
Algorithmica manuscript No.
(will be inserted by the editor)

Lempel–Ziv-like Parsing in Small Space

Dmitry Kosolobov · Daniel Valenzuela ·
Gonzalo Navarro · Simon J. Puglisi

Received: date / Accepted: date

Abstract Lempel–Ziv (LZ77 or, briefly, LZ) is one of the most effective and
widely-used compressors for repetitive texts. However, the existing efficient
methods computing the exact LZ parsing have to use linear or close to linear
space to index the input text during the construction of the parsing, which
is prohibitive for long inputs. An alternative is Relative Lempel–Ziv (RLZ),
which indexes only a fixed reference sequence, whose size can be controlled.
Deriving the reference sequence by sampling the text yields reasonable com-
pression ratios for RLZ, but performance is not always competitive with that
of LZ and depends heavily on the similarity of the reference to the text. In
this paper we introduce ReLZ, a technique that uses RLZ as a preprocessor to
approximate the LZ parsing using little memory. RLZ is first used to produce
a sequence of phrases, and these are regarded as metasymbols that are input
to LZ for a second-level parsing on a (most often) drastically shorter sequence.
This parsing is finally translated into one on the original sequence.

D. Kosolobov supported by the Russian Science Foundation (RSF), project 18-71-00002
(for the upper bound analysis and a part of lower bound analysis). D. Valenzuela supported
by the Academy of Finland (grant 309048). G. Navarro funded by Basal Funds FB0001 and
Fondecyt Grant 1-200038, Chile. S.J. Puglisi supported by the Academy of Finland (grant
319454).

D. Kosolobov*
Ural Federal University, Ekaterinburg, Russia
E-mail: dkosolobov@mail.ru

D. Valenzuela
Department of Computer Science, University of Helsinki, Finland
E-mail: dvalenzu@cs.helsinki.fi

G. Navarro
CeBiB, Department of Computer Science, University of Chile, Chile
E-mail: gnavarro@dcc.uchile.cl

S.J. Puglisi
Department of Computer Science, University of Helsinki, Finland
E-mail: puglisi@cs.helsinki.fi

2 Dmitry Kosolobov et al.

We analyze the new scheme and prove that, like LZ, it achieves the kth
order empirical entropy compression nHk+o(n log σ) with k = o(logσ n), where
n is the input length and σ is the alphabet size. In fact, we prove this entropy
bound not only for ReLZ but for a wide class of LZ-like encodings. Then, we
establish a lower bound on ReLZ approximation ratio showing that the number
of phrases in it can be Ω(log n) times larger than the number of phrases in
LZ. Our experiments show that ReLZ is faster than existing alternatives to
compute the (exact or approximate) LZ parsing, at the reasonable price of an
approximation factor below 2.0 in all tested scenarios, and sometimes below
1.05, to the size of LZ.

Keywords Lempel–Ziv compression · Relative Lempel–Ziv · empirical
entropy

1 Introduction

The Lempel–Ziv (LZ77 or, shortly, LZ) parsing is a central algorithm in data
compression: more than 40 years since its development [49,50], it is at the core
of widely used compressors (gzip, p7zip, zip, arj, rar...) and compressed formats
(PNG, JPEG, TIFF, PDF...), and receives much attention from researchers [3,
19,21,39,40] and developers in industry [1,47].

LZ parsing also has important theoretical properties. The number of phrases,
z, into which LZ parses a text has become the defacto measure of compressibil-
ity for dictionary-based methods [14], which in particular are most effective on
highly repetitive sequences [36]. While there are measures that are stronger
than LZ [42,23], these are NP-complete to compute. The LZ parse, which
can be computed greedily in linear time [20], is then the stronger measure of
dictionary-based compressibility on which to build practical compressors.

Computing the LZ parsing requires the ability to find previous occurrences
of text substrings (their “source”), so that the compressor can replace the
current occurrence (the “target”) by a backward pointer to the source. Parsing
in linear time [20] requires building data structures that are proportional to the
text size. When the text size exceeds the available RAM, switching to external
memory leads to prohibitive computation times. Compression utilities avoid
this problem with different workarounds: by limiting the sources to lie inside a
short sliding window behind the current text (see [13,41,46]) or by partitioning
the input into blocks and compressing them independently. These variants
can greatly degrade compression performance, however, and are unable in
particular to exploit long-range repetitions.

Computation of LZ in compressed space was first studied—to the best of
our knowledge—in 2015: A (1+ε)-approximation scheme running in O(n log n)
time1 with O(z) memory, where n is the length of the input, was proposed
in [11], and an exact algorithm with the same time O(n log n) and space
bounded by the zeroth order empirical entropy was given in [38]. The work [22]

1 Hereafter, log denote logarithm with base 2 if it is not explicitly stated otherwise.

Lempel–Ziv-like Parsing in Small Space 3

shows how to compute LZ-End—an LZ-like parsing—using O(z + `) com-
pressed space and O(n log `) time w.h.p., where ` is the length of the longest
phrase. The recent studies on the Run-Length Burrows–Wheeler Transform
(RLBWT) [15] and its connections to LZ [3,39] have enabled the computation
of the LZ parsing in compressed space O(r) and time O(n log r) via RLBWT,
where r is the number of runs in the RLBWT.

Relative Lempel–Ziv (RLZ) [27] is a variant of LZ that exploits another
approach: it uses a fixed external sequence, the reference, where the sources are
to be found, which performs well when the reference is carefully chosen [16,33].
Different compressors have been proposed based on this idea [6,7,33]. When
random sampling of the text is used to build an artificial reference the expected
encoded size of the RLZ relates to the size of LZ [16], however the gap is still
large in practice. Some approaches have done a second pass of compression
after RLZ [19,6,45] but they do not produce an LZ-like parsing that could be
compared with LZ.

In this paper we propose ReLZ, a parsing scheme that approximates the
LZ parsing by making use of RLZ as a preprocessing step. The phrases found
by RLZ are treated as metasymbols that form a new sequence, which is then
parsed by LZ to discover longer-range repetitions. The final result is then
expressed as phrases of the original text. The new sequence on which LZ is
applied is expected to be much shorter than the original, which avoids the
memory problems of LZ. In exchange, the parsing we obtain is limited to
choose sources and targets formed by whole substrings found by RLZ, and is
therefore suboptimal.

We analyze the new scheme and prove that, like LZ, it achieves the kth
order empirical entropy compression nHk + o(n log σ) (see definitions below)
with k = o(logσ n), where n is the length of the input string and σ is the alpha-
bet size. We show that it is crucial for this result to use the so-called rightmost
LZ encoding [2,4,5,10,29] in the second step of ReLZ; to our knowledge, this
is the first provable evidence of the impact of the rightmost encoding. In fact,
the result is more general: we show that the rightmost encoding of any LZ-
like parsing with O(n

logσ n
) phrases achieves the entropy compression when a

variable length encoder is used for phrases. One might interpret this as an
indication of the weakness of the entropy measure. We then relate ReLZ to
LZ—the de facto standard for dictionary-based compression—and prove that
the number of phrases in ReLZ might be Ω(z log n); we conjecture that this
lower bound is tight. The new scheme is tested and, in all the experiments,
the number of phrases found by ReLZ never exceeded 2z (and it was around
1.05z in some cases). In exchange, ReLZ computes the parsing faster than the
existing alternatives.

The paper is organized as follows. In Sections 2 and 3 we introduce some
notation and define the ReLZ parsing and its variations. Section 4 contains the
empirical entropy analysis. Section 5 establishes the Ω(z log n) lower bound.
All experimental results are in Sections 6 and 7.

