
Approximate Mat
hing of Run-Length Compressed StringsVeli M�akinen � Gonzalo Navarro y Esko Ukkonen �O
tober 7, 2002Abstra
tWe fo
us on the problem of approximate mat
hing of strings that have been
ompressed using run-length en
oding. Previous studies have
on
entrated on theproblem of
omputing the longest
ommon subsequen
e (LCS) between two stringsof length m and n,
ompressed to m0 and n0 runs. We extend an existing algorithmfor the LCS to the Levenshtein distan
e a
hieving O(m0n + n0m)
omplexity.Furthermore, we extend this algorithm to a weighted edit distan
e model, wherethe weights of the three basi
 edit operations
an be
hosen arbitrarily. Thisapproa
h also gives an algorithm for approximate sear
hing of a pattern of mletters (m0 runs) in a text of n letters (n0 runs) in O(mm0n0) time. Then wepropose improvements for a greedy algorithm for the LCS, and
onje
ture that theimproved algorithm has O(m0n0) expe
ted
ase
omplexity. Experimental resultsare provided to support the
onje
ture.Key words. Compressed pattern mat
hing, run-length en
oding, Levenshteindistan
e, longest
ommon subsequen
e, weighted edit distan
e.�Department of Computer S
ien
e, P.O Box 26 (Teollisuuskatu 23) FIN-00014 University of Helsinki,Finland. fvmakinen,ukkoneng�
s.helsinki.fi. Supported by the A
ademy of Finland under grant22584.yCenter for Web Resear
h, Department of Computer S
ien
e, University of Chile, Blan
o En
alada2120, Santiago, Chile. gnavarro�d

.u
hile.
l. Supported by Millenium Nu
leus Center for WebResear
h, Grant P01-029-F, Mideplan, Chile. 1

1 Introdu
tionThe problem of
ompressed pattern mat
hing is, given a
ompressed text T and a (pos-sibly
ompressed) pattern P , to �nd all o

urren
es of P in T without de
ompressingT (and P). The goal is to sear
h faster than by using the basi
 s
heme: de
ompressionfollowed by a sear
h.In the basi
 approa
h, we are interested in reporting only the exa
t o

urren
es, i.e.the lo
ations of the substrings of T that mat
h pattern P exa
tly. We
an loosen therequirement of exa
t o

urren
es to approximate o

urren
es by introdu
ing a distan
efun
tion to measure the similarity between P and its o

urren
e in T . Now, we wantto �nd all the approximate o

urren
es of P in T , where the distan
e between P and asubstring of T is at most a given error threshold k. Often a suitable distan
e measurebetween two strings is the edit distan
e, de�ned as the minimum amount of
hara
terinsertions, deletions and substitutions that are needed to make the two strings equal.For this distan
e we are interested in k < jP j errors.Many studies have been made around the subje
t of
ompressed pattern mat
hingover di�erent
ompression formats, starting with the work of Amir and Benson [1℄, e.g.[2, 10, 17, 16℄. The only works addressing the approximate variant of the problem havebeen [14, 19, 22℄, on Ziv-Lempel [27℄.Our fo
us is approximate mat
hing over run-length en
oded strings. In run-lengthen
oding, a string that
onsists of repetitions of letters is
ompressed by en
odingea
h repetition as a pair (\letter",\length of the repetition"). For example, stringaaabbbb

aab is en
oded as a sequen
e (a; 3)(b; 4)(
; 2)(a; 2)(b; 1). This te
hnique iswidely used, espe
ially in image
ompression, where repetitions of pixel values are
ommon. This is parti
ularly interesting for fax transmissions and bilevel images.Approximate mat
hing on images
an be a useful tool to handle distortions. Even aone-dimensional
ompressed approximate mat
hing algorithm would be useful to speedup existing two-dimensional approximate mat
hing algorithms, e.g. [15, 6℄.2

Exa
t pattern mat
hing over run-length en
oded text
an be done optimally inO(m0+n0) time, wherem0 and n0 are the
ompressed sizes of the pattern and the text [1℄.Approximate pattern mat
hing over run-length en
oded text has not been
onsideredbefore this study, but there has been work on the distan
e
al
ulation, namely, given twostrings of lengthm and n that are run-length
ompressed to lengthsm0 and n0,
al
ulatetheir distan
e using the
ompressed representations of the strings. This problem was�rst posed by Bunke and Csirik [7℄. They
onsidered the version of edit distan
e withoutthe repla
ement operation, whi
h is related to the problem of
al
ulating the longest
ommon subsequen
e (LCS) of two strings. They gave an O(m0n0) time algorithm for aspe
ial
ase of the problem, where all run-lengths are of equal size. Later, they gave anO(m0n+ n0m) time algorithm for the general
ase [8℄. A major improvement over theprevious results was due to Apostoli
o, Landau, and Skiena [4℄. They �rst gave a basi
O(m0n0(m0 + n0)) algorithm, and further improved it to O(m0n0 log(m0n0)). Mit
hell[20℄ gave an algorithm with the same time
omplexity in the worst
ase, but faster withsome inputs. Its time
omplexity is O((p +m0 + n0) log(p +m0 + n0)), where p is theamount of pairs of
ompressed
hara
ters that mat
h (p equals the amount of equalletter boxes, see the de�nition in Se
tion 2.2). All these algorithms were limited to theLCS distan
e, although Mit
hell's method [20℄
ould be applied when di�erent
ostsare assigned to the insertion and deletion operations. It still remains an open question(as posed by Bunke and Csirik) whether similar improvements
ould be found for amore general set of edit operations and their
osts.We give an algorithm for
omputing the Levenshtein distan
e [18℄ between twostrings. In the Levenshtein distan
e a unit
ost is assigned to ea
h of the three editoperations. The algorithm is an extension of the O(m0n + n0m) algorithm of Bunkeand Csirik [8℄. We keep the same
ost but generalize the algorithm to handle a more
omplex distan
e model. Independently from our work, Arbell, Landau, and Mit
hellhave found a similar algorithm [5℄. 3

We manage to extend the O(m0n+n0m) algorithm also to a weighted edit distan
emodel, where the
osts for the three operations
an be
hosen arbitrarily.We modify our algorithm to work in a
ontext of approximate pattern mat
hing,and a
hieve O(mm0n0) time for sear
hing a pattern of length m that is run-length
ompressed to length m0, in a run-length
ompressed text of length n0.We also study the LCS
al
ulation. First, we give a greedy algorithm for the LCSthat works in O(m0n0(m0 + n0)) time. Adapting the well known diagonal method [24℄,we are able to improve the greedy method to work in O(d2min(n0;m0)) time, where dis the edit distan
e between the two strings (under insertions and deletions with theunit
ost model).Then we present improvements for the greedy method for the LCS, whi
h do nothowever a�e
t the worst
ase, but do have an e�e
t on the average
ase. We end up
onje
turing that our improved algorithm is O(m0n0) time on average. As we are unableto prove it, we provide instead experimental eviden
e to support the
onje
ture.This paper is an extended version of a
onferen
e paper [21℄. The weighted editdistan
e
omputation was developed after the
onferen
e version. Motivated by ouropen question in that paper, Cro
hemore, Landau, and Ziv-Ukelson [9℄ noti
ed thattheir sub-quadrati
 sequen
e alignment algorithm for unrestri
ted
ost matri
es
ouldbe generalized to this problem; they obtained the same O(m0n + n0m) bound using
ompletely di�erent te
hniques from ours.2 Edit Distan
e on Run-Length Compressed Strings2.1 Edit Distan
eLet � be a �nite set of symbols,
alled an alphabet. A string A of length jAj = m isa sequen
e of symbols in �, denoted by A = A1:::m = a1a2 : : : am, where ai 2 � forevery i. If jAj = 0, then A = � is an empty string. A subsequen
e of A is any sequen
e4

