index (Extended Abstra
t)Veli M�akinen1 and Gonzalo Navarro21 Dept. of Computer S
ien
e, Univ. of Helsinki, Finland.2 Dept. of Computer S
ien
e, Univ. of Chile, Chile.Abstra
t. The FM-index is a su

in
t text index needing only O(Hkn) bits of spa
e, where n is thetext size and Hk is the kth order entropy of the text. Hidden in the sublinear fa
tor lies an exponentialdependen
e on the alphabet size, �. In this paper we show how the same ideas
an be used to obtainan index needing O(Hkn) bits of spa
e, with the
onstant fa
tor depending only logarithmi
ally on �.Our spa
e
omplexity be
omes better as soon as � log � > log n, whi
h means in pra
ti
e for all butvery small alphabets, even with huge texts. We retain the same sear
h
omplexity of the FM-index.1 FM-indexThe FM-index [3℄ is based on the Burrows-Wheeler transform (BWT) [1℄, whi
h produ
es a permutation ofthe original text, denoted by T bwt = bwt(T). String T bwt is a result of the following forward transformation:(1) Append to the end of T a spe
ial end marker $, whi
h is lexi
ographi
ally smaller than any other
hara
ter;(2) form a
on
eptual matrix M whose rows are the
y
li
 shifts of the string T$, sorted in lexi
ographi
order; (3)
onstru
t the transformed text L by taking the last
olumn of M. The �rst
olumn is denoted byF . The suÆx array A of text T$ is essentially the matrixM: A[i℄ = j i� the ith row of M
ontains stringtjtj+1 � � � tn$t1 � � � tj�1. Given the suÆx array, the sear
h for the o

urren
es of the pattern P = p1p2 � � � pm istrivial. The o

urren
es form an interval [sp; ep℄ in A su
h that suÆxes tA[i℄tA[i℄+1 � � � tn, sp � i � ep,
ontainthe pattern as a pre�x. This interval
an be sear
hed for using two binary sear
hes in time O(m logn) [5℄.The suÆx array of text T is represented impli
itly by T bwt. The novel idea of the FM-index is to storeT bwt in
ompressed form, and to simulate a ba
kward sear
h in the suÆx array as follows:Algorithm FM Sear
h(P [1;m℄,T bwt[1; n℄)(1)
 = P [m℄; i = m;(2) sp = CT [
℄ + 1; ep = CT [
+ 1℄;(3) while (sp � ep) and (i � 2) do(4)
 = P [i� 1℄;(5) sp = CT [
℄ +O

(T bwt;
; sp� 1)+1;(6) ep = CT [
℄ +O

(T bwt;
; ep);(7) i = i� 1;(8) if (ep < sp) then return \not found" else return \found (ep� sp+ 1) o

s".The above algorithm �nds the interval [sp; ep℄ of A
ontaining the o

urren
es of the pattern P . Ituses the array CT and fun
tion O

(X;
; i), where CT [
℄ equals the number of o

urren
es of
hara
tersf$; 1; : : : ;
� 1g in the text T and O

(X;
; i) equals the number of o

urren
es of
hara
ter
 in the pre�xX [1; i℄.Ferragina and Manzini [3℄ go on to des
ribe an implementation of O

(T bwt;
; i) that uses a
ompressedform of T bwt; they show how to
ompute O

(T bwt;
; i) for any
 and i in
onstant time. However, to a
hievethis they need exponential spa
e (in the size of the alphabet).2 Run-Length FM-IndexOur idea is to exploit run-length
ompression to represent T bwt. An array S
ontains one
hara
ter per runin T bwt, while an array B
ontains n bits and marks the beginnings of the runs.

De�nition 1. Let string T bwt =
`11
`22 : : :
`n0n0
onsist of n0 runs, so that the i-th run
onsists of `i repetitionsof
hara
ter
i. Our representation of T bwt
onsists of string S =
1
2 : : :
n0 of length n0, and bit arrayB = 10`1�110`2�1 : : : 10`n0�1.It is
lear that S and B
ontain enough information to re
onstru
t T bwt: T bwt[i℄ = S[rank(B; i)℄, whererank(B; i) is the number of 1's in B[1 : : : i℄ (so rank(B; 0) = 0). Fun
tion rank
an be
omputed in
onstanttime using o(n) extra bits [4, 6, 2℄. Hen
e, S and B give us a representation of T bwt that permits us a

