
Pra
ti
al Constru
tion of Metri
 t-Spanners ?Gonzalo Navarro and Rodrigo ParedesCenter for Web Resear
h, Dept. of Computer S
ien
e, University of Chile.Blan
o En
alada 2120, Santiago, Chile.fgnavarro,raparedeg�d

.u
hile.
lAbstra
t. LetG(V; A) be a
onne
ted graph with a nonnegative
ost fun
tion d : A! R+ . Let dG(u; v)be the
ost of the
heapest path between u; v 2 V . A t-spanner of G is a subgraph G0(V;E), E � A,su
h that 8 u; v 2 V; dG0(u; v) � t � dG(u; v); t > 1. We fo
us on the metri
 spa
e
ontext, whi
h meansthat A = V � V , d is a metri
, and t � 2. Several algorithms to build t-spanners are known, but theydo not apply well to our
ase. We present four pra
ti
al algorithms to build t-spanners with empiri
alO(n2+ 0:1:::0:2t�1) time
ost and O(n1+ 0:1:::0:2t�1) edges. These algorithms are useful on general graphs aswell.1 Introdu
tionLet G be a
onne
ted graph G(V;A) with a nonnegative
ost fun
tion d(e) assigned to its edges e 2 A.The shortest path among every pair of verti
es u; v 2 V is the one minimizing the sum of the
ost of theedges traversed. This
an be
omputed with Floyd's algorithm or with jV j iterations of Dijkstra's algorithm
onsidering ea
h vertex as the origin node [18℄. A t-spanner it is a subgraph G0(V;E), with E � A, whi
hpermits to
ompute paths with stret
h t, that is, ensuring that 8u; v 2 V; dG0(u; v) � t � dG(u; v) [13℄. We
allthis the t-
ondition.In this work we are interested in using t-spanners as tools for sear
hing metri
 spa
es [6℄. A metri
 spa
eis a set of obje
ts X and a distan
e fun
tion d de�ned among obje
ts, whi
h satis�es the metri
 properties(positiveness, re
exivity, symmetry, triangle inequality). Given a �nite subset U � X, of size n, the goal isto build a data stru
ture over U su
h that later, given a query obje
t q 2 X, one
an �nd the elements of U
lose to q with as few distan
e
omputations as possible.One of the best existing algorithms to sear
h metri
 spa
es is AESA [17℄. AESA pre
omputes and storesthe matrix of n(n � 1)=2 distan
es among elements of U. This huge spa
e requirement makes it unsuitablefor most appli
ations, however.This matrix
an be seen as a
omplete graph G(V;A) where the set of verti
es V = U
orresponds tothe obje
ts of the metri
 spa
e, and the set of edges A
orresponds to the n(n� 1)=2 distan
es among theseobje
ts. A t-spanner G0 of G would represent all these distan
es using a small number of edges E;E � A,and still would be able to approximate all the distan
es with a maximum error t, that is:d(u; v) � dG0(u; v) � t � d(u; v) (1)In most metri
 spa
es the distan
e histogram follows a distribution that be
omes
on
entrated as thedimension in
reases [6℄. This means that in pra
ti
e we are interested in the range t 2 (1; 2℄.We pursue this line in [12℄, where we fo
us on the sear
h pro
ess but not on t-spanner
onstru
tion. Inthat paper we show that the sear
h algorithm is
ompetitive against
urrent approa
hes, e.g., we need 1.09times the time
ost of AESA using only 3.83% of its spa
e requirement, in a metri
 spa
e of do
uments; and1.5 times the time
ost of AESA using only 3.21% of its spa
e requirement, in a metri
 spa
e of strings. Wealso show that t-spanners provide better spa
e-time tradeo�s than
lassi
al alternatives su
h as pivot-basedindexes.Hen
e our interest in this paper is in building t-spanners over metri
 spa
es whi
h work well in pra
ti
e.Few algorithms exist apart from the basi
 O(mn2) te
hnique (m = jEj), whi
h inserts the edges needed oneby one and re
omputes all the shortest paths to every edge inserted.Four t-spanner
onstru
tion algorithms are presented in this paper, with the goals of de
reasing CPU andmemory
ost and of produ
ing t-spanners of good quality, i.e., with few edges. Our four algorithms are:? This work has been supported in part by the Millenium Nu
leus Center for Web Resear
h, Grant P01-029-F,Mideplan, Chile (both authors) and AT&T LA Chile (2nd author).

