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Abstract. Given a text T [1..u] over an alphabet of size σ, the full-text search problem consists in
finding the occ occurrences of a given pattern P [1..m] in T . In indexed text searching we build an
index on T to improve the search time, yet increasing the space requirement. The current trend in
indexed text searching is that of compressed full-text self-indices, which replace the text with a more
space-efficient representation of it, at the same time providing indexed access to the text. Thus, we can
provide efficient access within compressed space.
The Lempel-Ziv index (LZ-index) of Navarro is a compressed full-text self-index able to represent T
using 4uHk(T ) + o(u log σ) bits of space, where Hk(T ) denotes the k-th order empirical entropy of T ,
for any k = o(logσ u). This space is about four times the compressed text size. The index can locate all
the occ occurrences of a pattern P in T in O(m3 log σ +(m+ occ) log u) worst-case time. Although this
index has proven very competitive in practice, the O(m3 log σ) term can be excessive for long patterns.
Also, the factor 4 in its space complexity makes it larger than other state-of-the-art alternatives.
In this paper we present stronger Lempel-Ziv based indices (LZ-indices), improving the overall perfor-
mance of the original LZ-index. We achieve indices requiring (2+ǫ)uHk(T )+o(u log σ) bits of space, for
any constant ǫ > 0, which makes them the smallest existing LZ-indices. We simultaneously improve the
search time to O(m2 + (m + occ) log u), which makes our indices very competitive with state-of-the-art
alternatives. Our indices support displaying any text substring of length ℓ in optimal O(ℓ/ logσ u) time.
In addition, we show how the space can be squeezed to (1+ ǫ)uHk(T )+ o(u log σ) to obtain a structure
with O(m2) average search time for m > 2 logσ u. Alternatively, the search time of LZ-indices can be
improved to O((m + occ) log u) with (3 + ǫ)uHk(T ) + o(u log σ) bits of space, which is much less than
the space needed by other Lempel-Ziv-based indices achieving the same search time. Overall our indices
stand out as a very attractive alternative for space-efficient indexed text searching.

1 Introduction

Text searching is a classic problem in Computer Science. Given a sequence of symbols T [1..u] (the
text) over an alphabet Σ = {1, . . . , σ}, and given another (short) sequence P [1..m] (the search
pattern) over Σ, the full-text search problem consists in finding all the occ occurrences of P in T .
There exist three typical kinds of queries, namely:

– Existential queries: operation exists(P ) tells us whether pattern P occurs in T or not.
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– Cardinality queries: operation count(P ) counts the number of occurrences of pattern P in T .

– Locating queries: operation locate(P ) reports the starting positions of the occ occurrences of
pattern P in T .

With the huge amount of text data available nowadays, the full-text search problem plays a
fundamental role in modern computer applications, which include text databases in general. Unlike
word-based text searching, we wish to find any text substring, not only whole words or phrases. This
has applications in texts where the concept of word is not well defined (e.g. Oriental languages), or
texts where words do not exist at all (e.g., DNA, protein, and MIDI pitch sequences, program code,
etc.). We assume that the text is large and known in advance to queries, and we need to perform
many queries on it. Therefore, we can construct an index on the text, which is a data structure
allowing efficient access to the pattern occurrences, yet increasing the space requirement.

Classical full-text indices, like suffix trees [1] and suffix arrays [33], have the problem of a high
space requirement: they require O(u log u) and u log u bits respectively, which in practice is about
10–20 and 4 times the text size respectively, apart from the text itself. Thus, we can have large
texts which fit into main memory, but whose corresponding suffix tree (or array) does not. Using
secondary storage for the indices is several orders of magnitude slower, so one looks for ways to
reduce their size, with the main motivation of maintaining the indices of very large texts entirely in
main memory. Therefore, we seek to provide fast access to the text using as little space as possible.
The modern trend is to use the compressibility of the text to reduce the space of the index. In
recent years there has been much research on compressed text databases, focusing on techniques to
represent the text and the index using little space, yet permitting efficient text searching [41].

1.1 Compressed Full-Text Self-Indexing

To provide fast access to the text using little space, a current trend is to use compressed full-text
self-indices.

Definition 1. A compressed full-text index is one whose space requirement is proportional to the
compressed text size under some compression model (e.g., O(uHk(T )) bits of space4).

Therefore, the space of such an index can be reduced when the text is compressible. This track was
started by Kärkkäinen and Ukkonen [27, 26], who studied text indices based on repetitions, and
defined the first indices based on the Lempel-Ziv compression algorithms [29]. Later, Grossi and
Vitter [22] defined the Compressed Suffix Arrays, based on regularities of suffix arrays to reduce
their space. However, and just like classical indices, all these indices still need the text to operate.
An important space saving can be achieved if we lift this restriction.

Definition 2. A full-text self-index allows one to search and extract any part of the text without
storing the text itself.

A compressed full-text self-index replaces the text with a more space-efficient representation of it
(profiting from text compressibility to obtain smaller indices), at the same time providing indexed
access to the text [41, 16]. Taking space proportional to the compressed text, replacing it, and

4 uHk(T ), the k-th order empirical entropy of T , is a lower bound to the number of bits used to represent T by any
k-th order compressor. See Section 2.2 for more details.
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providing efficient indexed access to it is an unprecedented breakthrough in text indexing and
compression.

Ferragina and Manzini [14–16], and Sadakane [45] defined the first self-indices. The former is a
representation of Compressed Suffix Arrays [22] which does not need the text to operate. The index
of Ferragina and Manzini, on the other hand, is based on the close relation between suffix arrays and
the Burrows-Wheeler transform [9]. Later, many other compressed self-indices were defined, such
as the ones by Grossi et al. [21], Navarro [39, 40], Mäkinen and Navarro [30], Ferragina et al. [17],
and Russo and Oliveira [44], among others. An important survey about compressed self-indices is
given by Navarro and Mäkinen [41].

Compressed full-text self-indices are not only useful to reduce the space requirement of text
indices: they also have applications in cases where accessing the text is so expensive that the index
must search without having the text at hand, as occurs with most Web search engines.

Extending the Set of Operations. As compressed full-text self-indices replace the text, we are
also interested in operations:

– Displaying contexts around occurrences: operation display(P, ℓ) shows us a context of ℓ symbols
surrounding the occ occurrences of pattern P in T .

– Decompressing parts of the text : operation extract(i, j) decompresses the substring T [i..j], for
any text positions i 6 j.

Thus we can see compressed self-indices as full-text indices compressing the text, or as compressors
allowing efficient text extraction and indexed full-text searching. For compressed full-text self-
indices, which replace the text, being able to efficiently extract arbitrary text substrings is one of
the most basic and important problems that indices must solve efficiently.

Families of Compressed Self-Indices. The main types of compressed self-indices [41] are:

– Compressed Suffix Arrays [22] (CSAs for short), as for instance Sadakane’s CSA (Sad-CSA)
[45], and Grossi et al.’s CSA (GGV-CSA) [21];

– indices based on backward search [16] (which are alternative ways to compress suffix arrays,
known as the FM-index family), as for instance the Alphabet-Friendly FM-index (AF-FMI)
[17]; and

– indices based on Lempel-Ziv compression [29, 48] (LZ-indices for short), as for instance Kärkkäinen
and Ukkonen’s LZ-index [27], Ferragina and Manzini’s LZ-index [16], Navarro’s LZ-index (Nav-

LZI) [39], and Russo and Oliveira’s LZ-index (ILZI) [44].

In Table 1 we show the most efficient existing compressed self-indices, where the different
families are separated by horizontal lines. We are particularly interested in LZ-indices, since they
have been proven to be very effective in practice for locating occurrences and extracting text [40,
12], outperforming other compressed indices. Also, when the texts are highly compressible, LZ-
indices can in practice be smaller and faster than alternative indices, and in other cases they offer
very attractive space/time trade-offs [4]. What characterizes the particular niche of LZ-indices is
the O(uHk(T )) space combined with O(log u) time per located occurrence.
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Previous Work on LZ-Indices. Historically, the first compressed index based on Lempel-Ziv
compression was that of Kärkkäinen and Ukkonen [27, 26] (which is based on a specific version of
the Lempel-Ziv parsing algorithm of 1976 [29]). It has a locating time of O(m2+(m+occ) log u) and
a space requirement of O(uHk(T )) bits, plus the text (as it is needed to operate) [41]. Navarro’s
LZ-index [39, 40], on the other hand, is a compressed full-text self-index based on the Lempel-
Ziv 1978 [48] (LZ78 for short) parsing of the text. See Section 2.3 for a description of the LZ78
compression algorithm. The LZ-index takes about 4 times the size of the compressed text, that is,
4uHk(T )+o(u log σ) bits, for any k = o(logσ u) [28, 16], and supports locate queries in O(m3 log σ+
(m + occ) log u) worst-case time. The index can display a text context of length ℓ around an
occurrence found (and in fact any sequence of LZ78 phrases) in O(ℓ log σ) time, or obtain the whole
text in time O(u log σ). The index is built in O(u log σ) time.

Despite this index having been proven to be very competitive in practice [39, 40], the O(m3 log σ)
term in the search time makes it appropriate only for short patterns. Besides, in practice the space
requirement of the LZ-index is relatively large compared with competing schemes: 1.2–1.6 times
the text size (depending on the compressibility of the text) versus 0.6–0.7 and 0.3–0.8 times the
text size of the CSA [45] and the FM-index [16], respectively. Yet, the LZ-index is faster to locate
and to display the context of an occurrence, which as explained is very important for self-indices.

So the challenge is: can we reduce the space requirement of the LZ-index while retaining its
good features? Previous work [4] studies the reduction of the space requirement of LZ-index from
a practical approach. The result is an LZ-index requiring (2 + ǫ)uHk(T ) + o(u log σ) bits of space,

and with O(m2

ǫ ) time on average for locate queries. However, the space of LZ-index cannot be
further reduced by using that approach.

1.2 Our Contribution

In this paper we go one step further on the results of previous work [4], not only reducing by half
the space requirement of the LZ-index, but also improving its time complexities. The result is an
attractive alternative to the state of the art in compressed self-indexing.

First, in Section 4, we compress one of the data structures composing the original LZ-index
by using an approach which is, in some sense, related to the compression of suffix arrays [22, 45].
Second, in Section 5, we combine the balanced parentheses representation of Munro and Raman
[38] of the LZ78 trie with the xbw transform of Ferragina et al. [13], whose powerful operations are
useful for the LZ-index search algorithm.

Although these approaches are very different, when σ = Θ(polylog(u)) (that is, on moderate-size
alphabets, which are very common in practice) we achieve in both cases (2 + ǫ)uHk(T ) + o(u log σ)
bits of space, for any constant ǫ > 0, and simultaneously improve the original worst-case search
time to O(m2 + (m + occ) log u). Thus we achieve the same search time as the index of Kärkkäinen
and Ukkonen [27], yet ours are much smaller and do not need the text to operate. In both cases we
also present a version requiring (1 + ǫ)uHk(T ) + o(u log σ) bits, with average search time O(m2) if
m > 2 logσ u. This space can get as close as desired to the optimal uHk(T ) under the k-th order
entropy model. The worst-case time for extracting any text substring of length ℓ is also improved
to the optimal O(ℓ/ logσ u) for all of our indices.

Just as for the original LZ-index, our data structures require O(uHk(T )) bits and spend O(log u)
time per occurrence reported, if σ = Θ(polylog(u)). This fast locating is the strongest point of our
structure. Other data structures achieving the same or better complexity for locating occurrences
either are of size O(uH0(T )) bits plus a non-negligible extra space of O(u log log σ) [45], or they
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achieve this locating time for constant-size alphabets [16]. Finally, the GGV-CSA [21] requires

ǫ−1uHk(T )+o(u log σ) bits of space, with a locating time of O((log u)
ǫ

1−ǫ (log σ)
1−2ǫ
1−ǫ ) per occurrence,

after a counting time of O( m
logσ u + (log u)

1+ǫ
1−ǫ (log σ)

1−3ǫ
1−ǫ ), where 0 < ǫ < 1/2 is a constant. When ǫ

approaches 1/2, the space requirement approaches (from above) 2uHk(T ) + o(u log σ) bits, with a

counting time of O( m
logσ u + log3 u

log σ ) and still a locating time per occurrence of ω(log u).

In Table 1 we summarize the space and time complexities of some existing compressed self-
indices (other less competitive ones are ignored [41]). Total locate times in the table require counting
the pattern occurrences first. For counting the number of occurrences of P in T , our data structures
are not competitive with schemes requiring about the same space [21, 17]. Yet, in many practical
situations, it is necessary to report the occurrence positions, as well as displaying their contexts
and extracting (or uncompressing) any text substring. In this aspect, as explained, our LZ-indices
are superior.

A new LZ-index, the Inverted LZ-index (ILZI for short) [44], has appeared independently and
simultaneously with our work [6]. The ILZI is faster than our data structures since it can report
the pattern occurrences in O((m + occ) log u) time, but at the price of a higher space requirement:
(5 + ǫ)uHk(T ) + o(u log σ) bits. However, in this paper we also show that the same reporting time
O((m+ occ) log u) can be obtained with a significantly smaller LZ-index requiring (3+ ǫ)uHk(T )+
o(u log σ) bits of space. In practice, our LZ-indices and the ILZI are comparable.

Table 1. Comparison of our LZ-index with alternative compressed self-indices. We assume σ = O(polylog(u)) in all
cases. Note our change of variable in GGV-CSA to make it easier to compare. All indices must count before locating.

Index Space in bits

Sad-CSA [45] (1 + ǫ)uH0(T ) + O(u log log σ)
GGV-CSA [21] (2 + ǫ)uHk(T ) + o(u log σ)

AF-FMI [17] uHk(T ) + o(u log σ)

Nav-LZI [39] 4uHk(T ) + o(u log σ)
ILZI [44] (5 + ǫ)uHk(T ) + o(u log σ)

Our LZ-index (2 + ǫ)uHk(T ) + o(u log σ)
Our larger LZ-index (3 + ǫ)uHk(T ) + o(u log σ)

Index count locate extract

Sad-CSA O(m log u) O(occ log
1

1+ǫ u) O(ℓ + logǫ u)

GGV-CSA O( m
log

σ
u

+ log
3+ǫ

1+ǫ u

log
1−ǫ

1+ǫ σ

) O(occ log u logǫ
σ u) O(ℓ/ logσ u + log u logǫ

σ u)

AF-FMI O(m) O(occ log1+ǫ u) O(ℓ + log1+ǫ u)

Nav-LZI O(m3 log σ + m log u + occ) O(occ log u) O(ℓ log σ)
ILZI O(m log u + occ) O(occ log u) O(ℓ/ logσ u)

Our LZ-index O(m2 + m log u + occ) O(occ log u) O(ℓ/ logσ u)
Our larger LZ-index O(m) O((m + occ) log u) O(ℓ/ logσ u)
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2 Basic Concepts

2.1 Model of Computation

In this paper we assume the standard word RAM model of computation, in which we can access
any memory word of length w, such that w = Θ(log u), in constant time5. Standard arithmetic and
logical operations (like additions, bit-wise operations, etc.) are assumed to take constant time in
this model. We measure the size of our data structures in bits.