ai1ai2 : : : aik , where 1 � i1 < i2 � � � < ik � m.The edit distan
e D(A;B)
an be used to measure the similarity between two stringsA = a1a2 : : : am and B = b1b2 : : : bn by
al
ulating the minimum
ost of edit operationsthat are needed to
onvert A into B [18, 26, 23℄. The usual edit operations are substitu-tion (
onvert ai into bj , denoted by ai ! bj), insertion (�! bj), and deletion (ai ! �).Di�erent
osts for edit operations
an be given depending on the letters involved. Wede�ne a nonnegative fun
tion Æ that assigns a
ost to ea
h of the above operations.The
ost to
onvert A into B must be a distan
e, whi
h holds whenever Æ is stri
tlypositive (Æ(x ! y) = 0 , x = y) symmetri
 (Æ(x ! y) = Æ(y ! x)) and satis�es thetriangle inequality (Æ(x! y) + Æ(y ! z) � Æ(x! z)) for every x; y; z 2 � [f�g.For the Levenshtein distan
e (denoted by DL(A;B)) [18℄, we assign
osts Æ(a !a) = 0, Æ(a ! b) = 1, Æ(a ! �) = 1, and Æ(� ! a) = 1, for all a; b 2 �, a 6= b. Ifsubstitutions are forbidden, i.e. Æ(a! b) =1, we get the distan
e DID(A;B).In general, the edit distan
e D(A;B) with arbitrary Æ
osts
an be
al
ulated byusing dynami
 programming [23℄; evaluating an (m+1)�(n+1) matrix (dij), 0 � i � m,0 � j � n, using the initial value d0;0 = 0 and the re
urren
edi;j = min(di�1;j + Æ(ai ! �); di;j�1 + Æ(�! bj); di�1;j�1 + Æ(ai; bj)) (1)where d is assumed to take the value 1 when a

essed outside its bounds. The matrix(dij)
an be evaluated row-by-row or
olumn-by-
olumn in O(mn) time, and the valuedmn equals D(A;B).The distan
e DL(A;B) is obtained as a parti
ular
ase using re
urren
e:di;j = min(di�1;j + 1; di;j�1 + 1; di�1;j�1 + if ai = bj then 0 else 1): (2)The re
urren
e for DID(A;B) isdi;j = min(di�1;j + 1; di;j�1 + 1; di�1;j�1 + if ai = bj then 0 else 1): (3)The problem of
al
ulating the longest
ommon subsequen
e of strings A and B(denoted by LCS(A;B)), is related to the distan
e DID(A;B). It is easy to see that5

2� jLCS(A;B)j = m+n�DID(A;B). Also, the sequen
e LCS(A;B)
an be extra
tedusing re
urren
e (3) if the optimal path is stored in the matrix: In ea
h
ell dij a link isstored to the
ell that gives the minimum value in the re
urren
e (3). Now, LCS(A;B)is the
on
atenation of symbols ai (or alternatively bj) that
orrespond to
ells dij inthe optimal path from d00 to dmn that have diagonal-wise links. (In fa
t there may bemore than one optimal path yielding di�erent LCSs of the same length.)2.2 Dividing the Edit Distan
e Matrix into BoxesA run-length en
oding of the string A = a1a2 : : : am is A0 =(a1; p1)(ap1+1; p2)(ap1+p2+1; p3) : : : (am�pm0+1; pm0) = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0),where (aik ; pk) denotes a sequen
e �k = aikaik : : : aik = apkik of length j�kj = pk. Wealso
all (aik ; pk) a run of aik . String A is optimally run-length en
oded if aik 6= aik+1for all 1 � k < m0.In the next se
tions, we will show how to speed up the evaluation of values dmn forboth distan
es DL(A;B) and DID(A;B) when both strings A and B are run-lengthen
oded. We will generalize to D(A;B) as well. In all the methods, we use the followingnotation to divide the matrix (dij) into sub-matri
es (see Figure 1).Let A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0) and B0 = (bj1 ; r1); (bj2 ; r2) : : : (bjn0 ; rn0) bethe run-length en
oded representations of strings A and B. The rows and
olumnsthat
orrespond to the ends of runs in A and B divide the edit distan
e matrix (dij)into sub-matri
es. To ease the notation later on, we de�ne the sub-matri
es so thatthey overlap on the borders. Formally, ea
h pair of runs (aik ; pk); (bj` ; r`) de�nes a(pk + 1)� (r` + 1) sub-matrix (dk;`s;t) su
h thatdk;`s;t = dik+s�1;j`+t�1; 0 � s � pk; 0 � t � r`: (4)We will
all sub-matri
es (dk;`s;t) boxes. If a pair of runs
orresponding to a box
ontains equal letters (i.e. aik = bj`), then (dk;`s;t) is
alled an equal letter box. Otherwisewe
all (dk;`s;t) a di�erent letter box. Adja
ent boxes
an form runs of di�erent letter6

d

d

d

d

d
31

21

11

22 23

33

12 ...

...

...

............

d

d

d

kl

d

d

13

32

k rl

kl

rl
d

p

1

l

kl

r
kld

02
kld

2
d

kl

kl
k

d1
kld
k

2

pp

a b b b b b b caaa b b

a

b
b
b
b

a
a
a
a
a
b
b

a

a
a

DP matrix

overlapping borders of boxes

d00

0kp
kld

0 lr
kld

10
kld

20
kl

c c c c

equal letter box

different letter boxcorners

one particular "box"

d

01
kld

pk +1

rl +1

b

Figure 1: A dynami
 programming matrix split into run-length blo
ks.boxes along rows and
olumns. We assume that both strings are optimally run-lengthen
oded, and hen
e runs of equal letter boxes
an not o

ur. (If the strings are notoptimally en
oded, they
an easily be
onverted into optimally en
oded in O(m0 + n0)time by joining adja
ent runs of equal letters. This
ost is negligible
ompared to thoseof our algorithms.)3 An O(mn0+m0n) Algorithm for the Levenshtein Distan
eBunke and Csirik [8℄ gave an O(mn0 + m0n) time algorithm for
omputing the LCSbetween two strings of lengths n and m run-length
ompressed to n0 and m0. Theypose it as an open problem extending their algorithm to the Levenshtein distan
e.This is what we do in this se
tion, without in
reasing the
omplexity to
ompute thenew distan
e DL. Arbell, Landau, and Mit
hell [5℄ have independently found a similaralgorithm. Their solution is also based on the same idea of extending the O(mn0+m0n)LCS algorithm to the Levenshtein distan
e.7

Compared to the LCS-related distan
e DID, the Levenshtein distan
e DL permitsan additional
hara
ter substitution operation, at
ost 1. We
ompute DL(A;B) by�lling all the borders of all the boxes (dk;`s;t) (see Figure 1). We manage to �ll ea
h
ellin
onstant time, whi
h adds up the promised O(mn0 +m0n)
omplexity. The spa
e
omplexity
an be made O(n+m) by pro
essing the matrix row-wise or
olumn-wise.3.1 Basi
 AlgorithmWe start with two lemmas that
hara
terize the relationships between the border valuesin the boxes (dk;`s;t). First, we
onsider the equal letter boxes:Lemma 1 (Bunke and Csirik [8℄) The re
urren
es (2) and (3)
an be repla
ed bydk;`s;t = if s � t then dk;`0;t�s else dk;`s�t;0; (5)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in an equal letter box.Note that Lemma 1 holds for both Levenshtein and LCS distan
e models, be
auseformulas (2) and (3) are equal when ai = bj. Sin
e we are
omputing all the
ells in theborders of the boxes, Lemma 1 permits
omputing new box borders in
onstant timeusing those of previous boxes.The diÆ
ult part lies in the di�erent letter boxes.Lemma 2 The re
urren
e (2)
an be repla
ed bydk;`s;t = 1 +min (t�1 +minmax(0;s�t)�q�s dk;`q;0 ;s�1 +minmax(0;t�s)�q�t dk;`0;q); (6)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box.Proof. We use indu
tion on s + t. If s + t = 2 then formula (6) be
omes dk;`1;1 =1 +min(dk;`0;0; dk;`1;0; dk;`0;1), whi
h mat
hes re
urren
e (2). In the indu
tive
ase we havedk;`s;t = 1 +min(dk;`s�1;t�1; dk;`s�1;t; dk;`s;t�1)8