1. An optimized basi
 algorithm, where we limit the propagation of edge insertions.2. A massive edge insertion algorithm, where we amortize the
ost of re
omputing distan
es a
ross manyedge insertions.3. An in
remental algorithm, where nodes are added one by one to a
orre
t t-spanner.4. A re
ursive algorithm applying a divide and
onquer te
hnique.Table 1 shows the
omplexities obtained. We obtain empiri
al O(n2:24) time
ost and O(n1:13) edges.This shows that good quality t-spanners
an be built in reasonable time (just the minimum spanning tree
omputation needs O(n2) time). We take no parti
ular advantage of the metri
 properties of the edge weights,so our algorithms
an be used on general graphs too. As far as we know, there has not been previous workon
omparing, in pra
ti
e, t-spanner
onstru
tion algorithms on metri
 spa
es.Basi
 Basi
 Massive edge In
remental Re
ursiveoptimized insertionCPU time O(mn2) O(mk2) O(nm logm) O(nm logm) O(nm logm)Memory O(n2) O(n2) O(m) O(m) O(m)Distan
e evaluations O(n2) O(n2) O(nm) O(n2) O(n2)Table 1. t-Spanner algorithm
omplexities
omparison. The value k refers to the number of nodes that have to be
he
ked when updating distan
es due to a new inserted edge.
2 Previous WorkSeveral studies on general graph t-spanners have been undertaken [8, 13, 14℄. Most of them resort to the naiveO(mn2) time
onstru
tion approa
h detailed in the next se
tion, where n = jV j and m = jEj refer to theresulting t-spanner. It was shown in [1, 2℄ that this te
hnique produ
es t-spanners with n1+O(1t�1) edges ongeneral graphs of n nodes. This result, however, is not interesting for t � 2.More sophisti
ated algorithms have been proposed in [7℄, produ
ing t-spanners withO(n1+(2+")(1+lognm)=t)edges in time O(mn(2+")(1+logn m)=t), where in this
ase m refers to the original graph. In a metri
 spa
em = �(n2), whi
h means that we need time O(n5) time at least. Additionally, the algorithms in [7℄ workfor t 2 [2; logn℄, unsuitable for our appli
ation. Other re
ent algorithms [16℄ work only for t = 1, 3, 5,. . . also unsuitable for us. Parallel algorithms have been pursued in [11℄, but they do not give new sequentialalgorithms.As it
an be seen, none of these results is useful for our problem.As it regards to Eu
lidean t-spanners, i.e., the sub
lass of metri
 t-spanners where the obje
ts are pointsin a D-dimensional spa
e with Eu
lidean distan
e, mu
h better results exist [8, 1, 2, 10, 9, 15℄, showing thatone
an build t-spanners with O(n) edges in O(n logD�1 n) time. These results, unfortunately, make heavyuse of
oordinate information and
annot be extended to general metri
 spa
es.Other related results refer to probabilisti
 approximations of metri
 spa
es using tree metri
s [4, 5℄. Theidea is to build a set of trees su
h that their union makes up a t-spanner with high probability. However, thet values are of the form O(logn log logn).Hen
e the need to �nd algorithms that allow building appropriate t-spanners for metri
 spa
es, that is,with t � 2, for
omplete graphs, and taking advantage of the triangle inequality.3 Basi
 t-Spanner Constru
tion AlgorithmThe intuitive idea to solve this problem is iterative. We begin with an initial t-spanner that
ontains all theverti
es and no edges, and
al
ulate the distan
e estimations among all vertex pairs. These are all in�nite atstep zero, ex
ept for the distan
es between a node and itself (d(u; u) = 0). The edges are then inserted untilall the distan
e estimations ful�ll the t-
ondition.

The edges are
onsidered in as
ending
ost order, so we start by sorting them. Using smaller-
ost edges�rst is in agreement with the geometri
 idea of inserting edges between near neighbors and making up pathsfrom low
ost edges in order to use few edges overall.Hen
e the algorithm uses two matri
es. The �rst, real,
ontains the true distan
e between all the obje
ts,and the se
ond, estim,
ontains the distan
e estimations obtained with the t-spanner under
onstru
tion.The t-spanner is stored in an adja
en
y list.The insertion
riterion is that an edge is added to the set E only when its
urrent estimation does notsatisfy the t-
ondition. After inserting the edge, it is ne
essary to update all the distan
e estimations. Theupdate me
hanism is similar to the distan
e
al
ulation me
hanism of Floyd's algorithm, but
onsideringthat edges, not nodes, are inserted into the set. Figure 6 (Appendix) depi
ts the basi
 t-spanner
onstru
tionalgorithm.This algorithm makes O(n2) distan
e evaluations, like AESA [17℄; O(mn2) CPU time (re
all that n = jV jand m = jEj); and O(n2 +m) = O(n2) memory. Its main de�
ien
ies are ex
essive edge insertion
ost andtoo high memory requirements.4 Optimized Basi
 AlgorithmLike the basi
 algorithm (Se
tion 3), this algorithm
onsiders the use of real and estim matri
es,
hoosingthe edges in in
reasing weight order. The optimization fo
uses on the distan
e estimation update me
hanism.The main idea is to
ontrol the propagation of the
omputation, that is, only updating the distan
eestimations that are a�e
ted by the insertion of a new edge. Figure 1 shows the insertion of a new edge. Inthe �rst update we must modify only the edge that was inserted, between nodes a1 and a2. The
omputationthen propagates to the neighbors of the ai nodes, namely the nodes fb1; b2; b3g; then to the nodes f
1;
2gand �nally d1. The propagation stops when a node does not improve its
urrent estimation or when it doesnot have further neighbors.

