
Faster Approximate String Matching �Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstractWe present a new algorithm for on-line approximate string matching. The algorithm isbased on the simulation of a non-deterministic �nite automaton built from the pattern andusing the text as input. This simulation uses bit operations on a RAM machine with wordlength w = 
(log n) bits, where n is the text size. This is essentially similar to the model usedin Wu and Manber's work, although we improve the search time by packing the automaton statesdi�erently. The running time achieved is O(n) for small patterns (i.e. whenever mk = O(logn)),where m is the pattern length and k < m the number of allowed errors. This is in contrastwith the result of Wu and Manber, which is O(kn) for m = O(logn). Longer patterns canbe processed by partitioning the automaton into many machine words, at O(mk=w n) searchcost. We allow generalizations in the pattern, such as classes of characters, gaps and others, atessentially the same search cost.We then explore other novel techniques to cope with longer patterns. We show how topartition the pattern into short subpatterns which can be searched with less errors using thesimple automaton, to obtain an average cost close to O(pmk=w n). Moreover, we allow tosuperimpose many subpatterns in a single automaton, obtaining near O(pmk=(�w) n) averagecomplexity (� is the alphabet size).We perform a complete analysis of all the techniques and show how to combine them in anoptimal form, obtaining also new tighter bounds for the probability of an approximate occurrencein random text. Finally, we show experimental results comparing our algorithms against previouswork. Those experiments show that our algorithms are among the fastest ones for typical textsearching, being the fastest in some cases. Although we aim mainly to text searching, we believethat our ideas can be successfully applied to other areas such as computational biology.1 IntroductionApproximate string matching is one of the main problems in classical string algorithms, withapplications to text searching, computational biology, pattern recognition, etc. Given a text oflength n, a pattern of length m, and a maximal number of errors allowed, k, we want to �ndall text positions where the pattern matches the text up to k errors. Errors can be substituting,deleting or inserting a character. We call � = k=m the error ratio, and � the alphabet size.�This work has been supported in part by FONDECYT grant 1950622 and 1960881.1



The solutions to this problem di�er if the algorithm has to be on-line (that is, the text is not knownin advance) or o�-line (the text can be preprocessed). In this paper we are interested in the �rstcase, where the classical dynamic programming solution has O(mn) running time [21, 22].In the last years several algorithms have been presented that achieve O(kn) comparisons in theworst-case [29, 13, 16, 17] or in the average case [30, 13], by taking advantage of the properties ofthe dynamic programming matrix (e.g. values in neighbor cells di�er at most in one). In the sametrend is [9], with average time complexity O(kn=p�). All average-case �gures assume random textand uniformly distributed alphabets.Other approaches �rst �lter the text, reducing the area where dynamic programming needs to beused [27, 28, 26, 25, 10, 11, 19, 8, 23]. These algorithms achieve \sublinear" expected time in manycases for low error ratios (i.e. not all text characters are inspected, O(kn log�m=m) is a typical�gure), although the �ltration is not e�ective for more errors. Filtration is based on the fact thatsome portions of the pattern must appear with no errors even in an approximate occurrence.In [30], the use of a deterministic �nite automaton (DFA) which recognizes the approximate occur-rences of the pattern in the text is proposed. Although the search phase is O(n), the DFA can behuge. In [20, 15] the automaton is computed in lazy form (i.e. only the states actually reached inthe text are generated).Yet other approaches use bit-parallelism [2, 4, 34], i.e. they simulate parallelism with bit operationsin a RAM machine of word length w = 
(logn) bits, to reduce the number of operations. In [32]the cells of the dynamic programming matrix are packed in diagonals to achieve O(mn log(�)=w)time complexity. In [35] a Four Russians approach is used to pack the matrix in machine words,achieving O(kn=w) time on average (they end up in fact with a DFA where they can trade thenumber of states for their internal complexity).Of special interest to this work is [34], which considers a non-deterministic �nite automaton (NFA)functionally similar to the DFA but with only a few states. They achieve O(kmn=w) time byparallelizing in bits the work of such automaton.The main contributions of the present work follow.� We present a new algorithm for approximate string matching. It is based on bit-parallelism,where bit operations are used to simulate the behavior of a non-deterministic �nite automaton(NFA) built from the pattern and using the text as input. This automaton is similar to thatof Wu and Manber [34]. However, we pack diagonals instead of rows into machine words.This leads to a worst-case running time of O(n) (independently of k) for small patterns (i.e.mk = O(w)). This is the case in most single-word text patterns. This simple algorithm isexperimentally shown to be the fastest one we are aware of for short patterns, except for verysmall k values where other �ltration algorithms are even faster.� We show how to partition a large automaton that does not �t in a computer word, to obtainan algorithmwhich performs near dmk=we n operations, against dm=we kn performed by Wuand Manber (their operations are simpler, though). The di�erence is especially noticeablyin small patterns. This algorithm performs well for all error ratios if the pattern is not verylong, being the fastest for high error ratios, an area largely unexplored in previous work.2



� We show that some generalizations in the pattern (which we call extended patterns) can behandled at almost no additional search cost. We allow to have classes of characters at eachpattern position (instead of just one character per position), gaps inside the pattern, etc.� We present a technique to partition a long pattern into subpatterns, such that the subpatternscan be searched with less errors using the simple automaton. This search is in fact a �lter,since the matches of the subpatterns must be veri�ed for complete matches. The average timeof this search is close to O(pmk=w n), and can be used even for moderately high error levels.We show experimentally that this algorithm is competitive with the best known algorithms.� We show that some of the subpatterns obtained in the previous algorithm can in fact besuperimposed in a single automaton to speed up searching. We analytically �nd the maximumdegree of superimposition allowed (which is limited by the error level), and obtain an algorithmwith average cost close to O(pmk=(�w)m2=pw n). We show experimentally that speedupsof factors of two and three can be obtained for low error ratios.� We analyze the possibility of combining pattern and automaton partitioning, �nding that thecombination increases the tolerance to errors in pattern partitioning, and provide a smoothtransition between pattern and automaton partitioning as the error level increases. Thismixed partitioning has an average search cost of O(k log(m)=w n). We show experimentallyhow this mix works for an intermediate error level.� We present a simple speedup technique that doubles in practice the performance of all ouralgorithms for low error levels, by allowing to quickly discard large parts of the text at low costper character. This technique is quite general and can be applied to most other algorithmsas well (except perhaps the �ltration algorithms).� We thoroughly analyze all our algorithms and the areas where they are applicable, �ndingout the optimal heuristic that combines them. As a side e�ect, we give tighter bounds forthe probability of an approximate occurrence on random text. We also give better boundsfor the analysis of the Ukkonen cut-o� algorithm [30].� We present extensive experiments for the running time of our algorithms and previous work.They are aimed to show the practical behavior of our algorithms, to verify our analysis andto compare our work against the others. We show that our algorithms are among the fastestones for typical text searching, especially for short patterns.Approximate string matching is a particular case of sequence similarity, an important problemin computational biology. Although the present work is speci�cally aimed to text searching, webelieve that some ideas in this paper can be adapted to more generic cost functions associated tostring editing operations or more generic patterns, for example to RNA prediction [12] or to DNAsequence databases [18] (where, incidentally, the search is made on very short patterns).Preliminary versions of parts of this work can be found in [6, 5].This paper is organized as follows. In Section 2 we introduce the problem and the associated NFA.In Section 3 we explain our automaton simulation and how to split it in many machine words. In3



