
Compressedq-gram Indexing for Highly Repetitive
Biological Sequences

Francisco Claude
University of Waterloo

fclaude@cs.uwaterloo.ca

Antonio Fariña
University of A Coruña

fari@udc.es

Miguel A. Martı́nez-Prieto
University of Valladolid
migumar2@infor.uva.es

Gonzalo Navarro
DCC, University of Chile
gnavarro@dcc.uchile.cl

Abstract—The study of compressed storage schemes for highly
repetitive sequence collections has been recently boostedby the
availability of cheaper sequencing technologies and the flood of
data they promise to generate. Such a storage scheme may range
from the simple goal of retrieving whole individual sequences to
the more advanced one of providing fast searches in the collection.
In this paper we study alternatives to implement a particularly
popular index, namely, the one able of finding all the positions
in the collection of substrings of fixed length (q-grams). We
introduce two novel techniques and show they constitute practical
alternatives to handle this scenario. They excell particularly in
two cases: whenq is small (up to 6), and when the collection is
extremely repetitive (less than 0.01% mutations).

I. I NTRODUCTION AND RELATED WORK

The sequencing of the whole Human Genome was a cel-
ebrated breakthrough. The goal was to obtain aconsensus
sequence accounting for the common parts of the genomes
of all humans. Less than one decade later, DNA sequencing
technologies have become so fast and cost-effective that se-
quencing individual genomes will soon become a common
task [1], [2], [3]. Huge DNA collections are at the next corner.

The computational challenges posed by handling collections
of thousands of genomes are formidable. In general, DNA and
proteins are not compressible (beyond exploiting their small al-
phabet size) using classical methods [4]. Compression methods
tailored for DNA, such as GenCompress [5], Biocompress [6],
Fact [7], and GSCompress [8], have only moderate success.
Fortunately, massive collections ofrelatedDNA sequences are
highly repetitive. For example, two human genomes are 99.9%
and even 99.99% similar. This makes them compressible.

Compressing and indexing those highly repetitive sequence
collections, however, poses many challenges, as most of the
current compression technology is not well prepared to deal
with them. In practice, methods like those inppmdi, gzip
and bzip2 will not take advantage of the repetitiveness
because they search for repetitions in a bounded window of the
text. Another less known member of the family,p7zip, uses a
larger buffer and is very successful, yet unable to decompress
individual sequences. Grammar-based compressors have a
good chance to succeed, as long as the compression does
not proceed by limited chunks. This is well illustrated by
softwarecomrad1, which achieves good compression ratios
and efficient extraction of individual sequences [9].

1http://www.cs.mu.oz.au/∼kuruppu/comrad

On the other hand, recent research [10] has shown that the
current compressed-indexing technology is also not properly
prepared to handle this high repetitiveness. However, they
show that the BWT of highly repetitive collections contains
long runs of identical symbols, which they successfully exploit
to build extremely compact indices that are able not only to
retrieve the individual sequences, but also to extract arbitrary
subsequences of them, and to count and locate the number of
occurrences of arbitrary strings in the collection.

A weak point of these BWT-based indices is that, although
counting the number of occurrences of pattern substrings is
fast, retrieving their positions in the collection is relatively
slow. This is particularly noticeable when searching for short
sequences, which have many occurrences. In turn, this is
particularly unfortunate because the search for short sequences
is an extremely popular task in Computational Biology. For
example, all the techniques that build on analyzingK-mers
require that kind of search. Another example is the approx-
imate search of sequences for conserved regions, that is,
subsequences that are sufficiently similar to a given pattern
sequence. Such searches usually start by identifying areas
where short pattern substrings appear, then they extract the se-
quence around those occurrences, and finally run a sequential
approximate pattern matching algorithm on the spotted areas.
This is how the popular BLAST tool2 proceeds, for example.

In this paper we focus on providing compressed storage
schemes for highly repetitive sequence collections, whilepro-
viding efficient indexed search for substrings of a fixed length
q. We study two widely differerent mechanisms.

