
Indexing Highly Repetitive String Collections,
Part II: Compressed Indexes

Gonzalo Navarro

University of Chile, Chile

Two decades ago, a breakthrough in indexing string collections made it possible to represent them
within their compressed space while at the same time offering indexed search functionalities. As

this new technology permeated through applications like bioinformatics, the string collections

experienced a growth that outperforms Moore’s Law and challenges our ability of handling them
even in compressed form. It turns out, fortunately, that many of these rapidly growing string

collections are highly repetitive, so that their information content is orders of magnitude lower

than their plain size. The statistical compression methods used for classical collections, however,
are blind to this repetitiveness, and therefore a new set of techniques has been developed in order

to properly exploit it. The resulting indexes form a new generation of data structures able to

handle the huge repetitive string collections that we are facing. In this survey, formed by two
parts, we cover the algorithmic developments that have led to these data structures.

In this second part, we describe the fundamental algorithmic ideas and data structures that
form the base of all the existing indexes, and the various concrete structures that have been

proposed, comparing them both in theoretical and practical aspects, and uncovering some new

combinations. We conclude with the current challenges in this fascinating field.

Categories and Subject Descriptors: E.1 [Data structures]; E.2 [Data storage representa-

tions]; E.4 [Coding and information theory]: Data compaction and compression; F.2.2 [Anal-
ysis of algorithms and problem complexity]: Nonnumerical algorithms and problems—Pat-

tern matching, Computations on discrete structures, Sorting and searching; H.2.1 [Database

management]: Physical design—Access methods; H.3.2 [Information storage and retrieval]:
Information storage—File organization; H.3.3 [Information storage and retrieval]: Informa-

tion search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Text indexing, string searching, compressed data structures,
repetitive string collections.

Funded by ANID Basal Funds FB0001, Millennium Science Initiative Program - Code ICN17 002,
and Fondecyt Grant 1-200038, Chile. Address: Gonzalo Navarro, Center for Biotechnology

and Bioengineering (CeBiB) and Millennium Institute for Foundational Research on Data

(IMFD), Department of Computer Science, University of Chile, Beauchef 851, Santiago, Chile,
gnavarro@dcc.uchile.cl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · G. Navarro

1. INTRODUCTION

This is the second part of a survey on how to index string collections that are
highly repetitive, that is, where most documents can be obtained from chunks of
other documents plus a comparatively small amount of new material. In the first
part [Navarro 2020, Sec. 1–4], we argued for the importance of this field of study and
for the need to separate the concept of data size from its actual information content
in order to handle the sharp growth of the data in many fields. The idea is to define
suitable measures of the repetitiveness of the data, which appropriately describe
its information content, and to design data representations that fit in space pro-
portional to that information content, rather than to the sheer data size. We gave
examples suggesting that 100-fold space reductions could be achieved on various
actual repetitive collections like Wikipedia, GitHub, and genome repositories.

We also discussed the need to go beyond mere compression if we want to work
within compressed space. We need compressed data structures that allow us not
only to directly access the data without decompressing it, but also to perform
sophisticated queries on it. Compressed text indexing, the topic of this second part
of the survey, is one of the most mature applications of those compressed data
structures. An index represents a collection of strings in a compressed format that
allows fast pattern matching on it, that is, find all the places where a given short
query string appears in the collection. Indexed pattern matching is at the core of
areas like Information Retrieval [Büttcher et al. 2010; Baeza-Yates and Ribeiro-Neto
2011], Data Mining [Liu 2007; Linstead et al. 2009; Silvestri 2010], Bioinformatics
[Gusfield 1997; Ohlebusch 2013; Mäkinen et al. 2015], Multimedia Retrieval [Typke
et al. 2005; Su et al. 2010], and others.

The need of compressed data structures for pattern matching was recognized
a couple of decades ago [Ferragina and Manzini 2000; Grossi and Vitter 2000],
and there are nowadays mature and successful indexes [Navarro and Mäkinen 2007;
Grossi 2011] that have made their way to applications; see for example bioinformatic
software like Bowtie1, BWA2, or Soap23. These indexes, however, build on statistical
compression which, as we show in the first part of the survey, does not exploit the
high degree of repetitiveness that arises in many applications.

This challenge was explicitly recognized almost a decade later [Sirén et al. 2008],
in the same bioinformatic context. After about another decade, the specific chal-
lenges of text indexing on highly repetitive string collections have become apparent,
but also there has been significant progress and important results have been reached.

Our aim in this second part of the survey is to give an exhaustive, yet friendly,
coverage of the discoveries in the area of compressed text indexes for highly repet-
itive text collections. We build on the repetitiveness measures and access methods
covered in the first part, which we summarize in Section 2, together with some
notation remarks and basic concepts. The indexes are divided into those that build
on “parsings” (i.e., partitions) of the string induced by the repetitiveness measures,
in Section 3, and those that build on string suffixes, in Section 4. Finally, Section 5
discusses some open challenges in this fascinating area.

1http://bowtie-bio.sourceforge.net
2http://bio-bwa.sourceforge.net
3http://soap.genomics.org.cn

Indexing Highly Repetitive String Collections, Part II · 3

2. NOTATION AND BASIC CONCEPTS

We assume basic knowledge on algorithms, data structures, and algorithm analysis.
In this section we define some fundamental concepts on strings, preceded by a
few more general concepts and notation remarks. To make this second part self-
contained, we repeat some of the concepts given in Part I [Navarro 2020, Sec. 2]
(sometimes with a different emphasis), and also summarize its main results.

Computation model. We use the RAM model of computation, where we assume
the programs run on a random-access memory where words of w = Θ(log n) bits
are accessed and manipulated in constant time, where n is the input size. All the
typical arithmetic and logical operations on the machine words are carried out in
constant time, including multiplication and bit operations.

Complexities. We will use big-O notation for the time complexities, and in many
cases for the space complexities as well. Space complexities are measured in amount
of computer words, that is, O(X) space means O(X log n) bits. By poly x we mean
any polynomial in x, that is, xO(1), and polylog x denotes poly (log x). Logarithms
will be to the base 2 by default. Within big-O complexities, log x must be under-
stood as dlog(2 + x)e, to avoid border cases.

2.1 Strings

A string S = S[1 . . n] is a sequence of symbols drawn from a set Σ called the
alphabet. We will assume Σ = {1, 2, . . . , σ}. The length of S[1 . . n] is n, also
denoted |S|. We use S[i] to denote the i-th symbol of S and S[i . . j] = S[i] . . . S[j]
to denote a substring of S. If i > j, then S[i . . j] = ε, the empty string. A prefix
of S is a substring of the form S[1 . . j] and a suffix is a substring of the form
S[i . . n] = S[i . .]. With SS′ we denote the concatenation of the strings S and S′,
that is, the symbols of S′ are appended after those of S. Sometimes we identify
a single symbol with a string of length 1, so that aS and Sa, with a ∈ Σ, denote
concatenations as well.

The lexicographic order among strings is defined as in a dictionary. Let a, b ∈ Σ
and let S and S′ be strings. Then aS ≤ bS′ if a < b, or if a = b and S ≤ S′; and
ε ≤ S for every S.

For technical convenience, we will often assume that strings S[1 . . n] are termi-
nated with a special symbol S[n] = $, which does not appear elsewhere in S nor in Σ.
We assume that $ is smaller than every symbol in Σ to be consistent with the lexi-
cographic order. The string S[1 . . n] read backwards is denoted Srev = S[n] · · ·S[1];
note that in this case the terminator does not appear at the end of Srev.

2.2 Pattern Matching

The indexed pattern matching problem consists in, given a sequence S[1 . . n], build
a data structure (called an index) so that, later, given a query string P [1 . .m], one
efficiently finds the occ places in S where P occurs, that is, one outputs the set
Occ = {i, S[i . . i+m− 1] = P}.

With “efficiently” we mean that, in an indexed scenario, we expect the search
times to be sublinear in n, typically of the form O((polym + occ) polylog n). The
optimal search time, since we have to read the input and write the output, is
O(m + occ). Since P can be represented in m log σ bits, in a few cases we will go

4 · G. Navarro

further and assume that P comes packed into O(m/ logσ n) consecutive machine
words, in which case the RAM-optimal time is O(m/ logσ n+ occ).

In general we will handle a collection of $-terminated strings, S1, . . . , Sd, but
we model the collection by concatenating the strings into a single one, S[1 . . n] =
S1 · · ·Sd, and doing pattern matching on S.

2.3 Classic Text Indexes

Suffix trees, suffix arrays, and CDAWGs are the most classical pattern matching
indexes. The suffix tree [Weiner 1973; McCreight 1976; Apostolico 1985] is a trie
(or digital tree) containing all the suffixes of S. That is, every suffix of S labels
a single root-to-leaf path in the suffix tree, and no node has two distinct children
labeled by the same symbol. Further, the unary paths (i.e., paths of nodes with a
single child) are compressed into single edges labeled by the concatenation of the
contracted edge symbols. Every internal node in the suffix tree corresponds to a
substring of S that appears more than once, and every leaf corresponds to a suffix.
The leaves of the suffix tree indicate the position of S where their corresponding
suffixes start. Since there are n suffixes in S, there are n leaves in the suffix tree, and
since there are no nodes with a single child, it has less than n internal nodes. The
suffix tree can then be represented within O(n) space, for example by representing
every string labeling edges with a couple of pointers to an occurrence of the label
in S. The suffix tree can also be built in linear (i.e., O(n)) time [Weiner 1973;
McCreight 1976; Ukkonen 1995; Farach-Colton et al. 2000].

The suffix tree is a very popular data structure in stringology and bioinformatics
[Apostolico 1985; Crochemore and Rytter 2002; Gusfield 1997], supporting a large
number of complex searches (by using extra information, such as suffix links, that
we omit here). The most basic search is pattern matching: since all the occurrences
of P in S are prefixes of suffixes of S, we find them all by descending from the root
following the successive symbols of P . If at some point we cannot descend by some
P [i], then P does not occur in S. Otherwise, we exhaust the symbols of P at some
suffix tree node v or in the middle of some edge leading to v. We then say that v
is the locus of P : every leaf descending from v is a suffix starting with P . If the
children v1, . . . , vk of every suffix tree node v are stored with perfect hashing (the
keys being the first symbols of the strings labeling the edges (v, vi)), then we reach
the locus node in time O(m). Further, since the suffix tree has no unary paths, the
occ leaves with the occurrences of P are traversed from v in time O(occ). In total,
the suffix tree supports pattern matching in optimal time O(m+ occ). With more
sophisticated structures, it supports RAM-optimal time search, O(m/ logσ n+ occ)
[Navarro and Nekrich 2017].

A convenient way to regard the suffix tree is as the Patricia tree [Morrison 1968]
of all the suffixes of S. The Patricia tree, also known as blind trie [Ferragina and
Grossi 1999] (their technical differences are not important here) is a trie where
we compact the unary paths and retain only the first symbol and the length of
the string labeling each edge. In this case we use the first symbols to choose the
appropriate child, and simply trust that the omitted symbols match P . When
arriving at the potential locus v of P , we jump to any leaf, where a potential
occurrence S[i . . i+m− 1] of P is pointed, and compare P with S[i . . i+m− 1]. If
they match, then v is the correct locus of P and all its leaves match P ; otherwise

Indexing Highly Repetitive String Collections, Part II · 5

P does not occur in S. A pointer from each node v to a leaf descending from it is
needed in order to maintain the verification within the optimal search time.

The suffix array [Manber and Myers 1993] of S[1 . . n] is the array A[1 . . n] of the
positions of the suffixes of S in lexicographic order. If the children of the suffix
tree nodes are lexicographically ordered by their first symbol, then the suffix array
corresponds to the leaves of the suffix tree. The suffix array can be built directly,
without building the suffix tree, in linear time [Kim et al. 2005; Ko and Aluru 2005;
Kärkkäinen et al. 2006].

All the suffixes starting with P form a range in the suffix array A[sp . . ep]. We
can find the range with binary search in time O(m log n), by comparing P with the
strings S[A[i] . . A[i] + m − 1], so as to find the smallest and largest suffixes that
start with P . The search time can be reduced to O(m + log n) by using further
data structures [Manber and Myers 1993].

The CDAWG (Compact Deterministic Acyclic Word Graph) [Blumer et al. 1987]
is obtained by merging all the identical subtrees of the suffix tree. The suffix trees
of repetitive strings tend to have large isomorphic subtrees, which yields small
CDAWGs. Every suffix of S corresponds to a distinct path from the root to the
final node, and thus the search process is similar to that on suffix trees. Once the
locus of P is found, each distinct path from it to the final node corresponds to an
occurrence of P in S.

Example: Figure 1 (modified from Part I) shows the suffix tree, suffix array, and
CDAWG of the string S = alabaralalabarda$. The search for P = lab in the suffix
tree leads to the grayed locus node: the search in fact falls in the middle of the edge
from the parent to the locus node. The two leaves descending from the locus contain
the positions 2 and 10, which is where P occurs in S. In the suffix array, we find
with binary search the interval A[13 . . 14], where the answers lie. In the CDAWG,
each path from the (grayed) locus to the final node corresponds to an occurrence.

2.4 Karp-Rabin Fingerprints

Karp and Rabin [1987] proposed a technique to compute a signature or fingerprint
of a string via hashing, in a way that enables (non-indexed) string matching in
O(n) average time. The signature κ(Q) of a string Q[1 . . q] is defined as

κ(Q) =

(
q∑
i=1

Q[i] · bi−1
)

mod p,

where b is an integer and p a prime number. It is easy to maintain κ(Q) in constant
time upon symbol additions/removals at the front/rear of Q. Therefore, we can
compute the signatures for all the prefixes or suffixes of Q in time O(q).

By appropriately choosing b and p, the probability of two substrings having the
same fingerprint is very low. Further, in O(n log n) expected time, we can find
a function κ that ensures that no two different substrings of S[1 . . n] have the
same fingerprint [Bille et al. 2014]: they build fingerprints κ′ that are collision-free
only over substrings of lengths that are powers of two, and then define κ(Q) =
〈κ′(Q[1 . . 2blog2 qc]), κ′(Q[q − 2blog2 qc + 1 . . q])〉.

