
A Probabilistic Spell for the Curse of Dimensionality �Edgar Ch�avezy Gonzalo NavarrozAbstractRange searches in metric spaces can be very di�cult if the space is \high dimensional", i.e.when the histogram of distances has a large mean and a small variance. The so-called \curse ofdimensionality" (well known in vector spaces) is also observed in metric spaces, and the termrefers to the odd situation where using an index for proximity searching may be worse (in totalelapsed time) than an exhaustive search. There are at least two reasons behind the curse ofdimensionality: a large search radius and/or a high intrinsic dimension of the metric space. Wepresent a general probabilistic framework that allows us to reduce the e�ective search radiusof the search and which gets more e�ective as the dimension grows. The technique is basedon probabilistically stretching the triangle inequality. We apply the technique to a particularclass of indexing algorithms, even though it could be generalized to any indexing algorithmusing the triangle inequality. We present an approximate analysis of the technique which helpsunderstand the process, as well as empirical evidence showing dramatic improvements in thesearch time at the cost of a very small error probability.1 Introduction and Related WorkThe concept of \proximity" searching has applications in a vast number of �elds. Some exam-ples are non-traditional databases (where the concept of exact search is of no use and we searchfor similar objects, e.g. databases storing images, �ngerprints or audio clips); machine learningand classi�cation, image quantization and compression, text retrieval, computational biology andfunction prediction, just to name a few.All those applications have some common characteristics. There is a universe Xof objects, anda nonnegative distance function d :X�X�! R+ de�ned among them. This distance satis�es thethree axioms that make the set a metric space: strict positiveness (d(x; y) = 0, x = y), symmetry(d(x; y) = d(y; x)) and triangle inequality (d(x; z) � d(x; y) + d(y; z)). This distance is consideredexpensive to compute (think, for instance, in comparing two �ngerprints). We have a �nite databaseU�X, of size n, which is a subset of the universe of objects. The goal is to preprocess the databaseU to quickly answer (i.e. with as few distance computations as possible) range queries and nearestneighbor queries. We are interested in this work in range queries, expressed as (q; r) (a point inX and a tolerance radius), which should retrieve all the points at distance r or less from q, i.e.fu 2 U = d(u; q) � rg. The set of points of X that are at distance at most r to q is called the\query ball", so (q; r) is the intersection of the query ball and U.A particular case of this problem arises when the space is Rk. There are e�ective methodsfor this case, such as kd-trees [2] or R-trees [9]. However, for more than roughly 20 dimensionsthose structures cease to work well. We focus in this paper in general metric spaces, although thesolutions are well suited also for k-dimensional vector spaces.In [7] a number of approaches to solve the problem of proximity searching in general metricspaces are considered, which are divided in two classes:�This work has been partially supported by CYTED VII.13 AMYRI Project (both authors), CONACyT grantR-28923A (�rst author) and FONDECYT Project 1-000929 (second author).yEscuela de Ciencias F��sico-Matem�aticas, Universidad Michoacana, Edi�cio \B", Ciudad Universitaria, Morelia,Mich. M�exico 58000. elchavez@zeus.ccu.umich.mxzDepartment of Computer Science, University of Chile, Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.cl 1

