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Abstract

We present a new algorithm for on-line approximate string matching. The algorithm is
based on the simulation of a non-deterministic finite automaton built from the pattern and
using the text as input. This simulation uses bit operations on a RAM machine with word
length w = Q(log n) bits, where n is the text size. This is essentially similar to the model used
in Wu and Manber’s work, although we improve the search time by packing the automaton states
differently. The running time achieved is O(n) for small patterns (i.e. whenever mk = O(logn)),
where m is the pattern length and & < m the number of allowed errors. This is in contrast
with the result of Wu and Manber, which is O(kn) for m = O(logn). Longer patterns can
be processed by partitioning the automaton into many machine words, at O(mk/w n) search
cost. We allow generalizations in the pattern, such as classes of characters, gaps and others, at
essentially the same search cost.

We then explore other novel techniques to cope with longer patterns. We show how to
partition the pattern into short subpatterns which can be searched with less errors using the
simple automaton, to obtain an average cost close to O(1/mk/w n). Moreover, we allow to
superimpose many subpatterns in a single automaton, obtaining near O(y/mk/(ocw) n) average
complexity (o is the alphabet size).

We perform a complete analysis of all the techniques and show how to combine them in an
optimal form, obtaining also new tighter bounds for the probability of an approximate occurrence
in random text. Finally, we show experimental results comparing our algorithms against previous
work. Those experiments show that our algorithms are among the fastest ones for typical text
searching, being the fastest in some cases. Although we aim mainly to text searching, we believe
that our ideas can be successfully applied to other areas such as computational biology.

1 Introduction

Approximate string matching is one of the main problems in classical string algorithms, with
applications to text searching, computational biology, pattern recognition, etc. Given a text of
length n, a pattern of length m, and a maximal number of errors allowed, k, we want to find
all text positions where the pattern matches the text up to k errors. Errors can be substituting,
deleting or inserting a character. We call a@ = k/m the error ratio, and o the alphabet size.
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The solutions to this problem differ if the algorithm has to be on-line (that is, the text is not known
in advance) or off-line (the text can be preprocessed). In this paper we are interested in the first
case, where the classical dynamic programming solution has O(mn) running time [21, 22].

In the last years several algorithms have been presented that achieve O(kn) comparisons in the
worst-case [29, 13, 16, 17] or in the average case [30, 13], by taking advantage of the properties of
the dynamic programming matrix (e.g. values in neighbor cells differ at most in one). In the same
trend is [9], with average time complexity O(kn/+/c). All average-case figures assume random text
and uniformly distributed alphabets.

Other approaches first filter the text, reducing the area where dynamic programming needs to be
used [27, 28, 26, 25, 10, 11, 19, 8, 23]. These algorithms achieve “sublinear” expected time in many
cases for low error ratios (i.e. not all text characters are inspected, O(knlog, m/m) is a typical
figure), although the filtration is not effective for more errors. Filtration is based on the fact that
some portions of the pattern must appear with no errors even in an approximate occurrence.

In [30], the use of a deterministic finite automaton (DFA) which recognizes the approximate occur-
rences of the pattern in the text is proposed. Although the search phase is O(n), the DFA can be
huge. In [20, 15] the automaton is computed in lazy form (i.e. only the states actually reached in
the text are generated).

Yet other approaches use bit-parallelism [2, 4, 34], i.e. they simulate parallelism with bit operations
in a RAM machine of word length w = Q(logn) bits, to reduce the number of operations. In [32]
the cells of the dynamic programming matrix are packed in diagonals to achieve O(mnlog(c)/w)
time complexity. In [35] a Four Russians approach is used to pack the matrix in machine words,
achieving O(kn/w) time on average (they end up in fact with a DFA where they can trade the
number of states for their internal complexity).

Of special interest to this work is [34], which considers a non-deterministic finite automaton (NFA)
functionally similar to the DFA but with only a few states. They achieve O(kmn/w) time by
parallelizing in bits the work of such automaton.

The main contributions of the present work follow.

o We present a new algorithm for approximate string matching. It is based on bit-parallelism,
where bit operations are used to simulate the behavior of a non-deterministic finite automaton
(NFA) built from the pattern and using the text as input. This automaton is similar to that
of Wu and Manber [34]. However, we pack diagonals instead of rows into machine words.
This leads to a worst-case running time of O(n) (independently of k) for small patterns (i.e.
mk = O(w)). This is the case in most single-word text patterns. This simple algorithm is
experimentally shown to be the fastest one we are aware of for short patterns, except for very
small k values where other filtration algorithms are even faster.

e We show how to partition a large automaton that does not fit in a computer word, to obtain
an algorithm which performs near [mk/w| n operations, against [m/w| kn performed by Wu
and Manber (their operations are simpler, though). The difference is especially noticeably
in small patterns. This algorithm performs well for all error ratios if the pattern is not very
long, being the fastest for high error ratios, an area largely unexplored in previous work.



e We show that some generalizations in the pattern (which we call eztended patterns) can be
handled at almost no additional search cost. We allow to have classes of characters at each
pattern position (instead of just one character per position), gaps inside the pattern, etc.

o We present a technique to partition a long pattern into subpatterns, such that the subpatterns
can be searched with less errors using the simple automaton. This search is in fact a filter,
since the matches of the subpatterns must be verified for complete matches. The average time
of this search is close to O(y/mk/w n), and can be used even for moderately high error levels.
We show experimentally that this algorithm is competitive with the best known algorithms.

e We show that some of the subpatterns obtained in the previous algorithm can in fact be
superimposed in a single automaton to speed up searching. We analytically find the maximum
degree of superimposition allowed (which is limited by the error level), and obtain an algorithm
with average cost close to O(y/mk/(cw)m?/V¥ n). We show experimentally that speedups

of factors of two and three can be obtained for low error ratios.

e We analyze the possibility of combining pattern and automaton partitioning, finding that the
combination increases the tolerance to errors in pattern partitioning, and provide a smooth
transition between pattern and automaton partitioning as the error level increases. This
mixed partitioning has an average search cost of O(klog(m)/w n). We show experimentally
how this mix works for an intermediate error level.

e We present a simple speedup technique that doubles in practice the performance of all our
algorithms for low error levels, by allowing to quickly discard large parts of the text at low cost
per character. This technique is quite general and can be applied to most other algorithms
as well (except perhaps the filtration algorithms).

e We thoroughly analyze all our algorithms and the areas where they are applicable, finding
out the optimal heuristic that combines them. As a side effect, we give tighter bounds for
the probability of an approximate occurrence on random text. We also give better bounds
for the analysis of the Ukkonen cut-off algorithm [30].

e We present extensive experiments for the running time of our algorithms and previous work.
They are aimed to show the practical behavior of our algorithms, to verify our analysis and
to compare our work against the others. We show that our algorithms are among the fastest
ones for typical text searching, especially for short patterns.

Approximate string matching is a particular case of sequence similarity, an important problem
in computational biology. Although the present work is specifically aimed to text searching, we
believe that some ideas in this paper can be adapted to more generic cost functions associated to
string editing operations or more generic patterns, for example to RNA prediction [12] or to DNA
sequence databases [18] (where, incidentally, the search is made on very short patterns).

Preliminary versions of parts of this work can be found in [6, 5].

This paper is organized as follows. In Section 2 we introduce the problem and the associated NFA.
In Section 3 we explain our automaton simulation and how to split it in many machine words. In



Section 4 we present other problem partitioning techniques. In Section 5 we analyze the algorithms
and find the optimal way to combine them in a general heuristic. In Section 6 we experimentally
validate our analysis and compare our algorithm against others. Finally, in Section 7 we give our
conclusions and future work directions.

2 Preliminaries

The problem of approximate string matching can be stated as follows: given a (long) Text of length
n, and a (short) pattern pat of length m, both being sequences of characters from an alphabet ¥ of
size o, find all segments (called “occurrences” or “matches”) of Texzt whose edit distance to patis at
most k, the number of allowed errors. It is common to report only the end points of occurrences, as
well as to discard occurrences containing or contained in others. In this work we focus on returning
end points of occurrences not containing others.

The edit distance between two strings a and b is the minimum number of edit operations needed to
transform @ into b. The allowed edit operations are deleting, inserting and replacing a character.
Therefore, the problem is non-trivial for 0 < k < m. The error ratio is defined as a = k/m.