2.2 Empirical Entropy

A concept related to text compression is that of the k-th order empirical entropy of a sequence, T ,
of symbols over an alphabet of size σ, denoted by Hk(T ) [34]. The value uHk(T ) provides a lower
bound to the number of bits needed to compress T using any compressor that encodes each symbol
considering only the context of k symbols that precede it in T .

Formally, the zero-order empirical entropy of T is defined as H0(T ) =
∑

c∈Σ
uc
u log u

uc
, where uc

is the number of occurrences of symbol c in T . The sum includes only those symbols c that occur in
T , so that uc > 0. The k-th order empirical entropy of T is defined as Hk(T ) =

∑

s∈Σk
|T s|
u H0(T

s),
where T s is the subsequence of T formed by all the symbols that occur preceded by the context s.
Again, we consider only contexts s that do occur in T .

An important property is that 0 6 Hk(T ) 6 Hk−1(T ) 6 · · · 6 H0(T ) 6 log σ, for any k > 0.
This means that by considering longer contexts we can get more compression.

2.3 Lempel-Ziv Compression

The Lempel-Ziv compression algorithm of 1978 (usually named LZ78 [48]) is based on a dictionary
of phrases, in which we add every new phrase computed. At the beginning of the compression, the
dictionary contains a single phrase b0 of length 0 (i.e., the empty string). The current step of the
compression is as follows: If we assume that a prefix T [1..j] of T has been already compressed into
a sequence of phrases Z = b1 . . . br, all of them in the dictionary, then we look for the longest prefix
of the rest of the text T [j + 1..u] which is a phrase of the dictionary. Once we have found this
phrase, say bs of length ℓs, we construct a new phrase br+1 = (s, T [j + ℓs + 1]), write the pair at
the end of the compressed file Z, i.e. Z = b1 . . . brbr+1, and add the phrase to the dictionary.

We will call Bi the string represented by phrase bi, thus Br+1 = BsT [j + ℓs + 1]. In the rest
of the paper we assume that the text T has been compressed using the LZ78 algorithm into n + 1
phrases, T = B0 . . . Bn, such that B0 = ε (the empty string). We say that i is the phrase identifier
corresponding to Bi, for 0 6 i 6 n.

Property 1. For all 1 6 t 6 n, there exists ℓ < t and c ∈ Σ such that Bt = Bℓ · c.

That is, every phrase Bt (except B0) is formed by a previous phrase Bℓ plus a symbol c at the end.
This implies that the set of phrases is prefix closed, meaning that any prefix of a phrase Bt is also
an element of the dictionary. Therefore, a natural way to represent the set of strings B0, . . . , Bn is
a trie, which we call LZTrie.

Property 2. Every phrase Bi, 0 6 i < n, represents a different text substring.

5 log x means ⌈log2 x⌉ in this paper.
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This property is used in the LZ-index search algorithm (see Section 3). The only exception to this
property is the last phrase Bn. We deal with the exception by appending to T a special symbol
“$” 6∈ Σ, assumed to be smaller than any other symbol in the alphabet. The last phrase will contain
this symbol and thus will be unique too.

Example 1. In Fig. 1 we show the LZ78 phrase decomposition for our running example text T =
“alabar a la alabarda para apalabrarla”, where for clarity we replace blanks by ‘ ’, which is
assumed to be lexicographically larger than any other symbol in the alphabet. We show the phrase
identifiers above each corresponding phrase in the parsing. In Fig. 3(a) we show the corresponding
LZTrie. Inside each LZTrie node we show the corresponding phrase identifier.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a l ab ar a la a lab ard a p ara ap al abr arl a$

Fig. 1. LZ78 phrase decomposition for the running example text T =“alabar a la alabarda para apalabrarla”,
and the corresponding phrase identifiers.

Definition 3. Let br = (r1, c1), br1 = (r2, c2), br2 = (r3, c3), and so on until rk = 0 be phrases of
the LZ78 parsing of T . The sequence of phrase identifiers r, r1, r2, . . . is called the referencing chain
starting at phrase r.

The referencing chain starting at phrase r reproduces the way phrase br is formed from previous
phrases and it is obtained by successively moving to the parent in the LZTrie.

Example 2. The referencing chain of phrase 9 in Fig. 3(a) is r = 9, r1 = 7, r2 = 2, and r3 = 0.

The compression algorithm takes O(u) time in the worst case and is efficient in practice provided
we use the LZTrie, which allows rapid searching of the new text prefix (for each symbol of T we
move once in the trie). The decompression needs to build the same dictionary (the pair that defines
the phrase r is read at the r-th step of the algorithm).

Property 3 ([48]). It holds that
√

u 6 n 6 u
logσ u . Thus, log n = Θ(log u) and n log u 6 u log σ

always hold.

Lemma 1 ([28]). It holds that n log n = uHk(T ) + O(u1+k log σ
logσ u ) for any k.

In our work we assume k = o(logσ u) (and hence log σ = o(log u) to allow for k > 0); therefore,
n log n = uHk(T ) + o(u log σ). Also, in the analysis throughout this paper we will assume σ =
O(polylog(u)); we generalize our results to larger values of σ in Section 8.

2.4 Succinct Representations of Sequences and Permutations

A succinct data structure requires space close to the information-theoretic lower bound, while
supporting the corresponding operations efficiently. We review here some results on succinct data
structures, which are necessary to understand our work.
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Data Structures for rank and select. Given a bit vector B[1..n], we define the operation
rank0(B, i) (similarly rank1) as the number of 0s (1s) occurring up to the i-th position of B. The
operation select0(B, i) (similarly select1) is defined as the position of the i-th 0 (i-th 1) in B. We
assume that select0(B, 0) always equals 0 (similarly for select1). These operations are supported in
constant time and using n + o(n) bits [11], or even nH0(B) + o(n) bits [42].

Given a sequence S[1..u] over an alphabet Σ, we generalize the above definition for rankc(S, i)
and selectc(S, i) for any c ∈ Σ. If σ = O(polylog(u)), the solution of Ferragina at al. [17] supports
both rankc and selectc, as well as access to S[i] for any i, in constant time and requiring uH0(S)+o(u)
bits of space. Otherwise the time is O( log σ

log log u) and the space is uH0(S) + o(u log σ) bits. The
representation of Golynski et al. [20] requires n(log σ + o(log σ)) = O(n log σ) bits of space [7],
supporting selectc in O(1) time, and rankc and access to S[i] in O(log log σ) time.

Succinct Representation of Permutations. The problem here is to represent a permutation
π of {1, . . . , n}, such that we can compute both π(i) and its inverse π−1(j) in constant time and
using as little space as possible.

Given π represented in plain form, an efficient solution [37] for π−1 is based on the cycle notation
of a permutation. The cycle for the i-th element of π is formed by elements i, π(i), π(π(i)), and so
on until the value i is found again, πk(i) = i. Then, πk−1(i) = π−1(i). Every element occurs in one
and only one cycle of π. So, to compute π−1(j), instead of looking sequentially for j in π, we only
need to look for j in its cycle.

To limit the length of cycles, we create subcycles of size O(1/ǫ) by adding a backward pointer
out of O(1/ǫ) elements in each cycle of π, for any 0 < ǫ < 1. We store the backward pointers
in an array of ǫn log n bits. We mark the elements having a backward pointer using a bit vector
supporting rank queries [42], which also helps us to find the backward pointer associated with a
given element (see [37] for details). Overall, this solution requires (1+ǫ)n log n+O(ǫn log 1

ǫ )+o(n) 6

(1 + ǫ)n log n + n + o(n) bits of storage.

2.5 Succinct Representation of Trees

Given a tree with n nodes, there exist a number of succinct representations requiring 2n + o(n)
bits, which is close to the information-theoretic lower bound of 2n−Θ(log n) bits. We explain the
representations that we will need in our work.

Balanced Parentheses. The balanced parentheses representation [38] is built from a depth-first
preorder traversal of the tree, writing an opening parenthesis when arriving at a node for the first
time, and a closing parenthesis when going up (after traversing the subtree of the node). In this
way, each node is represented by a pair of opening and closing parentheses. We identify a tree
node x with its opening parenthesis in the representation. The subtree of x contains those nodes
(parentheses) enclosed between the opening parenthesis representing x and its matching closing
parenthesis.

Let par[0..2n− 1] be the balanced parentheses sequence over the alphabet {(, )}. The preorder
position of a node in this representation can be computed as the number of opening parentheses
before the one representing the node. That is, preorder(x) ≡ rank((par, x) − 1. In this way, the
preorder of the tree root is always 0. Given a preorder position p, the corresponding node is
computed by selectnode(p) ≡ select((par, p + 1).
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This representation requires 2n + o(n) bits, supporting operations parent(x) (which gets the
parent of node x), subtreesize(x) (which gets the size of the subtree rooted at x), depth(x) (which
gets the depth of node x in the tree), and ancestor(x, y) (which tell us whether node x is an ancestor
of node y), all of them in O(1) time. Operation child(x, i) (which gets the i-th child of node x) can
be computed in O(i) time.

Example 3. In Fig. 2(a) we show the balanced parentheses representation for the LZTrie of Fig. 3(a),
along with the sequence of phrase identifiers (ids) in preorder, and the sequence of symbols labeling
the edges of the trie (letts), also in preorder. As the identifier corresponding to the LZTrie root is
always 0, we do not store it in ids. The data associated with node x is stored at position preorder(x)
both in ids and letts sequences. Note this information is sufficient to reconstruct LZTrie.

0 10 20 30 35

par: ( ( ( ) ( ( ) ) ( ) ( ( ) ( ) ( ) ) ( ( ) ) ) ( ( ( ) ) ) ( ( ( ) ) ) )
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a $ b r l r a d l p l a b a p
(a) Balanced parentheses representation.

0 10 20 30 35

par: ( ( ( ( ) ( ( ( ( ( ) ) ( ) ) ) ( ( ( ) ) ) ) ( ) ) ( ) ( ) ) ( ) ( ) )
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a l $ b l r r a d l p a b a p
(b) dfuds representation. The phrase identifiers are stored in preorder, and the
symbols labeling the edges of the trie are stored according to dfuds.

Fig. 2. Succinct representations of LZTrie for the running example.

dfuds Representation. To obtain this representation [8] we perform a preorder traversal on the
tree, and for every node reached we write its degree in unary using parentheses. For example, 3 reads
‘((()’ under this representation. What we get is almost a balanced parentheses representation: we
only need to add a fictitious ‘(’ at the beginning of the sequence. A node of degree d is identified
by the position of the first of the d + 1 parentheses representing the node. Given a node x in this
representation, say at position i, its preorder position can be computed by counting the number
of closing parentheses before position i; in other words, preorder(x) ≡ rank)(par, x − 1) where par
represents the dfuds sequence of the tree. Given a preorder position p, the corresponding node is
computed by selectnode(p) ≡ select)(par, p) + 1.

This representation requires also 2n + o(n) bits, and we can compute operations parent(x),
subtreesize(x), degree(x) (which gets the degree, i.e., the number of children, of node x), ancestor(x,
y),6 and child(x, i), all in O(1) time. Operation depth(x) is also supported in constant time [25].

For cardinal trees (i.e., trees where each node has at most σ children, each child labeled by a
symbol in the set {1, . . . , σ}) we use the dfuds sequence par plus an array letts[1..n] storing the
edge labels according to a dfuds traversal of the tree: we traverse the tree in depth-first preorder,
and every time we reach a node x, we write the symbols labeling the children of x. In this way,
the labels of the children of a given node are all stored contiguously in letts, which will allow us to
support operation child(x, α) (which gets the child of node x with label α ∈ {1, . . . , σ}) efficiently.

6 As ancestor(x, y) ≡ preorder(x) 6 preorder(y) 6 preorder(x) + subtreesize(par, x) − 1.
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Example 4. In Fig. 2(b) we show the dfuds representation of LZTrie for our running example.

We support operation child(x, α) as follows. Suppose that node x has position p within the
dfuds sequence par, and let p′ = rank((par, p) − 1 be the position in letts for the symbol of
the first child of x. Let nα = rankα(letts, p′ − 1) be the number of αs up to position p′ − 1 in
letts, and let i = selectα(letts, nα + 1) be the position of the (nα + 1)-th α in letts. If i lies
between (and including) positions p′ and p′ + degree(x) − 1, then the child we are looking for is
child(x, i−p′+1), which, as we said before, is computed in constant time over par; otherwise x does
not have a child labeled α. We can also retrieve the symbol by which x descends from its parent
with letts[rank((par, parent(x))− 1 + childrank(x)− 1], where the first term stands for the position
in letts corresponding to the first symbol of the parent of node x, and the second term childrank(x)
is the rank of node x within its siblings, which can be computed in constant time [25].

Thus, the time for operation child(x, α) depends on the representation we use for rankα and
selectα queries. Notice that child(x, α) could be supported in a straightforward way by binary
searching the labels of the children of x, in O(log σ) worst-case time and not needing any extra
space on top of array letts. The access to letts[·] takes constant time in this case.

Instead, we can represent letts with the data structure of Ferragina et al. [17], which requires
n log σ+o(n log σ) bits of space, and allows us to compute child(x, α) in O( log σ

log log u) time. The access

to letts[·] also takes O( log σ
log log u) time. These times are O(1) whenever σ = O(polylog(u)) holds. On

the other hand, we can use the data structure of Golynski et al. [20], requiring O(n log σ) bits
of space, yet allowing us to compute child(x, α) in O(log log σ) time, and access to letts[·] also in
O(log log σ) time. In most of this paper we will use the representation of Ferragina et al., since it
is faster for polylog-sized alphabets.

The scheme we have presented to represent letts is slightly different from the original one
[8], which achieves O(1) time for child(x, α) for any σ. However, ours is simpler and allows us to
efficiently access letts[·], which will be very important in our indices to extract text substrings. We
need to store the array of symbols explicitly in case we need to access them (fortunately, this will
not asymptotically affect the space requirement of our results).

xbw Representation. The xbw transform of Ferragina et al. [13] is a succinct representation for
labeled trees: Given a labeled tree T, with n nodes and labels taken from an alphabet Σ of size σ,
the xbw transform of T is computed by traversing the tree in preorder, and for each node writing
a triplet in a table ST. The first component of each triplet (Slast) indicates whether the node is
the last child of its parent in the tree, the second component (Sα) is the symbol labeling the edge
by which we reach the node, and the third component (Sπ) is the string labeling the path from
the parent of the node to the root of T. In this way each node is represented by a row in ST.
As a last step we perform an upward-path-sorting of the table by stably sorting the rows of ST

lexicographically according to the strings in Sπ.

Example 5. In Table 2 we show the xbw transform for the LZTrie of Fig. 3(a).

We have to add a dummy child to each leaf, labeling the dummy edge with a special symbol ∆
not in Σ, so that the paths leading to the leaves appear in column Sπ and later we can search for
them. As we said before, each node in the LZTrie is represented by a row in the table, and the row
number is called the xbw position of the node.