The first method is inspired in a result [11] showing that
a compressedq-gram index is more effective than the BWT-
based self-indexes when searching for short patterns. We com-
press the sequences using a grammar-based compressor (Re-
Pair [12]) and compress the lists of occurrences of eachq-gram
using Lempel-Ziv compression (more precisely, LZ77 [13])
after differentially encoding the positions. The rationale is that
highly repetitive sequences will induce also repetitiveness in
the sequences of relative positions where theq-grams occur.

The second method is inspired in a recent technique [14] to
turn a grammar-based compressor into an index able not only
to retrieve any part of the sequence, but also to locate patterns
in the collection. We explain how to adapt the method to Re-

2http://blast.ncbi.nlm.nih.gov/Blast.cgi

Pair compression [12], and use it to search for the desired
q-grams. The index is able to search for pattern strings of any
length, and particularly effective on short ones.

Our experimental results show that both techniques are
competitive with the state of the art in this particular scenario,
where they offer practical alternatives to compress and index
highly repetitive sequence collections. Theq-gram index is
unrivalled for q ≤ 6, whereas the grammar-based index is
unbeatable for collections with less than 0.01% of differences.

We useT to denote the text collection, which we represent
as the concatenation of all the texts in the collection (using
proper separators). We callN the total length, in symbols, of
T . In general we will explain search operations forq-grams,
yet we will also refer to them as a patternP . We callocc the
number of times theq-gram orP occurs inT .

II. A L EMPEL-ZIV COMPRESSEDq-GRAM INDEX

A classicalq-gram index is formed by avocabularycom-
prising all the different substrings of lengthq in T , and for
each of thoseq-grams, aposting list recording the positions
in T where they appear, in increasing order. To reduce space,
block addressingis used, that is, the text is divided into blocks
of b characters and the posting lists mention only the distinct
blocks where theirq-gram appears.

A search for all the positions where a givenq-gram appears
proceeds as follows. First, the query is looked up in the vocab-
ulary and its posting list is retrieved. Second, each block in the
list is scanned using a sequential string matching algorithm,
and the exact occurrences of theq-gram are reported. To
ensure thatq-grams overlapping blocks are correctly found,
it is necessary to replicate the firstq − 1 symbols of each
block at the end of the previous block.

We choose binary search for the vocabulary lookup, and
Horspool algorithm [15] for the sequential search of blocks,
as it is usually a good choice for the typical range of pattern
lengthsq to search (4 to 12).

In order to further reduce the space, we compress both
the q-gram index and the text with techniques tailored for
highly repetitive sequences. As both decompress in linear
time, we can already give the expected search time for a
q-gram. The binary search time can be upper bounded by
O(q log N), the decompression time for the posting list by
O(occ), and decompression and scanning of a block byO(b).
The average number of blocks, out ofn = ⌈N/b⌉, where any
of the occ occurrences appear, is(N/b)(1 − (1 − b/N)occ).
Multiplied by the processing costO(b), we have the average
time O(N(1 − (1 − b/N)occ)), which in the worst case is
bounded byO(min(b · occ, N)).

A. Compressing the Index

A customary way of compressing inverted indexes [16],
which also applies toq-gram indexes, starts by differentially
encoding the posting lists. LetLt = p1p2 . . . pℓ the list of
blocks whereq-gram t appears. Its differentially encoded
version is Dt = d1d2 . . . dℓ, where d1 = p1 and di+1 =
pi+1 − pi for 1 ≤ i < ℓ. Because1 ≤ pi ≤ n, the

numbersdi are smaller whenℓ is larger, that is, when the
lists are longer. Hence a variable-length encoding technique
that assigns shorter codewords to smaller numbers achieves
compression especially on the longer lists.