We use a C-like notation for the operations (e.g. &,|,==,!=,A,>>). We use tezt to denote the
current character of Tezt and, unlike C, str[j] to denote the j-th character of str (i.e. the strings
begin at position one, not zero).

Consider the NFA for searching patt with at most k& = 2 errors shown in Figure 1. Every row
denotes the number of errors seen. The first one 0, the second one 1, and so on. Every column
represents matching the pattern up to a given position. At each iteration, a new text character is
considered and the automaton changes its states. Horizontal arrows represent matching a character
(since we advance in the pattern and in the text, and they can only be followed if the corresponding
match occurs), vertical arrows represent inserting a character in the pattern (since we advance in
the text but not in the pattern, increasing the number of errors), solid diagonal arrows represent
replacing a character (since we advance in the text and pattern, increasing the number of errors),
and dashed diagonal arrows represent deleting a character of the pattern (they are empty transi-
tions, since we delete the character from the pattern without advancing in the text, and increase
the number of errors). Finally, the self-loop at the initial state allows to consider any character
as a potential starting point of a match, and the automaton accepts a character (as the end of
a match) whenever a rightmost state is active. If we do not care about the number of errors of
the occurrences, we can consider final states those of the last full diagonal. Because of the empty
transitions, this makes acceptance equivalent to the lower-right state being active.

This NFA has (m + 1) x (k4 1) states. We assign number (¢, j) to the state at row 7 and column
j, where ¢ € 0..k,j € 0..m. Initially, the active states at row ¢ are at the columns from 0 to i, to
represent the deletion of the first ¢ characters of the pattern.

Consider the boolean matrix A corresponding to this automaton. A;; is 1 if state (¢, j) is active
and 0 otherwise. The matrix changes as each character of the text is read. The new values A]
can be computed from the current ones by the following rule

A = (Aijo1 & (text ==pat[j] ) | Airj | Aicrjo1 | Al y 4 (1)
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no errors

1 error

2 errors

Figure 1: An NFA for approximate string matching. Unlabeled transitions match any character.
Active states are (2,3), (2,4) and (1, 3), besides those always active of the lower-left triangle. We
enclose in dotted the states actually represented in our algorithm.

which is used for ¢ € 0..k,j7 € 1..m. If ¢ = 0 only the first term is used. Note that the empty
transitions are represented by immediately propagating a 1 at any position to all the elements
following it in its diagonal, all in a single iteration (thus computing the e-closure). The self-loop at
the initial state is represented by the fact that column j = 0 is never updated.

The main comparison-based algorithms for approximate string matching consist fundamentally in
working on a dynamic programming matrix. Each column of the matrix holds the state of the
search at a given text character. It is not hard to show that what the column stores at position j
is the minimum row of this NFA which is active in column j of the automaton. In this sense, the
dynamic programming matrix corresponds to simulating this automaton by columns (i.e. packing
columns in machine words) [3].

On the other hand, the work of Wu and Manber consists fundamentally in simulating this automaton
by rows (packing each row in a machine word). In both cases, the dependencies introduced by the
diagonal empty transitions prevent the parallel computation of the new values. We present in the
next section an approach that avoids this dependence, by simulating the automaton using diagonals,
such that each diagonal captures the e-closure [3]. This idea leads to a new and fast algorithm.

3 A New Algorithm

Suppose we use just the full diagonals of the automaton (i.e. those of length k + 1). This presents
no problem, since those (shorter) diagonals below the full ones have always value 1, while those
past the full ones do not influence state (m, k). The last statement may not be obvious, since the



vertical transitions allow to carry 1’s from the last diagonals to state (m, k). But each 1 present at
the last diagonals must have crossed the last full diagonal, where the empty transitions (deletions)
would have immediately copied it to the state (m, k). That is, any 1 that goes again to state (m, k)
corresponds to a segment containing one that has already been reported.

Notice also that, whenever state (¢, ) is active, states (¢ + d,j + d) are also active for all d > 0
(due to the empty deletion transition). Thus, if we number diagonals regarding the column at
which they begin, the state of each diagonal ¢ can be represented by a number D;, the smallest row
value active in that diagonal (i.e. the smallest error). Then, the state of this simulation consists of
m —k + 1 values in the range 0..k+ 1. Note that Dy is always 0, hence, there is no need to store it.

The new values for D; (i € 1..m — k) after we read a new text character ¢ are derived from Eq. (1)

D! = min( D;+1, D1 +1, g(Dir,c)) (2)

1

where g(D;, ¢) is defined as
9(Diyc) = min({k+1} U {j/j=Di A patli+jl==c})

The first term of the D’ update formula represents a substitution, which follows the same diagonal.
The second term represents the insertion of a character (coming from the next diagonal above).
Finally, the last term represents matching a character: we select the minimum active state (hence
the min of the g formula) of the previous diagonal that matches the text and thus can move to the
current one. The deletion transitions are represented precisely by the fact that once a state in a
diagonal is active, we consider active all subsequent states on that diagonal (so we keep just the
minimum). The empty initial transition corresponds to Do = 0. Finally, we find a match in the
text whenever D,,_p < k.

This simulation has the advantage that can be computed in parallel for all . We use this property
to design a fast algorithm that exploits bit-parallelism for small patterns, and then extend it to
handle the general case.

3.1 A Linear Algorithm for Small Patterns

We show in this section how to simulate the automaton by diagonals using bit-parallelism, assuming
that our problem fits in a single word (i.e. (m — k)(k+ 2) < w, where w is the length in bits of the
computer word). We first select a suitable representation for our problem and then describe the
algorithm.

Since we have m — k non-trivial diagonals, and each one takes values in the range 0..k + 1, we
need at least (m — k)[log,(k 4 2)] bits. However, the g function cannot be computed in parallel
for all ¢ with this optimal representation. We could precompute and store it, but it would take
O(o(k + 1)™*) space if it had to be accessed in parallel for all 7. At this exponential space cost,
the automaton approach of [30, 20] is preferable.

Therefore, we use unary encoding of the D; values, since in this case g can be computed in parallel.
Thus, we need (m — k)(k 4 2) bits to encode the problem, where each of the m — k blocks of k 4 2
bits stores the value of a D;.



Each value of D; is stored as 1’s aligned to the right of its (k 4 2)-wide block (thus there is a
separator at the highest bit having always 0). The blocks are stored contiguously, the last one

(¢ = m — k) aligned to the right of the computer word. Thus, our bit representation of state
Dy, ...;Dp_p is

D = 001D 1Dy gkti=Dz D2 g gF+1=Dm—k 1Dm-k
where we use exponentiation to mean digit repetition. Observe that what our word contains is

a rearrangement of the 0’s and 1’s of (the relevant part of) the automaton. The rearrangement
exchanges 0’s and 1’s and reads the diagonals left-to-right and bottom-to-top (see D in Figure 2).

separator separator

\L \L final state
D 0 oi 1i 1| o oi oi 1
S - AoA oA
(2,3) (1,2) (0,1) (2,4) (1,3) (0,2)
t a p t t a
o] | o or 11 1) of 0011

Figure 2: Encoding of the example NFA. In this example, ¢['t'] = 0011.

With this representation, taking minimum is equivalent to anding, adding 1 is equivalent to shifting
one position to the left and oring with a 1 at the rightmost position, and accessing the next or
previous diagonal means shifting a block (k + 2 positions) to the left or right, respectively.

The computation of the g function is carried out by defining, for each character ¢, an m bits long
mask £[c], representing match (0) or mismatch (1) against the pattern, and then computing a mask
T[c] having at each block the (k + 1) bits long segment of ¢[c] that is relevant to that block (see
Figure 2). That is,

tle] = (c!'= pat[m]) (¢! = patim —1]) ... (c!= pat[l]) (3)
where each condition stands for a bit and they are aligned to the right. So we precompute
Tlc] = 0 spy1(t[c],0) O sg41(t[c],1) ... O spa(t[c],m—k —1)

for each ¢, where s;(z,¢) shifts z to the right in ¢ bits and takes the last j bits of the result (the
bits that “fall” are discarded). Note that T'[c] fits in a computer word if the problem does.