4 Dmitry Kosolobov et al.

2 Preliminaries

Let T [1, n] be a string of length n over the alphabet Σ = {1, 2, . . . , σ}; T [i] de-
notes the ith symbol of T and T [i, j] denotes the substring T [i]T [i+1] · · ·T [j].
A substring T [i, j] is a prefix if i = 1 and a suffix if j = n. The reverse of T
is the string T [n]T [n− 1] · · ·T [1]. The concatenation of two strings T and T ′

is denoted by T · T ′ or simply TT ′.
The zeroth order empirical entropy (see [24,35]) of T [1, n] is defined as

H0(T) =
∑
c∈Σ

nc
n log n

nc
, where nc is the number of symbols c in T and

nc
n log n

nc
= 0 whenever nc = 0. For a string W , let TW be a string formed by

concatenating all symbols immediately following occurrences of W in T [1, n];
e.g., Tab = aac for T = abababc. The kth order empirical entropy of T [1, n] is

defined as Hk(T) =
∑
W∈Σk

|TW |
n H0(TW), where Σk is the set of all strings

of length k over Σ (see [24,34,35]). If T is clear from the context, Hk(T) is
denoted by Hk. It is well known that log σ ≥ H0 ≥ H1 ≥ · · · and Hk makes
sense as a measure of string compression only for k < logσ n (see [12] for a
deep discussion).

The LZ parsing [49] of T [1, n] is a sequence of non-empty phrases (sub-
strings) LZ (T) = (P1, P2, . . . , Pz) such that T = P1P2 · · ·Pz, built as follows.
Assuming we have already parsed T [1, i− 1], producing P1, P2, . . . , Pj−1, then
Pj is set to the longest prefix of T [i, n] that has a previous occurrence in T
that starts before position i. Such a phrase Pj is called a copying phrase, and
its previous occurrence in T is called the source of Pj . When the longest prefix
is of length zero, the next phrase is the single symbol Pj = T [i], and Pj is
called a literal phrase. This greedy parsing strategy yields the least number of
phrases (see [49, Th. 1]).

LZ compression consists in replacing copying phrases by backward pointers
to their sources in T , and T can obviously be reconstructed in linear time from
these pointers. A natural way to encode the phrases is as pairs of integers: for
copying phrases Pj , a pair (dj , `j) gives the distance to the source and its
length, i.e., `j = |Pj | and T [|P1 · · ·Pj−1| − dj + 1, n] is prefixed by Pj ; for
literal phrases Pj = c, a pair (c, 0) encodes the symbol c as an integer. Such
encoding is called rightmost if the numbers dj in all the pairs (dj , `j) are
minimized, i.e., the rightmost sources are chosen.

When measuring the compression efficiency of encodings, it is natural to
assume that σ is a non-decreasing function of n. In such premises, if each dj
component occupies dlog ne bits and each `j component takes O(1 + log `j)
bits, then it is known that the size of the LZ encoding is upperbounded by
nHk + o(n log σ) bits, provided k is a function of n such that k = o(logσ n);
see [17,24,37]. In the sequel we also utilize a slightly different encoding that,
for each dj , uses a universal code [9,32] taking log dj +O(1 + log log dj) bits.

Other parsing strategies that do not necessarily choose the longest prefix
of T [i, n] are valid, in the sense that T can be recovered from the backward
pointers. Those are called LZ-like parses. Some examples are LZ-End [26],
which forces sources to finish at the end of a previous phrase, LZ77 with
sliding window [50], which restricts the sources to start in T [i − w, i − 1] for

Lempel–Ziv-like Parsing in Small Space 5

a fixed windows size w, and the bit-optimal LZ [10,25], where the phrases are
chosen to minimize the encoding size for a given encoder of pairs.

The RLZ parsing [27] of T [1, n] with reference R[1, `] is a sequence of
phrases RLZ (T,R) = (P1, P2, . . . , Pz) such that T = P1P2 · · ·Pz, built as fol-
lows: Assuming we have already parsed T [1, i−1], producing P1, P2, . . . , Pj−1,
then Pj is set to the longest prefix of T [i, n] that is a substring of R[1, `]; by
analogy to the LZ parsing, Pj is a copying phrase unless it is of length zero;
in the latter case we set Pj = T [i], a literal phrase. Note that RLZ does not
produce an LZ-like parsing as we have defined it.

3 ReLZ Parsing

First we present RLZpref [44], a variant of RLZ that instead of using an
external reference uses a prefix of the text as a reference to produce an LZ-
like parsing. The RLZpref parsing of T , given a parameter `, is defined as
RLZprefix(T, `) = LZ(T [1, `]) ·RLZ(T [`+1, n], T [1, `]). That is, we first com-
press T [1, `] with LZ, and then use that prefix as the reference to compress
the rest, T [`+ 1, n], with RLZ. Note that RLZpref is an LZ-like parsing.

The ReLZ algorithm works as follows. Given a text T [1, n] and a prefix
size `, we first compute the RLZpref parsing (P1, P2, . . . , Pz′) (so that T =
P1P2 · · ·Pz′). Now we consider the phrases Pj as atomic metasymbols, and
define a string T ′[1, z′] such that, for every i and j, T ′[i] = T ′[j] iff Pi = Pj .
Then we compress T ′[1, z′] using LZ, which yields a parsing (P ′1, P

′
2, . . . , P

′
ẑ)

of T ′. Finally, the result is transformed into an LZ-like parsing of T in a
straightforward way: each literal phrase P ′j corresponds to a single phrase
Pi and, thus, is left unchanged; each copying phrase P ′j has a source T ′[p, q]
and is transformed accordingly into a copying phrase in T with the source
T [p′, q′], where p′ = |P1P2 · · ·Pp−1|+ 1 and q′ = |P1P2 · · ·Pq|. Figure 1 shows
an example.

T A A C C G T A T G T C C A A G G T C C A A

1 2 3 4 5 6 7 8 . . .

a b b c c d e a f g h d f g h

(T,0) (A,0) (1,1) (C,0) (1,1) (G,0) (6,2) (2,1) (4,2) (8,2) (12,2) (10,1) (7,6)

T

T ′

ReLZ(T, 8)

T A T A

Fig. 1 An example of ReLZ, using prefix size ` = 8. The first line below the text shows
the string T ′ corresponding to the RLZpref parsing. Note that the substring “GTCCAA”
occurs twice, but RLZpref misses this repetition because there is no similar substring in the
reference. Nonetheless, both occurrences are parsed identically. The string T ′ is then parsed
using LZ. The latter captures the repetition of the sequence “fgh”, and when this parsing
is remapped to the original text, it captures the repetition of “GTCCAA”.

Since both LZ [20] and RLZ [28] run in linear time, ReLZ can also be
implemented in time O(n).

6 Dmitry Kosolobov et al.

Obviously, the first ` symbols do not necessarily make a good reference for
the RLZ step in ReLZ. In view of this, it seems practically relevant to define
the following variant of ReLZ: given a parameter ` = o(n), we first sample
in a certain way (for instance, randomly as in [16]) disjoint substrings of T
with total length `, then concatenate them making a string A of length `,
and apply ReLZ to the string AT ; the output encoding of T is the dlog ne-
bit number ` followed by an encoding of the LZ-like parsing of AT produced
by ReLZ. Nevertheless, throughout the paper we concentrate only on the first
version of ReLZ, which generates an LZ-like parsing. This choice is justified by
two observations: first, it is straightforward that the key part in any analysis
of the second ReLZ variant is in the analysis of ReLZ for the string AT ; and
second, our experiments on real data comparing known sampling methods (see
Section 7.3) show that the first version of ReLZ leads to better compression,
presumably because the improvements made by the sampling in the RLZ step
do not compensate for the need to keep the reference A.

4 Empirical Entropy Upper Bound

Our entropy analysis relies on the following lemmas by Gagie [12], Ochoa and
Navarro [37], and Gańczorz [17].