The xbw representation supports operations parent(x), child(x, i), and child(x, α), all of them in
O(1) time if σ = O(polylog(u)), and using 2n log σ + O(n) bits of space, because the column Sπ of
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the table is not stored. The representation also allows subpath queries, a very powerful operation
which, given a string s, returns all the nodes x such that s is a prefix of the string labeling the path
from the parent of x to the root. If σ = O(polylog(n)), subpath queries can be computed in O(|s|)
time [13]. For general σ, the time for all these operations depends on the representation used for
Sα (since we need to support rank and select operations on it), which is O( log σ

log log u) time if we use
the representation of [17], and O(log log σ) time if we use the data structure of [20], in which case
the space requirement is O(n log σ).

Because of the upward-path sorting in table ST, the result of a subpath query is a contiguous
interval in such table, containing the answers to the query.

Example 6. A subpath query for string ‘r’ yields the interval [21..24] in Table 2, corresponding to
the nodes with preorders 7, 8, and 9 in Fig. 3(a), plus a fictitious leaf which is a child of node with
preorder 4. As another example, a subpath query for string ‘ba’ yields the xbw interval [13..14], for
node with preorder 4 plus a fictitious leaf which is a child of node with preorder 14. In all cases,
note that the string s we are looking for is a prefix of the corresponding string in Sπ.

Table 2. xbw representation for the LZTrie of Fig. 3(a).

i Slast Sα Sπ

1 0 a empty string
2 0 l empty string
3 1 empty string
4 1 ∆ $a

5 0 $ a

6 0 b a

7 0 l a

8 0 r a

9 1 a

10 1 b al

11 1 ∆ ara

12 1 p a

13 1 r ba

i Slast Sα Sπ

14 1 ∆ bal

15 1 ∆ dra

16 1 a l

17 1 ∆ la

18 1 ∆ lra

19 1 ∆ pa

20 1 ∆ p a

21 0 a ra

22 0 d ra

23 1 l ra

24 1 ∆ rba

25 1 a

26 1 p a

3 The LZ-index Data Structure

Assume that the text T [1..u] has been compressed using the LZ78 algorithm into n + 1 phrases
T = B0 . . . Bn, as explained in Section 2.3. Next we describe the original LZ-index data structure
and search algorithms, and introduce some improvements on them.

Hereafter, given a string S = s1 . . . si, we will use Sr = si . . . s1 to denote its reverse. Moreover,
Sr[i..j] will actually mean (S[i..j])r .

3.1 Original LZ-index Components

The following data structures compose the original LZ-index [39, 40]:
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1. LZTrie: the trie formed by all the phrases B0 . . . Bn. Given the properties of LZ78 compression,
this trie has exactly n + 1 nodes, each one corresponding to a string.

2. RevTrie: the trie formed by all the reverse strings Br
0 . . . Br

n. In this trie there could be internal
nodes not representing any phrase. We call these nodes “empty”.

3. Node: a mapping from phrase identifiers to their node in LZTrie.
4. Range: a data structure for two-dimensional searching in the space [0..n]× [0..n]. We store the

points {(preorderr(t), preorderlz(t + 1)), t ∈ 0 . . . n − 1} in this structure, where preorderr(t) is
the RevTrie preorder of the node for phrase t (considering only the non-empty nodes in the
preorder enumeration), and preorderlz(t + 1) is the LZTrie preorder of node for phrase t + 1.
For each such point, the corresponding t value is stored.

Fig. 3 shows the LZTrie, RevTrie, Range, and Node data structures corresponding to our running
example. We show preorder numbers outside each trie node. Empty RevTrie nodes are shown in
light gray. The next example gives a hint on the usage of those structures for searching, which will
be detailed in Section 3.3.

Example 7. To find all phrases ending with substring ‘ab’ in the running example, we search for
the reversed string ‘ba’ in RevTrie, reaching the node with preorder 6. The subtree of this RevTrie
node contains the phrases we are looking for: phrases 3 and 9 (see Fig. 1). As the preorder interval
in RevTrie defined by this subtree is [6..7], this means that the horizontal semi-infinite range
[−∞..∞]× [6..7] in Range also contains those phrases. To find all phrases starting with ‘ar’, note
that the LZTrie subtree for node with preorder (incidentally also) 6 (which corresponds to string
‘ar’) contains the phrases starting with ‘ar’: phrases 4, 12, 10, and 16. The LZTrie preorder interval
for this subtree is [6..9]. This means that the vertical semi-infinite range [6..9]× [−∞..∞] contains
phrases i such that phrase i + 1 starts with ‘ar’: phrases 3, 11, 9, and 15. Finally, the range
[6..9] × [6..7] contains the phrase numbers i such that phrase i ends with ‘ab’ followed by phrase
i + 1 starting with ‘ar’: phrases 3 and 9, see Fig. 3(c).

3.2 Succinct Representation of the LZ-index Components

In the original work [39], each of the four structures described requires n log n + o(u log σ) bits of
space if they are represented succinctly.

– LZTrie is represented using the balanced parentheses representation of Section 2.5 requiring
2n + o(n) bits; plus the sequence letts of symbols labeling each trie edge, requiring n log σ bits;
and the sequence ids of n log n bits storing the LZ78 phrase identifiers. Both letts and ids are
stored in preorder, so we use preorder(x) to index them. See Fig. 2(a) for an illustration.

– For RevTrie, balanced parentheses are also used to represent the Patricia tree [35] structure of
the trie, compressing empty unary nodes and so ensuring n′ 6 2n nodes. This requires at most
4n + o(n) bits. The RevTrie-preorder sequence of identifiers (rids) is stored in n log n bits (i.e.,
we only store the identifiers for non-empty nodes). The symbols labeling the edges of the trie
and the Patricia-tree skips are not stored in this representation, since they can be retrieved by
using the connection with LZTrie [39]. Therefore, the navigation on RevTrie is more expensive
than that on LZTrie.

– For Range, the data structure of Chazelle [10] permits two-dimensional range searching in a
grid of n pairs of integers in the range [0..n]× [0..n]. This data structure supports range queries
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in O((occ + 1) log n) time, where occ is the number of occurrences reported, and requiring
n log n + O(n log log n) bits of space [31]. Note that since n is the number of LZ78 phrases of
text T , the latter term O(n log log n) is o(u log σ). This data structure can count the number of
points in a given range in O(log n) time.

– Finally, Node is just a sequence of n pointers to LZTrie nodes. As LZTrie is implemented
using balanced parentheses, Node[i] stores the position within the sequence for the opening
parenthesis representing the node corresponding to phrase i. As there are 2n such positions, we
need n log 2n = n log n + n bits of storage. See Fig. 3(d) for an illustration.

According to Lemma 1, the final size of the LZ-index is 4uHk(T ) + o(u log σ) bits for k = o(logσ u)
(and hence log σ = o(log u) to achieve more than zero-order compression).

The succinct trie representations used in [39] implement (among others) operations parent(x)
and child(x, α), both in O(log σ) time for LZTrie, and O(log σ) and O(h log σ) time respectively for
RevTrie, where h is the depth of node x in RevTrie (the h in the cost comes from the fact that we
must access LZTrie to get the label of a RevTrie edge). The operation ancestor(x, y) is implemented
in O(1) time both in LZTrie and RevTrie.

3.3 LZ-index Search Algorithm

Let us consider now the search algorithm for a pattern P [1..m] [39, 40]. For locate queries, pattern
occurrences are reported in the format Jt, offsetK, where t is the phrase where the occurrence
starts, and offset is the distance between the beginning of the occurrence and the end of the
phrase. Later, in Section 7, we will show how to map these two values to a single text position.
As we deal with an implicit representation of the text (the LZTrie), and not the text itself, we
distinguish three types of occurrences of P in T , depending on the phrase layout.

Occurrences of Type 1. The occurrence lies inside a single phrase (there are occ1 occurrences
of this type). Given Property 1, every phrase Bt containing P is formed by a shorter phrase Bℓ

followed by a symbol c. If P does not occur at the end of Bt, then Bℓ contains P as well. We
want to find the shortest possible phrase Bi in the LZ78 referencing chain for Bt that contains the
occurrence of P .

Note that P r is a prefix of Br
i , so Bi can easily be found by searching for P r in RevTrie in

O(m2 log σ) time. Say we arrive at node vr. Any node v′r descending from vr in RevTrie (including
vr itself) corresponds to a phrase terminated with P . This corresponds with subpath queries (see
Section 2.4) in LZTrie. For each such v′r, we traverse and report the subtree of the corresponding
LZTrie node vlz (found using rids and Node). For any node v′lz in the subtree of vlz, we report an
occurrence Jt,m + (depth(v′lz)− depth(vlz))K, where t is the phrase identifier (ids) of node v′lz.

Occurrences of type 1 are located in O(m2 log σ + occ1) time, since locating each occurrence
takes constant time in LZTrie. For cardinality queries we just need to compute the subtree size of
each vlz in LZTrie, as every v′lz in that subtree corresponds to an occurrence of type 1.

Occurrences of Type 2. The occurrence spans two consecutive phrases, Bt and Bt+1, such that
a prefix P [1..i] matches a suffix of Bt and the suffix P [i + 1..m] matches a prefix of Bt+1 (there
are occ2 occurrences of this type). P can be split at any position, so we have to try them all. The
idea is that, for every possible split, we search for the reverse pattern prefix P r[1..i] in RevTrie
(obtaining node vr) and for the pattern suffix P [i + 1 . . . m] in LZTrie (obtaining node vlz).
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As in a trie all the strings represented in a subtree form a preorder interval, we have two preorder
intervals: one in the space of reversed phrases (phrases finishing with P [1..i]) and one in that of the
normal phrases (phrases starting with P [i + 1..m]). We need to find the phrase pairs (t, t + 1) such
that t is in the RevTrie preorder interval and t + 1 is in the LZTrie preorder interval. As we have
seen in Example 7, this is what the range searching data structure (Range) is for. If we denote
plz = preorder(vlz) and pr = preorder(vr), we must search Range for [plz..plz + subtreesize(vlz)− 1]×
[pr..pr+subtreesize(vr)−1]. For every pair (t, t+1) found, we report occurrence Jt, iK. Occurrences of
type 2 are located in O(m3 log σ+(m+occ2) log n) time, where the first term comes from searching
the tries (in particular, searching for the O(m) partitions of P in the RevTrie), and the second one
is for the m− 1 range searches on RevTrie.

Occurrences of Type 3. The occurrence spans three or more phrases, Bt−1, . . . , Bℓ+1, such that
P [i..j] = Bt . . . Bℓ, P [1..i − 1] matches a suffix of Bt−1 and P [j + 1..m] matches a prefix of Bℓ+1

(there are occ3 occurrences of this type). We need one more observation for this part: Since the
LZ78 algorithm guarantees that every phrase represents a different string (Property 2), there is at
most one phrase matching P [i..j] for each choice of i and j. Therefore, if we partition P into more
than two consecutive substrings, there is at most one pattern occurrence for such partition, which
severely limits occ3 to O(m2), since this is the number of different partitions of P .

Let us define matrix Clz[1..m, 1..m] and arrays Ai, for 1 6 i 6 m, which store information
about the search. We first identify the only possible phrase matching each substring P [i..j]. This is
done by searching for every pattern substring P [i..j] in LZTrie, for i = 1, . . . ,m and j = i, . . . ,m.
Thus, we perform a single search in the trie for each i. We record in Clz[i, j] the LZTrie node
corresponding to P [i..j], and store the pair (id, j) at the end of Ai, such that id is the phrase
identifier of the node corresponding to P [i..j]. Note that since we search for P [i..j] for increasing j,
we get the values of id in increasing order, as the phrase identifier of a node is always larger than
that of the parent node. Therefore, the corresponding pairs in Ai are stored by increasing value of
id. This process takes O(m2 log σ) time.

Then we find the O(m2) maximal concatenations of successive phrases that match contiguous
pattern substrings. For 1 6 i 6 j 6 m, for increasing j, we try to extend the match of P [i..j]
to the right. If id is the phrase identifier for node Clz[i, j], then we have to search for (id + 1, r)
in array Aj+1, for some r. Array Aj+1 can be binary searched because it is sorted. If we find
(id + 1, r) in Aj+1, this means that Bid = P [i..j] and Bid+1 = P [j + 1..r], which also means that
the concatenation of phrases BidBid+1 equals P [i..r]. We repeat the process from j = r, and stop
when the pair (id+1, r) is not found in the corresponding array (this means that a concatenation of
phrases cannot be extended further, so the current concatenation is maximal). See [39] for further
details. As we have to perform O(m2) binary searches in arrays of size O(m), this procedure takes
O(m2 log m) worst-case time.

Let P [i..j] = Bt . . . Bℓ be a maximal concatenation. Then we check whether phrase Bℓ+1 starts
with P [j + 1..m], that is, we check whether Node[ℓ + 1] is a descendant of node Clz[j + 1,m],
in constant time per maximal concatenation. Finally we check whether phrase Bt−1 ends with
P [1..i − 1], by starting from Node[i − 1] in LZTrie and successively going to the parent to check
whether the last i − 1 symbols, read upwards, equal P r[1..i − 1], in O(m log σ) time per maximal
concatenation. If all these conditions hold, we report an occurrence Jt−1, i−1K. Overall, occurrences
of type 3 are located in O(m3 log σ) time.
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Overall Query Time. Note that each of the occ = occ1 +occ2 +occ3 possible occurrences of P lies
exactly in one of the three cases above. Overall, the total search time to report the occ occurrences
of P in T is O(m3 log σ + (m + occ) log u).

Extracting Text Substrings. The original LZ-index is able to extract text substrings, yet not
in the way we have defined before: we have to provide an LZ78 phrase number from where to
start the extraction. We assume also that the ℓ symbols we want to extract correspond to whole
phrases (in Section 7 we shall avoid these restrictions). Given phrase i, we follow the upward path
from Node[i] up to the LZTrie root, outputting the symbols labeling the upward path. Then we
perform the same procedure but now starting from Node[i+1] in LZTrie, and so on until we extract
the ℓ desired symbols, taking overall O(ℓ log σ) time, because operation parent is implemented in
O(log σ) time [39]. Finally, we can uncompress the whole text T in O(u log σ) time using the same
idea, starting the procedure from the first LZ78 phrase.

Improving the Algorithm for Finding Maximal Concatenations. In the case of occurrences
of type 3, we now improve the algorithm for finding maximal concatenations of phrases, replacing
the binary searches on arrays Ai by an access to the correct position in matrix Clz.

When computing maximal concatenations of phrases, for each 1 6 i 6 j 6 m, for increasing j,
we try to extend the match of P [i..j] to the right. Let id be the phrase identifier for node Clz[i, j].
Then P [i..j] = Bid holds. Then, to check whether P [j +1..r] = Bid+1 holds, instead of searching for
(id + 1, r) in Aj+1 as before, we note that r = j + l, where l is the length of phrase Bid+1, which in
turn is computed as l = depth(Node[id + 1]) in LZTrie. Then we check, in constant time, whether
the node Clz[j + 1, j + l] corresponds to identifier id + 1. If so, this means that P [j + 1..r] = Bid+1

holds, for r = j + l, and hence we can extend the concatenation of phrases to P [i..r] = BidBid+1.
We repeat the process for j = r and stop the procedure when the above condition does not hold,
or r becomes greater than m.

