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Document retrieval is one of the best established information retrieval activities since the sixties,
pervading all search engines. Its aim is to obtain, from a collection of text documents, those

most relevant to a pattern query. Current technology is mostly oriented to “natural language”
text collections, where inverted indexes are the preferred solution. As successful as this paradigm

has been, it fails to properly handle various East Asian languages and other scenarios where

the “natural language” assumptions do not hold. In this survey we cover the recent research
in extending the document retrieval techniques to a broader class of sequence collections, which

has applications in bioinformatics, data and Web mining, chemoinformatics, software engineering,

multimedia information retrieval, and many other fields. We focus on the algorithmic aspects of
the techniques, uncovering a rich world of relations between document retrieval challenges and

fundamental problems on trees, strings, range queries, discrete geometry, and other areas.

Categories and Subject Descriptors: E.1 [Data structures]; E.2 [Data storage representa-

tions]; E.4 [Coding and information theory]: Data compaction and compression; F.2.2 [Anal-
ysis of algorithms and problem complexity]: Nonnumerical algorithms and problems—Pat-

tern matching, Computations on discrete structures, Sorting and searching; H.2.1 [Database

management]: Physical design—Access methods; H.3.2 [Information storage and retrieval]:
Information storage—File organization; H.3.3 [Information storage and retrieval]: Informa-

tion search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Text indexing, information retrieval, string searching, colored
range queries, compact data structures, orthogonal range searches.

1. INTRODUCTION

Retrieving useful information from huge masses of data is undoubtedly one of the
most important activities enabled by computers in the Information Age, and text is
the preferred format to represent and retrieve most of this data. Albeit images and
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videos have gained much importance on the Internet, even on those supports the
searches are mostly carried out on text (e.g., Google finds images based on the text
content around them in Web pages). The problem of finding the relevant informa-
tion in large masses of text was already pressing in the sixties, where the basis of
modern Information Retrieval techniques were laid out [Salton 1968]. Nowadays,
this has become one of the most important research topics in Computer Science
[Croft et al. 2009; Büttcher et al. 2010; Baeza-Yates and Ribeiro-Neto 2011].

Interestingly, besides a large degree of added complexity to permanently improve
the search “quality” (i.e., how the returned information matches the need expressed
by the query), the core of the approach has not changed much since Salton’s time.
One assumes that there is a collection of documents, each of which is a sequence of
words. This collection is indexed, that is, preprocessed in some form. This index is
able to answer queries, which are words, or sets of words, or sets of phrases (word
sequences). A relevance formula is used to establish how relevant is each of the
documents for the query. The task of the index is to return a set of documents
most relevant to the query, according to the formula.

In the original vector space model [Salton 1968], a set of distinguished words
(called terms) was extracted from the documents. A weight w(t, d) for term t in
document d was defined using the assumption that a term appearing many times
in a document was important in it. Thus a component of the weight was the term
frequency, tf(t, d), which is the number of times t appears in d. A second component
was aimed to downplay the role of terms that appeared in many documents (such as
articles and prepositions), as those do not really distinguish a document from others.
The so-called inverse document frequency was defined as idf(t) = lg(D/df(t)), where
D is the total number of documents and df(t) is the number of documents where t
appears.1 Then w(t, d) = tf(t, d)×idf(t) was the formula used in the famous “tf-idf”
model. The query was a set of terms, Q = {q1, q2, . . . , qm}, and the relevance of a
document d for query Q was w(Q, d) =

∑m
i=1 w(qi, d). Then the system returned

the top-k documents for Q, that is, k documents d with the highest w(Q, d) value.
When computers became more powerful, the so-called full-text model took every
word in the documents as a querieable term.

As said, this simple model has been sophisticated in recent years up to an amazing
degree, including some features that are possible due to the social nature of the
Internet: the intrinsic value of the documents, the links between documents, the
fields where the words appear, the feedback and profile of the user, the behavior of
other users that made similar queries, and so on. Yet, the core of the idea is still
to find documents where the query terms appear many times.

The inverted index has always been the favorite structure to support these searches.
The essence of this structure could not be simpler: given the vocabulary of all the
querieable terms, the index stores a list of the documents d where each such term t
appears, plus information to compute its weight w(t, d) in each. Much research has
been carried out to efficiently store and access inverted indexes [Witten et al. 1999;
Büttcher et al. 2010; Baeza-Yates and Ribeiro-Neto 2011], without changing its
essential organization. All modern search engines use variants of inverted indexes.

