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Abstract

It was recently proved that any Straight-Line Program (SLP) generating a given
string can be transformed in linear time into an equivalent balanced SLP of the
same asymptotic size. We generalize this proof to a general class of grammars
we call Generalized SLPs (GSLPs), which allow rules of the form A → x where
x is any Turing-complete representation (of size |x|) of a sequence of symbols
(potentially much longer than |x|). We then specialize GSLPs to so-called Iter-
ated SLPs (ISLPs), which allow rules of the form A → Πk2

i=k1
Bic1

1 · · ·Bict
t of

size O(t). We prove that ISLPs break, for some text families, the measure δ
based on substring complexity, a lower bound for most measures and compres-
sors exploiting repetitiveness. Further, ISLPs can extract any substring of length
λ, from the represented text T [1 . . n], in time O(λ+ log2 n log logn). This is
the first compressed representation for repetitive texts breaking δ while, at the
same time, supporting direct access to arbitrary text symbols in polylogarithmic
time. We also show how to compute some substring queries, like range minima
and next/previous smaller value, in time O(log2 n log logn). Finally, we fur-
ther specialize the grammars to Run-Length SLPs (RLSLPs), which restrict the
rules allowed by ISLPs to the form A → Bt. Apart from inheriting all the previ-
ous results with the term log2 n log logn reduced to the near-optimal logn, we
show that RLSLPs can exploit balancedness to efficiently compute a wide class
of substring queries we call “composable”—i.e., f(X · Y ) can be obtained from
f(X) and f(Y ). As an example, we show how to compute Karp-Rabin finger-
prints of texts substrings in O(logn) time. While the results on RLSLPs were
already known, ours are much simpler and require little precomputation time and
extra data associated with the grammar.

Keywords: Grammar compression, Substring complexity, Repetitiveness measures,
Substring queries
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1 Introduction

Motivated by the data deluge, and by the observed phenomenon that many of the
fastest-growing text collections are highly repetitive, recent years have witnessed an
increasing interest in (1) defining measures of compressibility that are useful for highly
repetitive texts, (2) developing compressed text representations whose size can be
bounded in terms of those measures, and (3) providing efficient (i.e., polylogarithmic
time) access methods to those compressed texts, so that algorithms can be run on
them without ever decompressing the texts [35, 36]. We call lower-bounding measures
those satisfying (1), reachable measures those (asymptotically) reached by the size of
a compressed representation (2), and accessible measures those reached by the size of
representations satisfying (3).

For example, the size γ of the smallest “string attractor” of a text T is a lower-
bounding measure, unknown to be reachable [25], and smaller than the size reached
by known compressors. The size b of the smallest “bidirectional macro scheme” of T
[45], and the size z of the Lempel-Ziv parse of T [31], are reachable measures. The
size g of the smallest context-free grammar generating (only) T [9] is an accessible
measure [5]. It holds γ ≤ b ≤ z ≤ g for every text.

One of the most attractive lower-bounding measures devised so far is δ [10, 43]. Let
T [1 . . n] be a text over alphabet [1 . . σ], and Tk be the number of distinct substrings
of length k in T , which define its so-called substring complexity. Then the measure is
δ(T ) = maxk Tk/k. This measure has several attractive properties: it can be computed
in linear time and lower-bounds all previous measures of compressibility, including γ,
for every text. While δ is known to be unreachable, the measure δ′ = δ log n log σ

δ logn has

all the desired properties: Ω(δ′) is the space needed to represent some text family for
each n, σ, and δ; within O(δ′) space it is possible to represent every text T and access
any length-λ substring of T in time O(λ + log n) [28], together with more powerful
operations [24, 28, 29].

As for g, a straight-line program (SLP) is a context-free grammar that generates
(only) T , and has size-2 rules of the form A→ BC, where B and C are nonterminals,
and size-1 rules A→ a, where a is a terminal symbol. The SLP size is the sum of all
its rule sizes. A run-length SLP (RLSLP) may contain, in addition, size-2 rules of the
form A→ Bt, representing t repetitions of nonterminal B. An RLSLP of size grl can
be represented in O(grl) space, and within that space we can offer fast string access
and other operations [10, App. A]. It holds δ ≤ grl = O(δ′), where grl is the smallest
RLSLP that generates T [28, 35] (the size g of the smallest grammar or SLP, instead,
is not always O(δ′)).

While δ lower-bounds all previous measures on every text, δ′ is not the smallest
accessible measure. In particular, grl is always O(δ′), and it can be smaller by up to
a logarithmic factor. Indeed, grl is a minimal accessible measure as far as we know
(but see our Conclusions). It is asymptotically between z and g [35]. An incomparable
accessible measure is zend ≥ z, the size of the LZ-End parse of the text [26, 30].

The recently proposed L-systems [37, 38] show, in turn, that δ is not a lower
bound to every reachable measure. L-systems are like SLPs where all the symbols
are nonterminals and the derivation ends at a specified depth in the derivation tree.
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The size ℓ of the smallest L-system generating T [1 . . n] is a reachable measure of
repetitiveness and was shown to be as small as O(δ/√n) on some text families, thereby
sharply breaking δ as a lower bound. Measure ℓ, however, is unknown to be accessible,
and thus one may wonder whether there exist accessible text representations that are
smaller than δ.

In this paper we present several contributions to this state of the art. All our time
complexities hold under the transdichotomous RAM model of computation, with word
size w = Θ(log n) bits. Our space is also measured in w-bit words.

1. We extend the result of Ganardi et al. [17], which shows that any SLP of size g
generating a text of length n can be balanced to produce another SLP of size O(g)
whose derivation tree is of heightO(log n). Our extension is called Generalized SLPs
(GSLPs), which allow rules of the form A → x (of size |x|), where x is a program
(in any Turing-complete formalism) that outputs the right-hand side of the rule.
We show that, if every nonterminal appearing in x’s output occurs at least twice,
then the GSLP can be balanced in the same way as SLPs.

2. We explore a particular case of GSLP we call Iterated SLPs (ISLPs). ISLPs extend
SLPs (and RLSLPs) by allowing a more complex version of the rule A → Bt,
namely A→ Πk2

i=k1
Bic1

1 · · ·Bict
t , of size 2+ 2t. We show that some text families are

generated by an ISLP of size O(δ/√n), thereby sharply breaking the Ω(δ) barrier.
3. Using the fact that ISLPs are GSLPs and thus can be balanced, we show how to

extract a substring of length λ from the ISLP in time O(λ + log2 n log log n), as
well as computing substring queries like range minimum and next/previous smaller
value, in time O(log2 n log log n). ISLPs are thus the first accessible representation
that can reach size o(δ) on some text families..

4. Finally, we apply the balancing result to RLSLPs, which allow rules of the form
A → Bt. While the results on ISLPs are directly inherited (because RLSLPs are
ISLPs) with the polylogs becoming just the nearly-optimal O(log n) [46], we give a
general technique to compute a wide family of “composable” queries f on substrings
(i.e., f(X · Y ) can be computed from f(X) and f(Y )). As an application, we
show how to compute Karp-Rabin fingerprints on text substrings in time O(log n),
which we do not know how to do efficiently on ISLPs. This considerably simplifies
and extends previous results [10, App. A], as balanced grammars enable simpler
algorithms that do not require large and complex additional structures.

This work is an extended version of articles published in SPIRE 2022 [41] and
LATIN 2024 [39], which are now integrated into a coherent framework in which spe-
cialized results are derived from more general ones, new operations are supported, and
proofs are complete.

2 Preliminaries

We explain some concepts and notation used in the rest of the paper.
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2.1 Strings

Let Σ = [1 . . σ] be an ordered set of symbols called the alphabet. A string T [1 . . n]
of length n is a finite sequence T [1]T [2] · · ·T [n] of n symbols in Σ. We denote by
ε the unique string of length 0. We denote by Σ∗ the set of all finite strings with
symbols in Σ. The i-th symbol of T is denoted by T [i]; the notation T [i . . j] stands
for the sequence T [i] · · ·T [j] for 1 ≤ i ≤ j ≤ n, and ε otherwise. The concatenation
of X[1 . . n] and Y [1 . .m] is defined as X · Y = X[1] · · ·X[n]Y [1] · · ·Y [m] (we omit
the dot when there is no ambiguity). If T = XY Z, then X (resp. Y , resp. Z) is a
prefix (resp. substring, resp. suffix ) of T . A prefix (resp. suffix) X of T is non-empty
if X ̸= ε, proper if X ̸= T , and non-trivial if it is both non-empty and proper. A
power T k stands for k consecutive concatenations of the string T . We denote by |T |a
the number of occurrences of the symbol a in T . A string morphism is a function
φ : Σ∗ → Σ∗ such that φ(xy) = φ(x) · φ(y) for any strings x and y.

2.2 Straight-Line Programs

A straight-line program (SLP) is a context-free grammar [44] that contains exactly
one rule per nonterminal A, which can only be a terminal rule A→ a for some a ∈ Σ,
or a binary rule A→ BC for variables B and C whose derivations cannot reach again
A. These restrictions ensure that each variable of the SLP generates a unique string,
defined as exp(A) = a for a rule A → a, and as exp(A) = exp(B) · exp(C) for a rule
A → BC. A run-length straight-line program (RLSLP) is an SLP that also admits
run-length rules of the form A → Bt for some t ≥ 3, with their expansion defined as
exp(A) = exp(B)t. The size of an SLP G, denoted |G|, is the sum of the lengths of the
right-hand sides of its rules. The size of an RLSLP is defined similary, assuming that
rules A→ Bt are of size 2 (i.e., two integers to represent B and t). We use exp(G) to
refer to exp(S), where S is the initial rule of G, thus exp(G) = T .

The derivation or parse tree of an SLP is an ordinal tree where the nodes are the
variables, the root is the initial variable, and the leaves are the terminal variables. The
children of a node are the variables appearing in the right-hand side of its rule (in
left-to-right order). The height of an SLP or RLSLP is the length of the longest path
from the root to a leaf node in its derivation tree. The derivation tree of RLSLPs is
analogous to that of SLPs; the nodes labeled A, for the rules A→ Bt, have t children
labeled B.

The grammar tree is obtained by pruning the parse tree so that only the leftmost
occurrence of a nonterminal is retained as an internal node and all the others become
leaves. Rules A→ Bt are represented as the node A having a left child B (which can
be internal or a leaf) and a special right child denoting Bt−1 (which is a leaf). It is
easy to see that the grammar tree has exactly |G|+ 1 nodes.

SLPs and RLSLPs yield measures of repetitiveness g and grl, defined as the size of
the smallest SLP and RLSLP generating the text, respectively. Clearly, it holds that
grl ≤ g. It also has been proven that both g and grl are NP-hard to compute [9, 22].
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2.3 Other Repetitiveness Measures

For self-containedness, we describe the most important repetitiveness measures and
relate them with the accessible measures g and grl; for more details see a survey [35].

Burrows-Wheeler Transform.

The Burrows-Wheeler Transform (BWT) [8] is a reversible rearrangement of the sym-
bols of T , which we denote by bwt(T ). It is obtained by sorting lexicographically
all the rotations of the string T and concatenating their last symbols, which can be
done in O(n) time. The measure r is defined as the size of the run-length encoding of
bwt(T ). Usually, T is assumed to be appended with a sentinel symbol $ strictly smaller
than any other symbol in T , and then we call r$ the size of the run-length encod-
ing of bwt(T$). This measure is then reachable, and fully-functional indexes of size
O(r$) exist [15], but interestingly, it is unknown to be accessible. While this measure
is generally larger than others, it can be upper-bounded by r$ = O(δ log δ log n

δ ) [23].

