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1 INTRODUCTION
Assume we have a set 𝑋 of 𝑛 keys from a universe𝑈 with a total order. In the predecessor problem,

one is given a query element 𝑞 ∈ 𝑈 , and is asked to find the maximum 𝑝 ∈ 𝑋 such that 𝑝 ≤ 𝑞 (the
predecessor of 𝑞). This is an extension of the more basic membership problem, which only aims to

find whether 𝑞 ∈ 𝑋 . Both are fundamental algorithmic problems that compose the “sorting and

searching” core, which lies at the base of virtually every other area and application in Computer

Science (e.g., see [7, 22, 37, 58, 59, 65, 75]). Just consider very basic problems like “what was the

last message received before this time instant?”, “where this element fits in my ordered set?”, or

“up to which job in this list can be completed within a time slot?”. These questions boil down to

instances of the predecessor problem.

The general goal is to preprocess 𝑋 so that predecessor queries can be answered efficiently. Two

obvious solutions, both to the predecessor and the membership problems, are to maintain 𝑋 sorted

on an array (in the static case, where 𝑋 does not change) or in a balanced search tree (to efficiently

support updates on 𝑋 , in the dynamic case). These solutions yield O(log𝑛) search time, and can

be shown to be optimal if we have to proceed by comparisons. In the (rather realistic) case where

other strategies are permitted, particularly if𝑈 is a range of integers, the problems exhibit a much

richer structure and fundamental differences. For example, membership queries can be solved in

O(1) time via perfect hashing [51], whereas this is impossible in general for predecessor queries.

The history of the predecessor problem, from the first data structure of van Emde Boas in 1977

to the optimal results of Patrascu and Thorup and the currently open questions, is full of elegant

and inspiring ideas that are also valuable beyond this problem. The techniques and data structures
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introduced for predecessor search have had great impact in problems like, for instance, integer

sorting [9, 10, 52, 58, 59, 64, 97], string searching [15, 19, 27, 29, 30, 50, 67] and sorting [13, 24, 48, 62],

various geometric retrieval problems [1, 35–39, 75], and representations of bit-vectors and string

sequences with rank/select support [22, 55, 79, 85, 91]. This article is a gentle introduction to those

developments, striving for simplicity without giving up on formal correctness. We assume the

reader is familiar with basic concepts used to characterize the performance of algorithms (such as

worst-case, expected and amortized running times).

We start with a brief summary of the current results and the main algorithmic ideas in Section 2,

for the impatient readers. We then review in Section 3 the fundamental data structures for the

predecessor problem, tracing the evolution from the first data structure of van Emde Boas [100]

to the optimal results of Patrascu and Thorup [82, 83, 84]. The most relevant ideas and results on

lower bounds for the problem are surveyed in Section 4. Finally, we cover in Section 5 some work

on other variants, special cases, of the predecessor problem, and discuss some of the questions that

remain open. Only a medium background in algorithmics is assumed from the reader.

2 SUMMARY
In the predecessor problem we are asked to preprocess a finite set 𝑋 ⊆ 𝑈 so that later, given any

𝑞 ∈ 𝑈 , we can efficiently compute 𝑝𝑟𝑒𝑑 (𝑋,𝑞) = max{𝑝 ∈ 𝑋, 𝑝 ≤ 𝑞}. We call 𝑛 = |𝑋 |, 𝑢 = |𝑈 |, and
will assume𝑈 = {0, 1, . . . , 𝑢−1} for simplicity. Even though this integer universe might seem a very

specific case, all objects manipulated by a standard conventional computer are treated at the lowest

level as bit patterns that can be interpreted as integers. Basic data types (like string characters, or

floating-point numbers) are designed so that the order induced by the integers representing the

elements is the same as the natural order of the original universe (e.g., see [86, Section 3.5]).

2.1 Models of computation
The complexity of the predecessor problem, both in the static and dynamic settings, is well under-

stood under the assumption that elements are abstract objects with a total order that can only be

compared. In this model, balanced search trees support predecessor queries in O(log𝑛) time, which

is optimal by basic information-theoretic arguments [68, Sec. 11.2]. However, given the restrictive

nature of this comparison model, such optimality might be misleading: in many cases the universe

𝑈 is discrete, in particular a range of the integers, and then a realistic computer can perform other

operations apart from comparing the elements. Thus, the predecessor problem is mainly studied

in three models: the word-RAM and external memory models for upper bounds, and the cell-probe
model for lower bounds.
The word-RAM model [56] aims to reflect the power of standard computers. The memory is

an array of addressable words of 𝑤 bits which can be accessed in constant time, and basic logic

and arithmetic operations on𝑤-bit integers consume constant time. Since memory addresses are

contained in words, it is assumed that𝑤 ≥ log𝑢 ≥ log𝑛 (logarithms are to the base 2 by default).

The word-RAM is actually a family of models differing in the repertoire of instructions assumed to

be constant-time. Addition, subtraction, bitwise conjunction and disjunction, comparison, and shifts

are usually included. This is the case in the AC
0
-RAMmodel, where only operations that implement

functions computable by unbounded fan-in circuits of constant depth and size polynomial in 𝑤

are available. This set of operations is usually augmented, for instance to include multiplication

and division, which are not constant-time in AC
0
-RAM. Most of the upper bounds for predecessor

search on integer inputs were introduced in a word-RAM that includes multiplication and division.

In the external memory model [2], together with the main memory, the machine has access to

an unbounded external memory divided in blocks that fit 𝐵 words each, and the main memory can

store at most𝑀 blocks simultaneously. The cost of evaluating logic and arithmetic operations is
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assumed to be marginal with respect to the cost of transferring blocks from/to the external memory.

Thus, the cost of algorithms is given only by the numbers of blocks transferred between the main

and external memories.

Finally, in the cell-probe model, as in word-RAM, the memory is divided into words of𝑤 bits,

but the cost of an algorithm is measured only by the number of memory words it accesses, and

computations have zero cost. Its simplicity makes it a strong model for lower bounds on data

structures [81], subsuming other important models, including word-RAM and external memory.

2.2 The short story
In the static setting, where 𝑋 does not change along time, Patrascu and Thorup [82, 83] completely

solved the predecessor problem in a remarkable set of papers. In the dynamic setting, where 𝑋 may

undergo updates, there is still room for improvement [84]. Patrascu and Thorup [82] showed that

in the word-RAM, given a set of 𝑛 integers of 𝑙 bits (i.e., 𝑙 = log𝑢), the optimal predecessor search

time of any data structure using 2
𝑎𝑛 bits of space, for any 𝑎 ≥ log 𝑙 is, up to constant factors,

1 +min


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𝑎
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(1)

They introduce a matching deterministic lower bound in the cell-probe model for the static case

which holds even under randomized query schemes [83]. Thus this bound is optimal under any

selection of 𝑛, 𝑙 ,𝑤 and 𝑎, and even if randomization is allowed.

In the dynamic setting, Patrascu and Thorup [84] described a data structure with optimal expected

time (i.e., matching Equation (1)) for 𝑙 ≤ 𝑤 (considering the time as the maximum between updates

and queries). The worst-case optimal running times of these operations are still open.

These optimality results also hold for the external memory model (replacing𝑤 by 𝐵 in the first

branch). Their static and dynamic lower bounds apply to the number of cell-probes that the query

algorithm must make to the portion of memory where the data structure resides. By interpreting

“cells probed” as “blocks transfered to main memory”, the lower bounds apply to external memory.

Moreover, any algorithm running in time 𝑇 (𝑛) in a word-RAM can trivially be converted into an

algorithm in external memory performing at most 𝑇 (𝑛) I/Os. Such bounds are usually sub-optimal

but, surprisingly, a simple modification of the optimal word-RAM data structures of Patrascu and

Thorup yields an optimal data structure in the external memory model as well.

Some interesting simplified cases of Equation (1), using linear space (i.e., O(𝑛 log𝑢) bits, implying

𝑎 = log log𝑢+O(1)) are, in each of the 4 branches of the formula: (1) constant if𝑋 is small compared

to the machine word, 𝑛 = 𝑤 O(1) ; (2) O(log log(𝑢/𝑛)), decreasing as 𝑋 becomes denser in 𝑈 and

reaching constant time when𝑛 = Θ(𝑢); (3&4) 𝑜 (log log𝑢) if𝑋 is very small compared to𝑈 . A simple

function of 𝑢 that holds as an upper and lower bound for any 𝑛 is Θ(log log𝑢), which is reached

for example if 𝑛 =
√
𝑢. Note, on the other hand, that we can reach constant time by using O(𝑢) bits

of space, if we set 𝑎 = log(𝑢/𝑛). This is the classical solution for rank on bitvectors [41, 76].

2.3 Main techniques and data structures
Two main techniques are used to support predecessor queries: length reduction and cardinality
reduction [16]. Intuitively, in the first one the size of𝑈 is reduced recursively, while in the second
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one the size of 𝑋 is reduced recursively. Data structures implementing length reduction are essen-

tially based on tries (or digital trees) [65, Chapter 6.3] of height depending on 𝑢, while the ones

implementing cardinality reduction are mainly based on B-Trees (or perfectly balanced multiary

trees) [43, Chapter 18] of height depending on |𝑋 |. The two main representatives of these data

structures are the van Emde Boas tree [102], and the fusion tree [52], respectively.
A van Emde Boas tree [102] is a trie of height log𝑢 in which the leaves are in a one-to-one

correspondence with the elements of𝑈 . To store 𝑋 , the leaves corresponding to elements in the set,

and their ancestors, are bit-marked. Predecessor queries are supported by inspecting these marks

via binary search on the levels. Since the height of the tree is ⌈log𝑢⌉, this search takes O(log log𝑢)
time. The main disadvantage of this data structure is that it uses O(𝑢) space (measured in words

by default). Various improvements have been proposed in this direction. For instance, Willard

presented the 𝑥-fast trie [103], a variant of van Emde Boas trees which requires only O(𝑛 log𝑢)
space. They also introduced the𝑦-fast trie, which combines an 𝑥-fast triewith balanced search trees

to reduce the space to O(𝑛). The idea is to create an ordered partition of the set into O(𝑛/log𝑢) slots,
chose one representative element from each slot (e.g., the minimum) and store them in an 𝑥-fast
trie, and store each slot independently in a balanced search tree. Both of Willard’s variants [103] of

the van Emde Boas tree perform membership and predecessor queries in worst-case O(log log𝑢)
time, and 𝑦-fast tries achieve amortized O(log log𝑢) update time in expectation (due to the use of

hashing to store the levels of the 𝑥-fast trie). Combining Willard’s variants [103] with table-lookup,

Patrascu and Thorup [82] achieved the bound in the second branch of their optimal tradeoffs.

In an orthogonal direction, Fredman and Willard [52] introduced fusion trees, basically a B-Tree
of degree depending on 𝑤 . They showed how to pack 𝑤𝜀

keys into one single word such that

predecessor queries among the keys are supported in constant time, for any 𝜀 ≤ 1/5. This allows to
simulate a B-Tree of degree𝑤𝜀

, supporting predecessor queries in O(log𝑤 𝑛) time, while using only

O(𝑛) space. Note that this query time is within O(log𝑛/log log𝑛) since 𝑤 = Ω(log𝑛), and thus

fusion trees asymptotically outperform binary search trees. Andersson [9] improved this bound

by means of another data structure implementing cardinality reduction: the exponential search
tree. This data structure is basically a multi-way search tree of height O(log log𝑛) in which the

maximum degree of a node, instead of being fixed (as in fusion trees), decreases exponentially with

the depth of the node. Combined with fusion trees, an exponential search tree supports predecessor
queries in O(

√
log𝑛) time. More importantly, exponential search trees serve as a general technique

to reduce the problem of searching predecessors in a dynamic set using linear space to the static

version of the problem using polynomial space. This turned out to be a powerful tool for predecessor

queries and integer sorting [12, 58].

Another key result was presented by Beame and Fich [14], who combined a fusion tree with a

variant of the 𝑥-fast trie (thereby combining length and cardinality reduction). They replace the

binary search in the levels of the 𝑥-fast trie by a multi-way search that, using the power of parallel

hashing, can examine several different levels of the trie at once. Later, Patrascu and Thorup [82]

refined and combined all these results to obtain their optimal bounds: the first branch resulting

directly from fusion trees third and fourth branches of their optimal bounds.

3 DATA STRUCTURES
The two main techniques used in the design of data structures for the predecessor problem are

length reduction and cardinality reduction [16]. None of the data structures based on exclusively

one of these two techniques is optimal under all the regimes of the parameters. Achieving such an

optimal data structure required an advanced combination of both techniques. We give an outlook

of the main data structures for the predecessor problem based on length reduction and cardinality
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reduction in Sections 3.1 and 3.2, respectively. We then present in Sections 3.3 and 3.4 some of the

data structures based on combining these two techniques, including the optimal data structure of

Patrascu and Thorup [82]. All the data structures are described in the word-RAM model, unless

otherwise specified. Some of the data structures make use of hash tables. In the static case, for those

solutions we will assume perfect hash tables with deterministic constant-time lookup, which can

be constructed in O(𝑛) expected time [51], and O(𝑛(log log𝑛)2) deterministic worst-case time [92].

Thus, for such data structures, query-time upper bounds will always be for the worst case.

3.1 Predecessor search via length reduction
Data structures implementing length reduction are essentially based on tries of height depending

on 𝑢. The first data structure implementing this concept for the predecessor problem was the

van Emde Boas tree, originally introduced by van Emde Boas in 1977 [100] and studied today in

undergraduate courses of algorithms [43, Chap. 20]. Van Emde Boas trees support predecessor
queries and updates in O(log log𝑢) time, but their major drawback is that they use Θ(𝑢) words,
which may be too large. We give a brief overview of van Emde Boas trees in Section 3.1.1, and then

present in Section 3.1.2 some of the data structures that improve their space usage while preserving

their query and update time.

3.1.1 Van Emde Boas trees. The van Emde Boas tree was one of the first data structures (and

algorithms in general) that exploited bounded precision to obtain faster running times [78], and

they support predecessor queries and updates in O(log log𝑢) time. There are two main approaches

to obtain this time: the cluster-galaxy approach, and the trie-based approach.

Cluster-galaxy approach. The most popular one is a direct recursive approach introduced by

Knuth [66] (as acknowledged by van Emde Boas [101]). In this approach, the universe is seen as a

“galaxy” of

√
𝑢 “clusters”, each containing

√
𝑢 elements. A van Emde Boas tree T over a universe𝑈

is a recursive tree that stores at each node:

• T.min, T.max: The minimum and maximum elements of𝑈 inserted in the tree, respectively.

If the tree is empty then T.min = +∞, and T.max = −∞. The value T.max is not stored

recursively down the tree.

• T.clusters: An array with

√
𝑢 children (one per cluster). The 𝑖-th child is a van Emde Boas

tree over a universe of size
√
𝑢 representing the elements in the range [𝑖

√
𝑢, (𝑖 + 1)

√
𝑢 − 1],

for all 𝑖 ∈ [0,
√
𝑢 − 1].

• T.galaxy: A van Emde Boas tree over a universe of size

√
𝑢 storing which children (i.e.,

clusters) contain elements, and supporting predecessor queries on this information.

One can also think of clusters and galaxies in the following way: the galaxy is formed by the distinct

values of the
log𝑢

2
higher bits of the elements, and each such value 𝑐 is associated with a cluster

formed by the
log𝑢

2
lower bits of the elements whose higher bits are 𝑐 . The clusters are then divided

recursively.