Despite the immense success of this information retrieval model and implementa-

1We use lg to specify logarithm in base 2 (when it matters).
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tion, it has a clear limitation: it strongly relies on the fact that the vocabulary of all
the querieable terms has a manageable size. The empirical law proposed by Heaps
[1978] establishes that the vocabulary of a collection of size n grows like Θ(nβ) for
some constant 0 < β < 1, and it holds very accurately in many Western languages.
The model, therefore, restricts the queries to be whole words, not parts of words.
It is not even obvious how to deal with phrases. One could extend the concepts
of tf and idf to phrases and parts of words, but this would be quite difficult to
implement with an inverted index: in principle, it would have to store the list of
documents where every conceivable text substring appears!

Such a limitation causes problems in highly synthetic languages such as Finnish,
Hungarian, Japanese, German, and many others where long words are built from
particles. But it is more striking in languages where word separators are absent
from written text and can only be inferred by understanding its meaning: Chinese,
Korean, Thai, Japanese (Kanji), Lao, Vietnamese, and many others. Indeed, “seg-
menting” those texts into words is considered a research problem belonging to the
area of Natural Language Processing (NLP); see, e.g., Rao and Xun [2012].

Out of resorting to expensive and heuristic NLP techniques, a solution for those
cases is to treat the text as an uninterpreted sequence of symbols and allow queries
to find any substring in those sequences. The problem, as said, is that inverted
indexes cannot handle those queries. Instead, suffix trees [Weiner 1973; McCreight
1976; Apostolico 1985] and suffix arrays [Gonnet et al. 1992; Manber and Myers
1993], and their recent space-efficient versions [Navarro and Mäkinen 2007] are data
structures that efficiently solve the pattern matching problem, that is, they list all
the positions in the sequences where a pattern appears as a substring. However,
they are not easily modified to handle document retrieval problems, such as listing
the documents, or just the most relevant documents, where the pattern appears.

Extending the document retrieval technology to efficiently handle collections of
general sequences is not only interesting to enable classical Information Retrieval
on those languages where the basic assumptions of inverted indexes do not hold.
It also opens the door to using document retrieval techniques in a number of areas
where similar queries are of interest:

Bioinformatics. Searching and mining collections of DNA, gene, and amino acid
sequences is at the core of most Bioinformatic tasks. Genes can be regarded as
documents formed by sequences of base pairs (A, C, G, T), proteins can be seen
as documents formed by amino acid sequences (an alphabet of size 20), and even
genomes can be modeled as documents formed by gene sequences (here each gene
is identified with an integer number). Many searching and mining problems are
solved with suffix trees [Gusfield 1997], and some are best recast into document
retrieval problems. Some examples are listing the proteins where a certain amino
acid sequence appears, or the genes where a certain DNA marker appears often, or
the genomes where a certain set of genes appear, and so on. Further, bioinformatic
databases integrate not only sequence data but also data on structure, function,
metabolics, location, and other items that are not always natural language. See,
for example, Bartsch et al. [2011].

Software repositories. Handling a large software repository requires managing a
number of versions, packages, modules, routines, etc., which can be regarded as
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documents formed by sequences in some formal language (such as a programming
or a specification language). In maintaining such repositories it is natural to look
for modules implementing some function, functions that use some expression in
their code, packages where some function is frequently used, and also higher-level
information mined from the raw data. Those are, again, typical document retrieval
queries. See, for example, Linstead et al. [2009].

Chemoinformatics. Databases storing sets of complex molecules where certain
compounds are sought are of much interest for pharmaceutical companies, to aid in
the process of drug design, for example. The typical technique is to describe com-
pounds by means of short strings that can then be searched. Here the documents
can be long molecules formed by many compounds, or sets of related molecules.
This is a recent area of research that has grown very fast in relatively few years,
see for example Brown [2005].

Symbolic music sequences. As an example of multimedia sequences, consider col-
lections of symbolic music (e.g., in MIDI format). One may wish to look for pieces
containing some sequence, pieces where some sequence appears often, and so on.
This is useful for many tasks, including music retrieval and analysis, determining
authorship, detecting plagiarism, and so on. See, for example, Typke et al. [2005].

These applications display a wide range of document sizes, alphabets, and types
of queries (list documents where a pattern appears, or appears often enough, or
most often, or find the patterns occurring most often, etc.). Moreover, while exact
matching is adequate for software repositories, approximate searching should be
permitted on DNA, some octave invariance should be allowed on MIDI, and so on.

In this survey we focus on a basic scenario that has been challenging enough to
attract most of the research in this area, and that is general enough to be useful in a
wide number of cases. We consider document listing and top-k document retrieval,
and occasionally some extension, of single-string patterns that are matched exactly
against sequence collections on arbitrary integer alphabets. In many cases we use
the term frequency as the relevance measure, whereas in other cases we cover more
general measures. Before the Conclusions we discuss more complex scenarios.