In Natural Language, this technique takes advantage of the
fact that some words are much more frequent than others [17],
but not of the fact that a collection might be repetitive. We
now modify the scheme to account for that scenario, which is
the one of interest for us. Consider a sequenceSXS, where
string S appears twice. Lets1, s2, . . . , sa be the occurrences
of a givenq-gram t in S, andx1, x2, . . . , xb its occurrences
in X . Then, a repetition of the sequence of numbers(s2 −
s1), (s3 − s2), . . . , (sa − sa−1) appears inDt thanks to the
differential encoding. Because we wish to retrieve the whole
list Lt from the beginning, any compression algorithm able
to take advantage of long repetitions can be used. We choose
LZ77 [13], as it is fast to decompress and can detect any
repeated sequence seen in the past in order to compress the
upcoming text. In particular, LZ77 would spend justO(log(a+
b)) bits to encode the second occurrence of(s2 − s1), (s3 −
s2), . . . , (sa − sa−1) in Dt.

Several variable-length encoders emit codes of arbitrary
numbers of bits. We opt instead for Vbyte encoding [18],
which uses a variable number of whole bytes. Its advantages
are that it decompresses fast and that the repetitions inDt will
show up as repeated sequences of bytes, which can be spotted
by available LZ77 implementations.

Therefore, we transform each listLt into Dt by writing
the differences, then encode the numbersdi using Vbyte
encoding, and finally use LZ77 compression on the resulting
list. Each posting list is compressed separately, so that itcan
be decompressed independently. As our LZ77 compressor we
uselzma from thep7zip distribution (www.p7zip.org).
If the resulting list compressed withlzma is longer than the
uncompressed version, we represent the list using only Vbyte
encoding. A bitmap marks which lists are lzma-compressed.

B. Compressing the Text

The text itself is also compressed, in such a way that rep-
etitions are exploited and individual blocks can be efficiently
decompressed. LZ77 compression is not suitable because we
should compress each block separately in order to be able to
independently decompress it.

We opt for a grammar-based compression algorithm, as in
previous work [9]. These are strong enough to detect long-
range repetitions in the text, and allow fast local decompres-
sion. In particular, we choose Re-Pair [12], which compresses
and decompresses in linear time and offers good compression
ratios on highly repetitive sequences.

Re-Pair operates as follows. (1) It finds the most common
pair ab of characters in the sequence; (2) It creates a ruleA →
ab, whereA is a new (nonterminal) symbol; (3) It replaces all
the occurrences ofab in the sequence byA; (4) It iterates from
step (1) until no pair appears twice. Note that newly created
symbolsA can be further replaced by other rules. The outcome
of the algorithm is a set of rulesD and the final compressed

streamC where no repeated pairs appear. Note thatC is a
sequence of integers, not characters, as many nonterminals
can be created. Compression, somewhat surprisingly, can be
executed in linear time. Decompression is linear-time and very
efficient in practice if we want to decompress a subsequence of
C: we recursively unroll each nonterminal ofC until reaching
the terminals (i.e., the original characters).

In order to detect long-range repetitions and at the same
time allow for isolated block decompression in an efficient
way, we insert the special integer symbol−i after the i-
th block. As this symbol is unique, it cannot participate in
any pair that appears twice, and thus Re-Pair will not create
nonterminals that cross a block border. Those symbols will
remain in sequenceC and will mark the limits of blocks. After
executing Re-Pair, symbols−i are removed from the sequence,
and we set up an array of pointers to the beginning of each
block in C. These pointers are used to identify the area ofC
that must be decompressed and then searched for the pattern.

The dictionary is stored as an array of pairs of integers.

III. A G RAMMAR -COMPRESSEDSELF-INDEX

Instead of combining a compressed index with a text
compression mechanism, we can opt for aself-index, which is
a compressed index that is able to reproduce any text passage,
and thus it replaces the text as well [19]. However, traditional
self-indexes, as explained in the Introduction, are not well
suited to compressing highly repetitive sequences.

Recent theoretical work [14] proposes a self-index tech-
nique for straight-line programs (SLPs), a restricted kindof
grammar. This type of compression is very promising for
highly repetitive sequences, and such a self-index could be
competitive to retrieveq-grams from the collection.

Finding the smallest grammar that generates a given se-
quence is an NP-hard problem, so one must resort to good
heuristics. We choose Re-Pair as a concrete instance of
grammar-based compressor to apply, as it compresses in linear
time and yields good results. Re-Pair does not generate exactly
an SLP, so in the sequel we explain the self-indexing technique
used for Re-Pair compression, including the practical decisions
made during the implementation.