Fig. 1. Propagation of distan
e estimations.In order to
ontrol the propagation, the algorithm uses two sets, ok and
he
k.{ ok: The nodes that already have updated their shortest path estimations due to the inserted edge.{
he
k: The adja
en
y of ok,
he
k = adya
en
y(ok)� ok = fu 2 U; 9v 2 ok; (u; v) 2 Eg � ok . These arethe nodes that we still need to update.Note that it is ne
essary to propagate the
omputation only to the nodes that improve their estimationto a1 or a2. The
omplete algorithm reviews all the edges of the graph. For ea
h edge, it iterates until nofurther propagation is ne
essary. Figure 7 (Appendix) depi
ts the optimized basi
 algorithm.This algorithm takes O(n2) distan
es evaluations. In terms of CPU time it takes O(mk2), where k isthe number of neighbors to
he
k when inserting an edge. In the worst
ase this be
omes O(mn2) just likethe basi
 algorithm, but the average is mu
h better. From the point of view of the memory it still takesO(n2 +m) = O(n2). This algorithm redu
es the CPU time used, but even so this is still very high, and thememory requirements are still too high.A good feature of this algorithm is that it produ
es good-quality t-spanners (few edges), just like the basi
algorithm. So we have used its results to predi
t the expe
ted number of edges per node in order to speed

up other algorithms that rely on massive edge insertion. We
all Et�Spanner1(n; d; t) the expe
ted number ofedges in a metri
 spa
e of n obje
ts, distan
e fun
tion d, and stret
h t. In Se
tion 8 we show some estimationsobtained, see Table 2.5 Massive Edges Insertion AlgorithmThis algorithm tries to redu
e both the CPU pro
essing time and memory requirements. To redu
e the CPUtime, the algorithm updates the distan
e estimations only after performing many edge insertions, using anO(m logn)-time Dijkstra's algorithm to update distan
es. To redu
e the memory requirement, it
omputesthe distan
es between obje
ts on the
y.Sin
e we insert edges less
arefully than before, the resulting t-spanner is ne
essarily of lower quality. Oure�ort is in minimizing this e�e
t.The algorithm has three stages. In the �rst one, it builds the t-spanner ba
kbone by inserting wholeminimum spanning trees (MSTs), and determines the global wrongly t-estimated edge list (pending); in these
ond one, it re�nes the t-spanner by adding more edges to improve the wrongly t-estimated edges; and inthe third one, it inserts all the remaining \hard" edges.This algorithm uses two heuristi
 values:H1 determines the expe
ted number of edges per node, and it is obtained from the t-Spanner1 edge model:H1 = jEt�Spanner1(n; d; t)j=n . With H1 we will de�ne thresholds to determine whether or not to insertthe remaining edges (those still wrongly t-estimated) of the
urrent node.H2 is used to determine the pending list size and will give a
riterion to determine when to insert an additionalMST. The maximum pending list size isH2 = 1:2�jEj, where E refers to the t-spanner under
onstru
tion.The algorithm stages are:1. We insert su

essive MSTs to the t-spanner. The �rst MST follows the basi
s Prim algorithm [18℄, butthe next MSTs are built using Prim over the edges that have not been inserted yet.We traverse the nodes sequentially, building the list of pending edges (wrongly t-estimated). At the sametime, we insert su

essive MSTs and remove pending edges a

ordingly. Additionally, when the
urrentnode has no more than H1=2 pending edges, we just insert them. The insertion of MSTs
ontinues aslong as there are more than H2 pending edges (note that H2 depends on the
urrent t-spanner size jEj).This stage
ontinues until we review all the nodes. The output is the t-spanner ba
kbone (t-Spanner) andthe gobal list of pending edges (pending).2. In the se
ond stage we redu
e the pending list. For this sake, we traverse the list of nodes with pendingedges (pendingNodes), from more to less pending edges. For ea
h su
h node, we
he
k whi
h edges haveto improve their t-estimation and whi
h do not (edges originally in the pending list may have be
omewell t-estimated along the pro
ess). From the still wrongly t-estimated edges, we insert the H1=4 smaller
ost edges and pro
eed to the next node.This allows us to review in the �rst pla
e the nodes that require more attention, without
on
entratingall the e�orts in the same node.The pro
ess
onsiders two spe
ial
ases. The �rst one is that we have inserted more than n edges, inwhi
h
ase we regenerate and re-sort the pendingNodes list and restart the pro
ess. The se
ond one isthat the pending list of the
urrent node is so small that we simply insert its elements.The output
ondition of the se
ond stage is that the pending list size is smaller than n=2.3. We insert the pending list to the t-spanner.Figure 8 (Appendix) depi
ts the massive edges insertion algorithm. This algorithm takes O(nm) distan
eevaluations, O(nm logm) CPU time (sin
e we run Dijkstra's algorithm on
e per node), and O(n+m) = O(m)memory. It is easy to see that the spa
e requirement is O(m): the pending list is never larger than O(m)be
ause at ea
h iteration of stage 1 it grows at most by n, and as soon as it be
omes larger than 1:2�m we takeout edges from it by adding a new MST, until it be
omes short enough. The CPU time
omes from runningDijkstra's algorithm on
e per node at stage 1. At stage 2 we insert edges in groups of O(m=n), runningDijkstra's algorithm after ea
h insertion, until we have inserted jpendingj � n=2 = O(m) edges overall. Thisa

ounts for other n times we run Dijkstra's algorithm. Hen
e the O(nm logm)
omplexity.This algorithm redu
es both CPU time and memory requirements, but the amount of distan
e evaluationsis very high (O(nm) � O(n2)).