Soon in the survey, the relation between the document retrieval problems we
consider and analogous problems on sequences of colors (or categories) becomes
apparent. Thus problems such as listing the different colors, or count the different
colors, or find the k most frequent colors, in a range of a sequence arise. Those
so-called color range queries are not only algorithmically interesting by themselves,
but have immediate applications in some further areas related to data mining:

Web mining. Web sites collect information on how users access them, in some
cases to charge for the access, but in all cases those access logs are invaluable tools to
learn about user access patterns, favorite contents, and so on. Color range queries
allow one, for example, to determine the number of unique users that have accessed
a site, the most frequently visited pages in the site, the frequencies of different types
of queries in a search engine, and so on. See, for example, Liu [2007].

Database tuning. Monitoring the usage of high-performance database servers is
important to optimize their behavior and predict potential problems. Color range
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queries are useful, for example, to analyze the number of open sessions in a time
period, the most frequent queries or most frequently accessed tables, and so on.
Shasha and Bonnet [2003] give a comprehensive overview.

Social behavior. The analysis of words used on tweets, sites visited, topics queried,
“likes”, and many other aspects of social behavior is instrumental to understand
social phenomena and exploit social networks. Queries like finding the most fre-
quent words used in a time period, the number of distinct posters in a blog, the
most visited pages in a time period, and so on, are natural color range queries. See,
for example, Silvestri [2010].

Bioinformatics again. Pattern discovery, such as finding frequent q-mers (strings
of length q) in areas of interest in genomes, plays an important role in bioinformat-
ics. For fixed q (which is the usual practice) one can see the genome as a sequence
of overlapping q-mers, and thus pattern discovery becomes a problem of detecting
frequent colors (q-mers) in a range of a color sequence. See, again, Gusfield [1997].

Unlike inverted indexes, which are algorithmically simple, the solutions for gen-
eral document retrieval (and color queries) have a rich algorithmic structure, with
many connections to fundamental problems on trees, strings, range queries, discrete
geometry, and other fields. Our main goal is to emphasize the fascinating algorith-
mic and data structuring aspects of the current document retrieval solutions. Thus,
although we show the best existing results, we focus on the important algorithmic
ideas, leaving the more technical details for further reading. In the way, we also fix
some inaccuracies found in the literature, and propose some new solutions.

Before starting, we bring the readers’ attention to recent surveys that cover topics
with some relation to ours and that, although the intersection is small, may provide
interesting additional reading [Hon et al. 2010c; Navarro 2012; Lewenstein 2013].

2. NOTATION AND BASIC CONCEPTS

2.1 Notation on Strings

A string S = S[1, n] is a sequence of characters, each of which is an element of a
set Σ called an alphabet. We will assume Σ = [1..σ] = {1, 2, . . . , σ}. The length
(number of characters) of S[1, n] is denoted |S| = n. We denote by S[i] the i-th
character of S, and S[i, j] = S[i] . . . S[j] a substring of S. When i > j it holds
S[i, j] = ε, the empty string of length |ε| = 0. A prefix of S is a substring of the
form S[1, j] and a suffix is of the form S[i, n]. By SS′ we denote the concatenation
of strings S and S′, where the characters of S′ are appended at the end of S. A
single character can stand for a string of length 1, thus cS and Sc, for c ∈ Σ, also
denote concatenations.

The lexicographical order “≺” among strings is defined as follows. Let a, b ∈ Σ
and let S and S′ be strings. Then aS ≺ bS′ if a < b, or if a = b and S ≺ S′.
Furthermore, ε ≺ S for any S 6= ε.

2.2 Model and Formal Problem

We model the document retrieval problems to be considered in the following way.
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—There is a collection D of D documents D = {T1, . . . , TD}.
—Each document Td is a nonempty string over alphabet Σ = [1..σ].

—We define T = T1$T2$ . . . TD$ as a string over Σ ∪ {$}, $ = 0 < c for any c ∈ Σ,
which concatenates all the texts in D using a separator symbol.

—The length of T is |T | = n and the length of each Td is |Td| = nd.

—Queries consist of a single pattern string P [1,m] over Σ.

We define now the problems we consider. First we define the set of occurrence
positions of pattern P in a document Td.

Definition 1 (Occurrence Positions) Given a document string Td and a pat-
tern string P , the occurrence positions (or just occurrences) of P in Td are the set
occ(P, Td) = {1 + |X|, ∃Y, Td = XPY }.

