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Abstract Lempel-Ziv (LZ77 or, briefly, LZ) is one of the most effective and
widely-used compressors for repetitive texts. However, the existing efficient
methods computing the exact LZ parsing have to use linear or close to linear
space to index the input text during the construction of the parsing, which
is prohibitive for long inputs. An alternative is Relative Lempel-Ziv (RLZ),
which indexes only a fixed reference sequence, whose size can be controlled.
Deriving the reference sequence by sampling the text yields reasonable com-
pression ratios for RLZ, but performance is not always competitive with that
of LZ and depends heavily on the similarity of the reference to the text. In
this paper we introduce ReLZ, a technique that uses RLZ as a preprocessor to
approximate the LZ parsing using little memory. RLZ is first used to produce
a sequence of phrases, and these are regarded as metasymbols that are input
to LZ for a second-level parsing on a (most often) drastically shorter sequence.
This parsing is finally translated into one on the original sequence.
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We analyze the new scheme and prove that, like LZ, it achieves the kth
order empirical entropy compression nHy+o(nlog o) with k = o(log, n), where
n is the input length and ¢ is the alphabet size. In fact, we prove this entropy
bound not only for RelLZ but for a wide class of LZ-like encodings. Then, we
establish a lower bound on RelLZ approximation ratio showing that the number
of phrases in it can be £2(logn) times larger than the number of phrases in
LZ. Our experiments show that Rel.Z is faster than existing alternatives to
compute the (exact or approximate) LZ parsing, at the reasonable price of an
approximation factor below 2.0 in all tested scenarios, and sometimes below
1.05, to the size of LZ.

Keywords Lempel-Ziv compression - Relative Lempel-Ziv - empirical
entropy

1 Introduction

The Lempel-Ziv (LZ77 or, shortly, LZ) parsing is a central algorithm in data
compression: more than 40 years since its development [49,50], it is at the core
of widely used compressors (gzip, p7zip, zip, arj, rar...) and compressed formats
(PNG, JPEG, TIFF, PDF...), and receives much attention from researchers [3|
T91211[89,40] and developers in industry [IL47].

LZ parsing also has important theoretical properties. The number of phrases,
z, into which LZ parses a text has become the defacto measure of compressibil-
ity for dictionary-based methods [14], which in particular are most effective on
highly repetitive sequences [36]. While there are measures that are stronger
than LZ [42/23], these are NP-complete to compute. The LZ parse, which
can be computed greedily in linear time [20], is then the stronger measure of
dictionary-based compressibility on which to build practical compressors.

Computing the LZ parsing requires the ability to find previous occurrences
of text substrings (their “source”), so that the compressor can replace the
current occurrence (the “target”) by a backward pointer to the source. Parsing
in linear time [20] requires building data structures that are proportional to the
text size. When the text size exceeds the available RAM, switching to external
memory leads to prohibitive computation times. Compression utilities avoid
this problem with different workarounds: by limiting the sources to lie inside a
short sliding window behind the current text (see [13[411/46]) or by partitioning
the input into blocks and compressing them independently. These variants
can greatly degrade compression performance, however, and are unable in
particular to exploit long-range repetitions.

Computation of LZ in compressed space was first studied—to the best of
our knowledge—in 2015: A (14¢)-approximation scheme running in O(nlogn)
timeﬂ with O(z) memory, where n is the length of the input, was proposed
in [II], and an exact algorithm with the same time O(nlogn) and space
bounded by the zeroth order empirical entropy was given in [38]. The work [22]

1 Hereafter, log denote logarithm with base 2 if it is not explicitly stated otherwise.
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shows how to compute LZ-End—an LZ-like parsing—using O(z + ¢) com-
pressed space and O(nlog/) time w.h.p., where £ is the length of the longest
phrase. The recent studies on the Run-Length Burrows-Wheeler Transform
(RLBWT) [15] and its connections to LZ [3,39] have enabled the computation
of the LZ parsing in compressed space O(r) and time O(nlogr) via RLBWT,
where 7 is the number of runs in the RLBWT.

Relative Lempel-Ziv (RLZ) [27] is a variant of LZ that exploits another
approach: it uses a fixed external sequence, the reference, where the sources are
to be found, which performs well when the reference is carefully chosen [16133].
Different compressors have been proposed based on this idea [6[7)33]. When
random sampling of the text is used to build an artificial reference the expected
encoded size of the RLZ relates to the size of LZ [I16], however the gap is still
large in practice. Some approaches have done a second pass of compression
after RLZ [T91[6L[45] but they do not produce an LZ-like parsing that could be
compared with LZ.

In this paper we propose RelLZ, a parsing scheme that approximates the
LZ parsing by making use of RLZ as a preprocessing step. The phrases found
by RLZ are treated as metasymbols that form a new sequence, which is then
parsed by LZ to discover longer-range repetitions. The final result is then
expressed as phrases of the original text. The new sequence on which LZ is
applied is expected to be much shorter than the original, which avoids the
memory problems of LZ. In exchange, the parsing we obtain is limited to
choose sources and targets formed by whole substrings found by RLZ, and is
therefore suboptimal.

We analyze the new scheme and prove that, like LZ, it achieves the kth
order empirical entropy compression nHj, + o(nlogo) (see definitions below)
with k = o(log, n), where n is the length of the input string and o is the alpha-
bet size. We show that it is crucial for this result to use the so-called rightmost
LZ encoding [2IALELT0L29] in the second step of ReLZ; to our knowledge, this
is the first provable evidence of the impact of the rightmost encoding. In fact,
the result is more general: we show that the rightmost encoding of any LZ-
like parsing with O(log’z —) phrases achieves the entropy compression when a
variable length encoder is used for phrases. One might interpret this as an
indication of the weakness of the entropy measure. We then relate ReL.Z to
LZ—the de facto standard for dictionary-based compression—and prove that
the number of phrases in ReLZ might be 2(zlogn); we conjecture that this
lower bound is tight. The new scheme is tested and, in all the experiments,
the number of phrases found by ReLZ never exceeded 2z (and it was around
1.05z in some cases). In exchange, ReL.Z computes the parsing faster than the
existing alternatives.