by re
urren
e (2), and using the indu
tion hypothesis we getdk;`s;t = 2 +min (min (t�2 +minmax(0;s�t)�q�s�1 dk;`q;0 ;s�2 +minmax(0;t�s)�q�t�1 dk;`0;q) ;min (t�1 +minmax(0;s�1�t)�q�s�1 dk;`q;0 ;s�2 +minmax(0;t�s+1)�q�t dk;`0;q) ;min (t�2 +minmax(0;s�t+1)�q�s dk;`q;0 ;s�1 +minmax(0;t�1�s)�q�t�1 dk;`0;q))dk;`s;t = 1 +min (t�1 +minmax(0;s�t)�q�s dk;`q;0 ; s�1 +minmax(0;t�s)�q�t dk;`0;q);where we have used the property that
onse
utive
ells in the (dij) matrix di�er atmost by 1 [25℄. Note that we have assumed s > 1 and t > 1. The parti
ular
ases s = 1or t = 1 are easily derived as well, for example for s = 1 and t > 1 we havedk;`1;t = 1 +min(dk;`0;t�1; dk;`0;t ; dk;`1;t�1)= 1 +min�dk;`0;t�1; dk;`0;t ;1 +min�t�2 +minmax(0;2�t)�q�1 dk;`q;0;minmax(0;t�2)�q�t�1 dk;`0;q��= 1 +min�dk;`0;t�1; dk;`0;t ; t�1 +min(dk;`0;0; dk;`1;0); 1 +min(dk;`0;t�2; dk;`0;t�1)�= 1 +min�t�1 +min(dk;`0;0; dk;`1;0);min(dk;`0;t�1; dk;`0;t)� ;whi
h is the parti
ularization of formula (6) for s = 1. 2Formula (6) relates the values at the right and bottom borders of a box to its leftand top borders. Yet it is not enough to
ompute the
ells in
onstant time. Althoughwe
annot
ompute one
ell in O(1) time, we
an
ompute all the pk (or r`)
ells inoverall O(pk) (or O(r`)) time.Figure 2 shows the algorithm. We use a data stru
ture (whi
h in the pseudo-
odeis represented just as a set M�) able to handle a multiset of elements starting with a9

single element, adding and deleting elements, and delivering its minimum value at anytime. It will be used to maintain and update the minima minmax(0;s�t)�q�s dk;`q;0 andminmax(0;t�s)�q�t dk;`0;q, used in formula (6). We see later that in our parti
ular
ase allthose operations
an be performed in
onstant time.In the
ode we use drk;`s = dk;`s;r` for the rightmost
olumn and dbk;`t = dk;`pk;t for thebottom row. Their update formulas are derived from formula (6):drk;`s = 1 +min(r` � 1 +minmax(0;s�r`)�q�s drk;`�1q ;s� 1 +minmax(0;r`�s)�q�r` dbk�1;`q);dbk;`t = 1 +min(t� 1 +minmax(0;pk�t)�q�pk drk;`�1q ;pk � 1 +minmax(0;t�pk)�q�t dbk�1;`q):The whole algorithm
an be made O(n+m) spa
e by noting that in a
olumn-wisetraversal we need, when
omputing
ell (kl), to store only drk�1;` and dbk;`�1, so thespa
e is that for storing one
omplete
olumn (m) and a row whose width is one box (atmost n). Our multiset data stru
ture does not in
rease this spa
e
omplexity. Hen
ewe haveTheorem 3 Given strings A and B of lengths m and n that are run-length en
oded tolengths m0 and n0, there is an algorithm to
al
ulate DL(A;B) in O(m0n+ n0m) timeand O(m+ n) spa
e in the worst
ase.This is a good point to give some intuition on the method. Figure 3 illustrates threedi�erent points along our
omputation of a di�erent letter box. In prin
iple, to �ll the
ell (s; t), we would need to
onsider all the
ells (0 : : : s; t) and (s; 0 : : : t). However,we have shown in Lemma 2 that some of these
ells
annot in
uen
e the �nal valueof the
ell (s; t). The reason is as follows. The
ells in the grayed areas need to rea
h
ell (s; t) through a path of verti
al, horizontal and diagonal moves, whi
h
orrespondto insertions, deletions and substitutions. Every su
h move
osts 1, so the �nal
ost10

Levenshtein (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We fill the topmost row and leftmost
olumn first */2. dr0;00 0, db0;00 03. for k 2 1 : : :m0 do4. for s 2 0 : : : pk do drk;0s drk�1;0pk�1 + s5. dbk;00 drk;0pk6. for ` 2 0 : : : n0 do7. for t 2 0 : : : r` do db0;`t db0;`�1r`�1 + t8. dr0;`0 db0;`r`9. /* now we fill the rest of the matrix */10. for ` 2 1 : : :m0 do /*
olumn-wise traversal */11. for k 2 1 : : : n0 do12. if ak = b` then /* equal letter box */13. for s 2 1 : : : pk do14. if s � r` then drk;`s dbk�1;`r`�s else drk;`s drk;`�1s�r`15. for t 2 1 : : : r` do16. if t � pk then dbk;`t drk;`�1pk�t else dbk;`t dbk�1;`t�pk17. else /* different letter box */18. Ml fdrk;`�10 g, Mt fdbk�1;`r` g19. drk;`0 drk�1;`pk�120. for s 2 1 : : : pk do21. Ml Ml [fdrk;`�1s g22. if s > r` then Ml Ml � fdrk;`�1s�r`�1g23. if r` � s then Mt Mt [fdbk�1;`r`�s g24. drk;`s 1 +min(r` � 1 +min(Ml); s� 1 +min(Mt))25. Ml fdrk;`�1pk g, Mt fdbk�1;`0 g26. dbk;`0 dbk;`�1r`�127. for t 2 1 : : : r` do28. Mt Mt [fdbk�1;`t g29. if t > pk then Mt Mt � fdbk�1;`t�pk�1g30. if pk � t then Ml Ml [fdrk;`�1pk�t g31. dbk;`t 1 +min(t� 1 +min(Ml); pk � 1 +min(Mt))32. return drm0n0pm0 /* or dbm0n0rn0 */
Figure 2: The O(m0n + n0m) time algorithm to
ompute the Levenshtein distan
ebetween A and B,
oded as run-length sequen
es of pairs (letter; run length).11

is s� 1 for every
ell in the top grayed area and t� 1 for every
ell in the left grayedarea. These
osts are added to the original
osts of the grayed
ells. Note that theoptimal paths use the diagonal moves as mu
h as possible. The reason that permitsnot
onsidering some of the top and left
ells is that their shortest paths to (s; t) arelonger than those of grayed
ells, by an amount that equals their distan
e to the
losestgrayed
ell. Sin
e neighboring
ells di�er by at most 1, a non-grayed area
an never
ompensate its farther distan
e to (s; t) with a smaller
ell value. Finally, those grayedareas grow by one
ell at a time and we manage to maintain their minimum value in
onstant time.
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

+ t-1

+ s-1

(s,t)

+ t-1

+ s-1

(s,t)

t > s t = s t < s

+ t-1

+ s-1

(s,t)Figure 3: Di�erent
ases along the
omputation of a di�erent letter box.3.2 Multiset Data Stru
tureWhat is left is to des
ribe our data stru
ture to handle a multiset of natural numbers.We exploit the fa
t that
onse
utive
ells in (dij) di�er by at most 1 [25℄. Our datastru
ture represents the multiset S as a triple (min(S);max(S); Vmin(S):::max(S) ! N).That is, we store the minimum and maximum value of the multiset and a ve
tor of
ounters V , whi
h stores at Vi the number of elements equal to i in S. Given theproperty that
onse
utive
ells di�er by at most 1, we have that no value Vi is equal tozero. This is proved in the following lemma.12

Lemma 4 No value Vi for min(S) � i � max(S) is equal to zero when S is a set of
onse
utive values in (dij) (i.e., S
ontains a
ontiguous part of a row or a
olumn ofthe matrix (dij)).Proof. The lemma is trivially true for the extremes i = min(S) and i = max(S). Letus assume that the value min(S) is a
hieved at
ell di;j and that the value max(S) isa
hieved at
ell di0;j0. Sin
e all the intermediate
ell values are also in S by hypothesis,and
onse
utive
ells di�er by at most 1, it follows that any value x between min(S)and max(S) exists in a path that goes from di;j to di0;j0. Hen
e Vx > 0. 2Figure 4 shows the detailed algorithms. When we initialize the data stru
ture withthe single element S = fxg we represent the situation as (x; x; Vx = 1). When we haveto add an element y to S, we
he
k whether y is outside the range min(S) : : : max(S),and in that
ase we extend the range. In any
ase we in
rement Vy. Note that thedomain is never extended by more than one
ell, as there
annot appear empty
ellsin between by Lemma 4. When we have to remove an element z from S we simplyde
rement Vz. If Vz be
omes zero, Lemma 4 implies that this is be
ause z is either theminimum or the maximum of the set. So we redu
e the domain of V by one. Finally,obtaining min(S) is trivial as we have it already pre
omputed.It is easy to see that all the operations take
onstant time. As a pra
ti
al matter,we note that it is a good idea to keep V in a
ir
ular array so that it
an grow andshrink by any extreme. Its maximum size
orresponds to pk (for Ml) or r` (for Mt),whi
h are known at the time of Create.4 Extending the Algorithm to Weighted Edit Distan
eIn this se
tion we show that the algorithm of Se
tion 3
an be extended to handle anarbitrary
ost fun
tion Æ so that the algorithm stays in O(mn0 +m0n) time.The key fa
t is that, inside a given box (k; `), the letters in A and B are the same13

Create (x)1. return (x; x; Vx = 1)Add ((minS;maxS; V); y)2. if y < minS then3. minS y4. add new �rst
ell Vy = 05. else if y > maxS then6. maxS y7. add new last
ell Vy = 08. Vy Vy + 19. return (minS;maxS; V)Remove ((minS;maxS; V); z)10. Vz Vz � 111. if Vz = 0 then12. if z = minS then13. remove �rst
ell from V14. minS minS + 115. else /* z = maxS */16. remove last
ell from V17. maxS maxS � 118. return (minS;maxS; V)Min ((minS;maxS; V))19. return minSFigure 4: The multiset data stru
ture implementation.