Algorithm 1 shows how the predecessor is found with this structure. Each call is decomposed

into one recursive call at the cluster or at the galaxy level, but not both. The time complexity then

satisfies the recurrence𝑇 (𝑢) = 𝑇 (
√
𝑢) +O(1), which solves to O(log log𝑢). Insertions and deletions

are handled analogously.

This recursive approach requires address computations, though, which in turn require multipli-

cations, and these were not taken as constant-time in the RAM models in use by the time of the

original article [101]. To avoid multiplications, van Emde Boas described his solution based on tries.

Today, instead, constant-time multiplications are regarded as perfectly acceptable [43, Sec. 2.2].
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Algorithm 1 vEB_predecessor(T, 𝑞)

1: if 𝑞 ≥ T.max then
2: return T.max;
3: let cluster𝑞 ←

⌊
𝑞/
√
𝑢
⌋
, low𝑞 ← (𝑞 mod

√
𝑢), and high𝑞 ←

√
𝑢 · cluster𝑞

4: if low𝑞 ≥ T.clusters[cluster𝑞] .min then
5: return high𝑞 + vEB_predecessor(T.clusters[cluster𝑞], low𝑞)
6: return high𝑞 + T.clusters[vEB_predecessor(T.galaxy, cluster𝑞)] .max

0 0 11

1

1

1

1

1 1

1

0 0 0 0 0 0 0 0 0 0 01 1 10 00 00 00 0 0 00 0 0 0

0

0

0 0 0 0 0 0 00 0 0

000

0

1 1 1

1111

1

1 2 3 4 5 6 7 8 9 10 13 14 15 16 22 23 24 25 26 312112 18 20 28 300

galaxy

cluster 0 cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7

11 17 19 27 29

0

1

0

1

1

Fig. 1. A complete binary tree storing the set 𝑋 = {11, 17, 19, 27, 29} from the universe 𝑈 =

{0, 1, . . . , 31}. The nodes containing elements from 𝑋 , and their ancestors, are bit-marked with a 1.
If the edges are labeled with 0 or 1 depending on whether they point to the left or the right children,
respectively, the concatenation of the labels in a root-to-leaf path yields the binary representation
of the leaf (e.g., see the path down to 14 = 01110). Thus, the tree corresponds to a complete trie
representing𝑈 . In the cluster-galaxy approach, the galaxy corresponds to the top half of the tree,
while the clusters correspond to the trees rooted at the leaves of the galaxy. The root-to-leaf path
corresponding to the element 𝑞 = 21 (bit-marked as 111000) is highlighted with bold lines, as is
the exit node of 𝑞 with double lines (corresponding to the last 1 in the bit-marks of the path).

Trie-based approach. In the original approach [100–102], the elements of𝑈 are represented by

a complete binary tree whose leaves in left-to-right order correspond to the elements of 𝑢 in

ascending order, respectively (see Figure 1). By assigning the label 0 (resp., 1) to the edge connecting

with the left (resp., right) child of each node, the tree becomes a complete trie storing the binary

representation of the elements of𝑈 . For each node of the tree (internal or leaf) a bit-mark is stored.

A set 𝑋 is represented by marking the leaves corresponding to its elements together with all its

ancestors up to the root. Additionally, for every internal node 𝑣 with bit-mark 1, two pointers are

stored, pointing to the minimum and maximum marked leaves of the tree rooted at 𝑣 . Finally, the

leaves corresponding to consecutive elements in 𝑋 are connected using a doubly-linked list.

For any element 𝑞 ∈ 𝑈 , consider the sequence 𝑠𝑞 of ℎ = ⌈log𝑢⌉ bit-marks in the path from the

root to the leaf corresponding to 𝑞. There must be an index 𝑗 ∈ [0, ℎ − 1] such that 𝑠𝑞 [𝑖] = 1 for

all 𝑖 ≤ 𝑗 , and 𝑠𝑞 [𝑘] = 0 for all 𝑘 > 𝑗 (i.e., 𝑠𝑞 is of the form 1
𝑗
0
ℎ−𝑗

). For such a 𝑗 , the 𝑗-th node in

the path from the root of the tree to 𝑞 is named the exit node of 𝑞. Note that if we can locate the

exit node 𝑒 of 𝑞, then the predecessor and successor of 𝑞 can be computed in constant time using

the pointers to the minimum and maximum leaves descending from 𝑒 , and the doubly-linked list

connecting the leaves.

The idea of van Emde Boas to efficiently locate the exit node was to use binary search on the

paths, a method inspired in the algorithm to find lowest common ancestors introduced by Aho

et al. [3]. A simple way to perform this type of binary search on the levels is to store the levels in a
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11 17 19 27 29
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hash table level 3

hash table level 4

hash table level 2

Fig. 2. An 𝑥-fast trie storing the set 𝑋 = {11, 17, 19, 27, 29} from the universe𝑈 = {0, 1, . . . , 31}.

two-dimensional array. Since the size of the paths is ℎ, such a binary search can be implemented in

O(logℎ) time, which is O(log log𝑢). However, this solution requires address computations, and

therefore multiplication operations, which van Emde Boas was trying to avoid.

To achieve this running time without multiplications the solution was to decompose the tree

into so-called canonical subtrees, a recursive subdivision of the tree into a top tree of height ℎ/2
corresponding to the first ℎ/2 levels, and

√
𝑢 bottom trees of height ℎ/2, whose roots were precisely

the leaves of the top tree. The top tree represents, for each of the

√
𝑢 different values of the leftmost

ℎ/2 bits of the elements of𝑈 , whether they appear in the set 𝑋 or not. Similarly, for each of those

different values of the leftmost ℎ/2 bits, the respective bottom tree stores which of

√
𝑢 different

values of the rightmost ℎ/2 bits are present in 𝑋 .1 The decomposition of the tree into canonical

subtrees was also key to allow updates in O(log log𝑢) time, because marking all the bits of the

affected path in the original tree would require Θ(log𝑢) time after each insertion or deletion. For

the complete details on how these trees are stored and maintained, we refer the reader to van Emde

Boas’ original article [100].

Modern implementations of the van Emde Boas tree and its variants use hash tables to store the

levels, in order to reduce the space required by the data structure while still supporting the binary

searches on the levels efficiently (although the running time guarantees obtained are “with high

probability” instead of worst-case). We explore some of these variants next.

3.1.2 Reducing the Space of van Emde Boas trees.

𝑋 -fast tries: almost linear space, but with slow updates. In 1983, Willard [103] introduced a variant

of van Emde Boas’ data structure that uses O(𝑛) space while preserving the running times, under

the name of “𝑦-fast tries”. As a first step towards his result, Willard [103] introduced a simpler data

structure, the 𝑥-fast trie, in which the space used is almost linear, but updates are slow. Like van
Emde Boas trees, an 𝑥-fast trie is a trie whose leaves correspond to the elements of𝑈 (present in

𝑋 ), and any root-to-leaf path yields the binary representation of the element at the leaf. The height

of the 𝑥-fast trie is then O(log𝑢) as well, but it has only |𝑋 | leaves instead of 𝑢.

The first key idea to reduce the space was to maintain each level of the tree in a hash table. For

each 𝑙 ∈ [1, log𝑢], a hash table 𝐻𝑙 stores the prefixes of length 𝑙 of every element in 𝑋 , associated

with the respective node in the trie at the 𝑙-th level. By binary searching on these log𝑢 hash tables,

one can find the exit node of any search key 𝑞 in O(log log𝑢) time. By definition, the exit node of

𝑞 cannot be a branching node. To navigate in constant time from the exit node to the predecessor

or successor of 𝑞, each non-branching node with no left child (resp. right child) points to the

smallest leaf (resp., largest leaf) in its subtree. As in the original van Emde Boas tree, the leaves are
connected using a doubly-linked list (see Figure 2). Given that each of the 𝑛 elements of 𝑋 appears

1
The top and bottom trees correspond to the galaxy and clusters, respectively, in the variant described by Knuth [66].
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Fig. 3. An illustration of the bucketing technique in𝑦-fast tries. The 𝑛 elements of𝑋 are partitioned
into Θ(𝑛/log𝑢) equally-sized buckets, which are stored using balanced binary search trees (bst).
Only one (representative) element of each bucket is inserted in an 𝑥-fast trie.

in O(log𝑢) hash tables, and since the trie has only O(𝑛 log𝑢) nodes, the 𝑥-fast trie uses O(𝑛 log𝑢)
space in total.

Let ℎ𝑖 (𝑞, 𝑙) be the 𝑙 most significant bits of integer 𝑞. To find the predecessor in 𝑋 of a query 𝑞, a

binary search locates the exit node 𝑣 of 𝑞, which corresponds to the largest 𝑙 such that ℎ𝑖 (𝑞, 𝑙) ∈ 𝐻𝑙 ,

the hash table for level 𝑙 . If 𝑣 is a leaf, the search is complete. Otherwise, 𝑣 must be a non-branching

node (otherwise, it could not be the deepest node prefixing 𝑞), In this case, 𝑣 stores a pointer to the

largest (or smallest) leaf in its subtree, which leads to either the predecessor or the successor of

the query. Since the leaves are doubly-linked, in either case the predecessor of 𝑞 is found easily in

constant time. Therefore, the total query time is within O(log log𝑢): the binary search among the

hash tables takes O(log log𝑢) time, and the subsequent operations take just O(1) additional time.

While 𝑥-fast tries drive the space from the O(𝑢) of van Emde Boas trees to O(𝑛 log𝑢), they still

do not reach linear space. Another drawback is that, during an insertion or deletion in an 𝑥-fast
trie, the O(log𝑢) hash tables, and the pointers to the largest/smallest leaves of the branching nodes

in the affected path, must be updated. Thus, these operations take O(log𝑢) expected time.

𝑌 -fast tries: linear space and faster (amortized) updates. To overcome the space and update time

inconveniences of the 𝑥-fast trie, Willard [103] used a (nowadays standard) bucketing trick. The

𝑛 elements of 𝑋 are separated into Θ(𝑛/log𝑢) buckets of Θ(log𝑢) elements each. Each bucket is

stored in a balanced search tree, and a representative element of each bucket (e.g., the minimum) is

inserted in an 𝑥-fast trie (see Figure 3). This new data structure was called 𝑦-fast trie. Since the
number of elements stored in the 𝑥-fast trie is O(𝑛/log𝑢), and each of the balanced search trees

uses linear space, the total space of the 𝑦-fast trie is then within O((𝑛/log𝑢) · log𝑢) = O(𝑛).
To search for the predecessor of a key 𝑞, one first searches within the 𝑥-fast trie (in O(log log𝑢)

time) to locate the bucket 𝑏 to which the predecessor of 𝑞 belongs. Since each of the bucket is

represented as a balanced search with O(log𝑢) elements, the predecessor of 𝑞 in 𝑏 can then be

easily found in O(log log𝑢) additional time.

To analyze the running time of updates, note that insertions and deletions within the binary

search trees take O(log log𝑢) time. The binary search trees are rebuilt when their sizes double

(during insertions) or quarter (during deletions). These rebuilding operations require O(log𝑢) time,

but because of the frequency with which they are performed (once in at least Θ(log𝑢) operations),
their amortized cost is constant per operation. Similarly, insert and delete operations in the 𝑥-fast
trie cost O(log𝑢) expected time, but because they are carried out only when a new binary tree is

built or an existing one is deleted, their amortized cost is also O(1) in expectation. Thus, insertion

and deletions in a 𝑦-fast trie require expected amortized time O(log log𝑢).
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Mehlhorn and Näher: hashing on the cluster/galaxy approach. In 1990, Mehlhorn and Näher [70]

showed that the same O(log log𝑢) query and amortized time of 𝑦-fast tries could be achieved in

linear space, via a simple modification to the original van Emde Boas tree. Their solution was based

on the cluster/galaxy approach, and on the power of perfect hashing. The idea was to store the

√
𝑢

van Emde Boas trees that represent the clusters of a galaxy in a hash table, instead of storing them

in an array so that no space is spent to store empty clusters. This simple idea reduces the space

from Θ(𝑢) to Θ(𝑛 log log𝑢). To see why, consider what happens when an element is inserted in

the tree. Since replacing the array of clusters by a hash table does not affect the number of nodes

visited during an insertion, an insertion affects at most O(log log𝑢) nodes of the tree. Moreover,

in each of these nodes at most one new entry is added to the hash table of clusters. Thus, after

the insertion the total space of the data structure increases by at most O(log log𝑢) words. Clearly
after inserting the 𝑛 elements, the total space of the tree is bounded by O(𝑛 log log𝑢). While in

the static setting queries can still be supported in O(log log𝑢) worst-case time, in the dynamic

version queries and updates run in O(log log𝑢) expected time. Note that the space can be further

improved to linear by using the same bucketing trick of 𝑦-fast tries, however the running time of

updates becomes O(log log𝑢) expected amortized instead of expected.

𝑍 -fast tries: linear space, and fast updates (in expectation). In 2010, Belazzougui et al. [19] intro-

duced the dynamic 𝑧-fast trie, a version of Willard’s 𝑥-fast tries [103] that achieves linear space and
O(log log𝑢) query and update time with high probability. The first version of this data structure

was actually introduced one year earlier, by Belazzougui et al. [17], but it was static and could

only find the longest common prefix between 𝑞 and its predecessor. To improve upon the space

and update times of the 𝑥-fast trie, Belazzougui et al. [19] made the following key changes (see

Figure 4):

• In the 𝑧-fast trie the elements are stored in a compact trie, instead of a complete trie. The

compact trie collapses unary paths, and as a result it has less than 2𝑛 nodes.

• Only one hash table is used, instead of one per level of the tree, for the binary searches. This,

together with the compact trie, allows reducing the space to O(𝑛).
• The keys stored in the hash table are carefully chosen to allow the efficient location of the

exit node using a variant of binary search called fat binary search. To illustrate the difference

with traditional binary search, suppose that we search for a key 𝑥 within the elements at

positions in [𝑙, 𝑟 ] of a set 𝑆 . In fat binary search, instead of comparing 𝑥 to the element of 𝑆 at

position ⌊ 𝑙+𝑟
2
⌋, 𝑥 is compared with the element 𝑆 [𝑓 ] for the unique 𝑓 in [𝑙, 𝑟 ] that is divisible

by the largest possible power of 2.

• As in the 𝑥-fast trie, each internal node stores two pointers to support fast access to the

nodes storing the minimum and maximum elements in the subtree. However, they do not

point directly to these nodes, but to some other descendant in the path. Instead of accessing

these elements in O(1) time, they are reached in time O(log log𝑢). This approach (similar in

essence to the canonical subtrees of van Emde Boas [100]), is key to allow faster updates.

The keys associated with each node in the hash table are chosen as follows. Let the label 𝑙 (𝛼) of
a node 𝛼 of the compact trie be the concatenation of the labels of the edges in the path from the

root to 𝛼 , and let 𝑝 (𝛼) be the parent of 𝛼 (see Figure 4 again). The 2-fattest number of a non-empty

interval [𝑎, 𝑏] is the unique integer 𝑓 ∈ [𝑎, 𝑏] such that 𝑓 is divisible by 2
𝑘
, for some 𝑘 ≥ 1, and no

number in [𝑎, 𝑏] is divisible by 2
𝑘+1

. The key associated with each node 𝛼 is the prefix of length 𝑓

of 𝑙 (𝛼), where 𝑓 is the 2-fattest number in the interval [|𝑙 (𝑝 (𝛼)) | + 1, |𝑙 (𝛼) |]. To understand why

these keys allow efficiently searching for prefixes of a given query in the trie, note that when one

is binary searching for a value 𝑖 within an interval [𝑎, 𝑏], the first value within the interval that

is visited by the binary search is precisely the 2-fattest number of [𝑎, 𝑏]. A very similar idea for
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Fig. 4. An illustration of a 𝑧-fast trie storing the set 𝑋 = {11, 17, 19, 27, 29} from the universe
𝑈 = {0, 1, . . . , 31}. The pointers that allow efficiently finding the smallest and largest elements
descending from an internal node have been omitted.

searching longest common prefixes in a trie was introduced independently by Ruzic [93], although

there, the keys associated with a node are stored in different hash tables depending on their size

instead of storing them all in the same hash, and the data structure is static.