� Pivot-based algorithms: which select a number of \pivots" from the database and classifyall the other elements according to their distances to the pivots. The distances betweenelements and pivots and between the query q and the pivots are used together with thetriangle inequality to �lter out elements of the database without actually measuring theirdistance to q. These algorithms generally improve as more pivots are added, although thespace requirements of the indexes increase as well.� Clustering algorithms: which divide the set into spatial zones which are as compact as possible,and are able to discard complete zones by performing few distance evaluations (e.g. betweenthe query q and a centroid of the zone). The partition into zones can be hierarchical, but theindexes use a �xed amount of memory and cannot be improved by giving them more space.It is interesting to notice that the concept of \dimensionality" can be translated to metricspaces as well: the typical feature in high dimensional spaces is that the probability distribution ofdistances among elements has a very concentrated histogram (with larger mean as the dimensiongrows). We use in this paper a de�nition of the intrinsic dimensionality proposed in [5, 7]:De�nition: The intrinsic dimensionality of a database in a metric space is de�ned as � = �22�2 ,where � and �2 are the mean and variance of its histogram of distances.Under this de�nition, a database obtained as a uniformly distributed sample of a random kdimensional vector space has intrinsic dimension �(k), so the de�nition extends naturally that ofvector spaces. As shown in [5, 7] by analytical lower bounds and experiments, all the algorithmsdegrade systematically as the intrinsic dimension � of the space increases. This is because aconcentrated histogram of distances gives less information. In the extreme case we have a spacewhere d(x; x) = 0 and 8y 6= x; d(x; y) = 1, where it is impossible to avoid a single distanceevaluation at search time.The problem is so hard that it has received the name of \curse of dimensionality". An interestingquestion is whether a probabilistic algorithm could break the curse of dimensionality or at leastalleviate it. Approximate and probabilistic algorithms are acceptable in many applications thatsearch in metric spaces, because in general the modelization as a metric space carries already somekind of relaxation. For many applications, �nding some close elements is as good as �nding allthem.This relaxation uses additionally to the query a precision parameter " to control how far away(in some sense) we want the outcome of the query from the correct result. A reasonable behaviorfor this type of algorithms is to asymptotically approach to the correct answer as " goes to zero, andcomplementarily to speed up the algorithm, losing precision, as " moves in the opposite direction.This de�nition encompasses approximate and probabilistic algorithms.Approximation algorithms are considered in depth in [11]. An example is [1], which proposesa data structure for real vector spaces under any Minkowski metric Ls. The structure, called theBBD-tree, is inspired in kd-trees and can be used to �nd \(1 + ") nearest neighbors": instead of�nding u such that d(u; q) � d(v; q) 8v 2 U, they �nd an element u�, an (1+")-nearest neighbor,di�ering from u by a factor of (1 + "), i.e. u� such that d(u�; q) � (1 + ")d(v; q) 8v 2 U.Probabilistic algorithms have been proposed for nearest neighbor searching only, for vectorspaces in [1, 12, 11], and for general metric spaces in [8].A good example of a probabilistic algorithm for vector spaces is [12]. The data structure is likea standard kd-tree using hyperplanes to recursively partition the vector space. The author uses\aggressive pruning" to improve the performance. The idea is to increase the number of branchespruned at the expense of losing some candidate points in the process. The data structure is usefulfor �nding limited radius nearest neighbors, i.e. nearest neighbors within a �xed distance to thequery. Finally, an example of a probabilistic nearest neighbor algorithm for general metric spaces is2