We have now all the elements to implement the algorithm. We represent the current state by
a computer word D. The value of all D;’s is initially & + 1, so the initial value of D is D;, =
(0 1¥+1)ym=k_ The formula to update D upon reading a text character c is derived from Eq. (2)

D = (D << 1) | (0**+i1)m-F



& (D << (k+3)) | (0*F11)m—F-1p 1F+1

& (((z + (0*'1)™ %) A 2) >> 1)

& D;, (4)
where r = (D>>(k+2))| T[]

The update formula is a sequence of and’s, corresponding to the min of Eq. (2). The first line
corresponds to D; + 1, the second line to D;;; + 1, the third line is the g function applied to
the previous diagonal, and the fourth line ensures the invariant of having zeros in the separators
(needed to limit the propagation of “+”). Note that we are assuming that the shifts get zeros
from both borders of the word (i.e. unsigned semantics). If this is not the case in a particular
architecture, additional masking is necessary.

We detect that state (m, k) is active by checking whether D & (1 << k) is 0. When we find a
match, we clear the last diagonal. This ensures that our occurrences always end with a match.

3.2 A Simple Filter

We can improve the previous algorithm (and in fact most other algorithms as well) by noticing
that any approximate occurrence of the pattern with k errors must begin with one of its k£ + 1
first characters. This allows to quickly discard large parts of the text with very few operations per
character.

We do not run the automaton through all text characters, but scan the text looking for any of the
k + 1 initial characters of the pattern. Only then we start the automaton. When the automaton
returns to its initial configuration, we resume the scanning. The scanning is much cheaper than
the operation of our automaton, and in fact it is cheaper than the work done per text character in
most algorithms.

We precompute a boolean table S[c], that stores for each character ¢ whether it is one of the first
k+1 letters of the pattern. Observe that this table alone solves the problem for the case k = m—1
(since each positive answer of S is an occurrence).

Figure 3 presents the complete algorithm (i.e. using the automaton plus the filter). For simplicity,
we do not refine the preprocessing, which can be done more efficiently than what the code suggests.

3.3 Partitioning Large Automata

If the automaton does not fit in a single word, we can partition it using a number of machine words
for the simulation.

First suppose that k is small and m is large. Then, the automaton can be “horizontally” split in
as many subautomata as necessary, each one holding a number of diagonals. We call “d-columns”
those sets of diagonals packed in a single machine word. Those subautomata behave differently than
the simple one, since they must communicate their first and last diagonals with their neighbors.

Thus, if (m — k)(k + 2) > w, we partition the automaton horizontally in J d-columns, where
J =[(m —k)(k+2)/w]. Note that we need that at least one automaton diagonal fits in a single



search (Text,n,pat,m,k)

{ /* preprocessing */
for each ce X
{tlc] = (¢!'= patim]) (c '= patim-1]) .. (c!'= pat[l])
Tlc] = 0 sg+1(t[c],0) 0 spr1(t[c],1) ... 0 sgp1(t[c],m—k—1)
Sle] = (c€ pat[l.k+1])
}
n — ( 1k—|—1)m—k
M1 = ( k+11)m—k
M2 = (Ok—l—ll)m k—1 0 1k—|—1
M3:0(m k—1)(k+2) 0 1kt1
G=1<<k
/* searching */
D =D,
1=0
while (+4 ¢ <=n)
£ (S[Text[d]]) /* is one of the first k+ 1 characters? x/

do { 2= (D >> (k+2)) | T[Text[t]]
D=((D<<1l) | M1) & (D<< (k+3)) | M2)
& (+ M1) AN z2)>>1) & D;,
t (D & G==0)
{ report a match ending at ¢
D=D | M3 /* clear last diagonal */
}
}
while (D ! = D;, && ++4i<=n)

Figure 3: Algorithm to search for a short pattern. Strings are assumed to start at position 1.

machine word, i.e. £+ 2 < w.

Suppose now that k is large (close to m, so that the width m — k is small). In this case, the
automaton is not wide but tall, and a vertical partitioning becomes necessary. The subautomata
behave differently than the previous ones, since we must propagate the e-transitions down to all
subsequent subautomata.

In this case, if (m — k)(k + 2) > w, we partition the automaton vertically in I d-rows (each d-row
holding some automaton rows of all diagonals), where I has the same formula as J. The difference is
that, in this case, we need that at least one automaton row fits in a machine word, i.e. 2(m—Fk) < w
(the 2 is because we need an overflow bit for each diagonal of each cell).

When none of the two previous conditions hold, we need a generalized partition in d-rows and
d-columns. We use I d-rows and J d-columns, so that each cell contains £, bits of each one of £,



diagonals. It must hold that (£, 4+ 1){, < w.

There are many options to pick (I, J) for a given problem. We show later that they are roughly
equivalent in cost (except for integer round-offs that are noticeable in practice). We prefer to select
I as small as possible and then determine J. That is, I = [(k+ 1)/(w — 1)], & = [(k+1)/I],
L= |w/({, +1)] and J = [(m — k)/£.]. The cells of the last d-column and the last d-row may be

smaller, since they have the residues.

The simulation of the automaton is now more complex, but follows the same principle of the update
formula (4). We have a matrix of automata D, ; (¢ € 0..] — 1,5 € 0..J — 1), and a matrix of masks
T; ; coming from splitting the original 7. The new update formula is

D; = Dij << 1) | ((Di—1,5 >> (6 — 1)) & (071)%)

(Ds; << (& +2)) |

(Di_1; << 2) & (0% 1)%) |

Disjer >> (e + (b= 1)+ 4 — 1)) |

Dijt1 >> (& +1)(le — 1) — 1))
& (((x 4 (071)%) A z) >>1)
& D;,

where @ = ((Di; >> (b +1)) | (Dij—1 << (br +1)(Le — 1)) | T3 j[tewt])

& ((Di_y; >> (& = 1)) | (170)%)

and it is assumed D_; ; = D; j = 1+ 5n4 D;_1= olert1)ee

We find a match whenever Dy_; y_; has a 0 in its last position, i.e. at (k— £.(I — 1)) + (4 +

1)(£eJ — (m — k)), counting from the right. In that case, we must clear the last diagonal, i.e. that
of D; y_, for all i.

The fact that we select the minimal I and that we solve the case & = m — 1 with a simpler

~—~

&

—_— TN N AN e

algorithm (the S table) causes this general scheme to fall into three simpler cases: (a) the automaton
is horizontal, (b) the automaton is horizontal and only one diagonal fits in each word, (c) the
automaton spreads horizontally and vertically but only one diagonal fits in each word. Those cases
can be solved with a simpler (two or three times faster) update formula. In practice, there are some
cases where a purely vertical automaton is better [5].

In particular, Wu and Manber’s automaton can be thought of as a vertical partitioning of the NFA
of Figure 1 (although the details are different).

3.4 Handling Extended Patterns

We show now that some of the generalizations of the approximate string search problem considered
in [4, 34, 35] can be introduced in our algorithm at no additional search cost. We call eztended
patterns those patterns involving some of these generalizations.

As in the shift-or algorithm for exact matching [4], we can specify a set of characters at each position
of the pattern instead of a single one (this is called “limited expressions” in [35]). For example, to
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find "patt" in case-insensitive, we search for {p,P}{a, A}{t, T}{t, T}; to find "patt" followed by a
digit, we search for {p}{a}{t}{t}{0..9}. This is achieved by modifying the t[] table (3), making
any element of the set to match that position, with no running time overhead.

In addition to classes of characters, we can support the # operator as defined in [34]. That is,
z#y allows zero or more arbitrary characters among the strings # and y in the occurrences. Those
characters are not counted as errors. As shown in [34], in order to handle this operator we must
force that whenever an automaton state in column |z| is active, it keeps active from then on.

Hence, to search for zi#za#...#2; we create a Dy word having all ones except at all states of
columns |z1|, |21|+ |22, ..., |21]| + |22| + ... + |2¢—1]. We now modify the computation of z in Eq. (2),
which becomes

e = (D>> (k+2) | Tlteet]) & (D] Dy)

(clearly this technique is orthogonal to the use of classes of characters). This technique is easily
extended to partitioned automata.