The paper is organized as follows. In Sections [2] and [3| we introduce some
notation and define the ReLZ parsing and its variations. Section [4] contains the
empirical entropy analysis. Section [5| establishes the {2(zlogn) lower bound.
All experimental results are in Sections [6] and [7}
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2 Preliminaries

Let T'[1,n] be a string of length n over the alphabet X' = {1,2,...,0}; T[¢] de-
notes the ith symbol of T' and T'[i, j| denotes the substring T'[;]T[i+1] - - - T'[4].
A substring Ti, j] is a prefiz if i = 1 and a suffiz if j = n. The reverse of T
is the string T'[n]T[n — 1] --- T[1]. The concatenation of two strings T and T”
is denoted by T' - T" or simply T'T".

The zeroth order empirical entropy (see [24135]) of T[1,n] is defined as
Ho(T) = 3 .cx ¢ log =, where n. is the number of symbols ¢ in T and
“elog ;= = 0 whenever n. = 0. For a string W, let Ty be a string formed by
concatenatmg all symbols immediately following occurrences of W in T'[1,n];
e.g., Tup = aac for T = abababe. The kth order empirical entropy of T[1,n] is
defined as Hi(T) = D yesn |TTVLV|H0(TW), where X* is the set of all strings
of length k over X' (see [24L34L[35]). If T is clear from the context, Hy(T) is
denoted by Hj. It is well known that logo > Hy > H; > --- and Hj makes
sense as a measure of string compression only for & < log, n (see [12] for a
deep discussion).

The LZ parsing [49] of T[1,n] is a sequence of non-empty phrases (sub-
strings) LZ(T) = (P1, Ps, ..., P,) such that T'= P, P, - - - P,, built as follows.
Assuming we have already parsed T'[1,7 — 1], producing Pi, Pa, ..., Pj_1, then
P; is set to the longest prefix of T'[¢,n] that has a previous occurrence in T'
that starts before position i. Such a phrase P; is called a copying phrase, and
its previous occurrence in 7 is called the source of P;. When the longest prefix
is of length zero, the next phrase is the single symbol P; = T[i], and P; is
called a literal phrase. This greedy parsing strategy yields the least number of
phrases (see [49, Th. 1]).

LZ compression consists in replacing copying phrases by backward pointers
to their sources in T', and T' can obviously be reconstructed in linear time from
these pointers. A natural way to encode the phrases is as pairs of integers: for
copying phrases P;, a pair (d;,¢;) gives the distance to the source and its
length, ie., ¢; = |P | and T[|Py---Pj_1] — dj + 1,n] is prefixed by P;; for
literal phrases P; = ¢, a pair (c,0) encodes the symbol ¢ as an integer. Such
encoding is called rightmost if the numbers d; in all the pairs (d;, ;) are
minimized, i.e., the rightmost sources are chosen.

When measuring the compression efficiency of encodings, it is natural to
assume that ¢ is a non-decreasing function of n. In such premises, if each d;
component occupies [logn| bits and each ¢; component takes O(1 + log ;)
bits, then it is known that the size of the LZ encoding is upperbounded by
nHy + o(nlog o) bits, provided k is a function of n such that k = o(log, n);
see [I7241[37]. In the sequel we also utilize a slightly different encoding that,
for each d;, uses a universal code [9.32] taking logd; + O(1 + loglogd;) bits.

Other parsing strategies that do not necessarily choose the longest prefix
of T[i,n] are valid, in the sense that T can be recovered from the backward
pointers. Those are called LZ-like parses. Some examples are LZ-End [26],
which forces sources to finish at the end of a previous phrase, LZ77 with
sliding window [50], which restricts the sources to start in T[i — w,i — 1] for
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a fixed windows size w, and the bit-optimal LZ [10,25], where the phrases are
chosen to minimize the encoding size for a given encoder of pairs.

The RLZ parsing [27] of T'[1,n] with reference R[1,/] is a sequence of
phrases RLZ(T,R) = (Py, P, ..., P,) such that T = P, P5 - -- P,, built as fol-
lows: Assuming we have already parsed T'[1,7— 1], producing Pi, Ps, ..., Pj_1,
then P; is set to the longest prefix of T'[i,n] that is a substring of R[1,¢]; by
analogy to the LZ parsing, P; is a copying phrase unless it is of length zero;
in the latter case we set P; = T'[i], a literal phrase. Note that RLZ does not
produce an LZ-like parsing as we have defined it.

3 ReLZ Parsing

First we present RLZp..; [44], a variant of RLZ that instead of using an
external reference uses a prefix of the text as a reference to produce an LZ-
like parsing. The RLZy,.; parsing of T, given a parameter ¢, is defined as
RLZprefin(T,0) = LZ(T[1,0])- RLZ(T[¢+1,n],T[1,]). That is, we first com-
press T[1,¢] with LZ, and then use that prefix as the reference to compress
the rest, T[¢ + 1,n], with RLZ. Note that RLZ,,.s is an LZ-like parsing.