Section 4 we present other problem partitioning techniques. In Section 5 we analyze the algorithmsand �nd the optimal way to combine them in a general heuristic. In Section 6 we experimentallyvalidate our analysis and compare our algorithm against others. Finally, in Section 7 we give ourconclusions and future work directions.2 PreliminariesThe problem of approximate string matching can be stated as follows: given a (long) Text of lengthn, and a (short) pattern pat of length m, both being sequences of characters from an alphabet � ofsize �, �nd all segments (called \occurrences" or \matches") of Text whose edit distance to pat is atmost k, the number of allowed errors. It is common to report only the end points of occurrences, aswell as to discard occurrences containing or contained in others. In this work we focus on returningend points of occurrences not containing others.The edit distance between two strings a and b is the minimum number of edit operations needed totransform a into b. The allowed edit operations are deleting, inserting and replacing a character.Therefore, the problem is non-trivial for 0 < k < m. The error ratio is de�ned as � = k=m.We use a C-like notation for the operations (e.g. &; j;==; ! =;^; >>). We use text to denote thecurrent character of Text and, unlike C, str[j] to denote the j-th character of str (i.e. the stringsbegin at position one, not zero).Consider the NFA for searching patt with at most k = 2 errors shown in Figure 1. Every rowdenotes the number of errors seen. The �rst one 0, the second one 1, and so on. Every columnrepresents matching the pattern up to a given position. At each iteration, a new text character isconsidered and the automaton changes its states. Horizontal arrows represent matching a character(since we advance in the pattern and in the text, and they can only be followed if the correspondingmatch occurs), vertical arrows represent inserting a character in the pattern (since we advance inthe text but not in the pattern, increasing the number of errors), solid diagonal arrows representreplacing a character (since we advance in the text and pattern, increasing the number of errors),and dashed diagonal arrows represent deleting a character of the pattern (they are empty transi-tions, since we delete the character from the pattern without advancing in the text, and increasethe number of errors). Finally, the self-loop at the initial state allows to consider any characteras a potential starting point of a match, and the automaton accepts a character (as the end ofa match) whenever a rightmost state is active. If we do not care about the number of errors ofthe occurrences, we can consider �nal states those of the last full diagonal. Because of the emptytransitions, this makes acceptance equivalent to the lower-right state being active.This NFA has (m+ 1)� (k + 1) states. We assign number (i; j) to the state at row i and columnj, where i 2 0::k; j 2 0::m. Initially, the active states at row i are at the columns from 0 to i, torepresent the deletion of the �rst i characters of the pattern.Consider the boolean matrix A corresponding to this automaton. Ai;j is 1 if state (i; j) is activeand 0 otherwise. The matrix changes as each character of the text is read. The new values A0i;jcan be computed from the current ones by the following ruleA0i;j = (Ai;j�1 & ( text == pat[j] )) j Ai�1;j j Ai�1;j�1 j A0i�1;j�1 (1)4



pp
p aa

a
t
tt t

tt� � ���� �� 1 errorno errors�
2 errors

111 11
0 001 11

0 001Figure 1: An NFA for approximate string matching. Unlabeled transitions match any character.Active states are (2; 3), (2; 4) and (1; 3), besides those always active of the lower-left triangle. Weenclose in dotted the states actually represented in our algorithm.which is used for i 2 0::k; j 2 1::m. If i = 0 only the �rst term is used. Note that the emptytransitions are represented by immediately propagating a 1 at any position to all the elementsfollowing it in its diagonal, all in a single iteration (thus computing the �-closure). The self-loop atthe initial state is represented by the fact that column j = 0 is never updated.The main comparison-based algorithms for approximate string matching consist fundamentally inworking on a dynamic programming matrix. Each column of the matrix holds the state of thesearch at a given text character. It is not hard to show that what the column stores at position jis the minimum row of this NFA which is active in column j of the automaton. In this sense, thedynamic programming matrix corresponds to simulating this automaton by columns (i.e. packingcolumns in machine words) [3].On the other hand, the work of Wu andManber consists fundamentally in simulating this automatonby rows (packing each row in a machine word). In both cases, the dependencies introduced by thediagonal empty transitions prevent the parallel computation of the new values. We present in thenext section an approach that avoids this dependence, by simulating the automaton using diagonals,such that each diagonal captures the �-closure [3]. This idea leads to a new and fast algorithm.3 A New AlgorithmSuppose we use just the full diagonals of the automaton (i.e. those of length k + 1). This presentsno problem, since those (shorter) diagonals below the full ones have always value 1, while thosepast the full ones do not inuence state (m; k). The last statement may not be obvious, since the5



vertical transitions allow to carry 1's from the last diagonals to state (m; k). But each 1 present atthe last diagonals must have crossed the last full diagonal, where the empty transitions (deletions)would have immediately copied it to the state (m; k). That is, any 1 that goes again to state (m; k)corresponds to a segment containing one that has already been reported.Notice also that, whenever state (i; j) is active, states (i + d; j + d) are also active for all d > 0(due to the empty deletion transition). Thus, if we number diagonals regarding the column atwhich they begin, the state of each diagonal i can be represented by a number Di, the smallest rowvalue active in that diagonal (i.e. the smallest error). Then, the state of this simulation consists ofm�k+1 values in the range 0::k+1. Note that D0 is always 0, hence, there is no need to store it.The new values for Di (i 2 1::m� k) after we read a new text character c are derived from Eq. (1)D0i = min( Di + 1; Di+1 + 1; g(Di�1; c) ) (2)where g(Di; c) is de�ned asg(Di; c) = min( fk + 1g [ f j = j � Di ^ pat[i+ j] == c g )The �rst term of the D0 update formula represents a substitution, which follows the same diagonal.The second term represents the insertion of a character (coming from the next diagonal above).Finally, the last term represents matching a character: we select the minimum active state (hencethe min of the g formula) of the previous diagonal that matches the text and thus can move to thecurrent one. The deletion transitions are represented precisely by the fact that once a state in adiagonal is active, we consider active all subsequent states on that diagonal (so we keep just theminimum). The empty initial transition corresponds to D0 = 0. Finally, we �nd a match in thetext whenever Dm�k � k.This simulation has the advantage that can be computed in parallel for all i. We use this propertyto design a fast algorithm that exploits bit-parallelism for small patterns, and then extend it tohandle the general case.3.1 A Linear Algorithm for Small PatternsWe show in this section how to simulate the automaton by diagonals using bit-parallelism, assumingthat our problem �ts in a single word (i.e. (m� k)(k+ 2) � w, where w is the length in bits of thecomputer word). We �rst select a suitable representation for our problem and then describe thealgorithm.Since we have m � k non-trivial diagonals, and each one takes values in the range 0::k + 1, weneed at least (m � k)dlog2(k + 2)e bits. However, the g function cannot be computed in parallelfor all i with this optimal representation. We could precompute and store it, but it would takeO(�(k + 1)m�k) space if it had to be accessed in parallel for all i. At this exponential space cost,the automaton approach of [30, 20] is preferable.Therefore, we use unary encoding of the Di values, since in this case g can be computed in parallel.Thus, we need (m� k)(k+ 2) bits to encode the problem, where each of the m� k blocks of k+ 2bits stores the value of a Di. 6



Each value of Di is stored as 1's aligned to the right of its (k + 2)-wide block (thus there is aseparator at the highest bit having always 0). The blocks are stored contiguously, the last one(i = m � k) aligned to the right of the computer word. Thus, our bit representation of stateD1; :::; Dm�k is D = 0 0k+1�D1 1D1 0 0k+1�D2 1D2 ::: 0 0k+1�Dm�k 1Dm�kwhere we use exponentiation to mean digit repetition. Observe that what our word contains isa rearrangement of the 0's and 1's of (the relevant part of) the automaton. The rearrangementexchanges 0's and 1's and reads the diagonals left-to-right and bottom-to-top (see D in Figure 2).separator separator(0,1) (1,3) (0,2)(2,4)(1,2) �nal state0 0 0 00 1 1 1D (2,3)T['t'] 0 0 1 1t a 0 0 0 1t atpFigure 2: Encoding of the example NFA. In this example, t[0t0] = 0011.With this representation, taking minimum is equivalent to anding, adding 1 is equivalent to shiftingone position to the left and oring with a 1 at the rightmost position, and accessing the next orprevious diagonal means shifting a block (k + 2 positions) to the left or right, respectively.The computation of the g function is carried out by de�ning, for each character c, an m bits longmask t[c], representing match (0) or mismatch (1) against the pattern, and then computing a maskT [c] having at each block the (k + 1) bits long segment of t[c] that is relevant to that block (seeFigure 2). That is, t[c] = (c ! = pat[m]) (c ! = pat[m� 1]) ::: (c ! = pat[1]) (3)where each condition stands for a bit and they are aligned to the right. So we precomputeT [c] = 0 sk+1(t[c]; 0) 0 sk+1(t[c]; 1) ::: 0 sk+1(t[c]; m� k � 1)for each c, where sj(x; i) shifts x to the right in i bits and takes the last j bits of the result (thebits that \fall" are discarded). Note that T [c] �ts in a computer word if the problem does.We have now all the elements to implement the algorithm. We represent the current state bya computer word D. The value of all Di's is initially k + 1, so the initial value of D is Din =(0 1k+1)m�k . The formula to update D upon reading a text character c is derived from Eq. (2)D0 = (D << 1) j (0k+11)m�k7