Belazzougui et al. [18] showed how to implement queries in O(log log𝑢) worst-case time, and

updates in O(log log𝑢) expected time. As for other data structures, the only reason of having

probabilities in the update bound is the use of hashing. Thus, improvements in dynamic hashing

immediately translate into better time bounds for the 𝑧-fast trie.

All the solutions based on length reduction obtain times as a function of 𝑢, which drives the

lengths of the keys. The times are independent of |𝑋 |, however. An orthogonal approach is to

consider trees whose height depend on |𝑋 |, instead of on 𝑢. In the next section we review the fusion
tree, a data structure based on this approach.

3.2 Predecessor search via cardinality reduction
Data structures implementing cardinality reduction are usually based on balanced search trees. The

simplest of such data structures is a complete binary tree, which reduces the set of searched keys by

one half at every level. This solution achieves predecessor search in O(log𝑛) time independently of

the universe size. Another basic idea is to use a B-Tree. Imagine that for any given set of 𝑏 keys, one

can implement predecessor queries in time 𝑄 (𝑏) using space 𝑆 (𝑏). Then, using a B-Tree of degree
𝑏 one could store any set of 𝑛 keys (𝑛 ≫ 𝑏) using space O(𝑆 (𝑏) · 𝑛/𝑏), and answer predecessor

queries in time O(𝑄 (𝑏) · log𝑏 𝑛). If one is able to store a set with 𝑏 = 𝜔 (1) keys so that predecessor

queries take constant time, then predecessor queries over a set of 𝑛 keys can be answered in 𝑜 (log𝑛)
time. In this section we review data structures that implement this idea.

3.2.1 Fusion trees. In 1993, Fredman andWillard [52] introduced the fusion trees. Basically, a fusion
tree is B-Tree whose height depends on the size of the set 𝑋 of keys, and whose degree depends on

the word size𝑤 . They key component of this solution is the fusion node, a data structure which can

support predecessor search among 𝜔 (1) keys in constant time using just O(1) additional words.
For this, Fredman and Willard designed an ingenious sketching technique that packs 𝑏 = Θ(𝑤1/5)
keys into O(1) words2, and showed how to answer predecessor queries among the packed keys

in constant time by means of word-level parallelism. Plugging the fusion node in the main idea

described at the beginning of this section yields a 𝑏-ary search tree with query time O(log𝑤 𝑛).

2
Originally Fredman and Willard [52] required 𝑏 to be O(𝑤1/6) ; however 𝑏 = O(𝑤1/5) is enough [80]. In terms of the

overall performance of fusion trees the exact power is irrelevant, it only translates into a constant factor in the running time.
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Fig. 5. An illustration of the sketching in fusion trees for the set 𝑋 = {11, 15, 19, 27, 29}. In (a), the
branching nodes on the trie representing 𝑋 have been highlighted; they occur only on the levels
𝐵 = {0, 1, 2}. In (b), we illustrate the operation proj𝐵 : the set 𝑋 is represented at the top in binary,
and the bits at positions in 𝐵 have been underlined for each element of 𝑋 . At the bottom we show
the set proj𝐵 (𝑆) of skectches from 𝑋 .

Next, we describe fusion nodes in detail, based on a simplified version of Fredman and Willard’s

work [52] presented by Patrascu in his PhD thesis [78].

Sketching. Let 𝑆 = {𝑥1, . . . , 𝑥𝑏} ⊆ 𝑋 be the values to sketch, and consider the binary trie

representing these values as root-to-leaf paths. Note that there will be at most 𝑏 − 1 branching
nodes (i.e., nodes with more than one child) on these paths (see Figure 5.a). Let 𝐵 be the set of levels

containing at least one of these branching nodes, and let proj𝐵 (𝑥) be the result of projecting a

value 𝑣 ∈ 𝑋 on the bit positions in 𝐵. More precisely, proj𝐵 (𝑣) is the integer of |𝐵 | bits resulting
from

∑ |𝐵 |
𝑖=1

2
𝑖 · 𝑣 [𝐵 [𝑖]], where 𝐵 [𝑖] denotes the 𝑖-th element of 𝐵, and 𝑣 [ 𝑗] the 𝑗-th bit of 𝑣 . The

sketch of the set 𝑆 is simply the set proj𝐵 (𝑆) = {proj𝐵 (𝑥1), . . . , proj𝐵 (𝑥𝑏)} (see Figure 5.b for an
example). This takes 𝑏 |𝐵 | = O(𝑏2) bits, which fits in O(1) words for 𝑏 = O(

√
𝑤).

Note that for any 𝑦 ∈ 𝑆 , if 𝑥 = 𝑝𝑟𝑒𝑑 (𝑋,𝑦) is the predecessor of 𝑦 in 𝑋 , the sketch proj𝐵 (𝑥) is the
predecessor of proj𝐵 (𝑦) in proj𝐵 (𝑆). For elements 𝑦 ∉ 𝑆 this might not be the case (in Figure 5.a

for instance, proj𝐵 (28) = proj𝐵 (29) = 111, thus 28 and 29 have the same predecessor in proj𝐵 (𝑆),
but not in 𝑆). This occurs because the exit node of 𝑦 in the trie may be in a level that is not in 𝐵

(because there are no branching nodes at that level), and the location of proj𝐵 (𝑦) among the leaves

of the trie for proj𝐵 (𝑆) might be different to the location from 𝑦 in the original trie. However,

one can still find the predecessor of any query 𝑦 using its neighbors among the sketches. Suppose

that the sketch proj𝐵 (𝑦) is between proj𝐵 (𝑥𝑖 ) and proj𝐵 (𝑥𝑖+1), for some 𝑖 . Let 𝑝 be the longest

common prefix of either 𝑦 and 𝑥𝑖 , or 𝑦 and 𝑥𝑖+1 (of those two, 𝑝 is the longest); and let 𝑙𝑝 denote the

length of 𝑝 . Note that 𝑝 is necessarily the longest common prefix between 𝑦 and not only 𝑥𝑖 and

𝑥𝑖+1, but any element of 𝑆 . Thus, in the trie for 𝑆 , the node 𝑣 in the 𝑙𝑝 -th level corresponding to 𝑝 is

precisely the exit node of 𝑦. Since only one of the children of 𝑣 has keys from 𝑆 , that child contains

either the predecessor or the successor of 𝑦 depending, respectively, on whether 𝑝1 or 𝑝0 is a prefix

of 𝑦. If 𝑝1 is a prefix of 𝑦, then 𝑦’s predecessor is the same as the predecessor of 𝑒 = 𝑝011 . . . 1, and

if 𝑝0 is a prefix of 𝑦 then 𝑦’s successor is the same the successor of 𝑒 = 𝑝100 . . . 0. The predecessor

(resp., successor) of 𝑒 can be safely determined by using only the sketches: all the bits of 𝑒 and 𝑦 at

positions 𝑏 ∈ 𝐵 such that 𝑏 ≤ 𝑙𝑝 are equal, and all the remaining bits in the suffix of 𝑒 (specially

those in positions of 𝐵) after the first 𝑙𝑝 bits are the highest (resp., the lowest) possible.

Implementation. To support predecessor queries on 𝑆 one needs to perform several operations in

constant time: first, the sketch corresponding to the query must be computed, then one must find

its predecessor among the sketches in proj𝐵 (𝑆), and finally that predecessor must be translated
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into the real predecessor in 𝑆 , by computing 𝑒 as described above and finding its predecessor among

the sketches. The key is an implementation of proj𝐵 (𝑆) that compresses |𝐵 | scattered bits of any

𝑥 ∈ 𝑆 into a space of O(|𝐵 |4) contiguous bits such that, when the 𝑏 keys of 𝑆 are compressed and

concatenated into a word 𝐾 , predecessor queries among the keys can be supported in constant

time. Since 𝐾 must fit in O(1) words, one can sketch only 𝑏 = Θ(𝑤1/5) values, but this is still
enough to obtain O(log𝑤 𝑛) query time. Fredman and Willard [52] showed how to compute 𝐾

in O(𝑏4) time. Solving predecessor queries on 𝑆 involves some carefully chosen multiplication,

masking, and most significant bit operations on 𝐾 . They use word-level parallelism to compare

the query with all the sketches at the same time, and give a constant-time implementation of

the most significant set bit operation, which allows computing 𝑒 in constant time. This approach

relies heavily on constant-time multiplications. It is now known that multiplications are indeed

required: Thorup [98] proved that constant-time multiplications are needed even to support just

constant-time membership queries on sets of size Ω(log𝑛).

Updates. To analyze the running time of updates, note that whenever a fusion node is modified,

the set of relevant bits might change, which would require to recompute all the𝑏 = Θ(𝑤1/5) sketches.
Thus, updating an internal node of the B-Tree (inserting or deleting a child, splitting the node, etc.)

requires O(𝑏4) time in the the worst case. This implies a total update time within O(𝑏4 · log𝑏 𝑛) (the
second term is the number of levels in the B-Tree). To reduce this to O(log𝑏 𝑛 + log𝑏) amortized

time, one can use a bucketing technique similar to 𝑦-fast tries: instead of storing all the elements in

the B-Tree, its leaves point to balanced trees storing between 𝑏4/2 and 𝑏4 keys. Updates in the B-Tree
are only done when the size of a balanced tree falls below 𝑏4/2 after a deletion (triggering a merge),

or exceeds 𝑏4 after an insertion (triggering a split). Since an update within any of these balanced

trees takes O(log𝑏) time, and updates to the B-Tree are needed only every O(𝑏4) update operations
on 𝑋 , the amortized running time of updates is within O(log𝑏 𝑛 + log𝑏), for any 𝑏 ∈ O(𝑤1/5).

3.2.2 Other solutions for small sets. The fusion tree, and particularly the fusion node, was motivated

by a work of Ajtai et al. [5], who introduced in 1984 a data structure for sets 𝑆 of size 𝑤/log𝑤
with constant query and update time, in the cell-probe model. They showed how to implement all

queries and updates using at most 4 cell probes. In this model, however, all the computations are

free, which renders this solution impractical. Their main idea was to represent the keys in 𝑆 in a

compact trie 𝑇 of𝑤 bits. The model allows them to define constant-time arithmetic operations to

search, insert and delete a given key 𝑥 in a compact trie 𝑇 , as long as 𝑇 fits in one word. Although

unrealistic, the work of Ajtai et al. inspired other data structures for small sets, including the fusion
nodes, the 𝑞-nodes (a key ingredient of the atomic heaps) introduced by Fredman and Willard [53],

and the dynamic fusion nodes described by Patrascu and Thorup [84].

In 1994, Fredman and Willard [53] introduced the 𝑞-nodes, a variant of the fusion nodes that can
store (log𝑁 )1/4 keys and perform predecessor queries and updates in constant worst-case time,

provided that one has access to a common table of size O(𝑁 ). Combining the 𝑞-node with B-Trees
yields a a data structure for the dynamic predecessor problem with search and update operations in

O(log𝑤 𝑛) time, as long as 𝑛 ∈ Θ(𝑁 ), and𝑤 ∈ Θ(log𝑁 ). The main issue is that these guarantees

hold only when the value of 𝑛 is (approximately) known in advance, which is impossible in the

fully dynamic version of the problem. However, such a data structure is useful when it is part

of an algorithm for solving some other static problem. For instance, using 𝑞-nodes Fredman and

Willard [53] introduced the atomic heaps, a data structure which allowed them to obtain the best

algorithms at that time for the minimum spanning tree and the shortest path problems. In 2000,

Willard [104] explored the impact of 𝑞-nodes on hashing, priority search trees, and various problems

in computational geometry. The 𝑞-nodes are the key ingredient of the 𝑞∗-heap, a data-structure
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they introduced to obtain improved algorithms for the problems considered. The 𝑞∗-heap performs

similar to the atomic heaps but running time bounds for the 𝑞∗-heap are in the worst-case, while

the ones known for atomic heaps are amortized.

In 2014, Patrascu and Thorup [84] presented a simpler version of the fusion nodeswhich improves

their application under dynamic settings. Their data structure, the dynamic fusion node, stores up
to O(𝑤1/4) keys while supporting predecessor queries and updates in constant worst-case time.

Their solution combines the techniques of Ajtai et al. [5], and of Fredman and Willard [52]: they

simulate the compact trie representation of Ajtai et al. [5] by introducing “don’t care" characters

in the sketches of Fredman and Willard [52]. By using the dynamic fusion node, one can obtain a

simpler implementation of fusion trees: since updates are now done in constant time within the

fusion node, there is no need to use a different data structure at the bottom of the B-Tree (i.e., there
is no need for bucketing) in order to obtain efficient updates. Besides, the update time now becomes

O(log𝑏 𝑛) worst-case instead of amortized O(log𝑏 𝑛 + log𝑏).

None of the data structures based only on length reductions (i.e., van Emde Boas trees and its

variants) is faster than those based only on cardinality reduction (i.e., fusion tree-based solutions)

for all configurations of 𝑛,𝑢, and𝑤 , and the same holds in the other direction. A natural approach

in the hope of finding optimal solutions is combining both techniques. We describe next some

results based on such combination of techniques. We warn the reader that the descriptions become

necessarily more technical from now on, but they mostly build on combining previous ideas.

3.3 Combining length and cardinality reductions
A simple combination of the 𝑦-fast trie [103] and the fusion tree [52] improves the running time of

the operations to O(
√
log𝑛), which is better than each data structure by itself in the worst case.

Since fusion nodes actually allow implementing B-Treeswith any branching factor in O((log𝑢)1/5),
the time bounds of the fusion tree can be improved to O(

√
log𝑛) for 𝑛 ≤ (log𝑢) (log log𝑢)/25, while

retaining O(𝑛) space: simply use a branching factor ofΘ(2
√
log𝑛) in the B-Tree,3 and store 2Θ(

√
log𝑛)

elements in each of the binary search trees at the leaves. For the case 𝑛 > (log𝑢) (log log𝑢)/25,
Willard’s 𝑦-fast tries [103] have query time and expected update time within O(log log𝑢) ⊆
O(

√
log𝑛).4 Better results can be obtained with more sophisticated combinations of cardinality

and length reduction. We review in this section three fundamental ones: a data structure presented

by Andersson [8] achieving sublogarithmic query times (as fusion trees) without multiplications,

the exponential search trees, by Andersson [9], and a data structure introduced by Beame and

Fich [14].

3.3.1 Sublogarithmic searching without multiplications. Fusion treesmake extensive use of constant-

time multiplications, however sublogarithmic search times can be achieved without this operation,

as shown by Andersson [8]. Combining ideas from the 𝑦-fast tries and the fusion trees, Andersson
[8] presented a data structure that uses only AC

0
-RAM operations, supports predecessor queries in

O(
√
log𝑛) time, with expected O(

√
log𝑛) update time, and uses linear space.