Lemma 1 ([12, Th. 1]) For any string T [1, n] and any integer k ≥ 0,
nHk(T) = min{log(1/Pr(Q emits T))}, where the minimum is over all kth
order Markov processes Q.

Lemma 2 ([17] and [37, Lm. 3]) Let Q be a kth order Markov process. Any
parsing T = P1P2 · · ·Pc of a given string T [1, n] over the alphabet {1, 2, . . . , σ},
where all Pi are non-empty, satisfies:

c∑
i=1

log
c

ci
≤ log

1

Pr(Q emits T)
+O(ck log σ + c log

n

c
),

where ci is the number of times Pi occurs in the sequence P1, P2, . . . , Pc.

Recall that in this discussion σ and k in Hk both are functions of n.
Now we are to prove that, as it turns out, the kth order empirical entropy
is easily achievable by any LZ-like parsing in which the number of phrases
is O(n

logσ n
): it suffices to use the rightmost encoding and to spend at most

log dj + O(1 + log log dj + log `j) bits for every pair (dj , `j) corresponding to
a copying phrase (for instance, applying for dj and `j universal codes, like
Elias’s [9] or Levenshtein’s [32]). In the sequel we show that, contrary to the
case of LZ (see [24,37]), it is not possible to weaken the assumptions in this
result—even for ReLZ—neither by using a non-rightmost encoding nor by us-
ing log n+O(1 + log `j) bits for the pairs (dj , `j).

Lempel–Ziv-like Parsing in Small Space 7

Lemma 3 Fix a constant α > 0. Given a string T [1, n] over the alphabet
{1, 2, . . . , σ} with σ ≤ O(n) and its LZ-like parsing T = P1P2 · · ·Pc such that
c ≤ αn

logσ n
, the rightmost encoding of the parsing in which every pair (dj , `j)

corresponding to a copying phrase takes log dj +O(1 + log log dj + log `j) bits
occupies at most nHk + o(n log σ) bits, for k = o(logσ n).

Proof First, let us assume that k is a positive function of n, k > 0. Since
k = o(logσ n), it implies that logσ n = ω(1) and σ = o(n). Therefore, all
literal phrases occupy O(σ log σ) = o(n log σ) bits. For i ∈ {1, 2, . . . , c}, de-
note by ci the number of times Pi occurs in the sequence P1, P2, . . . , Pc. Let
Pi1 , Pi2 , . . . , Pici be the subsequence of all phrases equal to Pi. Since the en-
coding we consider is rightmost, we have di1 +di2 +· · ·+dici ≤ n. Therefore, by
the concavity of the function log, we obtain log di1 + log di2 + · · ·+ log dici ≤
ci log n

ci
= ci log n

c + ci log c
ci

. Similarly, we deduce log log di1 + log log di2 +

· · · + log log dici ≤ ci log log n
ci

and
∑c
j=1 log `j ≤ c log n

c . Hence, the whole

encoding occupies
∑c
i=1(log c

ci
+ O(log log n

ci
)) + O(c log n

c) + o(n log σ) bits.
By Lemmas 1 and 2, this sum is upperbounded by

nHk +O(c log
n

c
+ ck log σ +

c∑
i=1

log log
n

ci
) + o(n log σ). (1)

It remains to prove that all the terms under the big-O are o(n log σ). Since
k = o(logσ n) and c ≤ αn

logσ n
, we have ck log σ ≤ o(n log σ). As c log n

c is an in-

creasing function of c when c < n/2, we obtain c log n
c ≤ O(n

logσ n
log logσ n) =

o(n log σ). Further, log log n
ci

= log(log n
c +log c

ci
) ≤ log log n

c +O(log c
ci
/ log n

c)

due to the inequality log(x + d) ≤ log x + d log e
x . The sum

∑c
i=1 log log n

c is
upperbounded by c log n

c = o(n log σ). The sum
∑c
i=1 log c

ci
/ log n

c is upper-
bounded by (c log c)/ log n

c , which can be estimated as O((n log σ)/ log logσ n)
because c ≤ αn

logσ n
. Since logσ n = ω(1), this is again o(n log σ).

Now assume that k = 0; note that in this case k = o(logσ n) even for

σ = Ω(n). It is sufficient to consider only the case σ > 2
√
logn since, for

σ ≤ 2
√
logn, we have σ log σ = o(n log σ) and logσ n ≥

√
log n = ω(1) and,

hence, the above analysis is applicable. As σ can be close to Θ(n), the literal
phrases might now take non-negligible space. Let A be the subset of all symbols
{1, 2, . . . , σ} that occur in T . For a ∈ A, denote by ia the leftmost phrase Pia =
a. Denote C = {1, 2, . . . , c} \ {ia : a ∈ A}, the indices of all copying phrases.
The whole encoding occupies at most

∑
i∈C(log di+O(1+log log di+log `i))+

|A| log σ+O(|A|(1 + log log σ)) bits, which is upperbounded by
∑
i∈C log di +

|A| log |A|+O(n+n log log n+ c log n
c) + |A| log σ

|A| . Observe that n log log n ≤
o(n
√

log n) ≤ o(n log σ). Further, we have c log n
c ≤ n and |A| log σ

|A| ≤ σ,

both of which are o(n log σ) since σ ≤ O(n) ≤ o(n log σ). It remains to bound∑
i∈C log di + |A| log |A| with nH0 + o(n log σ).
Let us show that |A| log |A| ≤

∑
a∈A log n

cia
. Indeed, we have

∑
a∈A log n

cia
=

log(n|A|/
∏
a∈A cia), which, since

∑
a∈A cia ≤ n, is minimized when all cia

are equal to n
|A| so that

∑
a∈A log n

cia
≥ |A| log |A|. For i ∈ C, denote by

8 Dmitry Kosolobov et al.

c′i the number of copying phrases equal to Pi, i.e., c′i = ci if |Pi| > 1,
and c′i = ci − 1 otherwise (note that c′i > 0 for all i ∈ C). As in the
analysis for k > 0, we obtain

∑
i∈C log di ≤

∑
i∈C log n

c′i
. Fix i ∈ C such

that |Pi| = 1. Using the inequality log(x − d) ≥ log x − d log e
x−d , we deduce

log n
c′i

= − log(cin −
1
n) ≤ log n

ci
+ log e

c′i
. Therefore, |A| log |A| +

∑
i∈C log n

c′i
≤∑c

i=1 log n
ci

+c log e =
∑c
i=1 log c

ci
+c log n

c +O(n). By Lemmas 1 and 2, this is
upperbounded by (1). As k = 0, the terms under the big-O of (1) degenerate
to c log n

c +
∑c
i=1 log log n

ci
, which is O(n log log n) ≤ o(n log σ). ut

It follows from the proof of Lemma 3 that, instead of the strict rightmost
encoding, it is enough to choose, for each copying phrase Pj of the LZ-like
parsing, the closest preceding equal phrase—i.e., Pi = Pj with maximal i < j—
as a source of Pj , or any source if there is no such Pi. This observation greatly
simplifies the construction of an encoding that achieves the Hk bound. Now
let us return to the discussion of the ReLZ parsing.

Lemma 4 The number of phrases in the ReLZ parsing of any string T [1, n]
over the alphabet {1, 2, . . . , σ} is at most 9n

logσ n
, independent of the choice of

the prefix parameter `.