Recall thatC is the sequence resulting from applying Re-
Pair toT , andD is the set ofn rules created during the process.
We regard every terminal symbol as a rule that generates itself.
All the rules generated by Re-Pair are of the formXi →
XlXr, and no loops are allowed. We callF(X) the expansion
of X into terminals, andFrev(X) the corresponding reversed
string (read backwards, not complemented).

A. Representing the Set of Rules

For representing the rules generated by Re-Pair, we use a
labeled binary relationdata structure (LBR) [14]. The LBR
represents a binary relationR between setsA = [1, n] and
B = [1, n], where the labels are from the setL = [1, n]3. We
refer to A as the rows of the binary relation andB as the

3This is a particular case of the original structure, which serves the purposes
of this paper.

columns. The operations we require in this work, all of which
are supported inO(log n) time per datum retrieved, are:L(a ∈
A, b ∈ B) returns the label associated to the pair(a, b) ∈ R
or ⊥ if a is not related tob; R(a1, a2, b1, b2) retrieves the set
of elements(a, b) ∈ R such that a1 ≤ a ≤ a2, b1 ≤ b ≤ b2;
L(s) computes the set of pairs(a, b) related through labels.

The rulesX → XℓXr are seen as “Xℓ relates toXr through
labelX”. The rows are sorted by lexicographic order ofFrev

and the columns by lexicographic order ofF . We store the
permutationπ that maps from rows to columns, and also
support mapping from columns to rows inO(log n) time [20].
The operations allow direct and reverse access to the rules in
O(log n) time per element retrieved:L(l, r) returnsj such
that Xj → XlXr if any; R(l1, l2, r1, r2) returns the set of
right-handsXlXr wherel1 ≤ l ≤ l2 and r1 ≤ r ≤ r2; L(s)
retrieves the pair(l, r) such thatXs → XlXr.

The space required by the structure is3n logn + n log N
bits plus lower-order terms:2n log n for the binary relation,
n log n for π, andn log N for the length of the phrasesF .

B. Searching for Primary Occurrences

We define the primary occurrences of a patternP =
p1p2 . . . pq as those within symbolsXi → XlXr so thatP
spans fromXl to Xr. This meansF(Xl) = . . . p1p2 . . . pj

and F(Xr) = pj+1 . . . pq . . . Once we find the primary
occurrences, all the occurrences of the pattern can be retrieved
by obtaining symbols that contain the primary occurrences.
In other words, we track each primary occurrence inside
Xi upwards through the parse forest4 defined by the rules,
by recursively usingR(i, i, 1, n) and R(1, n, π(i), π(i)) and
thenL(a, b) on the resulting pairs(a, b). We simultaneously
track the position of the occurrence as we find it inside
other nonterminals. This can be done in timeO(h log n) per
occurrence, at worst, whereh is the height of the parse forest.

The search for the primary occurrences of a patternP
proceeds as follows. For every partitionP = PlPr, we search
for P rev

l in the rows and forPr in the columns using binary
search (onFrev andF , respectively; these strings are extracted
on the fly for the comparisons). That determines the range of
phrases ending withPl and the ones starting withPr. Using
the generalR query we retrieve the elements that combine
those phrases, and thus contain the pattern as a primary
occurrence. This takesO((q + h) log2 n) time per partition,
and has to be repeatedq − 1 times, once per partition ofP .

C. Locating the Occurrences inC

Once we find all the occurrences inside every nonterminal,
we have to track where each such symbol appears inC, in
order to obtain the actual occurrences inT .

In order to locate the occurrences of each relevant nontermi-
nal we useselectqueries onC: selectC(X, i) retrieves thei-th
occurrence ofX in C. During our upward traversal carried out
to propagate each primary occurrence, we callselectC(X, i)
for i = 1, 2 . . . until we retrieve all the occurrences of the

4Recall that the rules generated by Re-Pair do not constitutea complete
grammar that generatesT , but we have to expand each symbol ofC.

current nonterminalX , and then we continue with its parents.
By representingC, as a wavelet tree without pointers [21],
operationselect takes timeO(log c log n), wherec = |C|.