The idea is to reduce the problem of supporting predecessor queries among long keys, via length

reduction, into that of maintaining short keys that can be packed into a small number of words,

and be queried and updated efficiently. The data structure is basically a tree in which the top levels

correspond to a 𝑦-fast trie, and each leaf of this 𝑦-fast trie points to a packed B-Tree (similar to the

fusion tree). As in the fusion tree, only Θ(𝑛/2
√
log𝑛) elements are stored in the main data structure;

3𝑛 ≤ (log𝑢) (log log𝑢)/25 ⇒ log𝑛 ≤ (log log𝑢)2/25⇒ 2

√
log𝑛 ≤ (log𝑢)1/5.

4𝑛 > (log𝑢) (log log𝑢)/25 ⇒ log𝑛 > (log log𝑢)2/25⇒
√
log𝑛 > (log log𝑢)/5.
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the rest are in balanced search trees of height Θ(
√
log𝑛). The structure stores

√
log𝑛 levels of the

𝑦-fast trie, which halves the length of the keys at each level, for a total reduction factor of 2

√
log𝑛

.

Because of this reduction, at this point at least 2

√
log𝑛

keys fit in one word. Hence, each leaf of

the 𝑦-fast trie points to a packed B-Tree with branching factor 2

√
log𝑛

and height O(
√
log𝑛). The

searches among the keys of each B-Tree node are performed in constant time via a lookup table.

Brodal [33] constructs a data structure that is similar to Andersson’s [8], which also avoids

multiplications and achieves sublogarithmic search times. It uses buffers to delay updates to the

packed B-Tree. In the worst case, it uses O(𝑓 (𝑛)) time to perform insertions and deletions, and

O((log𝑛)/𝑓 (𝑛)) time for predecessor queries, for any function 𝑓 such that log log𝑛 ≤ 𝑓 (𝑛) ≤√
log𝑛. Yet, it uses O(𝑛𝑢𝜀) space, for some constant 𝜀 > 0.

3.3.2 Exponential Search Trees. The exponential search trees were introduced by Andersson [9] in

1996. They give a general method for transforming any data structure DP for the static predecessor

problem supporting queries in time 𝑄 (𝑛), into a linear-space dynamic data structure with query

and amortized update time 𝑇 (𝑛), where 𝑇 (𝑛) ≤ O(𝑄 (𝑛)) +𝑇 (𝑛𝑘/(𝑘+1) ). The only two conditions

that DP must meet for this are that it can be constructed in O(𝑛𝑘 ) time, and that it uses O(𝑛𝑘 )
space, for some constant 𝑘 ≥ 1. Combining their technique with the fusion tree and the 𝑦-fast
trie, exponential search trees yield a data structure for the dynamic predecessor problem with

worst-case query time and amortized update time of the order of

min


√
log𝑛

log log𝑢 · log log𝑛

log𝑤 𝑛 + log log𝑛

(2)

An exponential search tree is a multiway search tree in which the keys are stored at the leaves,

the root has degree Θ(𝑛1/(𝑘+1) ), and the degree of the other nodes decrease geometrically with

the depth. Besides the children, each internal node stores a set of splitters for navigation (as in

B-Trees): when searching for a key at a node, one can determine which child the key belongs to by

using local search among the splitters. More precisely, let 𝑏 = 𝑛1/(𝑘+1) . At the root of the tree, the 𝑛
keys from 𝑋 are partitioned into 𝑏 blocks, each of size 𝑛/𝑏 = 𝑛𝑘/(𝑘+1) . Like in B-Trees, the set of
splitters of the node consist of the minimum element of the blocks 2, . . . , 𝑏, and this set is stored in

an instance of the data structure DP. An exponential search tree is then built recursively for each

of the 𝑏 blocks, which become the children of the root. The main difference with B-Trees is that the
degree of the nodes changes with the depth: the nodes at depth 𝑖 have a degree of 𝑛 (𝑘/(𝑘+1))

𝑖

. Thus,

after log(𝑘+1)/𝑘 log𝑛 ∈ O(log log𝑛) levels, the nodes store a constant number of keys.

To answer a predecessor search, the O(log log𝑛) levels of the tree are traversed in a root-to-

leaf path. At each node in the path, the data structure DP is queried to determine the child that

contains the answer. It follows that searches in the exponential search tree are supported in time

𝑇 (𝑛) = O(𝑄 (𝑛1/(𝑘+1) )) +𝑇 (𝑛𝑘/(𝑘+1) ).
Unfortunately, updating this data structure requires rebuilding it partially or even globally, which

only allows for amortized update times. Note that for large enough word sizes, the last branch in

the bound of Equation (2) is better than the update time of fusion trees in the dynamic case, which

could only achieve amortized time O(log𝑏 𝑛 + log𝑏), for any 𝑏 ∈ O(𝑤1/5). Andersson and Thorup

[12] de-amortized the bounds for updates of the exponential search trees by using eager partial

rebuilding and showing how to insert or delete an element in constant worst case time, once the

element or its predecessor has been found in the tree.
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3.3.3 Beame and Fich solution for polynomial space. Beame and Fich [14] introduced a variant of

the 𝑥-fast tries that, if log log𝑢 <
√
log𝑛 log log𝑛, yields a solution with query time in O( log log𝑢

log log log𝑢
),

using O(𝑛2 log𝑛/log log𝑛) space. Combining this with a fusion tree if log log𝑢 ≥
√
log𝑛 log log𝑛

improves the time of static predecessor queries to O
(
min

{
log log𝑢

log log log𝑢
,

√
log𝑛

log log𝑛

})
. This result shows

that, if one is willing to spend 𝑛O(1) space, then the query time of the van Emde Boas tree can be

improved by a factor of log log log𝑢. For some time, it was widely conjectured [56] that this was

impossible.

Inspired in the parallel comparison technique introduced by Fredman and Willard [52] to obtain

constant-time queries in fusion nodes, Beame and Fich [14] introduce the idea of parallel hashing,
key for their solution. They show that one can take advantage of a large word size 𝑤 to answer

membership queries in several dictionaries at once, in constant time. More precisely, they prove

that given 𝑘 sets of elements from a universe of size 2
𝑢
, if𝑤 ∈ Ω(𝑢𝑘2), then 𝑘 independent parallel

membership queries, one per set, can be supported in constant time. Their data structure uses

O(𝑢𝑘2(𝑟+1)𝑘 ) bits, where 2𝑟 is an upper bound to the size of the sets.

The relevance of parallel hashing is that it allows replacing the binary searches performed on

the levels of the 𝑥-fast trie (when answering a query) by a parallel search over a multiway tree.

This can be interpreted as examining several levels of the 𝑥-fast trie at once. Parallel searches

allow one to implement a recursive data structure in which, after each such search, either the

length of the relevant portion of the keys, or the number of keys under consideration, are reduced

significantly: the number 𝑛 of keys and their length 𝑙 become 𝑛′ and 𝑙 ′, respectively, and either

𝑙 ′ = 𝑙 but 𝑛′ ≤ 𝑛1−1/𝜐 , or 𝑙 ′ = 𝑙/𝜐 for some 𝜐 such that 𝑛 ≥ 𝜐𝜐 ≥ log𝑢 (for values of 𝑛 such that there

is no possible 𝜐 meeting this condition they use fusion trees).
Beame and Fich [14] described their data structure only for the static predecessor problem.

However, combining their solution with the exponential search tree [12] yields a dynamic data

structure that uses linear space, and with worst-case query time and amortized update time within

O
(
min

{
log log𝑢

log log log𝑢
log log𝑛,

√
log𝑛

log log𝑛

})
(i.e., paying an extra log log𝑛 factor in the time of queries

to support updates).

Finally, Beame and Fich [14] showed that their solution for the static predecessor problem is

optimal in the following sense: there are values of 𝑛 and 𝑤 such that one cannot obtain a data

structure with space polynomial in 𝑛 that answers predecessor queries in time 𝑜 ( log log𝑢

log log log𝑢
), and

there are values of log𝑢 and𝑤 such that, using polynomial space, predecessor queries cannot be

answered in time 𝑜 (
√

log𝑛

log log𝑛
). The existence of a data structure that is optimal with respect to the

entire spectrum of possibilities of word size, universe size, set size, and space usage, remained open

until the remarkable work of Patrascu and Thorup [82, 83], which we review next.

3.4 The optimal upper bounds
Patrascu and Thorup [82, 83] provided tight tradeoffs between query time and space usage for

the static predecessor problem. Their data structure is an advanced combination of a variety of

the techniques and data structures we have reviewed. These results were originally introduced in

2006 [82], but one year later [83] they showed that their lower bound holds also under randomized

settings, proving that their data structure is optimal even when randomization is allowed. In 2014,

they extended their results to the dynamic version of the problem [84].
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3.4.1 Static Predecessor. Patrascu and Thorup [82] showed that in a RAM with word size𝑤 , given

a set of 𝑛 integers of 𝑙 bits each (i.e., 𝑢 = 2
𝑙
), there is a data structure using 𝑆 = O(2𝑎𝑛) bits of space,

for any 𝑎 ≥ log 𝑙 , that answers predecessor queries in the order of the times given in Equation (1).

To illustrate how the branches in this upper bound cover the whole spectrum of possibilities,

consider the case where 𝑎 = Θ(lg 𝑙) (i.e., linear space data structures) and 𝑙 = 𝑤 :

• For 𝑛 such that log𝑛 ∈ [1, log
2 𝑤

log log𝑤
] the minimum occurs in the first branch, which increases

from Θ(1) to Θ( log𝑤

log log𝑤
);

• For 𝑛 such that log𝑛 ∈ [ log
2 𝑤

log log𝑤
,
√
𝑤] the minimum occurs in the third branch, increasing

from Θ( log𝑤

log log𝑤
) to Θ(log𝑤);

• For 𝑛 such that log𝑛 ∈ [
√
𝑤,𝑤] the minimum occurs in the second branch, decreasing with

𝑛 from Θ(log𝑤) back to Θ(1).
Note that in this example the fourth branch never yields the minimum query time. This is because

this branch is relevant when the universe is super-polynomial in 𝑛 (i.e., 𝑙 = 𝜔 (log𝑛)), and the

space is sub-linear in 𝑛 (i.e., 𝑎 = 𝑜 (log𝑛)). Consider, for instance, a case in which 𝑎 =
√
log𝑛, and

𝑤 = 𝑙 = log
𝑐 𝑛, for some constant 𝑐 > 2. Under these settings, the first branch yields a bound of

log𝑛

𝑐 log log𝑛
. This is worse than at least the second branch, which is asymptotically within O(log log𝑛).

More precisely, the second branch yields a value of log
𝑙
𝑎
(up to an additive constant factor), which

is the same as the numerator in the third and fourth branch. However, while under these settings

the denominator of the third branch becomes 𝑜 (1), the denominator of the fourth one becomes 𝑐 .

Thus, this branch is the optimal choice for large enough 𝑐 .

The upper bound of Equation (1) is achieved by a data structure on RAM whose query algorithm

is deterministic, and thus the bound holds for its worst-case complexity. This data structure results

from a clever combination and improvement of different results preceding the work of Patrascu

and Thorup [82].

Fusion trees, external memory, and the first branch. The first branch, is the only one depending

on𝑤 in the word-RAM model, and on 𝐵 in the external memory model.

In a word-RAM machine, this bound is achieved using fusion trees [52]. Moreover, fusion trees
allow increasing the available space per key for the data structures corresponding to the other

three branches of Equation (1). Given that the total space available is O(2𝑎𝑛) bits, the bits available
per key is on average O(2𝑎). However, using a simple bucketing trick, the𝑤 bits available per key

for the other three branches can be increased up to O(2𝑎𝑤). To do this, divide the 𝑛 keys into 𝑛/𝑤
buckets of size 𝑤 , and create a set 𝑋 ′ of size 𝑛/𝑤 by choosing one representative element from

each bucket (e.g., the minimum). The data structures corresponding to the other branches will be

initialized over 𝑋 ′ instead of the original 𝑋 . This increases the available bits per key for those data

structures up to O(2𝑎𝑤). To find the predecessor within each bucket, a fusion tree is initialized for

each of the 𝑛/𝑤 buckets, using O(𝑛) space in total. Thus, once the bucket in which the predecessor

of a query 𝑞 has been found, the precise predecessor within the bucket is found using the respective

fusion tree in constant time.

In external memory, the bound of the first branch, and the gain in space per key, can be achieved

by considering 𝐵 = 𝑤 , and replacing fusion trees with the simpler B-Trees [43, Chap. 18].

Van Emde Boas trees, and the second branch. The second branch is relevant for polynomial

universes (i.e., 𝑙 = O(log𝑛)). The bound of this branch is achieved by van Emde Boas trees [102]
modulo some simple improvements. As described in Section 3.1.1, this data structure reduces the
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key length from 𝑙 to 𝑙/2 at each recursive step in constant time. This yields an upper bound of

O(log 𝑙), which can be improved using two simple ideas:

• Stop the recursion when 𝑙 ≤ 𝑎, instead of when 𝑙 is constant. This new base case can be

solved in constant time using lookups on a shared table of 2
𝑎 · 𝑙 bits. This improves the query

time to O(log 𝑙
𝑎
).

• Partition the universe into 𝑛 slots based on the first log𝑛 bits of the key, and store each slot

in a van Emde Boas tree with keys of𝑤 − log𝑛 bits. Using a table of 2
log𝑛

log ≤ 𝑛𝑙 bits one
can determine in constant time in which of the 𝑛 slots to look for the predecessor of any

query 𝑞. Combining the first idea with this one yields the complexity of O(log 𝑤−log𝑛
𝑎
).

Beame and Fich’s data structure, and the last branches. The third and fourth branches are relevant

for when the universe is super-polynomial with respect to 𝑛 (i.e., 𝑙 = 𝜔 (log𝑛)): the third one is

asymptotically better when 𝑎 = 𝜔 (log𝑛) (i.e., for super polynomial space, like in the data structure

of Beame and Fich [14]), while the last branch is asymptotically better when 𝑎 = 𝑜 (log𝑛) (i.e.,
for small-space data structures). The upper bound of the third branch is obtained by a careful

combination of cardinality and length reductions, inspired by the solution of Beame and Fich [14].

As seen, this structure can improve upon van Emde Boas’, but it needs a lot of space. Interestingly,

the same techniques can be useful for small-space data structures. For the last branch they use

the same combination of length and cardinality reduction, but with a special selection of how

cardinality is reduced tailored for the case of small space.

3.4.2 Dynamic predecessor. In the dynamic setting, Patrascu and Thorup [84] showed that if

randomization is allowed, then there is a data structure achieving (in expectation) the optimal

bounds. The optimal expected operation time (maximum between queries and updates) for dynamic

predecessor is asymptotically

1 +min



log𝑤 𝑛

log
log (2𝑙−𝑛)

log𝑤

log
𝑙

log𝑤

log

(
log

𝑙
log𝑤
/log log𝑛

log𝑤

)
(3)

The first obvious difference with the static bound of Equation (1) is that there is no direct

reference to space used by the data structure (i.e., 𝑎 does not appear in this bound). The data

structure achieving this bound uses linear space, and no asymptotic improvements can be obtained

by using more space. Intuitively, the larger the space the harder it is to maintain it updated. The

first branch is achieved by a dynamic fusion tree [84] implemented using the dynamic fusion node
described in Section 3.2.1. For the third branch they give a dynamic version of the data structure

for the fourth branch of the optimal static upper bound, based on Beame and Fich’s combination of

length and cardinality reductions [14]. In terms of just the bound, the third branch it is the same as

the fourth branch of the static bound, but considering 𝑎 = log𝑤 . Since the first and third branches

of the dynamic bound are the same as the first and fourth branches of the static bound, respectively,

they are trivially optimal: any lower bound for the static problem applies to the dynamic version

as well. The data structure for the second branch is a dynamic variant of the van Emde Boas tree
similar to that for the second branch of the optimal static bound. The main difference is that the

partition of the universe into 𝑛 slots needs to be maintained in a dynamic data structure instead of

in a table, which can be achieved for instance by using bit vectors [41, 76]. Moreover, for the base
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case of the recursion, instead of using complete tabulation, a dynamic fusion node is used when

𝑙 ≤ 𝑤 . The upper bound of this variant degrades with respect to the static one: the term 𝑙 − log𝑛 of

the static bound is replaced by log (2𝑙 − 𝑛). However, Patrascu and Thorup were able to prove a

matching lower bound, showing that the upper bound of this branch is also optimal.