6 · G. Navarro

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a l b raa a l a b a r d a $ l a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a

la
la

bar

bar

r

$

da$

$

bar

r

labarda$

da$

alalabarda$

$

la

r

alalabarda$

da$

alalabarda$ da$

$

a
bar da$

la

alalabarda$

da$

alalabarda$

bar

labarda$

bar

labarda$

r

alalabarda$

da$

bar

alalabarda$

da$

da$

Suffix array

16 3 11 1 9 7 5 413 12 15 8 6 1417

String

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Suffix tree

CDAWG

2 10

Fig. 1. The suffix tree, suffix array, and CDAWG of the string S = alabaralalabarda$. The

suffix tree leaves indicate the positions where the corresponding suffixes start, and those collected
positions form the suffix array. The locus suffix tree and CDAWG node, and the suffix array

interval, for P = lab, are grayed.

2.5 Measures of Repetitiveness and Access Methods

Table 1 recalls the repetitiveness measures covered in Part I of this survey [Navarro
2020, Sec. 1–4], and Figure 2 (copied from Part I) summarizes their relations, as
well as the ability to compress, provide direct access, and provide indexed searches
within those spaces. It typically holds in practice that b < z ≈ v < g < r < e,
where “<” denotes a clear difference in magnitude.

In Part I we also give the complexities within which we can extract an arbitrary
substring of length `, and compute the Karp-Rabin signature of such a substring.
The following space/time tradeoffs are obtained:

(1) Using grammars, within O(grl) space:
—O(`/ logσ n+ log n) time for extracting a substring of length `.
—O(log n) time for computing a signature.
—Real-time extraction of nonterminal prefixes or suffixes (i.e., O(1) time for

each new symbol extracted).

(2) Using block trees, within O(δ log(n/δ)) space:

Indexing Highly Repetitive String Collections, Part II · 7

Measure Meaning Cost

z Number of phrases in the Lempel-Ziv parse of the string O(n)
zno Like z, but sources and phrases cannot overlap O(n)

b Number of phrases in the smallest bidirectional macro scheme NP-hard

g Size of the smallest context-free grammar generating the string NP-hard

grl Like g, but run-length rules are permitted NP-hard

c Size of the smallest collage system generating the string Unknown
r Number of runs in the Burrows-Wheeler Transform of the string O(n)

v Number of phrases in the lex-parse of the string O(n)

e Number of nodes plus edges of the CDAWG of the string O(n)
γ Minimum size of an attractor for the string NP-hard

δ Maximum S(k)/k, where S contains S(k) distinct k-grams O(n)

Table 1. The measures of repetitiveness covered in Part I, and their construction cost. The
NP-hard measures are all O(logn)-approximable in O(n) time.

r δ δ (n/)log

b gz g
rlc

no
z

γ γ (n/)

δ γ

e

v log

σn / nkn H log/ n log

δ (n/)log logδ δ

Fig. 2. Relations between the compressibility measures. A solid arrow from X to Y means that

X = O(Y) for all string families. For all solid and dotted arrows, there are string families where

X = o(Y), with the exceptions of γ → b and c → z. Grayed measures X mean that we can
encode every string in O(X) space; darker gray means that we can also provide efficient access

and indexed searches within O(X) space; for r we can only provide indexed searches.

—O((1 + `/ logσ n) log(n/g)) time for extraction.

—O(log(n/g)) time for computing a signature.

(3) Using bookmarking, with O((p + γ) log log n) extra space, over any parse of p
phrases:

—O(`) time for extracting a phrase prefix or suffix.

—O(log `) time for computing the signature of a phrase prefix or suffix.

To follow the next sections in a self-contained form, we recall that measures z,
zno, b, r, and v define, or at least induce, a parse of S into pieces.

Example: To define z via the Lempel-Ziv parse, each piece is the longest prefix of
the rest of the string that appears earlier in S, or it is an explicit symbol if it appears
for the first time. The left of Figure 3 (copied from Part I) shows how the string
S = alabaralalabarda$ is parsed into z = 11 phrases, a|l|a|b|a|r|ala|labar|d|a|$.

Grammar-based methods, which are used to define the measures g and grl, define
a parse tree on top of S, which starts with the initial symbol at the root and ends
with the terminals that spell out S at the leaves. The grammar tree is defined by
pruning all but one occurrence of each distinct nonterminal from the parse tree,
and it has g + 1 or grl + 1 nodes. The segments of S covered by the leaves of the
grammar tree also induce a parse on S, of size at most g or grl.

8 · G. Navarro

a l b raa a l a l b a r d a $ a

l b raa a l a a b a r d a $la

a

a l b a

l b raa a l a a b a r d a $la

a a r d a $l b a r

Fig. 3. On the left, the Lempel-Ziv parse of S = alabaralalabarda$. Each phrase is either an

underlined string, which appears before, or a boxed symbol. The arrows go from each underlined
string to some of its occurrences to the left (its source, which is underlined with a dashed line).

On the right, a block tree on the same string, which can be seen as a restricted Lempel-Ziv parse.

a l b raa a l a a b a r d a $l

A

B B

A A

C

BA a l A ba a r C A d a $B B

a l b raa a l a a b a r d a $l

A

B B

A

C

Fig. 4. A context-free grammar generating the string S = alabaralalabarda$. The rules of the
grammar are on the bottom. On the top we show the parse tree (left) and a grammar tree (right),

emphasizing the parsing it induces on S with the phrases underlined.

Example: Figure 4 (modified from Part I) shows a context-free grammar that gen-
erates only the string S = alabaralalabarda$. The grammar has three rules, A→ al,
B → Aabar, and the initial rule C → BABda$. The sum of the lengths of the
right-hand sides of the rules is 13, the grammar size. On the right, a grammar tree
is of size 13 + 1 = 14, whose leaves induce a parsing of S of size 11 ≤ 13.

In turn, block trees can be seen as restrictions of parses where, at each level, the
string is partitioned into blocks of a certain length and whole blocks Sv that appear
elsewhere are replaced by a pointer inside a couple of consecutive blocks, Sv1 · Sv2 ,
at the same level. The replaced blocks become the leaves of the block tree, and
those leaves also induce a partition of S.

Example: The right part of Figure 3 (copied from Part I) shows a block tree for
S = alabaralalabarda$, which induces the partition S = a|l|a|b|a|r|ala|lab|ar|d|a|$.

Bookmarking [Gagie et al. 2012] combines grammars with Lempel-Ziv parsing in
order to speed up string extraction over (Lempel-Ziv) phrase prefixes and suffixes.
The result extends to fingerprinting [Gagie et al. 2014]. The concepts are presented
in Part I [Navarro 2020, Sec. 4.3] in simplified form and on attractors: Assume we
have split S somehow into p phrases, and let there be an attractor on S, of size γ.
To improve the extraction time from O(` + log n) to O(`), we create a new string
S′ with the contexts of length log n centered around each attractor position. A
particular type of run-length grammar built on S′ then offers the described space

Indexing Highly Repetitive String Collections, Part II · 9

a

d

l

l

$

l

r

b

b

a

a

r

a

a

a

a

a

17

16

3

1

9

7

5

13

4

12

15

2

10

8

6

14

11

$

a $

a b a r a l a l a b a r a $d

a b a r a $d

a l b raa a l a a b a r d al

a l a b a r a $d

a l a l a b a r a $d

a r a l a l a b a r a $d

a r a $d

b a r a l a l a b a r a $d

b a r a $d

a $d

l a b a r a l a l a b a r a $d

l a b a r a $d

l a l a b a r a $d

r a l a l a b a r a $d

r a $d

$

Fig. 5. The list of suffixes of S = alabaralalabarda$ in increasing lexicographic order. The sequence

of preceding symbols (in gray) forms the BWT of S, Sbwt = adll$lrbbaaraaaaa. The run heads are

boxed. On the right we show the suffix array of S.

and time complexities for extraction and fingerprint calculation.
Finally, the Burrows-Wheeler Transform (BWT) of S[1 . . n] is another string

Sbwt[1 . . n] where the symbols of S are permuted: Sbwt[i] = S[A[i] − 1], where A
is the suffix array of S and we assume S[0] = S[n]. Measure r is the number of
equal-symbol runs in Sbwt.

Example: The BWT of S = alabaralalabarda$ is Sbwt = adll$lrbbaaraaaaa, as shown
in Figure 5 (modified from Part I). It has r = 10 runs.

3. PARSING-BASED INDEXING

In this section we describe a common technique underlying a large class of indexes
for repetitive string collections. The key idea, already devised by Kärkkäinen and
Ukkonen [1996], builds on the parsing induced by a compression method, which
divides S[1 . . n] into p phrases, S = S1 · · ·Sp. The parsing is used to classify the
occurrences of any pattern P [1 . .m] into two types:

—The primary occurrences are those that cross a phrase boundary.

—The secondary occurrences are those contained in a single phrase.

The main idea of parsing-based indexes is to first detect the primary occurrences
with a structure using O(p) space, and then obtain the secondary ones from those,
also using O(p) space. The key property that the parsing must hold is that it must
allow finding the secondary occurrences from the primary ones within O(p) space.

3.1 Geometric Structure to Track Primary Occurrences

Every primary occurrence of P in S can be uniquely described by 〈i, j〉, indicating:

10 · G. Navarro

(1) The leftmost phrase Si it intersects.

(2) The position j of P that aligns at the end of that phrase.

A primary occurrence 〈i, j〉 then implies that

—P [1 . . j] is a suffix of Si, and

—P [j + 1 . .m] is a prefix of Si+1 · · ·Sp.

The idea is then to create two sets of strings:

—X is the set of all the reversed phrase contents, Xi = Srevi , for 1 ≤ i < p, and

—Y is the set of all the suffixes Yi = Si+1 · · ·Sp, for 1 ≤ i < p.

If, for a given j, P [1 . . j]rev is a prefix of Xi (i.e., P [1 . . j] is a suffix of Si)
and P [j + 1 . .m] is a prefix of Yi, then 〈i, j〉 is a primary occurrence of P in S.
To find them all, we lexicographically sort the strings in X and Y, and set up a
bidimensional grid of size p×p. The grid has exactly p points, one per row and per
column: if, for some i, the xth element of X in lexicographic order is Xi and the
yth element of Y in lexicographic order is Yi, then there is a point at (x, y) in the
grid, which we label i.

The primary occurrences of P are then found with the following procedure:

—For each 1 ≤ j < m

(1) Find the lexicographic range [sx, ex] of P [1 . . j]rev in X .

(2) Find the lexicographic range [sy, ey] of P [j + 1 . .m] in Y.

(3) Retrieve all the grid points (x, y) ∈ [sx, ex]× [sy, ey].

(4) For each retrieved point (x, y) labeled i, report the primary occurrence 〈i, j〉.

It is then sufficient to associate the end position p(i) = |S1 · · ·Si| with each
phrase Si, to know that the primary occurrence 〈i, j〉 must be reported at position
S[p(i)− j + 1 . . p(i)− j +m]. Or we can simply store p(i) instead of i in the grid.

Example: Figure 6 shows the grid built on a parsing of S = alabaralalabarda$. Every
reversed phrase appears on top, as an x-coordinate, and every suffix appears on the
right, as a y-coordinate. Both sets of strings are lexicographically sorted and the
points in the grid connect phrases (x) with their following suffix (y). Instead of
points we draw the label, which is the number of the phrase in the x-coordinate.

A search for P = la finds its primary occurrences by searching X for P [1]rev = l,
which yields the range [xs, xe] = [7, 8], and searching Y for P [2] = a, which gives
the range [ys, ye] = [2, 6]. The search for the (grayed) zone [7, 8] × [2, 6] returns
two points, with labels 2 and 7, meaning that P [1] aligns at the end of those phrase
numbers, precisely at positions S[2] and S[8].

Note that, by definition, there are no primary occurrences when |P | = 1. Still, it
will be convenient to find all the occurrences of P that lie at the end of a phrase.
To do this, we carry out the same steps above for j = 1, in the understanding that
the lexicographic range on Y is [sy, ey] = [1, p].

The challenges are then (1) how to find the intervals in X and Y, and (2) how to
find the points in the grid range.

Indexing Highly Repetitive String Collections, Part II · 11

b ra d a $a l a a b a rla l a
1 2 3 4 5 6 9 10 1187

10

ralalabarda$

labaralalabarda$

da$

baralalabarda$

aralalabarda$

alalabarda$

alabarda$

abaralalabarda$

a$

$
a a a a b d ra

b
a
la

rlal

1

3

4

5

6

7

2

8

9

Fig. 6. A parse for S = alabaralalabarda$ and the corresponding grid. We show the search process
to find the primary occurrences of P = la.

3.1.1 Finding the intervals in X and Y. A simple solution is to perform a binary
search on the sets, which requires O(log p) comparisons of strings. The desired pre-
fixes of Xi or Yi to compare with, of length at most m, must be extracted from a
compressed representation of S: we represent Xi and Yi just with the position where
they appear in S. By using any of the techniques recalled in Section 2.5, we ex-
tract them in time fe = O(m/ logσ n+ log n) or fe = O((1 +m/ logσ n) log(n/g)).
Since this is repeated for every 1 ≤ j < m, all the intervals are found in time
O(fe m log p), which is in O((m+ log n)m log n) with the first tradeoff. This com-
plexity can be reduced to O(m2 log n) on grammars, by exploiting the fact that
the phrases are defined as the leaves of the grammar tree, and therefore we always
need to extract prefixes or suffixes of nonterminal expansions. The same time can
be obtained with O((p+γ) log log n) additional space by using bookmarking. In all
cases, however, the complexity stays quadratic in m: we need to search for m − 1
prefixes/suffixes of P of length up to m.

The quadratic term can be removed by using a batched search for all the suffixes
P [j + 1 . .m] together (or all the suffixes P [1 . . j]rev). The technique is based on
compact tries and Karp-Rabin fingerprints [Belazzougui et al. 2010; Gagie et al.
2014; Bille et al. 2017; Gagie et al. 2018; Christiansen et al. 2020]. The idea is to
represent the sets X and Y with compact tries, storing fingerprints of the strings
labeling selected paths, and then verifying the candidates to ensure they are actual
matches. The fingerprints of all the suffixes sought are computed in time O(m).
The trie is actually a version called z-fast trie [Belazzougui et al. 2009; Belazzougui
et al. 2010], which allows searching for a string of length ` with O(log `) fingerprint
comparisons. Once all the candidate results are found, a clever method does all the
verifications with one single string extraction, exploiting the fact that we are looking
for various suffixes of a single pattern. If a fingerprint κ(S[i . . j]) is computed in

12 · G. Navarro

time fh, then the lexicographic ranges of any k suffixes of P [1 . .m] can be found
in time O(m+ k(fh + logm) + fe). The structure uses O(p) space, and is built in
O(n log n) expected time to ensure that there are no fingerprint collisions in S.

As recalled in Section 2.5, we can compute Karp-Rabin fingerprints in time
O(log n) or O(log(n/g)) using grammars or block trees, respectively. To search
for the k = m− 1 suffixes of P (or of its reverse) we then need time O(m log n).