& (D << (k + 3)) j (0k+11)m�k�10 1k+1& (((x+ (0k+11)m�k) ^ x) >> 1)& Din (4)where x = (D >> (k + 2)) j T [c]The update formula is a sequence of and's, corresponding to the min of Eq. (2). The �rst linecorresponds to Di + 1, the second line to Di+1 + 1, the third line is the g function applied tothe previous diagonal, and the fourth line ensures the invariant of having zeros in the separators(needed to limit the propagation of \+"). Note that we are assuming that the shifts get zerosfrom both borders of the word (i.e. unsigned semantics). If this is not the case in a particulararchitecture, additional masking is necessary.We detect that state (m; k) is active by checking whether D & (1 << k) is 0. When we �nd amatch, we clear the last diagonal. This ensures that our occurrences always end with a match.3.2 A Simple FilterWe can improve the previous algorithm (and in fact most other algorithms as well) by noticingthat any approximate occurrence of the pattern with k errors must begin with one of its k + 1�rst characters. This allows to quickly discard large parts of the text with very few operations percharacter.We do not run the automaton through all text characters, but scan the text looking for any of thek + 1 initial characters of the pattern. Only then we start the automaton. When the automatonreturns to its initial con�guration, we resume the scanning. The scanning is much cheaper thanthe operation of our automaton, and in fact it is cheaper than the work done per text character inmost algorithms.We precompute a boolean table S[c], that stores for each character c whether it is one of the �rstk+1 letters of the pattern. Observe that this table alone solves the problem for the case k = m�1(since each positive answer of S is an occurrence).Figure 3 presents the complete algorithm (i.e. using the automaton plus the �lter). For simplicity,we do not re�ne the preprocessing, which can be done more e�ciently than what the code suggests.3.3 Partitioning Large AutomataIf the automaton does not �t in a single word, we can partition it using a number of machine wordsfor the simulation.First suppose that k is small and m is large. Then, the automaton can be \horizontally" split inas many subautomata as necessary, each one holding a number of diagonals. We call \d-columns"those sets of diagonals packed in a single machine word. Those subautomata behave di�erently thanthe simple one, since they must communicate their �rst and last diagonals with their neighbors.Thus, if (m � k)(k + 2) > w, we partition the automaton horizontally in J d-columns, whereJ = d(m� k)(k + 2)=we. Note that we need that at least one automaton diagonal �ts in a single8



search (Text; n; pat;m; k)f /* preprocessing */for each c 2 �f t[c] = (c ! = pat[m]) (c ! = pat[m� 1]) ::: (c ! = pat[1])T [c] = 0 sk+1(t[c]; 0) 0 sk+1(t[c]; 1) ::: 0 sk+1(t[c]; m� k � 1)S[c] = (c 2 pat[1::k+ 1])gDin = (0 1k+1)m�kM1 = (0k+11)m�kM2 = (0k+11)m�k�1 0 1k+1M3 = 0(m�k�1)(k+2) 0 1k+1G = 1 << k/* searching */D = Dini = 0while (++ i <= n)if (S[Text[i]]) /* is one of the first k + 1 characters? */do f x = (D >> (k+ 2)) j T [Text[i]]D = ((D << 1) j M1) & ((D << (k + 3)) j M2)& (((x+M1) ^ x) >> 1) & Dinif (D & G == 0)f report a match ending at iD = D j M3 /* clear last diagonal */ggwhile (D ! = Din && ++i <= n)gFigure 3: Algorithm to search for a short pattern. Strings are assumed to start at position 1.machine word, i.e. k + 2 � w.Suppose now that k is large (close to m, so that the width m � k is small). In this case, theautomaton is not wide but tall, and a vertical partitioning becomes necessary. The subautomatabehave di�erently than the previous ones, since we must propagate the �-transitions down to allsubsequent subautomata.In this case, if (m� k)(k + 2) > w, we partition the automaton vertically in I d-rows (each d-rowholding some automaton rows of all diagonals), where I has the same formula as J . The di�erence isthat, in this case, we need that at least one automaton row �ts in a machine word, i.e. 2(m�k) � w(the 2 is because we need an overow bit for each diagonal of each cell).When none of the two previous conditions hold, we need a generalized partition in d-rows andd-columns. We use I d-rows and J d-columns, so that each cell contains `r bits of each one of `c9



diagonals. It must hold that (`r + 1)`c � w.There are many options to pick (I; J) for a given problem. We show later that they are roughlyequivalent in cost (except for integer round-o�s that are noticeable in practice). We prefer to selectI as small as possible and then determine J . That is, I = d(k + 1)=(w � 1)e, `r = d(k + 1)=Ie,`c = bw=(`r + 1)c and J = d(m� k)=`ce. The cells of the last d-column and the last d-row may besmaller, since they have the residues.The simulation of the automaton is now more complex, but follows the same principle of the updateformula (4). We have a matrix of automata Di;j (i 2 0::I � 1; j 2 0::J � 1), and a matrix of masksTi;j coming from splitting the original T . The new update formula isD0i;j = (Di;j << 1) j ((Di�1;j >> (`r � 1)) & (0`r1)`c)& ((Di;j << (`r + 2)) j((Di�1;j << 2) & (0`r1)`c) j(Di�1;j+1 >> ((`r + 1)(`c � 1) + `r � 1)) j(Di;j+1 >> ((`r + 1)(`c � 1)� 1)))& (((x+ (0`r1)`c) ^ x) >> 1)& Dinwhere x = ((Di;j >> (`r + 1)) j (Di;j�1 << (`r + 1)(`c � 1)) j Ti;j[text])& ((D0i�1;j >> (`r � 1)) j (1`r0)`c)and it is assumed D�1;j = Di;J = 1(`r+1)`c and Di;�1 = 0(`r+1)`c .We �nd a match whenever DI�1;J�1 has a 0 in its last position, i.e. at (k � `r(I � 1)) + (`r +1)(`cJ � (m� k)), counting from the right. In that case, we must clear the last diagonal, i.e. thatof Di;J�1 for all i.The fact that we select the minimal I and that we solve the case k = m � 1 with a simpleralgorithm (the S table) causes this general scheme to fall into three simpler cases: (a) the automatonis horizontal, (b) the automaton is horizontal and only one diagonal �ts in each word, (c) theautomaton spreads horizontally and vertically but only one diagonal �ts in each word. Those casescan be solved with a simpler (two or three times faster) update formula. In practice, there are somecases where a purely vertical automaton is better [5].In particular, Wu and Manber's automaton can be thought of as a vertical partitioning of the NFAof Figure 1 (although the details are di�erent).3.4 Handling Extended PatternsWe show now that some of the generalizations of the approximate string search problem consideredin [4, 34, 35] can be introduced in our algorithm at no additional search cost. We call extendedpatterns those patterns involving some of these generalizations.As in the shift-or algorithm for exact matching [4], we can specify a set of characters at each positionof the pattern instead of a single one (this is called \limited expressions" in [35]). For example, to10