We can modify the automaton to compute edit distance (more precisely, determine whether the
edit distance is < k or not). This is obtained by eliminating the initial self-loop and initializing
the automaton at D = D;,. However, we need to represent the k + 1 initial diagonals that we
discarded. If we need the exact edit distance, we must also represent the last k diagonals that we
discarded. If there is no a priori bound on the distance, we need to set k = m.

We can search for whole words, running the edit-distance algorithm only from word beginnings
(where we re-initialize D = D,,,), and checking matches only at the end of words.

Searching with different integral costs for insertion and substitution (including not allowing such
operations) can be accommodated in our scheme, by changing the arrows. Deletion is built into
the model in such a way that in order to acommodate it we must change the meaning of our
“diagonals”, so that they are straight e-transition chains.

Other generalizations are studied in [34]. We can handle them too, although not as easily and
efficiently as the previous ones.

One such generalization is the combination in the pattern of parts that must match exactly with
others that can match with errors. The adaptation to avoid propagation of e-closures in our scheme
is ad-hoc and not as elegant as in [34]. However, we believe that the most effective way to handle
these patterns is to quickly search for the parts that match exactly and then trying to extend those
matches to the complete pattern, using our automaton to compute edit distance.

Another such generalization is approximate search of regular expressions. In [34], the regularities
among rows allow to solve any regular expression of m letters using [m/8| or even [m/16] op-
erations per text character, using [m/8]2%[m/w] or [m/16]2'¢[m/w] machine words of memory,
respectively. Our partitioned automata are not so regular, and we would need roughly O(k?) times
their space requirements and operations per text character. To be more precise, in our scheme their
formulas are still valid provided we replace m by (m — k)(k + 2). For instance, at the cost they
pay for m < 32, we can only solve for m < 9. However, our scheme is still reasonably applicable
for short expressions.
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4 New Partitioning Techniques

The following lemma, which is a generalization of the partitioning scheme presented in [34, 18],
suggests a way to partition a large problem into smaller ones.

Lemma: If segm = Texzt[a..b] matches pat with k errors, and pat = p;...p; (a concatenation of
subpatterns), then segm includes a segment that matches at least one of the p;’s, with |k/j | errors.

Proof: Suppose the opposite. Then, in order to transform pat into segm, we need to transform
each p; into an s;, such that segm = s;...s;. But since no p; is present in segm with less than
|k/j| errors, each p; needs at least 1 + |k/j| edit operations to be transformed into any segment
of segm (s; in particular). Thus the whole transformation needs at least j(14 |k/7]|) > j(k/j) =k
operations. A contradiction. O

The Lemma is a generalization of that of [34] because they consider only the case j = k4 1 (we
return to this case later), and it is a (slight) generalization of that of [18] because they consider
only the cases of the form j = 2¢ (they partition the pattern in a binary fashion until short enough
subpatterns are obtained). Moreover, they consider always partition into pieces of almost the same
size, while the Lemma allows any split. We explore now different ways to use the Lemma.

4.1 Pattern Partitioning

The Lemma allows us to reduce the number of errors if we divide the pattern, provided we search
all the subpatterns. Each match of a subpattern must be checked to determine if it is in fact
a complete match (notice that the subpatterns can be extended patterns themselves). Suppose
we find at position 7 in Tezt the end of a match for the subpattern ending at position j in pat.
Then, the potential match must be searched in the area Text[i —j+1—k,i— j+ 1+ m+ k], an
(m + 2k)-wide area. This checking must be done with an algorithm resistant to high error levels,
such as our automaton partitioning technique. If the pattern is not extended, the Ukkonen cut-off
algorithm [30] can also be used.

To perform the partition, we pick an integer j, and split the pattern in j subpatterns of length m/j
(more precisely, if m = ¢j + », with 0 < r < j, r subpatterns of length [m/j]| and j — r of length
|m/j|). Because of the lemma, it is enough to check if any of the subpatterns is present in the text
with at most |k/j| errors. Thus, we select j as small as possible such that the subproblems fit in
a computer word, that is

o (o (LD n 1)

where the second condition avoids searching a subpattern of length m' with &' = m’ errors (those
of length [m/j] are guaranteed to be longer than [k/j]| if m > k). Such a j always exists, since
j = k + 1 implies searching with 0 errors.

In case of 0 errors, we can use an Aho-Corasick machine [1] to guarantee O(n) total search time.
In [34], a variation of the Shift-Or algorithm [4] is used, while in [8] the use of an algorithm of the
Boyer-Moore family is suggested. The advantage of the Wu and Manber approach is flexibility in
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the queries, while Boyer-Moore is faster (this is supported also by [31], since we typically have few
subpatterns). In particular, if the pattern is extended, the Shift-Or algorithm is the correct choice.

For not extended patterns, we preferred to use the Sunday algorithm [24] of the Boyer-Moore family,
extended to multipattern search. This extension consists of building a trie with the subpatterns,
and at each position searching the text into the trie. If we do not find a subpattern, we advance
the window using the Sunday shift. This is the (precomputed) minimum shift among all patterns.
However, this should be considered just an implementation of previous work.

Figure 4 shows the general algorithm, which is written in that way for clarity. In a practical
implementation, it is better to run all subsearches in synchronization, picking at any moment the
candidate whose initial checking position is the leftmost in the set, checking its area and advancing
that subsearch to its next candidate position. This allows to avoid re-verifying the same text
because of different overlapping candidate areas. This is done by remembering the last checked
position and keeping the state of the checking algorithm.

PatternPartition (Text,n,pat,m,k)
{3 = min { r/ (Im/r]— [/rD(k/r]+2) <w A Lmfr] > [k/r])
if (j ==1) search (Text,n,pat,m,k)
else { a=0
for r€0..j—-1
{len=(r<m % )7 [m/f] : |m/j]
b=a+len—-1
for each positioni reported by search(Text,n,pat[a..b],len,|k/j]|)
check the area Tezxt[i —b+1—k,i—b+1+m+ k]
a=b+1

Figure 4: Algorithm for pattern partitioning.

The effectiveness of this method is limited by the error level. If the subpatterns appear very often,
we spend a lot of time verifying candidate text positions. In Section 5 we find out which is the
error level that allows to use this scheme.

4.2 Superimposing the Subproblems

When the search is divided in a number of subsearches for smaller patterns Py, ..., F,, it is possible
not to search each one separately. We describe a technique, called superimposition, to collapse a
number of searches in a single one.

In our scheme, all patterns have almost the same length. If they differ (at most in one), we truncate
them to the shortest length. Hence, all the automata have the same structure, differing only in the
labels of the horizontal arrows.

The superimposition is defined as follows: we build the ¢[] table for each pattern (Eq. (3)), and
then take the bitwise-and of all the tables. The resulting ¢[] table matches in the position ¢ with
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the i-th character of any pattern. We then build the automaton as before using this table.

The resulting automaton accepts a text position if it ends an occurrence of a much more relaxed
pattern (in fact it is an extended pattern), namely

(P[], ..., B[]} ... {Pi[m],..., P[m]}

for example, if the search is for patt and wait, the string watt is accepted with zero errors (see
Figure 5). Each occurrence reported by the automaton has to be verified for all the patterns
involved.

@ no errors

2 errors

Figure 5: An NFA to filter the parallel search of patt and wait.

For a moderate number of patterns, this still constitutes a good filtering mechanism, at the same
cost of a single search. Clearly, the relaxed pattern triggers many more verifications than the simple
ones. This limits severely the amount of possible superimposition. However, as we show later, in
practice this can cut by two or three the search times. This idea has been applied to the problem
of multiple approximate string matching, where similar speedup figures were obtained [7].

We analyze later how many subpatterns can be collapsed while keeping the number of verifications
small. We must then form sets of patterns that can be searched together, and search each set
separately. Notice that extended patterns containing #’s may not be superimposed because their
Dy words are different.

Observe that having the same character at the same position for two patterns improve the filtering
efficiency. This fact can be used to select the best partition of the pattern.

4.3 Mixed Partitioning

Finally, it is possible to combine automaton and pattern partitioning. If we partition the pattern in
subpatterns that are still too large to fit in a computer word, the automaton for each subpattern has
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to be further partitioned into subautomata. This is a generalization that includes both techniques
as particular cases, and uses a smaller j value.