Note that by using this algorithm to find maximal concatenations we reduce the time to O(m2),
which does not improve the total performance of the algorithm for finding occurrences of type 3.
However, the reduction will be relevant in Sections 4 and 5 for improved versions of the LZ-index.

Lemma 2. Given the LZ78 parsing of text T$ = B0 . . . Bn, and given a pattern P [1..m], we can
compute the maximal concatenation of successive phrases Bt . . . Bℓ that match contiguous pattern
substrings P [i..j], for any 0 6 i 6 j 6 m, in O(m2) time overall.

3.4 A More Compact Version of the LZ-index

In the practical implementation of LZ-index [39, 40], the Range data structure defined in Section
3.1 is replaced by RNode, which is a mapping from phrase identifiers to their node in RevTrie.
The RNode data structure requires n log n bits, so this practical version of LZ-index also requires
4uHk(T ) + o(u log σ) bits, for any k = o(logσ u).

The original search algorithm is modified as follows (occurrences of type 1 are found as for the
original LZ-index).

Occurrences of Type 2. For every possible split P [1..i] and P [i + 1..m] of P , assume the search
for P r[1..i] in RevTrie yields node vr, and the search for P [i + 1..m] in LZTrie yields node vlz.
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Then, one checks each phrase t in the subtree of vr and reports it if Node[t + 1] descends from vlz.
Each such check takes constant time. Yet, if the subtree of vlz has fewer elements, one does the
opposite: check phrases from vlz in vr, using RNode[t− 1].

Unlike when using Range, now the time to find occurrences of type 2 is proportional to the size
of the smallest subtree among those of vr and vlz, which can be arbitrarily larger than the number
of occurrences reported. That is, by using RNode we have no worst-case guarantees at search time.
However, the average search time for occurrences of type 2 is O(n/σm/2) [39, 40] 7. This is O(1) for
long patterns, m > 2 logσ n.

Occurrences of Type 3. For occurrences of type 3, after finding that P [i..j] = Bt . . . Bℓ is a
maximal concatenation, one checks whether phrase Bℓ+1 starts with P [j +1..m] by using operation
ancestor(Clz[j + 1,m], Node[ℓ + 1]), just as in Section 3.3. Instead of checking symbol by symbol in
the LZTrie to determine whether phrase Bt−1 ends with P [1..i − 1], as is done with the original
LZ-index, one simply checks whether ancestor(Clz[1, i − 1], RNode[t − 1]) holds in RevTrie.

LZ-index as a Navigation Scheme. This version of the LZ-index can be seen as a navigation
scheme, as shown in Fig. 4, where solid arrows represent the main data structures of the index.
Dashed arrows are asymptotically “for free” in terms of space requirement, since they are followed
by applying rank on the corresponding parentheses structure (see Section 2.4). The four solid arrows
are in fact the four main components in the space usage of the index: array of phrase identifiers in
LZTrie (ids) and in RevTrie (rids), and mapping from phrase identifiers to tree nodes in LZTrie
(Node) and in RevTrie (RNode).

However, we can provide the same navigation functionality needed by the index with a reduced
scheme, which we can represent efficiently in the following way:

– LZTrie: the Lempel-Ziv trie, which is implemented with the following data structures:

• par[0..2n−1]: the tree shape of LZTrie represented with dfuds [8], requiring 2n+o(n) bits.

• letts[1..n]: the array of symbols labeling the edges of LZTrie, represented as explained in
Section 2.4 so as to allow operation child(x, α) in constant time, requiring n log σ + o(n) bits
of space. We can get the i-th symbol in preorder by first finding the i-th node in preorder
in par, and then retrieving its symbol as explained in Section 2.4.

• ids[1..n]: the array of LZ78 phrase identifiers in preorder. ids[0] = 0 always holds, so we
do not store this value. Note that ids is a permutation of {1, . . . , n}, and hence we use the
representation [37] given in Section 2.4, such that the inverse permutation ids−1(j) can be
computed in O(1/ǫ) time, requiring (1 + ǫ)n log n + n + o(n) bits, for any 0 < ǫ < 1.

– RevTrie: the Patricia tree [35] of the reversed LZ78 phrases, which is implemented with the
following data structures:

• rpar[0..2n′ − 1]: the RevTrie structure, compressing empty unary paths and represented
with dfuds, thus ensuring n′ 6 2n nodes, because empty non-unary nodes still exist. The
space requirement is 2n′ + o(n′) bits to support the same functionalities as LZTrie.

• rletts[1..n′]: the array storing the first symbol of each edge label in RevTrie, represented as
for LZTrie and requiring n′ log σ + o(n′) bits of space.

7 The average is taken over the distribution of P , which is assumed to be statistically independent of T , that is, the
probability of P [i..i + ℓ] = T [k..k + ℓ] is 1/σℓ+1. The text T can be arbitrary.
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(a) Lempel-Ziv Trie (LZTrie). (b) RevTrie data structure.
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(c) Range data structure. Horizon-
tal coordinates are for LZTrie pre-
orders, and vertical coordinates are
for RevTrie preorders.

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node[i] : 0 1 23 4 10 29 18 24 30 25 13 19 11 31 8 5 15 2

(d) Node data structure, assuming that the parentheses sequence starts
from position zero, cf. Fig. 2(a).

Fig. 3. LZ-index components for the running example.

Fig. 4. The original LZ-index navigation structures over index components.
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• B[1..n′]: a bit vector supporting rank and select queries, and requiring n′(1 + o(1)) bits
[36]. This bit vector marks the non-empty nodes: the j-th bit of B is 1 iff the node with
preorder position j in rpar is not empty, otherwise the bit is 0. Given a position p in rpar
corresponding to a RevTrie node, the associated bit in B is B[rank)(rpar, p− 1)].

• skips[1..n′]: the Patricia tree skip values of the nodes in preorder, using log log u bits per
node and inserting empty unary nodes when the skip exceeds log u. In this way, one out of
log u empty unary nodes could be explicitly represented. In the worst case, there are O(u)
empty unary nodes, of which O(u/ log u) are explicitly represented. This adds O(u/ log u)
nodes to n′, which translates into O((n′+ u

log u)(3+log σ+log log u)) = o(u log σ) bits overall
for the RevTrie nodes, symbols, and skips.

– R[1..n]: a mapping from RevTrie preorder positions to LZTrie preorder positions. Given a
non-empty RevTrie node with preorder i (just counting non-empty nodes), we define the cor-
responding LZTrie preorder as R[i] = ids−1(rids[i]). This is a permutation and is represented
using again the succinct data structure for permutations, requiring (1 + ǫ)n log n + n + o(n)
bits to represent R and compute R−1 in O(1/ǫ) worst-case time. Given a position p in rpar
corresponding to a non-empty RevTrie node, the associated R value (i.e., preorder in LZTrie)
can be computed as R[rank1(B, rank)(rpar, p− 1))].

In Fig. 5 we draw the navigation scheme. The search algorithm remains the same since we
can map preorder positions to nodes in the dfuds representation of the tries and vice versa
(see Section 2.4), and also we can simulate the missing arrays: rids(i) ≡ ids[R[i]], RNode(i) ≡
selectnode(R−1(ids−1(i))), and Node(i) ≡ selectnode(ids−1(i)), all of which take O(1/ǫ) time.

Space and Time Analysis. The space requirement is (2+ǫ)n log n+3n log σ+2n log log u+10n+
o(u) = (2 + ǫ)n log n + o(u log σ) bits, which according to Lemma 1 is (2 + ǫ)uHk(T ) + o(u log σ)
bits, for any k = o(logσ u).

The child operation on RevTrie can now be computed in O(1) time thanks to dfuds, to rletts,
and to the skips, versus the O(h log σ) time of the original LZ-index [39]. Now, because RevTrie is
a Patricia tree and the underlying strings are not readily available, it is not obvious how to traverse
it. The next lemma addresses this issue.

Lemma 3. Given a string s ∈ Σ∗, we can determine whether it is represented in RevTrie or not
(and finding the corresponding node in the affirmative case) in O(|s|) time.

Proof. To find the node corresponding to string s, we descend from the RevTrie root, using opera-
tion child(x, α) on the first symbol of each edge label, which is stored in rletts, and using the skips
to compute the next symbol of s to use in the descent. If some symbol of s cannot be matched
while descending, then we determine that it is not represented in RevTrie in O(|s|) time. Otherwise,
assume that after consuming string s in this way, we arrive at node vr with preorder j in RevTrie.
The string labeling the root-to-vr path in RevTrie can be computed by accessing the node vlz with
preorder R[j] in LZTrie, and then extracting the string labeling the vlz-to-root path in LZTrie.
Then we compare that string against s to verify that the node we arrived at corresponds to s, or
otherwise that s does not occur in RevTrie.

In the case where node vr in RevTrie is empty, R[j] is undefined. Notice, however, that there
must be at least one non-empty node descending from this empty node, since leaves in RevTrie
cannot be empty as they always correspond to an LZ78 phrase. Given that the string represented
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by every non-empty node in the subtree of node vr has the string s as a prefix, the corresponding
strings in LZTrie have sr as a suffix. So we can use any R value within the subtree of node vr

in order to map to the LZTrie and then extract the string it represents. We can compute the
preorder j′ of the next non-empty node within that subtree by j′ = select1(B, rank1(B, j) + 1),
where rank1(B, j) represents the number of non-empty nodes up to node vr. Thus, we use R[j′] to
access the LZTrie and extract the corresponding string. We know when to stop extracting, since
the length of the string represented by vr matches the length of the string we are looking for.

The overall cost for the descending process is therefore O(|s|). ⊓⊔

Operations child and parent on LZTrie can be also computed in O(1) time, versus the O(log σ)
time of the original LZ-index. Hence, occurrences of type 1 are found in O(m + occ) time, by
using the original algorithm of Section 3.3; occurrences of type 2 are found by using the algorithm
explained at the beginning of Section 3.4, in O( n

ǫσm/2 ) average time, where the O(1/ǫ) factor comes

from simulating Node and RNode (by using ids−1 and R−1 respectively) for the checks of type 2;

occurrences of type 3 are found in O(m2

ǫ ) worst-case time, since we use the method of Lemma 2 to

find the maximal concatenations of phrases in O(m2

ǫ ) time (because Node is simulated), and then

we need to use Node and RNode to check every possible candidate, in O(m2

ǫ ) worst-case time as
well (as explained at the beginning of Section 3.4). Therefore, the occ occurrences of P in T can

be located in O(m2

ǫ + n
ǫσm/2 ) average time, for 0 < ǫ < 1. Since the term O( n

ǫσm/2 ) is O(1
ǫ ) for

m > 2 logσ u, the time is O(m2

ǫ ) on average for m > 2 logσ u.

Fig. 5. A more compact navigation scheme over LZ-index components, requiring (2 + ǫ)uHk + o(u log σ) bits.

4 Suffix Links in RevTrie

As we have seen in Section 3.4, for the LZ-index we can achieve (2 + ǫ)uHk(T ) + o(u log σ) bits of
space and O(m2/ǫ) average search time for patterns of length m > 2 logσ u [4]. Hence, two questions
may arise:

Question 1. Can we reduce the space requirement of LZ-index to (1 + ǫ)uHk(T ) + o(u log σ) bits,
that is, to almost optimal in terms of Hk?

Question 2. Can we retain worst-case guarantees at search time (as for the original LZ-index),
while still using at most (2 + ǫ)uHk(T ) + o(u log σ) bits of storage (as for the scheme of Fig. 5)?
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In this section (and in the next one), we will find affirmative answers to these questions. Specifically,
Theorem 1 shall answer Question 1, and Theorem 2 shall answer Question 2.

We will build on the more compact scheme described in Section 3.4 and illustrated in Fig. 5.
Given a LZTrie node with preorder position i, we define parentlz(i) ≡ preorder(parent(selectnode

(i))). That is, parentlz is the parent operation working on preorders rather than on dfuds numbers.
Let childlz(i, α) be defined similarly as childlz(i, α) ≡ preorder(child(selectnode(i), α)). Also, let us
define lettslz(i) ≡ letts[rank((par, parent(x))−1+childrank(x)−1], which yields the symbol by which
the node with preorder i descends from its parent, where node x is computed as selectnode(i). Let
strlz(i) denote the string represented by the node with preorder i in LZTrie. In the same way, we
define strr(j) for the node with preorder j in RevTrie.

The idea is that we are going to compress the R mapping defined for the compact LZ-index
of Fig. 5. Let us see this array as a kind of suffix array which, instead of storing text positions,
stores LZTrie preorder positions. R is a lexicographically sorted array of the reversed LZ78 phases
(because it is sorted according to RevTrie preorders). Given a reversed phrase with preorder i in
RevTrie (and preorder R[i] in LZTrie), its longest proper suffix has position parentlz(R[i]) in LZTrie
(as this corresponds to the longest proper prefix in LZTrie). Given a reverse phrase with position
j in LZTrie, its lexicographic rank is R−1[j].

Given this analogy, the question is: can we compress the R mapping just as we can compress a
suffix array [22, 45]? We define now the analogue in LZ-index to function Ψ of Compressed Suffix
Arrays [22, 45].

Definition 4. For every RevTrie preorder 1 6 i 6 n we define function ϕ such that ϕ(i) =
R−1(parentlz(R[i])), and ϕ(0) = 0.

We have the following properties for function ϕ.

Property 4. Given a non-empty node with preorder i in RevTrie, such that strr(i) = ax, for some
a ∈ Σ, x ∈ Σ∗, then

1. strr(ϕ(i)) = x,

2. R[ϕ(i)] = parentlz(R[i]), and

3. lettslz(R[i]) = a.

Point 1 means that ϕ acts as a suffix link in RevTrie: since strr(i) = ax, we have that strlz(R[i]) =
xra (recall that node i in RevTrie corresponds to node R[i] in LZTrie). Therefore, strlz(parentlz
(R[i])) = xr, which finally means strr(R

−1(parentlz(R[i]))) = strr(ϕ(i)) = x. Point 2 implies that
by following a suffix link in RevTrie, we are “going to the parent” in LZTrie, and it follows from
applying R to both sides of the equation in Definition 4, as Fig. 6 illustrates these facts. Note that
the edge connecting the LZTrie nodes with preorders R[ϕ(i)] and R[i] is labelled a (as stated by
point 3 in Property 4), which is the same symbol we are missing when following the suffix link ϕ(i)
in RevTrie.

We can prove that RevTrie is suffix closed since LZTrie is prefix closed, hence suffix links are
well defined.

Lemma 4. Every non-empty node in RevTrie has a suffix link.