Lempel-Ziv Parsing.

The Lempel-Ziv parsing (LZ) [31] of a text T [1 . . n] is a factorization into non-empty
phrases T = X1X2 · · ·Xz where eachXi is either the first occurrence of a symbol or the
longest prefix of Xi · · ·Xz with a copy in T starting at a position in [1 . . |X1 · · ·Xi−1|].
LZ is called a left-to-right parsing because each phrase has its source starting to the
left, and it is optimal (i.e., with the smallest z) among all parsings satisfying this
condition. It can be constructed greedily from left to right in O(n) time. The measure
z is defined as the number of phrases in the LZ parsing of the text, and it has been
proved that z ≤ grl [40]. While z is obviously reachable, it is unknown to be accessible.
A close variant zend ≥ z [30] that forces phrase sources to be end-aligned with a
preceding phrase, has been shown to be accessible [26].

Bidirectional Macro Schemes.

A bidirectional macro scheme (BMS) [45] is a factorization of a text T [1 . . n] where
each phrase can have its source starting either to the left or to the right. The only
requeriment is that by transitively following the pointers from phrases to sources, we
always reach an explicit symbol, that is, we do not fall in loops. The measure b is
defined as the size of the smallest BMS representing the text. Clearly, b is reachable,
but it is unknown to be accessible. It holds that b ≤ z, and it was proved that b ≤ 2r$
[40]. Computing b is NP-hard [16].

String Attractors.

A string attractor for a text T [1 . . n] is a set of positions Γ ⊆ [1 . . n] such that any
substring of T [i . . j] has an occurrence T [i′ . . j′] crossing at least one of the positions
in Γ (i.e., there exist k ∈ Γ such that i′ ≤ k ≤ j′). The measure γ is defined as the size
of the smallest string attractor for the string T , and it is NP-hard to compute [25]. It
holds that string attractors asymptotically lower bound bidirectional macro schemes,
that is, γ = O(b), and can sometimes be asymptotically strictly smaller [3]. On the
other hand, it is unknown whether γ is reachable.
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Substring Complexity.

Let T [1 . . n] be a text and Tk be the number of distinct substrings of length k in T ,
which define its so-called substring complexity. Then the measure is δ = maxk Tk/k
[10, 43]. This measure can be computed in O(n) time and lower-bounds γ, and thus all
previous measures of compressibility, for every text. On the other hand, it is known to
be unreachable [28]. The related measure δ′ = δ log n log σ

δ logn is reachable and accessible,

and is asymptotically optimal on some text family for every n, σ, and δ [28]. Besides,
grl (and thus z, b, and γ, but not g) are upper-bounded by O(δ log n log σ

δ logn ); g is upper-

bounded by O(γ log2 n
γ ) [25, 28].

L-systems.

An L-system (for compression) is a tuple L = (V, φ, τ, S, d, n) extending a traditional
Lindenmayer system [32, 33], where V is the set of variables (which are also considered
as terminal symbols), φ : V → V + is the set of rules (and also a morphism of strings),
τ : V → V is a coding, S ∈ V the initial variable, and d and n are integers. The string
generated by the system is τ(φd(S))[1 . . n]. The measure ℓ is defined as the size of the
smallest L-system generating the string. It has been proven that ℓ is incomparable
to δ (ℓ can be smaller by a

√
n factor) and almost any other repetitiveness measure

considered in the literature [37, 38].

3 Generalized SLPs and How to Balance Them

We introduce a new class of SLP which we show can be balanced so that its derivation
tree is of height O(log n).

Definition 1. A generalized straight-line program (GSLP) is an SLP that allows
special rules of the form A → x, where x is a program (in any Turing-complete
language) of length |x| whose output OUT(x) is a nonempty sequence of variables, none
of which can reach A. The rule A → x contributes |x| to the size of the GSLP; the
standard SLP rules contribute as usual. A special rule A→ x is said to be balanceable
if every variable occurring in OUT(x) appears at least twice on it. A GSLP is said to
be balanceable if all its special rules are balanceable.

We can choose any desired language to describe the programs x. Though in prin-
ciple |x| can be taken as the Kolmogorov complexity of OUT(x), we will focus on very
simple programs and on the asymptotic value of |x|.

We will prove that any balanceable GSLP can be balanced without increasing its
asymptotic size. Our proof generalizes that of Ganardi et al. [17, Thm. 1.2] for SLPs
in a similar way to how it was extended to balance RLSLPs [41]. Just as Ganardi et
al., in this section we will allow SLPs to have rules of the form A→ B1 · · ·Bt, of size
t, where each Bj is a terminal or a nonterminal; this can be converted into a strict
SLP of the same asymptotic size.

We introduce some definitions and state some results, from the work of Ganardi
et al. [17], that we need in order to prove our balancing result for GSLPs.
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A directed acyclic graph (DAG) is a directed multigraph D = (V,E) without cycles
(nor loops). We denote by |D| the number of edges in this DAG. For our purposes, we
assume that any DAG has a distinguished node r called the root, satisfying that any
other node can be reached from r and r has no incoming edges. We also assume that
if a node has k outgoing edges, they are numbered from 1 to k, so edges are of the
form (u, i, v). The sink nodes of a DAG are the nodes without outgoing edges. The set
of sink nodes of D is denoted by W . We denote the number of paths from u to v as
π(u, v), and π(u, V ) =

∑
v∈V π(u, v) for a set V of nodes. The number of paths from

the root to the sink nodes is n(D) = π(r,W ).
One can interpret an SLP G generating a string T as a DAG D: There is a node

for each variable in the SLP, the root node is the initial variable, variables of the form
A → a are the sink nodes, and a variable with rule A → B1B2 · · ·Bt has outgoing
edges (A, i,Bi) for i ∈ [1 . . t]. Note that if D is a DAG representing G, then n(D) =
|exp(G)| = |T |.

Definition 2. (Ganardi et al. [17, page 5]) Let D = (V,E) be a DAG, and define the
pairs λ(v) = (⌊log2 π(r, v)⌋, ⌊log2 π(v,W ))⌋) for every v ∈ V . The symmetric centroid
decomposition (SC-decomposition) of a DAG D produces a set of edges between con-
nected nodes with the same λ pairs defined as Escd(D) = {(u, i, v) ∈ E |λ(u) = λ(v)},
partitioning D into disjoint paths called SC-paths (some of them possibly of length 0).

The set Escd can be computed in O(|D|) time. If D is the DAG of an SLP G, then
|D| is O(|G|). The following lemma justifies the name “SC-paths”.

Lemma 1. (Ganardi et al. [17, Lemma 2.1]) Let D = (V,E) be a DAG. Then every
node has at most one outgoing and at most one incoming edge from Escd(D). Fur-
thermore, every path from the root r to a sink node contains at most 2 log2 n(D) edges
that do not belong to Escd(D).

Note that the sum of the lengths of all SC-paths is at most the number of nodes
of the DAG, or equivalently, the number of variables of the SLP.

The following definition and technical lemma are needed to construct the building
blocks of our balanced GSLPs.

Definition 3. (Ganardi et al. [17, page 7]) A weighted string is a string T ∈ Σ∗

equipped with a weight function ||·|| : Σ→ N\{0}, which is extended homomorphically.
If A is a variable in an SLP G, then we write ||A|| for the weight of the string exp(A)
derived from A.

Lemma 2. (Ganardi et al. [17, Proposition 2.2]) For every non-empty weighted string
T of length n one can construct in linear time an SLP G generating T with the
following properties:

• G contains at most 3n variables.
• All right-hand sides of G have length at most 4.
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• G contains suffix variables1 S1, . . . , Sn producing all non-empty suffixes of T .
• every path from Si to some terminal symbol a in the derivation tree of G has length

at most 3 + 2(log2 ||Si|| − log2 ||a||).
With this machinery, we are ready to prove the main result of this section. Note

that we require that GSLP’s special rules are always the endpoint of some SC-path,
which makes the argument of Ganardi et al. [17] for regular SLPs easily applicable to
GSLPs: the balancing procedure does not involve the special variables of the GSLPs.

Theorem 3. Given a balanceable GSLP G generating a string T , it is possible to
construct an equivalent GSLP G′ of size O(|G|) and height O(log n) in O(|G|+ t(G))
time, where t(G) is the time needed to compute the lengths of the expansion of each
variable in G.

Proof. Transform the GSLP G into an SLPH by (conceptually) replacing their special
rules A → x by A → OUT(x), and then obtain the SC-decomposition Escd(D) of the
DAG D of H. Observe that the SC-paths of H use the same variables of G, so it holds
that the sum of the lengths of all the SC-paths ofH is less than the number of variables
of G. Also, note that any special variable A→ x of G is necessarily the endpoint (i.e.,
the last node of a directed path) of an SC-path inD. To see this note that λ(A) ̸= λ(B)
for any B that appears in OUT(x), because log2 π(A,W ) ≥ log2(|OUT(x)|B ·π(B,W )) ≥
1+log2 π(B,W ), where |OUT(x)|B is the number of occurrences of B within OUT(x)—so
|OUT(x)|B ≥ 2 because G is balanceable. This implies that the balancing procedure of
Ganardi et al. on H, which transforms the rules of variables that are not the endpoint
of an SC-path in the DAG D, will not touch variables that were originally special
variables in G.

Let ρ = (A0, d0, A1), (A1, d1, A2), . . . , (Ap−1, dp−1, Ap) be an SC-path ofD. It holds
that for each Ai with i ∈ [0 . . p−1], in the SLPH its rule goes to two distinct variables,
one to the left and one to the right. Thus, for each variable Ai, with i ∈ [0 . . p − 1],
there is a variable A′

i+1 that is not part of the path. Let A′
1A

′
2 · · ·A′

p be the sequence
of these variables. Let L = L1L2 · · ·Ls be the subsequence of left variables of the
previous sequence. Then construct an SLP of size O(s) ⊆ O(p) for the sequence L
(seen as a string) as in Lemma 2, using |exp(Li)| in H as the weight function. In this
SLP, any path from the suffix nonterminal Si to a variable Lj has length at most
3 + 2(log2 ||Si|| − log2 ||Lj ||). Similarly, construct an SLP of size O(t) ⊆ O(p) for the
sequence R = R1R2 · · ·Rt of right symbols in reverse order, as in Lemma 2, but with
prefix variables Pi instead of suffix variables. Each variable Ai, with i ∈ [0 . . p − 1],
derives the same string as wlApwr, for some suffix wl of L and some prefix wr of R.
We can find rules deriving these prefixes and suffixes in the SLPs produced in the
previous step, so for any variable Ai, we construct an equivalent rule of length at most
3. Add these equivalent rules, and the left and right SLP rules to a new GSLP G′. Do
this for all SC-paths. Finally, add the original terminal variables and special variables
(which are left unmodified) of the GSLP G, so G′ is a GSLP equivalent to G.

Figure 1 shows an example where the special GSLP rules are of the form A→ Bt,
meaning t copies of B (i.e., the GSLP is an RLSLP).