The ReLZ algorithm works as follows. Given a text T[1,n] and a prefix
size ¢, we first compute the RLZ,,.; parsing (P, Ps,..., P,) (so that T =
PP, ---P.). Now we consider the phrases P; as atomic metasymbols, and
define a string 7”[1, 2’] such that, for every ¢ and j, T'[i] = T'[j] iff P, = P;.
Then we compress 7”[1, 2] using LZ, which yields a parsing (P[, Py, ..., P.)
of T”. Finally, the result is transformed into an LZ-like parsing of T in a
straightforward way: each literal phrase P]{ corresponds to a single phrase
P; and, thus, is left unchanged; each copying phrase P} has a source 7"[p, g
and is transformed accordingly into a copying phrase in T" with the source
T[p',q'], where p’ = |P1Py---P,_1|+ 1 and ¢’ = |P\ P, - - - P,;|. Figure |l| shows
an example.

r m[alalclolelz[a[r[c]r]clc]a[a]c]c[r]c e a]r]

T a b b ¢ c d e a f g h d f g h
[N —
ReLZ(T,8) (T.0) (A0) (11) (C0) (L1) (CO)  (6.2) (21) (42) 8.2 (122)  (10,1) (76)

Fig. 1 An example of ReLZ, using prefix size £ = 8. The first line below the text shows
the string 7" corresponding to the RLZy,.s parsing. Note that the substring “GTCCAA”
occurs twice, but RLZ,,..y misses this repetition because there is no similar substring in the
reference. Nonetheless, both occurrences are parsed identically. The string 7" is then parsed
using LZ. The latter captures the repetition of the sequence “fgh”, and when this parsing
is remapped to the original text, it captures the repetition of “GTCCAA”.

Since both LZ [20] and RLZ [28] run in linear time, ReLZ can also be
implemented in time O(n).
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Obviously, the first £ symbols do not necessarily make a good reference for
the RLZ step in ReLZ. In view of this, it seems practically relevant to define
the following variant of ReLZ: given a parameter { = o(n), we first sample
in a certain way (for instance, randomly as in [I6]) disjoint substrings of T'
with total length ¢, then concatenate them making a string A of length £,
and apply ReLZ to the string AT} the output encoding of T is the [logn]-
bit number ¢ followed by an encoding of the LZ-like parsing of AT produced
by ReLZ. Nevertheless, throughout the paper we concentrate only on the first
version of ReLLZ, which generates an LZ-like parsing. This choice is justified by
two observations: first, it is straightforward that the key part in any analysis
of the second ReLZ variant is in the analysis of ReLZ for the string AT’; and
second, our experiments on real data comparing known sampling methods (see
Section show that the first version of ReLZ leads to better compression,
presumably because the improvements made by the sampling in the RLZ step
do not compensate for the need to keep the reference A.

4 Empirical Entropy Upper Bound

Our entropy analysis relies on the following lemmas by Gagie [12], Ochoa and
Navarro [37], and Gariczorz [17].

Lemma 1 ([I2, Th. 1]) For any string T[1,n] and any integer k > 0,
nH(T) = min{log(1/Pr(Q emits T))}, where the minimum is over all kth
order Markov processes ().

Lemma 2 ([17] and [37, Lm. 3]) Let Q be a kth order Markov process. Any
parsingT = PPy - - P, of a given string T[1,n] over the alphabet {1,2,... 0},
where all P; are non-empty, satisfies:

° c 1 n
log— <log ————— + O(ckl log —
; & ¢ o8 Pr(Q emits T) +Olcklogo +clog 0)7

where ¢; is the number of times P; occurs in the sequence Py, Ps, ..., P,.

Recall that in this discussion ¢ and k in Hj both are functions of n.
Now we are to prove that, as it turns out, the kth order empirical entropy
is easily achievable by any LZ-like parsing in which the number of phrases

is O(login): it suffices to use the rightmost encoding and to spend at most

logd; + O(1 + loglogd; + log¥;) bits for every pair (d;,¢;) corresponding to
a copying phrase (for instance, applying for d; and ¢; universal codes, like
Elias’s [9] or Levenshtein’s [32]). In the sequel we show that, contrary to the
case of LZ (see [241[37]), it is not possible to weaken the assumptions in this
result—even for ReLLZ—mneither by using a non-rightmost encoding nor by us-
ing logn + O(1 +log ¢;) bits for the pairs (d;, ¢;).
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Lemma 3 Fiz a constant o > 0. Given a string T[1,n] over the alphabet
{1,2,...,0} with o < O(n) and its LZ-like parsing T = P, Py --- P, such that
c < log , the rightmost encoding of the parsing in which every pair (d;, ;)
correspondmg to a copying phrase takes logd; + O(1 + loglog d; + log{;) bits
occupies at most nHy + o(nlog o) bits, for k = o(log, n).

Proof First, let us assume that k is a positive function of n, k& > 0. Since
k = o(log, n), it implies that log, n = w(1) and o = o(n). Therefore, all
literal phrases occupy O(clogo) = o(nlogo) bits. For i € {1,2,...,c}, de-
note by ¢; the number of times P; occurs in the sequence Py, P, ..., P.. Let
P, Pi,,..., P, be the subsequence of all phrases equal to F;. Slnce the en-
coding we con81der is rightmost, we have d;, +d;, +- - -+d;, < n. Therefore, by
the concavity of the function log, we obtain logd;, + log alz2 +---+logd;, <
c; log Cﬂ = ¢;log % + ¢;log f Similarly, we deduce loglogd;, + 1og log d;, +

-+ loglogd;.. < ¢ loglogﬂ and Zc 1logl; < clog . Hence, the whole
encodlng occupies y_;_(log £ + O(log log 2)) + O(clog %) + o(nlog o) bits.
By Lemmas [I] and 2] thlb sum is upperbounded by

nHy + O(clog — +ckloga+210glog )+0(nloga). (1)

=1
It remains to prove that all the terms under the big-O are o(nlogo). Since
k = o(log, n) and ¢ < ; g , we have cklogo < o(nlogo). As clog % is an in-
creasing function of ¢ when ¢ < n/2, we obtain clog 2 < O(g;;; loglog, n) =

o(nlog ). Further, loglog 2 = log(log % +log %) < loglog 2 +O(log £ /log %)
dlog e

due to the inequality log(z + d) < logz + . The sum Y_;_, loglog % is
upperbounded by clog & = o(nlogo). The sum Z 1 log & /log % is upper-
bounded by (clog c)/ log %, which can be estimated as O((n log O')/ loglog, n)
n = w(l), this is again o(nlog o).