The approach can be built on block trees which, as shown in Part I [Navarro 2020,
Sec. 4.2], can be built on Lempel-Ziv (O(z log(n/z)) space, and even O(δ log(n/δ))),
or built on attractors (O(γ log(n/γ)) space). It can also be applied on gram-
mars (O(g) space), and even on run-length grammars, within space O(grl) ⊆
O(δ log(n/δ)). Combined with bookmarking, the time can be reduced toO(m logm)
because fh = O(logm), yet we need O(z log log n) or O(g log log n) further space.

A recent twist [Christiansen and Ettienne 2018; Christiansen et al. 2020] is that
a specific type of grammar, called locally consistent grammar,4 can speed up the
searches because there are only k = O(logm) cuts of P that deserve considera-
tion. In a locally consistent grammar, the subtrees of the parse tree expanding
to two identical substrings S[i . . j] = S[i′ . . j′] are identical except for O(1) nodes
in each level. Christiansen et al. [2020] show that locally consistent grammars of
size O(γ log(n/γ)) can be built without the need to compute γ (which would be
NP-hard). Further, we can obtain fe = O(m) time with grammars because, as
explained, we extract only rule prefixes and suffixes when searching X or Y. They
also show how to compute Karp-Rabin fingerprints in time O(log2m) (without the
extra space bookmarking uses) in their grammars. The time to find all the relevant
intervals then decreases to O(m+ k(fh + logm) + fe) ⊆ O(m).

3.1.2 Finding the points in the two-dimensional range. This is a well-studied
geometric problem [Chan et al. 2011]. We can represent p points on a p × p grid
within O(p) space, so that we can report all the t points within any given two-
dimensional range in time O((1 + t) logε p), for any constant ε > 0. By using
slightly more space, O(p log log p), the time drops to O((1 + t) log log p), and if we
use O(p logε p) space, the time drops to O(log log p+t), thus enabling constant time
per occurrence reported.

If we look for the k = m− 1 prefixes and suffixes of P with O(p) space, the total
search time is O(m logε p) ⊆ O(m log n), plus O(logε p) per primary occurrence. If
we reduce k to O(logm), the search time drops to O(logm logε p), plus O(logε p) per
primary occurrence. Christiansen et al. [2020] reduce this O(logm logε p) additive
term to just O(logε γ) by dealing with short patterns separately.

3.2 Tracking Secondary Occurrences

The parsing method must allow us infer all the secondary occurrences from the pri-
mary ones. The precise method for propagating primary to secondary occurrences
depends on the underlying technique.

3.2.1 Lempel-Ziv parsing and macro schemes. The idea of primary and secondary
occurrences was first devised for the Lempel-Ziv parsing [Farach and Thorup 1995;

4Built via various rounds of the better-known locally consistent parsings [Cole and Vishkin 1986;
Sahinalp and Vishkin 1995; Mehlhorn et al. 1997; Batu et al. 2006].

Indexing Highly Repetitive String Collections, Part II · 13

a l b raa a l a l b a r d a $ a

13 14 15 16 171 2 3 4 5 6 7 8 9 10 11 12

Fig. 7. Finding the secondary occurrences of P = la on the Lempel-Ziv parse of Figure 3. The

occurrences are marked with rounded boxes. The primary occurrence, which is grayed, is projected
from sources to targets to find the secondary ones.

Kärkkäinen and Ukkonen 1996], of size p = z. Note that the leftmost occurrence of
any pattern P cannot be secondary, because then it would be inside a phrase that
would occur earlier in S. Secondary occurrences can then be obtained by finding all
the phrase sources that cover each primary occurrence. Each such source produces
a secondary occurrence at the phrase that copies the source. In turn, one must
find all the phrase sources that cover these secondary occurrences to find further
secondary occurrences, and so on. All the occurrences are found in that way.

A simple technique [Kreft and Navarro 2013] is to maintain all the sources [bk, ek]
of the z phrases of S in arrays B[1 . . z] (holding all bks) and E[1 . . z] (holding
all eks), both sorted by increasing endpoint ek. Given an occurrence S[i . . j], a
successor search on E finds (in O(log logw n) time [Belazzougui and Navarro 2015])
the smallest endpoint ek ≥ j, and therefore all the sources in E[k . . z] end at or
after S[j]; those in E[1 . . k−1] cannot cover S[i . . j] because they end before j. We
then want to retrieve the values B[l] ≤ i with k ≤ l ≤ z, that is, the sources that
in addition start no later than i.

A technique to retrieve each source covering S[i . . j] in constant time is as follows.
We build a Range Minimum Query (RMQ) data structure [Bender et al. 2005;
Fischer and Heun 2011] on B, which uses O(z) bits and returns, in constant time,
the position of the minimum value in any range B[k . . k′]. We first query for
B[k . . z]. Let the minimum be at B[l]. If B[l] > i, then this source does not cover
S[i . . j], and no other source does because this is the one starting the earliest. We
can therefore stop. If, instead, B[l] ≤ i, then we have a secondary occurrence in
the target of [bl, el]. We must report that occurrence and recursively look for other
sources covering it. In addition, we must recursively look for sources that start
early enough in B[k . . l− 1] and B[l+ 1 . . z]. Since we get an occurrence each time
we find a suitable value of B in the current range, and stop as soon as there are
no further values, it is easy to see that we obtain each secondary occurrence in
constant time.

Example: Figure 7 shows the search for P = la on the Lempel-Ziv parse of Fig-
ure 3. There is only one primary occurrence at S[2 . . 3]. The sources [bk, ek]
are, in increasing order of ek, [1, 1], [1, 3], [3, 3], [2, 6], [11, 11], so we have the ar-
rays B = 〈1, 1, 3, 2, 11〉 and E = 〈1, 3, 3, 6, 11〉. A successor search for 3 in E
shows that E[2 . . 5] contains all the sources that finish at or after position 3. We
now use RMQs on B to find those that start at or before position 2. The first
candidate is RMQ(2, 5) = 2, which identifies the valid source [B[2], E[2]] = [1, 3]
covering our primary occurrence. The target of this source is S[7 . . 9], which con-

14 · G. Navarro

tains a secondary occurrence at S[8 . . 9] (the offset of the occurrence within the
target is the same as within the source). There is no other source covering S[8 . . 9],
so that secondary occurrence does not propagate further. We continue with our
RMQs, now on the remaining interval B[3 . . 5]. The query RMQ(3, 5) = 4 yields
the source [B[4], E[4]] = [2, 6], which also covers the primary occurrence. Its target,
S[10 . . 14], then contains a secondary occurrence at the same offset as in the source,
in S[10 . . 11]. Again, no source covers this secondary occurrence. Continuing, we
must check the intervals B[3 . . 3] and B[5 . . 5]. But since both are larger than 2,
they do not cover the primary occurrence and we are done.

Thus, if we use a Lempel-Ziv parse, we require O(z) additional space to track the
secondary occurrences. With occ occurrences in total, the time is O(occ log logw n),
dominated by the successor searches. Note that the scheme works well also under
bidirectional macro schemes, because it does not need that the targets be to the
right of the sources. Thus, the space can be reduced to O(b).

3.3 Block Trees

The sequence of leaves in any of the block tree variants we described partitions S
into a sequence of p phrases (where p can be as small as O(δ log(n/δ)), as recalled
in Section 2.5). Each such phrase is either explicit (if it is at the last level) or it
has another occurrence inside an internal node of the same level.

This parsing also permits applying the scheme of primary and secondary occur-
rences, if we use leaves of length 1 [Navarro and Prezza 2019]. It is not hard to
see that every secondary occurrence S[i . . j], with i < j, has a copy that crosses a
phrase boundary: S[i . . j] is inside a block Sv that is a leaf, thus it points to another
occurrence of Sv inside Sv1 ·Sv2 . If the copy S[i′ . . j′] spans both Sv1 and Sv2 , then
it is a primary occurrence. Otherwise it falls inside Sv1 or Sv2 , and then it is also
inside a block of the next block tree level. At this next level, S[i′ . . j′] may fall inside
a block Sv′ that is a leaf, and thus it points towards another occurrence of Sv′ . In
this case, S[i′ . . j′] is also a secondary occurrence and we will discover S[i . . j] from
it; in turn S[i′ . . j′] will be discovered from its pointed occurrence S[i′′ . . j′′], and so
on. Instead, S[i′ . . j′] may fall inside an internal block Sv′ = Sv′1 · Sv′2 . If S[i′ . . j′]
spans both Sv′1 and Sv′2 , then it is a primary occurrence, otherwise it appears inside
a block of the next level, and so on. We continue this process until we find an
occurrence of S[i . . j] that crosses a block boundary, and thus it is primary. Our
original occurrence S[i . . j] is then found from the primary occurrence, through a
chain of zero or more intermediate secondary occurrences.

Example: Consider the parsing S = a|l|a|b|a|r|ala|lab|ar|d|a|$ induced by the block
tree of Figure 3, where the phrases of length 1 are the leaves of the last level. Then
P = al has two primary occurrences, at S[1 . . 2] and S[9 . . 10]. The sources of
blocks are [1, 3], [2, 4], and [5, 6]. Therefore the source [1, 3] covers the first primary
occurrence, which then has a secondary occurrence at the target, in S[7, 8].

The process and data structures are then almost identical to those for the Lempel-
Ziv parsing. We collect the sources of all the leaves at all the levels in arrays B
and E, as for Lempel-Ziv, and use them to find, directly or transitively, all the
secondary occurrences. In some variants, such as block trees built on attractors,

Indexing Highly Repetitive String Collections, Part II · 15

the sources can be before or after the target in S, as in bidirectional macro schemes,
and the scheme works equally well.

3.4 Grammars

In the case of context-free grammars [Claude and Navarro 2012] (and also run-
length grammars), the partition of S induced by the leaves of the grammar tree
induces a suitable parsing: a secondary occurrence S[i . . j] inside a leaf labeled by
nonterminal A has another occurrence S[i′ . . j′] below the occurrence of A as an
internal node of the grammar tree. If S[i′ . . j′] is inside a leaf labeled B (with
|B| < |A|), then there is another occurrence S[i′′ . . j′′] below the internal node
labeled B, and so on. Eventually, we find a copy crossing a phrase boundary, and
this is our primary occurrence.

The hierarchical structure of the grammar tree enables a simplified process to
find the occurrences. Let exp(X) be the string nonterminal X expands to. For
each internal node v representing the rule A → X1 · · ·Xk, and for each 1 ≤ i < k,
we insert exp(Xi)

rev into X and exp(Xi+1) · · · exp(Xk) into Y, associating the
corresponding grid point to node v with offset |exp(X1) · · · exp(Xi)|. This ensures
that every cutting point between consecutive grammar tree leaves X and Y is
included and associated with the lowest common ancestor node A = lca(X,Y) that
covers both leaves. By associating the part of exp(A) that follows exp(X), instead
of the full suffix, one ensures at construction time that A is the lowest nonterminal
that covers the primary occurrence covering X and Y .

Once we establish that P occurs inside exp(A) at position j, we must track j
upwards in the grammar tree, adjusting it at each step, until locating the occurrence
in the start symbol, which gives the position where P occurs in S. To support this
upward traversal we store, in each grammar tree node A with parent C, the offset
of exp(A) inside exp(C). This is added to j when we climb from A to C.

In addition, every other occurrence of A in the grammar tree contains a secondary
occurrence of P , with the same offset j. Note that all those other occurrences of
A are leaves in the grammar tree. Each node labeled A has then a pointer to the
next grammar tree node labeled A, forming a linked list that must be traversed to
find all the secondary occurrences (in any desired order; the only restriction is that
the list must start at the only internal node labeled A). Further, if C is the parent
of A, then any other occurrence of C in the grammar tree (which is necessarily a
leaf as well) also contains a new secondary occurrence of P .

The process then starts at each primary occurrence A and recursively moves to
(1) the parent of A (adjusting the offset j), and (2) the next node labeled A. The
recursive calls end when we reach the grammar tree root in step (1), which occurs
once per distinct secondary occurrence of P , and when there is no next node to
consider in step (2).

Example: Figure 8 shows how the only primary occurrence of P = al in S =
alabaralalabarda$, using the parse of Figure 4 (and Figure 6), are propagated using
the grammar tree. The primary occurrence, S[1 . . 2] spans the first two leaves, and
the pointer of the grid sends us to the internal node labeled A, which is the lowest
common ancestor of those two leaves, with offset 1 (indeed, exp(A) = al). To find
its position in S, we go up to B, the parent of A, where the offset is still 1 because

16 · G. Navarro

b ra d a $

A

B B

A A

C

a l a a b a rll aa

Fig. 8. Finding the secondary occurrences of P = al on the grammar-induced parse of Figure 4

(the removed edges of the parse tree are grayed). The occurrences are marked with rounded boxes;

the primary one is grayed. The bold solid arrows translate each occurrence towards the root, and
the bold dashed arrows towards the next occurrence of the same nonterminal.

the offset of A within B is 0 (exp(B) = alabar). Finally, we reach C, the parent
of B and the tree root, where the offset is still 1 and thus we report the primary
occurrence S[1 . . 2].

The secondary occurrences are found by recursively following the dashed arrows
towards the other occurrences of the intermediate nonterminals. From the internal
node A we reach the only other occurrence of A in the grammar tree (which is a
leaf; remind that there is only one internal node per label). This leaf has offset 6
within its parent C, so the offset within C is 1 + 6 = 7. We then move to C and
report a secondary occurrence at S[7 . . 8]. The list of the As ends there. Similarly,
when we arrive at the internal node B, we follow the dashed arrow towards the only
other occurrence of B in the grammar tree. This has offset 8 within its parent C,
so when we move up to C we report the secondary occurrence S[9 . . 10].

Note that the bold arrows, solid and dashed, form a binary tree rooted at the
primary occurrence. The leaves that are left children are list ends and those that
are right children are secondary occurrences. Thus the total number of nodes (and
the total cost of the tracking) is proportional to the number of occurrences reported.

Claude and Navarro [2012] show that the cost of the traversal indeed amortizes
to constant time per secondary occurrence if we ensure that every nonterminal
A occurs at least twice in the grammar tree (as in our example). Nonterminals
appearing only once can be easily removed from the grammar. If we cannot modify
the grammar, we can instead make each node A point not to its parent, but to its
lowest ancestor that appears at least twice in the grammar tree (or to the root, if
no such ancestor exists) [Christiansen et al. 2020]. This ensures that we report the
occs secondary occurrences in time O(occp + occs).