that of [8]. The author chooses a \training set" of queries and builds a data structure able to answercorrectly only queries belonging to the training set. The idea is that this setup is enough to answercorrectly, with high probability, an arbitrary query using the training set information. Under someprobabilistic assumptions on the distribution of the queries, it is shown that the probability ofnot �nding the nearest neighbor is O((logn)2=K), where K can be made arbitrarily large at theexpense of O(Kn�) space and O(K� logn) expected search time. Here � is the logarithm of theratio between the farthest and the nearest pairs of points in the union of the database U and thetraining set.In this paper we present a probabilistic technique for range searching on general metric spaces.We exploit the intrinsic dimension of the metric space in our favor, speci�cally the fact that onhigh dimensions the di�erence between random distances is small. Every algorithm to search inmetric spaces can make use of this property in one form or another in order to be converted intoa much more e�cient probabilistic algorithm. In particular, we choose the most basic pivot basedalgorithm (where it is easier to compute the general probability of making a mistake) and apply thetechnique to it. We show analytically that the net e�ect is a reduced search cost, corresponding tosearching with a smaller radius. Reducing the search radius has an e�ect which is very similar tothat of reducing the dimensionality of the metric space. We also present empirical results showinga dramatic increase in the e�ciency of the algorithm at a very moderate error probability. An earlyversion of this paper is a technical report [6].2 Stretching the Triangle InequalityPivot based algorithms [10, 3, 4] are built on a single general idea. We select k random elementsfp1; : : : ; pkg � U, called pivots. The set is preprocessed so as to build a table of nk entries, whereall the distances d(u; pi) are stored for every u 2 U and every pivot pi. When a query (q; r) issubmitted, we compute d(q; pi) for every pivot pi and then try to discard elements u 2 Uby usingthe triangle inequality on the information we have. Two facts can be used:d(u; pi) � d(u; q) + d(q; pi) and d(q; pi) � d(q; u) + d(u; pi) (1)which can be reexpressed as d(q; u) � jd(u; pi)�d(q; pi)j, and therefore we can discard all those uwhere jd(u; pi)�d(q; pi)j > r. Note that by storing the table of kn distances and by computing thek distances from q to the pivots we have enough information to carry out this elimination. On theother hand, the elements u which cannot be eliminated with this rule have to be directly comparedagainst q.The k distance computations d(q; pi) are called internal evaluations, while those computationsd(q; u) against elements u that cannot be ruled out with the pivot information are called externalevaluations. It is clear that, as k grows, the internal evaluations grow and the external ones decrease(or at least do not increase). It follows that there is an optimum k. However, it is well known[7] that even for moderately high dimensions the optimal k is so large that the index requiresimpractical amounts of memory. Therefore, in practice one uses the largest k that the availablespace permits. Figure 1 illustrates the curse of dimensionality for pivot based algorithms.An interesting fact is that the di�erence between two random distances d(u; pi) and d(q; pi) canbe seen as a random variable which distributes more or less like the histogram (indeed, with meanzero and variance twice that of the histogram). This means that, as the intrinsic dimension grows,the di�erence jd(u; pi)� d(q; pi)j is normally very small.We take advantage of this fact by \stretching" the di�erence between both distances. That is,we pick a � � 1 and multiply the di�erence between the distances by � before using it. In practice,3

2r

d(p,q)

2r

d(p,q)

d(p,u) d(p,u)Figure 1: The histograms of distances for a low and a high dimensional metric space. The grayedparts are those that a pivot based algorithm cannot discard.we discard all the elements which satisfyjd(u; pi)� d(q; pi)j > r=�Figure 2 illustrates the normal and the probabilistic algorithm. The normal one selects a ringwhich guarantees that no relevant element is left out, while the probabilistic one stretches bothsides of the ring and can miss some elements.
�
�
�
� �

�
�
�

�
�
�
� �

�
�
�

�
�
�
� �

�
�
�p pq q

d(p,q)+r

d(p,q)-r

u u

Normal Probabilistic

d(p,q)+r /β

d(p,q)-r /βFigure 2: The rings of the elements that are not discarded under the normal and the probabilisticalgorithm.All the rest of the algorithm stays unchanged. The aim of the next sections is to analyze and testthe resulting e�ciency and probability of mistakes. In the �nal part of this paper we will discussan alternative approach using directly the triangle inequality to derive a more general discardingrule.3 Probability of ErrorThe algorithm we have presented is probabilistic with one-sided error, in the sense that it can failto report some elements which are indeed at distance r or less to q, but it cannot report elementsthat are outside the query ball. In this section we derive the maximum � that can be used in orderto have a probability not larger than " of missing a relevant answer.4

We are �rstly interested in computing an approximation of the probability of incorrectly dis-carding an element u which should be returned by the query (q; r). Since d(q; u) � r, then by thetriangle inequality we have jd(q; p)� d(u; p)j � r. Let us de�ne two random variables X = d(q; p)and Y = d(u; p). It is easy to see that both variables are distributed according to the histogram ofthe metric space, since they correspond to distances among random elements. However, there is apositive covariance between X and Y .
-r /β