The only kind of occurrences remaining are those that
appear when expanding more than one consecutive symbol in
C. For solving this, we create another binary relation, relating
then rules with thec positions inC. If C = s1s2 . . . sc, then we
relate eachsi (sorted in lexicographic order ofFrev(si)) with
suffix si+1 . . . (sorted in lexicographic order ofF(si+1 . . .)),
with label i. Any occurrence of a patternP starting atsi

and continuing atsi+1 . . . can be obtained with a mechanism
similar as before: first binary search for the range of rules
whose string finishes withp1 . . . pj , then binary search for
the range of suffixes ofC which string start withpj+1 . . . pq,
and then retrieve all the labelsi from the intersection of both
ranges in the binary relation. Those are the positions inC
whereP occurs, shifted byj. This is done for each1 ≤ j < q.

A simple sampling records the original position of every
symbolsi·ℓ, for some sampling stepℓ. This permits converting
from positions inC to positions in the original sequence.

D. The Resulting Index

The self-index requiresc(log n + log c + (log N)/s) +
n(3 log n + log N) bits plus sublinear terms. It finds theocc
occurrences of anyq-gram pattern in timeO(q(q +h) log(c+
n) log n + occ log n(h + log c)). We ensureh = O(log N)
by running abalancedRe-Pair, where compression proceeds
in rounds, such that symbols generated in a round can only
be used in subsequent rounds [22]. A simplified running time
upper bound isO((q(q + log N) + occ) log N log n).

Note that such a self-index is not built for any particularq,
and thus it can search for any string. Yet, as we see in the
experimental results, it performs best with smallq values.

IV. EXPERIMENTAL RESULTS

We compared the space and time performance of our
compressed indexing proposals against the state of the art,over
several real-life and synthetic repetitive biological sequences.

Our machine is an Intel Core2Duo E6420@2.13Ghz, with
4GB of DDR2-800 RAM. It runs GNU/Linux, 64-bit
Ubuntu 8.04 with kernel 2.6.24-24-generic. We compiled
with gcc 4.2.4 and the option-09.

The experimental setup is divided into three parts. First, we
compare the best available compressors for repetitive DNA se-
quences. Second, we experiment on several alternative designs
for the q-gram index. Third, we compare both compressed
indexes and RLCSA [10], which is the state of the art. We
use four real-life collections for the experiments.

The datasets used arehemo5 with 7,282,339 bases;influ6

composed of 78,041 sequences of H. Influenzae containing
112,640,397 bases;para7 with of 27 sequences of S. Para-
doxus adding up to 412,279,603 bases; andcere7 with 37
sequences of S. Cerevisiae comprising 428,118,842 bases.

5http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz
6ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/
7http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp

We also use three synthetic 100MB collections over
{A,C,G,T,N}, by taking the first 1,048,576 symbols of
the DNA file in PizzaChili (http://pizzachili.dcc.
uchile.cl), and repeating it 100 times. Collectionss0001,
s001, ands01, are obtained by mutating a fraction 0.01%,
0.1%, and 1%, respectively, of the symbols. A mutation
chooses a random position and changes it to the value of
another random position of the initial sequence.

We express the compression ratio as the percentage of the
compressed over uncompressed file size, assuming the original
file uses one byte per base. This means that 25% compression
can be achieved over{A,C,G,T} files by simply using 2 bits
per symbol. These four symbols are usually predominant, so
it is not hard to get close to 25% on general DNA sequences.

A. Plain Compressors

We test the compression ratio achieved by plain DNA
compressors. As most only handle alphabets{A,C,G,T}, we
removed the’N’ symbols in this experiment. As explained
in the Introduction, most DNA compressors are only mildly
successful in improving compression further than 2 bits per
symbol. There are, however, some that perform well on highly
repetitive collections:Comrad [9], XM [23] anddna2 [24].