Proof For σ ≥ n1/9, we have 9n
logσ n

≥ n and, hence, the claim is obviously

true. Assume that σ < n1/9. As σ ≥ 2, this implies n > 29 = 512. Suppose
that T = P1P2 · · ·Pẑ is the ReLZ parsing, for a given prefix size `. We are to
prove that there are at most 1 + 2

√
n indices j < ẑ such that |Pj | < 1

4 logσ n
and |Pj+1| < 1

4 logσ n. This will imply that every phrase of length less than
1
4 logσ n is followed by a phrase of length at least 1

4 logσ n, except for at most
2+2
√
n exceptions (1+2

√
n plus the last phrase). Therefore, the total number

of phrases is at most 2+2
√
n+ 2n

(1/4) logσ n
= 2+2

√
n+ 8n

logσ n
; the term 2+2

√
n

is upperbounded by n
logσ n

since n > 512, and thus, the total number of phrases

is at most 9n
logσ n

as required.

It remains to prove that there are at most 1+2
√
n pairs of “short” phrases

Pj , Pj+1. First, observe that any two equal phrases of the LZ parsing of the
prefix T [1, `] are followed by distinct symbols, except, possibly, for the last

phrase. Hence, there are at most 1 +
∑b 14 logσ nc
k=1 σk+1 ≤ 1 + σ2σ

1
4 logσ n ≤

1 + n2/9n1/4 ≤ 1 +
√
n phrases of length less than 1

4 logσ n in the LZ parsing
of T [1, `]. Further, there cannot be two distinct indices j < j′ < ẑ such that
Pj = Pj′ , Pj+1 = Pj′+1, and |P1P2 · · ·Pj−1| ≥ ` (i.e., Pj and Pj′ both are inside
the T [` + 1, n] part of T): indeed, the RLZ step of ReLZ necessarily parses
the substrings Pj , Pj+1 and Pj′ , Pj′+1 equally, and then, the LZ step of ReLZ
should have realized during the parsing of Pj′Pj′+1 that this string occurred
previously in PjPj+1 and it should have generated a new phrase comprising

Pj′Pj′+1. Therefore, there are at most σ
1
4 logσ nσ

1
4 logσ n =

√
n indices j < ẑ

such that Pj and Pj+1 both are “short” and PjPj+1 is inside T [` + 1, n]. In
total, we have at most 1 + 2

√
n phrases Pj such that |Pj | < 1

4 logσ n and
|Pj+1| < 1

4 logσ n. ut

Lempel–Ziv-like Parsing in Small Space 9

Lemmas 3 and 4 immediately imply the following theorem.

Theorem 1 Given a string T [1, n] over the alphabet {1, 2, . . . , σ} with σ ≤
O(n), the rightmost encoding of any ReLZ parsing of T in which every pair
(dj , `j) corresponding to a copying phrase takes log dj+O(1+log log dj+log `j)
bits occupies nHk + o(n log σ) bits, for k = o(logσ n).

For LZ, it is not necessary to use neither the rightmost encoding nor less
than log n bits for the dj components of pairs in order to achieve the kth order
empirical entropy with k = o(logσ n). In view of this, the natural question
is whether the ReLZ really requires these two assumptions of Theorem 1.
The following example shows that indeed the assumptions cannot be simply
removed.

Example 1 Fix an integer b ≥ 3. Our example is a string of length n = b22b+2b

over the alphabet {0, 1, 2}. Denote by a1, a2, . . . , a2b all possible binary strings
of length b. Put A = a12a22 · · · a2b2 (a1, a2, . . . , a2b separated by 2s). The ex-
ample string is T = AB1B2 · · ·B2b−1, where each string Bh is the concatena-
tion of a1, a2, . . . , a2b in a certain order such that every pair of distinct strings
ai and aj can be concatenated in B1B2 · · ·B2b−1 at most once. More precisely,
we have 2b − 1 permutations πh of the set {1, 2, . . . , 2b}, for 1 ≤ h < 2b,
such that Bh = aπh(1)aπh(2) · · · aπh(2b) and, for every integers i and j with

1 ≤ i < j ≤ 2b, at most one h satisfies πh(2b) = i and πh+1(1) = j, or
πh(k) = i and πh(k + 1) = j, for some k < 2b.

Let us show that the permutations πh can be constructed from a decompo-
sition of the complete directed graph K∗2b with 2b vertices into 2b − 1 disjoint
Hamiltonian directed cycles; Tillson [43] proved that such decomposition al-
ways exists for 2b ≥ 8. (Note that the number of edges in K∗2b is 22b − 2b and
every Hamiltonian cycle contains 2b edges, so 2b − 1 is the maximal number
of disjoint cycles.) Denote the vertices of K∗2b by 1, 2, . . . , 2b. Every Hamilto-
nian cycle naturally induces 2b permutations π: we arbitrarily choose π(1) and
then, for k > 1, put π(k) equal to the vertex number following π(k− 1) in the
cycle. Since the cycles are disjoint, any two distinct numbers i and j cannot
occur in this order in two permutations corresponding to different cycles, i.e.,
πh(k) = i and πh(k + 1) = j, for some k, can happen at most in one h; fur-
ther, we put π1(1) = 1 and, for h > 1, we assign to πh(1) the vertex number
following πh−1(2b) in the cycle corresponding to πh−1, so that πh−1(2b) = i
and πh(1) = j, for fixed i and j, can happen in at most one h.

Put ` = |A|, the parameter of ReLZ. Clearly, the RLZ step of ReLZ parses
B1B2 · · ·B2b−1 into 2b(2b − 1) phrases of length b. By construction, all equal
phrases in the parsing are followed by distinct phrases. Therefore, the LZ step
of ReLZ does not reduce the number of phrases. Suppose that the source of
every copying phrase is in A (so, we assume that the encoding is not right-
most) and we spend at least log dj bits to encode each pair (dj , `j) corre-
sponding to a copying phrase. Therefore, the encoding overall occupies at

least
∑2b(2b−1)
i=1 log(ib) bits, which can be lowerbounded by

∑22b−2b
i=1 log i =

log((22b − 2b)!) = (22b − 2b) log(22b − 2b) − O(22b). Recall that n = b22b + 2b

10 Dmitry Kosolobov et al.

and, hence, b = Θ(log n), 22b = o(n), and 2b log(22b − 2b) = o(n). Thus,
(22b − 2b) log(22b − 2b) − O(22b) ≥ 22b log(22b − 2b) − o(n). By the inequal-
ity log(x − d) ≥ log x − d log e

x−d , the latter is lowerbounded by 22b log(22b) −
O(22b2b/(22b − 2b)) − o(n) = 2b22b − o(n) = 2n − o(n). On the other hand,
we obviously have H0(T) ≈ 1 and, thus, nH0(T) = n − o(n). Therefore, the
non-rightmost encoding, which forced us to use at least ∼ log n bits for many
pairs (dj , `j), does not achieve the zeroth empirical entropy of T .

5 Lower Bound

We have not been able to upper bound the number of phrases ẑ resulting from
ReLZ in terms of the optimal number z of phrases produced by the LZ parsing
of T . Note that, in the extreme cases ` = n and ` = 0, we have ẑ = z, but
these are not useful choices: in the former case we apply LZ(T) in the first
phase and in the latter case we apply LZ(T ′), with T ′ ≈ T , in the second
phase. In this section, we obtain the following lower bound.

Theorem 2 There is an infinite family of strings over the alphabet {0, 1, 2}
such that, for each family string T [1, n], the number of phrases in its ReLZ
parse (with an appropriate parameter ` = o(n)) and its LZ parse—respectively,
ẑ and z—are related as ẑ = Ω(z log n).

Proof The family contains, for each even positive integer b, a string T of length
Θ(b22b) built as follows. Let A be the concatenation of all length-b binary
strings in the lexicographic order, separated by the special symbol 2 and with
2 in the end. Let S be the concatenation of all length-b binary strings in the
lexicographic order. (E.g., A = 002012102112 and S = 00011011 for b = 2.)
Finally, let Si be S cyclically shifted to the left i times, i.e., Si = S[i +
1, |S|] ·S[1, i]. Then, put T = AS1S2 · · ·S b

2
and we use ` = |A| as a parameter

for ReLZ. So n = |T | = Θ(b22b) and log n = Θ(b). We are to prove that
z = |LZ(T)| = O(2b) and ẑ = |ReLZ(T, `)| = Ω(b2b), which will imply ẑ =
Ω(z log n), thus concluding the proof.