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

-r rr

Z = X-Y

/β0

AC B

Figure 3: The histogram of the di�erences between two random distances and our model to adaptit when they have the constraint of di�ering in at most r.Our question is therefore which is the probability that jX � Y j > r=�. We use a simpli�edmodel of the situation in order to obtain a reasonable approximation to the probability of error.Let us consider the random variable Z = X�Y , which has mean zero and whose variance would be2�2 if X and Y were independent. We assume that the distribution of Z is like the correspondingto independent X and Y , but chopping out the areas jZj > r.Figure 3 shows the model we use to derive an approximation to the error probability. Weassume that the distribution of Z is like that corresponding to independent X and Y , but choppingout the areas jZj > r. The remaining part is called B in the �gure. The probability of not makinga mistake corresponds to the area marked A in the �gure, whose relative mass with respect to thetotal is A=B.We can compute upper bounds for the relative mass of A and B with respect to the total C byusing Chebyschev inequality (for a random variable V , Pr(jV � �vj > x) < �2v=x2). That is, weknow 1� AC = Pr(jZj > r=�) < 2�2(r=�)2 and 1� BC = Pr(jZj > r) < 2�2r2and thereforePr(error) = 1� AB = 1� AC CB � 1� 1� 2�2(r=�)21� 2�2r2 = 2�2(�2 � 1)r2 � 2�2 (2)which is useful for r > p2�. Note that the probability goes to zero as � goes to 1.We want that the probability of missing a relevant element after using the k pivots is at most". Since any pivot can discard an element u, the probability of incorrectly discarding u has toconsider the union of all the probabilities. What we want is1� (1� Pr(error))k � "5

which, by using our approximation of Eq. (2) yields a lower bound on �:� � s1 + "k � r22�2 � 1� (3)where we have de�ned "k = 1� (1� ")1=k, which goes from 0 to 1 together with ", but at a fasterpace that depends on k. The limit on � goes to 1 as " goes to zero. The bound improves as thesearch radius grows. To show that the bound improves as the intrinsic dimension of the spacegrows, we reexpress r as ���=pf , which by Chebyschev is the minimum necessary value to returna fraction f of the set U. This yields� � vuut1 + "k �p�� 1p2f �2 � 1! (4)Hence, for a �xed error probability �, the bound gets more permissive as the problem becomesharder (larger � or f).Figure 4 shows the probability of retrieving a relevant element as 1=� grows. We show thee�ect with 1 and 64 pivots. The metric space is formed by 10,000 random vectors in the cube[0; 1)dim with the Euclidean distance. Despite that this is in particular a vector space, we treat itas a general metric space. The advantage of using a vector space is that we can precisely controlits dimensionality.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 th
e

re
su

lt
ac

tu
al

ly
 r

et
rie

ve
d

1/beta

1 pivots, retrieving 1.0% of the database

4 dimensions
8 dimensions

16 dimensions
32 dimensions
64 dimensions

128 dimensions
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 th
e

re
su

lt
ac

tu
al

ly
 r

et
rie

ve
d

1/beta

64 pivots, retrieving 1.0% of the database

4 dimensions
8 dimensions

16 dimensions
32 dimensions
64 dimensions

128 dimensionsFigure 4: The probability of retrieving relevant elements as a function of 1=�The plots show clearly that the probability of missing an element for a �xed � increases as thenumber of pivots grows. This is a negative e�ect of increasing k which is not present on the exactalgorithm, and which can make it preferably to use a smaller k. A second observation is that, withthe same �, the probability of error is reduced as the dimension grows. Hence we are permittedto relax more the algorithm on higher dimensions. In the experiments that follow, we do not use� directly anymore, but plot the results as a function of the probability of retrieving a relevantelement.4 E�ciencyLet us now consider the expected complexity when we use � � 1. We will establish in fact a lowerbound, i.e. we present an optimistic analysis. This is because Chebyschev inequality does not6