4 LOWER BOUNDS
The first super-constant lower bound for the predecessor problem was proven by Ajtai [4]. He

showed that, for word size within O(log𝑛), there is no data structure in the cell-probe model

supporting predecessor queries in constant time while using space polynomial in 𝑛. Several im-

provements to this bound followed [14, 72, 73, 94], until in 2006 Patrascu and Thorup [82, 83]

proved an optimal lower bound for the static problem, even when allowing randomized query

schemes. We review some of these results in this section.

4.1 Communication complexity lower bounds
Miltersen [72] generalized Ajtai’s proof [4], and obtained a lower bound of Ω(

√
log log𝑢) for the

static predecessor problem when𝑤 ≤ 2
(log𝑛)1−𝜀

for any 𝜀 > 0. To prove this bound, he introduced

a general technique for translating time-complexity lower bounds for static data structures into

lower bounds for dynamic data structures, and showed that if the time of updates is in O(2(log𝑢)1−𝜀 ),
then predecessor queries take Ω(

√
log log𝑢) time, for any constant 𝜀 > 0. Apart from the lower

bound, Miltersen [72] introduced two key ideas: the lower bound arguments were based on the

communication complexity of the problem; and the bounds held even for a simpler version of the

problem in which each element of 𝑋 is associated with one of two different colors (e.g., red or blue),

and the goal is to determine the color of the predecessor of a given query.

Miltersen [72] observed that a static data structure problem in the cell-probe model can be

interpreted as a communication game between two players Alice and Bob, in which Alice (the

query algorithm) holds the query, Bob (the data structure) holds the table of 𝑆 cells storing the

data structure, and they must communicate to find the answer to the query. The communication

between Alice and Bob is structured in strictly alternating rounds: Alice first requests the content

of a cell by sending a block of log 𝑆 bits with the cell name, and then Bob sends a message with𝑤

bits containing the content of that cell. The complexity of this communication protocol is given by

the number of rounds of communication 𝑇 that occur between Alice and Bob to find the answer to

the query. A lower bound on 𝑇 yields a lower bound for the algorithm represented by Alice in the

cell-probe model.

Using this technique, Miltersen et al. [73] extended the lower bounds of Ajtai [4] and Mil-

tersen [72] to randomized settings, and showed that for certain universe sizes they also yield an

Ω((log𝑛)1/3) lower bound on query time. More importantly, to obtain their proofs they introduced

a round elimination lemma which became a general tool to prove lower bounds for data structures

based on communication complexity [14, 82, 94], and which inspired the optimal lower bounds of

Patrascu and Thorup [82, 83].

Round elimination. Intuitively, to prove a lower bound for some problem using round elimination,

suppose that one has a communication protocol with 𝑇 rounds for the problem. The idea is to

eliminate all rounds of communication and reach a state which implies a contradiction. For this,

one shows that the initial message of the protocol contains a small amount of information about

the sender’s input, under some probability distribution on the inputs of Alice and Bob [94]. Thus,

eliminating the first message yields a protocol with𝑇 − 1 rounds of communication where the other

player starts, and with only slightly higher average error probability. Repeating this elimination 𝑇

times yields a protocol with zero rounds of communication, and thus, the average error probability
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of this protocol must be at least 1/2. Hence, from the total increase in error probability after the

𝑇 rounds one can obtain lower bounds on 𝑇 . Miltersen’s round elimination lemma [72] provides

bounds on the increase in error probability after eliminating one round of communication.

Building on the work of Miltersen [72], and Miltersen et al. [73], Beame and Fich [14] showed

that their solution to the predecessor problem was optimal in the following sense:

• For all sufficiently large universe 𝑈 , there is a constant 𝑐 and a value of 𝑛 such that any

deterministic cell-probe data structure which uses 𝑛O(1) cells, each of word size 2
(log𝑢)1−Ω (1)

,

must probe at least
𝑐 log log𝑢

log log log𝑢
cells to find the predecessor of a given query; and

• For all sufficiently large 𝑛, there is a constant 𝑐 and a value of 𝑢 such that any deterministic

cell-probe data structure for predecessor which uses 𝑛O(1) cells, each of word size (log𝑢)O(1) ,
must probe at least

√
𝑐 log𝑛

log log𝑛
cells while processing a query.

Later, Sen and Venkatesh [94] proved a stronger version of Miltersen et al.’s round elimination

lemma [73], and showed that Beame and Fich’s lower bounds [14] hold not only for deterministic

data structures, but also for randomized query schemes. The main deficiency of the lower bounds

introduced up to the work of Sen and Venkatesh [94] was that they yield only lower bounds in the

form of functions depending either on the universe size or on the size of the input set, but not on

both values together [94].

Patrascu and Thorup [82] pointed out two other drawbacks of lower bounds based on communi-

cation complexity. On one hand, the relation between cell-probe data structures and communication

complexity was not expected to be tight. Intuitively, in a communication protocol, Bob can remem-

ber the messages of past rounds of communication, and answer requests from Alice with messages

based on it. However, in the communication game described by Miltersen [72] Bob is just a table

of cells storing the data structure, and cannot remember anything. Thus, Bob’s responses must

depend only on Alice’s last message. On the other hand, lower bounds for data structures based on

the communication complexity of a protocol cannot be used to distinguish data structures that use

polynomial space (like in the one of Beame and Fich [14]) from those using only linear space. To

see why, consider two data structures using space 𝑆 and 𝑆 ′, respectively, and suppose that 𝑆 ′ = 𝑆𝑐

for some constant 𝑐 > 1. Note that the differences in space between these two data structures

only change the size of Alice’s messages by a constant factor of 𝑐 because log 𝑆 ′ = 𝑐 log 𝑆 . Thus,
the difference in space can increase the number of rounds in the communication protocol only by

constant factors: Alice can break her messages of log 𝑆 ′ bits into 𝑐 separate messages of log 𝑆 bits.

To overcome these deficiencies, Patrascu and Thorup [82] developed a new lower-bound tech-

nique specifically tuned for the cell-probe model: the cell-probe elimination lemma.

4.2 Pure cell-probe model lower bounds
Patrascu and Thorup [82, 83] obtained a lower bound for data structures supporting predecessor

queries in the form of a function which depends simultaneously on the size of the universe and

the input set, the word-length, and the number of bits used by data structure (see Equation (1)).

Since they also described a data structure in RAM whose upper bound is asymptotically the same

function, their lower and upper bounds are optimal both in the cell-probe and RAM models.

4.2.1 Static lower bounds. Patrascu and Thorup showed that given a set of 𝑛 integers of 𝑙 bits each,

the predecessor search time of any data structure using 2
𝑎𝑛 bits of space, for any 𝑎 ≥ log 𝑙 , is lower

bounded by the formula in Equation (1) multiplied by some constant. This is the same formula for

their upper bounds, and hence the optimality of Patrascu and Thorup’s data structure [82, 83] for

the static predecessor problem.
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In terms of the lower bound, their main result was to prove the tight bound for 𝑎 = log 𝑙 +𝑜 (log𝑛),
in particular, the second and fourth branches of the tradeoff. As described in Section 3.4, the upper

bound of branch two is achieved via a slight variation of van Emde Boas’ data structure [102]; while

the upper bound of branch four is achieved using a tuned version of the data structure of Beame and

Fich [14]. Beame and Fich [14] improved the running time of van Emde Boas’ data structure [102] by

using space polynomial in𝑛. Branches two and four show that such an improvement required indeed

polynomial space. These branches also imply that for near-linear space (i.e., 𝑎 = log 𝑙 + 𝑜 (log𝑛))
and polynomial universes (i.e., 𝑤 = 𝑙 = 𝛾 log𝑛, constant 𝛾 > 1) van Emde Boas’ original data

structure [102] was optimal. As mentioned, lower bound techniques based on the communication

model were useless since one could not even distinguish 𝑎 = log 𝑙 + 2 from 𝑎 = log 𝑙 + log𝑛. The
third branch yields improved bounds for the case where 𝑎 = log 𝑙 + Ω(log𝑛) and 𝑎 ≤ log 𝑙 +𝑤1−𝜀

.

The best previous lower bound was Ω
(
min

{
log𝑛

log𝑤
,
log𝑤

log𝑎

})
. The third branch implies a bound of

Ω
(
min

{
log𝑛

log𝑤
,

log𝑤

log log𝑤+(log𝑎/log𝑛)

})
.

To prove the third branch, Patrascu and Thorup [82] combined the round-elimination lemma of

Sen and Venkatesh [94] with the message compression technique introduced by Chakrabarti and

Regev [34]. For the bounds of branches two and four, they introduced the cell-probe elimination
lemma. In terms of techniques, this is their most important contribution.

Cell-probe elimination. Proofs based on cell-probe elimination are in essence similar to those

based on round-elimination: the goal is to iteratively eliminate all the cell probes, and reach a state

which implies a contradiction. A key new idea of Patrascu and Thorup [82] was to augment the

cell-probe model with the concept of published bits. Apart from the traditional memory of the

cell-probe model (which must be accessed through cell-probes that impact the cost of algorithms),

the published bits are special memory of bounded size that algorithms can access for free. The

published bits are initialized with the data structure at construction time, and the size of this special

memory is a function of the input. Observe that in this version of the model, if the input of a

problem has 𝑛 bits, and these 𝑛 bits have been published, then the problem can be solved trivially

with no cell probes to the regular memory. To eliminate cell probes, a small number of cells accessed

frequently (i.e., by at least a constant fraction of the probes) are published. Obviously, as the number

of bits that have been published increases, the cell-probe complexity of the algorithm decreases. If

after 𝑇 cell-probe eliminations one arrives at a complexity of zero cell probes, and less than 𝑛 have

been published bits, then one has a contradiction: there is part of the input that is unknown to the

algorithm, and thus the query cannot be answered. Hence, from the total increase in published

bits one can obtain lower bounds on 𝑇 . Patrascu and Thorup’s cell-probe elimination lemma [82]

provides bounds on the increase in published bits required to eliminate one cell probe.

Another key idea to beat communication complexity lower bounds was to use a direct sum
approach: Patrascu and Thorup [82] showed that an optimal data structure representing 𝑘 indepen-

dent instances of the predecessor problem (with the same universe and input set sizes) in space 𝑘 · 𝑠
cannot support queries over an instance in time better than an optimal data structure representing

only one instance in space 𝑠 . Intuitively this means that, in the worst case, sharing space between

several instances of the predecessor problem does not yield a data structure with improved query

time (when compared to using a separate data structure for each instance).

To illustrate the strength of this direct sum approach, consider the case of near-linear universes

(i.e., 𝑙 = log𝑛 + 𝛿 , with 𝛿 = 𝑜 (log𝑛)). The direct sum approach allows to transfer lower bounds for

larger universes to near-linear universes. For instance, if one knows that for polynomial universes

the optimal time is Ω(log 𝛿
𝑎
), one can prove the same bound for near-linear universe as follows:

Consider 𝑛/2𝛿 independent instances of the predecessor problem, where the input of each instance
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is a set with 2
𝛿
integers of 2𝛿 bits each. A predecessor data structure for 𝑛 𝑙-bit integers can be

used to represent these independent instances: Add a prefix to each integer with the number of the

instance to which it corresponds (which takes log(𝑛/2𝛿 ) = log𝑛 − 𝛿 bits), and store all the integers

combined in the data structure. To answer queries within an instance, prefix the query with the

number of the instance, and query the data structure. So, according to the direct sum approach,

the complexity of this representation cannot be asymptotically better than the complexity of an

optimal data structure for one of the instances. Since the size 𝑢 ′ of the universe of each instance

(𝑢 ′ = 2
2𝛿
) is polynomial in the size 𝑛′ of the input set (𝑛′ = 2

𝛿 =
√
𝑢 ′), the bound of Ω(log 𝛿

𝑎
) for

polynomial universes holds for each instance, and thus it holds also for the near-linear universe.

Finally, another key idea to prove the bounds was to allow the query algorithm to reject queries

in the following way: when the algorithm receives a query, it first inspects the published bits and

decides whether it can or cannot answer the query. Only when the algorithm decides to answer the

query (and after taking this decision) it can make cell probes, and in this case it must end with a

correct answer. This model was crucial for the deterministic lower bounds, but it posed a challenge

for randomized settings: in the randomized error case it could be possible that the algorithm only

accepts queries leading to errors. This is why the static bounds were introduced first in 2006 [82],

and extended to randomized settings one year later [83].

4.2.2 Dynamic lower bounds. The static lower bound holds trivially in the dynamic case as well.

One would expect, however, the dynamic version to be harder. Patrascu and Thorup [84] showed

that with key length 𝑙 ≤ 𝑤 , the optimal expected operation time (i.e., the maximum time between

queries and updates) for dynamic predecessor is that of Equation (3), up to a constant factor.

Note that there is a close resemblance between the bound in Equation (3) for the dynamic

predecessor problem, and the bound in Equation (1) for the static problem. An obvious difference is

that the dynamic bound does not include any restriction on space usage. This is because dynamic

lower bounds hold regardless of the available space, as long as updates are reasonably fast. For

instance, if insertion of an element into a dynamic data structure Ddyn takes amortized time 𝑡𝑢 per

element, one can obtain a static data structure Dstat, which uses O(𝑛 · 𝑡𝑢) space, by simulating 𝑛

insertions in Ddyn and storing the cells that were modified (O(𝑛 · 𝑡𝑢)) during these insertions in a

hash table. Any processing done before inserting the integers it is considered a universal constant,

which is not counted in the cell-probe model, and the [84]. Now, the cost of a predecessor query on

Ddyn can be matched by Dstat, thus lower bounds for Dstat also apply to Ddyn.

Because of the discussion above, the first and third branches of Equation (3) correspond to the

near-linear space versions of the first and fourth branches of the static bound in Equation (1),

respectively. As mentioned in Section 3.4, the third branch of Equation (1) is relevant when the

universe is super-polynomial (i.e., 𝑙 = 𝜔 (log𝑛)), and the space is within 𝑛 · 2Ω (log𝑛) . Thus, this
branch is not relevant for dynamic bounds, and in consequence it does not appear in Equation (3).

Finally, the second branch of Equation (3) is similar to the second branch of Equation (1), but

in this case the term 𝑙 − log𝑛 is improved up to 2
𝑙 − 𝑛. For near-linear space, the second branch

of the static bound of Equation (1) is relevant when log𝑛 ≥ 𝑙/2. To obtain the improvement

for the dynamic bound, Patrascu and Thorup [84] proceeded as follows. Let 𝑆 ′ be the set of

𝑛′ =
√
2
𝑙 − 𝑛 < 𝑛 elements of length 𝑙 ′ = ⌈log(2𝑙 − 𝑛)⌉ from the universe [1, 2𝑙 ′]. In this case,

again it holds that log𝑛′ ≥ 𝑙 ′/2, and the static lower bound states that queries on 𝑆 ′ require time

Ω(log 𝑙 ′−log𝑛′
log𝑤

) = Ω(log log (2𝑙−𝑛)
log𝑤

). As before, a dynamic data structure Ddyn for sets of 𝑛 keys of

length 𝑙 with update time 𝑡𝑢 can be translated into a static near-linear space data structure Dstat for

𝑆 ′, and hence the static lower bound of Ω(log log (2𝑙−𝑛)
log𝑤

) for Dstat applies also for Ddyn.
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Note that the dynamic data structure of Patrascu and Thorup [84] (described in Section 3.4.2)

requires randomization in both queries and updates in order to match the running time lower

bound described here. However, this is not the case for the static problem, where the query times

are deterministic and worst-case, and the lower bound holds even under randomized settings. Thus,

it is open which is the optimal deterministic running time in the dynamic case. We discuss this and

other open questions at the end of the survey.