Now assume that k = 0; note that in this case k& = o(log, n) even for
o = 2(n). Tt is sufficient to consider only the case o > 2VI°&" gince, for
o < 2VI8" we have ologo = o(nlogo) and log, n > /Iogn = w(1) and,
hence, the above analysis is applicable. As o can be close to @(n), the literal
phrases might now take non-negligible space. Let A be the subset of all symbols
{1,2,...,0} that occur in T For a € A, denote by i, the leftmost phrase P, =
a. Denote C' = {1,2,...,c} \ {iq: a € A}, the indices of all copying phrases.
The whole encoding occupies at most ), (log d; +O(1+loglog d; +log ;) +
|Allog o 4 O(|A|(1 +loglog o)) bits, which is upperbounded by » - logd; +
|Allog |A|4+O(n+nloglogn+clog %) + | Al log 147~ Observe that nloglogn <
o(ny/logn) < o(nlogo). Further, we have clog < n and \A|logﬁ < o,
both of which are o(nlogc) since 0 < O(n) < o(nlogo). It remains to bound
> icc logd; + |Allog |A| with nHy + o(n log O’)

Let us show that [A|log|A| < ), . 4 log . Indeed, we have ) , log ™~ =
log(n!4/ TT,c4 ¢i.), which, since 3, 4 ¢, g n, is minimized when all cla

are equal to ﬁ so that ) . ,log ™~ > [A|log|A|. For i € C, denote by
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i = Ci if |Pl| > 1,
and ¢, = ¢; — 1 otherwise (note that ¢, > 0 for all i € C). As in the
analysis for k > 0, we obtain ), - logd; < >, ~logZ. Fix i € C such

that |P;] = 1. Using the inequality log(x — d) > logz — d;igde7 we deduce

1og£ = —log(4 - 1) < log 2+ + IOge . Therefore, |Allog |[A] 4, colog 7 <
> 1log -+cloge =7 ;log < +clog +0(n). By Lernrnasand this is
upperbounded by . As k=0, ‘the terms under the big-O of (|l) degenerate
to clog + 37 loglog 2 2+, which is O(nloglogn) < o(nlogo). O

¢; the number of copying phrases equal to P;, i.e., ¢

It follows from the proof of Lemma [3| that, instead of the strict rightmost
encoding, it is enough to choose, for each copying phrase P; of the LZ-like
parsing, the closest preceding equal phrase—i.e., P; = P; with maximal ¢ < j—
as a source of P;, or any source if there is no such F;. This observation greatly
simplifies the construction of an encoding that achieves the Hj bound. Now
let us return to the discussion of the ReL.Z parsing.

Lemma 4 The number of phrases in the ReLZ parsing of any string T[1,n]
over the alphabet {1,2,...,0} is at most —, independent of the choice of

log
the prefix parameter £.

In
log, n

Proof For o > n'/?, we have > n and, hence, the claim is obviously

true. Assume that o < n'/?. As ¢ > 2, this implies n > 2° = 512. Suppose
that T'= P, P, - - - P; is the ReLZ parsing, for a given prefix size £. We are to
prove that there are at most 1+ 2y/n indices j < Z such that |P;| < }log, n

and |Pj;1] < +log, n. This will imply that every phrase of length leeb than
1 7log, n is followed by a phrase of length at least + 7 log, n, except for at most
2+2\/ﬁ exceptions (1+2+/n plus the last phrase). Therefore the total number
of phrases is at most 2+2f—|— W =2+42yn+g, 8n_. the term 2+2v/n

is upperbounded by since n > 512, and thus, the total number of phrases

In
log, n

It remains to prove that there are at most 1+ 2+/n pairs of “short” phrases
Pj, P;11. First, observe that any two equal phrases of the LZ parsing of the
preﬁx T[1,/] are followed by distinct symbols, except, possibly, for the last

phrase. Hence, there are at most 1 + ZL“ log, nJ Jk+1 <14 o20ilogsn <
1 +n?/9n1/* <1+ /n phrases of length 1ess than 1log, n in the LZ parsing
of T[1, /). Further, there cannot be two distinct indices j < j' < Z such that
P; = Py, Pj41 = Pjry1,and [Py Py --- Pj_1| > £ (i.e., P; and P} both are inside
the T[ﬂ + 1,n] part of T): indeed, the RLZ step of ReLZ necessarily parses
the substrings P;, Pj41 and Py, Pj41 equally, and then, the LZ step of ReLZ
should have reahzed during the parsing of Pj/Pj11 that this string occurred
previously in P;P;;; and it should have generated a new phrase comprising

log n

is at most as required.

Pj: Py 1. Therefore, there are at most o108 ngilog, n — v/n indices j < 2
such that P; and Pj;, both are “short” and P;Pj;, is inside T'[¢ + 1,n]. In
total, we 1hatve at most 1 + 2/n phrases P; such that |P;| < §log, n and
|Pj+1‘ <7z 10ga n. O
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Lemmas [3] and [] immediately imply the following theorem.

Theorem 1 Given a string T[1,n] over the alphabet {1,2,... 0} with o <
O(n), the rightmost encoding of any ReLZ parsing of T in which every pair
(dj;, ;) corresponding to a copying phrase takeslog d;+O(1+loglogd;+log¢;)
bits occupies nHy, + o(nlogo) bits, for k = o(log, n).

For LZ, it is not necessary to use neither the rightmost encoding nor less
than log n bits for the d; components of pairs in order to achieve the kth order
empirical entropy with & = o(log, n). In view of this, the natural question
is whether the ReLZ really requires these two assumptions of Theorem
The following example shows that indeed the assumptions cannot be simply
removed.