6 In
remental Node Insertion AlgorithmThis version redu
es the amount of distan
e evaluations to just n(n � 1)=2, while preserving the amortizedupdate
ost idea.This algorithm, unlike the previous ones, makes a lo
al analysis of nodes and edges. We insert the nodesone by one, not the edges. The invariant is that for nodes 1 : : : i� 1 we have a well formed t-spanner, and wewant to insert the i-th node to the growing t-spanner. Sin
e the insertion pro
ess only lo
ally analyzes theedge set, the resulting t-spanner is suboptimal.For ea
h new node i, the algorithm makes two operations: the �rst is to
onne
t the node to the growing t-spanner using the
heapest edge (towards a node < i); the se
ond one is to verify that the distan
e estimationssatisfy the t-
ondition, adding some edges to node i until the invariant is restored. We repeat this pro
essuntil we insert the whole node set.We also use the H1 heuristi
, with the di�eren
e that we re
ompute H1 at every iteration (sin
e thet-spanner size
hanges). We �xed that the number of edges to insert at a time should be Æ = H1=(5 � i).For the distan
e veri�
ation we use an in
remental Dijkstra's algorithm with limited propagation, that is,the �rst time, Dijkstra's algorithm takes an array with pre
omputed distan
es initialized at t � d(ui; uj) + ",with " > 0, j 2 [1; i� 1℄. This is be
ause, if a distan
e to node i is not well t-estimated, we do not really needto know how bad estimated it is. For the next iterations, Dijkstra's algorithm reuses the previously
omputedarray, be
ause there is no need to propagate distan
es from nodes whose estimation has not improved.Figure 9 (Appendix) depi
ts the in
remental node insertion algorithm. This algorithm takesO(n2) distan
eevaluations, O(nm logm) CPU time, and O(n +m) = O(m) memory. The CPU time
omes from the fa
tthat every node runs Dijkstra's algorithm n=Æ = O(1) times.7 Re
ursive AlgorithmThe in
remental algorithm is a good approa
h to
onstru
t t-spanners, but it does not
onsider spatialproximity (or remoteness) among the obje
ts. A way to solve this is that the set in whi
h the t-spanner isin
rementally built is made up of near obje
ts. Following this prin
iple, we present a solution that re
ursivelydivides the obje
t set into two
ompa
t subsets, builds sub-t-spanners in the subsets, and then merges them.For the initial set division we take two far away obje
ts, p1 and p2, that we
all representatives, and thengenerate two subsets: obje
ts nearer to p1 and nearer to p2. Figure 2 (left) shows the
on
ept graphi
ally.For the re
ursive divisions we reuse the representative as one of the two obje
ts, and the element farthest toit as the other. The re
ursion �nishes when we have less than 3 obje
ts.
Fig. 2. On the left, we sele
t p1 and p2, and then divide the set. On the right, the merge step takes the obje
tsa

ording to their distan
es towards p1.The merge step also takes into a

ount the spatial proximity among the obje
ts. When we merge thesub-t-spanners, we have two node subsets V1 and V2, where jV1j � jV2j (otherwise we swap the subsets).Then, in the sub-t-spanner represented by p2 (stsp2), we
hoose the obje
t
losest to p1 (u), and insert it intothe sub-t-spanner represented by p1 (stsp1) verifying that all the distan
es towards V1 are well t-estimated.Note that this is equivalent to
onsider that we use the in
remental algorithm, where we insert u into thegrowing t-spanner stsp1. We
ontinue with the se
ond
losest and repeat the pro
edure until all the stsp2nodes are inserted into stsp1. Figure 2 (right) illustrates. Note that the edges already present in stsp2 are
onserved.