permit us bounding in the other direction. Still the analysis has interest since it can be comparedagainst the lower bound obtained in [5, 7] in order to check the improvement obtained in the lowerbound.We discard an arbitrary point u with a pivot pi whenever jX � Y j > r=�, where X and Y areas in the previous section but this time they are truly independent, as u is a random element (notone in the outcome of the query). Hence Z = X � Y has mean zero and variance 2�2 and we canuse directly Chebyschev to lower bound the probability of discarding u with a random pivot pi:Pr(jX � Y j > r=�) < 2�2(r=�)2and the probability of discarding an element u with any of k random pivots is 1�(1�Pr(jX�Y j >r=�)k). The average search cost is the internal evaluations k plus the external ones, which are onaverage n times the probability of not discarding a random element u. This gives a lower boundCost � k + n�1� 2�2(r=�)2�kwhere, if we compare against the lower bounds obtained in [5, 7], we can see that the net e�ectis that of reducing the search radius. That is, our search cost is the same as if we searched withradius r=� (this reduction is used just to discard elements, of course when we compare q againstthe remaining candidates we use the original r). The search cost grows very fast as the searchradius increases, so we expect a large improvement in the search time with a very moderate �, andhence with a moderate error probability. To see the e�ect in terms of the intrinsic dimension, weconvert again r = �� �=pf to getCost � k + n�1� �2(p�� 1=p2f)2�kNow we relate � with its maximum allowed value obtained in the previous section (Eq. 4). Theresult is Cost � k + (1� ")n�1� 1(p�� 1=p2f)2�kwhich says that, if we obtain (1� ") of the result, then we basically pay (1� ") of the search cost.Of course this last result is not good. This is not a consequence of the application of Chebyschev(which is a very loose bound), but of the simpli�ed model we have used in Figure 3. Using A, Band C as de�ned there, the probability of not making a mistake with k pivots is (A=B)k, and thishas to be 1� ". The probability of not discarding an element when comparing it against the pivotsis (A=C)k on our probabilistic method and (B=C)k with the classical algorithm, so our new searchcost is k + n(A=C)k = k+ n(A=B)k(B=C)k = k + n(1� ")(B=C)k, which is in essence 1� " timesthe cost of the classical algorithm.As we show next, in practice the results are much better. The real reason for the pessimisticanalytical results is the simpli�cation of assuming that the histogram of Z = X � Y when X andY are distances from p to two very close elements q and u is the same as for two random X and Ychopping out the tails. In practice, the histogram of X � Y is much more concentrated and hencethe error probability is much lower. Despite this looseness, the analysis permits understanding therole played by the di�erent variables.Figure 5 shows the number of comparisons as a function of the fraction of relevant elementsretrieved, for di�erent combinations of numbers of pivots and search radii. We are using the samedatabase as for the previous experiments. 7

As can be seen, we can retrieve even 90% or 95% of the relevant elements paying much less thanthe time necessary for the exact algorithm (which corresponds to 1=� = 1 in the plots). In manycases there is a large di�erence in the cost to retrieve 99% and 100% of the set. These di�erencesare most notorious when the number of pivots is not enough to get good results with the exactalgorithm. In practice, we can obtain the same result as the exact algorithm with much less pivots.For example, 16 dimensions is almost intractable for the exact algorithm with less than 256 pivots,while with the probabilistic algorithm we can get acceptable results with 16 pivots.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved.

16 pivots, retrieving 0.01% of the database

4 dimensions
8 dimensions

16 dimensions
32 dimensions
64 dimensions

128 dimensions

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved.

256 pivots, retrieving 0.01% of the database

4 dimensions
8 dimensions

16 dimensions
32 dimensions
64 dimensions

128 dimensions

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved.

64 pivots, retrieving 1.0% of the database

4 dimensions
8 dimensions

16 dimensions
32 dimensions
64 dimensions

128 dimensions

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved.

64 pivots, retrieving 0.1% of the database

4 dimensions
8 dimensions

16 dimensions
32 dimensions
64 dimensions

128 dimensions

Figure 5: Number of distance evaluations as a function of the fraction of elements retrieved, fordi�erent dimensions.Figure 6 shows the e�ect of di�erent search radii (retrieving from 0.01an e�ect similar to thatof increasing the dimension.Finally, Figure 7 shows that, as we mentioned, the external complexity is not monotonouslydecreasing with the number of pivots k as for the exact algorithm. This is because, as k increases,the probability of missing a relevant answer grows, and therefore we need a larger � to keep thesame error probability. This, in turn, increases the search time.This fact worsens in higher dimensions: if we use enough pivots so as to �ght the high dimension,then the error probability goes up. Therefore, as shown analytically, the scheme does also getworse as the dimension grows. However, it worsens much slower and obtain similar results as theexact algorithm with much less pivots. Even reaching the optimal number of pivots in mediumdimensions, which is unthinkable in the exact algorithm, becomes feasible now.8