14

all the time, namely aik and bj` . Hen
e, there are only three di�erent
osts involved:(insertion) Ci = Æ(�! bj`)(deletion) Cd = Æ(aik ! �) (7)(substitution) Cs = Æ(aik ! bj`)where, sin
e the triangle inequality holds, Cs � Ci + Cd.Several problems have to be dealt with. We �rst
onsider how to
ompute the path
osts and how to determine the relevant
ells, then how to update the path
osts in
onstant time, and �nally how to handle our multiset under a more general s
enario.4.1 Determining Relevant Cells and Path CostsThe following lemma shows that the path
osts
an still be
omputed in
onstant timeand that the
ells that are relevant to the
omputation of dk;`s;t are exa
tly the same asfor the Levenshtein distan
e.Lemma 5 If Æ is the
ost fun
tion, then it holds thatdk;`s;t = min (path(s� q; t) +minmax(0;s�t)�q�s dk;`q;0 ;path(s; t� q) +minmax(0;t�s)�q�t dk;`0;q); (8)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box. The fun
tionpath is de�ned aspath(d; r) = Csmin(d; r) + Cdmax(d� r; 0) + Cimax(r � d; 0)where Cd, Ci and Cs are as de�ned in Eq. (7).Proof. In order to determine the
ost of a path from (s0; t0) to (s; t), we observe thatthe optimal path uses as many diagonal moves as possible, so its
ost is (t � t0)Cs +((s� s0)� (t� t0))Cd if s� s0 � t� t0, and (s� s0)Cs+ ((t� t0)� (s� s0))Ci otherwise.The formula for path is easily derived from this observation.15

It remains to show that the
ells not
onsidered in the minimization are not ne
-essary. Let us �rst assume that s > t and
onsider in
luding the previous
ell in the�rst row of the minimization formula (8). Let us
all q0 = s � t the row index ofthe �rst relevant
ell and q0 = s � t � 1 � 0 that of the previous
ell. Be
ause ofthe formula to
ompute the extended edit distan
e (1), dk;`q0;0 � dk;`q0;0 + Æ(aik ! �), sodk;`q0;0 � dk;`q0;0�Cd. On the other hand, path(s� q0; t) = Cst+Cd = path(s� q0; t) +Cd.Therefore, path(s� q0; t) + dk;`q0;0 � path(s� q0; t) + dk;`q0;0, whi
h means that adding theprevious
ell (q0; 0) in the minimization does not
hange the �nal value. The argument
an be indu
tively repeated with any previous
ell. The
ase s � t is trivial sin
e thereare no previous
ells. This proof applies equally to the se
ond row of the formula (8)for the
ells on the top. 24.2 Updating Path CostsIn the Levenshtein distan
e all the paths arriving to
ell (s; t)
ost the same (t � 1 ors� 1 depending on the
ase). So we maintain a set of
ell values, take the minimum,and add the invariant path
ost to them. Under weighted edit distan
e, we need to addthe path
ost to the
ell values before looking for the minimum. Hen
e we will store inour multiset the
ell values with the path
osts added.The problem is that all the path
osts
hange as we move from (s; t) to (s + 1; t)or (s; t+ 1) in the algorithm of Figure 2. To avoid the need of updating all the valuesof the multiset, we will store a di�erent, invariant value that does not alter the orderrelationship between
ell
osts (so the minimum will be the same, and after it is
hosenwe will
ompute its real value in
onstant time).Let us
onsider the �rst row of formula (8), that is, the values stored in the multisetMl, as Mt is analogous. The area of relevant
ells in the leftmost
olumn is max(0; s�t) : : : s. As in the algorithm in Figure 2, we need to
onsider two
ases: (i) the area isextended from pk : : : pk to max(0; pk � r`) : : : pk by in
reasing t from 0 to r`; (ii) the16

area is extended from 0 : : : 0 tomax(0; pk�r`) : : : pk by in
reasing s from 0 to pk. Let usfo
us on (i). As t is in
reased by 1, all the previous path
osts must be in
remented byCi be
ause they use one more horizontal move (insertion). Instead of in
rementing allprevious values by Ci, we
an subtra
t an amount from ea
h new value that is in
ludedin the set of relevant values, so that the values in the set remain
omparable. Thisamount is t � Ci for the (t + 1)-th element that is in
luded in the set. Sin
e the newvalue that is in
luded in the set uses only diagonal moves (substitutions), the absolutevalue that is stored for the (t+1)-th
ell in
luded in the multiset is dk;`pk�t;0+t�Cs�t�Ci.When
al
ulating the value of
ell dk;`pk;t, we
an look for the minimum as before, andafter it is found, we
an retrieve its original value by adding t� Ci.Let us now
onsider
ase (ii). As we move from s to s + 1, all the previous pathsgain one diagonal move (substitution) and lose one horizontal move (insertion), so thistime the amount to subtra
t is s � (Cs � Ci) at the (s + 1)-th step. This is also thevalue to add to the minimum after it is retrieved. Again, we
an see that the path ofthe new
ell that is in
luded uses only horizontal moves (insertions), so the absolutevalue to store for it is dk;`s;0 + (r` + s)� Ci � s� Cs.A related problem is how to determine the value of the
ells that have to be removedfrom the multiset, sin
e we have stored it with the path
ost added and the invariantvalue subtra
ted. This
orresponds to
ase (ii) only. As the amount by whi
h allhad been shifted at the (x+ 1)-th step was x� (Cs �Ci), and the element removed is(x; 0) := (s�r`; 0), we remove from the multiset the value dk;`x;0+(r`+x)�Ci�x�Cs =dk;`s�r`;0 + s� Ci � (s� r`)� Cs.4.3 Managing the MultisetNow we are fa
ed with the �nal problem: how to handle the multiset operations in
on-stant time. The di�eren
es between
onse
utive
ells need not be in the set f�1; 0;+1g,so the pre
onditions for our previous multiset implementation do not hold anymore.17

We show that we
an still implement the multiset in
onstant time per operation.Let us �rst
onsider the
ase where Æ gives integer values. The maximum di�eren
ebetween two
onse
utive
ell values is v� = max(Ci; Cd) = O(1). Sin
e now we addthe path values to the
ell
osts before inserting them in the multiset, the di�eren
ebetween
onse
utive values
an be as large as 2v�, whi
h is still
onstant. Hen
e we
animplement the multiset with an array V of
ounters as before. Unlike the Levenshtein
ase, V will have zero entries, but there will never be more than 2v� � 1
onse
utivezero entries. Therefore, inserting a new entry may for
e us to initialize up to 2v�
ells(instead of only 1 as in lines 4 and 7 of Figure 4), and removing an entry may for
e usto remove up to 2v�
ells before �nding the next nonzero entry (instead of only 1 as inlines 13 and 16 of Figure 4). All this
osts O(v�), whi
h is
onstant. Note also that itis not true any longer, as assumed in line 15 of Figure 4, that
ells that be
ome zeromust ne
essarily lie at the limit of the multiset.If the Æ fun
tion delivers real values, the above solution does not work. Implementingthe set as a priority queue adds an O(logmax(m;n)) fa
tor to the time. However, we
an use min-deques [13℄ instead, whi
h allow handling a queue of elements by addingand removing elements from both ends, as well as taking the minimum over the queue.All these operations
an be performed in O(1) worst-
ase amortized time by usingsimple te
hniques, and O(1) worst
ase time per operation with more sophisti
atedones. Hen
e the total time stays the same.An illustration of the algorithm is shown in Fig. 5. The example shows how toderive the values of the last row by using the values of the leftmost
olumn. Note thatthe values in the �rst row should also be taken into a

ount, but for brevity we only
onsider the leftmost
olumn. A transition from value t = 3 to value t = 4 is shownin the example. First, value 3 is in
luded in the set Ml after adding the path valuet � Cs = 4 and subtra
ting the value t � Ci = 8. The minimum of the set Ml is now�1, and the value t� Ci = 8 is added to get the value of X.18