Example 1 Fix an integer b > 3. Our example is a string of length n = 5220 42°
over the alphabet {0, 1,2}. Denote by aj, as, ..., ay all possible binary strings
of length b. Put A = a12a22---as?2 (a1, as,...,aq separated by 2s). The ex-
ample string is T'= AB1 By - - - Bos_;, where each string By, is the concatena-
tion of a1, asg,...,aq in a certain order such that every pair of distinct strings
a; and a; can be concatenated in By By - - - Bov_; at most once. More precisely,
we have 2 — 1 permutations 7, of the set {1,2,...,2%}, for 1 < h < 2°,
such that By = ar, (1), (2) " * @, (2v) and, for every integers ¢ and j with
1 < i< j <2 at most one h satisfies m,(2°) = i and 7,41(1) = j, or
7n(k) =i and 7, (k + 1) = j, for some k < 2°.

Let us show that the permutations 7, can be constructed from a decompo-
sition of the complete directed graph K, with 2% vertices into 2° — 1 disjoint
Hamiltonian directed cycles; Tillson [43] proved that such decomposition al-
ways exists for 2b > 8. (Note that the number of edges in K3, is 22b _ 9b and
every Hamiltonian cycle contains 2° edges, so 2° — 1 is the maximal number
of disjoint cycles.) Denote the vertices of K3, by 1,2,..., 2. Every Hamilto-
nian cycle naturally induces 2° permutations 7: we arbitrarily choose (1) and
then, for £ > 1, put 7(k) equal to the vertex number following 7(k — 1) in the
cycle. Since the cycles are disjoint, any two distinct numbers ¢ and j cannot
occur in this order in two permutations corresponding to different cycles, i.e.,
mr(k) =i and mp(k + 1) = j, for some k, can happen at most in one h; fur-
ther, we put 71(1) = 1 and, for h > 1, we assign to 7, (1) the vertex number
following 77,_1(2%) in the cycle corresponding to mj,_1, so that mj,_1(2%) = 4
and 7, (1) = j, for fixed ¢ and j, can happen in at most one h.

Put ¢ = | A|, the parameter of ReLZ. Clearly, the RLZ step of ReLZ parses
BiBs -+ Byv_; into 2°(2° — 1) phrases of length b. By construction, all equal
phrases in the parsing are followed by distinct phrases. Therefore, the LZ step
of RelLZ does not reduce the number of phrases. Suppose that the source of
every copying phrase is in A (so, we assume that the encoding is not right-
most) and we spend at least logd; bits to encode each pair (d;, ;) corre-
sponding to a copying phrase. Therefore, the encoding overall occupies at
least Z?i(fb_l) log(ib) bits, which can be lowerbounded by Z?ibl_gb logi =
log((220 — 2b)1) = (220 — 2%)log(22° — 2°) — O(22°). Recall that n = b22° + 2°
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and, hence, b = O(logn), 22® = o(n), and 2°log(2% — 2b) = o(n). Thus,
(226 — 2%)1og(220 — 2%) — O(22%) > 2201og(22b — 2°) — o(n). By the inequal-
ity log(z — d) > logz — dml‘igde, the latter is lowerbounded by 22°log(2%?) —
0(2202b /(220 — 2%)) — o(n) = 2b22° — o(n) = 2n — o(n). On the other hand,
we obviously have Hy(T) ~ 1 and, thus, nHy(T) = n — o(n). Therefore, the
non-rightmost encoding, which forced us to use at least ~logn bits for many
pairs (d;, £;), does not achieve the zeroth empirical entropy of 7'

5 Lower Bound

We have not been able to upper bound the number of phrases Z resulting from
ReLZ in terms of the optimal number z of phrases produced by the LZ parsing
of T. Note that, in the extreme cases £ = n and ¢ = 0, we have Z = z, but
these are not useful choices: in the former case we apply LZ(T) in the first
phase and in the latter case we apply LZ(T"), with T/ ~ T, in the second
phase. In this section, we obtain the following lower bound.

Theorem 2 There is an infinite family of strings over the alphabet {0,1,2}
such that, for each family string T[1,n], the number of phrases in its ReLZ
parse (with an appropriate parameter £ = o(n)) and its LZ parse—respectively,
Z and z—are related as Z = 2(zlogn).

Proof The family contains, for each even positive integer b, a string 7" of length
O(b?2%) built as follows. Let A be the concatenation of all length-b binary
strings in the lexicographic order, separated by the special symbol 2 and with
2 in the end. Let S be the concatenation of all length-b binary strings in the
lexicographic order. (E.g., A = 002012102112 and S = 00011011 for b = 2.)
Finally, let S; be S cyclically shifted to the left ¢ times, ie., S; = S[i +
1,]8]] - S[1,4]. Then, put T'= AS1Ss - - - Sy and we use £ = |A| as a parameter
for ReLZ. So n = |T| = ©(b?2%) and logn = O(b). We are to prove that
z = |LZ(T)| = O(2%) and 2 = |ReLZ(T, ¢)| = £2(b2%), which will imply 2 =
£2(zlogn), thus concluding the proof.