Proof. Let us consider any non-empty node in RevTrie with preorder i, such that strr(i) = ax,
for a ∈ Σ and x ∈ Σ∗. As ax is a RevTrie phrase (with preorder i), then xra must be a LZTrie
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phrase (with preorder R[i]). By Property 1 of the LZ78 parsing it follows that xr is also a LZTrie
phrase and thus x must be a RevTrie phrase. Hence, every non-empty node in RevTrie (i.e., every
RevTrie node belonging to a reverse LZ78 phrase) has a suffix link. ⊓⊔

We will use Property 4 to reduce the space requirement of the R mapping: suppose that we do
not store R[i], for the RevTrie node with preorder i in Fig. 6, but we store R[ϕ(i)]; then note that
R[i] can be computed as childlz(R[ϕ(i)], a). Russo and Oliveira [44] also use properties of suffix links
in their index; however, their main objective is to reduce the locating complexity of their LZ-index
to O((m + occ) log u), not to reduce the space requirement as we do. In Section 6, however, we
will show how to use suffix links to reduce the time complexity of our indices, achieving their same
locating complexity while requiring less space.

Fig. 6. Illustration of Property 4. Preorder numbers, both in LZTrie and RevTrie, are shown outside each node.
Dashed arrows associate a RevTrie node with its corresponding node in LZTrie. This association is given by the R
mapping.

Example 8. In Table 3 we show some arrays composing the reduced version of LZ-index for our
running example, including the ϕ function and the set of reversed LZ78 phrases in RevTrie (in
preorder, i.e., lexicographically sorted).

4.1 Using Suffix Links to Compute R

Let us show how to compute R[i] using function ϕ. We define array L[1..n], which for each non-
empty node with preorder i in RevTrie stores the first symbol of the string strr(i).

Example 9. In the RevTrie of Fig. 3(b), it holds that L[i] = ‘a’ for every i in the preorder interval
[2, 5]. In the same example, note that if we follow the suffix link ϕ(i), for 2 6 i 6 5, we discard the
symbol ‘a’.

In the example of Fig. 6 we have L[i] = a; as we said before, this also means that L[i] is
the label of the edge connecting LZTrie nodes with preorders R[ϕ(i)] and R[i]. In other words,
L[i] = lettslz(R[i]).
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Table 3. Illustration of the different components of our index for the running example. In the case of RevTrie, array
rids is shown just for simplicity, yet this is not explicitly stored. In each case, i indicates the preorders in each trie.

LZTrie components

i ids[i] lettslz(i) R−1(i)

0 0 0
1 1 a 2
2 17 $ 1
3 3 b 6
4 15 r 15
5 14 l 10
6 4 r 14
7 12 a 4
8 10 d 8
9 16 l 11
10 6 17
11 11 p 13
12 2 l 9
13 7 a 3
14 9 b 7
15 5 16
16 8 a 5
17 13 p 12

RevTrie components

i rids[i] R[i] ϕ(i) L[i] LB[i] string in RevTrie

0 0 0 0 (empty string)

1 17 2 2 $ 0 $a

2 1 1 0 a 1 a

3 7 13 9 a 0 al

4 12 7 14 a 0 ara

5 8 16 16 a 0 a

6 3 3 2 b 1 ba

7 9 14 3 b 0 bal

8 10 8 14 d 1 dra

9 2 12 0 l 1 l

10 14 5 2 l 0 la

11 16 9 14 l 0 lra

12 13 17 5 p 1 pa

13 11 11 17 p 0 p a

14 4 6 2 r 1 ra

15 15 4 6 r 0 rba

16 5 15 0 1
17 6 10 2 0 a

Example 10. In Table 3 we show the values of L for our running example.

It is not hard to prove that L[i] 6 L[j] whenever i 6 j: let i and j be preorder numbers in
RevTrie, such that i 6 j. Therefore, for the strings corresponding to these preorders it holds that
strr(i) 6 strr(j). As L[i] and L[j] store the first symbol of strr(i) and strr(j) respectively, then
it holds that L[i] 6 L[j]. Thus, L can be divided into σ runs of equal symbols. In this way L
can be represented by an array L′ of at most σ log σ bits and a bit vector LB of n + o(n) bits,
such that LB[i] = 1 iff L[i] 6= L[i − 1], for i = 2 . . . n, and LB [1] = 0 (this position belongs to
the text terminator “$”, which is not in the alphabet). For every i such that LB [i] = 1, we store
L′[rank1(LB , i)] = L[i]. Hence, L[i] can be computed as L′[rank1(LB , i)] in O(1) time.

Given a RevTrie preorder position i, in order to compute R[i] we could follow suffix links
in RevTrie starting from node with preorder i, until we reach the RevTrie root. At this point we
could apply, starting from the root of LZTrie, child operations using the first symbol of each RevTrie
string we obtained while following suffix links, in reverse order. This procedure is formalized in the
following lemma.

Lemma 5. Given a RevTrie preorder position 0 6 i 6 n, the corresponding LZTrie preorder
position R[i] can be computed by the following recurrence:

R[i] =

{

childlz(R[ϕ(i)], L[i]) if i 6= 0
0 if i = 0

Proof. R[0] = 0 holds from the fact that the preorder position corresponding to the empty string,
both in LZTrie and RevTrie, is 0. To prove the other part, we note that if x is the parent in LZTrie
of node y with preorder position R[i], then the symbol labeling the edge connecting x to y is stored
in L[i] = lettslz(R[i]). That is, childlz(parentlz(R[i]), L[i]) = R[i]. The lemma follows from this fact
and replacing ϕ(i) by Definition 4 in the recurrence. ⊓⊔
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Example 11. To compute R[13] for the example of Table 3, which corresponds to string ‘p a’
in RevTrie, we need to compute childlz(R[17], L[13]), where L[13] = ‘p’ and ϕ(13) = 17 corre-
sponds to the RevTrie preorder position of string ‘ a’. Now, to compute R[17] we need to com-
pute childlz(R[2], L[17]), where L[17] = ‘ ’. Then, R[2] is computed as childlz(R[0], L[2]), which
is just child(0, ‘a’). At this point we must perform the child operations from the LZTrie root.
Recall that we assume the childlz operation works on preorder positions, so we must compute
childlz(childlz(childlz(0, ‘a’), ‘ ’), ‘p’) in LZTrie, which is the same as childlz(childlz(1, ‘ ’), ‘p’), which
in turn is childlz(10, ‘p’), which finally yields the node with preorder position 11. Hence, we conclude
that R[13] = 11.

4.2 Compressing the R Mapping

As in the case of the Ψ function of Compressed Suffix Arrays [22, 45], we can prove the following
lemma for the ϕ function, which is the key to compressing the R mapping.

Lemma 6. For every i < j, if L[i] = L[j], then ϕ(i) < ϕ(j).

Proof. Let strr(i) denote the i-th string in the lexicographically sorted set of reversed strings. Note
that strr(i) < strr(j) iff i < j. If i < j and L[i] = L[j] (i.e., strr(i) and strr(j) start with the
same symbol), then strr(ϕ(i)) < strr(ϕ(j)) (as strr(ϕ(i)) is strr(i) without its first symbol, recall
Property 4, point 1), and thus ϕ(i) < ϕ(j). ⊓⊔

Corollary 1. Array ϕ can be partitioned into at most σ strictly increasing sequences.

This fact is illustrated in Table 3, where the increasing runs of ϕ, corresponding to runs of equal
symbols in L, are separated by horizontal lines.

As a result, we replace R by ϕ, L′, and LB, and use them to compute a given value R[i].
According to Corollary 1, we can represent ϕ using the idea of Sadakane [45] to represent Ψ .
Thus, ϕ can be encoded with nH0(letts)+O(n log log σ) bits, and hence we replace the n log n-bits
representation of R by the nH0(letts) + O(n log log σ) + n + o(n) = O(n log σ) = o(u log σ) bits of
the representation of ϕ, L′, and LB .

4.3 Computing R and R−1 in O(1/ǫ) Time

According to Lemma 5, the time to compute R[i] is O(|strr(i)|), which actually corresponds to
traversing LZTrie from the root with the symbols of strr(i) in reverse order. However, the procedure
of Lemma 5 can be adapted to allow constant-time computation of R[i]. We store ǫn values of R
in an array R′, plus a bit vector RB of n + o(n) bits indicating which values of R have been stored,
ensuring that R[i] can be computed in O(1/ǫ) time while requiring ǫn log n extra bits.

To determine the R values to be explicitly stored, we fix l = Θ(1/ǫ) and carry out a preorder
traversal on LZTrie to mark the nodes (1 ) whose depth is j · l, for some j > 0, and such that (2 )
the corresponding node height is greater or equal to l. Since for every such marked node we have
at least l non-marked nodes descending from it, we mark O(ǫn) nodes overall. We also ensure that,
if we start at an arbitrary node in LZTrie and go successively to the parent, in the worst case we
must apply O(1/ǫ) parent operations to find a marked node. It can be the case that near the leaves
of the trie we must follow a longer path to get a marked node, because of condition (2) above.
However, notice that this path is never longer than 2l, which still is O(1/ǫ). On the RevTrie side,
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this means that in the worst case we must follow O(1/ǫ) suffix links to find a node whose R value
has been stored.

If the node to mark is at preorder position j, then we set RB [R−1(j)] = 1 (note that RB

is indexed by RevTrie preorder). After we mark the positions of R to be stored, we scan RB

sequentially from left to right, and for every i such that RB [i] = 1, we set R′[rank1(RB , i)] = R[i].
Then, we free R since R[i] can be computed in O(1/ǫ) worst-case time, as stated by the following
lemma.

Lemma 7. Given a RevTrie preorder position 0 6 i 6 n and given any 0 < ǫ < 1, the corresponding
LZTrie preorder position R[i] can be computed in constant O(1/ǫ) worst-case time by the following
recurrence:

R[i] =

{

child(R[ϕ(i)], L′[rank1(LB, i)]) if RB [i] = 0
R′[rank1(RB , i)] if RB [i] = 1.

This structure requires ǫn log n + O(n log σ) = ǫHk(T ) + o(u log σ) bits of space.

Note that the same structure used to compute R−1 using the explicit representation of R, can be
used under this reduced-space representation of R, with cost O(1/ǫ2) to compute R−1(j) (as we
have to access O(1/ǫ) positions in R). However, we show now how to compute R−1(j) in O(1/ǫ)
time, using a novel approach which basically consists in reverting the process used to compute R.

Definition 5. For every RevTrie preorder 0 6 i 6 n and every symbol a ∈ Σ, we define function
ϕ′ such that ϕ′(i, a) = R−1(childlz(R[i], a)).

We have the following immediate properties for function ϕ′.

Property 5. Given a non-empty node with preorder i in RevTrie, such that strr(i) = x, for x ∈ Σ∗,
then for a ∈ Σ it holds that

1. strr(ϕ
′(i, a)) = ax,

2. R[ϕ′(i, a)] = childlz(R[i], a).

Point (1) means that ϕ′ acts as a Weiner link [47] in RevTrie. Point (2) means that by following
a Weiner link by symbol a from node with preorder i, we are “going to a child by symbol a” in
LZTrie. See Fig. 7 for an illustration.

Next we show how to efficiently compute ϕ′ while requiring little space (since the obvious way
to represent it requires basically n log n bits). Let SW [1..n] be an array of n log σ bits storing, for
every RevTrie node, in preorder, the symbols by which the node has Weiner links defined, and let
VW be a bit vector. Because of Property 5 (2) (i.e., following a Weiner link by a symbol in RevTrie
means going to the child by the same symbol in LZTrie), we can use the LZTrie as an aid to
construct SW : We perform a preorder traversal on RevTrie, and for every non-empty node with
preorder i, let d be the degree of the corresponding LZTrie node R[i]. Then, we write the degree
d in unary in VW , in the format 10d. Thus, the 1s in VW will be used to locate the position of a
node within the data structure (via operation select1), while the 0s in VW shall be used to locate
the position for the symbols of the links of a given node, as we will see soon. In the same traversal
we also store in SW the symbols labeling the children of node R[i] in LZTrie. We represent arrays
VW and SW with data structures for rank and select queries, requiring o(u log σ) bits overall.

In order to understand how Weiner links can be represented in a compact way and computed
efficiently, we shall store them (conceptually) in such a way that we can divide the resulting array
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Fig. 7. Illustration of Property 5 for function ϕ′. Dashed arrows associate an LZTrie node with its corresponding
node in RevTrie. This association is given by R−1.

into at most σ strictly increasing subsequences (note that this cannot be ensured if we simply store
the links in preorder). Let W [1..n] be the (conceptual) array storing the sequence of Weiner links. We
will have an increasing subsequence in W for every symbol in the alphabet; every such subsequence
stores the links going out by that symbol. Let CW [1..σ] be an array storing the starting position
for the subsequence corresponding to every alphabet symbol. We then carry out a new preorder
traversal on RevTrie. For every non-empty node with preorder i (counting just non-empty nodes),
let R[i] be the corresponding LZTrie node, of degree d. Let i1 ← select1(VW , i+1) be the position in
VW corresponding to the current RevTrie node. Let i2 ← rank0(VW , i1)+ 1 be the starting position
in SW corresponding to the current node. Then, for every child j = 1, . . . , d of node R[i], which is
labeled by symbol s← lettslz(childlz(R[i], j)) in LZTrie, we store W [CW [s] + ranks(SW , i2 − 1)]←
R−1(childlz(R[i], j)).

Given this representation, we can compute, for any non-empty node with preorder i in RevTrie
and a symbol a ∈ Σ:

ϕ′(i, a) ≡W [CW [a] + ranka(SW , rank0(VW , select1(VW , i + 1)) + 1)].

Now it remains to show that this representation can be compressed.

Lemma 8. Array W can be partitioned into at most σ strictly increasing sequences.

Proof. Let positions i and j in W , for i < j, correspond to Weiner links going out by the same
symbol a ∈ Σ. Assume that position i corresponds to the node for string x ∈ Σ∗ in RevTrie, and
position j corresponds to string y ∈ Σ∗. Since i < j and given the way in which W is constructed,
it follows that the preorder of the node for x is smaller than the preorder of the node representing
y. This also means that x < y. Then, ax < ay also holds. Therefore the preorder stored at W [i]
(i.e., the one pointing to the node for string ax) is smaller than the preorder stored at W [j] (which
points to the node for string ay). ⊓⊔

Thus, we could represent W in the same way as array ϕ, requiring overall O(n log σ) = o(u log σ)
bits of space. However, we can do better. Let j ← childr(0, a) be the preorder of the child of the
RevTrie root by symbol a. Notice that all Weiner links going out by a given symbol, say symbol
a, point to a node within the subtree of the node with preorder j. Since Lemma 8 states that the
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Weiner links for symbol a appear in increasing order within the corresponding subsequence of W ,
this means that the first link for a points to the first node in preorder within the subtree of the
node with preorder j, the second link points to the second node in preorder within the subtree of
the node with preorder j, and so on. This means that just performing a rank on SW allows us to
compute the corresponding link, so we do not need to store array W . Formally, we have:

ϕ′(i, a) ≡ childr(0, a) + ranka(SW , rank0(VW , select1(VW , i + 1)) + 1)− 1. (1)

(Note this mechanism can be regarded as extending the LF-mapping of the Burrows-Wheeler trans-
form [9, 16] to tries).