As we show in the analysis, however, this technique is not better in practice than pure pattern
partitioning. However, we find that the larger j, the less tolerant to the error level our scheme is.
Therefore, using a smaller j can be necessary if a is high. For high error levels we use the largest
allowed j. For a large enough, though, the only allowed value for j is 1, which is equivalent to pure
automaton partitioning. Therefore, mixed partitioning provides a smooth transition between pure
pattern and pure automaton partitioning. Superimposition could also be applied on the resulting
(large) automata.

5 Analysis

In this section we analyze the different aspects of our algorithms. We also study some statistics of
the problem which are useful for the analysis. We make heavy use of the shorthand o = k/m.

It is important to notice that our average-case analysis assumes that the pattern is not extended
and that text and patterns are random strings over an independently generated and uniformly
distributed alphabet of size o. In the alphabet is not uniformly distributed we must replace the o
in the formulas by 1/p, where p is the probability that two random letters match. For generalized
patterns, the a; values are different, but we are not able to compute them.

We summarize here the results of this section, which involve the optimal heuristic to combine our
algorithms. Table 5 presents a summary of the important limiting o values found in the analysis.

Name Simplified Meaning Reference
Definition

Up to where all the subpatterns
ag | 1—/m/(o+/w)m*/Y¥ | in pattern partitioning can be | Eq. (13), Sec. 5.5
safely superimposed

ay 1- ml/ﬁ/\/c_r Up to where pure pattern Eq. (9), Sec. 5.4
partitioning can be used
Qs 1-1/y/o Up to where mixed Eq. (17), Sec. 5.6

partitioning can be used

Table 1: Limiting « values in our analysis. The “simplified definition” is a valid approximation for
moderate m values.

We sketch now how the algorithm behaves among the areas delimited by m and ap < a3 < as. In
all cases we can use the heuristic of the S table to reduce the average cost.

e If the problem fits in a single word (i.e. (m — k)(k + 2) < w), the simple algorithm should
be used, which is O(n) in the average and worst case. If the problem does not fit in a single
word, we may use pattern, automaton or mixed partitioning.
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e For a < a; pattern partitioning (plus superimposition) is the best choice. If o < ag, the
effect of superimposition makes pattern partitioning O(n) time on average. In the range
ap < a < o the average cost is close to O(y/km/(aw) m?* V¥ n) (Eq. (12)). This grows as
Vk for fixed m. For w = 32 the cost is approximately O(y/k/(cw)m?% n).

e For oy < a < ay the error level makes it necessary to use a smaller j (i.e. mixed partitioning).
The average search cost becomes O(klog(m)/w n) (Eq. (16)).

e For a > as, neither pattern or mixed partitioning are advisable, because of the large number
of verifications, and pure automaton partitioning becomes the only choice. The average and

worst case cost for this area becomes O((m — k)k/w n) (Eq (7) for the case a > 1 — e/4/0).

Figure 6 illustrates the analysis. We show on the left the exact a values for w = 32, ¢ = 32,
m = 10..60 and e replaced by 1.09 (see later). As we see later, ¢ is the maximum error level up to

which exact partitioning is linear (more precisely, it is the exact solution of Eq. (14). On the right
we show schematically the combined complexity.

—— pattern partitioning + superimposition
t/n — — — mixed partitioning
0.7 Qs automaton partitioning
I
0.6 |
0.5 o B e
N,
o 04 oy \
0.3 H
klog(m)/w '|.
0.2 oo \
mk/(cw)m?/ Ve .g
0.1 1 ]
m HESY
10 20 30 40 50 60 ] 1

(874} aq (82

Figure 6: On the left, exact a values for w = 32 and ¢ = 32. On the right, the (simplified)
complexities of our algorithm.

5.1 The Statistics of the Problem

Even natural questions about the distribution and statistical behavior of this problem are very hard
to answer. Some of them are: which is the probability of an occurrence? How many occurrences
are there on average? How many columns of the dynamic programming matrix are active? Some
of these questions also arise in the analysis of our algorithms. We give here our new results.

A first concern is the probability of matching. Let f(m, k) be the probability of a random pattern
of length m matching a given text position with k errors or less. This probability is determinant
to assure that the number of verifications of candidate matches in pattern partitioning is not too
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Figure 7: Theoretical and practical bounds for a.

large. We show in the Appendix that for a < 1-—e/ (\/571/(2(1—00)), f(m, k)is O(y™), with v < 1.
In particular, for & < 1 —e//o, f(m, k) is exponentially decreasing with m.

Figure 7 shows the experimental verification of this analysis for m = 300 (we obtained similar
results with other m values). The curve @ = 1 — 1/4/0 is included to show its closeness to the
experimental data. Least squares gives the approximation o = 1 — 1.09/,/0, with a squared error
smaller than 107%.

The experiment consists of generating a large random text and running the search of a random
pattern on that text, with & = m errors. At each text character, we record the minimum k for
which that position would match the pattern. Finally, we analyze the histogram, and consider that
k is safe up to where the histogram values become significant. The threshold is set to n/m?, since
m? is the cost to verify a match. However, the selection of this threshold is not very important,
since the histogram is extremely concentrated. For example, it has five or six significative values
for m in the hundreds.

A second question we answer is: which is the number of columns we work on, on average, in the
cut-off heuristic of Ukkonen [30]? That is, if we call C, the smallest-row active state of column r
in our NFA, which is the largest r satisfying C, < k7 The columns satisfying C, < k are called
active, and columns past the last active one need not be computed. Ukkonen conjectured that the
number of active columns was O(k), but this was proved later on by Chang and Lampe [9]. We
follow the proof of [9] to find a tighter bound. If we call L the last active column, we have

E(L) < K+ ) r P[C, <K
r>K

for any K. Since we know that if k/r < 1 — ¢/ /o, then P[C, < k] = O(y") with v < 1, we take
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K =k/(1 - e/\/0) to obtain

k ok
B N r>k/(1z—:e/\/;)r0(7) " imepve W o

which shows that, on average, the last active column is O(k). This refines the proof of [9] of that
the heuristic of [30] is O(kn). By using least squares on experimental data we find that a very
accurate formula is 0.9k/(1 — 1.09/4/0).

5.2 The Simple Algorithm

The preprocessing phase of this algorithm can be optimized to take O(o + m min(m, 0)) time, and
it requires O(o) space. The search phase needs O(n) time.

However, this algorithm is limited to the case in which (m — k)(k 4 2) < w. In the RAM model it
is assumed log, n < w, so a machine-independent bound is (m — k)(k + 2) < log, n.

Since (m — k)(k + 2) takes its maximum value when k = m/2 — 1, we can assure that this algorithm
can be applied whenever m < 2(y/w — 1), independently of k. That is, we have a linear algorithm
for m = O(y/logn), for example, m < 9 for w = 32 bits, or m < 14 for w = 64 bits.

5.3 Partitioning the Automaton

If we divide the automaton in IJ subautomata (I d-rows and J d-columns), we must update I cells
at each d-column. However, we use a heuristic similar to [30] (i.e. not processing the m columns
but only up to the last active one), so we work only on active automaton diagonals.

To compute the expected last active diagonal, we use the result of Eq. (6) Since this measures
active columns and we work on active diagonals, we subtract k, to obtain that on average we work

on ke/(y/o — e) diagonals.

Since we pack (m—k)/J diagonals in a single cell, we work on average on (ke/(y/o—e)+1) J/(m—k)
machine words. But since there are only J d-columns, our total complexity is

I J min <1, (m_k)k(‘i/g_e» n

which shows that any choice for I and J is the same for a fixed IJ. Since IJ ~ (m—k)(k+1)/(w—1),
the final cost expression is independent (up to round-offs) of I and J:

. < ke > E+1
min {m —k ,

JVo—e
which is O(k?n/(y/clogn)) time. It improves if « > 1 — e/+/a, being O((m — k)kn/logn) time.

This last complexity is also the worst case of this algorithm.

(7)

w-—1

To see where automaton partitioning is better than plain dynamic programming, consider that, for
large o, the first one works O(IJ) = O((m — k)(k+1)/(w — 1)) per text position, while the second
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one works O(m). That means that for a(l — a) < w/m, it is better to partition the automaton,
while otherwise it is better to just use dynamic programming. Since o(1 — a) < 1/4, automaton
partitioning is always better than dynamic programming for m < 4w, i.e. for moderate-size patterns
(this can be slightly different in practice because the operations do not cost the same).