1Namely, exp(Si) = T [i..n], for i ∈ [1..n].
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A01 106

A11 105

A21 104

A31 89

A41 75

A56 15

A67 14

A77 13

A87 12

A97 10

A1042 2

A1149 1 A1257 1

A0 → A1A12

A1 → A11A2

A2 → A5A3

A3 → A4A6

A4 → A5
5

A5 → A11A6

A6 → A7A12

A7 → A8A12

A8 → A10A9

A9 → A5
10

A10 → A11A12

A11 → 0

A12 → 1

Fig. 1 The DAG and SC-decomposition of an unfolded RLSLP generating the string
0(0(01)612)6(01)513. The value to the left of a node is the number of paths from the root to that
node, and the value to the right is the number of paths from the node to sink nodes. Thick red edges
belong to the SC-decomposition of the DAG. Dotted blue (resp. dashed green) edges branch from an
SC-path to the left (resp. to the right).

The SLP constructed for L has all its rules of length at most 4, and 3s ≤ 3p
variables. The same happens with R. The other constructed rules also have a length
of at most 3, and there are p of them. Summing over all SC-paths, we have O(|G|)
size. The special variables cannot sum up to more than O(|G|) size. Thus, the GSLP
G′ has size O(|G|).

Any path in the derivation tree of G′ is of length O(log n). To see why, let
A0, . . . , Ap be an SC-path. Consider a path from a variable Ai with i ∈ [0, p], to
the occurrence of some variable within the string of variables produced by the right-
hand side of Ap in G′. Clearly, this path has length at most 2 (i.e., from Ai to Ap

and from Ap to such variable). Now consider a path from Ai to a variable A′
j in the

sequence L of left variables of the SC-path, with i < j ≤ p (that is, A′
j is a vari-

able that diverges from the SC-path before reaching Ap). By construction this path
is of the form Ai → Sk →∗ A′

j (where →∗ represents a path) for some suffix variable
Sk (if the occurrence of A′

j is a left symbol), and per Lemma 2 its length is at most
1+3+2(log2 ||Sk||− log2 ||A′

j ||) ≤ 4+2 log2 ||Ai||−2 log2 ||A′
j ||. Analogously, if A′

j is a
right variable, the length of the path is bounded by 1+3+2(log2 ||Pk||− log2 ||A′

j ||) ≤
4+2 log2 ||Ai||−2 log2 ||A′

j || (where Pk is some prefix variable). We call all these paths
whose length we bounded weight-balanced paths.
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Now consider a maximal path from the root to a leaf in the derivation tree of G′.
Factorize it as

A0 →∗ A1 →∗ · · · →∗ Ak

where each Ai is a variable of H (and also of G and D), and in between each Ai and
Ai+1, in the DAGD there is almost an SC-path, except that the last edge is not in Escd.
Each path Ai →∗ Ai+1 is a weight-balanced path in the constructed GSLP G′. Simply
put, in G′, either the path goes directly from Ai to the SC-path endpoint and follows
an edge from there to Ai+1, or it goes through a suffix (or prefix) variable. In either
case, the length of these paths is bounded by 2 or by 4+ 2 log2 ||Ai|| − 2 log2 ||Ai+1||),
respectively.

The length of the full path from root to leaf in G′ is then at most

k−1∑
i=0

(4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||) ≤ 4k + 2 log2 ||A0|| − 2 log2 ||Ak||

By Lemma 1, k ≤ 2 log2 n, which yields the upper bound O(log n).
To have standard SLP rules of size at most two, delete rules in G′ of the form

A → B (replacing all A’s by B’s), and note that rules of the form A → BCDE or
A→ BCD can be decomposed into rules of length 2, with only a constant increase in
size and depth.

The balancing procedure uses O(|G| + t(G)) time and O(|G| + s(G)) auxiliary
space, where t(G) and s(G) are the time and space needed to compute and store the
set of all the pairs (B, |OUT(x)|B), where B appears |OUT(x)|B > 0 times in OUT(x), for
every special variable A→ x. With this information the set Escd(D) can be computed
in O(|G|+ t(G)) time, instead of O(|H|) time. The SLPs of Lemma 2 are constructed
in linear time in the lengths of the SC-paths, which sum to O(|G|) in total.

4 Iterated Straight-Line Programs

We now define iterated SLPs and show that they can be much smaller than δ.

Definition 4. An iterated straight-line program of degree d (d-ISLP) is an SLP that
allows in addition iteration rules of the form

A→
k2∏

i=k1

Bic1
1 · · ·Bict

t

where 1 ≤ k1, k2, 0 ≤ c1, . . . , ct ≤ d are integers, B1, . . . , Bt are variables that cannot
reach A (so the ISLP generates a unique string), and the product of strings refers to
their concatenation. Iteration rules have size 2 + 2t = O(t) and expand to

exp(A) =

k2∏
i=k1

exp(B1)
ic1 · · · exp(Bt)

ict

10



where if k1 > k2 the iteration goes from i = k1 downwards to i = k2. The size size(G)
of a d-ISLP G is the sum of the sizes of all of its rules.

Definition 5. The measure git(d)(T ) is defined as the size of the smallest d-ISLP that
generates T , whereas git(T ) = mind≥0 git(d)(T ).

The following observations show that ISLPs subsume RLSLPs, and thus, can be
smaller than the smallest L-system.

Proposition 4. For any d ≥ 0, it always holds that git(d) = O(grl).

Proof. Just note that a rule A → ∏t
i=1 B

i0 from an ISLP simulates a rule A → Bt

from a RLSLP. In particular, 0-ISLPs are equivalent to RLSLPs.

Proposition 5. For any d ≥ 0, there exists a string family where git(d) = o(ℓ).

Proof. Navarro and Urbina show a string family where grl = o(ℓ) [38]. Hence, git(d) is
also o(ℓ) in this family.

We now show that d = 1 suffices to obtain ISLPs that are significantly smaller
than δ for some string families.

Lemma 6. Let d ≥ 1. There exists a string family with git(d) = O(1) and δ = Ω(
√
n).

Proof. Such a family is formed by the strings sk =
∏k

i=1 a
ib. The 1-ISLPs with initial

rule Sk →
∏k

i=1 A
iB, and rules A→ a, B → b, generate each string sk in the family

using O(1) space. On the other hand, it holds that δ = Ω(
√
n) in the family csk [38].

As δ can only decrease by 1 after the deletion of a character [1], δ = Ω(
√
n) in the

family sk too.

On the other hand, ISLPs can perform worse than other compressed representa-
tions; recall that δ ≤ γ ≤ b ≤ r$.

Lemma 7. Let µ ∈ {r, r$, ℓ}. For any d ≥ 0, there exists a string family with git(d) =
Ω(log n) and µ = O(1).
Proof. Consider the family of Fibonacci words defined recursively as F0 = a, F1 = b,
and Fi+2 = Fi+1Fi for i ≥ 0. Fibonacci words cannot contain substrings of the form
x4 for any x ̸= ε [20]. Consider an ISLP for a Fibonacci word and a rule of the form

A → ∏k2

i=k1
Bic1

1 · · ·Bict
t . Observe that if cr ̸= 0 for some r, then max(k1, k2) < 4, as

otherwise exp(Br)
4 occurs in T . Similarly, if cr = 0 for all r, then |k1 − k2| < 3, as

otherwise exp(B1 · · ·Bt)
4 appears in T . In the latter case, we can rewrite the product

with k1, k2 ∈ [1 . . 3]. Therefore, we can unfold the product rule into standard SLP
rules of total size at most 9t (3t variables raised to at most 3 each because we assumed
our word is Fibonacci). Hence, for any d-ISLP G generating a Fibonacci word, there is
an SLP G′ of size O(|G|) generating the same string. As g = Ω(log n) in every string
family [35], we obtain that git(d) = Ω(log n) in this family too. On the other hand,
r$, r, and ℓ are O(1) in the even Fibonacci words [34, 37, 40].
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Lemma 8. For any d ≥ 0, there exists a string family satisfying that z = O(log n)
and git(d) = Ω(log2 n/ log log n).

Proof. Let T (n) be the length n prefix of the infinite Thue-Morse word2 [2] on the
alphabet {a, b}. Let k1, ..., kp be a set of distinct positive integers, and consider strings
of the form S = T (k1)|1T (k2)|2 · · ·T (kp−1)|p−1T (kp), where |i’s are unique separators
and k1 is the largest of the ki. Since the sequences T (ki) are cube-free

3 [2], there is no
asymptotic difference in the size of the smallest SLP and the smallest ISLP (similarly
to Lemma 7) for the string S. Hence, gid(d) = Θ(g) in this family. It has been proved

that g = Ω(log2 k1/ log log k1) and z = O(log k1) for some specific sets of integers
where p = Θ(k1) [7]. Thus, the result follows.

One thing that makes ISLPs robust is that they are not very sensitive to reversals,
morphism application, or edit operations (insertions, deletions, and substitutions of a
single character). The measure git(d) behaves similarly to SLPs in this matter, for which
it has been proved that g(T ′) ≤ 2g(T ) after an edit operation that converts T to T ′

[1], and that g(φ(T )) ≤ g(T )+cφ with cφ a constant depending only on the morphism
φ [12]. This makes git(d) much more robust to string operations than measures like r
and r$, which are highly sensitive to all these transformations [1, 12, 18, 19].

Lemma 9. Let G be a d-ISLP generating T . Then there exists a d-ISLP of size |G|
generating the reversed text TR. Let φ be a morphism. Then there exists a d-ISLP of
size |G| + cφ generating the text φ(T ), where cφ is a constant depending only on φ.
Moreover, there exists a d-ISLP of size at most O(|G|) generating T ′ where T and T ′

differ by one edit operation.

Proof. For the first claim, note that reversing all the SLP rules and expressions inside
the special rules, and swapping the values k1 and k2 in each special rule is enough to
obtain a d-ISLP of the same size generating TR.

For the second claim, we replace rules of the form A→ a with A→ φ(a), yielding
a grammar of size less than |G|+∑a∈Σ |φ(a)|. Then we replace these rules with binary
rules, which asymptotically do not increase the size of the grammar.

For the edit operations, we proceed as follows. Consider the derivation tree of the
ISLP, and the path from the root to the character we want to substitute, delete, or
insert a character before or after. Then, we follow this path in a bottom up manner,
constructing a new variable A′ for each node A we visit. We start at some A→ a, so
we construct A′ → x where either x = c or x = ac or x = ca or x = ε depending
on the edit operation. If we reach a node A → BC going up from B (so we already
constructed B′), we construct a node A′ → B′C (analogously if we come from C). If

we reach a node A → ∏k2

i=k1
Bic1

1 · · ·Bict
t going up from a specific Br with r ∈ [1 . . t]

(so we already constructed B′
r) at the k-th iteration of the product with k1 ≤ k ≤ k2

2This is the binary infinite sequence obtained by staring with 0 and appending the binary complement
of the string obtained so far, that is, 0 1 10 1001 10010110 . . .

3Those are the sequences that do not contain three consecutive identical substrings.