By [49, Th. 1], the LZ parse has the smallest number of phrases among all
LZ-like parses of T . Therefore, to show that z = O(2b), it suffices to describe
an LZ-like parse of T with O(2b) phrases. Indeed, the prefix A can be parsed
into O(2b) phrases as follows: all symbols 2 form phrases of length one; the
first length-b substring 00 · · · 0 can be parsed into b literal phrases 0; every
subsequent binary length-b substring a1a2 · · · ab with ak = 1 and ak+1 =
ak+2 = · · · = ab = 0, for some k ∈ {1, 2, . . . , b}, can be parsed into the copying
phrase a1a2 · · · ak−1 (which must be a prefix of the previous length-b binary
substring a1a2 · · · ak−1011 · · · 1, due to the lexicographic order in A), the literal
phrase 1, and the copying phrase ak+1ak+2 · · · ab = 00 · · · 0. The string S1 can
be analogously parsed into O(2b) phrases. Each Si, i > 2, can be expressed
as two phrases that point to S1. Thus, we obtain z ≤ |LZ (A)| + |LZ (S1)| +
2(b/2− 1) = O(2b).

Lempel–Ziv-like Parsing in Small Space 11

Now consider ẑ. The first phase of ReLZ(T, `) parses T into phrases whose
sources are restricted to be within T [1, `] = A. Therefore, it is clear that, for
any i ∈ {1, 2, . . . , b2}, Si will be parsed into 2b strings of length b, because
every length-b string is in A separated by 2s. In what follows we show that
the second phase of ReLZ cannot further reduce the number of phrases and,
hence, ẑ ≥ b

22b = Ω(b2b) as required.
Let us consider Si and Sj , for some i < j, and let us denote their parsings

by R1, R2, . . . , R2b and R′1, R
′
2, . . . , R

′
2b , respectively. Suppose that there are

indices k and h such that Rk = R′h. We are to prove that Rk+1 6= R′h+1

(assuming Rk+1 is the length-b prefix of Si+1 if k = 2b, and analogously for
h = 2b). This will imply that all phrases produced by the second phase of
ReLZ on the string of metasymbols are of length one.

Consider the case k < 2b and h < 2b. Let us interpret the bitstrings of
length b as numbers so that the most and the least significant bits are indexed
by 1 and b, respectively;2 e.g., in the string 01, for b = 2, the least significant bit
is the second symbol and equals 1. In this way we can see S = Q1Q2 · · ·Q2b ,
where |Q1| = · · · = |Q2b | = b, as generated by adding 1 to the previous
bitstring, starting from Q1 = 00 · · · 0. Now, the (b − i)th symbols of Rk and
Rk+1 are different since they correspond to the lowest bit in Q1, Q2, . . . , Q2b

(thus, the (b−i)th symbol alternates in R1, . . . , R2b , starting from 0). Suppose
that the (b− i)th symbols of R′h and R′h+1 also differ (otherwise our claim is
trivially true). Since 0 < i < j, this implies that the symbols b, b−1, . . . , b−i+1
in R′h and 1, 2, . . . , b−j in R′h+1 all are equal to 1 (this cascade of ones triggers
the change in the (b− i)th symbol of R′h+1), the symbols b, b− 1, . . . , b− i+ 1
in R′h+1 equal 0 (as a result of the “collapse” of the cascade), and the (b−j)th
symbol in R′h equals 0 (since (b − j)th symbols alternate in R′1, . . . , R

′
2b and

the (b− j)th symbol in R′h+1 equals 1 as a part of the cascade).
In the following example b = 12, i = 4, j = 8, � denotes irrelevant symbols

(not necessarily equal), x and x denote the flipped (b−i)th symbol, the (b−j)th
symbol is underlined:

R′h = ���0���x1111,
R′h+1 = 1111���x0000.

When we transform Rk = R′h to Rk+1, we “add” 1 to the bit corresponding
to the (b−i)th symbol of Rk and the zero at position b−j will stop carrying the
1, so that we necessarily have zero among the symbols b− i, b− i− 1, . . . , b− j
of Rk+1 (in fact, one can show that they all are zeros except for b− j). Thus,
the next “addition” of 1 to the (b− i)th symbol of Rk+1 cannot carry farther
than the (b− j)th symbol and so the symbols b, b− 1, . . . , b− i+ 1 will remain
equal to 1 in Rk+1 whilst in R′h+1 they are all zeros. Therefore, R′h+1 6= Rk+1.

In the case k = 2b, Rk = 11 · · · 100 · · · 0, with b − i ones, is followed by
Rk+1 = 00 · · · 0, with b zeros. But, since R′h = Rk and i < j, we have R′h+1 =
00 · · · 011 · · · 100 · · · 0, with j− i ones, after “adding” 1 to the (b− j)th symbol
of R′h. The case h = 2b is analogous. ut

2 To conform with the indexation scheme used throughout the paper, we do not follow
the standard practice to index the least significant bit as zeroth.

12 Dmitry Kosolobov et al.

6 Implementation

To build RLZpref , we first compute LZ(T [1, `]) and thenRLZ(T [`+1, n], T [1, `]).
For both of them, we utilize the suffix array of T [1, `], which is constructed us-
ing the algorithm libdivsufsort [48,18]. To compute LZ(T [1, `]), we use the
KKP3 algorithm [20]. To compute RLZ(T [`+1, n], T [1, `]), we scan T [`+1, n]
looking for the longest match in T [1, `] by the standard suffix array based
pattern matching.

The output phrases are encoded as pairs of integers: each pair (pj , `j)
represents the position, pj , of the source for the phrase and the length, `j ,
of the phrase (note that this is in contrast to the “distance-length” pairs
(dj , `j) that we had for encodings). We then map the output into a sequence
of numbers using 2dlog `e-bit integers with dlog `e bits for each pair component.
This is possible because we enforce that our reference size is ` ≥ σ.

Finally, we compute the LZ parse using a version of KKP3 for large alpha-
bets, relying on a suffix array construction algorithm for large alphabets [30,
18]. We then remap the output of LZ to point to positions in T as described.

6.1 A recursive variant

When the input is too big compared to the available RAM, it is possible
that after the first compression step, RLZpref , the resulting parse is still too
big to fit in memory, and therefore it is still not possible to compute its LZ
parse efficiently. To overcome this issue in practice, we propose a recursive
variant, which takes as input the amount of available memory. The first step
remains the same, but in the second step we make a recursive call to ReLZ,
ignoring the phrases that were already parsed with LZ, and using the longest
possible ` value for the given amount of RAM. This recursive process continues
until the LZ parse can be computed in memory. It is also possible to give an
additional parameter that limits the number of recursive calls. We use the
recursive version only in the last set of experiments when comparing with
other LZ parsers in Subsection 7.4

6.2 A better mapping

When the recursive approach is used we need a better mapping from pairs
of integers into integers: the simple approach described above requires 2 log `
bits for the alphabet after the first iteration, but in the following iterations
the assumption σ ≤ ` may not hold anymore and the amount of bits required
to store the first values may increase at each iteration. We propose a simple
mapping that overcomes this problem. Let σi be the size of the alphabet used
by the metasymbols after the ith iteration. To encode the metasymbols of the
(i+ 1)-iteration we use first a flag bit to indicate whether the phrase is literal
or copying. If the flag is 0, then it is a literal phrase (c, 0) and log σi bits are

Lempel–Ziv-like Parsing in Small Space 13

B F A F A G B F F A G B F B F F A C B F F A CT

T̃ B F A k G l m G l l m C l m C

˜̃T B F A k G l m p q C q C

˜̃T B F A k G l m p q c s

LZ77 RLZ

LZ77 RLZ

LZ77

Fig. 2 Example of the recursive ReLZ approach, assuming that the available memory limits
the computation of LZ to sequences of length 5. The figure only shows the recursive parsing.
The rewriting of the phrases proceeds later, bottom up, in a similar fashion as depicted in
Figure 1.

used to store the c value. If the flag is 1, then it is a copying phrase (pi, `i) and
then 2 log ` bits are used to store the numbers. In this way, after each iteration
the number of bits required to store the metasymbols increases only by 1.