Another renowned compressor,DNACompress, has
not ben included because it needs proprietary software
PatternHunter. Others, such asBioCompress and
GenComp, did not run on our long sequences. We have
considered also general-purpose compressors that are well
suited to highly repetitive sequences, such asp7zip
(http://www.p7zip.org), a LZ77-based compressor;
our own implementation ofRe-Pair; and an implementa-
tion using a more compact representation for the dictionary,
Re-Pair-cr [25]. We believe our coverage of compressors
is sufficient to give a good perspective of the state of the art.

The table inside Fig. 3 gives the results.Dna2 is the
fastest compressor. On the other hand,XM achieves the best
compression ratios, followed byp7zip anddna2. Comrad
andRe-Pair compress less, arguably in exchange of their
random-access ability (Re-Pair performs better on the more
compressible sequences). We note thatRe-Pair is the com-
pressor we use for our compressedq-gram index, so it gives
the base space consumption on top of which we add the
compressed inverted lists. In the last column we includeSLP,
the size of our Re-Pair-based self-index. It takes much more
space due to its ability to perform indexed searches.

The table confirms that the collections are highly compress-
ible because they are highly repetitive. The least compressible
is hemo, yet it is still well below the 25% barrier.

B. Study of theq-gram Index

Compared to previous work on compressed inverted indexes
[16] and compressedq-gram indexes [11], our compressedq-
gram index has two novelties: (1) It compresses the text with
block-aligned Re-Pair, so that the compression uses global
repetitions but can decompress individual blocks (whereasin

Fig. 1. Space-time tradeoffs achieved by different implementations of the
q-gram index.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

Synthetic, 0.1% point mutations, q=6

Rice, Re-Pair
Rice, Re-Pair-cr

Rice, Plain
BC, Re-Pair

BC, Re-Pair-cr
BC, Plain

BC+LZ, Re-Pair
BC+LZ, Re-Pair-cr

BC+LZ, Plain

natural language one can use natural-language-oriented com-
pression [16], and on general sequences previous work simply
does not compress the sequence [11]). (2) It compresses the
differential lists with LZ77, which exploits high repetitiveness
in the sequences (whereas previous work uses only variable-
length coding of the differences [16], [11]).

We consider the 9 combinations of the alternatives of
compressing (with Re-Pair or Re-Pair-cr) or not the sequences;
and of compressing the inverted lists using Rice codes (one
of the best variable-length encoders [16]), VByte codes [18]
(BC, which compress less but decompresses faster), and VByte
codes followed bylzma compressor. We note thatlzma
spots only byte-aligned repetitions, so it cannot be successfully
combined with Rice codes.

Fig. 1 shows the results on the synthetic sequences001,
with q = 6. The tradeoffs are achieved by using blocks of
1KB, 8KB, 32KB, and 128KB. We generate a unique set
of 100 search patterns per collection, by extracting random
substrings of lengthq from the collection. This is used
consistently for all the indexes. The search time given is the
average time over all the occurrences of all the patterns.

C. Comparison of Compressed Indexes

We compare ourq-gram index of Section II using vari-
ants “BC+LZ,Re-Pair” (II, for “inverted index”), and
“BC+LZ,Re-Pair-cr” (II-cr), our grammar-based index
of Section III (SLP, for “straight-line program”), and the best
previous index, based on run-length compressed suffix arrays
(RLCSA [10]). The latter offers a space-time tradeoff given by
a sampling parameter on the text.

Fig. 2 shows the result over the synthetic collections (the
missing lines ofII andII-cr fall well outside the plots).
It can be seen that theII variants are extremely competitive
for small q = 4 and q = 6, while for q = 8 both their space
and time performance degrades sharply. For very repetitive
sequences (s0001), the SLP alternative stands out as an
excellent choice, offering good space performance for allq
(indeed, the index does not depend onq), and good time

TABLE I
CONSTRUCTION SPACE AND TIME(IN SECONDS) FOR THE INDEXES.