Christiansen et al. [2020] show how the process is adapted to handle the special
nodes induced by the rules A→ Xk of run-length grammars.

3.5 Resulting Tradeoffs

By considering the cost to find the primary and secondary occurrences, and sticking
to the best possible space in each case, it turns out that we can find all the occ
occurrences of P [1 . .m] in S[1 . . n] either:

Indexing Highly Repetitive String Collections, Part II · 17

—In time O(m log n+ occ logε n), within space O(grl) ⊆ O(δ log(n/δ)).

—In time O(m+ (occ+ 1) logε n), within space O(γ log(n/γ)).

The first result is obtained by using a run-length grammar to define the parse of
S (thus the grid is of size grl× grl), to access nonterminal prefixes and suffixes and
compute fingerprints, and to track the secondary occurrences. Note that finding
the smallest grammar is NP-hard, but there are ways to build run-length grammars
of size O(δ log(n/δ)), as mentioned in Part I of this survey. The second result uses
the improvement based on locally consistent parsing (end of Section 3.1.1); recall
that we do not need to compute γ (which is NP-hard too) in order to obtain it.

3.5.1 Using more space. We can combine the slightly larger grid representations
(Section 3.1.2) with bookmarking in order to obtain improved times for the first
result. We can use a bidirectional macro scheme to define the phrases, so that
the grid is of size b × b, and use the geometric data structure of size O(b log log b)
that reports the occ points in time O((1 + occ) log log b). We then use a run-length
grammar to provide direct access to S, and enrich it with bookmarking (Section 2.5)
to provide substring extraction and Karp-Rabin hashes (to find the ranges in X and
Y) in time fe = O(m) and fh = O(logm), respectively, at phrase boundaries. This
adds O((b+ γ) log log n) = O(b log log n) space. The time to find the m− 1 ranges
in X and Y is then O(m+m(fh+ logm) +fe) = O(m logm). The m−1 geometric
searches take time O(m log log b+ occ log log b), and the secondary occurrences are
reported in time O(occ log logw n) (Section 3.2.1). Gagie et al. [2014] get rid of the
O(m log log b) term by dealing separately with short patterns (see their Section 4.2;
it adapts to our combination of structures without any change).

Note again that it is NP-hard to find the smallest bidirectional macro scheme,
but we can build suboptimal ones from the Lempel-Ziv parse, the lex-parse, or the
BWT runs, for example (see Part I [Navarro 2020, Sec. 3]). Also, there are heuristics
to build bidirectional macro schemes smaller than z [Nishimoto and Tabei 2019;
Russo et al. 2020].

The larger grid representation, of size O(p logε p) for p points, reports primary
occurrences in constant time, but to maintain that constant time for secondary oc-
currences we need that the parse comes from a (run-length) grammar (Section 3.4).
We must therefore use a grid of grl × grl. The grammar already extracts phrase
(i.e., nonterminal) prefixes and suffixes in constant time, yet bookmarking is still
useful to compute fingerprints in O(logm) time. We can then search:

—In time O(m logm+ occ log log n), within space O(grl + b log log n).

—In time O(m logm+ occ), within space O(grl logε n).

Finally, using larger grids directly on the result that uses O(γ log(n/γ)) space
yields the first optimal-time index [Christiansen et al. 2020]. We can search:

—In time O((m+ occ) log log n), within space O(γ log(n/γ) log log n).

—In time O(m+ occ), within space O(γ log(n/γ) logε n).

3.5.2 History. The generic technique we have described encompasses a large
number of indexes found in the literature. As said, Kärkkäinen and Ukkonen [1996]
pioneered the idea of primary and secondary occurrences based on Lempel-Ziv for
indexing. Their index is not properly a compressed index because it stores S in

18 · G. Navarro

Kempa et al. 2020

Index bounded by delta

Christiansen et al. 2019

Optimal search time

Christiansen & Ettienne 2018

Logarithmic number of subpatterns

Gagie et al. 2014

Fingerprinting

Gagie et al. 2012

Bookmarks

Claude & Navarro 2012

Amortized secondary occs

Karkkainen & Ukkonen 1996

Primary and secondary occs

Lempel−Ziv bounded index

Grammar bounded index

Kreft and Navarro 2010

Claude & Navarro 2009

Attractor bounded index Batched subpattern searches

Navarro & Prezza 2017 Bille et al. 2017

ESP with time bounds

Edit sensitive parsing (ESP)

Maruyama et al. 2011

Nishimoto et al. 2015

Fig. 9. Diagram of the influences and main ideas about parsing-based indexing.

plain form, and uses O(z) additional space to store the grid and a mechanism of
stratified lists of source areas to find the secondary occurrences.

Figure 9 shows a diagram with the main ideas that appeared along time and the
influences between contributions. The Appendix gives a detailed account. The best
results to date are those we have given explicitly, plus some intermediate tradeoffs
given by Christiansen et al. [2020] (see their Table I).

4. SUFFIX-BASED INDEXING

Suffix arrays and suffix trees (Section 2.3) are data structures designed to support
indexed searches. They are of size O(n), but large in practice. We next describe
how their search algorithms translate into structures of size O(r) or O(e), which
are related to the regularities induced by repetitiveness on suffix arrays and trees.

4.1 Based on the BWT

The suffix array search based on the BWT dates back to Ferragina and Manzini
[2000, 2005], who showed that, with appropriate data structures, Sbwt is sufficient
to simulate a suffix array search and find the range A[sp . . ep] of the suffixes that
start with a search pattern P . Their method, called backward search, consecutively
finds the interval A[spi . . epi] of the suffixes starting with P [i . .m], by starting with

Indexing Highly Repetitive String Collections, Part II · 19

[spm+1 . . epm+1] = [1 . . n] and then computing, for i = m to i = 1,

spi = C[P [i]] + rankP [i](S
bwt, spi+1 − 1) + 1,

epi = C[P [i]] + rankP [i](S
bwt, epi+1),

where C[c] is the number of occurrences in S of symbols lexicographically smaller
than c, and rankc(S

bwt, j) is the number of occurrences of c in Sbwt[1 . . j].5 Further,
if A[j] = i, that is, the lexicographically jth smallest suffix of S is S[i . .], then
A[j′] = i− 1 for c = Sbwt[j] and

j′ = LF (j) = C[c] + rankc(S
bwt, j),

which is called an LF-step from j. By performing LF-steps on the BWT of
S, we virtually traverse S backwards. Operation rank on Sbwt can be imple-
mented in n log σ+ o(n log σ) bits (and even in statistically compressed space) and
in the optimal time O(log logw σ) [Belazzougui and Navarro 2015], which yields
O(m log logw σ) time for backward searching of P .

To understand the rationale of the backward search formula, let us start with the
backward step. Recall from Section 2.5 that c = Sbwt[j] is the symbol preceding
the suffix A[j], c = Sbwt[j] = S[A[j]− 1]. The function j′ = LF (j) computes where
is in A the suffix that points to A[j]− 1. First, all the C[c] suffixes that start with
symbols less than c precede A[j′]. Second, the suffixes S[A[j]−1 . .] are stably sorted
by 〈S[A[j] − 1], A[j]〉 = 〈Sbwt[j], A[j]〉, that is, by their first symbol and breaking
ties with the rank of the suffix that follows. Therefore, LF (j) adds the number
C[c] of suffixes starting with symbols less than c and the number rankc(S

bwt, j) of
suffixes that start with c up to the one we want to translate, A[j].

Example: Consider S = alabaralalabarda$, with Sbwt = adll$lrbbaaraaaaa, in Fig-
ure 5. From A[14] = 10 and Sbwt[14] = a (which correspond to the suffix S[10 . .] =
labarda$), we compute LF (14) = C[a] + ranka(S

bwt, 14) = 1 + 5 = 6. Indeed
A[6] = 9 = A[14]− 1, corresponding to the suffix alabarda$.

Let us now consider the backward search steps. Note that we know that the
suffixes in A[spi+1 . . epi+1] start with P [i + 1 . .m]. The range A[spi . . epi] lists
the suffixes that start with P [i . .m], that is, they start with P [i] and then con-
tinue with a suffix in A[spi+1 . . epi+1]. We then want to capture all the suffixes in
A[spi+1 . . epi+1] that are preceded by c = P [i] and map them to their corresponding
position in A. Since they will be mapped to a range, the backward search formula
is a way to perform all those LF-steps in one shot.

Example: Consider again S = alabaralalabarda$, with Sbwt = adll$lrbbaaraaaaa, in
Figure 5. To search for P = la, we start with the range A[sp3 . . ep3] = [1 . . 17]. The
first backward step, for P [2] = a, gives sp2 = C[a] + ranka(S

bwt, 0) + 1 = 1 + 1 = 2
and ep2 = C[a]+ranka(S

bwt, 17) = 1+8 = 9. Indeed, A[2 . . 9] is the range of all the
suffixes starting with P [2 . . 2] = a. The second and final backward step, for P [1] = l,
gives sp1 = C[l]+rankl(S

bwt, 1)+1 = 12+1 = 13 and ep2 = C[l]+rankl(S
bwt, 9) =

12+3 = 15. Indeed, A[13 . . 15] is the range of the suffixes starting with P = la, and
thus the occurrences of P are at A[13] = 2, A[14] = 10, and A[15] = 8. Note that,

5If spi > epi, then P does not occur in S and we must not continue the backward search.

20 · G. Navarro

if we knew that the suffixes in A[2 . . 9] preceded by l were at positions 3, 4, and 6,
and we had computed LF (3), LF (4), and LF (6), we would also have obtained the
interval A[13 . . 15].

Ferragina and Manzini [2005] and Ferragina et al. [2007] show how to represent
Sbwt within nHk(S)+o(n log σ) bits of space, that is, asymptotically within the kth
order empirical entropy of S, while supporting pattern searches in time O(m log σ+
occ log1+ε n) for any constant ε > 0. These concepts are well covered in other
surveys [Navarro and Mäkinen 2007], so we will not develop them further here; we
will jump directly to how to implement them when S is highly repetitive.

4.1.1 Finding the interval. Mäkinen and Navarro [2005] showed how to compute
rank on Sbwt when it is represented in run-length form (i.e., as a sequence of r
runs). We present the results in a more recent setup [Mäkinen et al. 2010; Gagie
et al. 2020] that ensures O(r) space. The positions that start runs in Sbwt are stored
in a predecessor data structure that also tells the number of the corresponding runs.
A string S′[1 . . r] stores the symbol corresponding to each run of Sbwt, in the same
order of Sbwt. The run lengths are also stored in another array, R[1 . . r], but they
are stably sorted lexicographically by the associated symbol. More precisely, if R[t]
is associated with symbol c, it stores the cumulative length of the runs associated
with c in R[1 . . t]. Finally, C ′[c] tells the number of runs of symbols d for all d < c.
Then, to compute rankc(S

bwt, j), we:

(1) Find the predecessor j′ of j, so that we know that j belongs to the kth run in
Sbwt, which starts at position j′ ≤ j.

(2) Determine that the symbol of the current run is c′ = S′[k].

(3) Compute p = rankc(S
′, k − 1) to determine that there are p runs of c before

the current run.

(4) The position of the run k−1 in R is C ′[c] +p: R lists the C ′[c] runs of symbols
less than c, and then the p runs of c preceding our run k (because R is stably
sorted, upon ties it retains the order of the runs in Sbwt).

(5) We then know that rankc(S
bwt, j′ − 1) = R[C ′[c] + p].

(6) This is the final answer if c 6= c′. If c = c′, then j is within a run of cs and thus
we must add j − j′ + 1 to the answer.

Example: The BWT of S = alabaralalabarda$ has r(S) = 10 runs (recall Figure 5),
Sbwt = a|d|ll|$|l|r|bb|aa|r|aaaaa. The predecessor data structure then contains the
run start positions, 〈1, 2, 3, 5, 6, 7, 8, 10, 12, 13〉. The string of distinct run symbols
is S′[1 . . 10] = adl$lrbara. Stably sorting the runs 〈1 . . 10〉 by symbol we obtain
〈4, 1, 8, 10, 7, 2, 3, 5, 6, 9〉 (e.g., we first list the 4th run because its symbol is the
smallest, $, then we list the 3 positions of a in S′, 1, 8, 10, and so on), and therefore
R = 〈1, 1, 3, 8, 2, 1, 2, 3, 1, 2〉 (e.g., R[2 . . 4] = 〈1, 3, 8〉 because the runs of a are of
lengths 1, 2, and 5, which cumulate to 1, 3, and 8). Finally, C ′[$] = 0, C ′[a] = 1,
C ′[b] = 4, C ′[d] = 5, C ′[l] = 6, and C ′[r] = 8 precede the positions where the runs
of each symbol start in R.

To compute ranka(S
bwt, 15) we find the predecessor j′ = 13 of j = 15 and from

the same structure learn that it is the run number k = 10. We then know that it
is a run of as because S′[10] = a. We then find out that there are p = 2 runs of as

Indexing Highly Repetitive String Collections, Part II · 21

preceding it because ranka(S
′, 9) = 2. Further, there are C ′[a] = 1 runs of symbols

smaller than a in Sbwt. This means that the runs of as start in R after position
C ′[a] = 1, and that the run k − 1 = 9 is, precisely, at C ′[a] + p = 3. With R[3] = 3
we learn that there are 3 as in Sbwt[1 . . 12]. Finally, since we are counting as and
j is in a run of as, we must add the j − j′ + 1 = 15− 13 + 1 = 3 as in our current
run. The final answer is then ranka(S

bwt, 15) = 3 + 3 = 6.

The cost of the above procedure is dominated by the time to find the predecessor
of j, and the time to compute rank on S′[1 . . r]. Using only structures of size O(r)
[Gagie et al. 2020], the predecessor can be computed in time O(log logw(n/r)) if
there are r elements in a universe [1 . . n] [Belazzougui and Navarro 2015], and rank
on S′ can be computed in time O(log logw σ) as explained. This yields a total time
of O(m log logw(σ+n/r)) to determine the range A[sp . . ep] using backward search
for P , in space O(r) [Gagie et al. 2020]. Recently, Nishimoto and Tabei [2020]
showed that, adding some artificial cuts to the runs, it is possible to avoid the
O(log logw(n/r))-time predecessor searches by always maintaining the run to which
the position j belongs in constant time. This reduces the time to O(m log logw σ),
still within O(r) space.

