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ien
e, Univ. of Chile, Chile.Abstra
t. The FM-index is a su

in
t text index needing only O(Hkn) bits of spa
e, where n is thetext size and Hk is the kth order entropy of the text. Hidden in the sublinear fa
tor lies an exponentialdependen
e on the alphabet size, �. In this paper we show how the same ideas 
an be used to obtainan index needing O(Hkn) bits of spa
e, with the 
onstant fa
tor depending only logarithmi
ally on �.Our spa
e 
omplexity be
omes better as soon as � log � > log n, whi
h means in pra
ti
e for all butvery small alphabets, even with huge texts. We retain the same sear
h 
omplexity of the FM-index.1 FM-indexThe FM-index [3℄ is based on the Burrows-Wheeler transform (BWT) [1℄, whi
h produ
es a permutation ofthe original text, denoted by T bwt = bwt(T ). String T bwt is a result of the following forward transformation:(1) Append to the end of T a spe
ial end marker $, whi
h is lexi
ographi
ally smaller than any other 
hara
ter;(2) form a 
on
eptual matrix M whose rows are the 
y
li
 shifts of the string T$, sorted in lexi
ographi
order; (3) 
onstru
t the transformed text L by taking the last 
olumn of M. The �rst 
olumn is denoted byF . The suÆx array A of text T$ is essentially the matrixM: A[i℄ = j i� the ith row of M 
ontains stringtjtj+1 � � � tn$t1 � � � tj�1. Given the suÆx array, the sear
h for the o

urren
es of the pattern P = p1p2 � � � pm istrivial. The o

urren
es form an interval [sp; ep℄ in A su
h that suÆxes tA[i℄tA[i℄+1 � � � tn, sp � i � ep, 
ontainthe pattern as a pre�x. This interval 
an be sear
hed for using two binary sear
hes in time O(m logn) [5℄.The suÆx array of text T is represented impli
itly by T bwt. The novel idea of the FM-index is to storeT bwt in 
ompressed form, and to simulate a ba
kward sear
h in the suÆx array as follows:Algorithm FM Sear
h(P [1;m℄,T bwt[1; n℄)(1) 
 = P [m℄; i = m;(2) sp = CT [
℄ + 1; ep = CT [
+ 1℄;(3) while (sp � ep) and (i � 2) do(4) 
 = P [i� 1℄;(5) sp = CT [
℄ +O

(T bwt; 
; sp� 1)+1;(6) ep = CT [
℄ +O

(T bwt; 
; ep);(7) i = i� 1;(8) if (ep < sp) then return \not found" else return \found (ep� sp+ 1) o

s".The above algorithm �nds the interval [sp; ep℄ of A 
ontaining the o

urren
es of the pattern P . Ituses the array CT and fun
tion O

(X; 
; i), where CT [
℄ equals the number of o

urren
es of 
hara
tersf$; 1; : : : ; 
� 1g in the text T and O

(X; 
; i) equals the number of o

urren
es of 
hara
ter 
 in the pre�xX [1; i℄.Ferragina and Manzini [3℄ go on to des
ribe an implementation of O

(T bwt; 
; i) that uses a 
ompressedform of T bwt; they show how to 
ompute O

(T bwt; 
; i) for any 
 and i in 
onstant time. However, to a
hievethis they need exponential spa
e (in the size of the alphabet).2 Run-Length FM-IndexOur idea is to exploit run-length 
ompression to represent T bwt. An array S 
ontains one 
hara
ter per runin T bwt, while an array B 
ontains n bits and marks the beginnings of the runs.



De�nition 1. Let string T bwt = 
`11 
`22 : : : 
`n0n0 
onsist of n0 runs, so that the i-th run 
onsists of `i repetitionsof 
hara
ter 
i. Our representation of T bwt 
onsists of string S = 
1
2 : : : 
n0 of length n0, and bit arrayB = 10`1�110`2�1 : : : 10`n0�1.It is 
lear that S and B 
ontain enough information to re
onstru
t T bwt: T bwt[i℄ = S[rank(B; i)℄, whererank(B; i) is the number of 1's in B[1 : : : i℄ (so rank(B; 0) = 0). Fun
tion rank 
an be 
omputed in 
onstanttime using o(n) extra bits [4, 6, 2℄. Hen
e, S and B give us a representation of T bwt that permits us a

essingany 
hara
ter in 
onstant time and requires at most n0 log� + n+ o(n) bits. The problem, however, is notonly how to a

ess T bwt, but also how to 
ompute CT [
℄ +O

(T bwt; 
; i) for any 
 and i.In the following we show that the above 
an be 
omputed by means of a bit array B0, obtained byreordering the runs of B in lexi
ographi
 order of the 
hara
ters of ea
h run. Runs of the same 
hara
ter areleft in their original order. The use of B0 will add n+ o(n) bits to our s
heme. We also use CS , whi
h playsthe same role of CT , but it refers to string S.De�nition 2. Let S = 
1
2 : : : 
n0 of length n0, and B = 10`1�110`2�1 : : : 10`n0�1. Let p1p2 : : : pn0 be apermutation of 1 : : : n0 su
h that, for all 1 � i < n0, either 
pi < 
pi+1 or 
pi = 
pi+1 and pi < pi+1. Then,bit array B0 is de�ned as B0 = 10`p1�110`p2�1 : : : 10`pn0�1.We now give the theorems that 
over di�erent 
ases in the 
omputation of CT [
℄ +O

(T bwt; 
; i) (see [7℄for proofs). They make use of sele
t, whi
h is the inverse of rank: sele
t(B0; j) is the position of the jth 1 inB0 (and sele
t(B0; 0) = 0). Fun
tion sele
t 
an be 
omputed in 
onstant time using o(n) extra bits [4, 6, 2℄.Theorem 1. For any 
 2 � and 1 � i � n, su
h that T bwt[i℄ 6= 
, it holdsCT [
℄ +O

(T bwt; 
; i) = sele
t(B0; CS [
℄ + 1 +O

(S; 
; rank(B; i))) � 1Theorem 2. For any 
 2 � and 1 � i � n, su
h that T bwt[i℄ = 
, it holdsCT [
℄ +O

(T bwt; 
; i) = sele
t(B0; CS [
℄ +O

(S; 
; rank(B; i)))+i� sele
t(B; rank(B; i)):Sin
e fun
tions rank and sele
t 
an be 
omputed in 
onstant time, the only obsta
le to use the theoremsis the 
omputation of O

 over string S.Instead of representing S expli
itly, we will store one bitmap S
 per text 
hara
ter 
, so that S
[i℄ = 1 i�S[i℄ = 
. Hen
e O

(S; 
; i) = rank(S
; i). It is still possible to determine in 
onstant time whether T bwt[i℄ = 
or not: an equivalent 
ondition is S
[rank(B; i)℄ = 1.A

ording to [8℄, a bit array of length n0 where there are f 1's 
an be represented using log �n0f � +o(f) + O(log logn0) bits, while still supporting 
onstant time a

ess and 
onstant time rank fun
tion forthe positions with value 1. It 
an be shown (see [7℄) that the overall size of these stru
tures is at mostn0(log� + 1:44 + o(1)) +O(� logn0).We have shown in [7℄ that the number of runs in T bwt is limited by 2Hkn + �k . By adding up all ourspa
e 
omplexities we obtain 2n(Hk(log�+1:44)+1+o(1))+O(� logn) = 2nHk log�(1+o(1)) bits of spa
eif � = O(n= logn).Referen
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