This algorithm also uses an in
remental Dijkstra's algorithm with limited propagation, but this time weare only interested in limiting the propagation towards stsp1 nodes (be
ause we know that towards stsp2we already satisfy the t-
ondition). Hen
e, Dijkstra's algorithm takes an array with pre
omputed distan
esinitialized at t � d(ui; uj) + " for (ui; uj) 2 V2 � V1, and 1 for (ui; uj) 2 V2 � V2, where " is a small positive
onstant. For the next iterations, Dijkstra's algorithm reuses the previously
omputed array.Figure 10 (Appendix) depi
ts the re
ursive algorithm and the auxiliary fun
tions used to build and mergesub-t-spanners. This algorithm takes O(n2) distan
e evaluations, O(nm logm) CPU time, and O(n +m) =O(m) memory. The
ost of dividing the sets does not a�e
t that of the underlying in
remental
onstru
tion.8 Experimental ResultsWe have tested our algorithms on syntheti
 and real-life metri
 spa
es. The syntheti
 set is formed by 2,000points in a 20-dimensional spa
e with
oordinates in the range [�1; 1℄, with Gaussian distribution forming256 randomly pla
ed
lusters. We
onsider three di�erent standard deviations to make more
risp or morefuzzy
lusters (� = 0.1, 0.3, 0.5). Of
ourse, we have not used the fa
t that the spa
e has
oordinates, buthave treated the points as abstra
t obje
ts in an unknown metri
 spa
e.Two real-life data sets were tested. The �rst is a string metri
 spa
e using the edit distan
e (a dis
retefun
tion that measures the minimum number of
hara
ter insertions, deletions and repla
ements needed tomake the strings equal). The strings form an English di
tionary, where we index a subset of n = 24,000 words.The se
ond is a spa
e of 1,215 do
uments under the Cosine similarity, whi
h is used to retrieve do
umentsmore similar to a query under the ve
tor spa
e model. In this model the spa
e has one
oordinate per termand do
uments are seen as ve
tors in this high dimensional spa
e. The similarity
orresponds to the
osine ofthe angle (inner produ
t) among the ve
tors, and a suitable distan
e measure is the angle itself. Both spa
esare of interest to Information Retrieval appli
ations [3℄.The experiments were run on an Intel Pentium IV of 2 GHz, with 512 MB of RAM and a lo
al disk. Weare interested in measuring the CPU time needed and the amount of edges generated by ea
h algorithm. Forshortness we have
alled t-Spanner 1 the optimized basi
 algorithm, t-Spanner 2 the massive edges insertionalgorithm, t-Spanner 3 the in
remental algorithm, and t-Spanner 4 the re
ursive algorithm.Figure 3 shows a
omparison among the four algorithms on the Gaussian data set. As it
an be seen,all the algorithms produ
e t-spanners of about the same quality, although the optimized basi
 algorithm is
onsistently better, as expe
ted.In the
onstru
tion time, however, there are large di�eren
es. The optimized basi
 algorithm is impra
ti-
ally
ostly. On the other hand, the massive edges insertion algorithm is still quite
ostly in
omparison to thein
remental and re
ursive algorithms. However, we noti
e that, unlike all the others, this algorithm improvesinstead of degrading as the
lusters be
ome more fuzzy, be
oming a
ompetitive
hoi
e on uniformly dis-tributed datasets. The quality of the t-spanner also varies from (by far) the worst t-spanner on
risp
lustersto the se
ond best on more fuzzy
lusters.The in
remental and re
ursive algorithms are quite
lose in both measures, being by far the fastestalgorithms. The re
ursive algorithms usually produ
es slightly better t-spanners. It is interesting to noti
ethat, for t as low as 1.5, we obtain t-spanners whose size is 5% to 15% of the full graph.For la
k of spa
e we do not show results as a fun
tion of the database size. However, we show in Table 2our least squares �ttings on the data using the model jEj = an1+ bt�1 and time = an2+ bt�1 mi
rose
onds.This model has been
hosen a

ording to the analyti
al results of [1, 2℄. As it
an be seen, t-spanner sizesare slightly superlinear and times are slightly superquadrati
. This shows that our algorithms represent inpra
ti
e a large improvement over the
urrent state of the art.We show now some results on the metri
 spa
e of strings, this time fo
using on the behavior in terms ofthe database size n. Sin
e these tests are more massive, we leave out the optimized basi
 and the massive edgeinsertion algorithms: They were really slow even for small subsets. This means, in parti
ular for the massiveedges insertion algorithm, that this spa
e is far from uniform. Figure 4 shows that, also for strings, the numberof edges generated is slightly superlinear (8:03 n1+ 0:16t�1 for the in
remental algorithm and 8:45 n1+ 0:15t�1 forthe re
ursive one), and the
onstru
tion time is slightly superquadrati
 (1:46 n2+ 0:10t�1 mi
rose
onds for thein
remental algorithm and 1:67 n1+ 0:09t�1 for the re
ursive one). The re
ursive algorithm is almost always a bitbetter than the in
remental algorithm in both aspe
ts.Finally, Figure 5 shows experiments on the spa
e of do
uments. We have ex
luded the massive edgesinsertion algorithm, whi
h was too slow. The reason this time is that it is the algorithm that makes, by far,

0

50

100

150

200

250

300

350

400

450

500

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1, stdev = 0.1
t-Spanner 2, stdev = 0.1
t-Spanner 3, stdev = 0.1
t-Spanner 4, stdev = 0.1

1

10

100

1000

1.4 1.5 1.6 1.7 1.8 1.9 2
tim

e
[s

eg
]

t

t-Spanner 1, stdev = 0.1
t-Spanner 2, stdev = 0.1
t-Spanner 3, stdev = 0.1
t-Spanner 4, stdev = 0.1