By [49, Th. 1], the LZ parse has the smallest number of phrases among all
LZ-like parses of T. Therefore, to show that z = O(2), it suffices to describe
an LZ-like parse of T' with O(2°) phrases. Indeed, the prefix A can be parsed
into O(2°) phrases as follows: all symbols 2 form phrases of length one; the
first length-b substring 00---0 can be parsed into b literal phrases 0; every
subsequent binary length-b substring ajas---ap with ap = 1 and apy1 =
agy2 =+ =ap = 0, for some k € {1,2,...,b}, can be parsed into the copying
phrase ajasg - - - ai—1 (which must be a prefix of the previous length-b binary
substring ajas - - - ag—1011--- 1, due to the lexicographic order in A), the literal
phrase 1, and the copying phrase axi1agy2---ap = 00---0. The string S; can
be analogously parsed into O(2°) phrases. Each S;, i > 2, can be expressed
as two phrases that point to S;. Thus, we obtain z < |LZ(A)| + |LZ(S1)| +
2(b/2 — 1) = O(2%).
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Now consider Z. The first phase of ReLZ(T, ¢) parses T into phrases whose
sources are restricted to be within T'[1,¢] = A. Therefore, it is clear that, for
any ¢ € {1,2,..., g}, S; will be parsed into 2° strings of length b, because
every length-b string is in A separated by 2s. In what follows we show that
the second phase of ReLZ cannot further reduce the number of phrases and,
hence, 2 > 22° = 2(b2°) as required.

Let us consider S; and S}, for some 7 < j, and let us denote their parsings
by Ri,Ry,..., Ry and Ry, R5, ..., R,,, respectively. Suppose that there are
indices k and h such that Ry = Rj. We are to prove that Ryy1 # Rj
(assuming Ry, is the length-b prefix of S;y; if k& = 2°, and analogously for
h = 2%). This will imply that all phrases produced by the second phase of
ReLZ on the string of metasymbols are of length one.

Consider the case k < 2° and h < 2°. Let us interpret the bitstrings of
length b as numbers so that the most and the least significant bits are indexed
by 1 and b, respectivelyﬂ e.g., in the string 01, for b = 2, the least significant bit
is the second symbol and equals 1. In this way we can see S = Q1Q2 - - - Qg»,
where |Q1] = -+ = |Qa| = b, as generated by adding 1 to the previous
bitstring, starting from @; = 00---0. Now, the (b — )th symbols of Ry and
Ry are different since they correspond to the lowest bit in Q1,Q2, ..., Qs
(thus, the (b—i)th symbol alternates in Ry, ..., Ros, starting from 0). Suppose
that the (b — i)th symbols of Rj, and Rj,_; also differ (otherwise our claim is
trivially true). Since 0 < ¢ < j, this implies that the symbols b,b—1,... b—i+1
inRj and 1,2,...,b—jin R’h-s-l all are equal to 1 (this cascade of ones triggers
the change in the (b —4)th symbol of R}, ), the symbols b,b—1,...,b—i+1
in R)_, equal 0 (as a result of the “collapse” of the cascade), and the (b—j)th
symbol in R} equals 0 (since (b — j)th symbols alternate in R}, ..., R, and
the (b — j)th symbol in Rj;,_ | equals 1 as a part of the cascade).

In the following example b = 12, i = 4, j = 8, ¢ denotes irrelevant symbols
(not necessarily equal), z and T denote the flipped (b—i)th symbol, the (b—j)th
symbol is underlined:

R}, = o000000x1111,
R}, = 111100070000.

When we transform Ry = R}, to Ri4+1, we “add” 1 to the bit corresponding
to the (b—i)th symbol of Ry and the zero at position b—j will stop carrying the
1, so that we necessarily have zero among the symbols b—¢,b—i—1,...,b—3j
of Ri41 (in fact, one can show that they all are zeros except for b — j). Thus,
the next “addition” of 1 to the (b — ¢)th symbol of Ry, cannot carry farther
than the (b — j)th symbol and so the symbols b,b—1,...,b—i+ 1 will remain
equal to 1 in Ry whilst in Rj_, they are all zeros. Therefore, Rj | # Ri1-

In the case k = 2°, R, = 11---100---0, with b — i ones, is followed by
Rpy1=00---0, with b zeros. But, since Rj, = Ry and i < j, we have R}, =
00---011---100---0, with j — i ones, after “adding” 1 to the (b— j)th symbol
of R),. The case h = 2% is analogous. a

2 To conform with the indexation scheme used throughout the paper, we do not follow
the standard practice to index the least significant bit as zeroth.
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6 Implementation

To build RLZyyf, we first compute LZ(T'[1, ¢]) and then RLZ(T[¢+1,n],T[1, £]).
For both of them, we utilize the suffix array of T[1, ¢], which is constructed us-
ing the algorithm libdivsufsort [48[18]. To compute LZ(T[1,¢]), we use the
KKP3 algorithm [20]. To compute RLZ(T'[¢+1,n],T[1,£]), we scan T[¢+1,n]
looking for the longest match in T'[1,¢] by the standard suffix array based
pattern matching.

The output phrases are encoded as pairs of integers: each pair (p;,¢;)
represents the position, p;, of the source for the phrase and the length, /;,
of the phrase (note that this is in contrast to the “distance-length” pairs
(d;, ;) that we had for encodings). We then map the output into a sequence
of numbers using 2[log ¢|-bit integers with [log ¢] bits for each pair component.
This is possible because we enforce that our reference size is £ > o.

Finally, we compute the LZ parse using a version of KKP3 for large alpha-
bets, relying on a suffix array construction algorithm for large alphabets [30,
18]. We then remap the output of LZ to point to positions in T as described.