Figure 5: An example of the evaluation of the weighted edit distan
e.5 Approximate Sear
hingLet us now
onsider a problem related to
omputing the LCS or the edit distan
e.Assume that string A is a short pattern and string B is a long text (so m is mu
hsmaller than n), and that we are given a threshold parameter k. We are interestedin reporting all the \approximate o

urren
es" of A in B, that is, all the positions oftext substrings whi
h are at distan
e k or less from the pattern A. In order to ensurea linear size output, we
ontent ourselves with reporting the ending positions of theo

urren
es (whi
h we
all \mat
hes").The
lassi
al algorithm to �nd all the mat
hes [23℄
omputes a matrix exa
tly likethose of re
urren
es (3) and (2), with the only di�eren
e that d0;j = 0. This permits theo

urren
es to start at any text position. The last row of the matrix, dm;j , is examinedand every text position j su
h that dm;j � k is reported as a mat
h.Our goal now is to devise a more eÆ
ient algorithm when pattern and text are run-length
ompressed. A trivial O(m2n0+R) algorithm (where R is the size of the output)is obtained as follows. We start �lling the matrix only at beginnings of text runs, and
omplete the �rst m
olumns only (at O(m2)
ost). The rest of the
olumns of the runare equal to the m-th be
ause no optimal path
an span more than m
olumns under19

the LCS or Levenshtein models (m deletions are enough to
onvert an empty substringof the text into the pattern). We later examine the last row of the matrix and reportevery text position with value � k. If the run is longer than m, then we have notprodu
ed the whole last row but only the �rst m
ells of it. In this
ase we report thepositions m+ 1 : : : r` of the `-th run if and only if the position m was reported.We improve now the trivial algorithm. A �rst attempt is to apply our algorithmsdire
tly using the new base value d0;j = 0. This
hange does not present
ompli
ations.Let us �rst
on
entrate on the Levenshtein distan
e. Our algorithm obtains O(m0n+n0m) time, whi
h may or may not be better than the trivial approa
h. The problemis that O(m0n) may be too mu
h in
omparison to O(m2n0), espe
ially if n is mu
hlarger than m. We seek for an algorithm proportional to the
ompressed text size. Wedivide the text runs in short (of length at most m) and long (longer than m) runs. Weapply our Levenshtein algorithm on the text runs, �lling the matrix
olumn-wise. If wehave a short run (bj` ; r`), r` � m, we
ompute all the m0+1 horizontal borders plus its�nal verti
al border (whi
h be
omes the initial border of the next
olumn). The timeto a
hieve this is O(m0r`+m). For an additional O(r`)
ost we examine all the
ells ofthe last row and report all the text positions j` + t su
h that dm0;`pm0 ;t � k.If we have a long run (bj` ; r`), r` > m, we limit its length to m and apply the samealgorithm, at O(m0m+m+m)
ost. The
olumns m+1 : : : r` of that run are equal tothe m-th, so we just need to examine the last row of the m-th
olumn, and report allthe text positions up to the end of the run, j` +m+ 1 : : : j` + r`, if dm0;`pm0 ;m � k.This algorithm takes O(n0m0m+R) time in the worst
ase, where R is the numberof o

urren
es reported. The spa
e requirement is that to
ompute one text run limitedto length m, i.e. O(m0m). For the LCS model we have the same upper bound of m, sowe a
hieve the same
omplexity. Our O(m0n0(m0 + n0)) algorithm to be presented inSe
tion 6 does not yield a good
omplexity here.Note that if we are allowed to represent the o

urren
es as a sequen
e of runs of20

onse
utive text positions (all of whi
h mat
h), then the extra term R of the sear
h
ost disappears.Theorem 6 Given a pattern A and a text B of lengths m and n that are run-lengthen
oded to lengths m0 and n0, there is an algorithm to �nd all the ending points of theapproximate o

urren
es of A in B, either under the LCS or Levenshtein model, inO(m0mn0) time and O(m0m) spa
e in the worst
ase.The above result generalizes easily for the
ase of weighted edit distan
e using themethods from Se
tion 4. The limit between short and long runs depends in this
aseon the Æ values, but it is still O(m). For integer-valued
osts for the edit operations,we have the same bound as before, O(m0mn0).6 Improving a Greedy Algorithm for the LCSThe idea in our algorithm for the Levenshtein distan
e DL in Se
tion 3 was to �ll all theborders of all the boxes (dk;`s;t). The natural way to redu
e the
omplexity would be to�ll only the
orners of the boxes (see Figure 1). For the DL distan
e this seems diÆ
ultto obtain, but for the DID distan
e there is an obvious greedy algorithm that a
hievesthis goal: in di�erent letter boxes, we
an
al
ulate the
orner values in
onstant time,and in equal letter boxes we
an tra
e an optimal path to a
orner in O(m0 + n0) time.Thus, we
an
al
ulate all the
orner values in O(m0n0(m0 + n0)) time1.It turns out that we
an improve the greedy algorithm signi�
antly by fairly simplemeans. We noti
e that the diagonal method of [24℄
an be applied, and yields anO(d2min(n0m0)) algorithm, where d = DID(A;B). We also give other improvements1Apostoli
o et. al. [4℄ also gave a basi
 O(m0n0(m0 + n0)) algorithm for the LCS, whi
h they thenimproved to O(m0n0 log(m0n0)). Their basi
 algorithm di�ers from our greedy algorithm in that theywere using the re
urren
e for
omputing the LCS dire
tly, and we are
omputing the distan
e DID.Furthermore, they tra
ed a spe
i�
 optimal path (whi
h was the property that they
ould use to a
hievethe O(m0n0 log(m0n0)) algorithm). 21

that do not a�e
t the worst
ase, but are signi�
ant in the average
ase and in pra
ti
e.We end the se
tion
onje
turing that our improved algorithm runs in O(m0n0) timeon the average. As we are unable to prove this
onje
ture, we provide experimentaleviden
e to support it.6.1 Greedy Algorithm for the LCSCal
ulating the
orner value dk;`pk;r` in a di�erent letter box is easy, be
ause it
an beretrieved from the values dk;`0;r` = dk�1;`pk�1;r` and dk;`pk;0 = dk;`�1pk;r`�1 , whi
h are
al
ulatedearlier during the dynami
 programming. This follows from the lemma:Lemma 7 (Bunke and Csirik [8℄) The re
urren
e (3)
an be repla
ed by the re
ur-ren
e dk;`s;t = min(dk;`s;0 + t; dk;`0;t + s); (9)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box.In
ontrast to the DL distan
e, the diÆ
ult part in DID distan
e lies in equal letterboxes. As noted earlier, Lemma 1 also applies for the DID distan
e. From Lemma 1we
an see that the
orner values are retrieved along the diagonal, and those valuesmay not have been
al
ulated earlier. However, if pk = r` in all equal letter boxes, thenea
h
orner dk;`pk;r`
an be
al
ulated in
onstant time. This gives an O(m0n0) algorithmfor a (very) spe
ial
ase, as previously noted in [7℄.What follows is an algorithm to retrieve the value dk;`pk;r` in an equal letter box inO(m0 + n0) time. The idea is to tra
e an optimal path to the
ell dk;`pk;r`. This
an bedone by using Lemmas 1 and 7 re
ursively. Assume that dk;`pk;r` = dk;`0;r`�pk by Lemma 1(
ase dk;`pk;r` = dk;`pk�r`;0 is symmetri
). If k = 1, then the value d1;`0;r`�pk
orresponds to avalue in the �rst row (0) of the matrix (dij) whi
h is known. Otherwise, the box (dk�1;`s;t)is a di�erent letter box, and using the de�nition of overlapping boxes and Lemma 7 it22