Table 1 Collections used for the experiments, some basics statistics, and a brief description
of their source. The first group includes medium-sized collections, from 45 to 202 MiB, while
the second group consist of large collections, from 22 to 64GiB. Each group has both regular
collections and highly repetitive collections, attested by the average phrase length n/z.

Name σ n n/z Type Source
English 225 200 MiB 15 English text Pizzachili
Sources 230 202 MiB 18 Source code Pizzachili
Influenza 15 148 MiB 201 Genomes Pizzachili
Leaders 89 45 MiB 267 English text Pizzachili
Wiki 215 24 GiB 90 Web pages Wikipedia dumps
Kernel 229 64 GiB 2439 Source code Linux Kernel
CereHR 5 22 GiB 3746 Genomes Pizzachili

We implemented ReLZ in C++ and the source code is available under
GPLv3 license in https://gitlab.com/dvalenzu/ReLZ. The implementation
allows the user to set the value of ` or, alternatively, to provide the maximum
amount of RAM to be used. Additionally, scripts to reproduce our experiments
are available at https://gitlab.com/dvalenzu/ReLZ_experiments. For the
experimental evaluation, we used collections of different sizes and kinds. They
are listed in Table 1 with their main properties. The experiments were run on
a desktop computer equipped with a Intel(R) Core(TM) i5-7500 CPU, with 4
cores, 3.60GHz and 16GB of RAM.

https://gitlab.com/dvalenzu/ReLZ
https://gitlab.com/dvalenzu/ReLZ_experiments

14 Dmitry Kosolobov et al.

7 Experimental evaluation

7.1 Entropy coding

First we compare the encoded size of ReLZ with the k-order empirical entropy,
and also with the encoded size of LZ77. For both ReLZ and LZ77 we used
Elias-gamma codes. The results are presented in table 2.

We observe that in the small and low-repetition collections (English and
source) ReLZ requires some extra space than Hk for higher values of k. This
can be attributed to the o() term in our analysis. Also we observe the same
behavior for LZ77. As expected, for the highly repetitive collections, both
ReLZ and LZ77 use less space than the entropy. This is due to the known
fact that for highly repetitive collections, z is a better measurement of the
compressibility than the empirical entropy. Therefore, in the following sections,
we proceed to study empirically how does ReLZ compare to LZ77 in terms of
number of phrases produced by the parsers.

Table 2 Empirical entropy of order k of our collections for k = 1, 2, . . . 6; and encoded size
of ReLZ and LZ77. All values are expressed as bits per character (bpc).

Entropy Hk ReLZ(bpc); ` = LZ(bpc)
Name H0 H1 H2 H3 H4 H5 H6 10MB 50MB
English 4.52 3.62 2.94 2.42 2.06 1.83 1.67 3.53 3.02 2.65
Sources 5.46 4.07 3.10 2.33 1.85 1.51 1.24 2.97 2.64 1.94
Influenza 1.97 1.93 1.92 1.92 1.91 1.87 1.76 0.29 0.24 0.20
Leaders 3.47 1.95 1.38 0.93 0.60 0.40 0.32 0.15 0.13 0.13
Wiki 5.27 3.86 2.35 1.49 1.08 0.86 0.71 0.79 0.80 0.56
Kernel 5.58 4.14 3.16 2.39 1.92 1.58 1.32 0.02 0.02 0.018
CereHR 2.19 1.81 1.81 1.80 1.80 1.80 1.80 0.02 0.02 0.013

7.2 Effect of Reference Sizes

We first study how the size of the prefix used as a reference influences the
number of phrases produced by RLZpref and ReLZ. These experiments are
carried out only using the medium-sized collections, so that we can run ReLZ
using arbitrarily large prefixes as references and without recursions. We ran
both algorithms using different values of ` = n/10, 2n/10, . . . , n.

The results are presented in Figure 3. By design, both algorithms behave
as LZ when ` = n. RLZpref starts far off from LZ and its convergence is not
smooth but “stepped”. The reason is that at some point, by increasing `, the
reference captures a new sequence that has many repetitions that were not
well compressed for smaller values of `. Thus RLZpref is very dependent on
the choice of the reference. ReLZ, in contrast, is more robust since the second
pass of LZ does capture much of those global repetitions. This results in ReLZ

Lempel–Ziv-like Parsing in Small Space 15

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.2 0.4 0.6 0.8 1

Sources

RLZPRE

ReLZ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.2 0.4 0.6 0.8 1

English

RLZPRE
ReLZ

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

Influenza

RLZPRE

ReLZ

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

Leaders

RLZPRE

ReLZ

Fig. 3 Performance of RLZpref (green) and ReLZ (blue) for different prefix-reference sizes
on medium-sized inputs. The y-axis shows the approximation ratio ẑ/z. The x-axis shows
`/n, the size of the prefix-reference expressed as a fraction of the input size.

being very close to LZ even for ` = n/10, particularly in the highly repetitive
collections.

7.3 Reference Construction

As discussed in Section 3, the idea of a second compression stage applied to
the phrases can be applied not only when the reference is a prefix, but also
when an external reference is used. This allows us to study variants of ReLZ
combined with different strategies to build the reference that aim for a better
compression in the first stage.

In this section we experimentally compare the following approaches:

PREFIX: Original version using a prefix as a reference.
RANDOM: An external reference is built as a concatenation of random samples

of the collection [19,16].
PRUNE: A recent method [33] that takes random samples of the collections and

performs some pruning of redundant parts to construct a better reference.

An important caveat is that methods using an external reference also need
to account for the reference size in the compressed representation because the
reference is needed to recover the output. For each construction method, we
measure the number of phrases produced for the string “reference + text” (only

16 Dmitry Kosolobov et al.

 1

 10

8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB

Wiki

RLZ

ReLZ

RandomPrunePrefix

 1

 10

 100

 1000

8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB

CereHR

RLZ

ReLZ

RandomPrunePrefix

 1

 10

 100

 1000

8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB

Kernel

RLZ

ReLZ

RandomPrunePrefix

Fig. 4 Approximation ratio ẑ/z for different methods to construct the reference and dif-
ferent reference lengths: in green the results after RLZpref , and in blue after ReLZ. Note
that the highly repetitive collections (CereHR and Kernel) use logarithmic scale.

“text” for the method PREFIX) by the first stage (RLZpref with prefix equal to
the reference) and by the second stage (LZ on metasymbols corresponding to
the phrases), using three reference sizes: 8MB, 400MB, and 1GB. We compare
the numbers to z, the number of phrases in the LZ parsing of the plain text.
This experiment was performed on the large collections and the results are
presented in Figure 4.

We observe that the second stage of ReLZ reduces the number of phrases
dramatically, regardless of the reference construction method. ReLZ with the
original method PREFIX achieves the best ratios as it does not need to account
for the external reference. Depending on the reference size, the approximation
ratio in Wiki ranges between 1.4 and 1.29, in CereHR between 1.84 and 1.63,
and in Kernel between 1.49 and 1.03.