Index hemo influ cere
RLCSA 57MB 5.17 874MB 148 3.5GB 1,004
SLP 197MB 17.7 2.5GB 331 10.9GB 1,899
q = 4 125MB 25.5 1.6GB 296 6.8GB 1,104
q = 8 125MB 717.1 1.6GB 2,302 6.8GB 2,505

performance for mediumq ≤ 8. This deteriorates as we look
for longer q-grams. The performance ofRLCSA, instead, is
largely independent ofq, both in space (where, again, the index
does not depend onq) and time. When the sequences become
less repetitive (s001 and s01), RLCSA takes overSLP in
both space and time.

Fig. 3 gives the result on real-life collections. The results are
roughly similar to those fors001 ands01: II andII-cr
are competitive for smallq ≤ 6, whereasRLCSA dominates
SLP.

D. Construction Time and Space

Table I gives time and space required to build some in-
stances of the indexes on three collections of different size. We
remark that the construction is not optimized in our prototypes.
Anyway, the required resources demonstrate that this is an
important area for future work.

V. CONCLUSIONS

We have proposed two new compressed indexes specialized
on searching short substrings (q-grams) on highly repetitive
sequences. The first one (II) is particularly relevant for
small q values (q ≤ 6), whereas the other (SLP) stands
out on extremely highly repetitive collections (as shown on
synthetic data). The real collections we have found are not
yet sufficiently repetitive forSLP to be competitive on those,
but we expect its properties to become very relevant for the
massive repetitive collections that are expected to appearin
the next years. An existing approach [10] is still unbeatable
when searching for longer strings. These techniques will make
it possible to carry out BLAST-like sequence analyses on these
huge collections, and are also directly usable on otherq-gram-
based indexed approximate sequence matching algorithms.

Acknowledgements:We thank Jouni Sirén for his help
on usingRLCSA software. This work was partially funded by
NSERC Canada and Go-Bell Scholarship Program (FC), by
MICINN grants TIN2009-14560-C03-02 (AF) and TIN2009-
14009-C02-02 (MAMP), by a fellowship granted by the
Regional Government of Castilla y León and the European
Social Fund (MAMP), and by the Millennium Institute for
Cell Dynamics and Biotechnology (ICDB), Grant ICM P05-
001-F, Mideplan, Chile (GN).

REFERENCES

[1] G. M. Church, “Genomes for ALL,”Scientific American, vol. 294, no. 1,
pp. 47–54, 2006.

[2] N. Hall, “Advanced sequencing technologies and their wider impact in
microbiology,” The J. of Exp. Biology, vol. 209, pp. 1518–1525, 2007.

Fig. 2. Comparison of compressed indexes over the syntheticcollections.

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

Synthetic, 0.01% point mutations

II

II

II

II-cr

II-cr

II-cr

RLCSA
SLP

SLP

SLP

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

Synthetic, 0.1% point mutations

II

II

II-cr

II-cr

RLCSA

SLP

SLP

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

Synthetic, 1% point mutations

II

II

II

II-cr

II-cr

II-cr

RLCSA

SLP

SLP

SLP

q=4
q=6
q=8
q=10
q=12

Fig. 3. Comparison of compressed indexes over the real collections. The table shows compression ratios on the 4-letter sequences. The groups are general-
purpose compressors, DNA-specific compressors, and our self-index.

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

Hemoglobin

II

II

II

II-cr

II-cr

II-cr

RLCSA

SLP

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

Influenza

II

II

II-cr

II-cr

RLCSA

SLP

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

S. Paradoxus

II

II

II-cr

II-cr

RLCSA

SLP

SLP

q=4
q=6
q=8
q=10
q=12

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12

l
o
c
a
t
e

t
i
m
e

(
m
i
c
r
o
s
e
c

p
e
r

o
c
c
)

total space (% of original)

S. Cerevisiae

II-cr

II-cr

II

II

RLCSA

SLP

SLP

Dataset p7zip Re-Pair Re-Pair-cr Comrad XM dna2 SLP
hemo 8.79% 30.12% 15.37% 12.68% 7.64% 9.65% 61.96%
influ 1.75% 7.40% 3.70% 5.19% 1.57% 3.41% 14.36%
para 2.44% 8.21% 3.67% 6.52% 1.25% 1.95% 15.20%
cere 1.82% 6.16% 2.67% 4.94% 2.78% 1.47% 11.11%

[3] E. Pennisi, “Breakthrough of the year: Human genetic variation,” Sci-
ence, vol. 21, pp. 1842–1843, Dec. 2007.