holds dk;`0;r`�pk = dk�1;`pk�1;r`�pk = min(dk�1;`pk�1;0 + r` � pk; dk�1;`0;r`�pk + pk�1):Now, the value dk�1;`pk�1;0 is
al
ulated during the dynami
 programming, so we
an
on-tinue tra
ing value dk�1;`0;r`�pk using Lemmas 1 and 7 re
ursively until we meet a value thathas already been
al
ulated during dynami
 programming (in
luding the �rst row andthe �rst
olumn of the matrix (dij)). The re
ursion never bran
hes, be
ause Lemma1 de�nes expli
itly the next value to tra
e, and one of the two values (from whi
h theminimum is taken over in Lemma 7) is always known (that is be
ause we enter thedi�erent letter boxes at the borders, and therefore the other value is from a
orner thatis
al
ulated during the dynami
 programming). We
all the path des
ribed by there
ursion a tra
ing path.Tra
ing the value dk;`pk;r` in an equal letter box may take O(m0+n0) time, be
ause weare skipping one box at a time, and there are at most m0+n0 boxes in the tra
ing path.Therefore, we get an O(m0n0(m0+n0)) algorithm to
al
ulate DID(A;B). A worst
aseexample that a
tually a
hieves the bound is A = an and B = (ab)n=2.The spa
e requirement of the algorithm is O(m0n0), be
ause we need to store onlythe
orner value in ea
h box, and the O(m0 + n0) spa
e for the sta
k is not neededbe
ause the re
ursion does not bran
h.We also a
hieve the O(m0n+ n0m) bound, be
ause the
orner values dk;`pk;r` of equalletter boxes de�ne distin
t tra
ing paths, and therefore ea
h
ell in the borders of theboxes
an be visited only on
e. To see this observe that ea
h border
ell rea
hed by atra
ing path uniquely determines the border
ell it
omes from along the tra
ing path,and therefore no two di�erent paths
an meet in a border
ell. The only ex
eption is a
orner
ell, but in this
ase all the tra
ing paths end there immediately.Theorem 8 Given strings A and B of lengths m and n that are run-length en
oded tolengths m0 and n0, there is an algorithm to
al
ulate DID(A;B) in O(min(m0n0(m0 +n0);m0n+ n0m)) time and O(m0n0) spa
e. 23

6.2 Diagonal AlgorithmThe diagonal method [24℄ provides an O(dmin(m;n)) algorithm for
al
ulating thedistan
e d = DID(A;B) (or DL as well) between strings A and B of length m and n,respe
tively. The idea is the following: the value dm;n = DID(A;B) in the (di;j) matrixof re
urren
e (3) de�nes a diagonal band, where the optimal path must lie. Thus, ifwe want to
he
k whether DID < k, we
an limit the
al
ulation to the diagonal bandde�ned by value k (
onsisting of O(k) diagonals). Starting with k = jn�mj+1, we
andouble the value k and run in ea
h step the re
urren
e (3) on the in
reasing diagonalband. As soon as dm;n < k, we have found DID(A;B) = dm;n, and we
an stop thedoubling. The total number of diagonals evaluated is at most 2DID(A;B), and thereare at most min(m;n)
ells in ea
h diagonal. Therefore, the total
ost of the algorithmis O(dmin(m;n)), where d = DID(A;B).We
an use the diagonal method with our greedy algorithm as follows. We
al
ulateonly the
orner values that are inside the diagonal band de�ned by value k in theabove doubling algorithm. The
orner values in equal letter boxes inside the diagonalband
an be retrieved in O(k) time. That is be
ause we
an limit the length of thetra
ing paths with the value 2k+1 (between two equal letter boxes there is a di�erentletter box that
ontributes at least 1 to the value that we are tra
ing, and we are notinterested in
orner values that are greater than k). Therefore, we get the total
ostO(d2min(m0; n0)), where d = DID(A;B).6.3 Faster on AverageThere are some pra
ti
al re�nements for the greedy algorithm that do not improve itsworst
ase behavior, but do have an impa
t on its average
ase.Skipping runs of di�erent letter boxes in tra
ing paths. Consider two
on-se
utive di�erent letter boxes (dk;`s;t) and (dk+1;`s;t). By Lemma 7 it holds for the values24

1 � t � r`,dk+1;`pk+1;t = min �dk+1;`0t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`pk;t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk;`pk;0 + pk+1 + t; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk+1;`pk+1;0 + t� :The above result
an be extended to the following lemma by using indu
tion:Lemma 9 Let ((dk0;`s;t); (dk0+1;`s;t); : : : ; (dk;`s;t)) and ((dk;`0s;t); (dk;`0+1s;t); : : : ; (dk;`s;t)) be verti
aland horizontal runs of di�erent letter boxes. When 1 � t � r` and 1 � s � pk, there
urren
e (4)
an be repla
ed by the re
urren
esdk;`pk;t = min dk;`pk;0 + t; dk0;`0;t + kXs=k0 ps! 1 � t � r`;dk;`s;r` = min dk;`0;r` + s; dk;`0s;0 + X̀t=`0 rt! 1 � s � pk:Now it is obvious how to speed up the retrieval of values dk;`pk;r` in the equal letterboxes. During dynami
 programming, we
an maintain pointers in ea
h di�erent letterbox to the last equal letter box en
ountered in the dire
tion of the row and the
olumn.When we enter a di�erent letter box while tra
ing the value of dk;`pk;r` in an equal letterbox, we
an use Lemma 9 to
al
ulate the minimum over the run of di�erent letterboxes at on
e, and
ontinue on tra
ing from the equal letter box pre
eding the run ofdi�erent letter boxes. (Note that in order to use the summations of Lemma 9 we shouldbetter store the
umulative ik and j` values instead of pk and r`.) Therefore we get thefollowing result:Theorem 10 Given strings A and B of lengths m and n that are run-length en
odedto lengths m0 and n0, su
h that the letters of the runs are independently and uniformlydistributed over an alphabet of size j�j, there is an algorithm to
al
ulate DID(A;B) inO(m0n0(1 + (m0 + n0)=j�j2)) time on the average.25

Proof. The �rst part of the
ost, O(m0n0)
omes from the
onstant time
omputationof all the di�erent letter boxes.On the other hand, there are on the average O(m0n0=j�j) equal letter boxes. This
an be seen as follows: Consider the box model of Figure 1. The equal letter boxes ina row of the matrix
orrespond to the same
hara
ter, say � 2 �. Let Xj be a randomvariable to denote the amount of di�erent letter boxes between the jth and (j � 1)thequal letter box in a row (without the la
k of generality, we may assume that a rowstarts and ends with an equal letter box). It is an easy exer
ise to see that the expe
tedvalue of ea
h Xj is j�j � 1. We
an use this to estimate the number of equal letterboxes in a row, denoted by �, be
ause we
an write�Xj=1Xj + 1 < n0: (10)We are interested in the �rst value of � su
h that (10) does not hold. Using a resultfrom renewal theory, the expe
ted value of su
h a � is O(n0=j�j) (see p. 359 in [11℄;the result requires that the variables Xj are independent, whi
h is our
ase). Using thelinearity of expe
tation, the expe
ted number of equal letter boxes in the whole matrixis just the sum of the equal letter boxes in all rows, that is O(m0n0=j�j).To get the
laimed bound O(m0n0(1 + (m0+ n0)=j�j2)), it remains to show that theexpe
ted amount of
al
ulation in an equal letter box is O((m0 + n0)=j�j). This is theamount of equal letter boxes visited by a tra
ing path. We
an use a similar argumentas when
al
ulating the amount of equal letter boxes in a row. Let Xj be a randomvariable to denote the amount of di�erent letter boxes between jth and (j� 1)th equalletter box in a tra
ing path (again, we may assume that a tra
ing path starts andends with an equal letter box). Noti
e that the string that is the
on
atenation of the
hara
ters in a tra
ing path has similar distribution as the strings A and B. Thus theexpe
ted value of ea
h Xj is j�j � 1. As a tra
ing path
an visit at most m0+n0 boxes,
26