5 VARIANTS AND SPECIAL CASES OF THE PREDECESSOR PROBLEM
Various special cases and variants of the predecessor problem have also been considered [16, 20, 31,

32, 42], especially since the optimal results of Patrascu and Thorup [82] settled the static problem.

Since the lower bounds (both static and dynamic) for the general problem will not directly apply to

these special cases, many issues about them remain open.We review below some of the fundamental

variants considered in the literature.

5.1 Distance-sensitive predecessor searches
Bose et al. [31] introduced the Distance-sensitive Predecessor problem, to unify data structures for

the predecessor and the Membership problems.

Consider a set 𝑋 of elements from a universe 𝑈 , and let 𝑝 = 𝑝𝑟𝑒𝑑 (𝑋,𝑞) denote the predecessor
of 𝑞 in 𝑋 , for 𝑞 ∈ 𝑈 . Bose et al. [31] showed that the predecessor 𝑝 of 𝑞 can be computed in

time O(log logΔ), where Δ = 𝑞 − 𝑝 . Note that if the query belongs to 𝑋 , then Δ = 0 and thus

O(log logΔ) = O(1), which is the running time achievable by hash tables for membership queries.

Furthermore, since Δ < 𝑢, the bound is never worse than O(log log𝑢). Their data structure is

essentially an 𝑥-fast trie, and their main result is actually a new algorithm to find predecessors

within the trie. The key idea is to replace the binary search on the levels of the 𝑥-fast trie by a

doubly exponential search (i.e., searching on the levels 2
2
𝑖

, for 𝑖 ∈ [1, log log log𝑢]) starting from
the leaves. In this way, if the query is present in 𝑋 , the search takes constant time.

More precisely, the search algorithm described by Bose et al. [31] works as follows. Starting from

the leaves (i.e., the level at depth log𝑢), search in a hash table whether the prefix 𝑞′ of the query 𝑞
corresponding to the current level is present. If 𝑞′ is found, then the algorithm proceeds with the

usual binary search, starting from the 𝑥-fast trie node corresponding to 𝑞′. This will take O(logℎ𝑞′)
time, where ℎ𝑞′ is the height of the trie node. If 𝑞

′
is not found, then the algorithm queries whether

𝑞′ − 1 is present at the same level. If this node is found, then the predecessor of 𝑞 can be found in

constant time using the pointer from the node for 𝑞′ − 1 to the largest leaf descending from it. If

𝑞′ − 1 is not present, then the doubly exponential search for prefixes of 𝑞 in the tree continues.

Checking for the presence of 𝑞′ − 1 guarantees that, if the search continues to a higher level of

the trie, it is because the answer is far away. Thus, the first time a prefix 𝑞′ is found, it holds that
ℎ𝑞′ ∈ O(logΔ), and thus the running time of the algorithm is bounded by O(log logΔ).

To achieve updates in the same O(log logΔ) time (expected amortized), Bose et al. [31] described

a solution based on 𝑦-fast tries that combines bucketing with skip lists [89]. Their data structure

uses O(𝑛 log log log𝑢) expected words of space. Belazzougui et al. [20] showed that queries can be

supported in time O(log logΔ) using only O(𝑛) space, by implementing a search similar to that

of Bose et al. [31], but using a 𝑧-fast trie instead of an 𝑥-fast trie. In addition, their approach also

supports queries in O(log log 𝑢
𝑠−𝑝 ) time, where 𝑠 and 𝑝 are the successor and predecessor of the

query, respectively
5
. The running time of updates in their solution was not distance-sensitive, how-

ever. Ehrhardt and Mulzer [45] remedied this by presenting another variant of the 𝑧-fast trie which,

5
Bille et al. [30] presented an homologous data structure for distance-sensitive predecessor search in the pointer-

machine model, supporting predecessor queries in O(log 𝑢
𝑠−𝑝 ) . Moreover, they mentioned that it was possible to achieve
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using O(𝑛) space, supports queries in O(log logΔ) time, and updates in O(log logΔ) expected
worst-case time.

5.2 Biased predecessor search
Bose et al. [32] considered the problem of performing predecessor queries in time that depends

on the distribution of the queried elements (namely the Biased Predecessor problem). In this case,

each element 𝑖 of the universe has some probability 𝑝𝑖 of being queried, and the goal is to support

predecessor queries in time depending on their inverse probability. In the comparison model, for

example, biased search trees [26] support predecessor and membership queries in O(log 1/𝑝𝑖 ) time.

The expected query time of the biased search tree is linear in the entropy 𝐻 of the distribution

of the queries (𝐻 =
∑𝑢−1

𝑖=0 𝑝𝑖 log 1/𝑝𝑖 ), and this is optimal in the comparison model. However, one

would expect to perform faster in the RAM model, given that this is possible in for the classical

version of the problem.

Bose et al. [32] presented various data structures for the static biased predecessor problem, with

different space and query time tradeoffs. Given a probability distribution over the possible queries

in a universe 𝑈 with entropy 𝐻 they show, for instance, that there is a data structure that supports

predecessor queries in O(log(𝐻/𝜀)) expected time, using O(𝑛 + 𝑢𝜀) space, for any 𝜀 > 0. The idea

behind this result is simple: Place all the elements 𝑖 ∈ 𝑈 with probability 𝑝𝑖 ≥ (1/𝑢)𝜀 into a hash

table 𝑇 , together with a pointer to their predecessor in 𝑋 . Separately, store all the elements of 𝑋

into a 𝑦-fast trie. Given that there are at most 𝑢𝜀 elements with probability of being queried greater

than (1/𝑢)𝜀 , the hash table requires O(𝑢𝜀) space, and the total space used by the data structure is

O(𝑛+𝑢𝜀). To answer a query, first the hash table is checked to see if the query (and thus the answer)

is stored there. If the query is not present in the hash table, then one simply searches the 𝑦-fast trie
for the answer. The expected running time of this approach is O(∑𝑖∈𝑇 𝑝𝑖 +

∑
𝑗 ∈𝑈 \𝑇 𝑝 𝑗 · log log𝑢),

which they show to be bounded by O(log(𝐻/𝜀)). Selecting for 𝑇 the elements with probability at

least (1/2)log𝜀 𝑢 , instead of (1/𝑢)𝜀 , yields a data structure that requires O(𝑛 + 2log𝜀 𝑢) space and has

expected query time O((1/𝜀) log𝐻 ). To obtain a linear-space data structure, they present a variant

of the solution of Beame and Fich [14] (which uses polynomial space) combined with exponential
search trees (to reduce the space down to linear). This approach yields a data structure supporting

queries in O(
√
𝐻 ) time, and using linear space.

Recently, Ferragina and Vinciguerra [49] introduced a static data structure for this variant based

on a geometric approach. The idea is to transform the input into the set of points (𝑥, rank(𝑥)), and
approximate this set by𝑚 segments so that the approximation error is at most a given 𝜀. Their data

structure, known as a PGM-index, uses 𝑂 (𝑚) space and answers queries in O(𝐻 ) average time.

Belazzougui et al. [21] studied the predecessor problem under two biased scenarios. In the first

one, the queries are distributed uniformly in𝑈 while the distribution of the input set 𝑋 is arbitrary.

For this case, they introduce a data structure supporting queries in constant time while using linear

space. The idea is to divide 𝑈 into 𝑛 log𝑐 𝑛 equally-sized buckets, and use a bitmap to store which

buckets are full/empty. This bitmap can be encoded using O(𝑛) space so that queries take O(1)
time [79] (because of the universe size 𝑛 log𝑐 𝑛). Queries within the non-empty buckets can be

answered using the optimal data structure for the general problem [82]. Note that a query uniformly

distributed at random on 𝑈 falls in an empty bucket with high probability (1 − 𝑛
𝑛 log

𝑐 𝑛
) = 1 − 𝑜 (1),

and thus such a query can be answered in constant time.

In their second scenario, the distribution of the queries is arbitrary but the input keys are drawn

form a smooth-distribution [11, 71] on𝑈 . They provide a data structure with following time-space

O(log log 𝑢
𝑠−𝑝 ) query time in the word-RAM model, citing a personal communication with Mihai Patrascu. This was

confirmed by Belazzougui et al. [20], who presented the first formal proof for this result, based on 𝑧-fast tries.
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tradeoffs: (𝑖) constant-time queries with high probability (w.h.p.) using O(𝑛1+𝛿 ) space, for 𝛿 > 0;

(𝑖𝑖) O(log log log𝑛)-time queries w.h.p. using O(𝑛1+𝑜 (1) ) space; and (𝑖𝑖𝑖) O(log log𝑛)-time queries

w.h.p. using O(𝑛) space. The data structure is again based on partitioning the universe into buckets,

each one of O(log𝑛)-size w.h.p. The representative elements of the buckets are maintained using

Patrascu and Thorup’s variant of the van Emde Boas tree [82], while each bucket is represented

using a 𝑞∗-heap [104]. The tradeoffs are obtained by considering different space-time parameters in

the second branch of the optimal bounds [82]. As mentioned in Section 3.2.2, the use of 𝑞∗-heaps
requires access to a large precomputed table of size depending on 𝑛. The solution of Belazzougui

et al. [21] requires a table that occupies only 𝑜 (𝑛) bits, but this still limits the result to scenarios

where 𝑛 (or some approximation) is known in advance. This limitation can be removed by replacing

the use of 𝑞∗-heaps by the dynamic fusion tree of Patrascu and Thorup [84].

5.3 Improvements on the redundant space
Consider a set 𝑋 of 𝑛 integers from a universe 𝑈 of size 𝑢 = |𝑈 |. Suppose that we first initialize a
data structure 𝐷 to answer predecessor queries on 𝑋 , and then we discard 𝑋 . Note that using only

𝐷 one can recover 𝑋 by simply asking for the predecessor of every element in 𝑈 . Thus, 𝐷 must

necessarily encode 𝑋 and, in consequence, the minimum amount of information 𝐷 must store is

𝐵(𝑛,𝑢) = ⌈log
(
𝑢
𝑛

)
⌉ bits. Supporting predecessor queries in O(𝑡) time, for some parameter 𝑡 , seems

to require space additional to 𝐵(𝑛,𝑢) that depends also on 𝑡 . This extra space, denoted 𝑅(𝑛,𝑢, 𝑡), is
known as the redundancy of the data structure [54, 55]. The total space occupied by a data structure

supporting predecessor queries in O(𝑡) time can then be expressed as 𝐵(𝑛,𝑢) + 𝑅(𝑛,𝑢, 𝑡). While

the optimal bounds of Patrascu and Thorup [82] can provide bounds for 𝑅(𝑛,𝑢, 𝑡) for certain cases,

the complete tradeoff between the values of 𝑛, 𝑢, 𝑡 , and the value of 𝑅(𝑛,𝑢, 𝑡) remains open.

Grossi et al. [55] presented lower and upper bounds for 𝑅(𝑛,𝑢, 𝑡). As they noted, from the

lower bounds of Patrascu and Thorup [82] one can already infer, for instance, that 𝑅(𝑛,𝑢, 1) can
be 𝑜 (𝑛) only when 𝑛 = polylog𝑢 (the degenerate case of small sets solvable in O(1) time using

the fusion node) or 𝑢 ∈ O(𝑛 polylog𝑛). For 𝑢 = 𝑛O(1) , the lower bound for 𝐵(𝑛,𝑢) + 𝑅(𝑛,𝑢, 1)
is Ω(𝑛1+𝛿 ) for any fixed 𝛿 > 0 (because the value of 𝑎 in Equation (1) must be Ω(polylog𝑛)
for constant query time). In this case, the redundancy is considerably higher than 𝐵(𝑛,𝑢), since
𝐵(𝑛,𝑢) = O(𝑛 log𝑢) = 𝑜 (𝑅(𝑛,𝑢, 1)). In terms of upper bounds, Grossi et al. [55] showed that the

variant of van Emde Boas tree introduced by Patrascu and Thorup [82] (for the second branch

of the optimal bounds) can answer predecessor queries in O(log𝛿) time using O(𝐵(𝑛,𝑢)) bits of
space when 𝑛 ≥ 𝑢/log𝛿 (𝑢), for 𝛿 > 1. For the general case, they introduce a data structure running

in time 𝑡 = O( log𝑛

log log𝑢
) and with redundancy 𝑅(𝑛,𝑢, 𝑡) ∈ O(𝑛 log log𝑢) bits, provided that one has

access to a precomputed table of 𝑢𝛾 bits, for some constant 𝛾 < 1. Their structure is essentially a

B-Tree with branching factor 𝑏 = O(
√
log𝑢) represented succinctly, and the precomputed table

allows to support constant-time queries over the sets of 𝑏 keys within each node.

The structure of Grossi et al. [55] is in fact an example of an index for the predecessor problem.

In this case we distinguish not only between the space in the data structure occupied by the input

keys and the additional redundant space, but also distinguish the cost of making probes to the

redundant part of the data structure (called the index), and making probes to the input keys. The

main motivation for this distinction is that, if the index is small enough so that it can fit in cache,

then probes to the index would run considerably faster than those to the input keys. The structure

of Grossi et al. [55] makes only 1 access to the input data.

Inspired in this index, Cohen et al. [42] introduced the 𝛾-node, a data structure based on fusion
nodes that stores a set of𝑤/log𝑤 keys using an index withO(1) words, and supports queries in time

O(log𝑤) while making onlyO(1) probes to the input. For general sets, they first divide the keys into
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consecutive slots of𝑤/log𝑤 keys. They index each slot using a 𝛾-node, and index a representative

key of each slot (e.g., the smaller key) using another linear-space data structure (e.g., a fusion tree
or a 𝑦-fast trie). Combining the approach above with the optimal data structure of Patrascu and

Thorup [82], for instance, yields an index that answers queries making only 𝑂 (1) probes to the

input, an optimal number of probes to the index, and with running time O(#probes + log𝑤). This
approach works only for the static version of the problem, however; the existence of an efficient

dynamic index was left open by Cohen et al. [42].

Indeed, the more basic goal of obtaining an optimal-time index using space O(𝐵(𝑛,𝑢)) is not hard
to achieve. Using simple transformations, Patrascu and Thorup’s optimal data structure [82] can be

turned into a data structure in which 𝑅(𝑛, 𝑡,𝑢) = O(𝑛), and with optimal query time for that space.