The preprocessing time and space complexity of this algorithm is O(mko/w).

5.4 Partitioning the Pattern

There are two main components in the cost of pattern partitioning. One is the j simple searches
that are carried out, and the other is the checks that must be done. The first part is O(jn), while
the second one costs O(jm?f(m/j, k/j)n), where f(m,k) is defined in Section 5.1 (observe that
the error level « is the same for the subpatterns). The complexity comes from considering that we
perform j independent searches, and each verification costs O(m?) if dynamic programming is used
for verification!. Clearly, in the worst case each text position must be verified, and since we avoid
re-checking the text, we have O((j + m)n) = O(mn) worst-case complexity, but we show that this
does not happen on average.

To determine j, we consider the following equation, derived from Eq. (5)

(5-4) ()

j:m—k—l—\/(m—k)2—|—wk(m—k) ()

w

whose solution is

The preprocessing time and storage requirements for the general algorithm are j times those of the

simple one. The search time is
O(jn) =0 <\/mk/w n>

where the simplification is valid for @ > 1/w. However, we improve this complexity in the next
section by using superimposition.

We consider now the limit error level of applicability. We know that for a < 1—e/ (\/571/(2(1—00)) ,

f(m, k) = O(ry™), for v < 1. Thus, for a small enough, f(m/j,k/§) = O(y™/7), which does not
affect the complexity provided y™/7 = O(1/m?). This happens for v < 1/m2i/™  For that v it
holds 1/y'/(2(1=)) > p2i/(2m(1-a)) — yp3/(m=k)  Therefore, f(m/j,k/j) = O(1/m?) if a < ay,

where . ; .
— 1 — mm = 11— — pilwa) 9
a1 NG m NG m (9)
up to where the cost of verifications is not significant. The function d is defined as j/(m — k), which

by replacing j according to Eq. (8)) yields

d(w, o) = 14+ +/1+we/(l—a)

w

!Recall that we can use this algorithm only if the pattern is not extended, but this analysis holds only for not
extended patterns anyway.
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where d(w,a) < 1 for @ < 1 —1/(w —1). A good approximation for a; (for moderate m) is
o & 1—m/V¥/ /5.

5.5 Superimposing the Subpatterns

Suppose we decide to superimpose r patterns in a single search. We are limited in the amount of
this superimposition because of the increase in the error level to tolerate. We analyze now how
many patterns can we superimpose.

We prove in the Appendix that the probability of a given text position matching a random pattern
is exponentially decreasing with m for a < 1 — e/y/o, while if this condition does not hold the
probability is very high.

In this formula, 1/0 stands for the probability of a character crossing a horizontal edge of the
automaton (i.e. the probability of two characters being equal). To extend this result, we note that
we have r characters on each edge now, so the above mentioned probability is 1 —(1—1/0)". Hence,

a<1—e1/1—<1—%>r%1—e\/§ (10)

where the (pessimistic) approximation is tight for » << o.

the new limit for « is

If we use pattern partitioning, we must search j subpatterns (j is determined by m and k, it is not
dependent on 7). Using Eq. (9) again, we have that the number of verifications is negligible for

r J
a<1l—e/—- mm-F (11)
o

where solving for r we get that the maximum allowed amount of superimposition 7’ is

o (1-a)’o
e2m2d(w,a)

and therefore we must partition the set into j' = j/r' subsets of size r’ each. That implies that the
cost of our algorithm is in general O(j'n). Replacing j = (m — k)d(w, a) yields that the cost is
eZd(w, a)ml—I—Zd(w,a)
o(l—a)

n

and since the technique is limited to the case a < 1 — e/4/o, we have a complexity of

1+2d(w,o)
0 (d(w,a)n\/zg n) ~ O ( ]:r—: m3/ Ve n) (12)

where the approximation is valid for moderate m values.

A natural question is for which error level can we superimpose all the j patterns to obtain a linear
algorithm, i.e. where ' > j holds. That is (using Eq. (11))

/7 j
a<l—e/= mm-k
o
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where the limit point is defined as

o= 1— e\/m(l — @0)d(w, @0) d(uw,0) (13)

g

which is not easy to solve analytically. For moderate m a practical simplified solution is ay =

1— /m/(oy/w)m'/V®.

Observe that for & > 1 — e/+/0, the cost is O(jn), i.e. not better than pattern partitioning with no
superimposition. However, that value also marks the limit of the usability of pattern partitioning.

It is interesting to compare this limit for the linearity of our algorithm with that of exact partitioning
[8] (i.e. partitioning the pattern into k+ 1 pieces and searching them with no errors, verifying each
subpattern occurrence for a complete match).

To analyze exact partitioning, we assume the use of an Aho-Corasick machine [1] to search the
subpatterns in parallel in O(n) guaranteed search time (as explained, there are better alternatives
in practice). Since the search for the subpatterns is of linear time, we find out now when the total
amount of work due to verifications is also linear.

We split the pattern in pieces of length [m/(k + 1)| and [m/(k + 1)]. In terms of probability of
occurrence, the shorter pieces are o times more probable than the others (where o is the size of the
alphabet). Since each occurrence of a subpattern is verified for a complete match at O(m?) cost,

the total cost of verifications is no more than (k+ 1)777,2/crL%J n. This is linear approximately for

a < af, where aj is defined as
1/af
! g 0
Qy — m3 (14)

where a reasonable approximation is aj = 1/(3log, m). This limit is less restricting than our og
of Eq. (13) for sufficiently large m (a very rough approximation is m > o/w/2).

For typical text searching the error level tolerated by our algorithm is higher (i.e. g > o). As we
show in the experiments, however, exact partitioning is faster in practice, and therefore it should
be preferred whenever a < af.

5.6 Mixed Partitioning

We analyze now the general partitioning strategy: partition the pattern in a number of subpatterns,
and then partition each automaton.

To obtain the optimal strategy, consider that if we partition in j subpatterns, we must perform j
searches with |k/j| errors. For a < 1 — e/y/0, the cost of solving j subproblems by partitioning
the automaton is (recall Eq. (7))
ke/j .
T (k)5 +1)

w—1

jn (15)

which shows that the lowest cost is obtained with the largest ;7 value, and therefore mixed parti-
tioning should not be used if pure pattern partitioning is possible.
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However, there is still place for this algorithm. The point is that the limit of usefulness for
is reduced when j grows (Eq. (9)). Hence, for @« > «; we may use a smaller j (and partition
the automata) to keep the verifications negligible. We use the first part of Eq. (9) to obtain the
maximum j value allowed by «, which is |(m — k) log,,(v/o(1 — @)/e)]. By counting the cost of
carrying out j searches with the resulting subautomata (using Eq. (15)), we have the complexity
of this scheme.

It is possible to use superimposition with this scheme. We cannot, however, select first j and then
superimpose subsets, because if we can superimpose two patterns, it means that the error level
would allow to use a larger j (and therefore our selection was not optimal). We try instead to
optimize j and 7 simultaneously. Suppose we superimpose groups of r subpatterns. Then, Eq. (11)
must hold, from where we obtain j = (m — k)log,,(\/o/r(1 — a)/e). The cost is 1/r times that
of pure automaton partitioning, which reaches its worst case because we are pushing j to its limit.
Therefore, we optimize

km—k .
iq J, klogm 1 n
w—1r w—1 rlog(y/o/r(1—a)/e)

We minimize the above formula to find that the optimum r value is (1 —a)?/e®, which corresponds
to j = (m — k)/(2Inm). Therefore, our optimal search cost is

0 e3 k2lnm k B O<klogm >
o(l—a)? m-—k w\/En N w

Notice that when the maximum allowed j is 1, we have pure automaton partitioning. This happens

(16)

for . .
as =1 — — mml—az) 17
=1- (1)
(observe that a; — 1 — e/1/0 as m grows). Therefore, we have a smooth transition from pattern
partitioning to automaton partitioning.

6 Experimental Results

In this section we experimentally compare the different variations of our algorithm, as well as the
fastest previous algorithms we are aware of.