we
an write �Xj=1Xj + 1 < m0 + n0; (11)where � is the number of equal letter boxes in a tra
ing path. As previously, theexpe
ted value of the �rst � su
h that (11) does not hold is O((n0 +m0)=j�j). 2Using bridges to prune tra
ing paths. The se
ond improvement to the greedyalgorithm is to limit the length of the tra
ing paths. In the greedy algorithm the tra
-ing is
ontinued until a value is rea
hed that has been
al
ulated during the dynami
programming. However, there are more known values than those that have been ex-pli
itly
al
ulated. Consider value dk;`pk;t, 1 � t � r` (or symmetri
ally dk;`s;r`, 1 � s � pk)in the border of a di�erent letter box. If dk;`pk;r` = dk;`pk;0 + r` then it must hold thatdk;`pk;t = dk;`pk;0 + t, otherwise we get a
ontradi
tion: dk;`pk;r` < dk;`pk;0 + r`.We
all the above situation a horizontal (verti
al) bridge. Note that from Lemma7 it follows that there is either a verti
al or a horizontal bridge in ea
h di�erent letterbox. When we enter a di�erent letter box in the re
ursion, we
an
he
k whetherthe bridge property holds at the border we entered, using the
orner values that are
al
ulated during the dynami
 programming. Thus, we
an stop the re
ursion at the�rst bridge en
ountered. To
ombine this improvement with the algorithm that skipsruns of di�erent letter boxes, we need Lemma 11 below that states that the bridgespropagate along runs of di�erent letter boxes. Therefore we only need to
he
k whetherthe last di�erent letter box has a bridge to de
ide whether we have to skip to the nextequal letter box. The resulting algorithm is given in pseudo-
ode in Figure 6. Anillustration of the algorithm is shown in Figure 7.Lemma 11 Let ((dk0;`s;t); (dk0+1;`s;t); : : : ; (dk;`s;t)) be a verti
al run of di�erent letter boxes.If there is a horizontal bridge dk0;`pk0 ;r` = dk0;`pk0 ;0 + r` then there is a horizontal bridgedk00;`pk00 ;r` = dk00;`pk00 ;0+ r` for all k0 < k00 � k. The symmetri
 result holds for horizontal runsof di�erent letter boxes. 27

Proof. We use the
ounter-argument that dk00;`pk00 ;r` = dk00;`pk00 ;0 + r` does not hold for somek0 < k00 � k. Then by Lemma 9 and by the bridge assumption it holdsdk00;`pk00 ;r` = dk0+1;`0;r` + k00Xs=k0+1 ps = dk0+1;l0;0 + r` + k00Xs=k0+1 ps:On the other hand, using the
ounter-argument and the fa
t that
onse
utive
ells inthe (dij) matrix di�er at most by 1 [25℄, we getdk00;`pk00 ;r` < dk00;`pk00 ;0 + r` � dk0+1;`0;0 + k00Xs=k0+1 ps!+ r`;whi
h is a
ontradi
tion and so the original proposition holds. 2Lemma 11 has a
orollary: if the last di�erent letter box in a run does not have ahorizontal (verti
al) bridge, then none of the boxes in the same run have a horizontal(verti
al) bridge and, on the other hand, all the boxes in the same run must have averti
al (horizontal) bridge.Now, if two tra
ing paths
ross inside a box (or run thereof), then one of themne
essarily meets a bridge. In the average
ase, there are a lot of
rossings of thetra
ing paths and the total
ost for tra
ing the values in equal letter boxes de
reasessigni�
antly.Another way to
onsider the average length of a tra
ing path is to think that everytime a tra
ing path enters a di�erent letter box, it has some probability to hit a bridge.If the bridges were pla
ed randomly in the di�erent letter boxes, then the probabilityto hit a bridge would be 12 . This would give immediately a
onstant expe
ted lengthfor a tra
ing path. However, the pla
ing of the bridges depends on the
omputation ofre
urren
e (3), and this makes the probabilisti
 reasoning mu
h more
omplex. We arestill
on�dent that the following
onje
ture holds, although we have not been able toprove it.Conje
ture 12 Let A and B be strings that are run-length en
oded to lengths m0 andn0, su
h that the lengths of the runs are equally distributed in both strings. Under these28

LCS (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We use stru
ture dk;` to denote a box (dk;`s;t) as follows: */2. /* dk;`:
orner := dk;`pk ;r` */3. /* dk;`:jumptop := lo
ation of the next equal letter box above */4. /* dk;`:jumpleft := lo
ation of the next equal letter box in the left */5. /* dk;`:sumtop := if aik 6= bj` then Pkt=dk;`:jumptop+1 pt */6. /* dk;`:sumleft := if aik 6= bj` then Pt̀=dk;`:jumpleft+1 rt */7. /* Initialize �rst row and
olumn (let ai0 = bj0 = �; p0 = r0 = 1) */8. d00:
orner 09. for k 2 1 : : : n0 do dk;0:
orner dk�1;0:
orner + rk�110. for ` 2 1 : : :m0 do d0;`:
orner d0;`�1:
orner + p`�111.
ompute all the values dk;`:(jumptop; jumpleft; sumtop; sumleft)12. /* now we fill the rest of the
orner values */13. for k 2 1 : : :m0 do14. for ` 2 1 : : : n0 do15. (bridge; k0; `0; p; r; sum; dk;`:
orner) (false; k; `; pk; r`; 0;1)16. if aik 6= bj` then /* different letter box */17. dk;`:
orner min(dk�1;`:
orner + aik ; dk;`�1:
orner + bj`)18. else while bridge = false do19. /* equal letter box, tra
e dk;`:
orner */20. if p = r then /* straight from the diagonal */21. dk;`:
orner min(dk;`:
orner; sum+ dk0�1;`0�1:
orner)22. bridge true23. else if p < r then /* diagonal up */24. (r; k0) (r � p; k0 � 1)25. dk;`:
orner min(dk;`:
orner; sum+ dk0;`0�1:
orner + r)26. if dk0;`0 :
orner = dk0;`0�1:
orner + r`0 then bridge true27. else /* jump to the next equal letter box */28. (sum; k0) (sum+ dk0;`0 :sumtop; dk0;`0 :jumptop)29. p pk030. if k0 = 0 then /* first row */31. dk;`:
orner min(dk;`:
orner;sum+ dk0;`0�1:
orner + r)32. bridge true33. else : : : /* diagonal left similarly*/34. return (m+ n� dm0;n0 :
orner)=2 /* return the length of the LCS */Figure 6: The improved greedy algorithm for
omputing the LCS between A and B,
oded as run-length sequen
es of pairs (letter; run length).29

Figure 7: Evaluating the LCS between strings A = aaabbbbaaaa and B =aaaaabbbb

aa using the algorithm in Figure 6. The gray values denote the bridges,thus these values are not expli
itly
omputed, but they
an be dedu
ed from the
ornervalues.

30

assumptions the expe
ted running time of the algorithm in Figure 6 for
al
ulatingDID(A;B) is O(m0n0).6.4 Experimental ResultsTo test Conje
ture 12, we ran the algorithm in Figure 6 with the following settings:1. m0 = n0 = 2000, j�j = 2, runs in [1; x℄,x 2 f1; 10; 100; 1000; 10000; 100000; 1000000g.2. m0 = 2000; n0 2 f1; 50; 100; 500; 1000; 1500; 2000g; j�j = 2, runs in [1; 1000℄.3. m0 = n0 = 2000; j�j 2 f2; 4; 8; 16; 32; 64; 128; 256g, runs in [1; 1000℄.4. String A was as in item 1 with runs in [1; 1000℄. String B wasgenerated by applying k random insertions/deletions on A, where k 2f0; 1; 10; 100; 1000; 10000; 100000g.5. Real data: three di�erent bla
k/white images (printed lines from a book draft(187� 591), te
hni
al drawing (160� 555), and a signature (141� 362)). We ranthe LCS algorithm on all pairs of lines in ea
h image.Table 1 shows the results. Di�erent parameter
hoi
es are listed in the order theyappear in the above listing (e.g. setting 1 in test 1
orresponds to x = 1, setting 2
orresponds to x = 10, et
.).The average length L of a tra
ing path (i.e. the amount of equal letter boxes visitedby a tra
ing path) was smaller than 2 in tests 1-4 (slightly greater in test 5). Thatis, the running time was in pra
ti
e O(m0n0) with a very small
onstant fa
tor. Test 1showed that when the mean length of the runs in
reases, then L also in
reases, but notex
eeding 2 (L 2 [1; 1:99℄). In test 2, the worst situation was with n0 = m0 (L = 1:98).We tested the e�e
t of the alphabet in test 3, and the worst was j�j = 2 (L = 1:99)and the best was j�j = 256 (L = 1:13). Test 4 was used to simulate a typi
al situation,31