Additionally, we observe that although PRUNE can improve the results of
the RLZpref stage, after the second stage the improvements do not compensate
for the need to keep an external reference. This is particularly clear for the
largest reference in our experiments.

Lempel–Ziv-like Parsing in Small Space 17

7.4 Lempel–Ziv Parsers

In this section we compare the performance and scalability of ReLZ against
other Lempel–Ziv parsers that can also run in small memory (this time, using
the recursive version of ReLZ).

EMLZ [21]: External-memory version of the exact LZ algorithm, with memory
usage limit set to 4GB.

LZ-End [22]: An LZ-like parsing that gets close to LZ in practice.
ORLBWT [3]: Computes the exact LZ parsing via online computation of the

RLBWT using small memory.
RLZPRE : Our RLZpref algorithm (Section 3), with memory usage limit set to

4GB.
ReLZ: Our ReLZ algorithm (Section 3), with memory usage limit set to 4GB.

To see how well the algorithms scale with larger inputs, we took prefixes of
different sizes of all the large collections and ran all the parsers on them. We
measured the running time of all of the algorithms and, for the algorithms that
do not compute the exact LZ parsing, we also measured the approximation
ratio ẑ/z. The results are presented in Figure 5.

Figure 5 (left) shows that ReLZ is much faster than all the previous meth-
ods and also that the speed is almost unaffected when processing larger inputs.
Figure 5 (right) shows that the approximation ratio of ReLZ is affected very
mildly as the input size grows, especially in the highly repetitive collections.
For the normal collections, the approximation factor is more affected but it
still remains below 2.

7.5 Compression ratio

In this section we study the compression ratio of ReLZ. We store the pos and
len values in separate files, encoding them using a modern implementation of
PFOR codes [31] in combination with a fast entropy coder [8]. We compare
against state of the art compressors (LZMA, Brotli) and also agains a very
recent RLZ compressor (RLZ-store). We measure compression ratios, com-
pression times and decompression times of these tools in the large collections,
whose size exceeds the available RAM of the system.

The results are shown in Figure 6. In the normal collection (Wiki) the per-
formance of ReLZ is competitive with the state of the art compressors. In the
highly repetitive collections (Cere, Kernel) ReLZ gives the best compression
ratios, with very similar compression times and competitive decompression
times.

Additionally, we run a comparisson again GDC2 and FRESCO. Both tools
are designed to compress a collection of files, using one (or more) as a reference,
and perform referential compression plus second order compression. GDC2 is
specifically designed to compress collections of genomes in FASTA format, and
it exploits known facts about genomes collections (e.g. an important amount

18 Dmitry Kosolobov et al.

 0

 5×10
−7

 1×10
−6

 1.5×10
−6

 2×10
−6

2
29

2
30

2
31

2
32

2
33

2
34

CereHR

EMLZ

LZ−End

ORLBWT
RLZPRE

ReLZ

 1

 2

 3

 4

 5

 6

2
29

2
30

2
31

2
32

2
33

2
34

CereHR

LZ−End
RLZPRE

ReLZ

 0

 5×10
−7

 1×10
−6

 1.5×10
−6

 2×10
−6

 2.5×10
−6

 3×10
−6

2
31

2
32

2
33

Kernel

EMLZ

LZ−End

ORLBWT
RLZPRE

ReLZ

 0

 1

 2

 3

 4

 5

 6

2
31

2
32

2
33

2
34

2
35

2
36

Kernel

LZ−End
RLZPRE

ReLZ

 0

 5×10
−7

 1×10
−6

 1.5×10
−6

 2×10
−6

 2.5×10
−6

2
29

2
30

2
31

2
32

2
33

2
34

Wiki

EMLZ

LZ−End

ORLBWT
RLZPRE

ReLZ

 1

 1.2

 1.4

 1.6

 1.8

 2

2
29

2
30

2
31

2
32

2
33

2
34

Wiki

LZ−End
RLZPRE

ReLZ

Fig. 5 Performance of different LZ parsers in the large collections. The x axis is the size
of the input: increasingly larger prefixes of a given collection. Plots on the left show the
running time in seconds per MiB. Plots on the right show the approximation ratio ẑ/z.

of the variations are changes in a single character). For this, we use a 90GB
collection comprising 2001 different versions of chromosome 21. As expected,
GDC2 was the dominant tool, with a compression ratio of 0.00020, compression
time of 15 minutes and decompression time of 15 minutes. ReLZ compression
ratio was 0.00047, compression time was 49 minutes and decompression time
was 50 minutes. We stopped FRESCO execution after 8 hours, when it had
processed slightly more than half of the collection.

Acknowledgements This work started during Shonan Meeting 126 “Computation over
Compressed Structured Data”. Funded in part by EU’s Horizon 2020 research and innovation
programme under Marie Sk lodowska-Curie grant agreement No 690941 (project BIRDS).

Lempel–Ziv-like Parsing in Small Space 19

 0

 5000

 10000

 15000

 20000

 25000

 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11

Wiki

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 50

 100

 150

 200

 250

 300

 350

 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11

Wiki

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 0.05 0.1 0.15 0.2 0.25 0.3

CereHR

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.05 0.1 0.15 0.2 0.25 0.3

CereHR

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Kernel

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Kernel

ReLZ10GB
ReLZ4GB
BROTLI−5
BROTLI−8
BROTLI−11
LZMA−9
LZMA−5
LZMA−2
RLZ−STORE−Budget128
RLZ−STORE−Budget256
RLZ−STORE−Budget512

Fig. 6 Compression results for large collections. The x-axis is the ratio between output
and input, and the y-axis is the total compression time in seconds.

References

1. Alakuijala, J., Farruggia, A., Ferragina, P., Kliuchnikov, E., Obryk, R., Szabadka, Z.,
Vandevenne, L.: Brotli: A general-purpose data compressor. ACM Transactions on
Information Systems 37(1), 4 (2018). DOI 10.1145/3231935

2. Amir, A., Landau, G.M., Ukkonen, E.: Online timestamped text indexing. Information
Processing Letters 82(5), 253–259 (2002). DOI 10.1016/S0020-0190(01)00275-7

3. Bannai, H., Gagie, T., I, T.: Online LZ77 parsing and matching statistics with RLBWTs.
In: Proc. CPM 2018, LIPIcs, vol. 105, pp. 7:1–7:12. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2018). DOI 10.4230/LIPIcs.CPM.2018.7

4. Belazzougui, D., Puglisi, S.J.: Range predecessor and Lempel–Ziv parsing. In: Proc.
SODA 2016, pp. 2053–2071. SIAM (2016). DOI 10.1137/1.9781611974331.ch143

5. Bille, P., Cording, P.H., Fischer, J., Gørtz, I.L.: Lempel–Ziv compression in a sliding
window. In: Proc. CPM 2017, LIPIcs, vol. 78. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2017). DOI 10.4230/LIPIcs.CPM.2017.15

20 Dmitry Kosolobov et al.

6. Deorowicz, S., Danek, A., Niemiec, M.: GDC 2: Compression of large collections of
genomes. Scientific reports 5, 11565 (2015). DOI doi.org/10.1038/srep11565

7. Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random
access. Bioinformatics 27(21), 2979–2986 (2011). DOI 10.1093/bioinformatics/btr505

8. Duda, J.: Asymmetric numeral systems as close to capacity low state entropy coders.
CoRR abs/1311.2540 (2013). URL http://arxiv.org/abs/1311.2540

9. Elias, P.: Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory 21(2), 194–203 (1975). DOI 10.1109/TIT.1975.1055349

10. Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of Lempel–Ziv compression.
SIAM Journal on Computing 42(4), 1521–1541 (2013). DOI 10.1137/120869511