�nd "patt" in case-insensitive, we search for fp; Pgfa; Agft;Tgft;Tg; to �nd "patt" followed by adigit, we search for fpgfagftgftgf0::9g. This is achieved by modifying the t[] table (3), makingany element of the set to match that position, with no running time overhead.In addition to classes of characters, we can support the # operator as de�ned in [34]. That is,x#y allows zero or more arbitrary characters among the strings x and y in the occurrences. Thosecharacters are not counted as errors. As shown in [34], in order to handle this operator we mustforce that whenever an automaton state in column jxj is active, it keeps active from then on.Hence, to search for x1#x2#:::#xt we create a D# word having all ones except at all states ofcolumns jx1j, jx1j+ jx2j; :::; jx1j+ jx2j+ :::+ jxt�1j. We now modify the computation of x in Eq. (2),which becomes x = ((D >> (k+ 2)) j T [text]) & (D j D#)(clearly this technique is orthogonal to the use of classes of characters). This technique is easilyextended to partitioned automata.We can modify the automaton to compute edit distance (more precisely, determine whether theedit distance is � k or not). This is obtained by eliminating the initial self-loop and initializingthe automaton at D = Din. However, we need to represent the k + 1 initial diagonals that wediscarded. If we need the exact edit distance, we must also represent the last k diagonals that wediscarded. If there is no a priori bound on the distance, we need to set k = m.We can search for whole words, running the edit-distance algorithm only from word beginnings(where we re-initialize D = Din), and checking matches only at the end of words.Searching with di�erent integral costs for insertion and substitution (including not allowing suchoperations) can be accommodated in our scheme, by changing the arrows. Deletion is built intothe model in such a way that in order to acommodate it we must change the meaning of our\diagonals", so that they are straight �-transition chains.Other generalizations are studied in [34]. We can handle them too, although not as easily ande�ciently as the previous ones.One such generalization is the combination in the pattern of parts that must match exactly withothers that can match with errors. The adaptation to avoid propagation of �-closures in our schemeis ad-hoc and not as elegant as in [34]. However, we believe that the most e�ective way to handlethese patterns is to quickly search for the parts that match exactly and then trying to extend thosematches to the complete pattern, using our automaton to compute edit distance.Another such generalization is approximate search of regular expressions. In [34], the regularitiesamong rows allow to solve any regular expression of m letters using dm=8e or even dm=16e op-erations per text character, using dm=8e28dm=we or dm=16e216dm=we machine words of memory,respectively. Our partitioned automata are not so regular, and we would need roughly O(k2) timestheir space requirements and operations per text character. To be more precise, in our scheme theirformulas are still valid provided we replace m by (m � k)(k + 2). For instance, at the cost theypay for m � 32, we can only solve for m � 9. However, our scheme is still reasonably applicablefor short expressions. 11



4 New Partitioning TechniquesThe following lemma, which is a generalization of the partitioning scheme presented in [34, 18],suggests a way to partition a large problem into smaller ones.Lemma: If segm = Text[a::b] matches pat with k errors, and pat = p1:::pj (a concatenation ofsubpatterns), then segm includes a segment that matches at least one of the pi's, with bk=jc errors.Proof: Suppose the opposite. Then, in order to transform pat into segm, we need to transformeach pi into an si, such that segm = s1:::sj . But since no pi is present in segm with less thanbk=jc errors, each pi needs at least 1 + bk=jc edit operations to be transformed into any segmentof segm (si in particular). Thus the whole transformation needs at least j(1+ bk=jc) > j(k=j) = koperations. A contradiction. 2The Lemma is a generalization of that of [34] because they consider only the case j = k + 1 (wereturn to this case later), and it is a (slight) generalization of that of [18] because they consideronly the cases of the form j = 2t (they partition the pattern in a binary fashion until short enoughsubpatterns are obtained). Moreover, they consider always partition into pieces of almost the samesize, while the Lemma allows any split. We explore now di�erent ways to use the Lemma.4.1 Pattern PartitioningThe Lemma allows us to reduce the number of errors if we divide the pattern, provided we searchall the subpatterns. Each match of a subpattern must be checked to determine if it is in facta complete match (notice that the subpatterns can be extended patterns themselves). Supposewe �nd at position i in Text the end of a match for the subpattern ending at position j in pat.Then, the potential match must be searched in the area Text[i� j + 1� k; i� j + 1 +m+ k], an(m + 2k)-wide area. This checking must be done with an algorithm resistant to high error levels,such as our automaton partitioning technique. If the pattern is not extended, the Ukkonen cut-o�algorithm [30] can also be used.To perform the partition, we pick an integer j, and split the pattern in j subpatterns of length m=j(more precisely, if m = qj + r, with 0 � r < j, r subpatterns of length dm=je and j � r of lengthbm=jc). Because of the lemma, it is enough to check if any of the subpatterns is present in the textwith at most bk=jc errors. Thus, we select j as small as possible such that the subproblems �t ina computer word, that isj = min � r = ��mr � � �kr����kr� + 2� � w ^ �mr � > �kr� � (5)where the second condition avoids searching a subpattern of length m0 with k0 = m0 errors (thoseof length dm=je are guaranteed to be longer than bk=jc if m > k). Such a j always exists, sincej = k + 1 implies searching with 0 errors.In case of 0 errors, we can use an Aho-Corasick machine [1] to guarantee O(n) total search time.In [34], a variation of the Shift-Or algorithm [4] is used, while in [8] the use of an algorithm of theBoyer-Moore family is suggested. The advantage of the Wu and Manber approach is exibility in12



the queries, while Boyer-Moore is faster (this is supported also by [31], since we typically have fewsubpatterns). In particular, if the pattern is extended, the Shift-Or algorithm is the correct choice.For not extended patterns, we preferred to use the Sunday algorithm [24] of the Boyer-Moore family,extended to multipattern search. This extension consists of building a trie with the subpatterns,and at each position searching the text into the trie. If we do not �nd a subpattern, we advancethe window using the Sunday shift. This is the (precomputed) minimum shift among all patterns.However, this should be considered just an implementation of previous work.Figure 4 shows the general algorithm, which is written in that way for clarity. In a practicalimplementation, it is better to run all subsearches in synchronization, picking at any moment thecandidate whose initial checking position is the leftmost in the set, checking its area and advancingthat subsearch to its next candidate position. This allows to avoid re-verifying the same textbecause of di�erent overlapping candidate areas. This is done by remembering the last checkedposition and keeping the state of the checking algorithm.PatternPartition (Text; n; pat;m; k)f j = min f r = (dm=re � bk=rc)(bk=rc+ 2) � w ^ bm=rc > bk=rcgif (j == 1) search (Text; n; pat;m; k)else f a = 0for r 2 0::j � 1f len = (r < m % j) ? dm=je : bm=jcb = a+ len� 1for each position i reported by search(Text; n; pat[a::b]; len; bk=jc)check the area Text[i� b+ 1� k; i� b+ 1 +m+ k]a = b+ 1g g g Figure 4: Algorithm for pattern partitioning.The e�ectiveness of this method is limited by the error level. If the subpatterns appear very often,we spend a lot of time verifying candidate text positions. In Section 5 we �nd out which is theerror level that allows to use this scheme.4.2 Superimposing the SubproblemsWhen the search is divided in a number of subsearches for smaller patterns P1; :::; Pr, it is possiblenot to search each one separately. We describe a technique, called superimposition, to collapse anumber of searches in a single one.In our scheme, all patterns have almost the same length. If they di�er (at most in one), we truncatethem to the shortest length. Hence, all the automata have the same structure, di�ering only in thelabels of the horizontal arrows.The superimposition is de�ned as follows: we build the t[] table for each pattern (Eq. (3)), andthen take the bitwise-and of all the tables. The resulting t[] table matches in the position i with13



the i-th character of any pattern. We then build the automaton as before using this table.The resulting automaton accepts a text position if it ends an occurrence of a much more relaxedpattern (in fact it is an extended pattern), namelyfP1[1]; :::; Pr[1]g ::: fP1[m]; :::; Pr[m]gfor example, if the search is for patt and wait, the string watt is accepted with zero errors (seeFigure 5). Each occurrence reported by the automaton has to be veri�ed for all the patternsinvolved.
p or w
�
� � ���� ��

no errors1 error2 errors
a ta tt or ia tt or i

t or ip or wp or w
Figure 5: An NFA to �lter the parallel search of patt and wait.For a moderate number of patterns, this still constitutes a good �ltering mechanism, at the samecost of a single search. Clearly, the relaxed pattern triggers many more veri�cations than the simpleones. This limits severely the amount of possible superimposition. However, as we show later, inpractice this can cut by two or three the search times. This idea has been applied to the problemof multiple approximate string matching, where similar speedup �gures were obtained [7].We analyze later how many subpatterns can be collapsed while keeping the number of veri�cationssmall. We must then form sets of patterns that can be searched together, and search each setseparately. Notice that extended patterns containing #'s may not be superimposed because theirD# words are di�erent.Observe that having the same character at the same position for two patterns improve the �lteringe�ciency. This fact can be used to select the best partition of the pattern.4.3 Mixed PartitioningFinally, it is possible to combine automaton and pattern partitioning. If we partition the pattern insubpatterns that are still too large to �t in a computer word, the automaton for each subpattern has14



to be further partitioned into subautomata. This is a generalization that includes both techniquesas particular cases, and uses a smaller j value.As we show in the analysis, however, this technique is not better in practice than pure patternpartitioning. However, we �nd that the larger j, the less tolerant to the error level our scheme is.Therefore, using a smaller j can be necessary if � is high. For high error levels we use the largestallowed j. For � large enough, though, the only allowed value for j is 1, which is equivalent to pureautomaton partitioning. Therefore, mixed partitioning provides a smooth transition between purepattern and pure automaton partitioning. Superimposition could also be applied on the resulting(large) automata.5 AnalysisIn this section we analyze the di�erent aspects of our algorithms. We also study some statistics ofthe problem which are useful for the analysis. We make heavy use of the shorthand � = k=m.It is important to notice that our average-case analysis assumes that the pattern is not extendedand that text and patterns are random strings over an independently generated and uniformlydistributed alphabet of size �. In the alphabet is not uniformly distributed we must replace the �in the formulas by 1=p, where p is the probability that two random letters match. For generalizedpatterns, the �i values are di�erent, but we are not able to compute them.We summarize here the results of this section, which involve the optimal heuristic to combine ouralgorithms. Table 5 presents a summary of the important limiting � values found in the analysis.Name Simpli�ed Meaning ReferenceDe�nition Up to where all the subpatterns�0 1�qm=(�pw)m1=pw in pattern partitioning can be Eq. (13), Sec. 5.5safely superimposed�1 1�m1=pw=p� Up to where pure pattern Eq. (9), Sec. 5.4partitioning can be used�2 1� 1=p� Up to where mixed Eq. (17), Sec. 5.6partitioning can be usedTable 1: Limiting � values in our analysis. The \simpli�ed de�nition" is a valid approximation formoderate m values.We sketch now how the algorithm behaves among the areas delimited by m and �0 < �1 < �2. Inall cases we can use the heuristic of the S table to reduce the average cost.� If the problem �ts in a single word (i.e. (m � k)(k + 2) � w), the simple algorithm shouldbe used, which is O(n) in the average and worst case. If the problem does not �t in a singleword, we may use pattern, automaton or mixed partitioning.15



� For � < �1 pattern partitioning (plus superimposition) is the best choice. If � < �0, thee�ect of superimposition makes pattern partitioning O(n) time on average. In the range�0 < � < �1 the average cost is close to O(pkm=(�w) m2=pw n) (Eq. (12)). This grows aspk for �xed m. For w = 32 the cost is approximately O(pk=(�w)m0:85 n).� For �1 < � < �2 the error level makes it necessary to use a smaller j (i.e. mixed partitioning).The average search cost becomes O(k log(m)=w n) (Eq. (16)).� For � > �2, neither pattern or mixed partitioning are advisable, because of the large numberof veri�cations, and pure automaton partitioning becomes the only choice. The average andworst case cost for this area becomes O((m� k)k=w n) (Eq (7) for the case � > 1� e=p�).Figure 6 illustrates the analysis. We show on the left the exact � values for w = 32, � = 32,m = 10::60 and e replaced by 1.09 (see later). As we see later, �00 is the maximum error level up towhich exact partitioning is linear (more precisely, it is the exact solution of Eq. (14). On the rightwe show schematically the combined complexity.
0.10.20.30.40.50.60.7� 10 20 30 40 50 60m�00�0�1�2 automatonpartitioningmixed partitioningpatternpartitioning+ superimposition

10 ��1 �2�01
t=n pmk=(�w)m2=pw k log(m)=w k(m�k)=w

Figure 6: On the left, exact � values for w = 32 and � = 32. On the right, the (simpli�ed)complexities of our algorithm.5.1 The Statistics of the ProblemEven natural questions about the distribution and statistical behavior of this problem are very hardto answer. Some of them are: which is the probability of an occurrence? How many occurrencesare there on average? How many columns of the dynamic programming matrix are active? Someof these questions also arise in the analysis of our algorithms. We give here our new results.A �rst concern is the probability of matching. Let f(m; k) be the probability of a random patternof length m matching a given text position with k errors or less. This probability is determinantto assure that the number of veri�cations of candidate matches in pattern partitioning is not too16
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1.0� � Upper bound 1� 1=�The curve 1� 1=p�Experimental data+ Exact lower bound of Eq. (18) with  = 1� Conservative lower bound, 1� e=p�Figure 7: Theoretical and practical bounds for �.large. We show in the Appendix that for � � 1�e= �p�1=(2(1��))�, f(m; k) is O(m), with  < 1.In particular, for � < 1� e=p�, f(m; k) is exponentially decreasing with m.Figure 7 shows the experimental veri�cation of this analysis for m = 300 (we obtained similarresults with other m values). The curve � = 1 � 1=p� is included to show its closeness to theexperimental data. Least squares gives the approximation � = 1� 1:09=p�, with a squared errorsmaller than 10�4.The experiment consists of generating a large random text and running the search of a randompattern on that text, with k = m errors. At each text character, we record the minimum k forwhich that position would match the pattern. Finally, we analyze the histogram, and consider thatk is safe up to where the histogram values become signi�cant. The threshold is set to n=m2, sincem2 is the cost to verify a match. However, the selection of this threshold is not very important,since the histogram is extremely concentrated. For example, it has �ve or six signi�cative valuesfor m in the hundreds.A second question we answer is: which is the number of columns we work on, on average, in thecut-o� heuristic of Ukkonen [30]? That is, if we call Cr the smallest-row active state of column rin our NFA, which is the largest r satisfying Cr � k? The columns satisfying Cr � k are calledactive, and columns past the last active one need not be computed. Ukkonen conjectured that thenumber of active columns was O(k), but this was proved later on by Chang and Lampe [9]. Wefollow the proof of [9] to �nd a tighter bound. If we call L the last active column, we haveE(L) � K + Xr>K r P [Cr � k]for any K. Since we know that if k=r < 1� e=p�, then P [Cr � k] = O(r) with  < 1, we take17