0

50

100

150

200

250

300

350

400

450

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1, stdev = 0.3
t-Spanner 2, stdev = 0.3
t-Spanner 3, stdev = 0.3
t-Spanner 4, stdev = 0.3

10

100

1000

10000

1.4 1.5 1.6 1.7 1.8 1.9 2

tim
e

[s
eg

]

t

t-Spanner 1, stdev = 0.3
t-Spanner 2, stdev = 0.3
t-Spanner 3, stdev = 0.3
t-Spanner 4, stdev = 0.3

0

100

200

300

400

500

600

700

800

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1, stdev = 0.5
t-Spanner 2, stdev = 0.5
t-Spanner 3, stdev = 0.5
t-Spanner 4, stdev = 0.5

10

100

1000

10000

1.4 1.5 1.6 1.7 1.8 1.9 2

tim
e

[s
eg

]

t

t-Spanner 1, stdev = 0.5
t-Spanner 2, stdev = 0.5
t-Spanner 3, stdev = 0.5
t-Spanner 4, stdev = 0.5

Fig. 3. t-Spanner
onstru
tion in the syntheti
 metri
 spa
e of 2,000 nodes, as a fun
tion of t. On the left, edgesgenerated (t-spanner quality). On the right,
onstru
tion time. Ea
h row
orresponds to a di�erent varian
e.

Basi
 Massive edge In
remental Re
ursiveoptimized insertionStdev 0.1CPU time 17:8 n2+ 0:09t�1 1:67 n2+ 0:24t�1 0:670 n2+ 0:10t�1 0:909 n2+ 0:08t�1Edges 5:76 n1+ 0:10t�1 6:50 n1+ 0:18t�1 6:17 n1+ 0:13t�1 5:77 n1+ 0:14t�1Stdev 0.3CPU time 25:0 n2+ 0:16t�1 1:52 n2+ 0:22t�1 0:771 n2+ 0:13t�1 0:865 n2+ 0:13t�1Edges 5:69 n1+ 0:18t�1 5:41 n1+ 0:19t�1 6:52 n1+ 0:19t�1 6:50 n1+ 0:18t�1Stdev 0.5CPU time 21:0 n2+ 0:19t�1 1:33 n2+ 0:25t�1 0:587 n2+ 0:17t�1 0:650 n2+ 0:17t�1Edges 4:89 n1+ 0:21t�1 4:50 n1+ 0:22t�1 5:20 n1+ 0:22t�1 5:37 n1+ 0:21t�1Table 2. Empiri
al
omplexities of our algorithms, as a fun
tion of n and t. Time is measured in mi
rose
onds.

0

1

2

3

4

5

6

7

8

9

10

4000 8000 12000 16000 20000 24000

|E
| x

 1
,0

00
,0

00

nodos

1.4-Spanner 3
1.8-Spanner 3
1.4-Spanner 4
1.8-Spanner 4

0

2000

4000

6000

8000

10000

12000

14000

4000 8000 12000 16000 20000 24000

tim
e

[s
ec

]

nodos

1.4-Spanner 3
1.8-Spanner 3
1.4-Spanner 4
1.8-Spanner 4

Fig. 4. t-Spanner
onstru
tion on the spa
e of strings, for in
reasing n. On the left, number of edges generated. Onthe right,
onstru
tion time.more distan
e
omputations, whi
h was
learly the dominant term in this spa
e (
omparing two do
umentvo
abularies takes several millise
onds). We
an see again that, although all the algorithms produ
e t-spannersof about the same quality, the optimized basi
 algorithm is mu
h more expensive than the other two, whi
hare rather similar.9 Con
lusionsWe have presented several algorithms for t-spanner
onstru
tion when the underlying graph is the
ompletegraph representing distan
es in a metri
 spa
e. This is motivated by our re
ent resear
h on sear
hing metri
spa
es and shows that t-spanners are well suited as data stru
tures for this problem. For this sake, we needpra
ti
al
onstru
tion algorithms for 1 < t � 2. To the best of our knowledge, no existing te
hnique works wellunder this s
enario (
omplete graph, metri
 distan
es, small t, pra
ti
al
onstru
tion time) and no pra
ti
alstudy has been
arried out on the subje
t. However, our algorithms are also well suited to general graphs.Our fo
us has been on pra
ti
al algorithms. We have shown that it is possible to build good quality t-spanners in reasonable time. We have empiri
ally obtained O(n2+ 0:1:::0:2t�1) time
ost and O(n1+ 0:1:::0:2t�1) edges.Note that just
omputing the minimum spanning tree requires O(n2) time. Moreover, just
omputing allthe distan
es in a general graph requires O(n3) time. Compared to the existing algorithms, our
ontributionrepresents in pra
ti
e a large improvement over the
urrent state of the art.It is possible to add and remove elements from the t-spanner in reasonable time while preserving its quality.The in
remental algorithm permits adding new elements. Remotion of a node
an be arranged by adding a
lique among its neighbors and periodi
ally re
onstru
ting the t-spanner with the re
ursive algorithm.