4.1.2 Locating the occurrences. Once we have determined the interval [sp . . ep]
where the answers lie in the suffix array, we must output the positionsA[sp], . . . , A[ep]
to complete the query. We do not have, however, the suffix array in explicit form.
The classical procedure [Ferragina and Manzini 2005; Mäkinen et al. 2010] is to
choose a sampling step t and sample the suffix array entries that point to all the
positions of the form S[i · t + 1], for all 0 ≤ i < n/t. Then, if A[j] is not sampled,
we compute LF (j) and see if A[LF (j)] is not sampled, and so on. Since we sample
S regularly, some A[LF s(j)] must be sampled for 0 ≤ s < t. Since function LF
implicitly moves us one position backward in S, it holds that A[j] = A[LF s(j)] +s.
Therefore, within O(n/t) extra space, we can report each of the occurrence posi-
tions in time O(t log logw(n/r)) (the LF-steps do not require O(log logw σ) time for
the rank on S′ because its queries are of the form rankS′[i](S

′, i), for which we can
just store the answers to the r distinct queries).

Though this procedure is reasonable for statistical compression, the extra space
O(n/t) is usually much larger than r, unless we accept a significantly high time,
O((n/r) log logw(n/r)), to report each occurrence. This had been a challenge for
BWT-based indexes on repetitive collections until very recently [Gagie et al. 2020],
where a way to efficiently locate the occurrences within O(r) space was devised.

Gagie et al. [2020] solve the problem of reporting A[sp . . ep] in two steps, in their
so-called r-index (we present the simplified version of Bannai et al. [2020]). First,
they show that the backward search can be modified so that, at the end, we know
the value of A[ep] (in turn, this simplifies a previous solution [Policriti and Prezza
2018]). Second, they show how to find A[j − 1] given the value of A[j].

The first part is not difficult. When we start with [sp . . ep] = [1 . . n], we just need
the value of A[n] stored. Now, assume we know [spi+1 . . epi+1] and A[epi+1], and
compute [spi . . epi] using the backward search formula. If the last suffix, A[epi+1], is
preceded by P [i] (i.e., if Sbwt[epi+1] = P [i]), then the last suffix of A[spi . . epi] will
be precisely A[epi] = A[LF (epi+1)] = A[epi+1]−1, and thus we know it. Otherwise,
we must find the last occurrence of P [i] in Sbwt[spi+1 . . epi+1], because this is the

22 · G. Navarro

one that will be mapped to A[epi]. This can be done by storing an array L[1 . . r]
parallel to R, so that L[t] is the value of A for the last entry of the run R[t] refers
to. Once we determine p using the backward search step described above, we have
that A[epi] = L[C ′[c] + p]− 1.

Example: For S = alabaralalabarda$ and Sbwt = adll$lrbbaaraaaaa, we have L =
〈1, 17, 12, 14, 13, 16, 11, 9, 7, 15〉. For example, L[3] refers to the end of the 2nd
run of as, as seen in the previous example for R[3]. This ends at Sbwt[11], and
A[11] = 12 = L[3]. In the backward search for P = la, we start with [sp3 . . ep3] =
[1 . . 17], and know that A[17] = 14. The backward search computation then yields
[sp2 . . ep2] = [2 . . 9]. Since Sbwt[17] = a = P [2], we deduce that A[9] = 14− 1 = 13.
A new backward step yields [sp1 . . ep1] = [13 . . 15]. Since Sbwt[9] = b 6= P [1], we
must consult L. The desired position of L is obtained with the same process to find
rankl(S

bwt, 9): k = 7, p = rankl(S
′, 6) = 2, t = C ′[l] + p = 6 + 2 = 8, from where

we obtain that A[15] = L[8]− 1 = 9− 1 = 8.

For the second part, finding A[j−1] from A[j], let us define d = A[j−1]−A[j], and
assume both positions are in the same run, that is, Sbwt[j−1] = Sbwt[j] = c for some
c. By the LF-step formula, it is not hard to see that LF (j−1) = LF (j)−1, and thus
A[LF (j−1)]−A[LF (j)] = (A[j−1]−1)−(A[j]−1) = d = A[LF (j)−1]−A[LF (j)].6

This means that, as we perform LF-steps from j and j − 1 and both stay in the
same run, their difference d stays the same. After performing s LF-steps, for some
s, Sbwt[j′] = Sbwt[LF s(j)] will be a run head and Sbwt[j′ − 1] = Sbwt[LF s(j − 1)]
will belong to another run. If we store d = A[j′ − 1]−A[j′] for the run head j′, we
can compute A[j − 1] = A[j] + d.

The key to find the proper run head is to note that A[j′] = A[j] − s is the only
position of a run head mapped to S in A[j] − s, . . . , A[j]. We then store another
predecessor data structure with the positions A[j′] in S that correspond to run
heads in Sbwt, Sbwt[j′ − 1] 6= Sbwt[j′]. To the position t = A[j′] we associate
d(t) = A[j′ − 1] − A[j′]. To compute A[j − 1] from A[j], we simply find the
predecessor t = A[j′] of A[j] and then know that A[j − 1] = A[j] + d(t).7

Example: Figure 10 shows the run heads projected to S, and the associated values d.
Once we find the interval A[13 . . 15] for P = la in the previous example, and since
we know that A[15] = 8, we can compute A[14] as follows. The boxed predecessor
of S[8] is S[7]. Since A[7] = 7, we stored d(7) = A[6] − A[7] = 2 associated with
S[7], and thus we know that A[14] = A[15] + d(7) = 10. Now, the boxed predecessor
of S[10] is S[9]. Since A[6] = 9, we stored d(9) = A[5]−A[6] = −8 associated with
S[9], and thus we know that A[13] = A[14] + d(9) = 2.

Each new position is then found with a predecessor search, yielding total search
time O(m log logw(σ+n/r)+occ log logw(n/r)), and O(r) space [Gagie et al. 2020].
Nishimoto and Tabei [2020] manage to compute these predecessors in constant time
as well, thus reducing the search time to of O(m log logw σ + occ) in O(r) space.

6With the possible exception of A[j − 1] or A[j] being 1, but in this case the BWT symbol is $,
and thus they cannot be in the same run.
7Gagie et al. [2020] store A[j′ − 1] instead of d(t), and thus add s = A[j]− t to return A[j − 1] =
A[j′ − 1] + s.

Indexing Highly Repetitive String Collections, Part II · 23

a l b raa a l a a b a r d al $

−3 1−8229131310d

S

da l l $ l r b b a a r a a a aabwt

A

S

13 14 15 16 171 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

17 16 3 11 1 9 7 5 413 12 15 2 10 8 6 14

Fig. 10. The sampling on S = alabaralalabarda$ induced by the runs of its BWT with the purpose
of locating occurrences. We omit the sample of A[1] = 17 because no pattern can occur at S[17].

This index was implemented and shown to be 1–2 orders of magnitude faster than
parsing-based indexes, though up to twice as large [Gagie et al. 2020]. When the
collections are very repetitive, its size is still small enough, but the index (as well
as measure r) degrades faster than z or g when repetitiveness starts to decrease.

Note that the index does not provide direct access to S within O(r) space, only
within O(r log(n/r)) space (and O(`+log(n/r)) time), and this is provided through
a run-length grammar of that size and height O(log(n/r)). What is more interesting
is that they also build grammars of size O(r log(n/r)) that provide access in time
O(log(n/r)) to any cell of A or A−1.

A previous attempt to provide fast searches on top of the BWT [Belazzougui et al.
2015] combines it with Lempel-Ziv parsing: it uses O(z(S) + r(S) + r(Srev)) space
and searches in time O(m(log log n+ log z) + occ logε z). A careful implementation
[Belazzougui et al. 2017] shows to be relevant, for example it uses about 3 times
more space and is faster than the index of Kreft and Navarro [2013].

4.1.3 Optimal search time. Kempa [2019] generalizes the concept of BWT runs to
s-runs, where the s symbols preceding each suffix A[j] must coincide. He shows that,
if S has r runs, then it has O(rs) s-runs. Gagie et al. [2020] use this idea to define a
new string S∗ = S0·S1 · · ·Ss−1, where Sk is formed by discarding the first k symbols
of S and then packing it into “metasymbols” of length s. The metasymbols are
lexicographically compared in the same way as the string that composes them. They
show that the suffix array interval for P in S and for P 0 in S∗ are the same. Since the
length of P 0 is m′ = m/s, one can choose s = log logw(σ+n/r) in order to represent
S∗ within O(rs) = O(r log logw(σ + n/r)) space and find the interval A[sp . . ep] of
P in S by searching for P 0 in S∗, in time O(m′ log logw(σs + n/r)) = O(m).

In turn, the occurrences are located also in chunks of s, by storing in d(t) not only
the information on A[j′ − 1], but also on A[j′ − 2], . . . , A[j′ − s], in space O(rs) as
well. Thus, we invest a predecessor search, time O(log logw(n/r)), but in exchange
retrieve s occurrences. The resulting time is O(m + log logw(n/r) + occ), which is
converted into the optimal O(m+ occ) by handling short patterns separately.

With the new technique of Nishimoto and Tabei [2020], we can obtain O(m+occ)
time within O(r log logw σ) space, because it is sufficient to set s = log logw σ to
find the interval A[sp . . ep] in time O(m) and the occurrences are already located
in time O(occ). Note that this space is O(r) if σ = O(polyw).

24 · G. Navarro

RAM-optimal search time is also possible with this index, withinO(rw logσ logw n)
space [Gagie et al. 2020]. Interestingly, RAM-optimal search time had been ob-
tained only in the classical scenario, using O(n) words of space.

4.2 Based on the CDAWG

In principle, searching the CDAWG as easy as searching a suffix tree [Crochemore
and Hancart 1997]: since any suffix can be read from the root node, we simply
move from the root using P until finding its locus node (like on the suffix tree, if
we end in the middle of an edge, we move to its target node).

A first problem is that we do not store the strings that label the edges of the
CDAWG. Instead, we may store only the first symbols and the lengths of those
strings, as done for suffix trees in Section 2.3. Once we reach the locus node, we
must verify that all the skipped symbols coincide with P [Crochemore and Hancart
1997; Belazzougui and Cunial 2017a]. The problem is that the string S is not
directly available for verification. Since e = Ω(g), however, we can in principle
build a grammar of size O(e) so that we can extract a substring of S of length m,
and thus verify the skipped symbols, in time O(m+ log n); recall Section 2.5.

To determine which position of S to extract, we use the property that all the
strings arriving at a CDAWG node are suffixes of one another [Blumer et al. 1987,
Lem. 1]. Thus, we store the final position in S of the longest string arriving at
each node from the root. If the longest string arriving at the locus node v ends at
position t(v), and we skipped the last l symbols of the last edge, then P should be
equal to S[t(v)− l−m+ 1 . . t(v)− l], so we extract that substring and compare it
with P . If they coincide, then every distinct path from v to the final node, of total
length L, represents an occurrence at S[n−L− l−m+ 1 . . n−L− l]. Since every
node has at least two outgoing edges, we spend O(1) amortized time per occurrence
reported [Blumer et al. 1987]. The total search time is then O(m+ log n+ occ).

Example: Let us search for P = la in the CDAWG of Figure 1. We leave the root
by the arrow whose string starts with l, and arrive at the target node v (grayed)
with l = 0 (because the edge consumes the m = 2 symbols of P). The node v can
be associated with position t(v) = 3, which ends an occurrence of the longest string
arriving at v, ala. We then extract S[t(v) − l − m + 1 . . t(v) − l] = S[2 . . 3] = la
and verify that the skipped symbols match P . We then traverse all the forward
paths from v, reaching the final node in three ways, with total lengths L = 8, 14, 6.
Therefore, P occurs in S at positions n− L− l −m+ 1 = 8, 2, 10.

Another alternative, exploiting the fact that e = Ω(r), is to enrich the CDAWG
with the BWT-based index of size O(r): as shown in Section 4.1.1, we can determine
in time O(m log logw σ) whether P occurs in S or not, that is, if sp ≤ ep in the
interval A[sp . . ep] we compute. If P occurs in S, we do not need the grammar
to extract and verify the skipped symbols; we can just proceed to output all the
occurrences [Belazzougui et al. 2015]. The total time is then O(m log logw σ+ occ).
This variant is carefully implemented by Belazzougui et al. [2017], who show that
the structure is about two orders of magnitude faster than the index of Kreft and
Navarro [2013], though it uses an order of magnitude more space.

It is even possible to reach optimal O(m + occ) time with the CDAWG, by ex-
ploiting the fact that the CDAWG induces a particular grammar of size O(e) where

Indexing Highly Repetitive String Collections, Part II · 25

there is a distinct nonterminal per string labeling a CDAWG edge [Belazzougui and
Cunial 2017b]. Since we need to extract a prefix of the string leading to the locus
of P , and this is the concatenation of several edges plus a prefix of the last edge,
the technique recalled in Section 2.5 allows us to extract the string to verify in time
O(m). Variants of this idea are given by Belazzougui and Cunial [2017a] (using
O(e) space) and Takagi et al. [2017] (using O(e(S) + e(Srev)) space).

5. CURRENT CHALLENGES

In the final section of this survey, we consider the most important open challenges
in this area: (1) obtaining practical implementations, and (2) being able to build
the indexes for very large text collections.

5.1 Practicality and Implementations

There is usually a long way between a theoretical finding and its practical deploy-
ment. Many decisions that are made for the sake of obtaining good worst-case
complexities, or for simplicity of presentation, are not good in practice. Algorithm
engineering is the process of modifying a theoretically appealing idea into a compet-
itive implementation, involving knowledge of the detailed cost model of computers
(caching, prefetching, multithreading, etc.). Further, big-O space figures ignore
constants, which must be carefully considered to obtain competitive space for the
indexes. In practice variables like z, g, r, etc. are a hundredth or a thousandth of
n, and therefore using space like 10z bytes may yield a large index in practice.

While competitive implementations have been developed for indexes based on
Lempel-Ziv [Kreft and Navarro 2013; Ferrada et al. 2014; Claude et al. 2016; Fer-
rada et al. 2018], grammars [Maruyama et al. 2013; Takabatake et al. 2014; Claude
et al. 2016; Claude et al. 2021], the BWT [Mäkinen et al. 2010; Belazzougui et al.
2017; Gagie et al. 2020; Kuhnle et al. 2020], and CDAWGs [Belazzougui et al. 2017],
the most recent and promising theoretical developments [Bille et al. 2018; Navarro
and Prezza 2019; Christiansen et al. 2020; Kociumaka et al. 2020] are yet to be
implemented and tested. It is unknown how much these improvements will impact
in practice.