K = k=(1� e=p�) to obtainE(L) � k1� e=p� + Xr>k=(1�e=p�) r O(r) = k1� e=p� + O(1) (6)which shows that, on average, the last active column is O(k). This re�nes the proof of [9] of thatthe heuristic of [30] is O(kn). By using least squares on experimental data we �nd that a veryaccurate formula is 0:9k=(1� 1:09=p�).5.2 The Simple AlgorithmThe preprocessing phase of this algorithm can be optimized to take O(�+mmin(m; �)) time, andit requires O(�) space. The search phase needs O(n) time.However, this algorithm is limited to the case in which (m� k)(k + 2) � w. In the RAM model itis assumed log2 n � w, so a machine-independent bound is (m� k)(k + 2) � log2 n.Since (m�k)(k+2) takes its maximum value when k = m=2�1, we can assure that this algorithmcan be applied whenever m � 2(pw � 1), independently of k. That is, we have a linear algorithmfor m = O(plogn), for example, m � 9 for w = 32 bits, or m � 14 for w = 64 bits.5.3 Partitioning the AutomatonIf we divide the automaton in IJ subautomata (I d-rows and J d-columns), we must update I cellsat each d-column. However, we use a heuristic similar to [30] (i.e. not processing the m columnsbut only up to the last active one), so we work only on active automaton diagonals.To compute the expected last active diagonal, we use the result of Eq. (6) Since this measuresactive columns and we work on active diagonals, we subtract k, to obtain that on average we workon ke=(p� � e) diagonals.Since we pack (m�k)=J diagonals in a single cell, we work on average on (ke=(p��e)+1) J=(m�k)machine words. But since there are only J d-columns, our total complexity isI J min�1; ke(m� k)(p� � e)� nwhich shows that any choice for I and J is the same for a �xed IJ . Since IJ � (m�k)(k+1)=(w�1),the �nal cost expression is independent (up to round-o�s) of I and J :min�m� k ; kep� � e� k + 1w � 1 n (7)which is O(k2n=(p� logn)) time. It improves if � � 1 � e=p�, being O((m� k)kn= logn) time.This last complexity is also the worst case of this algorithm.To see where automaton partitioning is better than plain dynamic programming, consider that, forlarge �, the �rst one works O(IJ) = O((m� k)(k+1)=(w� 1)) per text position, while the second18



one works O(m). That means that for �(1� �) < w=m, it is better to partition the automaton,while otherwise it is better to just use dynamic programming. Since �(1 � �) � 1=4, automatonpartitioning is always better than dynamic programming form � 4w, i.e. for moderate-size patterns(this can be slightly di�erent in practice because the operations do not cost the same).The preprocessing time and space complexity of this algorithm is O(mk�=w).5.4 Partitioning the PatternThere are two main components in the cost of pattern partitioning. One is the j simple searchesthat are carried out, and the other is the checks that must be done. The �rst part is O(jn), whilethe second one costs O(jm2f(m=j; k=j)n), where f(m; k) is de�ned in Section 5.1 (observe thatthe error level � is the same for the subpatterns). The complexity comes from considering that weperform j independent searches, and each veri�cation costs O(m2) if dynamic programming is usedfor veri�cation1. Clearly, in the worst case each text position must be veri�ed, and since we avoidre-checking the text, we have O((j +m)n) = O(mn) worst-case complexity, but we show that thisdoes not happen on average.To determine j, we consider the following equation, derived from Eq. (5)�mj � kj ��kj + 2� = wwhose solution is j = m� k +p(m� k)2 + wk(m� k)w (8)The preprocessing time and storage requirements for the general algorithm are j times those of thesimple one. The search time is O(jn) = O�qmk=w n�where the simpli�cation is valid for � > 1=w. However, we improve this complexity in the nextsection by using superimposition.We consider now the limit error level of applicability. We know that for � � 1�e= �p�1=(2(1��))�,f(m; k) = O(m), for  < 1. Thus, for � small enough, f(m=j; k=j) = O(m=j), which does nota�ect the complexity provided m=j = O(1=m2). This happens for  � 1=m2j=m. For that  itholds 1=1=(2(1��)) � m2j=(2m(1��)) = mj=(m�k). Therefore, f(m=j; k=j) = O(1=m2) if � � �1,where �1 = 1� ep� m jm�k = 1� ep� md(w;�1) (9)up to where the cost of veri�cations is not signi�cant. The function d is de�ned as j=(m�k), whichby replacing j according to Eq. (8)) yieldsd(w; �) = 1 +p1 + w�=(1� �)w1Recall that we can use this algorithm only if the pattern is not extended, but this analysis holds only for notextended patterns anyway. 19



where d(w; �) < 1 for � < 1 � 1=(w � 1). A good approximation for �1 (for moderate m) is�1 � 1�m1=pw=p�.5.5 Superimposing the SubpatternsSuppose we decide to superimpose r patterns in a single search. We are limited in the amount ofthis superimposition because of the increase in the error level to tolerate. We analyze now howmany patterns can we superimpose.We prove in the Appendix that the probability of a given text position matching a random patternis exponentially decreasing with m for � < 1 � e=p�, while if this condition does not hold theprobability is very high.In this formula, 1=� stands for the probability of a character crossing a horizontal edge of theautomaton (i.e. the probability of two characters being equal). To extend this result, we note thatwe have r characters on each edge now, so the above mentioned probability is 1�(1�1=�)r. Hence,the new limit for � is � < 1� es1� �1� 1��r � 1� er r� (10)where the (pessimistic) approximation is tight for r << �.If we use pattern partitioning, we must search j subpatterns (j is determined by m and k, it is notdependent on r). Using Eq. (9) again, we have that the number of veri�cations is negligible for� < 1� er r� m jm�k (11)where solving for r we get that the maximum allowed amount of superimposition r0 isr0 = (1� �)2�e2m2d(w;�)and therefore we must partition the set into j 0 = j=r0 subsets of size r0 each. That implies that thecost of our algorithm is in general O(j 0n). Replacing j = (m� k)d(w; �) yields that the cost ise2d(w; �)m1+2d(w;�)�(1� �) nand since the technique is limited to the case � < 1� e=p�, we have a complexity ofO d(w; �)m1+2d(w;�)p� n! � O0@skm�w m2=pw n1A (12)where the approximation is valid for moderate m values.A natural question is for which error level can we superimpose all the j patterns to obtain a linearalgorithm, i.e. where r0 � j holds. That is (using Eq. (11))� < 1� es j� m jm�k20



where the limit point is de�ned as�0 = 1� esm(1� �0)d(w; �0)� md(w;�0) (13)which is not easy to solve analytically. For moderate m a practical simpli�ed solution is �0 =1�qm=(�pw)m1=pw.Observe that for � > 1� e=p�, the cost is O(jn), i.e. not better than pattern partitioning with nosuperimposition. However, that value also marks the limit of the usability of pattern partitioning.It is interesting to compare this limit for the linearity of our algorithmwith that of exact partitioning[8] (i.e. partitioning the pattern into k+1 pieces and searching them with no errors, verifying eachsubpattern occurrence for a complete match).To analyze exact partitioning, we assume the use of an Aho-Corasick machine [1] to search thesubpatterns in parallel in O(n) guaranteed search time (as explained, there are better alternativesin practice). Since the search for the subpatterns is of linear time, we �nd out now when the totalamount of work due to veri�cations is also linear.We split the pattern in pieces of length bm=(k + 1)c and dm=(k + 1)e. In terms of probability ofoccurrence, the shorter pieces are � times more probable than the others (where � is the size of thealphabet). Since each occurrence of a subpattern is veri�ed for a complete match at O(m2) cost,the total cost of veri�cations is no more than (k+1)m2=�b mk+1 c n. This is linear approximately for� < �00, where �00 is de�ned as �00 = �1=�00m3 (14)where a reasonable approximation is �00 = 1=(3 log�m). This limit is less restricting than our �0of Eq. (13) for su�ciently large m (a very rough approximation is m > �pw=2).For typical text searching the error level tolerated by our algorithm is higher (i.e. �0 > �00). As weshow in the experiments, however, exact partitioning is faster in practice, and therefore it shouldbe preferred whenever � < �00.5.6 Mixed PartitioningWe analyze now the general partitioning strategy: partition the pattern in a number of subpatterns,and then partition each automaton.To obtain the optimal strategy, consider that if we partition in j subpatterns, we must perform jsearches with bk=jc errors. For � < 1 � e=p�, the cost of solving j subproblems by partitioningthe automaton is (recall Eq. (7)) ke=jp��e (k=j + 1)w� 1 jn (15)which shows that the lowest cost is obtained with the largest j value, and therefore mixed parti-tioning should not be used if pure pattern partitioning is possible.21