We will use function ϕ′ and its properties in order to compute R′: suppose that we do not store
R−1(j) for the LZTrie node with preorder j in Fig. 7, but we store R−1(parentlz(j)). Then R−1(j)
can be computed as ϕ′(R−1(parentlz(j)), a). For every LZTrie node that has been marked to store
an R value, as explained above, we also store the corresponding value of R−1 in array R′′. We
mark in a bit vector R−1

B (according to preorder in LZTrie) the nodes whose R−1 value has been
stored. This ensures that, starting at an arbitrary node in LZTrie, we shall find a sampled node
after performing at most O(1/ǫ) parent operations. Then we can conclude:

Lemma 9. Given an LZTrie preorder position 0 6 j 6 n and given any 0 < ǫ < 1, the correspond-
ing RevTrie preorder position R−1(j) can be computed in O(1/ǫ) worst-case time by the following
recurrence:

R−1(j) =

{

ϕ′(R−1(parentlz(j)), lettslz(j)) if R−1
B [j] = 0

R′′[rank1(R
−1
B , j)] if R−1

B [j] = 1.

This structure requires ǫn log n + O(n log σ) = ǫHk(T ) + o(u log σ) bits of space.

4.4 Space and Time Analysis

As now we store ids in n log n bits, ids−1, R′, and R′′ in ǫn log n bits each, and ϕ, ϕ′, letts, and
rletts in O(n log σ) = o(u log σ) bits, the total space requirement is (1 + ǫ)n log n + o(u log σ) bits
(renaming 4ǫ = ǫ), and we provide the same navigation scheme as in Fig. 5. Occurrences of type
1 are found as usual, in O(m + occ1

ǫ ) time, where the extra O(occ1
ǫ ) term appears because we have

to use R to map from RevTrie to LZTrie, which takes O(1/ǫ) each time. Occurrences of type 2
are found as explained in Section 3.4, in O( n

ǫσm/2 ) average time since now the access between tries

is provided by R and R−1. For solving occurrences of type 3, we first search for all the pattern
substrings in LZTrie in O(m2) time, and then compute the maximal concatenations of phrases, in

O(m2

ǫ ) time by using the improved algorithm of Lemma 2 (the O(1/ǫ) factor comes from the fact
that we use ids−1 to simulate Node). Finally, for each of the O(m2) maximal concatenations found,

we carry out the tests as explained in Section 3.4, with cost O(m2

ǫ ) because RNode is implemented
by using R−1. We have proved:

Theorem 1. Given a text T [1..u] over an alphabet of size σ and let n be the number of phrases
in the LZ78 parsing of T , there exists a compressed full-text self-index requiring (1 + ǫ)uHk(T ) +
o(u log σ) bits of space, for σ = O(polylog(u)), any k = o(logσ u) and any 0 < ǫ < 1. Given a pattern

P [1..m], this index is able to locate (and count) the occ occurrences of P in T in O(m2

ǫ + u
ǫσm/2 )

average time, which is O(m2

ǫ ) if m > 2 logσ n.
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Now we can get worst-case guarantees in the search process by adding Range, the two-dimensional
range search data structure defined in Section 3 for the original LZ-index, requiring n log n +
o(u log σ) extra bits [31]. Occurrences of type 2 can now be found in O((m+ occ2) log n) worst-case
time by using Range. Occurrences of type 1 and type 3 are found as for the index of Theorem 1.
Existential queries, on the other hand, can be supported by first looking whether there is any oc-
currence of type 1 (i.e., by looking for P r in RevTrie and then checking whether the corresponding
subtree is empty or not) in O(m) time. If there are no occurrences of type 1, we check whether
there is any occurrence of type 2 by partitioning the pattern and using Range to count the number
of occurrences for each partition. This takes O(m log n) time overall, since we use Range just to
count. Finally, if there are no occurrences of type 2, we look for occurrences of type 3 in O(m2/ǫ)
time. Hence, we have the following theorem.

Theorem 2. Given a text T [1..u] over an alphabet of size σ, there exists a compressed full-text self-
index requiring (2 + ǫ)uHk(T ) + o(u log σ) bits of space, for σ = O(polylog(u)), any k = o(logσ u)
and any 0 < ǫ < 1. Given a search pattern P [1..m], this index is able to:

1. locate the occ occurrences of P in T in O(m2

ǫ + (m + occ) log u + occ
ǫ ) worst-case time;

2. count the number of pattern occurrences in O(m2

ǫ + m log u + occ
ǫ ) worst-case time; and

3. determine whether P exists in T in O(m2

ǫ + m log u) worst-case time.

In Section 8 we show that the theorem is valid for the more general case log σ = o(log u). We
leave for Section 7 the study of display and extract queries on our indices.

5 Using the xbw Transform to Represent the LZTrie

A different idea to reduce the space requirement of LZ-index is to use the xbw transform of Ferragina
et al. [13] to represent the LZTrie. We show that subpath queries, which are efficiently supported
by the xbw transform (see Section 2.5), are so powerful that we can carry out the work of both
LZTrie and RevTrie with only the xbw representation of LZTrie, thus achieving the same result as
in Section 4 (always assuming σ = O(polylog(u))), yet by very different means. Ferragina et al. [13]
have shown how the xbw representation can be compressed in order to take advantage of the tree
regularities, which can be very important in practice and adds extra value to this representation.

5.1 Index Definition

We represent the LZ-index with the following data structures:

– xbw LZTrie: the xbw representation [13] of LZTrie, where the nodes are lexicographically sorted
according to their upward paths in the trie. We store,
• Sα: the array of symbols labeling the edges of the trie, in the order defined in Section 2.5. In

the worst case LZTrie has 2n nodes (because of the dummy leaves we add, recall Section 2.5).
We represent this array by using a data structure for rank and select [17], which are needed
to compute the operations on xbw. The space requirement is 2n log σ + o(n log σ) bits.

• Slast: a bit array such that Slast[i] = 1 iff the corresponding node in LZTrie is the last child
of its parent. We represent this array with a data structure for rank and select [36]. The
space requirement is at most 2n + o(n) bits.

– Balanced parentheses LZTrie: the trie of the Lempel-Ziv phrases, implemented by,
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• par: the balanced parentheses representation [38] of LZTrie. In order to index the LZTrie
leaves with xbw, we have to add a dummy child to each, as was explained in Section 2.4. In
this way, the trie has n′ 6 2n nodes. Non-dummy nodes are marked in a bit vector B[1..n′]
in the same way as empty nodes are marked in RevTrie (see Section 3.4). We represent
array B with a data structure for rank and select queries [36]. The space requirement is
2n′ + n′ + o(n) bits, which is 6n + o(n) bits in the worst case. This sequence par is needed
to support some operations which are not supported by the xbw, such as ancestor(x, y) and
depth(x).

• ids: the array of LZ78 phrase identifiers in preorder, only for non-dummy nodes (we find
the phrase identifier for a given node by using rank1 on B). This array is represented with
the data structure for permutations [37], so that we can compute the inverse permutation
ids−1 in O(1/ǫ) time, requiring (1 + ǫ)n log n + n + o(n) bits (recall Section 2.4).

– Pos: a mapping from xbw positions to the corresponding LZTrie preorder positions (this is a
permutation of LZTrie preorders). In the worst case there are 2n such positions, so the space
requirement is 2n log (2n) bits. We can reduce this space to ǫn log (2n) bits by storing in an array
Pos′ one out of O(1/ǫ) values of Pos, so that Pos[i] can be computed in O(1/ǫ) time. We need
a bit vector PosB of 2n + o(n) bits indicating which values of Pos have been stored. Assume
we need to compute the preorder position Pos[i], for a given xbw position i. If PosB [i] = 1,
then such preorder position is stored explicitly at Pos′[rank1(PosB , i)]. Otherwise, we simulate a
preorder traversal in xbw from the node at xbw position i, until PosB [j] = 1, for an xbw position
j. Each preorder step we perform in xbw corresponds to moving to the next opening parenthesis
in par. Once this j is found, we map to the preorder position j′ = Pos′[rank1(PosB , j)]. If d is
the number of nodes in preorder traversal from xbw position i to xbw position j, then j′ − d is
the preorder position corresponding to the node at xbw position i.
We also need to compute Pos−1, which can be done in O(1/ǫ2) time under this scheme, requiring
ǫn log (2n) extra bits if we use the representation [37] for inverse permutations. However, we
can support the computation of Pos−1 in O(1/ǫ) time as follows. For every node such that its
Pos value has been stored in Pos′, we also store the corresponding value of Pos−1 in array Pos′′.
If we want to compute Pos−1[i], we first compute the preorder of the previous node that has
been sampled in Pos′′, at j = l⌊ il⌋, where l = Θ(1/ǫ). Then, we use the sample value stored at
Pos′′[⌊ il ⌋] to map to the xbw, and then carry out i − j preorder steps in xbw, to find the node
corresponding to Pos−1[i]. This takes O(1/ǫ) time in the worst case.

– Range: a range search data structure in which we store the point k (belonging to phrase identifier
k) at coordinate (x, y), where x is the xbw position of node for phrase k and y is the LZTrie
preorder position of node for phrase k +1. We use the data structure of Chazelle [10], as for the
original LZ-index. The space requirement is n log n + O(n log log n) = n log n + o(u log σ) bits.

Example 12. See Table 2 for an illustration of the xbw of LZTrie for the running example, and
Fig. 8 for an illustration of the balanced parentheses LZTrie and Pos.

In Fig. 9 we show the basic resulting navigation scheme following the notation of Section 3.4.
The total space requirement is (2 + ǫ)n log n + 2n log σ + 11n + O(n log log n) + o(n) bits, which is
(2 + ǫ)uHk(T ) + o(u log σ) bits for k = o(logσ u).

5.2 Search Algorithm

We depict now the search algorithm for a pattern P of length m.

28



0 10 20 30 40 50
par: ( ( ( ( ) ) ( ( ( ) ) ) ( ( ) ) ( ( ( ) ) ( ( ) ) ( ( ) ) ) ( ( ( ) ) ) ) ( ( ( ( ) ) ) ) ( ( ( ( ) ) ) ) )

B: 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0

ids: 0 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a $ ∆ b r ∆ l ∆ r a ∆ d ∆ l ∆ p ∆ l a b ∆ a p ∆

Pos−1: 1 5 4 6 13 24 7 17 8 21 11 22 15 23 18 9 26 20 2 16 10 14 3 25 12 19

i : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Pos[i] : 1 19 23 3 2 4 7 9 16 21 11 25 5 22 13 20 8 15 26 18 10 12 14 6 24 17

Fig. 8. Balanced-parentheses representation of LZTrie for the running example, with dummy leaves added in order
to index the (original) leaves with the xbw representation. Bit vector B marks each dummy node with a 0. Given
node x, the corresponding phrase identifier can be computed as ids[rank1(B, preorder(x))]. We also show the Pos
mapping (from xbw positions, see Table 2, to LZTrie preorders), and the Pos−1 mapping (from LZTrie preorders to
xbw positions).

Fig. 9. Basic navigation scheme using the xbw representation of the LZTrie.

Occurrences of Type 1. Recall from Section 3.3 that first we need to find all the phrases having
P as a suffix. To do this we perform a subpath query with P r on the xbw representation of LZTrie,
simulating in this way the work done on RevTrie in the original scheme, in O(m) time. Suppose that
we obtain the interval [x1..x2] in the xbw of LZTrie, corresponding to all the nodes whose phrase
ends with P . In other words, the interval [x1..x2] contains the roots of the subtrees containing the
nodes we are looking for to find occurrences of type 1. For each position i ∈ [x1..x2], we can get the
corresponding preorder in the parentheses representation using Pos(i), which takes O(1/ǫ) time,
and then selectnode(Pos(i)) over par yields the node position. As in the worst case this mapping is
carried out occ1 times, the overall time is O(occ1

ǫ ). Finally, we traverse the subtrees of these nodes
in par and report all the identifiers found, in constant time per occurrence as done with the usual
LZ-index.

Occurrences of Type 2. To find occurrences of type 2, for every possible partition P [1..i] and
P [i + 1..m] of P , we traverse the xbw from the root, using operation child(x, α) with the symbols
of P [i + 1..m]. This takes O(m2) time overall for the m − 1 partitions of P . In this way we are
simulating the work done on LZTrie when searching for occurrences of type 2 in the original
scheme. Once this is found, say at xbw position j, we switch to the preorder tree (parentheses)
using selectnode(Pos(j)) over par, to get the node vlz whose subtree has preorder interval [y1..y2]
of all the nodes whose strings start with P [i + 1..m]. This takes overall O(m

ǫ ) time, for the m− 1
partitions of P . Next we perform a subpath query for P [1..i] in xbw, and get the xbw interval [x1..x2]
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of all the nodes whose strings finish with P [1..i] (actually we have to perform x1 ← rank1(Slast, x1)
and x2 ← rank1(Slast, x2) to avoid counting the same node multiple times, see [13]). This also takes
O(m2) time overall. Finally, we search the Range data structure for [x1..x2]× [y1..y2] to obtain all
phrase identifiers t such that phrase Bt finishes with P [1..i] and phrase Bt+1 starts with P [i+1..m],
in O((m + occ) log n) time overall.

Occurrences of Type 3. For occurrences of type 3, one proceeds mostly as with the original
LZTrie (navigating the xbw instead), so as to find all the nodes equal to substrings of P in O(m2)
time. Then, for each maximal concatenation of phrases P [i..j] = Bt . . . Bℓ, we must check whether
phrase Bℓ+1 starts with P [j + 1..m] and whether phrase Bt−1 finishes with P [1..i − 1]. The first
check can be done in O(1/ǫ) time by using ids−1: as we have searched for all substrings of P in the
trie, we know the LZTrie preorder interval of the descendants of P [j + 1..m], and thus we check
whether the node at preorder position ids−1(ℓ + 1) belongs to that interval. The second check can
be done in O(1/ǫ) time, by determining whether t− 1 lies in the xbw interval of P [1..i− 1] (that is,
Bt−1 finishes with P [1..i− 1]). For this, we need Pos−1, so that the position is Pos−1(ids−1(t− 1)).

Summarizing, occurrences of type 1 cost O(m+ occ
ǫ ) time, occurrences of type 2 cost O(m2+ m

ǫ +

(m+occ) log n) time, and of type 3 cost O(m2

ǫ ) time. Thus, we have achieved Theorem 2 again with
radically different means. The same complexities are also achieved for count and exists queries.
We can also obtain a version requiring (1+ ǫ)uHk(T )+o(u log σ) bits and O(m2) average reporting
time if m > 2 logσ n (as in Theorem 1), if we search for the occurrences of type 2 by using a checking
procedure similar to that used to check phrases t− 1 and ℓ + 1 for the occurrences of type 3.