12



and being the q-th copy of Br inside Bkcr

r , then we construct the following new rules

A1 →
k−1∏
i=k1

Bic1
1 · · ·Bict

t , A2 →
k∏

i=k

Bic1
1 · · ·Bicr−1

r−1 , A3 →
q−1∏
i=1

Bi0

r ,

A4 →
kcr∏

i=q+1

Bi0

r , A5 →
k∏

i=k

Bicr+1

r+1 · · ·Bict
t , A6 →

k2∏
i=k+1

Bic1
1 · · ·Bict

t

A′ → A1A2A3B
′
rA4A5A6

which are equivalent to A (except by the modified, inserted, or deleted symbol) and
sum to a total size of at most 6t+ 21. As t ≥ 1, it holds that (6t+ 21)/(2t+ 2) ≤ 7.
After finishing the whole process, we obtain a d-ISLP of size at most 8|G|. Note that
this ISLP contains ε-rules. It also contains some non-binary SLP rules, which can be
transformed into binary rules, at most doubling the size of the grammar.

5 Accessing ISLPs

We have shown that git(d) breaks the lower bound δ already for d ≥ 1. We now
show that the measure is accessible. Concretely, we will prove the following result
along Sections 5.2 to 5.4. Before proving it, Section 5.1 shows how the result can be
specialized by properly bounding h and d. At the end, Section 5.5 extends the result
to computing functions over substrings, without need of extracting them first.

Theorem 10. Let T [1 . . n] be generated by a d-ISLP G of height h. Then, we can
build in time O((|G|+ d)d⌈d log d/ log n⌉) and space O(|G|+ d⌈d log d/ log n⌉) a data
structure of size O(|G|) that extracts any substring of T of length λ in time O(λ+(h+
log n+ d)d⌈d log d/ log n⌉), using O(h+ d⌈d log d/ log n⌉) additional words of working
space.

Algorithm 1 displays our general access strategy, still without all the details. In
broad terms, we extend the standard algorithm that descends along the parse tree
towards exp(A)[l]. Lines 2–8 handle the classic cases, whereas lines 9–14 solve the case
of our new extended rules. In this case, we first need to determine which is the value
of i ∈ [k1 . . k2] where exp(A)[l] falls (line 10), and adjust l by subtracting the lengths
of the preceding “blocks” (line 11). Second, we must determine where exp(A)[l] falls
within the ith block (line 12), and adjust l again by subtracting the length of the
preceding runs of B1 to Br−1 (line 13). Once we know that exp(A)[l] falls within
Br, we easily compute the desired symbol of exp(Br) by which the recursion should
continue, in line 14. Sections 5.2 and 5.3 will focus on how to efficiently compute the
lengths of rules and block prefixes, and how to efficiently find where exp(A)[l] falls.
Some notation and useful facts will already be introduced in Section 5.1.
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Algorithm 1 Direct access on d-ISLPs (simplified version)

Input: A variable A of an ISLP, and a position l ∈ [1, |exp(A)|].
Output: The character exp(A)[l].
1: function access(A, l)
2: if A→ a then // found the leaf in the parse tree for T [l]
3: return a
4: else if A→ BC then // go left or right as on classic SLPs
5: if l ≤ |exp(B)| then
6: return access(B, l)
7: else (l > |exp(B)|)
8: return access(C, l − |exp(B)|)
9: else (A→∏k2

i=k1
Bic1

1 · · ·Bict
t ) // find the proper descendant node

10: find the value of i where exp(A)[l] belongs

11: adjust l← l − |Πi−1
j=k1

Bjc1

1 · · ·Bjct

t |
12: find the run Bicr

r where exp(A)[l] belongs inside Bic1
1 · · ·Bict

t

13: adjust again l← l − |Bic1
1 · · ·Bicr−1

r−1 |
14: return access(Br, (l − 1 mod |exp(Br)|) + 1)

5.1 Specializing the Result

Before proving Theorem 10, we obtain a useful special case by showing that both
h and d can be bounded to O(log n) without increasing the asymptotic size of G.
Theorem 10 then implies the following result.

Theorem 11. Let T [1 . . n] be generated by an ISLP G. Then, we can build in time
O((|G| + log n) log n log log n) and space O(|G| + log n log log n) a data structure of
size O(|G|) that extracts any substring of T of length λ in time O(λ+log2 n log log n),
using O(log n log log n) additional words of working space.

To prove that Theorem 10 implies Theorem 11, we first show that we can always
make h = O(log n) without asymptotically increasing the size of the ISLP.

Lemma 12. Given a d-ISLP G generating a string T [1 . . n], it is possible to construct
a d′-ISLP G′ of size O(|G|) that generates T , for some d′ ≤ d, with height h′ =
O(log n). The construction requires O((|G| + d)d⌈d log d/ log n⌉) time and O(|G| +
d⌈d log d/ log n⌉) space.

Proof. ISLPs are GSLPs: they allow rules of the form A→∏k2

i=k1
Bic1

1 · · ·Bict
t of size

2+2t, and a simple program of size O(t) writes the corresponding right-hand symbols
(a sequence over {B1, . . . , Bt}) explicitly. Note that, if k1 ̸= k2 for every special rule,
then the corresponding GSLP is balanceable for sure, as no symbol in any output
sequence can appear exactly once. If k1 = k2 for some special rule, instead, the output
may have unique symbols Bi0

j or B1cj
j . In this case we can split the rule at those

symbols, in order to ensure that they do not appear in special rules, without altering
the asymptotic size of the grammar. For example, A → Bi2

1 Bi0

2 Bi3

3 Bi
4B

i0

5 (i.e., k1 =
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k2 = i for some i > 1) can be converted into A → A1A2, A1 → A3B2, A2 → A4B5,

A3 → Bi2

1 , A4 → Bi3

3 Bi
4. The case k1 = k2 = 1 corresponds to A→ B1 · · ·Bt and can

be decomposed into normal binary rules within the same asymptotic size.
We can then apply Theorem 3. Note the exponents of the special rules A→ x are

retained in general, though some can disappear in the case k1 = k2 = 1. Thus, the
parameter d′ of the balanced ISLP satisfies d′ ≤ d.

The time to run the balancing algorithm is linear in |G|, except that we need to

count, in the rules A→∏k2

i=k1
Bic1

1 · · ·Bict
t , how many occurrences of each nonterminal

are produced. If we define

pc(k) =

k∑
i=1

ic, (1)

then Bj is produced pcj (k2)− pcj (k1 − 1) times on the right-hand side of A.
Computing pc(k) straightforwardly takes time Ω(k), which may lead to a balancing

time proportional to the length n of T . In order to obtain time proportional to the
grammar size |G|, we need to process the rule for A in time proportional to its size,
O(t). We show next how this can be done, by regarding pc(k) as a polynomial on k.

Proposition 13. After a preprocessing time of O(d2⌈d log d/ log n⌉), and within
O(d⌈d log d/ log n⌉) working space, we can compute any polynomial pc(k) in time
O(d⌈d log d/ log n⌉).
Proof. An alternative formula [27]4 computes pc(k) using rational arithmetic (note
c ≤ d):

pc(k) = kc +
1

c+ 1
·

c∑
j=0

(
c+ 1

j

)
bj · kc+1−j . (2)

The formula requires O(c) ⊆ O(d) arithmetic operations once the numbers bj are
computed. Those bj are the Bernoulli (rational) numbers. All the Bernoulli numbers
from b0 to bd can be computed in O(d2) arithmetic operations using the recurrence

d∑
j=0

(
d+ 1

j

)
bj = 0,

from b0 = 1. The numerators and denominators of the rationals bj fit in O(j log j) =
O(d log d) bits,5 so they can be operated in time O(⌈d log d/ log n⌉) in a RAM machine
with word size Θ(log n). The total construction time of the Bernoulli numbers is then
O(d2⌈d log d/ log n⌉), and they can be maintained in O(d⌈d log d/ log n⌉) space.

Therefore, once we build the Bernoulli rationals bj in advance, in time
O(d2⌈d log d/ log n⌉), the processing time for a rule of size O(t) is O(t d⌈d log d/ log n⌉),
which adds up to O(|G| d⌈d log d/ log n⌉) for all the grammar rules. Storing the
precomputed values bj during construction requires d⌈d log d/ log n⌉ extra space.

4See also Wolfram Mathworld’s https://mathworld.wolfram.com/BernoulliNumber.html, Eqs. (34) and (47).
5See https://www.bernoulli.org, sections “Structure of the denominator”, “Structure of the nominator”,

and “Asymptotic formulas”.

15



We now prove that we can always make d = O(log n) without changing the size of
the ISLP. From now on in the paper, we will disregard for simplicity the case k1 > k2
in the rules A→ Πk2

i=k1
Bic1

1 · · ·Bict
t , as their treatment is analogous to that of the case

k1 ≤ k2.

Lemma 14. If a d-ISLP G generates T [1 . . n], then there is also a d′-ISLP G′ of the
same size that generates T , for some d′ ≤ log2 n.

Proof. For any rule A =
∏k2

i=k1
Bic1

1 · · ·Bict
t , any i ∈ [k1 . . k2], and any cj , it holds

that n ≥ |exp(A)| ≥ icj , and therefore cj ≤ logi n, which is bounded by log2 n for
i ≥ 2. Therefore, if k2 ≥ 2, all the values cj can be bounded by some d′ ≤ log2 n. A
rule with k1 = k2 = 1 is the same as A → B1 · · ·Bt, so all values cj can be set to 0
without changing the size of the rule.

An even more special case.

The case d = O(1) deserves to be stated explicitly because it yields near-optimal
substring extraction time, and because it already breaks the space lower bound Ω(δ).
We then plug d = O(1) and (per Lemma 12) h = O(log n) in Theorem 10 to obtain
the following result.

Corollary 15. Let T [1 . . n] be generated by a d-ISLP G, with d = O(1). Then, we
can build in O(|G|) time and space a data structure of size O(|G|) that extracts any
substring of T of length λ in time O(λ+ log n).

Note that the corollary achieves O(log n) access time for a single symbol. Verbin
and Yu [46] showed that any data structure using space s to represent T [1 . . n] requires
time Ω(log1−ϵ n/ log s) time, for any ϵ > 0. Since even SLPs can use space s = O(log n)
on some texts, they cannot always offer access time O(log1−ϵ n) for any constant ϵ.
This restriction applies to even smaller grammars like RLSLPs and d-ISLPs for any d.

5.2 Data Structures

We now start to prove Theorem 10. In this subsection we focus on defining proper data
structures that let us efficiently compute the length of the expansion of any prefix of
the right-hand side of every rule

A→
k2∏

i=k1

Bic1
1 · · ·Bict

t .

This will be used in Section 5.3 to provide direct access to the content of exp(A).
While our problem is easily solved by storing the (k2 − k1 + 1) · t cumulative lengths,
we cannot afford that space. The challenge is to support these queries within space
O(t), that is, proportional to the size of the rule.

Our key idea is that, though t can be large, there are only d+1 distinct values cj .
We will exploit this because, per Lemma 14, d can be made O(log n).
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5.2.1 Navigating within a block

We start focusing on a single “block” Bic1
1 · · ·Bict

t , for fixed i. Our goal here is to
efficiently compute the length of the expansion of Bic1

1 · · ·Bicr
r (i.e., a prefix of the

block). Formally, we will compute the function

fr(i) =

r∑
j=1

|exp(Bj)| · icj ,

for any r ∈ [1 . . t]. We now show how to do this in time O(d), using O(t) space for
rule A. We use two structures:

• We precompute an array SA[1 . . t] storing cumulative length information, as follows

SA[r] =
∑

1≤j≤r,cj=cr

|exp(Bj)|.