Table 1: The average length and the maximum length of a tra
ing path was measuredin di�erent test settings. The values of tests 1-4 are averages over 10-10,000 trials (e.g.on small values of n0 in test 2, more trials were needed be
ause of high varian
e, whereasotherwise the varian
e was small). Test 5 was deterministi
 (i.e. the values are fromone trial).Average length of a tra
ing path (maximum length)test X setting 1, setting 2, ...test 1 1 (1), 1.71 (18), 1.96 (28), 1.98 (27), 1.98 (32), 1.99 (29), 1.98 (25)test 2 1.73 (5), 1.77 (10), 1.74 (13), 1.80 (21), 1.90 (30), 1.97 (35), 1.98 (38)test 3 1.99 (30), 1.77 (20), 1.60 (14), 1.45 (14), 1.33 (9), 1.24 (7), 1.17 (6), 1.13 (6)test 4 1.71 (9), 1.71 (8), 1.71 (7), 1.71 (10), 1.72 (9), 1.72 (10), 1.72 (12)test 5 2.00 (35), 2.34 (146), 2.32 (31)in whi
h the distan
e between the strings is small. The amount of errors did not havemu
h in
uen
e (L 2 [1:71; 1:72℄). In real data (test 5), there were pairs
lose to theworst
ase (A = an; B = (ab)n=2), and therefore the results were slightly worse thanwith randomly generated data: L 2 f2:00; 2:34; 2:31g with the three images. Of
oursereal data does not need to �t the hypothesis of our
onje
ture.7 Con
lusionsWe have presented new algorithms for approximate mat
hing of run-length
ompressedstrings. The previous algorithms [8, 4℄ permit
omputing their LCS. We have presenteda new LCS algorithm with improved average
omplexity. We have also extended anLCS algorithm [8℄ to a more general weighted edit distan
e model (in parti
ular to theLevenshtein distan
e) without in
reasing its
omplexity. Finally, we have presented32

an algorithm with nontrivial
omplexity for approximate sear
hing of a run-length
ompressed pattern on a run-length
ompressed text under either model.A possible appli
ation for the edit distan
e would be the
omparison of images.Several models to
ompare images permitting not only di�eren
es in the pixel valuesbut also distortions have been proposed [15, 6℄. When
onsidering
olor images, anatural
hoi
e is that the
ost to
hange one pixel by another has a
ost related tothe absolute di�eren
e of their
olors. On
e a suitable
ost for insertions and deletionsof pixels is
hosen, the problem is how to
ompute the best alignment between twoimages or �nd the pla
es in a large image where a small image pattern aligns best. Thealgorithms depi
ted in [15, 6℄ need O(n4) time to
ompare two n�n images. They alsogive fast �ltration methods to sear
h for patterns inside large images. In several
ases,these algorithms resort to one-dimensional weighted edit distan
e or one-dimensionalapproximate sear
hing algorithms. These
ould be signi�
antly improved if the imageswere run-length
ompressed prior to the
omputation and our algorithms were used forthose subproblems. Some re
ent algorithms sear
hing for rotated image patterns insidea large image [12℄
ould be extended as well: their mat
hing model does not permitinsertions or deletions of pixels, so they
ould be integrated with other approa
hes su
has [6℄. Again, it would be possible to speed up the
omparison pro
ess by run-length
ompressing the image and the pattern, the latter at several rotations.With respe
t to the original models, an interesting question is whether an algorithm
an be obtained whose
ost is just the produ
t of the
ompressed lengths. Indeed, thisseems possible in the average
ase, as demonstrated by the experiments with our im-proved algorithm for the LCS. Finally, a
ombination of a two-dimensional approximatepattern mat
hing algorithm with two-dimensional run-length
ompression [15, 6, 1, 3℄seems interesting.
33

Referen
es[1℄ A. Amir and G. Benson. EÆ
ient two-dimensional
ompressed mat
hing. In Pro
.2nd IEEE Data Compression Conferen
e (DCC'92), pages 279{288, 1992.[2℄ A. Amir, G. Benson, and M. Fara
h. Let sleeping �les lie: Pattern mat
hing inZ-
ompressed �les. Journal of Computer and Systems S
ien
es, 52(2):299{307,1996.[3℄ A. Amir, G. Landau, and D. Sokol. Inpla
e run-length 2d
ompressed sear
h. Pro
.11th Symposium on Dis
rete Algorithms (SODA'00), pages 817{818, 2000.[4℄ A. Apostoli
o, G. Landau, and S. Skiena. Mat
hing for run-length en
oded strings.Journal of Complexity, 15:4{16, 1999.[5℄ O. Arbell, G. Landau, and J. Mit
hell. Edit distan
e of run-length en
oded strings.Information Pro
essing Letters, 83(6):307{314, 2002.[6℄ R. Baeza-Yates and G. Navarro. New models and algorithms for multidimensionalapproximate pattern mat
hing. Journal of Dis
rete Algorithms 1(1):21{49, 2000.Spe
ial issue on Mat
hing Patterns. Hermes S
ien
e Publishing.[7℄ H. Bunke and J. Csirik. An algorithm for mat
hing run-length
oded strings.Computing, 50:297{314, 1993.[8℄ H. Bunke and J. Csirik. An improved algorithm for
omputing the edit distan
eof run-length
oded strings. Information Pro
essing Letters, 54(2):93{96, 1995.[9℄ M. Cro
hemore, G. M. Landau, and M. Ziv-Ukelson. A Sub-quadrati
 Sequen
eAlignment Algorithm for Unrestri
ted Cost Matri
es. In Pro
. 13th Annual ACM-SIAM Symposium on Dis
rete Algorithms (SODA'02), pages 679{688, 2002 (the
itation is to the revised report 2001-08 at Institut Gaspard-Monge, Universit�e deMarne-la-Vall�ee). 34

[10℄ M. Fara
h and M. Thorup. String mat
hing in Lempel-Ziv
ompressed texts.Algorithmi
a, 20:388{404, 1998.[11℄ W. Feller. An Introdu
tion to Probability Theory and Its Appli
ations. Vol. II,John Wiley, New York, 1966.[12℄ K. Fredriksson. Rotation invariant histogram �lters for similarity and distan
emeasures between digital images. In Pro
. 7th Symposium on String Pro
essingand Information Retrieval (SPIRE'00), IEEE CS Press, pages 105{115.[13℄ H. Gajewska and R. Tarjan. Deques with heap order. Information Pro
essingLetters 12(4):197{200, 1986.[14℄ J. K�arkk�ainen, G. Navarro, and E. Ukkonen. Approximate string mat
hing overZiv-Lempel
ompressed text. In Pro
. 11th Annual Symposium on CombinatorialPattern Mat
hing (CPM'00), LNCS 1848, pages 195{209, 2000. Extended versionto appear in the Journal of Dis
rete Algorithms.[15℄ K. Krithivasan and R. Sitalakshmi. EÆ
ient two-dimensional pattern mat
hing inthe presen
e of errors. Information S
ien
es 43:169{184, 1987.[16℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frame-work for
ompressed pattern mat
hing. In Pro
. 6th Symposium on String Pro
ess-ing and Information Retrieval (SPIRE'99), pages 89{96. IEEE CS Press, 1999.[17℄ T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pat-tern mat
hing in LZW
ompressed text. In Pro
. 8th IEEE Data CompressionConferen
e (DCC'98), 1998.[18℄ V. Levenshtein. Binary
odes
apable of
orre
ting deletions, insertions and rever-sals. Soviet Physi
s Doklady 6:707{710, 1966.
35

[19℄ T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallelapproa
h to approximate string mat
hing. In Pro
. 7th Symposium on StringPro
essing and Information Retrieval (SPIRE'00), IEEE CS Press, pages 221{228,2000.[20℄ J. Mit
hell. A geometri
 shortest path problem, with appli
ation to
omputing alongest
ommon subsequen
e in run-length en
oded strings. In Te
hni
al Report,Dept. of Applied Mathemati
s, SUNY Stony Brook, 1997.[21℄ V. M�akinen, G. Navarro, and E. Ukkonen. Approximate mat
hing of run-length
ompressed strings. In Pro
. 12th Annual Symposium on Combinatorial PatternMat
hing (CPM'01), LNCS 2089, pages 31{49, 2001.[22℄ G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster Approxi-mate string mat
hing over
ompressed text. In Pro
. 11th IEEE Data CompressionConferen
e (DCC'01), pages 459{468, 2001.[23℄ P. Sellers. The theory and
omputation of evolutionary distan
es: Pattern re
og-nition. Journal of Algorithms, 1(4):359{373, 1980.[24℄ E. Ukkonen. Algorithms for approximate string mat
hing. Information and Control64(1{3):100{118, 1985.[25℄ E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms 6(1{3):132{137, 1985.[26℄ R. Wagner and M. Fisher. The string-to-string
orre
tion problem. Journal of theACM 21(1):168{173, 1974.[27℄ J. Ziv and A. Lempel. A universal algorithm for sequential data
ompression.IEEE Transa
tions on Information Theory, 23:337{343, 1977.
36