Figure 11 shows, in very broad terms, the space/time tradeoffs obtained by the
implementations built on the different repetitiveness concepts. It is made by taking
the most representative values obtained across the different experiments of the
publications mentioned above, discarding too repetitive and not repetitive enough
collections. The black dots represent the run-length BWT built on regular sampling
[Mäkinen et al. 2010], which has been a baseline for most comparisons. Though r
seems to dominate e, the latter (represented by CDAWG indexes) is implemented
only on DNA, where it is nearly twice as fast as r (represented by the r-index).

5.2 Construction and Dynamism

An important obstacle for the practical adoption of the indexes we covered is how
to build them on huge datasets. Once built, the indexes are orders of magnitude
smaller than the input and one hopes to handle them in main memory. However,
the initial step of computing the parsing, the run-length BWT, or another small
representation of a very large text collection, even if it can be generally performed in
the optimal O(n) time, usually requires O(n) main memory space with a significant

26 · G. Navarro

0.1

1

3

10

30

100

0.3

m
ic

ro
se

c
/

o
cc

0.1 0.3 1 3 10

z

g

r e

bits / symbol

Fig. 11. Space/time tradeoffs of the indexes building on different repetitiveness measures. Both

axes are logarithmic: bits per symbol (x) and search time per occurrence in microseconds (y).

constant. There are various approaches that aim to reduce those main memory
requirements and/or read the text in streaming mode, but some are still incipient.

Burrows-Wheeler Transform. The BWT is easily obtained from the suffix array,
which in turn can be built in O(n) time and space [Kim et al. 2005; Ko and Aluru
2005; Kärkkäinen et al. 2006]. However, the constant associated with the space
is large. Kärkkäinen et al. [2006] allow using O(nv) time and O(n/

√
v) space for

a parameter v, but they still need to store the n log n + n log σ bits of the suffix
array and the text. External-memory suffix array construction requires optimal
O(Sort(n)) I/Os and time [Farach-Colton et al. 2000; Kärkkäinen et al. 2006].

There are various algorithms to build the BWT directly using compact space or
in external memory [Kärkkäinen 2007; Hon et al. 2007; Okanohara and Sadakane
2009; Hon et al. 2009; Ferragina et al. 2012; Beller et al. 2013; Munro et al. 2017;
Kempa and Kociumaka 2019; Belazzougui et al. 2020; Fuentes-Sepúlveda et al.
2020], but they do not produce it in run-length compressed form. Recently, Kempa
[2019] showed how to build the run-length BWT in O(n/ logσ n+ r polylog n) time
and working space.

With a dynamic representation of sequences that supports insertions of symbols
[Munro and Nekrich 2015] one can build the run-length encoded BWT incrementally
by traversing the text in reversed form; the LF-mapping formula given in Section 4.1
shows where to insert the next text symbol. This idea is used by Policriti and Prezza
[2018] to build the run-length compressed BWT directly, in streaming mode, in
O(n log r) time and within O(r) main memory space. Ohno et al. [2018] improve
their practical performace by a factor of 50 (using just twice the space).

Sirén [2016] presents a practical technique to build very large BWTs (i.e., for
terabytes of data) in run-length compressed form. It splits the collection into sub-
collections, builds the individual BWTs, and then merges them into a global one.

Indexing Highly Repetitive String Collections, Part II · 27

Boucher et al. [2019] propose a practical method called “prefix free parsing”,
which first parses the text using a rolling hash (a Karp-Rabin-like hash that depends
on the last ` symbols read; a phrase ends whenever the hash modulo a parameter
value is zero). The result is a dictionary of phrases and a sequence of phrase
identifiers; both are generally much smaller than n when the text is repetitive.
They then build the BWT from those elements. Their experiments show that they
can build BWTs of very large collections in reasonable time. Kuhnle et al. [2020]
show how to add in this construction the sampling used by the run-length BWT
[Gagie et al. 2020]; recall Section 4.1.2.

Lempel-Ziv parsing. While it has been known for decades how to obtain this parse
in O(n) time [Rodeh et al. 1981; Storer and Szymanski 1982], these algorithms use
O(n) space (i.e., O(n log n) bits) with a significant constant. A long line of research
[Chen et al. 2008; Ohlebusch and Gog 2011; Kempa and Puglisi 2013; Kärkkäinen
et al. 2013; Goto and Bannai 2013; Goto and Bannai 2014; Kärkkäinen et al.
2014; Yamamoto et al. 2014; Fischer et al. 2015; Kärkkäinen et al. 2016; Köppl
and Sadakane 2016; Belazzougui and Puglisi 2016; Munro et al. 2017; Fischer
et al. 2018; Kempa 2019] has focused on using little space, reducing the constant
associated with the O(n log n) bits and even reaching O(n log σ) bits [Kärkkäinen
et al. 2013; Belazzougui and Puglisi 2016; Munro et al. 2017; Kempa 2019] and
statistically compressed space [Policriti and Prezza 2015]. This is still unaware of
repetitiveness, however.

Interestingly, the only known method to build the Lempel-Ziv parsing in repetition-
aware space (O(z + r)) is to build the run-length BWT first and then derive the
Lempel-Ziv parse from it [Policriti and Prezza 2018; Ohno et al. 2018; Bannai et al.
2020]. These methods use up to 3 orders of magnitude less space (and are just
2–8 times slower) than the previous approaches. Another interesting development
[Kärkkäinen et al. 2014] uses external memory: with a RAM of size M , it performs
O(n2/M) I/Os and requires 2n bytes of disk working space. Despite this quadratic
complexity, their experiments show that this technique can handle, in practice,
much larger texts than previous approaches.

Other approaches aim at approximating the Lempel-Ziv parse. Fischer et al.
[2015] build an (1+ε)-approximation in O((n/ε) log n) time and O(z) space. Kempa
and Kosolobov [2017] build the LZ-End variant [Kreft and Navarro 2013] in stream-
ing mode and O(z + `) main memory space, where ` is the length of the longest
phrase. Valenzuela et al. [2020] use Relative Lempel-Ziv as a building block.

Grammar construction. RePair [Larsson and Moffat 2000] is the heuristic that
obtains the best grammars in practice. While it computes the grammar in O(n)
time and space, the constant associated with the space is significant and prevents
using it on large texts. Attempts to reduce this space have paid a significant price in
time [Bille et al. 2017; Sakai et al. 2019; Köppl et al. 2020]. A recent heuristic [Gagie
et al. 2019] obtains space close to that of RePair using a semi-streaming algorithm,
but it degrades quickly as the repetitiveness decreases. Various other grammar
construction algorithms, for example Sakamoto [2005] and Jeż [2015, 2016], build
a balanced grammar that approximates the smallest grammar within an O(log n)
factor by performing a logarithmic number of passes on the text (which halves at
each pass), and could be amenable to a semi-streamed construction. The same

28 · G. Navarro

is true of recent grammar constructions [Nunes et al. 2018; Dı́az-Domı́nguez and
Navarro 2021] inspired in suffix array construction algorithms.

An important line of research in this regard are the online grammar construction
algorithms [Maruyama et al. 2012; Maruyama et al. 2013; Takabatake et al. 2017].
In OLCA [Maruyama et al. 2012], the authors build a grammar in O(n) time by
reading the text in streaming mode. They obtain an O(log2 n) approximation to
the smallest grammar using O(g log2 n) space. In SOLCA [Maruyama et al. 2013]
they reduce the space to O(g). FOLCA [Takabatake et al. 2017] improves the
space to g log g + o(g log g) bits; the authors also prove that the grammar built by
SOLCA and FOLCA is an O(log n log∗ n) approximation. Their experiments show
that the grammar is built very efficiently in time and main memory space, though
the resulting grammar is 4–5 times larger than the one generated by RePair.

Dynamism. A related challenge is dynamism, that is, the ability to modify the
index when the text changes. Although a dynamic index is clearly more practi-
cal than one that has to be rebuilt every time, this is a difficult topic on which
little progress has been made. The online construction methods for run-length
BWTs [Policriti and Prezza 2018; Ohno et al. 2018; Bannai et al. 2020] and gram-
mars [Maruyama et al. 2013; Takabatake et al. 2017] naturally allow us adding
new text at the beginning or at the end of the string. A dynamic BWT repre-
sentation allows adding or removing arbitrary documents from a text collection
[Mäkinen and Navarro 2008]. Supporting arbitrary modifications to the text is
much more difficult, however. We are only aware of two works. One [Nishimoto
et al. 2020] builds on edit-sensitive parsing to maintain a grammar under arbitrary
substring insertions and deletions. They use O(z log n log∗ n) space and search in
time O(m(log log n)2 + log n log∗ n(log n+ logm log∗ n) + occ log n) (simplified, see
the precise formula in the appendix). A substring of length ` is inserted/deleted
in time O((` + log n log∗ n) log2 n log∗ n). In practice, the search is fast for long
patterns only; Nishimoto et al. [2018] improved their search time on short patterns.
A second work [Gawrychowski et al. 2015] uses another kind of locally-consistent
grammar to insert substrings of length ` in time O(` log n), split and concatenate
represented strings in time O(log2 n), and search for patterns in those strings in
time O(m+ occ log n); all the operations succeed with high probability.

Acknowledgements

We thank Travis Gagie, Nicola Prezza, and the reviewers for useful comments.

REFERENCES

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words. NATO ISI Series. Springer-Verlag, 85–96.

Baeza-Yates, R. and Ribeiro-Neto, B. 2011. Modern Information Retrieval , 2nd ed.
Addison-Wesley.

Bannai, H., Gagie, T., and I, T. 2020. Refining the r -index. Theoretical Computer Sci-
ence 812, 96–108.

Batu, T., Ergün, F., and Sahinalp, S. C. 2006. Oblivious string embeddings and edit distance

approximations. In Proc. 17th Symposium on Discrete Algorithms (SODA). 792–801.

Belazzougui, D., B., P., Pagh, R., and Vigna, S. 2010. Fast prefix search in little space, with

applications. In Proc. 18th Annual European Symposium on Algorithms (ESA). 427–438.

Indexing Highly Repetitive String Collections, Part II · 29

Belazzougui, D., Boldi, P., Pagh, R., and Vigna, S. 2009. Monotone minimal perfect hash-

ing: Searching a sorted table with O(1) accesses. In Proc. 20th Annual Symposium on

Discrete Mathematics (SODA). 785–794.

Belazzougui, D. and Cunial, F. 2017a. Fast label extraction in the CDAWG. In Proc. 24th
International Symposium on String Processing and Information Retrieval (SPIRE). 161–

175.

Belazzougui, D. and Cunial, F. 2017b. Representing the suffix tree with the CDAWG. In

Proc. 28th Annual Symposium on Combinatorial Pattern Matching (CPM). 7:1–7:13.

Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., and Raffinot, M. 2015. Compos-

ite repetition-aware data structures. In Proc. 26th Annual Symposium on Combinatorial

Pattern Matching (CPM). 26–39.

Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., and Raffinot, M. 2017. Flexible

indexing of repetitive collections. In Proc. 13th Conference on Computability in Europe
(CiE). 162–174.

Belazzougui, D., Cunial, F., Kärkkäinen, J., and Mäkinen, V. 2020. Linear-time string

indexing and analysis in small space. ACM Transactions on Algorithms 16, 2, article 17.

Belazzougui, D., Gagie, T., Gawrychowski, P., Kärkkäinen, J., Ordóñez, A., Puglisi,

S. J., and Tabei, Y. 2015. Queries on LZ-bounded encodings. In Proc. 25th Data Com-

pression Conference (DCC). 83–92.

Belazzougui, D. and Navarro, G. 2015. Optimal lower and upper bounds for representing
sequences. ACM Transactions on Algorithms 11, 4, article 31.

Belazzougui, D. and Puglisi, S. J. 2016. Range predecessor and Lempel-Ziv parsing. In Proc.
27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2053–2071.

Beller, T., Zwerger, M., Gog, S., and Ohlebusch, E. 2013. Space-efficient construction
of the Burrows-Wheeler transform. In Proc. 20th International Symposium on String Pro-

cessing and Information Retrieval (SPIRE). 5–16.

Bender, M. A., Farach-Colton, M., Pemmasani, G., Skiena, S., and Sumazin, P. 2005.

Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms 57, 2,

75–94.

Bille, P., Ettienne, M. B., Gørtz, I. L., and Vildhøj, H. W. 2017. Time-space trade-offs

for Lempel-Ziv compressed indexing. In Proc. 28th Annual Symposium on Combinatorial
Pattern Matching (CPM). 16:1–16:17.

Bille, P., Ettienne, M. B., Gørtz, I. L., and Vildhøj, H. W. 2018. Time-space trade-offs

for Lempel-Ziv compressed indexing. Theoretical Computer Science 713, 66–77.

Bille, P., Gørtz, I. L., and Prezza, N. 2017. Space-efficient Re-Pair compression. In Proc.

27th Data Compression Conference (DCC). 171–180.

Bille, P., Gørtz, I. L., Sach, B., and Vildhøj, H. W. 2014. Time-space trade-offs for longest

common extensions. Journal of Discrete Algorithms 25, 42–50.

Blumer, A., Blumer, J., Haussler, D., McConnell, R. M., and Ehrenfeucht, A. 1987.

Complete inverted files for efficient text retrieval and analysis. Journal of the ACM 34, 3,
578–595.

Boucher, C., Gagie, T., Kuhnle, A., Langmead, B., Manzini, G., and Mun, T. 2019. Prefix-
free parsing for building big BWTs. Algorithms for Molecular Biology 14, 1, 13:1–13:15.

Büttcher, S., Clarke, C. L. A., and Cormack, G. V. 2010. Information Retrieval: Imple-
menting and Evaluating Search Engines. MIT Press.

Chan, T. M., Larsen, K. G., and Pătraşcu, M. 2011. Orthogonal range searching on the
RAM, revisited. In Proc. 27th ACM Symposium on Computational Geometry (SoCG).

1–10.

Chen, G., Puglisi, S. J., and Smyth, W. F. 2008. Lempel-Ziv factorization using less time &

space. Mathematics in Computer Science 1, 605–623.

Christiansen, A. R. and Ettienne, M. B. 2018. Compressed indexing with signature gram-

mars. In Proc.13th Latin American Symposium on Theoretical Informatics (LATIN). 331–
345.

30 · G. Navarro

Christiansen, A. R., Ettienne, M. B., Kociumaka, T., Navarro, G., and Prezza, N. 2020.

Optimal-time dictionary-compressed indexes. ACM Transactions on Algorithms 17, 1, ar-

ticle 8.

Claude, F., Fariña, A., Mart́ınez-Prieto, M., and Navarro, G. 2016. Universal indexes for

highly repetitive document collections. Information Systems 61, 1–23.

Claude, F. and Navarro, G. 2009. Self-indexed text compression using straight-line programs.