6 Faster and Still Small LZ-indices

In Section 4, we have shown how to use suffix links in RevTrie to reduce the space requirement
of the LZ-index. Russo and Oliveira [44] show how to use suffix links to reduce the locating time
of their LZ-index to O((m + occ) log u), but not to reduce the space of their index. On the other
hand, Ferragina and Manzini [16] combine the backward-search concept with a Lempel-Ziv-based
scheme to achieve optimal O(m + occ) locating time, without restrictions on m or occ. Yet, their
index is even larger, requiring O(uHk(T ) logγ u) bits of space, for any constant γ > 0.

In this section, we use suffix links to speed up occurrences of type 2, using an idea similar to
that of [44], and we find occurrences of type 3 as a particular case of occurrences of type 2, using
a similar idea to that of [16]. In this way we manage to avoid the O(m2) term in the locating
complexity of the LZ-index, achieving the same locating time as [44], while reducing their space
requirement of (5 + ǫ)uHk(T ) + o(u log σ) bits.

6.1 Index Definition

We build basically on the LZ-index of Theorem 1, composed of LZTrie, RevTrie, and the R mapping
(compressed using suffix links ϕ). We add to LZTrie the data structure of Jansson et al. [25] to
compute level ancestor queries, LA(x, d), which returns the ancestor at depth d of node x. This
requires o(n) extra bits and supports LA queries in constant time. Therefore, the overall space
requirement of the three above data structures is (1 + ǫ)uHk + o(u log σ) bits.

To avoid the O(m2) term in the locating complexity, we should avoid occurrences of type 3,
since they make us check the O(m2) possible candidates. We cannot use the same procedure as for
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occurrences of type 2 (using the Range data structure) because LZTrie is only able to index whole
phrases, not text suffixes. Then, by using LZTrie to query the Range data structure, we are only
able to return the phrases starting with a given suffix P [i + 1..m] of the pattern, and therefore we
can find only occurrences spanning two consecutive phrases (i.e., occurrences of type 2).

Hence we add the alphabet friendly FM-index [17] of T (AF-FMI(T ) for short) to our index. By
itself this self-index is able to search for pattern occurrences, requiring uHk(T ) + o(u log σ) bits of
space. However, its locate time per occurrence is O(log1+ǫ u log σ

log log u), for any constant ǫ > 0, which
is greater than the O(log u) time per occurrence of LZ-indices.

As AF-FMI(T ) is based on the Burrows-Wheeler Transform [9] of T (bwt(T ) for short), it can
be (conceptually) thought of as the suffix array SAT of T . Recall that, in a suffix array, a given
interval corresponds to a lexicographic interval of the text suffixes. The AF-FMI(T ) indexes text
suffixes. In particular, we will be interested in those suffixes that are aligned with the LZ78 phrase
beginnings. By using this structure to query the Range data structure (instead of using LZTrie)
we will be able to find those text suffixes that are aligned with LZ78 phrases and have P [i + 1..m]
as a prefix. Thus, P [i + 1..m] can span more than two consecutive phrases, and therefore we will
consider occurrences of type 3 as a special case of occurrences of type 2.

To find occurrences spanning several phrases we re-define Range, the data structure for 2-
dimensional range searching. Now it will operate on the grid [1..u] × [1..n]. For each LZ78 phrase
with identifier id, for 0 < id 6 n, assume that the RevTrie node for id has preorder j′, and that
phrase (id + 1) starts at position p in T . Then we store the point (i′, j′) in Range, where i′ is the
lexicographic order of the suffix of T starting at position p, i.e. SAT [i′] = p holds.

Suppose that we search for a given string s2 in AF-FMI(T ) and get the interval [i1, i2] in the
bwt(T ) (equivalently, in the suffix array of T ), and that the search for string sr

1 in RevTrie yields
a node such that the preorder interval for its subtree is [j1, j2]. Then, a search for [i1, i2] × [j1, j2]
in Range yields all phrases ending with s1 such that the next phrase is aligned with an occurrence
of s2 in T .

We transform the grid [1..u] × [1..n] indexed by Range into an equivalent grid [1..n] × [1..n]
by defining a bit vector V [1..u], which indicates (with a 1) which positions of AF-FMI(T ) point
to the beginning of an LZ78 phrase. We represent V with the data structure of [42] supporting
rank queries, and using uH0(V ) + o(u) 6 n log u

n + o(u) 6
u log log u

logσ u + o(u) = o(u log σ) bits of

storage (recall n 6 u/ logσ u). Thus, instead of storing the point (i′, j′) as in the previous definition
of Range, we store the point (rank1(V, i′), j′). The search of the previous paragraph now becomes
[rank1(V, i1), rank1(V, i2)]× [j1, j2].

As there is only one point per row and column of Range, we can use the data structure of
Chazelle [10], which can be implemented by using n log n + O(n log log n) = uHk(T ) + o(u log σ)
bits [31]. As a result, the overall space requirement of our LZ-index is (3 + ǫ)uHk(T ) + o(u log σ),
for any k = o(logσ u) and any 0 < ǫ < 1.

6.2 Search Algorithm

For exists and count queries we can achieve O(m) time by just using the AF-FMI(T ). We focus
now on locate queries. Assume that P [1..m] = p1 . . . pm, for pi ∈ Σ. As explained, we need to
consider only occurrences of P in T of type 1 and 2. Those of type 1 are found just as for the
original LZ-index, in O(m + occ1

ǫ ) time. The rest of the section is devoted to those of type 2.
To find the pattern occurrences spanning two or more consecutive phrases we must consider

the m − 1 partitions P [1..i] and P [i + 1..m] of P , for 1 6 i < m. For every partition we must
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find all phrases terminated with P [1..i] such that the next phrase starts at the same position as an
occurrence of P [i + 1..m] in T . Hence, as explained before, we must search for P r[1..i] in RevTrie
and for P [i + 1..m] in AF-FMI(T ). Thus, every partition produces two one-dimensional intervals,
one in each of the above structures.

If the search in RevTrie for P r[1..i] yields the preorder interval [j1, j2], and the search for P [i+
1..m] in AF-FMI(T ) yields interval [i1, i2], the two-dimensional range [rank1(V, i1), rank1(V, i2)] ×
[j1, j2] in Range yields all pattern occurrences for the given partition of P . For every pattern
occurrence we get a point (i′, j′) from Range. The corresponding phrase identifier can be found as
t = ids(R(j′)), to finally report a pattern occurrence Jt, iK.

Overall, occurrences of type 2 are found in O((m + occ2) log n) time. Yet, we still have to show
how to find efficiently the intervals in AF-FMI(T ) and in RevTrie.

The m − 1 intervals for P [i + 1..m] in AF-FMI(T ) can be found in O(m) time thanks to the
backward search concept, since the process to count the number of occurrences of P [2..m] proceeds
in m − 1 steps, each one taking constant time if σ = O(polylog(u)) [16]: in the first step we find
the BWT interval for pm, then we find the interval for occurrences of pm−1pm, then pm−2pm−1pm,
and so on to finally find the interval for p2 . . . pm = P [2..m].

However, the work in RevTrie can take time O(m2) if we search for strings P r[1..i] separately,
as done for the indices of Section 4. Fortunately, some work done to search for a given P r[1..i] can
be reused to search for other strings. We have to search for strings pm−1pm−2 . . . p1, pm−2 . . . p1,. . . ,
and p1 in RevTrie. Note that every pj . . . p1 is the longest proper suffix of pj+1pj . . . p1. Suppose
that we successfully search for P r[1..m−1] = pm−1pm−2 . . . p1, reaching the node with preorder i′ in
RevTrie, hence finding the corresponding preorder interval in RevTrie in O(m) time. Now, to find
the node representing suffix pm−2 . . . p1 we only need to follow suffix link ϕ(i′) (which takes O(1)
time) instead of searching for it from the RevTrie root (which would take O(m) time again). The
process of following suffix links can be repeated m−1 times up to reaching the node corresponding
to string p1, with total time O(m). This is the main idea to get the m − 1 preorder intervals in
RevTrie in time less than quadratic. The general case is slightly more complicated and corresponds
to the descend and suffix walk method used in [44].

In what follows, we explain the way we implement descend and suffix walk in our data structure.
However, we must prove a couple of properties for RevTrie in order to be able to apply this method.
First, we know that every non-empty node in RevTrie has a suffix link (see Lemma 4), yet we need
to prove that every RevTrie node (including empty-non-unary nodes) has also a suffix link.

Lemma 10. Every empty non-unary node in RevTrie has a suffix link.

Proof. Assume that node vr in RevTrie is empty non-unary, and that it represents string ax, for
a ∈ Σ and x ∈ Σ∗. As node vr is empty non-unary, the node has at least two children. In other
words, there exist at least two strings of the form axy and axz, for y, z ∈ Σ∗, y 6= z, both strings
corresponding to non-empty nodes, and hence these nodes have a suffix link. These suffix links
correspond to strings xy and xz in RevTrie. Thus, there must exist a non-unary node for string x,
which is the suffix link of node vr. ⊓⊔

The descent process in RevTrie will be a little bit different from the one described in the proof
of Lemma 3. This time, we are going to reuse the work done for a string already searched for in
RevTrie, so we have to be sure that every time we arrive at a RevTrie node, the string represented
by that node matches the corresponding pattern prefix (the usual skipping process of a Patricia
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tree does not ensure that). Thus, the second property is that, although RevTrie is a Patricia tree
and hence we store only the first symbol of each edge label, we can get the whole label in time
linear in its length.

Lemma 11. Any edge label of length l in RevTrie can be extracted in O(l) time.

Proof. Assume that we are at node vr in RevTrie, and want to extract the label for edge evrv′r
between nodes vr and v′r in RevTrie. Since we arrive at a node in RevTrie by descending from the
root, the length of the string represented by a given node can be computed by summing up the
skips we have seen in the descent. Let lvr and lv′r be the length of strings represented by nodes vr

and v′r, respectively. Then, lv′r − lvr is the length of the label of edge evrv′r .
If we assume that node v′r has preorder j1 in RevTrie, we can access the LZTrie node from which

to start the extraction of the label by v′lz = LA(R[j1], lv′r − lvr), in constant time [25]. The label
of evrv′r is the label of the v′lz-to-root path. Notice that with the level-ancestor query on LZTrie,
we avoid extracting the string represented by node vr in RevTrie, as it has been already extracted
before descending to vr.

In the case where v′r is an empty node, recall that the corresponding value R[j1] is undefined.
However, just as in the proof of Lemma 3, we can use any non-empty node within the subtree of
v′r to map to the LZTrie. For instance, we can use the next non-empty node within the subtree
of v′r: let j2 = rank1(B, j1) + 1, then the length of the corresponding string can be computed as
depth(R[j2]) in LZTrie, and we compute v′lz = LA(R[j2], depth(R[j2]) − lvr), to finally extract the
edge label by moving to the parent lv′r − lvr times. ⊓⊔

Thus, we search RevTrie as in a normal trie, comparing every symbol as we descend, without
skipping as is done in Lemma 3. In this way, every time we arrive at a RevTrie node, the string
represented by that node will match the corresponding prefix of the pattern.

Previously we showed that it is possible to search for all strings P r[1..i] in O(m) time, assuming
that P r[1..m − 1] exists in RevTrie (therefore all the P r[1..i]’s exist in RevTrie). The general case
is as follows. Let P r[1..m − 1] = pm−1 . . . p1 be the longest string that we need to search for in
RevTrie. We define three integer indices on P r[1..m− 1], which guide the search:

i1, which marks the beginning of the pattern suffix we are currently searching for. It is initialized
at 1 since we start searching for pm−1pm−2 . . . p1;

i2, which indicates the current symbol in the pattern, which is being compared with a symbol in an
edge label, with the aim of descending to a child of the current node. Notice that (P r)[i1..i2−1]
is the part of the current pattern that has been matched with the edge labels of RevTrie; and

i3, which delimits the string corresponding to the current node, which represents string (P r)[i1..i3]
in RevTrie. Thus (P r)[i3 + 1..i2 − 1] will be the part of the pattern that has been compared
with the label of the edge leading to the node we are trying to descend to.

Our descend and suffix walk will be composed of three basic operations: descend, suffix, and
retraverse.

Descend. We start searching for pm−1pm−2 . . . p1 from the RevTrie root, using the method of
Lemma 11 and using i2 to indicate the current symbol being compared in the descent. Every time
we descend to a non-empty-unary child node (after matching all the characters of an edge), we set
i3 ← i2 and continue descending in the same way from this node. If, when trying to descend to a
child node, we find an empty-unary node (which was added because of the skips in RevTrie, see
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Section 3.4), the index i3 is not updated as explained before. In this case, we continue the descent
with i2 from the empty-unary node, using Lemma 11.

Suffix. Now assume that, being at current node vr (with preorder j1 in RevTrie and representing
string ax, for a ∈ Σ, x ∈ Σ∗), we cannot descend to a child node v′r (with preorder j2 in RevTrie
and representing string axyz, for y, z ∈ Σ∗, such that |yz| > 0). Let evrv′r be the edge between
nodes vr and v′r, with label yz, where y = (P r)[i3 + 1..i2 − 1] and (P r)[i2] 6= z1. Hence there are no
phrases ending with P r[1..m − i1].

Then, we go on to consider the next suffix P r[1..m − i1 − 1]. To reuse the work done up to
node vr (i.e. (P r)[i1..i3] = ax), we follow the suffix link to get the node ϕ(j1) representing string
x, setting i1 ← i1 + 1.

Retraverse. We have reused the work up to x, but we had actually worked up to xy. Notice that
suffix xy certainly exists in RevTrie, yet it could be represented by an empty unary node which has
been compressed in an edge. Therefore, from node ϕ(j1) we descend using y = (P r)[i3 + 1..i2 − 1].
The edge evrv′r = yz could be split into a path of several nodes between nodes ϕ(j1) and ϕ(j2).
As substring y has been already checked in the previous step, the descent from node ϕ(j1) is done
by skipping and checking only the first symbols of the edge labels (advancing i3 accordingly as we
reach new nodes). If we find an empty unary node when trying to descend from node v′′r to the
next node, we jump directly to the position of the next non-empty unary node (with preorder j3)
and then compute the length l of the string represented by that node.

For this direct jump we need a bit vector E marking the empty unary nodes, in preorder. We
preprocess E with a data structure supporting rank and select, so this requires n′ + o(n′) extra
bits. The node with preorder j3 can be found by using rank and select on E. The length l can be
computed as the sum of the length of the current node plus ne · log u, where ne is the number of
empty unary nodes between the current node and the one with preorder j3 (which can be computed
as the number of 1s between the corresponding positions in E), and log u comes from the skips of
empty unary nodes (recall Section 3.4). If l > |xy|, we resume the suffix mode from v′′r . Otherwise,
we stay in the retraverse mode from the node with preorder j3. This process is carried out till string
y is fully consumed, and then we resume the descend mode from the corresponding node.

After we find the first suffix P r[1..i] in RevTrie (if any), we are sure that every suffix of it also
exists in RevTrie (because this trie is suffix closed). The nodes corresponding to these suffixes are
found by following suffix links.

Lemma 12. Given a string P of length m, we can search for strings P r[1..i], for 1 6 i < m, in
RevTrie in O(m) time.