The universe is partitioned into 𝑛 slots of size 𝑢/𝑛. The 𝑖-th slot stores 𝑛𝑖 elements from a universe

of size𝑢 ′ = 𝑢/𝑛. Using 𝑎 = log𝑢 ′ = log(log𝑢− log𝑛) in the optimal tradeoffs, yields a data structure

with 𝑛𝑖2
𝑎 = 𝑛𝑖 log(𝑢/𝑛) bits of space, and with optimal query time. Summing the space over all

the slots yields a total space of 𝑛 log(𝑢/𝑛) bits. Note that for 𝑛 ≤ 𝑢/2, 𝐵(𝑛,𝑢) ∼ 𝑛 log(𝑢/𝑛) + 1.44𝑛
by using Stirling’s approximation, and thus the total space is less than 𝐵(𝑛,𝑢). The mapping of

elements to the respective buckets can be achieved by means of a bit vector of 2𝑛 bits, with support

for constant-time rank and select, which requires 𝑜 (𝑛) additional bits [41, 76]: rank𝑏 (𝑖) is the
number of bits 𝑏 ∈ {0, 1} up to position 𝑖 in the bit vector; select𝑏 ( 𝑗) is the position of the 𝑗th

occurrence of 𝑏 in the bit vector. The total space of the structure is, therefore, 𝐵(𝑛,𝑢) + O(𝑛) bits.
This idea of splitting the universe into 𝑢/𝑛 buckets actually works for any linear-space data

structure: it improves the space from O(𝑛 log𝑢) bits to down to O(𝑛 log(𝑢/𝑛)) bits while preserving
the query time. The idea was first hinted by Patrascu and Thorup [82], and made explicit by

Belazzougui and Navarro [22]. They described another variant of the van Emde Boas treewhich uses
O(𝑛 log(𝑢/𝑛)) bits of space with query time 𝑡 = O(log log𝑢−log𝑛

log𝑤
) (replacing the log(log𝑢 − log𝑛)

term in the denominator in the second branch of Equation (1) by log𝑤 ). The main difference with

Patrascu and Thorup’s variant of van Emde Boas trees is that, instead of stopping the recursion

when the key length 𝑙 ≤ 𝑎 and using tabulation for that base case, they stop the recursion when

𝑙 < (log𝑤)/2 and switch to a more efficient data structure. In this base case, the size of universe

is at most

√
𝑤/2, and thus the size 𝑡 of the sets is also bounded by

√
𝑤/2. They introduce a data

structure for such sets supporting constant-time queries while using only O(1) words.
Patrascu [79] presented a data structure in which 𝑅(𝑛,𝑢, 𝑡) ≤ 𝑢

( (log𝑢)/𝑡 )𝑡 + O(𝑢
3/4

polylog𝑢) bits,
obtaining an exponential dependence between the running time of queries and the redundancy of

the data structure. Their solution combines bucketing with a succinct representation of B-Trees.
Let 𝑏 ≥ 2 such that 𝑏 log𝑏 =

𝜀 log𝑢

𝑡
, and let 𝑟 = 𝑏𝑡 = ( log𝑢

𝑡
)Θ(𝑡 ) . They partition the universe into 𝑢/𝑟

buckets of size 𝑟 and represent each bucket using their variant of B-Trees, which solve predecessor

queries in time O(log𝑏 𝑟 ) = O(𝑡). Queries over the 𝑢/𝑟 representative elements of the buckets can

be supported in O(log 𝑡) time using using
𝑢
𝑟
𝑟Ω (1/𝑡 ) log𝑢 ≤ 𝑢

𝑟
𝑏 log𝑢 = 𝑢/𝑏Θ(𝑡 ) bits of space. For this

sake they use the variant of van Emde Boas trees for the second branch of the optimal tradeoffs of

Patrascu and Thorup [82]. However, this data structure requires a large precomputed table of size

O(𝑢𝜀) to support constant-time queries in the B-Trees, for some constant 𝜀 > 3/4. Patrascu and

Viola [85] proved that for values of 𝑢 ≤ 𝑛 polylog𝑛, the bound for 𝑅(𝑛,𝑢, 𝑡) by Patrascu [79] is the

best possible for the more general problem of answering rank queries in a bit vector with 𝑛 1s and

𝑢 − 𝑛 0s.

For the special case of polynomial universes (i.e., 𝑢 = 𝑛𝛼 , for 𝛼 = Θ(1)), and word size 𝑤 =

Θ(log𝑢), Pibiri and Venturini [88] introduced a data structure that supports predecessor queries

in optimal time over an ordered set 𝑋 of 𝑛 integers using 𝑛⌈log 𝑢
𝑛
⌉ + 2𝑛 + 𝑜 (𝑛) bits of space. Their

variant stores the integers using the Elias-Fano [46, 47] representation of the set, and supports
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predecessor queries in optimal O(min{1 + log 𝑢
𝑛
, log log𝑛}) time. When 1 ≤ 𝛼 ≤ 1 + log log𝑛

log𝑛
, the

minimum in the time bound occurs in the term 1 + log 𝑢
𝑛
, which they achieve by means an of

auxiliary rank/select data structures on top of the Elias-Fano representation of 𝑋 . For values

of 𝛼 > 1 + log log𝑛

log𝑛
the minimum occurs in the log log𝑛-term of the time bound. In this case, the

𝑜 (𝑛)-bits redundancy is made possible by splitting 𝑋 into ⌈ 𝑛

log
2 𝑢
⌉ buckets of size log2 𝑢. Within the

buckets, queries are answered by binary searching directly over the Elias-Fano representation of 𝑋

in O(log log2 𝑢) = O(log log𝑛) time. To locate the buckets in O(log log𝑛) time, the representative

elements of the buckets are stored in a 𝑦-fast trie, using 𝑂 ( 𝑛 log𝑢

log
2 𝑢
) = 𝑜 (𝑛) bits.

5.4 BatchedQueries and Integer Sorting
In the Batched Predecessor problem, along with the set 𝑋 of 𝑛 keys, a set 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑚} of
𝑚 queries is given. The goal is then to compute the set 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚} such that each 𝑝𝑖 is

the predecessor of 𝑞𝑖 in 𝑋 . In the comparison model, this problem can be solved in optimal time

O(𝑚 log(𝑛/𝑚) +𝑚) by combining merging and binary search [23].

Karpinski and Nekrich [63] presented a static data structure that uses O(𝑛𝑚) space and answers

the𝑚 queries in O(
√
log𝑛) total time, for any𝑚 ∈ O(

√
log𝑛). Their solution is based on a variant

of the van Emde Boas tree [100] that uses the parallel hashing technique of Beame and Fich [14] to

reduce the length of the𝑚 query keys in parallel. Their approach yields, for instance, a data structure

that answers

√
log𝑛 queries in constant amortized time per query using space within O(𝑛𝜀

√
log𝑛).

For bounded universes (e.g., log log𝑢 ∈ 𝑜 (
√
log𝑛)), their approach also leads to an O(𝑛𝑚)-space

static data structure that answers𝑚 queries in O(log log𝑢) total time, for𝑚 ∈ O(log log𝑢). For
example, this yields a data structure for the case when𝑢 ∈ 𝑛logO(1) 𝑛 that, using space in O(𝑛𝜀 log log𝑛),
answers O(log log𝑢) queries in constant amortized time each.

This variant of predecessor search has also been studied in external memory [2]. Bender et al.

[23] considered batched predecessor queries in external memory for the case when𝑚 < 𝑛𝑐 , for

some constant 𝑐 < 1, and𝑚 = Ω(𝐵). They provided different tradeoffs between preprocessing and

query times. They show that a batch of predecessor queries cannot be answered asymptotically

faster than handling them one by one if the preprocessing time is polynomial with respect to 𝑛,

but that it can be answered in O( log𝑛
𝐵
) I/Os per query if we allow exponential preprocessing time.

Bender et al. [25] studied a variant of this problem in which the length of the keys in 𝑄 is different

from that the keys in 𝑋 , and provide lower and upper bounds sensitive not only to 𝑛 and𝑚, but

also to the lengths of the keys, and to how the elements from 𝑄 and 𝑋 interleave.

Integer sorting. A particularly interesting special case of batched predecessor is when𝑚 = Θ(𝑛),
which is closely related to Integer Sorting [9, 10, 52, 58, 59, 64, 97]. On one hand, if we can sort 𝑛

integers from a universe𝑈 of size 𝑢 in time 𝑇 (𝑛,𝑤,𝑢), then the𝑚 queries can be computed using

O(𝑇 (𝑛,𝑤,𝑢)
𝑛
) time per query by simply sorting 𝑋 and 𝑄 , merging the results, and reporting the

output. On the other hand, if we can preprocess 𝑋 and compute the predecessors of the elements in

𝑄 in total time𝑇 (𝑛,𝑤,𝑢), then we can sort a set 𝑋 of 𝑛 integers in O(𝑇 (𝑛,𝑤,𝑢) +𝑛) time by solving

an instance of the batched predecessor problem with 𝑋 = 𝑄 = 𝑆 , and then building the sorted

output with the help of a dictionary mapping each element to its predecessor. The developments and

techniques that lead to faster integer sorting algorithms and predecessor data structures are closely

related. In fact, some of the data structures presented here (like fusion trees [52] and exponential
search trees [9]) were originally introduced as intermediate tools for the ultimate goal of sorting

integers, or presented as priority queues (like van Emde Boas trees [102]), which are known to be

equivalent to sorting [99].
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After some initial results by Paul and Simon [87] and Kirkpatrick and Reisch [64] (based on

the exponential length reduction technique introduced for van Emde Boas trees [100]), Fredman

and Willard [52] introduced the fusion tree and presented the first deterministic linear-space

algorithm for sorting integers in 𝑜 (𝑛 log𝑛) time (for all possible values of 𝑛,𝑤 and 𝑢). This is

achieved by inserting all the elements in a fusion tree at an amortized O( log𝑛

log log𝑛
) time per element,

and then traversing the tree in order to obtain the sorted output. Moreover, they showed that, using

randomization, fusion trees could be combined with 𝑦-fast tries to obtain an O(𝑛
√
log𝑛) expected

time sorting algorithm. While these results were later improved, techniques based on word-level

parallelism like the ones used in the fusion node remained at the center of every integer sorting

algorithm that followed [56].

One of such improvements was presented by Andersson [9], whose exponential search trees
could achieve updates in amortized O(

√
log𝑛) time, and with worst-case O(

√
log𝑛)-time queries.

Inserting the elements to sort in an exponential search tree, and then iteratively querying for

predecessors starting from the maximum element, yields a deterministic worst-case sorting algo-

rithm running in O(𝑛
√
log𝑛)time. Since then, exponential search trees became a key tool for faster

integer sorting algorithms [56–58, 97].

Thorup [97] built upon Andersson’s solution [9] and introduced a deterministic algorithm sort-

ing 𝑛 integers in O(𝑛(log log𝑛)2) time. The key component of this algorithm is a data structure

that answers 𝑛 predecessor queries over keys of 𝑤/𝑞-bits in time 𝑂 ( 𝑛
𝑞
log log𝑛) after a prepro-

cessing step consuming O(𝑛2+𝜀) time. The idea is to use a trie of height log𝑛 log log𝑛 over an

alphabet of size 𝑢1/log𝑛 log log𝑛
. For each query, binary search is used to find the deepest node

of the trie that corresponds to a prefix of the query, as in van Emde Boas trees [100], in time

O(log(log𝑛 log log𝑛))=O(log log𝑛). After this, the original problem is reduced to a set of sub-

problems of combined size 𝑛 over a universe of size 𝑢1/log𝑛 log log𝑛
. In this smaller universe, linear-

time sorting can be used to solve all the sub-problems in O(𝑛) total time. With the help of this

batched predecessors data structure, insertions in an exponential search trees can be implemented

in O((log log𝑛)2) amortized time by performing insertions in batches. For this, the insertions at a

node of the tree are buffered until the size 𝑑 of the buffer given by the number of children of the

node. Once the buffer reaches its maximum size, the 𝑑 inserted integers are passed down the tree

to be inserted at the children.

Currently, the fastest deterministic linear-space integer sorting algorithm is the one introduced

by Han [58], which runs in O(𝑛 log log𝑛) time in the worst case. If randomization is allowed

then it is possible to sort 𝑛 integers in O(𝑛
√
log log𝑛) expected time using linear space [60].

Han’s deterministic algorithm [58], as Thorup’s solution [97], is also based on performing batched

insertions in an exponential search tree, although this time number of insertions that are buffered

at a node of degree 𝑑 is 𝑑2, instead of 𝑑 . Moreover, once the buffer is filled, the inserted integers

are passed down only one level instead of all the way down the tree, until all the elements to sort

are passed down one level. Note that if the degree of the root of the exponential search tree is 𝑛
1

𝑘 ,

after all the integers in the set to sort have been passed down to the next level, the trees rooted at

nodes in the second level of the tree induce an ordered partition of the set into 𝑛
1

𝑘 subsets, of size

𝑛
𝑘−1
𝑘 . Thus, Han [58] interprets the passing down steps as an ordered partition problem, and shows

how to solve it adapting the signature sort algorithm [10] to this setting by using a novel parallel

hashing technique.

Integer sorting algorithms (and predecessor data structures) can be used to sort floating-point

numbers as well. In fact, the IEEE 754 floating-point standard was designed so that if each element

in a set of floating-point numbers is mapped to the integer represented by the same bit string,
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the relative order of the elements is preserved [86, Section 3.5]. Thus, floating-point numbers

can be sorted by means of integer-sorting algorithms. Until recently, it was widely believed that

for real numbers this was not the case, and that sets of real numbers had to be sorted by using

comparison-based algorithms. In 2020, Han [59] showed that a set of real numbers can be mapped

to a set of integers in O(𝑛
√
log𝑛) time so that the respective order of the mapped elements is

preserved, and thereafter be sorted with any integer sorting algorithm. The real-to-integer mapping

procedure relies on Patrascu and Thorup’s dynamic data structure [84] to achieve the claimed

running time using only linear space.

5.5 Related Problems
Techniques and data structures introduced for predecessor search have been key not only for

integer sorting but also for several other problems, even when used as “black boxes”. For instance,

the introduction of fusion trees immediately implied an improvement for all algorithms with

integer inputs and running times dominated by integer sorting algorithms; Willard [104] explored

several of them. For data structures in which only the relative order of the elements in the universe

matters in order to support queries and updates (and not their exact values), predecessor data

structures became a powerful tool for reducing any arbitrary universe to the simpler rank space (i.e.,

{1, . . . , 𝑛}). This have been extensively used, for instance, in dominance and containment problems

in computational geometry [36–39]. Moreover, several problems in diverse fields of computer

science can be interpreted as generalizations of predecessor search [7, 14, 35, 73, 83]. We briefly

overview some of the most obvious of these generalizations, and mention slight variations of

predecessor data structures that have impacted their state of the art.

Range Searching and Interval Stabbing. In the Interval Stabbing problem one is given a set 𝐼 of

(non-necessarily disjoint) intervals, and the goal is to preprocess 𝐼 so that given a query value

(or point) 𝑞, one can efficiently report the intervals in 𝐼 containing 𝑝 . Range Searching is the dual

problem in which the elements represented by the data structure are points, the queries are intervals

(or hyper-rectangles in general), and the goal is to report all the elements of the set within a given

query interval. Predecessor search over a set 𝑋 can clearly be solved with interval stabbing data

structures: simply map each element 𝑝 of 𝑋 to an interval [𝑝, 𝑠 − 1] starting at 𝑝 and ending just

before the successor 𝑠 of 𝑝 , and store them in the data structure; the predecessor of a value 𝑞 is then

the left boundary of the interval stabbed by 𝑞 in the data structure. Predecessor queries can also be

supported using data structures for range searching because interval stabbing trivially reduces to

two-dimensional range searching by mapping each interval [𝑎, 𝑏] to the two-dimensional point

(𝑎, 𝑏), and each query value 𝑞 to the rectangle [−∞, 𝑞] × [𝑞,∞].
While range searching in two dimensions generalizes predecessor search, in one dimension the

inverse is true: range searching can easily be solved using data structures for predecessor search.