In Proc. 34th International Symposium on Mathematical Foundations of Computer Science
(MFCS). 235–246.

Claude, F. and Navarro, G. 2011. Self-indexed grammar-based compression. Fundamenta
Informaticae 111, 3, 313–337.

Claude, F. and Navarro, G. 2012. Improved grammar-based compressed indexes. In Proc.
19th International Symposium on String Processing and Information Retrieval (SPIRE).

180–192.

Claude, F., Navarro, G., and Pacheco, A. 2021. Grammar-compressed indexes with loga-

rithmic search time. Journal of Computer and System Sciences 118, 53–74.

Cole, R. and Vishkin, U. 1986. Deterministic coin tossing with applications to optimal parallel

list ranking. Information and Control 70, 1, 32–53.

Crochemore, M. and Hancart, C. 1997. Automata for matching patterns. In Handbook of

Formal Languages. Springer, 399–462.

Crochemore, M. and Rytter, W. 2002. Jewels of Stringology. World Scientific.

D́ıaz-Doḿınguez, D. and Navarro, G. 2021. A grammar compressor for collections of reads
with applications to the construction of the BWT. In Proc. 31th Data Compression Con-

ference (DCC). To appear.

Farach, M. and Thorup, M. 1995. String matching in Lempel-Ziv compressed strings. In Proc.

27th Annual ACM Symposium on Theory of Computing (STOC). 703–712.

Farach-Colton, M., Ferragina, P., and Muthukrishnan, S. 2000. On the sorting-

complexity of suffix tree construction. Journal of the ACM 47, 6, 987–1011.

Ferrada, H., Gagie, T., Hirvola, T., and Puglisi, S. J. 2014. Hybrid indexes for repetitive

datasets. Philosophical Transactions of the Royal Society A 372, 2016, article 20130137.

Ferrada, H., Kempa, D., and Puglisi, S. J. 2018. Hybrid indexing revisited. In Proc. 20th

Workshop on Algorithm Engineering and Experiments (ALENEX). 1–8.

Ferragina, P., Gagie, T., and Manzini, G. 2012. Lightweight data indexing and compression

in external memory. Algorithmica 63, 3, 707–730.

Ferragina, P. and Grossi, R. 1999. The string B-tree: A new data structure for string search

in external memory and its applications. Journal of the ACM 46, 2, 236–280.

Ferragina, P. and Manzini, G. 2000. Opportunistic data structures with applications. In

Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS). 390–398.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. Journal of the ACM 52, 4,

552–581.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2007. Compressed represen-

tations of sequences and full-text indexes. ACM Transactions on Algorithms 3, 2, article

20.

Fischer, J., Gagie, T., Gawrychowski, P., and Kociumaka, T. 2015. Approximating LZ77

via small-space multiple-pattern matching. In Proc. 23rd Annual European Symposium on
Algorithms (ESA). 533–544.

Fischer, J. and Heun, V. 2011. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40, 2, 465–492.

Fischer, J., I, T., and Köppl, D. 2015. Lempel Ziv computation in small space (LZ-CISS).
In Proc. 26th Annual Symposium on Combinatorial Pattern Matching (CPM). 172–184.

Fischer, J., I, T., Köppl, D., and Sadakane, K. 2018. Lempel-Ziv factorization powered by
space efficient suffix trees. Algorithmica 80, 7, 2048–2081.

Fuentes-Sepúlveda, J., Navarro, G., and Nekrich, Y. 2020. Parallel computation of the

Burrows Wheeler Transform in compact space. Theoretical Computer Science 812, 123–136.

Indexing Highly Repetitive String Collections, Part II · 31

Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., and Puglisi, S. J. 2012. A

faster grammar-based self-index. In Proc. 6th International Conference on Language and

Automata Theory and Applications (LATA). 240–251.

Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., and Puglisi, S. J. 2014. LZ77-

based self-indexing with faster pattern matching. In Proc. 11th Latin American Symposium
on Theoretical Informatics (LATIN). 731–742.

Gagie, T., I, T., Manzini, G., Navarro, G., Sakamoto, H., and Takabatake, Y. 2019.

Rpair: Scaling up repair with rsync. In Proc. 26th International Symposium on String

Processing and Information Retrieval (SPIRE). 35–44.

Gagie, T., Navarro, G., and Prezza, N. 2018. Optimal-time text indexing in BWT-runs

bounded space. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 1459–1477.

Gagie, T., Navarro, G., and Prezza, N. 2020. Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. Journal of the ACM 67, 1, article 2.

Gagie, T. and Puglisi, S. J. 2015. Searching and indexing genomic databases via kernelization.
Frontiers in Bioengineering and Biotechnology 3, article 12.

Gawrychowski, P., Karczmarz, A., Kociumaka, T., Lacki, J., and Sankowski, P. 2015.
Optimal dynamic strings. CoRR 1511.02612.

Goto, K. and Bannai, H. 2013. Simpler and faster Lempel Ziv factorization. In Proc. 23rd
Data Compression Conference (DCC). 133–142.

Goto, K. and Bannai, H. 2014. Space efficient linear time Lempel-Ziv factorization for small
alphabets. In Proc. 24th Data Compression Conference (DCC). 163–172.

Grossi, R. 2011. A quick tour on suffix arrays and compressed suffix arrays. Theoretical Com-
puter Science 412, 27, 2964–2973.

Grossi, R. and Vitter, J. S. 2000. Compressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching. In Proc. 32nd ACM Symposium on Theory of

Computing (STOC). 397–406.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Com-

putational Biology. Cambridge University Press.

Hon, W.-K., Lam, T.-W., Sadakane, K., Sung, W.-K., and Yiu, S.-M. 2007. A space and

time efficient algorithm for constructing compressed suffix arrays. Algorithmica 48, 1, 23–
36.

Hon, W.-K., Sadakane, K., and Sung, W.-K. 2009. Breaking a time-and-space barrier in
constructing full-text indices. SIAM Journal on Computing 38, 6, 2162–2178.

Jeż, A. 2015. Approximation of grammar-based compression via recompression. Theoretical
Computer Science 592, 115–134.

Jeż, A. 2016. A really simple approximation of smallest grammar. Theoretical Computer Sci-
ence 616, 141–150.

Kärkkäinen, J. 2007. Fast BWT in small space by blockwise suffix sorting. Theoretical Com-
puter Science 387, 3, 249–257.

Kärkkäinen, J., Kempa, D., and Puglisi, S. J. 2013. Lightweight Lempel-Ziv parsing. In
Proc. 12th International Symposium on Experimental Algorithms (SEA). 139–150.

Kärkkäinen, J., Kempa, D., and Puglisi, S. J. 2014. Lempel-Ziv parsing in external memory.
In Proc. 24th Data Compression Conference (DCC). 153–162.

Kärkkäinen, J., Kempa, D., and Puglisi, S. J. 2016. Lazy Lempel-Ziv factorization algo-
rithms. ACM Journal of Experimental Algorithmics 21, 1, 2.4:1–2.4:19.

Kärkkäinen, J., Sanders, P., and Burkhardt, S. 2006. Linear work suffix array construction.

Journal of the ACM 53, 6, 918–936.

Kärkkäinen, J. and Ukkonen, E. 1996. Lempel-Ziv parsing and sublinear-size index structures

for string matching. In Proc. 3rd South American Workshop on String Processing (WSP).
141–155.

Karp, R. M. and Rabin, M. O. 1987. Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development 2, 249–260.

32 · G. Navarro

Kempa, D. 2019. Optimal construction of compressed indexes for highly repetitive texts. In

Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1344–1357.

Kempa, D. and Kociumaka, T. 2019. String synchronizing sets: Sublinear-time BWT construc-

tion and optimal LCE data structure. In Proc. 51st Annual ACM SIGACT Symposium on
Theory of Computing (STOC). 756–767.

Kempa, D. and Kosolobov, D. 2017. LZ-End parsing in compressed space. In Proc. 27th Data
Compression Conference (DCC). 350–359.

Kempa, D. and Puglisi, S. J. 2013. Lempel-Ziv factorization: Simple, fast, practical. In Proc.

15th Workshop on Algorithm Engineering and Experiments (ALENEX). 103–112.

Kim, D. K., Sim, J. S., Park, H., and Park, K. 2005. Constructing suffix arrays in linear time.

Journal of Discrete Algorithms 3, 2-4, 126–142.

Ko, P. and Aluru, S. 2005. Space efficient linear time construction of suffix arrays. Journal

of Discrete Algorithms 3, 2-4, 143–156.

Kociumaka, T., Navarro, G., and Prezza, N. 2020. Towards a definitive measure of repeti-

tiveness. In Proc. 14th Latin American Symposium on Theoretical Informatics (LATIN).
207–219.

Köppl, D., I, T., Furuya, I., Takabatake, Y., Sakai, K., and Goto, K. 2020. Re-Pair in
small space. In Proc. 30th Data Compression Conference (DCC). 377. Full version in CoRR

1908.04933.

Köppl, D. and Sadakane, K. 2016. Lempel-Ziv computation in compressed space (LZ-CICS).

In Proc. 26th Data Compression Conference (DCC). 3–12.

Kreft, S. and Navarro, G. 2011. Self-indexing based on LZ77. In Proc. 22nd Annual Sym-

posium on Combinatorial Pattern Matching (CPM). 41–54.

Kreft, S. and Navarro, G. 2013. On compressing and indexing repetitive sequences. Theo-

retical Computer Science 483, 115–133.

Kuhnle, A., Mun, T., Boucher, C., Gagie, T., Langmead, B., and Manzini, G. 2020.
Efficient construction of a complete index for pan-genomics read alignment. Journal of

Computational Biology 27, 4, 500–513.

Larsson, J. and Moffat, A. 2000. Off-line dictionary-based compression. Proceedings of the

IEEE 88, 11, 1722–1732.

Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., and Baldi, P. 2009.

Sourcerer: Mining and searching internet-scale software repositories. Data Mining and
Knowledge Discovery 18, 2, 300–336.

Liu, B. 2007. Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. Springer.

Mäkinen, V., Belazzougui, D., Cunial, F., and Tomescu, A. I. 2015. Genome-Scale Algo-

rithm Design. Cambridge University Press.

Mäkinen, V. and Navarro, G. 2005. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12, 1, 40–66.

Mäkinen, V. and Navarro, G. 2008. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4, 3, article 32.

Mäkinen, V., Navarro, G., Sirén, J., and Välimäki, N. 2010. Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology 17, 3, 281–308.

Manber, U. and Myers, G. 1993. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing 22, 5, 935–948.

Maruyama, S., Nakahara, M., Kishiue, N., and Sakamoto, H. 2011. ESP-Index: A com-

pressed index based on edit-sensitive parsing. In Proc. 18th International Symposium on

String Processing and Information Retrieval (SPIRE). 398–409.

Maruyama, S., Nakahara, M., Kishiue, N., and Sakamoto, H. 2013. ESP-index: A com-
pressed index based on edit-sensitive parsing. Journal of Discrete Algorithms 18, 100–112.

Maruyama, S., Sakamoto, H., and Takeda, M. 2012. An online algorithm for lightweight
grammar-based compression. Algorithms 5, 2, 213–235.

Maruyama, S., Tabei, Y., Sakamoto, H., and Sadakane, K. 2013. Fully-online grammar
compression. In Proc. 20th International Symposium on String Processing and Information

Retrieval (SPIRE). 218––229.

Indexing Highly Repetitive String Collections, Part II · 33

McCreight, E. 1976. A space-economical suffix tree construction algorithm. Journal of the

ACM 23, 2, 262–272.

Mehlhorn, K., Sundar, R., and Uhrig, C. 1997. Maintaining dynamic sequences under equal-

ity tests in polylogarithmic time. Algorithmica 17, 2, 183–198.

Morrison, D. 1968. PATRICIA – practical algorithm to retrieve information coded in alphanu-

meric. Journal of the ACM 15, 4, 514–534.

Munro, J. I., Navarro, G., and Nekrich, Y. 2017. Space-efficient construction of compressed

indexes in deterministic linear time. In Proc. 28th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA). 408–424.

Munro, J. I. and Nekrich, Y. 2015. Compressed data structures for dynamic sequences. In

Proc. 23rd Annual European Symposium on Algorithms (ESA). 891–902.

Navarro, G. 2017. A self-index on block trees. In Proc. 24th International Symposium on

String Processing and Information Retrieval (SPIRE). 278–289.

Navarro, G. 2020. Indexing highly repetitive string collections. CoRR 2004.02781.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-

veys 39, 1, article 2.

Navarro, G. and Nekrich, Y. 2017. Time-optimal top-k document retrieval. SIAM Journal

on Computing 46, 1, 89–113.

Navarro, G. and Prezza, N. 2019. Universal compressed text indexing. Theoretical Computer

Science 762, 41–50.

Nishimoto, T., I, T., Inenaga, S., Bannai, H., and Takeda, M. 2015. Dynamic index, LZ

factorization, and LCE queries in compressed space. CoRR 1504.06954.

Nishimoto, T., I, T., Inenaga, S., Bannai, H., and Takeda, M. 2020. Dynamic index and

LZ factorization in compressed space. Discrete Applied Mathematics 274, 116–129.

Nishimoto, T. and Tabei, Y. 2019. LZRR: LZ77 parsing with right reference. In Proc. 29th

Data Compression Conference (DCC). 211–220.

Nishimoto, T. and Tabei, Y. 2020. Faster queries on BWT-runs compressed indexes.

CoRR 2006.05104.

Nishimoto, T., Takabatake, Y., and Tabei, Y. 2018. A dynamic compressed self-index for

highly repetitive text collections. In Proc. 28th Data Compression Conference (DCC). 287–

296.

Nunes, D., Louza, F., Gog, S., Ayala-Rincón, M., and Navarro, G. 2018. A grammar

compression algorithm based on induced suffix sorting. In Proc. 28th Data Compression
Conference (DCC). 42–51.

Ohlebusch, E. 2013. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction. Oldenbusch Verlag.

Ohlebusch, E. and Gog, S. 2011. Lempel-Ziv factorization revisited. In Proc. 22nd Annual
Symposium on Combinatorial Pattern Matching (CPM). 15–26.

Ohno, T., Sakai, K., Takabatake, Y., I, T., and Sakamoto, H. 2018. A faster implemen-
tation of online RLBWT and its application to LZ77 parsing. Journal of Discrete Algo-

rithms 52-53, 18–28.

Okanohara, D. and Sadakane, K. 2009. A linear-time Burrows-Wheeler transform using

induced sorting. In Proc. 16th International Symposium on String Processing and Infor-

mation Retrieval (SPIRE). LNCS 5721. 90–101.