However, there is still place for this algorithm. The point is that the limit of usefulness for �is reduced when j grows (Eq. (9)). Hence, for � > �1 we may use a smaller j (and partitionthe automata) to keep the veri�cations negligible. We use the �rst part of Eq. (9) to obtain themaximum j value allowed by �, which is b(m � k) logm(p�(1 � �)=e)c. By counting the cost ofcarrying out j searches with the resulting subautomata (using Eq. (15)), we have the complexityof this scheme.It is possible to use superimposition with this scheme. We cannot, however, select �rst j and thensuperimpose subsets, because if we can superimpose two patterns, it means that the error levelwould allow to use a larger j (and therefore our selection was not optimal). We try instead tooptimize j and r simultaneously. Suppose we superimpose groups of r subpatterns. Then, Eq. (11)must hold, from where we obtain j = (m � k) logm(p�=r(1 � �)=e). The cost is 1=r times thatof pure automaton partitioning, which reaches its worst case because we are pushing j to its limit.Therefore, we optimize kj m�kjw� 1 jr n = k logmw� 1 1r log(p�=r(1� �)=e) nWe minimize the above formula to �nd that the optimum r value is �(1��)2=e3, which correspondsto j = (m� k)=(2 lnm). Therefore, our optimal search cost isO e3�(1� �)2 k 2 lnmm� k kwp� n! = O�k logmw n� (16)Notice that when the maximum allowed j is 1, we have pure automaton partitioning. This happensfor �2 = 1� ep� m 1m(1��2) (17)(observe that �2 �! 1� e=p� as m grows). Therefore, we have a smooth transition from patternpartitioning to automaton partitioning.6 Experimental ResultsIn this section we experimentally compare the di�erent variations of our algorithm, as well as thefastest previous algorithms we are aware of.We tested random patterns against 1 Mb of random text on a Sun SparcStation 4 running Solaris2.3, with 32 Mb of RAM2. This is a 32-bit machine, i.e. w = 32. We use � = 32 (typical case intext searching). We also tested lower-case English text, selecting the patterns randomly from thesame text, at the beginning of words of length at least 4, to mimic classical information retrievalqueries. Each data point was obtained by averaging the Unix's user time over 20 trials.2Previous tests [5] run on a Sun SparcClassic with 16 Mb of RAM running SunOS 4.1.3 gave slightly worse resultsfor [35]. This is probably due to the amount of main memory available, which some algorithms depend on.22
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2832 kFigure 8: Times in seconds for some combined heuristics. On the left, pattern partitioning withforced superimposition: r = 1 (full line), r = 2 (dashed) and r = 3 (dotted). On the right, patternpartitioning with forced mixing: j = 2; 4; 6 (full lines, the larger j jumps �rst) and maximal j(dashed).The reader may be curious about the strange behavior of some of the curves, especially in ouralgorithms. Some curves are de�nitely non-monotonical in k (besides the expected k(m�k) behaviorin automaton partitioning), and this does not depend on statistical deviations in the tests. Those\peaks" are due to integer round-o�s, which are intrinsic to our algorithms and are more noticeableon small patterns. For instance, if we had to use pattern partitioning to split a search with m = 30and k = 17, we would need to search four subpatterns, while for k = 18 we need just three. Asanother example, consider automaton partitioning for m = 20 and k = 13, 14 and 15. The numberof cells to work on (IJ) change from four to three and then to �ve.6.1 Superimposition and Mixed PartitioningWe show the e�ect of superimposition. In practice it is rare to be able to superimpose more thanthree patterns. Figure 8 (left side) shows the times for pattern partitioning on random text andm = 30. The level of superimposition is forced at 1, 2 and 3. This shows that superimposition isindeed e�ective, and that we must reduce the level of superimposition as the error level increases.We also show in the right side of Figure 8 the e�ect of mixed partitioning. We use m = 60 (sincethe area is very narrow for shorter patterns) and random text. We force some di�erent j values,and also show the maximal j as used by pure pattern partitioning. The �gure shows that it isbetter to use larger j, but it is necessary to switch to smaller ones when the error level increases.The peaks in the left plot correspond to the example of integer round-o�s for pattern partitioninggiven before. 23



6.2 A Comparison of Parallel-NFA AlgorithmsOur algorithm shares with Wu and Manber work [34] the NFA model and the idea of using bit-parallelism. However, the parallelization techniques are di�erent. We compare both algorithms.A general implementation of the Wu and Manber code needs to use an array of size k+1. However,we implemented optimized versions for k = 1, 2 and 3. That is, a di�erent code was developed foreach k value, in order to avoid the use of arrays and enable the use of machine registers. We showboth algorithms (optimized and general). We also show the e�ect of our simple speed-up heuristic(the S table), running our algorithm with and without that �ltration heuristic.Figure 9 shows the results. We show the case m = 9 (where we can use the simple algorithm)and m = 30 (where we use automaton partitioning). Past m = 32 the times for the Wu andManber algorithm should at least double since they need to use two machine words per row of theautomaton.As it can be seen, our algorithms without the S heuristic outperform even the optimized versionsof Wu and Manber in all the spectrum for short patterns, except for k = 1. For longer patterns,we outperform the general version of Wu and Manber, although their specialized versions for �xedk are faster, and would probably keep slightly faster for much larger k values (this depends also onthe availability of machine registers, though). Of course, it is not practical to implement a di�erentalgorithm for every possible k value.On the other hand, the use of the S table cuts down the running times of our algorithm from 40%to 65% if the error level is reasonably low (of course this heuristic can be applied to any otheralgorithm too).6.3 A Comparison of Hybrid HeuristicsWe developed a hybrid heuristic that automatically determines the best algorithm from our suite.The heuristic uses our analytical results to determine the best choice. This works very well onrandom text, although it still needs some tuning on English text. The fact that always the bestchoice is selected is an independent con�rmation of the analytical results for random text.In this section we compare our complete heuristic against another hybrid algorithm, namely Agrep[33]. Agrep is a widely distributed approximate string search software. In this case we include the�ltering S table, since Agrep uses other speed-up techniques altogether.We also include our implementation of Baeza-Yates and Perleberg's algorithm [8], which we call\exact partitioning". This is because, whenever we determine that partitioning in j = k+ 1 piecesis necessary, we fall naturally into this algorithm (although not developed as part of this work). Inthis sense, the algorithm could be considered as part of the heuristic we propose.Figure 10 shows the results for m = 9 and m = 29 (maximum currently allowed in Agrep, as wellas k � 8). As it can be seen, exact partitioning is faster for low error ratios (roughly � � 0:2).However, Agrep is especially optimized for small k values, being the fastest in this case. In the restof the spectrum our algorithm is faster.The reason why Agrep times drop past some point is that, as soon as it �nds a match in a line of24
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k� Agrep Exact Partitioning OursFigure 10: Times in seconds for m = 9 (left) and 29 (right), on English text.text, it reports the line and stop searching in that line. Therefore, it skips lines faster for very higherror ratios. The peak of our hybrid algorithm for m = 30 and English text, on the other hand, isdue to an imperfect tuning of our heuristic for non-random text.6.4 A Comparison of the Fastest AlgorithmsFinally, we present a comparison between our algorithms and the fastest previous algorithms we areaware of. Since we compare only the fastest algorithms, we leave aside [22, 29, 13, 16, 26, 32], whichwere not competitive in the range of parameters we study here. We use our simple algorithm, aswell as pure pattern and pure automaton partitioning. We do not make use of the S table speed-up,since it could be applied to all other algorithms as well.The algorithms included in this comparison are (in alphabetical author order)Pattern Partitioning - Automaton Partitioning are our algorithms. For m = 9 we use thesimple automaton, which is considered as \automaton partitioning" in the �gures. Patternpartitioning includes superimposition.Exact Partitioning (Baeza-Yates and Perleberg [8]) is essentially the case j = k + 1. Thecode is ours. The algorithm was presented by Wu and Manber in [34], but the Boyer-Moore-like search we use is suggested in [8].Column Partitioning (Chang and Lampe [9]) is the algorithm kn.clp, which computes onlythe places where the value of the dynamic programming matrix does not change along eachcolumn. The code is from the author.Counting (Jokinen, Tarhio and Ukkonen [14]) moves a window over the text, keeping howmany letters in the window match the pattern. When the number is high enough, the area isveri�ed. We use the variant implemented in Navarro [19] (window of �xed size m).26