We tested random patterns against 1 Mb of random text on a Sun SparcStation 4 running Solaris
2.3, with 32 Mb of RAM?2. This is a 32-bit machine, i.e. w = 32. We use o = 32 (typical case in
text searching). We also tested lower-case English text, selecting the patterns randomly from the
same text, at the beginning of words of length at least 4, to mimic classical information retrieval
queries. Each data point was obtained by averaging the Unix’s user time over 20 trials.

?Previous tests [5] run on a Sun SparcClassic with 16 Mb of RAM running SunO$ 4.1.3 gave slightly worse results
for [35]. This is probably due to the amount of main memory available, which some algorithms depend on.
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Figure 8: Times in seconds for some combined heuristics. On the left, pattern partitioning with
forced superimposition: » = 1 (full line), » = 2 (dashed) and » = 3 (dotted). On the right, pattern
partitioning with forced mixing: j = 2,4,6 (full lines, the larger j jumps first) and maximal j

(dashed).

The reader may be curious about the strange behavior of some of the curves, especially in our
algorithms. Some curves are definitely non-monotonical in k (besides the expected k(m—k) behavior
in automaton partitioning), and this does not depend on statistical deviations in the tests. Those
“peaks” are due to integer round-offs, which are intrinsic to our algorithms and are more noticeable
on small patterns. For instance, if we had to use pattern partitioning to split a search with m = 30
and k = 17, we would need to search four subpatterns, while for £ = 18 we need just three. As
another example, consider automaton partitioning for /m = 20 and k& = 13, 14 and 15. The number
of cells to work on (IJ) change from four to three and then to five.

6.1 Superimposition and Mixed Partitioning

We show the effect of superimposition. In practice it is rare to be able to superimpose more than
three patterns. Figure 8 (left side) shows the times for pattern partitioning on random text and
m = 30. The level of superimposition is forced at 1, 2 and 3. This shows that superimposition is
indeed effective, and that we must reduce the level of superimposition as the error level increases.

We also show in the right side of Figure 8 the effect of mixed partitioning. We use m = 60 (since
the area is very narrow for shorter patterns) and random text. We force some different j values,
and also show the maximal j as used by pure pattern partitioning. The figure shows that it is
better to use larger j, but it is necessary to switch to smaller ones when the error level increases.

The peaks in the left plot correspond to the example of integer round-offs for pattern partitioning
given before.
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6.2 A Comparison of Paralle]-NFA Algorithms

Our algorithm shares with Wu and Manber work [34] the NFA model and the idea of using bit-
parallelism. However, the parallelization techniques are different. We compare both algorithms.

A general implementation of the Wu and Manber code needs to use an array of size k+1. However,
we implemented optimized versions for £ = 1, 2 and 3. That is, a different code was developed for
each k value, in order to avoid the use of arrays and enable the use of machine registers. We show
both algorithms (optimized and general). We also show the effect of our simple speed-up heuristic
(the S table), running our algorithm with and without that filtration heuristic.

Figure 9 shows the results. We show the case m = 9 (where we can use the simple algorithm)
and m = 30 (where we use automaton partitioning). Past m = 32 the times for the Wu and
Manber algorithm should at least double since they need to use two machine words per row of the
automaton.

As it can be seen, our algorithms without the S heuristic outperform even the optimized versions
of Wu and Manber in all the spectrum for short patterns, except for £ = 1. For longer patterns,
we outperform the general version of Wu and Manber, although their specialized versions for fixed
k are faster, and would probably keep slightly faster for much larger k values (this depends also on
the availability of machine registers, though). Of course, it is not practical to implement a different
algorithm for every possible k value.

On the other hand, the use of the S table cuts down the running times of our algorithm from 40%
to 656% if the error level is reasonably low (of course this heuristic can be applied to any other
algorithm too).

6.3 A Comparison of Hybrid Heuristics

We developed a hybrid heuristic that automatically determines the best algorithm from our suite.
The heuristic uses our analytical results to determine the best choice. This works very well on
random text, although it still needs some tuning on English text. The fact that always the best
choice is selected is an independent confirmation of the analytical results for random text.

In this section we compare our complete heuristic against another hybrid algorithm, namely Agrep
[33]. Agrep is a widely distributed approximate string search software. In this case we include the
filtering S table, since Agrep uses other speed-up techniques altogether.

We also include our implementation of Baeza-Yates and Perleberg’s algorithm [8], which we call
“exact partitioning”. This is because, whenever we determine that partitioning in 5 = k + 1 pieces
is necessary, we fall naturally into this algorithm (although not developed as part of this work). In
this sense, the algorithm could be considered as part of the heuristic we propose.

Figure 10 shows the results for m = 9 and m = 29 (maximum currently allowed in Agrep, as well
as k < 8). As it can be seen, exact partitioning is faster for low error ratios (roughly a < 0.2).
However, Agrep is especially optimized for small k values, being the fastest in this case. In the rest
of the spectrum our algorithm is faster.

The reason why Agrep times drop past some point is that, as soon as it finds a match in a line of
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Figure 9: Times in seconds for m = 9 (first row) and 30 (second row). The plots on the left are for
random text (o = 32), those on the right are for English text.
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Figure 10: Times in seconds for m = 9 (left) and 29 (right), on English text.

text, it reports the line and stop searching in that line. Therefore, it skips lines faster for very high
error ratios. The peak of our hybrid algorithm for m = 30 and English text, on the other hand, is
due to an imperfect tuning of our heuristic for non-random text.

6.4 A Comparison of the Fastest Algorithms

Finally, we present a comparison between our algorithms and the fastest previous algorithms we are
aware of. Since we compare only the fastest algorithms, we leave aside [22, 29, 13, 16, 26, 32], which
were not competitive in the range of parameters we study here. We use our simple algorithm, as
well as pure pattern and pure automaton partitioning. We do not make use of the S table speed-up,
since it could be applied to all other algorithms as well.

The algorithms included in this comparison are (in alphabetical author order)

Pattern Partitioning - Automaton Partitioning are our algorithms. For m = 9 we use the
simple automaton, which is considered as “automaton partitioning” in the figures. Pattern
partitioning includes superimposition.

Exact Partitioning (Baeza-Yates and Perleberg [8]) is essentially the case j = k+ 1. The
code is ours. The algorithm was presented by Wu and Manber in [34], but the Boyer-Moore-
like search we use is suggested in [8].

Column Partitioning (Chang and Lampe [9]) is the algorithm kn.clp, which computes only
the places where the value of the dynamic programming matrix does not change along each
column. The code is from the author.

Counting (Jokinen, Tarhio and Ukkonen [14]) moves a window over the text, keeping how
many letters in the window match the pattern. When the number is high enough, the area is
verified. We use the variant implemented in Navarro [19] (window of fixed size m).
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DFA (Navarro [20]) converts the NFA to a deterministic automaton which is computed in lazy
form, i.e. a state is created only when it is first needed while processing the text. This idea
was also presented in [15], although we use the implementation of [20].

g-grams (Sutinen and Tarhio [25]) is a filtration algorithm based on finding portions (¢-grams)
of the pattern in the text, and verifying candidate areas. The method is limited to o < 1/2,
and the implementation to k£ < w/2—3. The code is from the authors. We use s = 2 (number
of samples to match) and maximal ¢ (length of the g-grams), as suggested in [25].

Cut-Off (Ukkonen [30]) is the standard dynamic programming algorithm, working only on ac-
tive columns. The code is ours.

NFA by Rows (Wu and Manber [34]) uses bit-parallelism to simulate the automaton by rows.
The code is ours. Our code is limited to m < 31, and it would be slower if generalized. This
is a general code for arbitrary k.

Four Russians (Wu, Manber and Myers [35]) applies a Four Russians technique to pack many
automaton transitions in computer words. The code is from the authors, and is used with
r =5 as suggested in [35] (7 is related with the size of the Four Russians tables).

Figure 11 shows the results. As it can be seen, our algorithm is more efficient than any other when
the problem fits in a single word, except for low error level, where Baeza-Yates and Perleberg is
unbeaten. For m = 20 and m = 30, our algorithms are not the fastest ones but quite close to them.
In particular, automaton partitioning is the fastest algorithm when k is close to m.