Proof. Consider the method just described. Indices i1, i2, and i3 grow from 1 to at most m. For
every constant-time action we carry out, at least one of those indices increases. Thus the total work
is O(m). ⊓⊔

Therefore, we have proved:

Theorem 3. Given a text T [1..u] over an alphabet of size σ, there exists a compressed full-text self-
index requiring (3 + ǫ)uHk(T ) + o(u log σ) bits of space, for σ = O(polylog(u)), any k = o(logσ u),
and any 0 < ǫ < 1. Given a search pattern P [1..m], this index is able to:

1. locate the occ occurrences of P in T in O((m + occ
ǫ ) log u) worst-case time;
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2. count pattern occurrences in O(m) worst-case time; and
3. determine whether P exists in T in O(m) worst-case time.

7 Optimal Displaying of Text Substrings

7.1 Reporting Text Positions with LZ-index

As we said before, the original LZ-index is able to report occurrences in the format Jt, offsetK,
where t is the phrase in which the occurrence starts and offset is the distance between the
beginning of the occurrence and the end of the phrase. The same happens for our indices of Sections
4, 5, and 6.

However, we can report occurrences as text positions by adding a bit vector TPos[1..u] that
marks with a 1 the text positions corresponding to the phrase beginnings. Thus, there are n 1s
in TPos. Given a text position i, rank1(TPos, i) is the phrase number i belongs to. Given a phrase
identifier j, select1(TPos, j) yields the text position at which the j-th phrase starts. Therefore, given
an occurrence in the format Jt, offsetK, the text position for that occurrence can be computed as
select1(TPos, t+1)−offset. Such TPos can be represented with uH0(TPos)+o(u) 6 n log u

n +o(u) 6
u log log u

logσ u + o(u) = o(u log σ) bits [42] (recall n 6 u/ logσ u).

The algorithm for extract queries (of whole LZ78 phrases) described in Section 3.3 can also be
used on the indices of Theorems 1, 2 and 3, yet this time providing the text positions from which
to extract (rather than the phrase identifiers), since these positions can be transformed into phrase
identifiers by using data structure TPos. As the Node data structure is simulated by using ids−1,
it takes O(ℓ(1 + 1

ǫ logσ ℓ)) time to extract any text substring of length ℓ. This is because we perform

ℓ parent operations to get the ℓ symbols we want to display, and we must pay O(1/ǫ) to use ids−1

each time we go on to extract the next phrase, which in the (very) worst case is done O(ℓ/ logσ ℓ)
times.

To extract the text with xbw -based LZ-index of Section 5, we use TPos to transform the text
positions into phrase identifiers, and then we use ids−1 to find the preorder position of the cor-
responding phrase, to finally map to the xbw representation of LZTrie by using Pos−1 in O(1/ǫ)
time. Then we move to the parent in the xbw, displaying the corresponding symbol stored in Sα.
When we reach the tree root, we use ids−1 again to consider the next phrase, and map to the xbw
again. The time is therefore O(ℓ(1 + 1

ǫ logσ ℓ)).
We can avoid the restriction of displaying only whole phrases by adding a data structure for

level-ancestor (LA) queries on LZTrie. The data structure [25] builds on dfuds, allows constant
time computation of operation LA, and requires o(n) extra bits of space. Thus, the part of a phrase
that we do not need to display is skipped by using the appropriate LA query. Yet, the displaying
time is not optimal, since we work O(1) per extracted symbol and on a RAM we are able to handle
Θ(log u) bits per access, which means Θ(log u/ log σ) = Θ(logσ u) symbols per access.

7.2 Achieving Optimal Extracting Time

We describe a technique that can be plugged to any of the indices proposed in Sections 4, 5 and 6,
for displaying any text substring T [i..i+ ℓ−1], in optimal O(1+ ℓ/ logσ u) time. A compressed data
structure [46] to display any text substring of length Θ(logσ u) in constant time, turns out to have
similarities to the LZ-index. We take advantage of this similarity to plug it into our indices, with
some modifications, and obtain improved time to display text substrings. In [46], the authors added
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auxiliary data structures of o(u log σ) bits to LZTrie to support this operation efficiently. Given a
position i in the text, we first find the phrase including the position i by using rank1(TPos, i), and
then find the node of LZTrie that corresponds to the phrase using Node (that is, the corresponding
implementation of it). Then displaying a phrase is equivalent to outputting the path going from
the node to the root of LZTrie. The auxiliary data structure, of size O(n log σ) = o(u log σ) bits,
permits outputting the path by chunks of Θ(logσ u) symbols in O(1) time per chunk. As explained
before, we can also display not only whole phrases, but any text substring within this complexity.
Thus the displaying can start backwards from anywhere in a phrase and, of course, it can stop at
any point as well.

We modify this method to plug it into our indices. In their original method [46], if more than
one consecutive phrases has length less than (logσ u)/2 each, their phrase identifiers are not stored.
Instead the substring of the text including those phrases is stored without compression. This guar-
antees efficient displaying without increasing the space requirement. However this will cause the
problem that we cannot find patterns including those phrases. Therefore in our modification we
store, for these short phrases, both the phrases themselves and their phrase identifiers. The search
algorithm remains as before. To decode short phrases we can just output the explicitly stored sub-
string including the phrases. For each phrase with length at most (logσ u)/2, we store a substring
of length log u containing the phrase. Because there are at most O(

√
u) such phrases in the text

(recall that all LZ78 phrases are different), we can store all these substrings in O(
√

u log u) = o(u)
bits. These auxiliary structures work as long as we can convert a phrase identifier into a preorder
position in LZtrie (that is, compute ids−1) . Hence they can be applied to all the data structures
in Sections 4, 5, and 6.

Theorem 4. The indices of Theorem 1 and Theorem 2 (and also those of Sections 5 and 6) can be
adapted to extract a text substring of length ℓ surrounding any text position in optimal O(1+ ℓ

ǫ logσ u)

worst-case time, using only o(u log σ) extra bits of space, for any 0 < ǫ < 1.

8 Handling Larger Alphabets

For simplicity, throughout this paper we have assumed σ = O(polylog(u)), or equivalently log σ =
O(log log u). Here we study the cases log σ = o(log u) and log σ = Θ(log u).

8.1 The Case log σ = o(log u)

As long as log σ = o(log u) holds, we can still have k = o(logσ u) > 0, while it also holds that
n log n = uHk(T ) + o(u log σ) [28]. Therefore, the space requirements of the indices of Theorems 1
to 3 stay the same.

Index of Section 4. The data structure of [17], which we use to represent letts and array SW , has
a time complexity of O( log σ

log log u) for rank and select queries; thus, we lose the constant time for

operations child(x, α) and ϕ′(x, α) on the tries, which would increase the time complexity of the
whole index. Nevertheless, we can represent letts with the (more complicated) data structure used
in [8], thus ensuring constant time for child(x, α) for any σ, and retaining the same time complexity
in our theorems. In the case of SW we can use the following scheme, which is a variant of that used
in [13] to achieve constant-time rank over the sequence, requiring n log σ + o(u log σ) bits of space.
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Let S′ be a σ × n binary matrix, such that S′[a, i] = 1 if and only if SW [i] = a holds. Thus,
ranka(SW , i) can be computed as the number of 1s within the a-th row of S′, up to column i.
We represent S′ as a linear bit vector S′′ of σn bits. Since there are n 1s in this bit vector, we
use the data structure of [42] that requires log

(

σn
n

)

+ o(n) + O(log log σn) bits of space, which is
n log σ + O(n) bits. We add an array counting the number of 1s up to the beginning of each row
in S′, using σ log n extra bits. By using this representation, we are able to compute rank1(S

′′, i)
in constant time, but only if we know that S′′[i] = 1 holds [42]. In our representation, this means
that we can compute ranka(SW , i) only if we know that SW [i] = a holds. However, this is not the
case, since the ranka in Eq. (1) is carried out over the first position of SW corresponding to the
Weiner-link symbols of a node, which can store any possible symbol, not necessarily a.

We devise the following data structure in order to find the position of symbol a within the
Weiner-link symbols of a RevTrie node v with preorder i. Given the portion of array SW cor-
responding to the symbols for the Weiner links of node v, we can construct a dfuds [8] direc-
tory on these symbols in order to compute, in O(1) time, the position of any symbol within this
segment. The space for the directory is d log σ bits, where d is the number of Weiner links de-
fined for node v. We define array D of n log σ bits, storing the dfuds directory Dv for every
RevTrie node in preorder. Directory Dv is aligned with the positions in array SW for node v. Let
i2 ← rank0(VW , select1(VW , i + 1)) + 1 be the starting position in SW for the Weiner-link symbols
of v. Let j be the position of symbol a within the symbols of v, yielded by Dv in O(1) time (Dv

also allows us to know whether or not symbol a exists within the symbols of node v). Then, we
know that SW [i2 + j] = a holds, hence the ranka in Eq. (1) must be computed up to position i2 + j,
intead of just i2.

None of the remaining data structures of the index are affected by the alphabet size. As a result,
Theorem 2 can be extended for the case log σ = o(log u), rather than only for σ = O(polylog(u)).

Index of Section 5. The times for the operations on the xbw representation of LZTrie are affected
by the alphabet size, depending on the representation used for Sα. If we use the data structure of
Golynski et al. [20], occurrences of type 1 are found in O(m log log σ + occ

ǫ ) time, because of the
subpath query we perform on LZTrie; occurrences of type 2 are found in O(m2 log log σ + m

ǫ +
(m + occ) log n) time, where the first term comes from searching for the m − 1 partitions of P in

xbw ; and occurrences of type 3 are found in O(m2 log log σ + m2

ǫ ), where the first term comes from
searching for the O(m2) pattern substrings in the xbw representation of LZTrie. Overall, the time
for locate is O(m2(1

ǫ +log log σ)+ (m+ occ) log u). We can also replace O(log log σ) for O( log σ
log log u)

in all these figures.

Index of Section 6. For this index the only affected part is the Alphabet-Friendly FM-index, AF-
FMI(T ), which still has a space requirement of uHk(T ) + o(u log σ) bits of space. The counting
time is increased to O(m(1 + log σ

log log u)). Thus, the time for locate of this version of LZ-index now

becomes O(m(1 + log σ
log log u) + (m + occ

ǫ ) log u), which is still O((m + occ
ǫ ) log u), the same as stated

by Theorem 3, since m log σ
log log u = O(m log u). The counting time, on the other hand, now becomes

O(m(1 + log σ
log log u)). Thus, we have a more general version of Theorem 3:

Theorem 5. Given a text T [1..u] over an alphabet of size σ, there exists a compressed full-text
self-index requiring (3 + ǫ)uHk(T ) + o(u log σ) bits of space, for any k = o(logσ u), any 0 < ǫ < 1,
and such that log σ = o(log u). Given a search pattern P [1..m], this index is able to:
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1. locate the occ occurrences of P in T in O((m + occ
ǫ ) log u) worst-case time;

2. count pattern occurrences in O(m(1 + log σ
log log u)) worst-case time;

3. determine whether P exists in T in O(m(1 + log σ
log log u)) worst-case time; and

4. extract any text substring of length ℓ in O(ℓ/(ǫ logσ u)) worst-case time.

8.2 The Case log σ = Θ(log u)

For the case log σ = Θ(log u), because of Lemma 1 we have that n log n = uHk(T )+O(u(1+k log σ))
bits of space, which is Θ(u log σ) even for k = 1. Thus, high-order compression is lost. For k = 0 the
space is uH0(T )+o(u log σ) bits of space, so zero-order compression is retained. On the other hand,
all the time complexities obtained for the case log σ = o(log u) are valid for this larger σ. However,
it has been shown that the empirical-entropy model is not adequate for such a large alphabet [19].

9 Conclusions and Future Work

We have improved the overall performance of LZ-indices, achieving stronger compressed self-indices
based on the Lempel-Ziv compression algorithm [48]. We have reduced the space of Navarro’s LZ-
index [39] to about a half, achieving (2+ ǫ)uHk(T )+ o(u log σ) bits of space to index a text T [1..u]
with k-th order empirical entropy Hk, for any k = o(logσ u) and any 0 < ǫ < 1. Our indices

are able to search for the occ occurrences of a pattern P [1..m] in T in O(m2

ǫ + (m + occ) log u)

worst-case time, as well as extracting any text substring of length ℓ in optimal O( ℓ
ǫ logσ u) time.

Thus, we achieve the same locating time as the index of Kärkkäinen and Ukkonnen [27], yet with a
much smaller index which does not need the text to operate. We also showed how the space can be
squeezed to (1 + ǫ)uHk(T ) + o(u log σ) bits, with O(m2) average-case search time if m > 2 logσ n.
This space approaches, as closely as desired, the optimal uHk(T ) under the k-th order empirical
entropy model for all k. However, this index does not provide worst-case guarantees at search time.
Thus, ours are the smallest existing compressed self-indices based on Lempel-Ziv compression.

We also showed how to use an LZ-index to achieve O((m+occ) log u) time to locate the pattern
occurrences, requiring (3 + ǫ)uHk(T ) + o(u log σ) bits of space. This is much less than the space
required by other LZ-indices having the same search time.

Thus, we have achieved LZ-indices with space requirements ranging from (1+ ǫ) to (3+ ǫ) times
the empirical entropy of the text (plus lower-order terms), with different achievements in the time
complexities according with the space requirement of the index. These indices are very competitive
with state-of-the-art indices, both in time and space requirement.

The most basic problems for compressed self-indices are that of searching and reproducing
the text. However, there are many other functionalities that a self-index must provide in order to
be fully useful, as for example the space-efficient construction of the indices, secondary-memory
capabilities (in cases where the text is so huge that the corresponding compressed self-index does
not fit in main memory), dynamic capabilities, and allowing more complex queries on the text (such
as regular-expression and approximate searching).

Constructing the indices with little space is an important research topic regarding their practi-
cality [24, 23, 2, 32]. It has been shown [5] that all the indices defined in this paper can be constructed
without requiring any extra space on top of the space of the index itself, which adds extra value to
our results. Also, it has been shown that the LZ-index can be efficiently handled on secondary stor-
age [3], by means of adding redundancy to the index to avoid most random accesses. This provides
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a very promising alternative, yet an interesting question is whether we can use techniques similar
to those of this paper to reduce the added redundancy. It has also been shown that the LZ-indices
(in particular the ILZI of [44]) are adequate for approximate string matching [43].

A very important aspect is that of the practical implementations of compressed indices, as
many theoretical indices are proposed but never implemented. The Pizza&Chili Corpus [18] pro-
vides practical implementations of compressed indices, as well as some example texts. To show
the practicality of our approach, there are currently in the site some implementations of reduced
schemes of LZ-index, based on ideas which are similar to the ones described in this paper. These
indices have shown to be very competitive against others [4, 12], specifically for locate and extract

queries. We hope to achieve further results along this line.
Finally, the results obtained about succinct representation of suffix and Weiner links are of

independent interest and could find applications in other cases, such as compressed suffix trees.
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