That is, SA[r] adds up the lengths, up to Br, of the expansions of (only) those
symbols that must be multiplied by icr .

• A second array, CA[1 . . t], stores the values c1, . . . , ct. We preprocess CA to solve
predecessor queries of the form

pred(A, r, c) = max{j ≤ r, CA[j] = c},

that is, the latest occurrence of c in CA to the left of position r, for every c = 0, . . . , d.

To compute fr(i), we first calculate the values rc = pred(A, r, c) for all c. We then
evaluate fr(i) in O(d) time by adding up SA[rc] · ic, because SA[rc] adds up all those
|exp(Bj)|, for j ≤ r, that must be multiplied by ic in fr(i).

Example 1. The left part of Figure 2 shows the arrays SA and CA of an example rule.
The first (Bi), third (Di), and sixth (Ei) symbols are raised to the power i = i1 (i.e.,
c1 = c3 = c6 = 1). Thus, SA[1] = 2 = |exp(B)|, SA[3] = 6 = SA[1] + |exp(D)|, and
SA[6] = 13 = SA[3] + |exp(E)|. To compute f8(i), we will sum the coefficients of i0,
i1, i2, and i3. The term to be multiplied by i0 = 1 is SA[5], because 5 = pred(A, 8, 0)
is the last position in [1 . . 8] of a symbol raised to power i0. In SA[5] = 14 we have the
sum of all the lengths that must be multiplied by i0. Similarly, the term to be multiplied
by i1 is SA[6], because 6 = pred(A, 8, 1) is the last position in [1 . . 8] of a symbol raised
to power i1 = i (it is Ei). In SA[6] = 13 we have the sum of all the lengths that must
be multiplied by i. In SA[pred(A, 8, 2) = 7] we have the total length 5 of the rules that

must be multiplied by i2 (which includes Ci2 and Bi2), and in SA[pred(A, 8, 3) = 8]

we have the total length 3 of the rules to be multiplied by i3 (which is just Ci3). We
then compute f8(i) = 14 + 13 · i+ 5 · i2 + 3 · i3.

We now show how to build SA and how to precompute CA so that the d+1 queries
pred(A, r, c) are computed in O(d) time.
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1 2 3 4 5 6 7 8 9

2 3 6 7 14 13 5 3 18

1 2 1 0 0 1 2 3 0

SA

CA

fr=8(i) = 3i3 + 5i2 + 13i+ 14

fr=9(i) = 3i3 + 5i2 + 13i+ 18

f+(k) = 9
12k

4 + 38
12k

3 + 117
12 k2 + 304

12 k

Fig. 2 Data structures built for the ISLP rule A →
∏5

i=1 B
iCi2DiEEEiBi2Ci3D, with |exp(B)| =

2, |exp(C)| = 3, |exp(D)| = 4, and |exp(E)| = 7. On the right we show some of the polynomials that
are computed with these data structures.

Building SA.

Array SA is built in time O(t) once all the lengths |exp(·)| have been computed, by
traversing the nonterminals B1, . . . , Bt in the rule of A while maintaining in an array
L[Bj ] the last position of each distinct nonterminal Bj seen so far in the rule. Formally,
the invariant is that, once we arrive at Br, it holds L[B] = max{i < r, Bi = B} for
all symbols B ∈ {B1, . . . , Br−1} (and L[B] = 0 if B has not appeared before Br). We
initialize SA[0]← 0 and, at step r, we fill SA[r]← SA[L[Br]] + |exp(Br)| and then set
L[Br] ← r to restore the invariant. Storing L requires O(|G|) space at construction
time; we use lazy initialization to avoid O(|G|) initialization time.

Preprocessing CA.

We preprocess CA as follows: we cut CA into chunks of length d+1, and for each chunk
CA[(d+1) · j +1 . . (d+1) · (j +1)] we store precomputed values pred(A, (d+1) · j, c)
for all c ∈ {0, . . . , d}. That is, each chunk stores the predecessor of every c to its left
in CA. Those precomputed values require only O(t) space because there are d + 1 of
them per chunk. They can be computed in O(t) time, on a left-to-right traversal of
CA, by using an array L′[0 . . d] analogous to L, which at each position records the last
occurrence seen so far of each value c ∈ {0, . . . , d}. The values L′[0 . . d] after processing
each position (d+1) · j are precisely the values pred(A, (d+1) · j, c) we store with the
chunk j.

Once this precomputation is completed, we answer queries as follows. To compute
the values rc = pred(A, r, c) for all c, we find the chunk j = ⌈r/(d + 1)⌉ − 1 where r
belongs, initialize every rc = pred(A, (d+1) · j, c) for every c (which is stored with the
chunk j), and then scan the chunk prefix CA[(d+1) · j+1 . . r] left to right, correcting
every rc ← k if c = CA[k], for k = (d+ 1) · j + 1 . . r.

Algorithm 2 summarizes the whole process to compute fr(i), and the next lemma
summarizes our result.

Lemma 16. After O(|G|) precomputation time using O(|G| + d) working space, we
obtain data structures that use O(|G|) space and can compute any fr(i) in time O(d).
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Algorithm 2 Computing fr(i) for nonterminal A, in time O(d)
Input: Values i and r, arrays SA and CA, and precomputed values pred(A, (d+1)j, c)

for every j and c.
Output: The value fr(i).
1: j ← ⌈r/(d+ 1)⌉ − 1 // the chunk where r belongs
2: for c← 0, . . . , d do // collect last occurrence of each c to the left of the chunk
3: rc ← pred(A, (d+ 1)j, c) // this is precomputed

4: for k ← (d+ 1)j + 1, . . . , r do // update last occurrences within the chunk
5: c← CA[k]
6: rc ← k

7: s← 0 // knowing the last occurrences of each c up to r, compute fr(i)
8: p← 1
9: for c← 0, . . . , d do

10: s← s+ SA[rc] · p
11: p← p · i
12: return s

5.2.2 Navigating between blocks

We now complete the calculation of the expansion length of any prefix of the rule of
A. The following function adds up the expansion lengths of several whole blocks.

f+(k) =

k∑
i=k1

ft(i),

that is, f+(k) is the cumulative sum of the length of the whole expressions Bic1
1 · · ·Bict

t

until i = k. The problem is, again, that we cannot afford the space of simply storing
the |k2 − k1| + 1 values f+(k). We will instead compute f+(k) by reusing the same
data structures we already store for fr(i).

Just as in Algorithm 2, for each c = 0, . . . , d, we compute tc = pred(A, t, c) and
sc = SA[tc], which is the total expansion length of the symbols that must be multiplied
by ic in the whole rule. We then multiply sc by the sum of the factors ic from i = k1
to i = k, sc ·

∑k
i=k1

ic = sc · (pc(k) − pc(k1 − 1)), where pc(k) is defined in Eq. (1).
Finally, we compute

f+(k) =

d∑
c=0

sc · (pc(k)− pc(k1 − 1)).

Since pc(k) is a polynomial on k of maximum degree c + 1 (see Eq. (2)), f+(k) is a
polynomial on k of maximum degree d+ 1.

Example 2. Consider the ISLP of Lemma 6, defined by the rules S → ∏k2

i=1 A
iB,

A → a, and B → b. The polynomials associated with the representation of the rule
S are ic1 = i and ic2 = 1. Then, we construct the auxiliary polynomials f1(i) =
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|exp(A)|ic1 = i and f2(i) = |exp(A)|ic1 + |exp(B)|ic2 = i + 1. Finally, we construct

the polynomial f+(k) =
∑k

i=1 f2(i) =
∑k

i=1(i+1) = 1
2k

2+ 3
2k. Indeed, our calculation

yields t0 = 2 and t1 = 1, SA[1] = SA[2] = 1, s0 = s1 = 1, s0(p0(k) − p0(0)) = k

and s1(p1(k)− p0(k)) =
k(k+1)

2 , and f+(k) is then k+ k(k+1)
2 . Figure 2 shows a more

complex example.

As shown in Proposition 13, we can compute all the Bernoulli polynomials, and
then the coefficients of all the polynomials pc(k) in time O(d2⌈d log d/ log n⌉). This
yields the following result.

Lemma 17. Once the structures of Lemma 16 are built, we can build in time
O(d2⌈d log d/ log n⌉) additional data structures that use O(d⌈d log d/ log n⌉) space,
which can compute any f+(k) in time O(d⌈d log d/ log n⌉).

5.3 Direct Access

Now that we can efficiently compute the expansion lengths of rule prefixes, we answer
our most basic and elementary query: given the data structures of size O(|G|) defined
in the previous sections, return the symbol T [l] given an index l. Instead of using extra
space to store precomputed values, we start the query process by computing all the
polynomials pc(k), which are the same for every rule, in time O(d2⌈d log d/ log n⌉).
With those polynomial coefficients precomputed, we can compute any f+(k), as well
as any fr(i), for any rule in time O(d⌈d log d/ log n⌉), using Lemmas 16 and 17.

For SLPs with derivation tree of height h, the problem is easily solved in O(h) time
by storing the expansion size of every nonterminal, and descending from the root to
the corresponding leaf using |exp(B)| to determine whether to descend to the left or
to the right of every rule A → BC. The general idea for d-ISLPs is similar, but now
determining which child to follow in repetition rules is more complex (recall Alg. 1).

To access the l-th character of the expansion of A → ∏k2

i=k1
Bic1

1 · · ·Bict
t we first

find the value i such that f+(i − 1) < l ≤ f+(i) by using binary search (we let
f+(i−1) = 0 when i = k1). Then, we find the value r such that fr−1(i) < l−f+(i−1) ≤
fr(i) by using binary search on the subindex of the functions (we let fr−1(i) = 0
for any i when r = 1). We then know that the search follows by Br, with offset
l−f+(i−1)−fr−1(i) inside |exp(Br)|i

cr
. The offset within Br is then easily computed

with a modulus. Algorithm 3 gives the details, using succ to denote the binary search
in an ordered set (i.e., succ([x1 . . xm], l) = j iff xj−1 < l ≤ xj).

We carry out the first binary search so that, for every i we try, if f+(i) < l we
immediately answer i + 1 if l ≤ f+(i + 1); instead, if l ≤ f+(i), we immediately
answer i if f+(i − 1) < l. As a result, the search area is initially of length |exp(A)|
and, if the answer is i, the search has finished by the time the search area is of
length ≤ f+(i)− f+(i− 1) = ft(i). Thus, there are O(1 + log(|exp(A)|/ft(i))) binary
search steps. The second binary search is modified analogously so that it carries out
O(1+log(ft(i)/(i

cr |exp(Br)|))) steps. Summing the costs of both binary searches, and
because icr ≥ 1, we have at most O(1 + log(|exp(A)|/|exp(Br)|)) steps. As the search
continues by Br, the sum of binary search steps telescopes to O(h+log n) on an ISLP
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Algorithm 3 Direct access on d-ISLPs of height h in O((h+ log n+ d)d) operations

Input: A variable A of an ISLP, and a position l ∈ [1, |exp(A)|].
Output: The character exp(A)[l].
1: function access(A, l)
2: if A→ a then // found the leaf in the parse tree for T [l]
3: return a
4: else if A→ BC then // go left or right as on classic SLPs
5: if l ≤ |exp(B)| then
6: return access(B, l)
7: else (l > |exp(B)|)
8: return access(C, l − |exp(B)|)
9: else (A→∏k2

i=k1
Bic1

1 · · ·Bict
t ) // find the proper descendant node

10: i← succ([f+(k1) . . f
+(k2)], l)

11: l← l − f+(i− 1)
12: r ← succ([f1(i) . . ft(i)], l)
13: l← l − fr−1(i)
14: return access(Br, (l − 1 mod |exp(Br)|) + 1)

of height h: assume we traverse the ISLP from the initial symbol A1 to the symbol
Ah. The sum of the binary search steps is of the order of

(1 + log(|exp(A1)|/|exp(A2)|)) + (1 + log(|exp(A2)|/|exp(A3)|))
+ · · ·+ (1 + log(|exp(Ah−1)|/|exp(Ah)|))

= h+ log(|exp(A1)|/|exp(Ah)|) ≤ h+ log n.