We show more in detail the case of small k& for m = 20 and 30 in Figure 12.

The peaks of our pattern partitioning for m = 30 were explained at the beginning of this section.
The same holds for automaton partitioning for m = 20 and k = 14. The reason for the peak of the
same curve at k£ = 2 and 3 is more obscure, since the number of cells do not change, and moreover,
we have that for k = 4 the second cell is active more frequently (as expected from the analysis).
What happens is that for £ = 2 and 3 the second cell switches from inactive to active and back to
inactive quite often (30% more times than for & = 4). The overhead to include and exclude the
second cell explains the higher times.

On the other hand, our analysis is confirmed. On random text for m = 20 we predict (Eq. (9)
replacing e by 1.09) that pattern partitioning will be useful up to for a; = 0.595, which is k = 11,
quite close to the real value k = 13. For m = 30 we predict a; = 0.569 which is & = 17, close to
the real k£ = 20. Such precision allows us to set up very fine-tuned heuristics. For English texts,
however, that prediction is harder.

7 Concluding Remarks

We presented a new algorithm for approximate pattern matching, based on the bit-parallel sim-
ulation of an automaton. We eliminate the dependencies introduced by the e-transitions. This
enables the possibility of computing the new values in O(1) time per text character, provided the
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Figure 11: Times in seconds for m = 9, 20 and 30 (first, second and third row, respectively). The
plots on the left are for random text (¢ = 32), those on the right are for English text.
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k. The plots on the left are for random text (¢ = 32), those on the right are for English text.
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problem fits in a single computer word (i.e. (m — k)(k + 2) < w). If it does not, we show a tech-
nique to partition the automaton into subautomata. We can handle “extended patterns” (which
allow classes of characters, gaps, and other generalizations in the patterns). We show another
technique to partition the pattern into subpatterns that are grouped into superimposed searches.
Those searches are carried out with the simple algorithm and the candidate matches later verified.
Finally, we show how to combine pattern and automaton partitioning. The combined algorithm is
O(n) for small patterns or moderate «, roughly O(y/km/(ologn) n) for moderately high «, and
O((m — k)kn/logn) for large a.

We analyzed the optimum strategy to combine the algorithms and showed experimentally that our
algorithm is among the fastest ones for typical text searching. We have not studied other cases,
such as very long patterns (where our algorithm does not perform well and filtration algorithms
tend to be better), or small alphabets (where [32] and [35] are normally the best choices [5]).

Figure 13 illustrates the results on English text, showing in which case should each algorithm be
applied for patterns of moderate size. We do not include Agrep because it is not a “pure” algorithm.
Should agrep be included, its area would replace those of Exact Partitioning and Counting.

As it can be seen, filtering algorithms are the best for low error ratios. On the other hand, different
implementations of the automaton model (either deterministic or not) are the fastest choices for
not very long patterns. In the remaining area, the Four Russians approach is the best choice (this
can be seen as another version of a DFA). In particular, our algorithms are the fastest for short
patterns (and moderate error level) or very high error level.

1
1 1.5 Automaton Partitioning
0.4 0.3
Simple
0.3 0.2
Four Russians
[0
0.3
1.3 Counting 1.1
Exact Partitioning 1.3
4 4 m
0
10 20 30 40

Figure 13: The areas where each algorithm is the best for English text and w = 32. The numbers
indicate megabytes per second on our machine.

Although in this work we deal with finite alphabets, we can easily extend our algorithms for the
unbounded case, since the tables must only be filled for characters present in the pattern. In
this case, a logm factor must be added to the complexities (to search into the tables), and the
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probability for two characters to be equal should no longer be 1/¢ but a given p.

Future work involves a detailed experimental study of how to combine the many heuristics pre-
sented here. This study can be guided by the theoretical analysis but must take into account
practical complications such as round-offs, which are important in practice. For instance, if the
text is not random the subpatterns in pattern partitioning could have different lengths so that
their probabilities of occurrence are similar. Also, we could prefer to prune the pattern instead of
splitting it, avoiding to perform more searches if the probability of false matches is not too high.
Other areas tu pursue are optimal automaton partitioning, optimal amount of superimposition and
optimal use of the mixed partitioning.
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Appendix. Upper bound for f(m,k)

Let f(m, k) be the probability that a pattern matches a given text position with at most k errors

(i-e.

that the text position is reported as the end of a match). We find an upper bound on the

error level to make that probability O(y™) for some v < 1 (Eq. (19)). If our only aim is to make
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that probability exponentially small with m, we take the bound for ¥ = 1 and consider valid any
error level strictly smaller than the bound. Thisis a < 1 — e/4/0.

To prove f(m,k) = O(y™), we consider an upper bound to f: suppose a text area Tezt[a..D]
matches the pattern. Since we only report segments whose last character matches the pattern, we
know that b is in pat. We consider a as the first character matching the pattern. Then, the length
s = b—a+1 isin the range m— k..m+k. Since there are up to k errors, at least m — k characters of
the pattern must be also in the text. Under a uniform model, the probability of that many matches
is 1/6™ %, Since these characters can be anyone in the pattern and in the text, we have

m 1 m s—9 mtk 4 m s—2
mis () (037 + 2 e ()5

s=m—k s=m+1

where the two combinatorials count the ways to choose the m—k (or s—k) matching characters from
the pattern and from the text, respectively. The °
the first and last characters of the text must match the pattern. We divided the sum in two parts
because if the area has length s > m, then more than m — k characters must match, namely s — k.
See Figure 14.

‘—2” in the second combinatorials are because

First one Last one
matches matches

Text

Pattern: m=9, k=5

m At least 9-5=4 matches

Figure 14: Upper bound for f(m, k).

First assume constant a (we cover the other cases later). We begin with the first summation, which
is easy to solve exactly to get (1 — ) (7,:)2/0"‘_’“. However, we prefer to analyze its largest term
(the last one), since it is useful for the second summation too. The last term is

cr"}—k (mnj k) (mn—l;i 2) - (10’_”7—6!’32 (7:)2 <1 +0 <%>>
- <crl—°‘a2°‘(11— a)2(1—a)> m! <12;; +0 <%>>

where the last step is done using Stirling’s approximation to the factorial.

34



Clearly, for the summation to be O(y™) (y < 1), this largest term must be of that order, and this
happens if and only if the base of the exponential is < 4. On the other hand, the first summation
is bounded by k + 1 times the last term, so the first summation is O(y™) if and only if this last
term is (recall that our exponential is multiplied by m~! and therefore we can safely multiply it by

k+1). That is

N < 1 >1—cx 1 (18)
g = 1 2a
~ \ya2%(1l - a)2(t=e) yiaqi-a(l— a)?

It is easy to show analytically that e7! < at-a <1if0 < a<1,sofory =1 it suffices that
o >e?/(1—a)? or a <1-—e/\/a, while for arbitrary v,
e

oy

is a sufficient condition for the largest (last) term to be O(y™), as well as the whole first summation.

a<l

(19)

We address now the second summation, which is more complicated. First, observe that

%k 1 m §—2 < %k 1 m s
K o k\ls—kl\s—k—-2)] — &~ ogsk\s—Fk/)\Ek
s=m+1 s=m
a bound that we later find tight. In this case, it is not clear which is the largest term. We can see

00)

where m — k < r < m. By considering » = 2m (¢ € [1 — a, 1]) and applying again the Stirling’s
approximation, the problem is to maximize the base of the resulting exponential, which is

each term as

(z + a)*te

0':'3232“3(1 _ w)l—maa

h(z) =

Elementary calculus leads to solve a second-degree equation that has roots in the interval [1 — o, 1]
only if ¢ < /(1 — @)?. Since due to Eq. (19) we are only interested in ¢ > 1/(1 — a)?, h'(z) does
not have roots, and the maximum of h(z) is at # = 1 — a. That means » = m — k, i.e. the first
term of the second summation, which is the same largest term of the first summation.

We conclude that ok 41 .
Fim, k) < 7 (1+0(2)) = 06m
m m

Since this is an O() result, it suffices for the condition to hold after a given myg, so if k = o(m)
we always satisfy the condition. We can prove, with a different model, that for &« > 1 — 1/0 or
k = Q(m — o(m)) the cost of verifications is significant.
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