For instance, predecessor data structures based on tries (like van Emde Boas trees, and the ones

after it) with query time 𝑄 (𝑛) can be adapted to report all the elements within a given query range

in O(𝑄 (𝑛) + 𝑘) time, where 𝑘 is the size of the output. However, surprisingly, one-dimensional

range queries can be supported in time exponentially faster than predecessor queries. For example,

Alstrup et al. [6] presented a static linear-space data structure that can retrieve an arbitrary element

within the query interval (or report there are no elements) in constant time, and report all the 𝑘

elements in O(𝑘) time. For dynamic sets, Mortensen et al. [75] introduced a data structure that

finds an arbitrary element within a query interval in O(log log log𝑢) time, and supports updates

in time O(log log𝑢). Their data structure is inspired by van Emde Boas trees, and use 𝑦-fast tries
as an auxiliary data structure.
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Predecessor data structures and techniques are also key for range searching in higher dimensions

because they allow reducing arbitrary universes to rank space. The current best results for the

static two-dimensional version were presented by Chan et al. [36], and one of the elements in their

solution is the predecessor data strucutre of Grossi et al. [55]. In the dynamic version, Mortensen

[74] presented the first data structure with sub-logarithmic query and update times. He introduced

a data structure for a variant of the colored predecessor problem in which the elements of the set

are associated with a color, and the goal is to report the predecessor of a given query element

with a given color. The data structure was a variant of van Emde Boas trees supporting queries
in O(log2 log𝑛) time in the worst case, and in O(log log𝑛) expected time when randomization is

allowed. Current best results for the dynamic version were presented by Chan and Tsakalidis [39],

and their solution depends also on the data structure for colored predecessor search described by

Mortensen [74]. The relevance of the colored predecessor problem for various geometric retrieval

problems comes from the fact data structures for colored predecessor can act as a direct replacement

in situations where the classical fractional cascading technique [40, 95] is used, especially in dynamic

settings, for which Mortensen’s data structure [74] offers better tradeoffs.

Orthogonal Point Location. In this problem, one is given a subdivision of the space into disjoint

orthogonal cells (i.e., the edges are vertical or horizontal), and the goal is to build a data structure so

that the cell containing a given query point can be quickly identified. This problem generalizes the

Persistent Predecessor Search problem [35], which is in turn a generalization of predecessor search.

Chan and Patrascu [38] considered two-dimensional point location queries. They introduced a

simplified version of the fusion tree combining both cardinality and length reductions, and extended

it to support a special type of point location queries in 𝑂 ( log𝑛

log log𝑛
) time. Then, by combining this

data structure with a a slight variation of the exponential search trees they obtain a data structure

for the general Point Location problem in two dimensions. Later, Chan [35] improved these results

by introducing an optimal linear-space data structure. For this, he introduced a partially-persistent
6

version of van Emde Boas trees, supporting updates in O(log log𝑢) expected amortized time,

and queries over any of the previous versions of the data structure in O(log log𝑢) time. In three

dimensions, the current best bounds for both problems were introduced by Chan et al. [37], and

their solution is based on a recursive partition of the space inspired by the cluster-galaxy approach

of van Emde Boas trees.

Prefix Search. Another generalization of predecessor search is prefix search in strings. In this

problem one is given a set of strings 𝑆 and a pattern 𝑝 , and the goal is to return the longest prefix

of 𝑝 that is also a prefix of some string in 𝑆 . The 𝑧-fast trie [19], for instance, was introduced in

this context of prefix and predecessor search for strings. Given a set 𝑆 of prefix-free strings (i.e., no

string of 𝑆 is a prefix of another) from a binary alphabet and of variable length within O(𝑤), 𝑧-fast
tries can answer prefix queries in O(logmax( |𝑝 |, |𝑝+ |, |𝑝− |)) time (|𝑝± | is the successor/predecessor
of 𝑝 in 𝑆). For strings from a general alphabet of size 𝜎 , Fischer and Gawrychowski [50] presented a

weighted variant of exponential search trees in which querying or updating an element of weight

𝑤 in a set of total weight𝑊 costs O( log log𝑢

log log log𝑢
log

log𝑊

log𝑤
) time, replacing the log log𝑛 term in the

bounds of dynamic exponential search trees7 by a log
log𝑊

log𝑤
term. Combining this variant with

other ideas they introduce a dynamic linear-size data structure answering prefix queries for a

pattern 𝑝 in time O(|𝑝 | + log log𝜎). Other variants of predecessor search data structures have

6
A data structure is partially-persistent if it supports updates and allows querying past versions of the data structure.

7
This is bound is achieved when combining exponential search trees with Beame and Fich’s solution, see Section 3.3.
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been a valuable component of solutions to problems on indexing texts and searching patterns on

strings [15, 27, 29, 30, 67].

Fully Indexable Dictionaries. Predecessor queries over a set 𝑋 of integers can easily be imple-

mented by means of a bit-vector with support for rank and select (namely, a fully indexable

dictionary [91]); recall Section 5.3. For this, simply consider a bit vector 𝑏 with𝑢 bits, and with a 1 in

the 𝑖-th position if and only if 𝑖 ∈ 𝑆 . The predecessor of 𝑞 in 𝑋 is then given by select1 (rank1 (𝑥)).
Thus, the lower bound from Patrascu and Thorup [82, 83] for predecessor search provides a tradeoff

between space ocupied by the dictionary and the minimum of the running times of rank and

select. For instance, from Patrascu and Thorup’s bounds we know that constant running times

for both rank and select are only possible when the universe size is close to 𝑛, in particular, for

𝑢 ∈ O(𝑛 polylog𝑛). Grossi et al. [55] showed that both lower and upper bounds for the predecessor

problem can be transformed into lower and upper bound for the fully indexable dictionary problem,

and vice versa.

Finally, since the problems above are generalizations of predecessor search, Patrascu and Thorup’s

lower bounds [82, 83] hold for them as well. Moreover, the lower bounds have inspired similar results

(either by means of reductions, or by slight variations) to a variety of other problems, including two-

dimensional dominance queries [83], marked ancestor problems [7], longest common extensions in

trees [28], range minimum queries [69], and representing sequences of elements from an arbitrary

alphabet, with support for random access, rank, and select [22]. This list will certainly grow with

time.

5.6 Practical solutions
Many of the data structures we have presented, including the optimal results of Patrascu and

Thorup [82–84], are not good candidates for a verbatim implementation, because of the large

constants involved. More basic ideas, like those of van Emde Boas, are more promising in practice,

but still may offer little improvement over binary search. Experience shows that good ideas behind

theoretical results are always valuable, but they must be identified and combined with a good deal

of algorithm engineering. This is especially relevant in the predecessor problem, where all the

complexities are sublogarithmic, and therefore the impact of the constants is high. In this section

we collect some of those algorithm engineering efforts.

In 2004, Dementiev et al. [44] described a tuned version of van Emde Boas trees and compared it

experimentally with various comparison-based data structures (like Red-Black trees [43, Chap. 13]),
demonstrating that their variant achieves a significantly better performance. In their solution, highly

specialized for 32-bit keys, they made three changes with respect to the original data structure.

Firstly, in the structure of the nodes, the galaxy is maintained using a bit vector and an array of

pointers instead of a recursive van Emde Boas tree. Thus the root of the tree has a bit vector of size
2
16
which represents the 16 highest bits of each key. Secondly, the recursion is stopped when the

length of the keys is 8, thus the tree has only three levels. Finally, the clusters at the second level are

maintained using hash tables, and in the third level hash tables are used to store the direct answer.

The size of these hash tables increase and decrease with updates as needed, ranging between 4

and 2
8 = 256. While at the time of Dementiev et al.’s work [44] the most common word-size in

computers was 32 bits, this has changed today to 64 bits. Although their solution is highly efficient

in time, extending it to 64-bit keys seem unfeasible. In this case, the size of the root bit vector and

cluster array would increase up to 2
32
bits and words, respectively, which is (to date) unacceptable.

In 2010, Nash and Gregg [77] experimentally compared various dynamic data structures for

searching predecessors over 32 and 64 bit integer keys, including Dementiev et al.’s variant of van
Emde Boas trees [44]. They introduced a data structure that combines a trie variant known as burst
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trie [61] with bucketing. According to their experiments, this data structure performed better in

time than the other data structures they considered in the comparison. Their work was inspired by

a similar article presented by Rahman et al. [90] almost ten years earlier.

For fusion trees, exponential search trees, and similar structures, we know of no practical

implementation other than simple B-Trees tuned for predecessor search [90]. In the case of fusion
trees, for instance, note that the most common word size in today’s computers is 𝑤 = 64 bits,

and thus the fusion node would be in charge of maintaining sets of just ⌊𝑤1/4⌋ = ⌊2
√
2⌋ = 2 keys.

Clearly, the overhead of these complex structures does not pay off.

6 CONCLUSIONS
There has been a good deal of research on the Predecessor problem, from the first data structure

introduced by van Emde Boas [100] in 1977, to the optimal results of Patrascu and Thorup [82, 83]

in 2006-2007, which completely settled the static version of the problem, and their results in

2014 [84], which did the same for the dynamic version of the problem when randomization is

allowed. However, several issues remain open for the dynamic case of the problem, and for the

special cases and variants described in the previous section. We mention some of the questions on

predecessor search that remain open.

Dynamic predecessor bounds. The most fundamental of those unsolved questions is the deter-

ministic complexity of the dynamic predecessor problem: the optimal dynamic data structure of

Patrascu and Thorup [84] heavily relies on randomization. It is even open whether the running

time of lower bounds of Patrascu and Thorup [84] can be matched by data structures with upper

bounds that apply with high probability, instead of in expectation. The bounds of Patrascu and

Thorup [84] apply for the maximum between update and query time. The optimal bound for the

static case allow to argue that, even if no updates are allowed, one cannot improve significantly the

query time (when compared to the dynamic version). However, it is unknown whether there is any

data structure in which updates can be supported considerably faster than queries, provided that

the query time of the data structure is already close to the optimal bound.

Distance-sensitive queries based on cardinality reduction. There are no lower bounds for any of

the special cases reviewed here. The optimal complexity of this case is then open, even in the static

setting. For the general predecessor problem, obtaining optimal results required a wise combination

of data structures based on cardinality and length reduction. Current data structures supporting

distance-sensitive queries are essentially versions of the van Emde Boas tree, and thus based

on length reduction. Whether there are distance-sensitive data structures based on cardinality

reduction is open. It is not even clear how the running time of those data structures, if they existed,

should look like. While the bounds depending on 𝑢 translate naturally to bounds depending on Δ
(e.g., O(log log𝑢) to O(log logΔ)) this is not the case for bounds depending exclusively on 𝑛 and

𝑤 , such as the O(log𝑤 𝑛) bound of the fusion trees.

Dynamic data structures for biased queries. The data structures introduced by Bose et al. [32]

for the Biased Predecessor problem also work only under static settings. In this variant, finding

an efficient dynamic data structure might be harder than in the general case, especially when

considering that the distribution of the queries might change upon insertions and deletions of

elements. If the distribution is considered fixed, and applies to both queries and updates, then

using dynamic dictionaries might yield a simple solution. In the comparison model, the splay-trees

introduced by Sleator and Tarjan [96] improve, when compared to traditional balanced trees, the

running time of predecessor queries for heavily biased distributions in which a small set of elements

is accessed frequently. This remains true even if the working set changes over time. It is unknown
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whether there is an analogous dynamic data structure for integer sets in the RAM model in which,

like in splay-trees, queries to frequently or recently accessed elements are supported considerably

faster than the general case.

Dynamic indexes and succinct data structures. In general, there is very little development on

dynamic versions of the structures aimed at lowering the redundancy over the raw data. The

indexes introduced by Grossi et al. [55] and Cohen et al. [42] work only for the static predecessor

problem, and the existence of efficient dynamic indexes remains open. The succinct structure of

Belazzougui and Navarro [22] is also static.
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APPENDIX
A DATA STRUCTURES FOR THE STATIC PREDECESSOR PROBLEM IN RAM

Data Structure Query Time Construction Time Space Usage (words)

Binary search tree O(log𝑛) O(sort(𝑛,𝑢,𝑤) + 𝑛) O(𝑛)

van Emde Boas tree [100] O(log log𝑢) O(𝑢) O(𝑢)

𝑥-fast trie [103] O(log log𝑢) O(𝑛 log𝑢) O(𝑛 log𝑢)

𝑦-fast trie [103] O(log log𝑢) O(sort(𝑛,𝑢,𝑤) + 𝑛) O(𝑛)

𝑧-fast trie [19] O(log log𝑢) O(sort(𝑛,𝑢,𝑤) + 𝑛) O(𝑛)

Belazzougui and Navarro [22] O(log log𝑢−log𝑛
log𝑤

) O(sort(𝑛,𝑢,𝑤) + 𝑛) O( 𝑛
𝑤
log

𝑢
𝑛
)

fusion tree [52] O(log𝑤 𝑛)
O(sort(𝑛,𝑢,𝑤) +

𝑛𝑤4/5) O(𝑛)

Beame and Fich [14] O ©­«min


log log𝑢

log log log𝑢√
log𝑛

log log𝑛

ª®¬. O(𝑛2+𝜀) O(𝑛2 log𝑛/log log𝑛)

Patrascu and Thorup [82, 83] O

©­­­­­­­­­­­­­­­­­­«

1 +min



log𝑤 𝑛

log
log𝑢−log𝑛

𝑎

log
log𝑢

𝑎

log

(
𝑎

log𝑛
·log log𝑢

𝑎

)
log

log𝑢

𝑎

log

(
log

log𝑢

𝑎
/log log𝑛

𝑎

)



ª®®®®®®®®®®®®®®®®®®¬

if 𝑙, 𝑎 ∈ 𝜔 (log𝑛):
O(sort(𝑛,𝑢,𝑤) +
𝑛𝑤4/5 + 𝑛1+𝜀2𝑎)

otherwise:
O(sort(𝑛,𝑢,𝑤) +
𝑛𝑤4/5 + 2𝑎𝑛)

O( 𝑛2𝑎
𝑤
)
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B DATA STRUCTURES FOR THE DYNAMIC PREDECESSOR PROBLEM IN RAM

Data Structure Query Time Update Time Space Usage (words) Observations on Runtime

Binary search tree O(log𝑛) O(log𝑛) O(𝑛) Both worst-case

van Emde Boas tree [100] O(log log𝑢) O(log log𝑢) O(𝑢) Both worst-case

𝑥-fast trie [103] O(log log𝑢) O(log𝑢) O(𝑛 log𝑢) Updates expected, queries

worst-case

𝑦-fast trie [103] O(log log𝑢) O(log log𝑢) O(𝑛) Updates expected amortized,

queries worst-case

𝑧-fast trie [19] O(log log𝑢) O(log log𝑢) O(𝑛) Updates expected, queries

worst-case

fusion tree [52] O(log𝑤 𝑛) O(log𝑤 𝑛 + log𝑤) O(𝑛) Updates amortized, queries

worst-case

exponential search tree [12] O
©­­­­«
min


√
log𝑛

log log𝑢

log log log𝑢
· log log𝑛

log𝑛

log𝑤
+ log log𝑛


ª®®®®¬

O(𝑛) Both worst-case

Patrascu and Thorup [84] O

©­­­­­­­­­­­«
min



log𝑤 𝑛

log
log (𝑢−𝑛)
log𝑤

log
log𝑢

log𝑤

log

(
log

log𝑢

log𝑤
/log log𝑛

log𝑤

)

ª®®®®®®®®®®®¬
O(𝑛) Both expected
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