This yields our result for accessing a single symbol.

Lemma 18. After the construction-time precomputation of Lemma 16 and the query-
time preprocessing O(d2⌈log d/ log n⌉) of Lemma 17, we can access any symbol T [l] in
time O((h+ log n) d⌈d log d/ log n⌉).

Example 3. We show how to access the b at position 14 of the string T =
∏5

i=1 a
ib.

Consider the ISLP G and its auxiliary polynomials computed in Example 1. We start
by computing f+(2) = 5. As l > 5, we go right in the binary search and compute
f+(4) = 14. As l ≤ 14 we go left, compute f+(3) = 9 and find that i = 4. Hence,
T [l] lies in the expansion of AiB = A4B at position l1 = l − f+(i − 1) = 5. Then,
we compute f1(4) = 4. As l1 > 4, we turn right and compute f2(4) = 5, finding that

r = 2. Hence, T [l] lies in the expansion of Bi0 = B1 at position l2 = l1 − fr−1(i) = 1.

5.4 Extracting Substrings

The last piece for proving Theorem 10 is to show how to extract substrings from T .
Once we have accessed T [l], it is possible to output the substring T [l . . l + λ − 1] in
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Algorithm 4 Length-λ substring access on ISLPs of height h in O(h+ λ) extra time

Input: A variable A of an ISLP, a position l ∈ [1, |exp(A)|] and a length λ > 0.
Output: Outputs exp(A)[l . . l + λ − 1] and returns the number of symbols it could

not extract (if l + λ− 1 > |exp(A)|).
1: function extract(A, l, λ)
2: if A→ a then // found the leaf in the parse tree for T [l], first output
3: output a
4: λ← λ− 1
5: else if A→ BC then // go left and/or right as in classic SLPs
6: if l ≤ |exp(B)| then
7: λ← extract((B, l, λ))
8: if λ > 0 then // go also right if there are symbols yet to output
9: λ← extract(C, 1, λ))

10: else (l > |exp(B)|)
11: λ← extract(C, l − |exp(B)|, λ)
12: else (A→∏k2

i=k1
Bic1

1 · · ·Bict
t ) // find the first proper descendant node

13: i← succ([f+(k1) . . f
+(k2)], l)

14: l← l − f+(i− 1)
15: r ← succ([f1(i) . . ft(i)], l)
16: l← l − fr−1(i)
17: λ← extract(Br, (l − 1 mod |exp(Br)|) + 1, λ)
18: k ← ⌈l/|exp(Br)|⌉+ 1
19: while i ≤ k2 ∧ λ > 0 do // iterate on the subsequent blocks
20: while r ≤ t∧λ > 0 do // iterate on the subsequent block symbols Br

21: while k ≤ icr ∧ λ > 0 do // iterate within the copies of Br

22: λ← extract(Br, 1, λ)
23: k ← k + 1

24: k ← 1
25: r ← r + 1

26: r ← 1
27: i← i+ 1

28: return λ

O(λ + h) additional time, as we return from the recursion in Algorithm 3. We carry
the parameter λ of the number of symbols (yet) to output, which is first decremented
when we finally find the first symbol, T [l], which we now output immediately. From
that point, as we return from the recursion, we output up to λ following symbols and
return the number of remaining symbols yet to output, until λ = 0. See Algorithm 4.

To analyze this algorithm, we note that it visits λ consecutive leaves in the parse
tree, plus their ancestors. This is because the algorithm does not visit any node that is
not an ancestor of a leaf that must be output: it first traverses towards T [l], and then
enters into a node only if there are remaining descendant leaves to visit (i.e., λ > 0).
The ancestors of those leaves are composed of (i) the leftmost and rightmost paths
that lead to T [l] and T [l + λ − 1], and (ii) a set of complete subtrees between those
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paths. The former contain up to 2h nodes; the latter include up to λ leaves and thus
up to λ internal nodes, as there are no nodes of degree 1 in the parse tree.

The analysis also shows up in Algorithm 4. We distinguish two types of recursive
calls. Initially the substring to extract is within one of the children of the grammar
tree node, and thus only one recursive call is made. Those are the cases of lines 7, 11,
and 17. The number of those calls is limited by the the height h of the grammar. Once
we reach a node where the substring to extract spreads across more than one child,
the λ symbols to output are distributed across more than one recursive call, ending
in line 3 when outputting individual symbols. Those recursive calls form a tree with
no unary paths and λ leaves, thus they add up to O(λ).

A final detail is that, in line 21 of Algorithm 4, we need to compute icr . This can
be done with modular exponentiation in time O(log cr) ⊆ O(log d). If λ ≥ |exp(Bicr

r )|,
then the time O(log cr) to compute icr is absorbed by the time to traverse the subtree
of Bicr

r .6 Otherwise, Bicr
r is the rightmost symbol of the parse tree that we will traverse;

this can happen h times only. This issue then adds O(h log d) to the total time, which
is absorbed by the time to reach T [l]; recall Lemma 18.

The total space for the procedure is O(h) for the recursion stack (which is unnec-
essary when returning a single symbol, since recursion can be eliminated in that case),
plus O(d⌈d log d/ log n⌉) for the precomputed Bernoulli rationals.7 This concludes the
proof of Theorem 10.

5.5 Composable Functions on Substrings

Other than extracting a text substring, we aim at computing more general functions
on arbitrary ranges T [p . . q], in time that is independent of the length q − p + 1 of
the range. We show how to compute some functions that have been studied in the
literature, focusing on composable ones.

Definition 6. A function f from strings is composable if there exists a function g
such that, for every pair of strings X and Y , it holds f(X · Y ) = g(f(X), f(Y )).

We focus for now on two popular composable functions, which find applications
for example on grammar-compressed suffix trees [14, 15].

Definition 7. A range minimum query (RMQ) on T [p . . q] returns the leftmost
position where the minimum value occurs in T [p . . q]. Formally,

rmq(T, p, q) = min{k ∈ [p . . q] | ∀k′ ∈ [p . . q], T [k] ≤ T [k′]}.

Definition 8. A next/previous smaller value query (NSV/PSV) on T [p . . n]/T [1 . . p]
and with value v finds the smallest/largest position following/preceding p with value
at most v. If there is no such a position, it returns n+ 1/ 0. Formally,

nsv(T, p, v) = min({q | q ≥ p, T [q] < v} ∪ {n+ 1}),

6Except if i = 1, where the result is simply 1 for any cr.
7As these do not depend on the query, they could be precomputed at indexing time and be made part of

the index, at a very modest increase in space.
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Algorithm 5 Range minimum queries on SLPs of height h in O(h) time

Input: A variable A of an SLP and positions 1 ≤ p ≤ q ≤ |exp(A)|.
Output: Returns rmq(exp(A)[p . . q]) and the corresponding minimum value.
1: function rmq(A, p, q)
2: if (p, q) = (1, |exp(A)|) then return rmq(A) (which is precomputed)
3: else if A→ BC then // first see if we go only left or only right
4: if q ≤ |exp(B)| then return rmq(B, p, q)
5: else if p > |exp(B)| then return rmq(C, p− |exp(B)|, q − |exp(B)|)
6: else (p ≤ |exp(B)| < q) // else compose a left suffix and a right prefix call
7: ⟨ml, vl⟩ ← rmq(B, p, |exp(B)|)
8: ⟨mr, vr⟩ ← rmq(C, 1, q − |exp(B)|)
9: if vl ≤ vr then return ⟨ml, vl⟩

10: else return ⟨|exp(B)|+mr, vr⟩

psv(T, p, v) = max({q | q ≤ p, T [q] < v} ∪ {0}).

We show next how to efficiently solve those queries on ISLPs. We do not know
how to compute other more complex functions, like Karp-Rabin fingerprints [21], on
ISLPs. This will be addressed in Section 6, on the simpler RLSLPs.

5.5.1 Range Minimum Queries

Solving RMQs on an SLP G is simple thanks to composability. More precisely, what
is composable is an extended function f(X) = ⟨m, v, ℓ⟩ where m = rmq(X, 1, |X|),
v = X[m], and ℓ = |X|. Then, given f(X) = ⟨mx, vx, ℓx⟩ and f(Y ) = ⟨my, vy, ℓy⟩, it
holds f(X · Y ) = ⟨mx, vx, ℓx + ℓy⟩ if vx ≤ vy, and ⟨ℓx + my, vy, ℓx + ℓy⟩ otherwise,
which is computable in time O(1). We also compute f(a) = ⟨1, a, 1⟩ in O(1) time.

To compute RMQs on an SLP G, we first preprocess the grammar to store
f(exp(A)) = ⟨m, v, ℓ⟩ for each nonterminal A, in the form of the pair rmq(A) = ⟨m, v⟩
and the length ℓ = |exp(A)|. Thanks to the composability of f , this is easily built in
O(|G|) time in a bottom-up traversal of the grammar.

To solve rmq(T [p . . q]) on the SLP, we descend from the root towards T [p . . q]
(guided by the stored expansion lengths |exp(A)|) until finding a leaf (if p = q), or more
typically a rule A → BC such that T [p . . q] = exp(B)[p′ . . |exp(B)|] · exp(C)[1 . . q′].
At this point we split into two recursive calls, one computing rmq on a suffix of
exp(B) (a suffix call) and another on a prefix of exp(C) (a prefix call). By making
the recursive calls return rmq(B) in O(1) time when the range spans the whole string
exp(B), we ensure that those prefix/suffix calls perform only one further (nontrivial)
recursive call per level, and thus the query is solved in O(h) time, traversing at most
two root-to-leaf paths in the parse tree. Algorithm 5 shows the details.

To solve RMQs on ISLPs, we observe that the expansion of A→∏k2

i=k1
Bic1

1 · · ·Bict
t

always contains the same symbols. Further, the RMQ of exp(A) occurs always in
the first block, i = k1, and it depends essentially on the sequence B1 · · ·Bt. To han-
dle these rules, we preprocess them as follows. Let rmq(Bj) = ⟨mj , vj⟩. Then, we
build the string v1 · · · vt and precompute an RMQ data structure on it that answers
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queries rmqA(p, q) = rmq(v1 · · · vt, p, q). It is possible to build such a data struc-
ture in O(t) time and bits of space, such that it answers queries in O(1) time [13],
so this adds just O(|G|) time and bits to the grammar preprocessing cost. With
this structure, we can simulate the extension of our rmq(A) precomputed pairs to
any subsequence Bica

a · · ·Bicb
b of Bic1

1 · · ·Bict
t : rmq(Bic1

1 · · ·Bict
t , a, b) = ⟨m, v⟩, where

rmq(v1 · · · vt, a, b) = m′, rmq(Bm′) = ⟨m′′, v⟩, and m = fm′−1(i) + m′′. The time to
compute this is dominated by the O(d) cost to compute fm′−1(i).