Policriti, A. and Prezza, N. 2015. Fast online Lempel-Ziv factorization in compressed space.
In Proc. 22nd String Processing and Information Retrieval (SPIRE). 13–20.

Policriti, A. and Prezza, N. 2018. LZ77 computation based on the run-length encoded BWT.

Algorithmica 80, 7, 1986–2011.

Rodeh, M., Pratt, V. R., and Even, S. 1981. Linear algorithm for data compression via

string matching. Journal of the ACM 28, 1, 16–24.

Russo, L. M. S., Correia, A., Navarro, G., and Francisco, A. P. 2020. Approximating

optimal bidirectional macro schemes. In Proc. 30th Data Compression Conference (DCC).
153–162.

34 · G. Navarro

Sahinalp, S. C. and Vishkin, U. 1995. Data compression using locally consistent parsing.

Tech. rep., Dept. of Computer Science, University of Maryland.

Sakai, K., Ohno, T., Goto, K., Takabatake, Y., I, T., and Sakamoto, H. 2019. RePair in

compressed space and time. In Proc. 29th Data Compression Conference (DCC). 518–527.

Sakamoto, H. 2005. A fully linear-time approximation algorithm for grammar-based compres-
sion. Journal of Discrete Algorithms 3, 2–4, 416–430.

Silvestri, F. 2010. Mining query logs: Turning search usage data into knowledge. Foundations

and Trends in Information Retrieval 4, 1–2, 1–174.

Sirén, J. 2016. Burrows-Wheeler Transform for terabases. In Proc. 26th Data Compression

Conference (DCC). 211–220.

Sirén, J., Välimäki, N., Mäkinen, V., and Navarro, G. 2008. Run-length compressed in-

dexes are superior for highly repetitive sequence collections. In Proc. 15th International

Symposium on String Processing and Information Retrieval (SPIRE). 164–175.

Storer, J. A. and Szymanski, T. G. 1982. Data compression via textual substitution. Journal

of the ACM 29, 4, 928–951.

Su, J.-H., Huang, Y.-T., Yeh, H.-H., and Tseng, V. S. 2010. Effective content-based video

retrieval using pattern-indexing and matching techniques. Expert Systems with Applica-

tions 37, 7, 5068–5085.

Takabatake, Y., I, T., and Sakamoto, H. 2017. A space-optimal grammar compression. In

Proc. 25th Annual European Symposium on Algorithms (ESA). 67:1–67:15.

Takabatake, Y., Tabei, Y., and Sakamoto, H. 2014. Improved ESP-index: A practical self-

index for highly repetitive texts. In Proc. 13th International Symposium on Experimental

Algorithms (SEA). 338–350.

Takagi, T., Goto, K., Fujishige, Y., Inenaga, S., and Arimura, H. 2017. Linear-size

CDAWG: New repetition-aware indexing and grammar compression. In Proc. 24th Inter-

national Symposium on String Processing and Information Retrieval (SPIRE). 304–316.

Tsuruta, K., Köppl, D., Nakashima, Y., Inenaga, S., Bannai, H., and Takeda, M. 2020.

Grammar-compressed self-index with Lyndon words. CoRR 2004.05309.

Typke, R., Wiering, F., and Veltkamp, R. 2005. A survey of music information retrieval

systems. In Proc. 6th International Conference on Music Information Retrieval (ISMIR).

153–160.

Ukkonen, E. 1995. On-line construction of suffix trees. Algorithmica 14, 3, 249–260.

Valenzuela, D., Kosolobov, D., Navarro, G., and Puglisi, S. J. 2020. Lempel-Ziv like
parsing in small space. Algorithmica 82, 11, 3195–3215.

Weiner, P. 1973. Linear pattern matching algorithms. In Proc. 14th IEEE Symposium on

Switching and Automata Theory (FOCS). 1–11.

Yamamoto, J., I, T., Bannai, H., Inenaga, S., and Takeda, M. 2014. Faster compact on-line

Lempel-Ziv factorization. In Proc. 31st International Symposium on Theoretical Aspects
of Computer Science (STACS). 675–686.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable length coding.

IEEE Transactions on Information Theory 24, 5, 530–536.

APPENDIX

A. HISTORY OF THE CONTRIBUTIONS TO PARSING-BASED INDEXING

We cover only the developments related to the repetitiveness measures we have con-
sidered. Other parsed-based indexes, such as those building on the LZ78 compres-
sion format [Ziv and Lempel 1978], are omitted because they are not competitive
on highly repetitive text collections.

Claude and Navarro [2009, 2011] proposed the first compressed index based on gram-
mar compression. Given any grammar of size g, their index uses O(g) space to
implement the grid and the tracking of occurrences over the grammar tree, but

Indexing Highly Repetitive String Collections, Part II · 35

not yet the amortization mechanism we described. On a grammar tree of height
h, the index searches in time O(m(m + h) log n + occ · h log n) and extracts a
substring of length ` in time O((` + h) log n). The terms O(log n) can be re-
duced by using more advanced data structures, but the index was designed with
practice in mind and it was actually implemented [Claude et al. 2016], using a
RePair construction [Larsson and Moffat 2000] that is heuristically balanced.

Kreft and Navarro [2011, 2013] proposed the first compressed index based on Lempel-
Ziv, and the only one so far of size O(z). Within this size, they cannot provide
access to S with good time guarantees: each accessed symbol must be traced
through the chain of target-to-source dependencies. If the maximum length of
such a chain is h ≤ z, their search time is O(m2h+ (m+ occ) log z). The term
log z could be logε z by using the geometric structure we have described but,
again, they opt for a practical version. Binary searches in X and Y are sped
up with Patricia trees [Morrison 1968]. A substring of length ` is extracted in
time O(` h). This is the smallest implemented index; it is rather efficient unless
the patterns are too long [Kreft and Navarro 2013; Claude et al. 2016]. Inter-
estingly, it outperforms the previous index [Claude and Navarro 2011] both in
space (as expected) and time (not expected).

Maruyama et al. [2011, 2013],Takabatake et al. [2014] propose another grammar in-
dex based on “edit-sensitive parsing”, which is related to locally consistent pars-
ing (see the end of Section 3.1.1). This ensures that the parsing of P and of any
of its occurrences in S will differ only by a few (O(log n log∗ n)) symbols in the
extremes of the respective parse trees, and therefore the internal symbols are
consistent. By looking for those one captures all the occc potential occurrences,
which however can be more than the actual occurrences. Given a grammar
of size ge ≥ g built using edit-sensitive parsing, their index takes O(ge) space
and searches in time O(m log log n log∗ n+occc logm log n log log n log∗ n). Sub-
strings of length ` are extracted in time O((`+ log n) log log ge). Their index is
implemented, and outperforms that of Kreft and Navarro [2013] for m ≥ 100.

Claude and Navarro [2012],Claude et al. [2021] improved the proposal of Claude and
Navarro [2011] by introducing the amortization mechanism and also using the
mechanism to extract phrase prefixes and suffixes in optimal time. The result
is an index of size O(g) built on any grammar of size g, which searches in
time O(m2 log logg n + (m + occ) log n). Again, this index is described with
practicality in mind; they show that with larger data structures of size O(g)
one can reach search time O(m2 + (m + occ) logε n). Any substring of size
` can be extracted in time O(` + log n) with the mechanisms seen in Part I
[Navarro 2020, Sec. 4.1]. An implementation of this index [Claude et al. 2021]
outperforms the Lempel-Ziv based index [Kreft and Navarro 2013] in time,
while using somewhat more space. The optimal-time extraction of prefixes and
suffixes is shown to have no practical impact on balanced grammars.

Gagie et al. [2012] invented bookmarking to speed up substring extraction in the
structure of Kreft and Navarro [2013]. They use bookmarking on a Lempel-
Ziv parse, of size O(z log log z), which is added to a grammar of size O(g) to
provide direct access to S. As a result, their index is of size O(g + z log log z)
and searches in time O(m2 + (m + occ) log log n). Their technique is more

36 · G. Navarro

sophisticated than the one we present in Part I [Navarro 2020, Sec. 4.3], but it
would not improve the tradeoffs we obtained.

Ferrada et al. [2014, 2018] proposed the so-called hybrid indexing. Given a maxi-
mum pattern length M that can be sought, and a suitable parse (Lempel-Ziv,
in their case) of size z, they form a string S′ of size < 2Mz by collecting the
symbols at distance at most M from a phrase boundary and separating disjoint
areas with $s. Any primary occurrence in S is then found in S′, and any occur-
rence in S′ is a distinct occurrence in S. They then index S′ using any compact
index and search it for P . The occurrences of P in S′ that cross the middle of a
piece are the primary occurrences of P in S; the other occurrences in S′ are dis-
carded, but these are at most occ. The mechanism of Section 3.2.1 to propagate
primary to secondary occurrences is then used. Patterns longer than M are
searched for by cutting them into chunks of length M and assembling their oc-
currences. Within space O(Mz), they can search in time O((m+occ) log log n)
if m ≤ M . Though they offer no guarantees for longer patterns, their imple-
mentation outperforms other classical indexes [Mäkinen et al. 2010; Kreft and
Navarro 2013] when m is up to a few times M . The weak point of this index
shows up when m is much smaller or much larger than the value M chosen at
index construction time. Gagie and Puglisi [2015] relate this technique with
earlier more specific developments, and call kernelization the general technique
to solve string matching problems on repetitive sequences by working on the
texts surrounding phrases.

Gagie et al. [2014] extended bookmarking to include fingerprinting as well (Part I
[Navarro 2020, Sec. 4.3], again more sophisticated than our presentation), and
invented the technique of using fingerprinting to remove the O(m2) term that
appeared in all previous indexes. In the way they present their index, the space
is O(z log n) and the search time is O(m logm+ occ log log n).8

Nishimoto et al. [2015, 2020] propose the first dynamic compressed index (i.e., one
can modify S without rebuilding the index from scratch). It is based on edit-
sensitive parsing, and they manage to remove the term occc in the previous in-
dex [Takabatake et al. 2014] by finding stronger properties of the encoding of P
via its parse tree. Their search time is O(mmin(log log n log log ge/ log log log n,√

log ge/ log log ge) + logm log n log∗ n(log n+ logm log∗ n) + occ log n).

Bille et al. [2017, 2018] improve upon the result of Gagie et al. [2014]. They propose
for the first time the batched search for the pattern prefixes and suffixes, recall
Section 3.1.1. They also speed up the searches by storing more points in the
grid: if we store the points S[i], . . . , S[i + τ − 1] for every phrase starting at
S[i], then we need to check only one out of τ partitions of P , that is, we check
m/τ partitions. This leads to various tradeoffs, which in simplified form are:
O(z log(n/z) log log z) space and O((m + occ) log log n) time, O(z(log(n/z) +
log log z)) space and O((m+occ) logε n) time, O(z(log(n/z)+log log z) log log z)
space and O(m + occ log log n) time, and O(z(log(n/z) + logε n)) space and
O(m+occ logε n) time. The last two reach for the first time linear complexity in

8Their actual space is O(z(log∗ n+ log(n/z) + log log z)), which they convert to O(z log(n/z)) by
assuming a small enough alphabet and using z = O(n/ logσ n).

Indexing Highly Repetitive String Collections, Part II · 37

m. They also show how to extract a substring of length ` in timeO(`+log(n/z)).

Navarro [2017],Navarro and Prezza [2019] build a compressed index based on block
trees, which are used to provide both access and a suitable parse of S. They
reuse the idea of the grid and the mechanism to propagate secondary occur-
rences. By using a block tree built on attractors [Navarro and Prezza 2019],
they obtain O(γ log(n/γ)) space and O(m log n+ occ logε n) search time. They
called this index “universal” because it was the first one built on a general
measure of compressibility (attractors) instead of on specific compressors like
grammars or Lempel-Ziv. For example, if one builds a bidirectional macro
scheme of size b (on which no index has been proposed), one can use it as an
upper bound to γ and have a functional index of size O(b log(n/b)).

Christiansen and Ettienne [2018] were the first to show that, using a locally consis-
tent parsing, only O(logm) partitions of P need be considered (see the end of
Section 3.1.1). Building on the grammar-based index of Claude and Navarro
[2012] and on batched pattern searches (Section 3.1.1), they obtain an index us-
ing O(z(log(n/z)+log log z)) space and O(m+logε(z log(n/z))+occ(log log n+
logε z)) ⊆ O(m+(1+occ) logε n) time,9 thus offering another tradeoff with time
linear in m.

Christiansen et al. [2020] rebuild the result of Christiansen and Ettienne [2018] on
top of attractors, like Navarro and Prezza [2019]. They use a slightly different
run-length grammar, which is proved to be of size O(γ log(n/γ)), and a bet-
ter mechanism to track secondary occurrences within constant amortized time
[Claude and Navarro 2012]. Their index, of size O(γ log(n/γ)), then searches in
time O(m+ logε γ+ occ logε(γ log(n/γ))) ⊆ O(m+ (1 + occ) logε n). By enlarg-
ing the index to size O(γ log(n/γ) logε n), they reach for the first time optimal
time in parsing-based indexes, O(m+occ). Several other intermediate tradeoffs
are obtained too. Interestingly, they obtain this space in terms of γ without
the need to find the smallest attractor, which makes the index implementable
(they use measure δ, see Part I [Navarro 2020, Sec. 3.10], to approximate γ).
Finally, they extend the current results on indexes based on grammars to run-
length grammars, thus reaching an index of size O(grl) that searches in time
O(m log n+ occ logε n).

Kociumaka et al. [2020] prove that the original block trees [Belazzougui et al. 2015]
are not only of size O(z log(n/z)), but also O(δ log(n/δ)). They then show that
the universal index of Navarro and Prezza [2019] can also be represented in
space O(δ log(n/δ)) and is directly implementable within this space. The search
time, O(m log n+occ logε n), is also obtained in space O(grl) [Christiansen et al.
2020], which as explained can be proved to be in O(δ log(n/δ)), though there
is no efficient way to obtain a run-length grammar of the optimal size grl.

Tsuruta et al. [2020] use the grammar-based techniques we have presented to build
an index that searches in time O(m+ log n logm+ occ log n), by exploiting the
properties of a particular grammar: they decompose S recursively into Lyndon
words (a Lyndon word is lexicographically smaller than its suffixes), and then
build a binary grammar that follows the decomposition, in the hope that the

9This corrected time is given in the journal version [Christiansen et al. 2020].

38 · G. Navarro

same nonterminals are generated many times. They empirically show that the
resulting grammar is only 1.5–2.0 times larger than that of RePair.