11. Fischer, J., Gagie, T., Gawrychowski, P., Kociumaka, T.: Approximating LZ77 via small-
space multiple-pattern matching. In: Proc. ESA 2015, LNCS, vol. 9294, pp. 533–544.
Springer (2015). DOI 10.1007/978-3-662-48350-3 45

12. Gagie, T.: Large alphabets and incompressibility. Information Processing Letters 99(6),
246–251 (2006). DOI 10.1016/j.ipl.2006.04.008

13. Gagie, T., Manzini, G.: Space-conscious compression. In: Proc. MFCS 2007, LNCS, vol.
4708, pp. 206–217. Springer (2007). DOI 10.1007/978-3-540-74456-6 20

14. Gagie, T., Navarro, G., Prezza, N.: On the approximation ratio of Lempel–Ziv parsing.
In: Proc. LATIN 2018, LNCS, vol. 10807, pp. 490–503. Springer (2018). DOI 10.1007/
978-3-319-77404-6 36

15. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs bounded
space. In: Proc. SODA 2018, pp. 1459–1477. SIAM (2018). DOI 10.1137/1.
9781611975031.96

16. Gagie, T., Puglisi, S.J., Valenzuela, D.: Analyzing relative Lempel–Ziv reference con-
struction. In: Proc. SPIRE 2016, LNCS, vol. 9954, pp. 160–165. Springer (2016). DOI
10.1007/978-3-319-46049-9 16

17. Gańczorz, M.: Entropy bounds for grammar compression. CoRR abs/1804.08547
(2018). URL http://arxiv.org/abs/1804.08547

18. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with
succinct data structures. In: Proc. SEA 2014, LNCS, vol. 8504, pp. 326–337. Springer
(2014). DOI 10.1007/978-3-319-07959-2 28

19. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel–Ziv factorization for efficient stor-
age and retrieval of web collections. Proc. the VLDB Endowment 5(3), 265–273 (2011).
DOI 10.14778/2078331.2078341

20. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel–Ziv factorization: Simple,
fast, small. In: Proc. CPM 2013, LNCS, vol. 7922, pp. 189–200. Springer (2013). DOI
10.1007/978-3-642-38905-4 19

21. Karkkainen, J., Kempa, D., Puglisi, S.J.: Lempel–Ziv parsing in external memory. In:
Proc. DCC 2014, pp. 153–162. IEEE (2014). DOI 10.1109/DCC.2014.78

22. Kempa, D., Kosolobov, D.: LZ-End parsing in compressed space. In: Proc. DCC 2017,
pp. 350–359. IEEE (2017). DOI 10.1109/DCC.2017.73

23. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors. In:
Proc. STOC 2018, pp. 827–840. ACM (2018). DOI 10.1145/3188745.3188814

24. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel–Ziv
algorithms. SIAM Journal on Computing 29(3), 893–911 (1999). DOI 10.1137/
S0097539797331105

25. Kosolobov, D.: Relations between greedy and bit-optimal LZ77 encodings. In: Proc.
STACS 2018, LIPIcs, vol. 96, pp. 46:1–46:14. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2018). DOI 10.4230/LIPIcs.STACS.2018.46

26. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Proc. DCC
2010, pp. 239–248. IEEE (2010). DOI 10.1109/DCC.2010.29

27. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel–Ziv compression of genomes for
large-scale storage and retrieval. In: Proc. SPIRE 2010, LNCS, vol. 6393, pp. 201–206.
Springer (2010). DOI 10.1007/978-3-642-16321-0 20

28. Kuruppu, S., Puglisi, S.J., Zobel, J.: Optimized relative Lempel–Ziv compression of
genomes. In: Australasian Computer Science Conference, pp. 91–98. Australian Com-
puter Society, Inc. (2011)

29. Larsson, N.J.: Most recent match queries in on-line suffix trees. In: Proc. CPM 2014,
LNCS, vol. 8486, pp. 252–261 (2014). DOI 10.1007/978-3-319-07566-2 26

http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1804.08547

Lempel–Ziv-like Parsing in Small Space 21

30. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Science 387(3),
258–272 (2007). DOI 10.1016/j.tcs.2007.07.017

31. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectorization.
Software: Practice and Experience 45(1), 1–29 (2015)

32. Levenshtein, V.I.: On the redundancy and delay of decodable coding of natural numbers.
Systems Theory Research 20, 149–155 (1968)

33. Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative Lempel–
Ziv dictionaries. In: Proc. WWW 2016, pp. 807–816. International World Wide Web
Conferences Steering Committee (2016). DOI 10.1145/2872427.2883042

34. Mäkinen, V., Navarro, G.: Compressed full-text indexes. ACM Computing Surveys
39(1), 2 (2007). DOI 10.1145/1216370.1216372

35. Manzini, G.: An analysis of the Burrows–Wheeler transform. Journal of the ACM 48(3),
407–430 (2001). DOI 10.1145/382780.382782

36. Navarro, G.: Indexing highly repetitive collections. In: Proc. IWOCA 2012, LNCS, vol.
7643, pp. 274–279 (2012). DOI 10.1007/978-3-642-35926-2 29

37. Ochoa, C., Navarro, G.: RePair and all irreducible grammars are upper bounded by
high-order empirical entropy. IEEE Transactions on Information Theory (2018). DOI
10.1109/TIT.2018.2871452

38. Policriti, A., Prezza, N.: Fast online Lempel–Ziv factorization in compressed space.
In: Proc. SPIRE 2015, LNCS, vol. 9309, pp. 13–20. Springer (2015). DOI 10.1007/
978-3-319-23826-5 2

39. Policriti, A., Prezza, N.: LZ77 computation based on the run-length encoded BWT.
Algorithmica 80(7), 1986–2011 (2018). DOI 10.1007/s00453-017-0327-z

40. Puglisi, S.J.: Lempel–Ziv compression. In: Encyclopedia of Algorithms, pp. 1095–1100.
Springer (2016)

41. Shields, P.C.: Performance of LZ algorithms on individual sequences. IEEE Transactions
on Information Theory 45(4), 1283–1288 (1999). DOI 10.1109/18.761286

42. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. Journal of
the ACM 29(4), 928–951 (1982). DOI 10.1145/322344.322346

43. Tillson, T.W.: A hamiltonian decomposition of K∗2m, 2m ≥ 8. Journal of Combinatorial
Theory, Series B 29(1), 68–74 (1980). DOI 10.1016/0095-8956(80)90044-1

44. Valenzuela, D.: CHICO: A compressed hybrid index for repetitive collections. In:
Proc. SEA 2016, LNCS, vol. 9685, pp. 326–338. Springer (2016). DOI 10.1007/
978-3-319-38851-9 22

45. Wandelt, S., Leser, U.: FRESCO: Referential compression of highly similar sequences.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 10(5), 1275–
1288 (2013). DOI 10.1109/TCBB.2013.122

46. Wyner, A.J.: The redundancy and distribution of the phrase lengths of the fixed-
database Lempel–Ziv algorithm. IEEE Transactions on Information Theory 43(5),
1452–1464 (1997). DOI 10.1109/18.623144

47. Yann Collet, 2016: Zstandard. Retrieved from: https://facebook.github.io/zstd/. Ac-
cessed: 2018-09-17

48. Yuta Mori: libdivsufsort. https://github.com/y-256/libdivsufsort/
49. Ziv, J., Lempel, A.: On the complexity of finite sequences. IEEE Transactions on

Information Theory 22(1), 75–81 (1976). DOI 10.1109/TIT.1976.1055501
50. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory 23(3), 337–343 (1977). DOI 10.1109/TIT.1977.1055714

	Introduction
	Preliminaries
	ReLZ Parsing
	Empirical Entropy Upper Bound
	Lower Bound
	Implementation
	Experimental evaluation