6.1 A recursive variant

When the input is too big compared to the available RAM, it is possible
that after the first compression step, RLZ,,.y, the resulting parse is still too
big to fit in memory, and therefore it is still not possible to compute its LZ
parse efficiently. To overcome this issue in practice, we propose a recursive
variant, which takes as input the amount of available memory. The first step
remains the same, but in the second step we make a recursive call to ReLZ,
ignoring the phrases that were already parsed with LZ, and using the longest
possible £ value for the given amount of RAM. This recursive process continues
until the LZ parse can be computed in memory. It is also possible to give an
additional parameter that limits the number of recursive calls. We use the
recursive version only in the last set of experiments when comparing with
other LZ parsers in Subsection [7.4]

6.2 A better mapping

When the recursive approach is used we need a better mapping from pairs
of integers into integers: the simple approach described above requires 2 log ¢
bits for the alphabet after the first iteration, but in the following iterations
the assumption ¢ < ¢ may not hold anymore and the amount of bits required
to store the first values may increase at each iteration. We propose a simple
mapping that overcomes this problem. Let o; be the size of the alphabet used
by the metasymbols after the ith iteration. To encode the metasymbols of the
(i + 1)-iteration we use first a flag bit to indicate whether the phrase is literal
or copying. If the flag is 0, then it is a literal phrase (c,0) and logo; bits are
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v [ele[a[¥[a]e e s r[alc s r s r r alc]s]r r[a]c]
LZ77 RLZ
v [ele[alx{el i =l ]1 [m]c i [n]c]
LZ77 / RLZ /
i [elFlAlx e[ Twlefalc ale]
LZ77 /
i [eFlATe e[ [nlolal]+]

Fig. 2 Example of the recursive ReLZ approach, assuming that the available memory limits
the computation of LZ to sequences of length 5. The figure only shows the recursive parsing.
The rewriting of the phrases proceeds later, bottom up, in a similar fashion as depicted in
Figure

used to store the ¢ value. If the flag is 1, then it is a copying phrase (p;, ;) and
then 2log ¢ bits are used to store the numbers. In this way, after each iteration
the number of bits required to store the metasymbols increases only by 1.

Table 1 Collections used for the experiments, some basics statistics, and a brief description
of their source. The first group includes medium-sized collections, from 45 to 202 MiB, while
the second group consist of large collections, from 22 to 64GiB. Each group has both regular
collections and highly repetitive collections, attested by the average phrase length n/z.

Name o n n/z Type Source
English 225 | 200 MiB 15 | English text Pizzachili
Sources 230 | 202 MiB 18 | Source code Pizzachili
Influenza 15 | 148 MiB 201 Genomes Pizzachili
Leaders 89 45 MiB 267 | English text Pizzachili
Wiki 215 24 GiB 90 Web pages | Wikipedia dumps
Kernel 229 64 GiB | 2439 | Source code Linux Kernel
CereHR 5 22 GiB | 3746 Genomes Pizzachili

We implemented ReLZ in C++ and the source code is available under
GPLv3 license in https://gitlab.com/dvalenzu/RelZ. The implementation
allows the user to set the value of £ or, alternatively, to provide the maximum
amount of RAM to be used. Additionally, scripts to reproduce our experiments
are available at https://gitlab.com/dvalenzu/ReLZ_experiments| For the
experimental evaluation, we used collections of different sizes and kinds. They
are listed in Table [1] with their main properties. The experiments were run on
a desktop computer equipped with a Intel(R) Core(TM) i5-7500 CPU, with 4
cores, 3.60GHz and 16GB of RAM.


https://gitlab.com/dvalenzu/ReLZ
https://gitlab.com/dvalenzu/ReLZ_experiments
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7 Experimental evaluation
7.1 Entropy coding

First we compare the encoded size of ReLZ with the k-order empirical entropy,
and also with the encoded size of LZ77. For both ReLZ and LZ77 we used
Elias-gamma codes. The results are presented in table

We observe that in the small and low-repetition collections (English and
source) ReLZ requires some extra space than Hy for higher values of k. This
can be attributed to the o() term in our analysis. Also we observe the same
behavior for LZ77. As expected, for the highly repetitive collections, both
RelZ and LZ77 use less space than the entropy. This is due to the known
fact that for highly repetitive collections, z is a better measurement of the
compressibility than the empirical entropy. Therefore, in the following sections,
we proceed to study empirically how does ReLZ compare to LZ77 in terms of
number of phrases produced by the parsers.

Table 2 Empirical entropy of order k of our collections for k = 1,2, ...6; and encoded size
of ReLZ and LZ77. All values are expressed as bits per character (bpc).

Entropy Hy ReLZ(bpc); £ = || LZ(bpc)
Name H() H1 H2 H3 H4 H5 Hb' 10MB 50MB
English 4.52 | 3.62 | 2.94 | 242 | 2.06 | 1.83 | 1.67 3.53 3.02 2.65
Sources 5.46 | 4.07 | 3.10 | 2.33 1.85 1.51 1.24 2.97 2.64 1.94
Influenza | 1.97 | 1.93 1.92 1.92 1.91 1.87 1.76 0.29 0.24 0.20
Leaders 3.47 | 1.95 | 1.38 | 0.93 | 0.60 | 0.40 | 0.32 0.15 0.13 0.13
Wiki 527 | 3.86 | 2.35 | 1.49 | 1.08 | 0.86 | 0.71 0.79 0.80 0.56
Kernel 5.58 | 4.14 | 3.16 | 2.39 | 1.92 | 1.58 | 1.32 0.02 0.02 0.018
CereHR 2.19 | 1.81 | 1.81 1.80 | 1.80 | 1.80 | 1.80 0.02 0.02 0.013

7.2 Effect of Reference Sizes

We first study how the size of the prefix used as a reference influences the
number of phrases produced by RLZy,.; and ReLZ. These experiments are
carried out only using the medium-sized collections, so that we can run Rel.Z
using arbitrarily large prefixes as references and without recursions. We ran
both algorithms using different values of £ = n/10,2n/10,...,n.

The results are presented in Figure [3] By design, both algorithms behave
as LZ when { = n. RLZ,,.s starts far off from LZ and its convergence is not
smooth but “stepped”. The reason is that at some point, by increasing ¢, the
reference captures a new sequence that has many repetitions that were not
well compressed for smaller values of £. Thus RLZ,.s is very dependent on
the choice of the reference. ReLZ, in contrast, is more robust since the second
pass of LZ does capture much of those global repetitions. This results in Rel.Z
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Fig. 3 Performance of RLZ,..s (green) and ReLZ (blue) for different prefix-reference sizes
on medium-sized inputs. The y-axis shows the approximation ratio 2/z. The x-axis shows
£/n, the size of the prefix-reference expressed as a fraction of the input size.

being very close to LZ even for £ = n/10, particularly in the highly repetitive
collections.