0

50

100

150

200

250

300

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1
t-Spanner 3
t-Spanner 4

300

400

500

600

700

800

900

1000

1100

1.4 1.5 1.6 1.7 1.8 1.9 2

tim
e

[s
ec

]

t

t-Spanner 1
t-Spanner 3
t-Spanner 4

Fig. 5. t-Spanner
onstru
tion on the set of do
uments, as a fun
tion of t. On the left, edges generated. On the right,
onstru
tion time.Future work involves using t-spanners where t depends on the a
tual distan
e between the nodes. Ba-si
ally, we are more interested in approximating well short rather than long distan
es. Another trend is onprobabilisti
 t-spanners, where distan
es are well t-estimated with high probability.Referen
es1. I. Alth�ofer, G. Das, D. Dobkin, and D. Joseph. Generating sparse spanners for weighted graphs. In Pro
. 2ndS
andinavian Workshop on Algorithm Theory (SWAT'90), LNCS 447, pages 26{37, 1990.2. I. Alth�ofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Dis
reteComputational Geometry, 9:81{100, 1993.3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.4. Y. Bartal. On approximating arbitrary metri
s by tree metri
s. In Pro
. 30th Symposium on the Theory ofComputing (STOC'98), pages 161{168, 1998.5. M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a �nite metri
 by a small number oftree metri
s. In Pro
. 39th Symp. on Foundations of Computer S
ien
e (FOCS'98), pages 379{388, 1998.6. E. Ch�avez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Proximity sear
hing in metri
 spa
es. ACMComputing Surveys, 33(3):273{321, September 2001.7. E. Cohen. Fast algorithms for
onstru
ting t-spanners and paths with stret
h t. SIAM J. on Computing, 28:210{236, 1998.8. D. Eppstein. Spanning trees and spanners. In Handbook of Computational Geometry, pages 425{461. Elsevier,1999.9. J. Gudmundsson, C. Lev
opoulos, and G. Narasimhan. Improved greedy algorithms for
onstru
ting sparsegeometri
 spanners. In Pro
. 7th S
andinavian Workshop on Algorithm Theory (SWAT 2000), LNCS v. 1851,pages 314{327, 2000.10. J.M. Keil. Approximating the
omplete Eu
lidean graph. In Pro
. 1st S
andinavian Workshop in AlgorithmTheory (SWAT'88), LNCS 318, pages 208{213, 1988.11. W. Liang and R. Brent. Constru
ting the spanners of graphs in parallel. Te
hni
al Report TR-CS-96-01, Dept.of CS and CS Lab, The Australian National University, January 1996.12. G. Navarro, R. Paredes, and E. Ch�avez. t-Spanners as a data stru
ture for metri
 spa
e sear
hing. In Pro
eedingsof the 9th International Symposium on String Pro
essing and Information Retrieval (SPIRE 2002), LNCS 2476,pages 298{309. Springer, 2002.13. D. Peleg and A. S
ha�er. Graph spanners. Journal of Graph Theory, 13(1):99{116, 1989.14. D. Peleg and J. Ullman. An optimal syn
hronizer for the hyper
ube. SIAM J. on Computing, 18:740{747, 1989.15. J. Ruppert and R. Seidel. Approximating the d-dimensional
omplete Eu
lidean graph. In 3rd Canadian Confer-en
e on Computational Geometry, pages 207{210, 1991.16. Mikkel Thorup and Uri Zwi
k. Approximate distan
e ora
les. In Pro
eedings of the thirty-third annual ACMsymposium on Theory of
omputing, pages 183{192. ACM Press, 2001.17. E. Vidal. An algorithm for �nding nearest neighbors in (approximately)
onstant average time. Patt. Re
og. Lett.,4:145{157, 1986.18. Mark Allen Weiss. Data Stru
tures and Algorithm Analysis. Addison-Wesley, 2nd edition, 1995.

Appendix - Pseudo
odes (to be read at the dis
retion of the Reviewer)t-Spanner0 (Stret
h t, Verti
es U)real real distan
e matrixestim estimated distan
e matrixt-Spanner t-spanner edge stru
ture // initially ;for e = (eu; ev) 2 real
hosen in in
reasing
ost order doif estim(e) > t � real(e) // e is not well t-estimatedt-Spanner t-Spanner [fegfor vi; vj 2 Ud1 estim(vi; eu) + estim(vj ; ev)d2 estim(vj ; eu) + estim(vi; ev)estim(vi; vj) min(estim(vi; vj), min(d1; d2)+real(e))Fig. 6. Basi
 t-spanner
onstru
tion algorithmi (t-Spanner 0).t-Spanner1 (Stret
h t, Verti
es U)real real distan
e matrixestim estimated distan
e matrixt-Spanner t-spanner edge stru
ture // initially ;for e = (eu; ev) 2 real
hosen in in
reasing
ost order doif estim(e) > t � real(e) // e is not well t-estimatedt-Spanner t-Spanner [fegok feu; evg
he
k adja
en
y(ok) � okfor
 2
he
kif ((estim(
; ev) + real(e) � estim(
; eu) or (estim(
; eu) + real(e) � estim(
; ev))for o 2 okd1 estim(
; eu) + estim(o; ev)d2 estim(
; ev) + estim(o; eu)estim(
,o) min(estim(
,o), min(d1,d2) + real(e))
he
k
he
k [(adja
en
y(
) - ok)ok ok [f
g
he
k
he
k � f
gFig. 7. Optimized basi
 algorithm (t-Spanner 1).