At query time, when we arrive at such a node A with limits p and q, we proceed as
in lines 10–13 of Algorithm 3 to find the values ip and rp, and iq and rq, corresponding
to p and q, respectively (just as we find i and r for l in Algorithm 3). There are several
possibilities:

1. If ip = iq and rp = rq, then p and q fall inside exp(Bi
crp

rp ). They may be both
inside a single copy of exp(Brp), in which case we continue with a single recursive
call. Or they may span a (possibly empty) suffix of exp(Brp), zero or more copies
of exp(Brp), and a (possibly empty) prefix of exp(Brp). The query is then solved
with at most two recursive calls on Brp (which are prefix/suffix calls), and the
information on rmq(Brp). We compose as explained those (up to) three results, and
add f+(ip− 1)+ frp−1(ip) to the resulting position so as to place it within exp(A).

2. If ip = iq and rp < rq, then we must also consider the subsequence

B
i
crp+1
p

rp+1 · · ·B
i
crq−1
p

rq−1 , in case rq − rp > 1. This additional candidate to the RMQ is

found with rmq(B
i
c1
p

1 · · ·B
ictp
t , rp + 1, rq − 1), in time O(d) as explained.

3. If ip < iq, we must also add a suffix of of B
i
c1
p

1 · · ·B
ictp
t , the whole

B
(ip+1)c1

1 · · ·B(ip+1)ct

t (if iq − ip > 1), and a prefix of B
i
c1
q

1 · · ·B
ictq
t (if iq − ip = 1).

All those are included with our simulation of queries rmq(Bic1
1 · · ·Bict

t , a, b).

Overall, we perform either one recursive call (when p and q are inside the same
Brp), or two prefix/suffix recursive calls (for a suffix of Brp and a prefix of Brq ). The
analysis is then the same as for the SLPs, yielding time O(hd). This is in addition to
(and dominated by) the O((h + log n)d⌈d log d/ log n⌉) time, plus the preprocessing
time of O(d2⌈d log d/ log n⌉), due to the binary searches needed to find ip, iq, rp, and
rq, as for direct access (recall Lemma 18).

Theorem 19. Let T [1 . . n] be generated by a d-ISLP G of height h. Then, we can
build in time O((|G|+ d)d⌈d log d/ log n⌉) and space O(|G|+ d⌈d log d/ log n⌉) a data
structure of size O(|G|) that computes any query rmq(T, p, q) in time O((h+ log n+
d)d⌈d log d/ log n⌉), using O(h+ d⌈d log d/ log n⌉) additional words of working space.

Since we can make both h and d be O(log n) per Lemmas 12 and 14, we have the
following corollary.

Corollary 20. Let T [1 . . n] be generated by an ISLP G. Then, we can build in time
O((|G| + log n) log n log log n) and space O(|G| + log n log log n) a data structure of
size O(|G|) that computes any query rmq(T, p, q) in time O(log2 n log log n), using
O(log n log logn) additional words of working space.
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Finally, the following specialization is relevant, as for example it encompasses 1-
ISLPs (which may break δ) and RLSLPs, and matches the analogous result on SLPs.

Corollary 21. Let T [1 . . n] be generated by a d-ISLP G with d = O(1). Then, we
can build in time and space O(|G|) a data structure of size O(|G|) that computes any
query rmq(T, p, q) in time O(log n).

5.5.2 Next/Previous Smaller Value

Let us consider query NSV; query PSV is analogous. NSV is composable if we extend it
to function f(X, v) = ⟨p, ℓ⟩, where p = nsv(X, 1, v) and ℓ = |X|. If f(X, v) = ⟨px, ℓx⟩
and f(Y, v) = ⟨py, ℓy⟩, then f(X · Y ) = ⟨p, ℓx + ℓy⟩, where p = px if px ≤ ℓx, else
p = ℓx+py if py ≤ ℓy, and p = ℓx+ℓy+1 otherwise. The composition takes O(1) time.

The procedure to compute nsv(T, p, v) on an SLP is depicted in Algorithm 6. We
reuse the precomputed pairs rmq(A) = ⟨m, v⟩ of RMQs, using rmq(A).v to refer to v.
Importantly, the algorithm uses that field to notice in constant time that the answer
is not within exp(A) (lines 2–3). In this case we say that the call to A fails (to find
the answer within exp(A)). As for RMQs, the algorithm may perform two calls on
A → BC, which only happens when the call on B fails, but then the call on B is a
suffix call and the call on C is a prefix call. Note that, in this asymmetric query with
no right limit, a prefix call on C is a call on the whole exp(C); we call it a whole-symbol
call. As explained, those calls take O(1) time when they fail. Therefore,

• The suffix call starting from B, which finally fails, cannot branch again into two
recursive calls at a symbol A′ → B′C ′, because once the call on B′ fails, the call on
C ′ is a whole-symbol call, and this fails in constant time.

• The prefix call starting from C cannot branch again into two recursive calls at a
symbol A′ → B′C ′, because this occurs only if the call on B′ fails. Since this is a
whole-symbol call on B′, it fails in constant time.

Since at most two paths are followed from the first branching into two calls, the total
time is O(h).

To extend the algorithm to ISLPs we must consider, as for the case of RMQs,
the special rules. Just as in that case, the answer to a query nsv(exp(A), p, v) with
A→ Πk2

i=k1
Bic1

1 · · ·Bict
t depends essentially on the smallest values of the nonterminal

expansions, exp(Bj). Let again rmq(Bj) = ⟨mj , vj⟩. We preprocess the string v1 · · · vt
to solve queries nsv(v1 · · · vt, p). This preprocessing takes O(t log t) time and O(t)
space, and answers NSV queries in time O(logϵ t) for any constant ϵ > 0 [42] (those
are modeled as orthogonal range successor queries on a grid).

We can then simulate precomputed values nsv(Bic1
1 · · ·Bict

t , p, v) = q, where p
refers to Bicp

p · · ·Bict
t , with the value nsv(v1 · · · vt, p, v) = q′ precomputed as explained,

nsv(Bq′ , 1, v) = q′′ obtained with a recursive call, and q = fq′−1(i) + q′′. Note that
the recursive call is for a whole symbol, and we are sure to find the answer inside it:
if nsv(v1 · · · vt, p, v) = t+1, we return ft(i)+ 1 without making any recursive call. At
query time, after finding ip and rp as for RMQs, we have the following cases:

1. We may have to recurse on a nonempty suffix of Brp , finishing if we find the answer
inside it. If not, there may be more copies of Brp ahead of position p, in which
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Algorithm 6 Next smaller values on SLPs of height h in O(h) time

Input: A variable A of an SLP, position 1 ≤ p ≤ |exp(A)|, and threshold v.
Output: The position nsv(exp(A), p, v).
1: function nsv(A, p, v)
2: if rmq(A).v ≥ v then // whole symbols detect failure immediately
3: return |exp(A)|+ 1
4: else if A→ a then
5: return 1
6: else if A→ BC then
7: if p ≤ |exp(B)| then // first try to find the answer inside exp(B)
8: p← nsv(B, p, v)
9: if p ≤ |exp(B)| then // return the answer if found

10: return p

11: return |exp(B)| + nsv(C, p− |exp(B)|, v) // else try on the whole C

case we either determine in constant time that there is no answer inside Brp , or
we recurse with a whole-symbol call on Brp and find the answer inside it, thereby
finishing.

2. If not finished, we may have to consider a block suffix B
i
crp+1
p

rp+1 · · ·B
ictp
t . This is

handled by computing nsv(B
i
c1
p

1 · · ·B
ictp
t , rp + 1, v) as explained, possibly making a

whole-symbol recursive call, only when we are sure to find the answer inside it.

3. If not, we may find the answer in the next block, B
(ip+1)c1

1 · · ·B(ip+1)ct

t , in the same
way as in point 2. If we find no answer here, then there is no answer to NSV and
we return |exp(A)|+ 1.

Just as for the case of SLPs, we traverse only two paths along the process: even if
now we have a sequence of more than two symbols (not just A→ BC), we are able to
determine with a constant amount of nsv queries whether there is an answer to the
right of the failing recursive call, and in which symbol we must recurse to find it. The
main difference with the cost of RMQs is the O(logϵ t) ⊆ O(logϵ |G|) time incurred to
compute nsv queries, and the corresponding O(t log t) construction time, which adds
up to O(|G| log |G|).

Theorem 22. Let T [1 . . n] be generated by a d-ISLP G of height h. Then, for any con-
stant ϵ > 0, we can build in time O(|G|(log |G|+ d⌈d log d/ log n⌉)+ d2⌈d log d/ log n⌉)
and space O(|G|+ d⌈d log d/ log n⌉) a data structure of size O(|G|) that computes any
query psv/nsv(T, p, v) in time O(h logϵ |G| + (h + log n + d)d⌈d log d/ log n⌉), using
O(h+ d⌈d log d/ log n⌉) additional words of working space.

Corollary 23. Let T [1 . . n] be generated by an ISLP G. Then, we can build in time
O((|G|+log n) log n log log n) and space O(|G|+log n log log n) a data structure of size
O(|G|) that computes any query psv/nsv(T, p, v) in time O(log2 n log log n), using
O(log n log log n) additional words of working space.
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Corollary 24. Let T [1 . . n] be generated by a d-ISLP G with d = O(1). Then, for any
constant ϵ > 0, we can build in time O(|G| log |G|) and space O(|G|) a data structure
of size O(|G|) that computes any query psv/nsv(T, p, v) in time O(log n logϵ |G|).

6 Revisiting RLSLPs

As pointed out in Proposition 4, RSLPs are equivalent to 0-ISLPs, because an ISLP
rule A→∏k2

i=k1
Bi0 corresponds exactly to the RLSLP rule A→ B|k2−k1|+1. We can

then apply Lemma 12 over any RLSLP to obtain an equivalent RLSLP of the same
asymptotic size and height O(log n). Once we count with a balanced version of any
RLSLP, we can reuse Corollaries 15, 21, and 24, to obtain a similar result for RLSLPs.
Note that we can improve those results because we do not need to preprocess the
grammar to simulate the rmq and nsv queries on blocks, because in an RLSLP all the
cases of run-length rules A→ Bt fall inside the subcase 1 of RMQs and NSVs.

Corollary 25. Let T [1 . . n] be generated by a RLSLP G. Then, we can build in time
and space O(|G|) data structures of size O(|G|) that (i) extract any substring T [l . . l+
λ−1] in time O(λ+log n), (ii) compute any query rmq(T, p, q) in time O(log n), and
(iii) compute any query psv/nsv(T, p, v) in time O(log n).

Those results on RLSLPs have already been obtained before [10, 15], but our
solutions exploiting balancedness are much simpler once projected into the run-length
rules. We now exploit the simplicity of RLSLPs to answer a wider range of queries on
substrings, and show as a particular case how to compute Karp-Rabin fingerprints in
logarithmic time; we do not know how to do that on general ISLPs.