DFA (Navarro [20]) converts the NFA to a deterministic automaton which is computed in lazyform, i.e. a state is created only when it is �rst needed while processing the text. This ideawas also presented in [15], although we use the implementation of [20].q-grams (Sutinen and Tarhio [25]) is a �ltration algorithmbased on �nding portions (q-grams)of the pattern in the text, and verifying candidate areas. The method is limited to � < 1=2,and the implementation to k � w=2�3. The code is from the authors. We use s = 2 (numberof samples to match) and maximal q (length of the q-grams), as suggested in [25].Cut-O� (Ukkonen [30]) is the standard dynamic programming algorithm, working only on ac-tive columns. The code is ours.NFA by Rows (Wu and Manber [34]) uses bit-parallelism to simulate the automaton by rows.The code is ours. Our code is limited to m � 31, and it would be slower if generalized. Thisis a general code for arbitrary k.Four Russians (Wu, Manber and Myers [35]) applies a Four Russians technique to pack manyautomaton transitions in computer words. The code is from the authors, and is used withr = 5 as suggested in [35] (r is related with the size of the Four Russians tables).Figure 11 shows the results. As it can be seen, our algorithm is more e�cient than any other whenthe problem �ts in a single word, except for low error level, where Baeza-Yates and Perleberg isunbeaten. For m = 20 and m = 30, our algorithms are not the fastest ones but quite close to them.In particular, automaton partitioning is the fastest algorithm when k is close to m.We show more in detail the case of small k for m = 20 and 30 in Figure 12.The peaks of our pattern partitioning for m = 30 were explained at the beginning of this section.The same holds for automaton partitioning for m = 20 and k = 14. The reason for the peak of thesame curve at k = 2 and 3 is more obscure, since the number of cells do not change, and moreover,we have that for k = 4 the second cell is active more frequently (as expected from the analysis).What happens is that for k = 2 and 3 the second cell switches from inactive to active and back toinactive quite often (30% more times than for k = 4). The overhead to include and exclude thesecond cell explains the higher times.On the other hand, our analysis is con�rmed. On random text for m = 20 we predict (Eq. (9)replacing e by 1.09) that pattern partitioning will be useful up to for �1 = 0:595, which is k = 11,quite close to the real value k = 13. For m = 30 we predict �1 = 0:569 which is k = 17, close tothe real k = 20. Such precision allows us to set up very �ne-tuned heuristics. For English texts,however, that prediction is harder.7 Concluding RemarksWe presented a new algorithm for approximate pattern matching, based on the bit-parallel sim-ulation of an automaton. We eliminate the dependencies introduced by the �-transitions. Thisenables the possibility of computing the new values in O(1) time per text character, provided the27
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problem �ts in a single computer word (i.e. (m � k)(k + 2) � w). If it does not, we show a tech-nique to partition the automaton into subautomata. We can handle \extended patterns" (whichallow classes of characters, gaps, and other generalizations in the patterns). We show anothertechnique to partition the pattern into subpatterns that are grouped into superimposed searches.Those searches are carried out with the simple algorithm and the candidate matches later veri�ed.Finally, we show how to combine pattern and automaton partitioning. The combined algorithm isO(n) for small patterns or moderate �, roughly O(pkm=(� logn) n) for moderately high �, andO((m� k)kn= logn) for large �.We analyzed the optimum strategy to combine the algorithms and showed experimentally that ouralgorithm is among the fastest ones for typical text searching. We have not studied other cases,such as very long patterns (where our algorithm does not perform well and �ltration algorithmstend to be better), or small alphabets (where [32] and [35] are normally the best choices [5]).Figure 13 illustrates the results on English text, showing in which case should each algorithm beapplied for patterns of moderate size. We do not include Agrep because it is not a \pure" algorithm.Should agrep be included, its area would replace those of Exact Partitioning and Counting.As it can be seen, �ltering algorithms are the best for low error ratios. On the other hand, di�erentimplementations of the automaton model (either deterministic or not) are the fastest choices fornot very long patterns. In the remaining area, the Four Russians approach is the best choice (thiscan be seen as another version of a DFA). In particular, our algorithms are the fastest for shortpatterns (and moderate error level) or very high error level.
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that probability exponentially small with m, we take the bound for  = 1 and consider valid anyerror level strictly smaller than the bound. This is � < 1� e=p�.To prove f(m; k) = O(m), we consider an upper bound to f : suppose a text area Text[a::b]matches the pattern. Since we only report segments whose last character matches the pattern, weknow that b is in pat. We consider a as the �rst character matching the pattern. Then, the lengths = b�a+1 is in the range m�k::m+k. Since there are up to k errors, at leastm�k characters ofthe pattern must be also in the text. Under a uniform model, the probability of that many matchesis 1=�m�k. Since these characters can be anyone in the pattern and in the text, we havef(m; k) � mXs=m�k 1�m�k mm� k! s � 2m� k � 2! + m+kXs=m+1 1�s�k ms� k! s� 2s � k � 2!where the two combinatorials count the ways to choose them�k (or s�k) matching characters fromthe pattern and from the text, respectively. The \�2" in the second combinatorials are becausethe �rst and last characters of the text must match the pattern. We divided the sum in two partsbecause if the area has length s > m, then more than m� k characters must match, namely s� k.See Figure 14.
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At least 9-5=4 matchesFigure 14: Upper bound for f(m; k).First assume constant � (we cover the other cases later). We begin with the �rst summation, whichis easy to solve exactly to get (1 � �)�mk �2=�m�k . However, we prefer to analyze its largest term(the last one), since it is useful for the second summation too. The last term is1�m�k mm� k! m� 2m� k � 2! = (1� �)2�m�k  mk!2�1 + O� 1m��= � 1�1���2�(1� �)2(1��)�m m�1 �1� �2�� +O� 1m��where the last step is done using Stirling's approximation to the factorial.34



Clearly, for the summation to be O(m) ( < 1), this largest term must be of that order, and thishappens if and only if the base of the exponential is � . On the other hand, the �rst summationis bounded by k + 1 times the last term, so the �rst summation is O(m) if and only if this lastterm is (recall that our exponential is multiplied by m�1 and therefore we can safely multiply it byk + 1). That is � � � 1�2�(1� �)2(1��)� 11�� = 1 11��� 2�1�� (1� �)2 (18)It is easy to show analytically that e�1 � � �1�� � 1 if 0 � � � 1, so for  = 1 it su�ces that� � e2=(1� �)2, or � � 1� e=p�, while for arbitrary ,� � 1� ep� 12(1��) (19)is a su�cient condition for the largest (last) term to be O(m), as well as the whole �rst summation.We address now the second summation, which is more complicated. First, observe thatm+kXs=m+1 1�s�k ms� k! s� 2s� k � 2! � m+kXs=m 1�s�k ms� k! sk!a bound that we later �nd tight. In this case, it is not clear which is the largest term. We can seeeach term as 1�r mr ! k + rk !where m � k � r � m. By considering r = xm (x 2 [1� �; 1]) and applying again the Stirling'sapproximation, the problem is to maximize the base of the resulting exponential, which ish(x) = (x+ �)x+��xx2x(1� x)1�x��Elementary calculus leads to solve a second-degree equation that has roots in the interval [1��; 1]only if � � �=(1� �)2. Since due to Eq. (19) we are only interested in � � 1=(1� �)2, h0(x) doesnot have roots, and the maximum of h(x) is at x = 1 � �. That means r = m � k, i.e. the �rstterm of the second summation, which is the same largest term of the �rst summation.We conclude that f(m; k) � 2k + 1m m �1 + O� 1m�� = O (m)Since this is an O() result, it su�ces for the condition to hold after a given m0, so if k = o(m)we always satisfy the condition. We can prove, with a di�erent model, that for � > 1 � 1=� ork = 
(m� o(m)) the cost of veri�cations is signi�cant.35