5 ConclusionsWe have presented a probabilistic algorithm to search in metric spaces. It is based on takingadvantage of high dimensionalities by \stretching" the triangle inequality. The idea is general,but we have applied it to pivot based algorithms in this work. We have analytically found theimprovement that can be expected as a function of the error probability permitted, the fraction ofthe set that is to be retrieved and the number of pivots used. The analysis shows that the net e�ectof the technique is to reduce the search radius, and that the reduction is larger when the searchproblem becomes harder (i.e. � or f grow). Finally, we have experimentally shown that even withvery little stretching (and hence with very low error probability) we obtain dramatic improvementsin the search time.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved.

16 dimensions, 16 pivots

0.01%
0.05%
0.1%
0.5%
1.0%
5.0%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved.

64 dimensions, 64 pivots

0.01%
0.05%

0.1%
0.5%
1.0%
5.0%

Figure 6: Number of distance evaluations as a function of the fraction of elements retrieved, fordi�erent radii.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600

E
xt

er
na

l d
is

ta
nc

e
co

m
pu

ta
tio

ns

 Number of pivots

Probability .97, retrieving 0.5% of the database

dim 4
dim 8

dim 16
dim 32

Figure 7: Number of external distance evaluations as a function of the number of pivots used, whenretrieving a �xed fraction 0.97 of the relevant results with a search radius that should retrieve 0.5%of the dataset.It is worth noting that � can be chosen at search time, so the indexing can be done beforehandand later we can choose the desired combination of speed and accurateness. Moreover, � representsa deterministic guarantee by itself: no element closer than r=� can be missed.The technique can be successfully applied to other data structures, which opens a number of9

possibilities for future work. In general, all the algorithms can be modeled as performing someinternal evaluations to discard elements with some rule related to the triangle inequality and latercomparing the not discarded elements (external evaluations) [7]. If the internal evaluations do notdepend on each other, then using this technique the internal complexity remains the same and theexternals correspond to searching with radius r=�.References[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for ap-proximate nearest neighbor searching in �xed dimension. In Proc. 5th ACM-SIAM Symposiumon Discrete Algorithms (SODA'94), pages 573{583, 1994.[2] J. Bentley. Multidimensional binary search trees in database applications. IEEE Trans. onSoftware Engineering, 5(4):333{340, 1979.[3] E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates. Spaghettis: an array based algorithm forsimilarity queries in metric spaces. In Proc. String Processing and Information Retrieval(SPIRE'99), pages 38{46. IEEE CS Press, 1999.[4] E. Ch�avez, J. Marroqu��n, and G. Navarro. Overcoming the curse of dimensionality. In Proc.European Workshop on Content-Based Multimedia Indexing (CBMI'99), pages 57{64, 1999.[5] E. Ch�avez and G. Navarro. Measuring the dimensionality of general metric spaces. Tech-nical Report TR/DCC-00-1, Dept. of Computer Science, Univ. of Chile, 2000. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/metricmodel.ps.gz.[6] E. Ch�avez and G. Navarro. A probabilistic spell for the curse of dimensionality. Tech-nical Report TR/DCC-00-2, Dept. of Computer Science, Univ. of Chile, 2000. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/probmetric.ps.gz.[7] E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. Marroqu��n. Searching in metric spaces.Technical Report TR/DCC-99-3, Dept. of Computer Science, Univ. of Chile, 1999. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/survmetric.ps.gz.[8] K. Clarkson. Nearest neighbor queries in metric spaces. Discrete Computational Geometry,22(1):63{93, 1999.[9] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. ACM SIG-MOD'84, pages 47{57, 1984.[10] L. Mic�o, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approximatingand eliminating search (aesa) with linear preprocessing-time and memory requirements. Patt.Recog. Lett., 15:9{17, 1994.[11] D. White and R. Jain. Algorithms and strategies for similarity retrieval. Technical ReportVCL-96-101, Visual Computing Laboratory, University of California, La Jolla, CA, July 1996.[12] Peter N. Yianilos. Locally lifting the curse of dimensionality for nearest neighbor search.Technical report, NEC Research Institute, Princeton, NJ, June 1999.10