[4] C. G. Nevill-Manning and I. H. Witten, “Protein is incompressible,” in
Proc. DCC, 1999, p. 257.

[5] X. Chen, S. Kwong, and M. Li, “A compression algorithm forDNA se-
quences and its applications in genome comparison,” inProc. RECOMB,
2000, p. 107.

[6] S. Grümbach and F. Tahi, “A new challenge for compression algorithms:
Genetic sequences,”Inf. Proc. Manag., vol. 30, no. 6, pp. 875–886, 1994.

[7] E. Rivals, J.-P. Delahaye, M. Dauchet, and O. Delgrange,“A guaranteed
compression scheme for repetitive DNA sequences,” inProc. DCC,
1996, p. 453.

[8] H. Sato, T. Yoshioka, A. Konagaya, and T. Toyoda, “DNA data com-
pression in the post genome era,”Genome Inf., vol. 12, pp. 512–514,
2001.

[9] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel,“Repetition-
based compression of large DNA datasets,” inProc. RECOMB, 2009,
poster.

[10] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage and
retrieval of individual genomes,” inProc. RECOMB, ser. LNCS 5541,
2009, pp. 121–137.

[11] S. Puglisi, W. Smyth, and A. Turpin, “Inverted files versus suffix arrays
for locating patterns in primary memory,” inProc. SPIRE, ser. LNCS
4209, 2006, pp. 122–133.

[12] J. Larsson and A. Moffat, “Off-line dictionary-based compression,”Proc.
of the IEEE, vol. 88, no. 11, pp. 1722–1732, 2000.

[13] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,”IEEE Trans. Inf. Theo., vol. 23, no. 3, pp. 337–343, 1977.

[14] F. Claude and G. Navarro, “Self-indexed text compression using straight-
line programs,” inProc. MFCS, ser. LNCS 5734, 2009, pp. 235–246.

[15] R. N. Horspool, “Practical fast searching in strings,”Soft. Pract. Exper.,
vol. 10, no. 6, pp. 501–506, 1980.

[16] I. Witten, A. Moffat, and T. Bell,Managing Gigabytes, 2nd ed. Morgan
Kaufmann, 1999.

[17] G. Zipf, Human Behaviour and the Principle of Least Effort. Addison-
Wesley, 1949.

[18] H. Williams and J. Zobel, “Compressing integers for fast file access,”
The Computer J., vol. 42, no. 3, pp. 193–201, 1999.

[19] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM
Comp. Surv., vol. 39, no. 1, p. article 2, 2007.

[20] J. Munro, R. Raman, V. Raman, and S. S. Rao, “Succinct representations
of permutations,” inProc. ICALP, ser. LNCS 2719, 2003, pp. 345–356.

[21] F. Claude and G. Navarro, “Practical rank/select queries over arbitrary
sequences,” inProc. SPIRE, ser. LNCS 5280, 2008, pp. 176–187.

[22] H. Sakamoto, “A fully linear-time approximation algorithm for
grammar-based compression,”J. Discr. Algor., vol. 3, pp. 416–430, 2005.

[23] M. Cao, T. Dix, L. Allison, and C. Mears, “A simple statistical algorithm
for biological sequence compression,” inProc. DCC, 2007, pp. 43–52.

[24] G. Manzini and M. Rastrero, “A simple and fast DNA compression
algorithm,” Soft. Pract. Exper., vol. 34, pp. 1397–1411, 2004.

[25] R. González and G. Navarro, “Compressed text indexes with fast locate,”
in Proc. CPM, ser. LNCS 4580, 2007, pp. 216–227.