6.1 More General Functions

We now expand our results to a wide family of composable functions that can be
computed in O(log n) time on top of balanced RLSLPs. We prove the following result.

Theorem 26. Let f be a composable function from strings to a set of size nO(1),
computable in time tf for strings of length 1, with its composing function g being
computable in time tg. Then, given an RLSLP G representing T [1 . . n], there is a
data structure of size O(|G|) that can be built in time O(|G|(tf + tg log n)) and that
computes any f(T [i . . j]) in time O(tg log n).
Proof. By Theorem 3, we can assume G is balanced. We store the values L[A] =
|exp(A)| and F [A] = f(exp(A)) for every variable A, as arrays. These arrays add only
O(|G|) extra space because the values in F fit inO(log n)-bit words. Let us overload the
notation and use f(A, i, j) = f(exp(A)[i . . j]). Algorithm 7 shows how to compute any
f(A, i, j); by calling it on the start symbol S of G we compute f(T [i . . j]) = f(S, i, j).

Just as for ISLPs, in the beginning we follow a single path along the derivation
tree, with only one recursive call per argument A (lines 6, 8, and 17). The cost of
those calls adds up to the height of the grammar, O(log n). This path finishes at a leaf
or at an internal node A where exp(A)[i . . j] spans more than one child of A in the
derivation tree, in which case we may perform two recursive calls. Note that in the
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Algorithm 7 Computation of general string functions in RLSLPs in O(log n) steps
Input: A variable A of an RLSLP (with its arrays L and F as global variables), and

two positions 1 ≤ i ≤ j ≤ |exp(A)|.
Output: f(exp(A)[i . . j]).
1: function f(A, i, j)
2: if (i, j) = (1, |exp(A)|) then // whole symbols solved in constant time
3: return F [A]
4: else if A→ BC then // try to recurse only left or right
5: if j ≤ |exp(B)| then
6: return f(B, i, j)
7: else if |exp(B)| < i then
8: return f(C, i− |exp(B)|, j − |exp(B)|)
9: else (i ≤ |exp(B)| < j) // compose left suffix and right prefix calls

10: fl ← f(B, i, |exp(B)|)
11: fr ← f(C, 1, j − |exp(B)|)
12: return g(fl, fr)

13: else (A→ Bt) // run-length rule spanning from t′ to t′′

14: t′ ← ⌈i/|exp(B)|⌉
15: t′′ ← ⌈j/|exp(B)|⌉
16: if t′ = t′′ then // still recurse on only one symbol
17: return f(B, i− (t′ − 1) · |exp(B)|, j − (t′ − 1) · |exp(B)|)
18: fl ← f(B, i− (t′ − 1) · |exp(B)|, |exp(B)|) // left suffix call
19: fr ← f(B, 1, j − (t′′ − 1) · |exp(B)|) // right prefix call
20: Compute fc(t

′′ − t′ − 1) using the recurrence // many whole symbols

fc(k)←


f(ε) if k = 0;

F [B] if k = 1;

g(fc(k/2), fc(k/2)) if k is even;

g(F [B], fc(k − 1)) if k is odd.

21: return g(g(fl, fc(t
′′ − t− 1)), fr) // compose left, middle, right

only places where this may occur (lines 10–11 and 18–19) those recursive calls will be
prefix/suffix calls (i.e., either i = 1 or j = L[A] when we call f(A, i, j)). We now focus
on bounding the cost of prefix/suffix calls.

We define c(A) as the highest cost to compute f(A, i, L[A]) or f(A, 1, j) over any i
and j (i.e., the cost of prefix/suffix calls), charging 1 to the number of calls to function
f and tg to each invocation to function g. We assume for simplicity that tg ≥ 1 and
prove by induction that c(A) ≤ (1 + 2tg)d(A) + 2tg log |exp(A)|, where d(A) is the
distance from A to its deepest descendant leaf in the derivation tree. This certainly
holds in the base case of leaves, where d(A) = 1; it is included in lines 2–3.

In the inductive case of rules A→ BC (lines 4–12), we note that there can be two
calls to f, but in prefix/suffix calls one of those calls spans the whole symbol—line 10
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in a prefix call or line 11 in a suffix call. Calls that span the whole symbol finish in
line 3 and therefore cost just 1. Therefore, we have c(A) ≤ 1 + max(c(B), c(C)) + tg,
which by induction is

c(A) ≤ 1 + max(c(B), c(C)) + tg

≤ 1 + tg +max((1+2tg)d(B) + 2tg log |exp(B)|, (1+2tg)d(C) + 2tg log |exp(C)|)
≤ (1 + 2tg)(1 + max(d(B), d(C))) + 2tg logmax(|exp(B)|, |exp(C)|))
≤ (1 + 2tg)d(A) + 2tg log |exp(A)|).

In the inductive case of rules A → Bt (lines 13–21), a similar situation occurs
in lines 18–19: only one of the two recursive calls is nontrivial. Therefore, it holds
c(A) ≤ 1 + c(B) + 2tg log t + 2tg, where the term 2tg log t comes from the recursive
procedure to compute fc(t

′′ − t′ − 1) in line 20; the logarithm is in base 2. Because
t = |exp(A)|/|exp(B)|, by induction we have

c(A) ≤ 1 + c(B) + tg(2 + 2 log(|exp(A)|/|exp(B)|))
≤ 1 + (1 + 2tg)d(B) + 2tg log |exp(B)|+ 2tg(1 + log(|exp(A)|/|exp(B)|))
= (1 + 2tg)(1 + d(B)) + 2tg log |exp(A)| = (1 + 2tg)d(A) + 2tg log |exp(A)|.

Therefore, the procedure costs c(A) = (1+2tg)d(A)+2tg log |exp(A)| = O(tg ·log n)
from the nonterminal A in which the single path splits into two.

Arrays L and F can be precomputed in time O(|G|(tf + tg log n)) via a postorder
traversal of the grammar tree. We compute f for every distinct individual symbol and
g for each distinct nonterminal A, whose children have by then their L and F entries
already computed. In the case of rules A → Bt, the entry F [A] can be computed in
time O(tg log t) with the same mechanism used in line 20 of Algorithm 7.

We show in the next section how to use this result to compute a more complicated
function, which in particular we do not know how to compute efficiently on ISLPs.

6.2 Application: Karp-Rabin Fingerprints

Given a string T [1 . . n], a suitable integer c, and a prime number µ ∈ O(n), the
Karp-Rabin fingerprint [21] of T [i . . j], for 1 ≤ i ≤ j ≤ n, is defined as

κ(T [i . . j]) =

(
j∑

k=i

T [k] · ck−i

)
mod µ.

Computation of fingerprints of text substrings from their grammar representation
is a key component of various compressed text indexing schemes [10]. While it is known
how to compute it in O(log n) time using O(|G|) space on an RLSLP G [10, App. A],
we show now a much simpler procedure that is an application of Theorem 26.

Note that, for any split position p ∈ [i . . j − 1], it holds

κ(T [i . . j]) =

(
κ(T [i . . p]) + κ(T [p+ 1 . . j]) · cp−i+1

)
mod µ. (3)
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We use this property as a basis for the efficient computation of fingerprints on RLSLPs.

Theorem 27 (cf. [6, 10]). Given an RLSLP G representing T [1 . . n] and a Karp-Rabin
fingerprint function κ, there is a data structure of size O(|G|) that can be built in time
O(|G| log n) and computes fingerprints of arbitrary substrings of T in O(log n) time.

Proof. Let f(X) = ⟨κ(X), c|X|⟩ be the function f to apply Theorem 26. We then define

g(⟨κx, cx⟩, ⟨κy, cy⟩) = ⟨(κx + κy · cx) mod µ, (cx · cy) mod µ⟩,

which can be computed in time tg = O(1).
It is easy to see that, by Eq. (3), f(XY ) = ⟨κ(XY ), c|XY |⟩ = ⟨(κ(X) +

κ(Y ) ·c|X|) mod µ, (c|X| ·c|Y |) mod µ⟩ = g(⟨κ(X), c|X|⟩, ⟨κ(Y ), c|Y |⟩) = g(f(X), f(Y )).
Therefore, application of Theorem 26 leads to a procedure that computes f(T [i . . j]) =
⟨κ(T [i . . j]), cj−i+1 mod µ⟩ in time O(log n) and using O(|G|) extra space.

7 Conclusions

We have generalized a recent result by Ganardi et al. [17], which shows how to balance
any SLP while maintaining its asymptotic size. Our generalization, called GSLP, allows
rules of the form A → x, where x is a program that generates the actual (possibly
much longer) right-hand side. While we believe that this general result can be of
wide interest to balance many kinds of generalizations of SLPs, we demonstrate its
usefulness on a particular generalization of SLPs we call Iterated SLPs (ISLPs). ISLPs
are the first representation offering polylogarithmic-time access to the string symbols
(thanks to balancing), while at the same time outperforming the well-known space
measure δ [10, 43], based on substring complexity, by a large O(√n) factor. A certain
subclass of ISLPs achieves O(log n) access time, which is nearly optimal [46]. This
subclass includes Run-Length SLPs (RLSLPs), which extend SLPs just with the rule
A→ Bt. Balancing allows us computing a wide class of substring queries on RLSLPs.

Bannai et al. [4] made another interesting use of our result on balancing RLSLPs
(in its conference version [41]), to show that a certain restriction on Lempel-Ziv pars-
ing that enables access to an arbitrary position in O(log n) predecessor queries, always
reaches size O(grl). The size z∗ ≥ z of such parsing is then a new accessible repeti-
tiveness measure that outperforms RLSLPs. The same string family that was used to
show that z can be o(grl) [7] serves to show that z∗ can be o(grl); therefore z∗ is a
new accessible measure strictly better than grl.

The variables produced by the programs x in our GSLP rules must appear twice
for our balancing to work. It is possible to lift this restriction by cutting the rules
A → x so as to isolate, if needed, variables that appear once in the output of x.
For this to work, the computation model must allow splitting the program x as well,
so that the combined size of the new programs does not double along the process.
While this seems not possible in Turing-complete models, there could be interesting
generalizations of ISLPs that can be balanceable in this way. Actually, we note that the
balancing procedure only needs the special variables to be endpoints of the SC-paths.
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This is ensured if variables appear twice, but there could be more relaxed conditions
to ensure balancing that might be worth exploring.

Several questions remain open on ISLPs. One is about the cost to find the smallest
ISLP that generates a given text T ; we conjecture the problem is NP-hard as it is for
plain SLPs [9] and RLSLPs [22]. Indeed, since RLSLPs correspond exactly to what we
called 0-ISLPs, finding the smallest 0-ISLP is NP-hard. It is open to extend this result
to d-ISLPs for other values of d (this parameter limits the complexity of the ISLP).

A second question is whether we can build an index based on ISLPs that offers
efficient pattern matching. While ISLPs support random access to the text, the typical
path followed for SLPs [11] and for RLSLPs [10, App. A] cannot be directly applied
for ISLPs, because iteration rules, which are of size O(t), would require indexing Θ(kt)
positions. Computing Karp-Rabin fingerprints [21] on text substrings, which can be
done in logarithmic time on SLPs and RLSLPs and enable substring equality and
longest common prefix computations on T , is also challenging on general ISLPs.
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