7.3 Reference Construction

As discussed in Section [3] the idea of a second compression stage applied to
the phrases can be applied not only when the reference is a prefix, but also
when an external reference is used. This allows us to study variants of Rel.Z
combined with different strategies to build the reference that aim for a better
compression in the first stage.

In this section we experimentally compare the following approaches:

PREFIX: Original version using a prefix as a reference.

RANDOM: An external reference is built as a concatenation of random samples
of the collection [I9.[16].

PRUNE: A recent method [33] that takes random samples of the collections and
performs some pruning of redundant parts to construct a better reference.

An important caveat is that methods using an external reference also need
to account for the reference size in the compressed representation because the
reference is needed to recover the output. For each construction method, we
measure the number of phrases produced for the string “reference + text” (only
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Wiki CereHR

10 1000
RLZ ALZ mm
RelZ === RelZ ===

100 |
10 b
1 1

8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB 8MB 400MB 1GB
Prefix Prune Random Prefix Prune Random

1000

e
—,

8MB 400MB 1GB BMB 400MB 1GB 8MB 400MB 1GB
Prefix Prune Random

Fig. 4 Approximation ratio 2/z for different methods to construct the reference and dif-
ferent reference lengths: in green the results after RLZ,,.s, and in blue after ReLZ. Note
that the highly repetitive collections (CereHR and Kernel) use logarithmic scale.

“text” for the method PREFIX) by the first stage (RLZp, ey with prefix equal to
the reference) and by the second stage (LZ on metasymbols corresponding to
the phrases), using three reference sizes: 8MB, 400MB, and 1GB. We compare
the numbers to z, the number of phrases in the LZ parsing of the plain text.
This experiment was performed on the large collections and the results are
presented in Figure [

We observe that the second stage of ReL.Z reduces the number of phrases
dramatically, regardless of the reference construction method. ReLZ with the
original method PREFIX achieves the best ratios as it does not need to account
for the external reference. Depending on the reference size, the approximation
ratio in Wiki ranges between 1.4 and 1.29, in CereHR between 1.84 and 1.63,
and in Kernel between 1.49 and 1.03.

Additionally, we observe that although PRUNE can improve the results of
the RLZ,,. stage, after the second stage the improvements do not compensate
for the need to keep an external reference. This is particularly clear for the
largest reference in our experiments.
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7.4 Lempel-Ziv Parsers

In this section we compare the performance and scalability of ReLZ against
other Lempel-Ziv parsers that can also run in small memory (this time, using
the recursive version of ReLZ).

EMLZ [21]: External-memory version of the exact LZ algorithm, with memory
usage limit set to 4GB.

LZ-End [22]: An LZ-like parsing that gets close to LZ in practice.

ORLBWT [3]: Computes the exact LZ parsing via online computation of the
RLBWT using small memory.

RLZpgrE: Our RLZ,,.; algorithm (Section , with memory usage limit set to
4GB.

ReLZ: Our ReLZ algorithm (Section , with memory usage limit set to 4GB.

To see how well the algorithms scale with larger inputs, we took prefixes of
different sizes of all the large collections and ran all the parsers on them. We
measured the running time of all of the algorithms and, for the algorithms that
do not compute the exact LZ parsing, we also measured the approximation
ratio £/z. The results are presented in Figure

Figure [5| (left) shows that ReLZ is much faster than all the previous meth-
ods and also that the speed is almost unaffected when processing larger inputs.
Figure 5| (right) shows that the approximation ratio of ReLZ is affected very
mildly as the input size grows, especially in the highly repetitive collections.
For the normal collections, the approximation factor is more affected but it
still remains below 2.

7.5 Compression ratio

In this section we study the compression ratio of ReLLZ. We store the pos and
len values in separate files, encoding them using a modern implementation of
PFOR codes [31] in combination with a fast entropy coder [8]. We compare
against state of the art compressors (LZMA, Brotli) and also agains a very
recent RLZ compressor (RLZ-store). We measure compression ratios, com-
pression times and decompression times of these tools in the large collections,
whose size exceeds the available RAM of the system.

The results are shown in Figure @ In the normal collection (Wiki) the per-
formance of ReLLZ is competitive with the state of the art compressors. In the
highly repetitive collections (Cere, Kernel) ReLZ gives the best compression
ratios, with very similar compression times and competitive decompression
times.

Additionally, we run a comparisson again GDC2 and FRESCO. Both tools
are designed to compress a collection of files, using one (or more) as a reference,
and perform referential compression plus second order compression. GDC2 is
specifically designed to compress collections of genomes in FASTA format, and
it exploits known facts about genomes collections (e.g. an important amount
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Fig. 5 Performance of different LZ parsers in the large collections. The z axis is the size
of the input: increasingly larger prefixes of a given collection. Plots on the left show the
running time in seconds per MiB. Plots on the right show the approximation ratio 2/z.

of the variations are changes in a single character). For this, we use a 90GB
collection comprising 2001 different versions of chromosome 21. As expected,
GDC2 was the dominant tool, with a compression ratio of 0.00020, compression
time of 15 minutes and decompression time of 15 minutes. ReLZ compression
ratio was 0.00047, compression time was 49 minutes and decompression time
was 50 minutes. We stopped FRESCO execution after 8 hours, when it had
processed slightly more than half of the collection.
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Fig. 6 Compression results for large collections. The x-axis is the ratio between output
and input, and the y-axis is the total compression time in seconds.
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