essingany
hara
ter in
onstant time and requires at most n0 log� + n+ o(n) bits. The problem, however, is notonly how to a

ess T bwt, but also how to
ompute CT [
℄ +O

(T bwt;
; i) for any
 and i.In the following we show that the above
an be
omputed by means of a bit array B0, obtained byreordering the runs of B in lexi
ographi
 order of the
hara
ters of ea
h run. Runs of the same
hara
ter areleft in their original order. The use of B0 will add n+ o(n) bits to our s
heme. We also use CS , whi
h playsthe same role of CT , but it refers to string S.De�nition 2. Let S =
1
2 : : :
n0 of length n0, and B = 10`1�110`2�1 : : : 10`n0�1. Let p1p2 : : : pn0 be apermutation of 1 : : : n0 su
h that, for all 1 � i < n0, either
pi <
pi+1 or
pi =
pi+1 and pi < pi+1. Then,bit array B0 is de�ned as B0 = 10`p1�110`p2�1 : : : 10`pn0�1.We now give the theorems that
over di�erent
ases in the
omputation of CT [
℄ +O

(T bwt;
; i) (see [7℄for proofs). They make use of sele
t, whi
h is the inverse of rank: sele
t(B0; j) is the position of the jth 1 inB0 (and sele
t(B0; 0) = 0). Fun
tion sele
t
an be
omputed in
onstant time using o(n) extra bits [4, 6, 2℄.Theorem 1. For any
 2 � and 1 � i � n, su
h that T bwt[i℄ 6=
, it holdsCT [
℄ +O

(T bwt;
; i) = sele
t(B0; CS [
℄ + 1 +O

(S;
; rank(B; i))) � 1Theorem 2. For any
 2 � and 1 � i � n, su
h that T bwt[i℄ =
, it holdsCT [
℄ +O

(T bwt;
; i) = sele
t(B0; CS [
℄ +O

(S;
; rank(B; i)))+i� sele
t(B; rank(B; i)):Sin
e fun
tions rank and sele
t
an be
omputed in
onstant time, the only obsta
le to use the theoremsis the
omputation of O

 over string S.Instead of representing S expli
itly, we will store one bitmap S
 per text
hara
ter
, so that S
[i℄ = 1 i�S[i℄ =
. Hen
e O

(S;
; i) = rank(S
; i). It is still possible to determine in
onstant time whether T bwt[i℄ =
or not: an equivalent
ondition is S
[rank(B; i)℄ = 1.A

ording to [8℄, a bit array of length n0 where there are f 1's
an be represented using log �n0f � +o(f) + O(log logn0) bits, while still supporting
onstant time a

ess and
onstant time rank fun
tion forthe positions with value 1. It
an be shown (see [7℄) that the overall size of these stru
tures is at mostn0(log� + 1:44 + o(1)) +O(� logn0).We have shown in [7℄ that the number of runs in T bwt is limited by 2Hkn + �k . By adding up all ourspa
e
omplexities we obtain 2n(Hk(log�+1:44)+1+o(1))+O(� logn) = 2nHk log�(1+o(1)) bits of spa
eif � = O(n= logn).Referen
es1. M. Burrows and D. J. Wheeler. A blo
k-sorting lossless data
ompression algorithm. DEC SRC Resear
h Report124, 1994.2. D. Clark. Compa
t Pat Trees. PhD thesis, University of Waterloo, 1996.3. P. Ferragina and G. Manzini. Opportunisti
 data stru
tures with appli
ations. In Pro
. FOCS'00, pp. 390{398,2000.4. G. Ja
obson. Su

in
t Stati
 Data Stru
tures. PhD thesis, CMU-CS-89-112, Carnegie Mellon University, 1989.5. U. Manber and G. Myers. SuÆx arrays: A new method for on-line string sear
hes. SIAM J. Comput., 22, pp.935{948, 1993.6. I. Munro. Tables. In Pro
. FSTTCS'96, pp. 37{42, 1996.7. V. M�akinen and G. Navarro. New sear
h algorithms and time/spa
e tradeo�s for su

in
t suÆx arrays. Te
hni
alreport C-2004-20, Dept. Computer S
ien
e, Univ. Helsinki, April 2004.8. R. Raman, V. Raman, and S. Srinivasa Rao. Su

in
t indexable di
tionaries with appli
ations to en
oding k-arytrees and multisets. In Pro
. SODA'02, pp. 233{242, 2002.