t-Spanner2 (Stret
h t, Verti
es U)t-Spanner t-spanner edge stru
ture // initially has the first MSTpending ; // global pending egde listH1 jEt�Spanner1(n; d; t)j = nStage 1: generating t-Spanner and pendingfor u 2 Uif jpendingj > 1:2 � jt-Spanner j // using H2t-Spanner t-Spanner [MST // built over the edges not yet inserteddistan
es Dijkstra(t-Spanner, u) // distan
es(v) = dt-Spanner(u; v)for v 2 Uif distan
e(v) � t � d(u; v) then pending pending � f(u; v)gelse pending pending [f(u; v)gif jpending(u)j � H1=2t-Spanner t-Spanner [pending(u), pending pending � pending(u)Stage 2: Redu
ing pendingwhile jpendingj > n=2pendingNodes nodes sorted in de
reasing number of pending edgesfor u 2 pendingNodesif more than n edges have been inserted break // spe
ial
ase 1if jpending(u)j < H1=4 // spe
ial
ase 2t-Spanner t-Spanner [pending(u), pending pending � pending(u)elsedistan
es Dijkstra(t-Spanner, u)for v 2 pending(u)if distan
es(v) � t � d(u; v) then pending pending � f(u; v)gsmallest H1=4 smallest edges 2 pending(u)t-Spanner t-Spanner [smallest, pending pending � smallestStage 3: t-Spanner t-Spanner [pendingFig. 8. Massive edges insertion algorithm (t-Spanner 2), pending(u) denotes fe 2 pending; 9v; e = (u; v)g.
t-Spanner3 (Stret
h t, Verti
es U)t-Spanner t-spanner edge stru
ture // initially ;for i 2 [1; n℄Æ jEt�Spanner1(i; d; t)j = (i � 5) // in
remental H1k argminj2[1;i�1℄fd(nodei; nodej)gt-Spanner t-Spanner [f(nodei; nodek)g // inserting the
heapest edgedistan
es f(nodej ; t � d(nodei; nodej) + "); j 2 [1; i� 1℄g // defining the propagation limitwhile nodei has wrongly t-estimated edgesdistan
es Dijkstra(t-Spanner, u, distan
es)// in
remental Dijkstrapendingi f(nodei; nodej); j < i; distan
e(nodej) > t � d(nodei; nodej)gsmallest Æ
heapest edges in pendingit-Spanner t-Spanner [smallestFig. 9. In
remental node insertion algorithm (t-Spanner 3).

t-Spanner4 (Stret
h t, Verti
es U)t-Spanner t-spanner edge stru
ture // initially ;(p1, p2) two distant obje
ts(V1, V2) U divided a

ording to distan
es towards (p1, p2)stsp1 makeSubtSpanner(p1,V1), stsp2 makeSubtSpanner(p2,V2)t-Spanner mergeSubtSpanner(stsp1, stsp2)makeSubtSpanner(representative p, Verti
es V)if jV j = 1 return t-spanner (nodes = fpg, edges = ;)else if jV j = 2 return t-spanner (nodes = V = fv1; v2g, edges = f(v1; v2)g)elsepremote argmaxv2V fd(p; v)g(V , Vremote) V divided a

ording to distan
es towards (p, premote)stspp makeSubtSpanner(p,V), stspremote makeSubtSpanner(premote,Vremote)return mergeSubtSpanner(stspp, stspremote)mergeSubtSpanner (t-Spanner stsp1, t-Spanner stsp2)if jnodes(stsp1)j � jnodes(stsp2)j stsp1 , stsp2nodes nodes(stsp1) [nodes(stsp2)edges edges(stsp1) [edges(stsp2)Æ jEt�Spanner1(jnodesj; d; t)j = (i � 5) // in
remental H1p1 representative(stsp1)for u 2nodes(stsp2) in in
reasing order of d(u; p1)for v 2 nodes(stsp1) do distan
es(v) t � d(u; v) + " // defining the propagation limit towards stsp1for v 2nodes(stsp2) do distan
es(v) 1while u has wrongly t-estimated edges towards stsp1distan
es Dijkstra(edges, u, distan
es)// in
remental Dijkstrapendingu f(u; v); v 2 stsp1; distan
e(v) > t � d(u; v)gsmallest Æ
heapest edges 2 pendinguedges edges[smallestreturn t-Spanner (nodes = nodes, edges = edges)Fig. 10. Re
ursive algorithm (t-Spanner 4).