Now we define the document retrieval problems we consider. We start with the
simplest one.

Problem 1 (Document Listing) Preprocess a document collection D so that,
given a pattern string P , one can compute list(D, P ) = {d, occ(P, Td) 6= ∅}, that is,
the documents where P appears. We call docc = |list(D, P )| the size of the output.

Variants of the document listing problem, which we will occasionally consider,
include computing the term frequency for each reported document, and computing
the document frequency of P . Those functions are typically used in relevance
formulas (recall measures tf and idf in the Introduction).

Definition 2 (Document and Term Frequency) The document frequency of
P in a document collection D is defined as df(P ) = docc = |list(D, P )|, that is, the
number of documents where P appears. The term frequency of P in document d is
defined as tf(P, d) = |occ(P, Td)|, that is, the number of times P appears in Td.

Our second problem relates to ranked retrieval, that is, reporting only some
important documents instead of all those where P appears.

Problem 2 (Top-k [Most Frequent] Documents) Preprocess a document col-
lection D so that, given a pattern string P and a threshold k, one can compute
top(D, P, k) ⊆ list(D, P ) such that |top(D, P, k)| = min(k, df(P )) and, for any d ∈
top(D, P, k) and d′ ∈ list(D, P ) \ top(D, P, k), it holds |occ(P, Td)| ≥ |occ(P, Td′)|.
That is, find k documents where P appears the most times. This latter condition
can be generalized to any other function of occ(P, Td) and occ(P, Td′).

A simpler variant of this problem arises when the importance of the documents
is fixed and independent of the search pattern (as in Google’s PageRank).

Problem 3 (Top-k Most Important Documents) Preprocess a document col-
lection D so that, given a pattern string P and a threshold k, one can compute
top(D, P, k) ⊆ list(D, P ) such that |top(D, P, k)| = min(k, df(P )) and, for any
d ∈ top(D, P, k) and d′ ∈ list(D, P ) \ top(D, P, k), it holds W (d) ≥W (d′), where W
is a fixed weight function assigned to the documents.
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2.3 Some Fundamental Problems and Data Structures

Before entering into the main part of the survey, we cover here a few fundamental
problems and existing solutions to them. Understanding the problem definitions
and the complexities of the solutions is sufficient to follow the survey. Still, we
give pointers to further reading for the interested readers. Rather than giving early
isolated illustrations of these data structures, we will exemplify them later, when
they become used in the document retrieval structures.

2.3.1 Some Compact Data Structures. Many document retrieval solutions require
too much space in their simplest form, and thus compressed representations are
used to reduce their space up to a manageable level. We enumerate some basic
problems that arise and the compact data structures to handle them. Most of
these are covered in detail in a previous survey [Navarro and Mäkinen 2007], so
we only list the results here. All the compact data structures we will use, and
the document retrieval solutions we build on them, assume the RAM model of
computation, where the computer manages in constant time words of size Θ(lg n),
as it must be possible to address an array of n elements. The typical arithmetic
and bit manipulation operations can be carried out on words in constant time.

A basic problem is to store a sequence over an integer alphabet so that any
sequence position can be accessed and also two complementary operations called
rank and select can be carried out on it.

Problem 4 (Rank/Select/Access on Sequences) Represent a sequence C[1, n]
over alphabet [1..D] so that one can answer three queries on it: (1) accessing any
C[i]; (2) computing rankc(C, i), the number of times symbol c ∈ [1..D] occurs in
C[1, i]; (3) computing selectc(C, j), the position of the jth occurrence of symbol c
in C. It is assumed that rankc(C, 0) = selectc(C, 0) = 0.

A basic case arises when the sequence is a bitmap B over alphabet {0, 1}. Then
the problem can be solved in constant time and using sublinear extra space.

Solution 1 (Rank/Select/Access on Bitmaps) [Munro 1996; Clark 1996] By
storing o(n) bits on top of B[1, n] one can solve the three queries in constant time.

There exist also solutions suitable for the case where B contains few 1s or few
0s. From the various solutions, the following one is suitable for this survey. Note
that access queries can be solved using B[i] = rank1(B, i)− rank1(B, i− 1).

Solution 2 (Rank/Select/Access on Bitmaps) [Raman et al. 2007] A bitmap
B[1, n] with m 1s (or m 0s) can be stored in m lg n

m +O(m) + o(n) bits so that the
three queries are solved in constant time.

A weaker representation can only compute rank1(B, i), only in those positions
where B[i] = 1, and it cannot determine whether this is the case. This is called a
monotone minimum perfect hash function (mmphf) and can be stored in less than
the space required for compressed bitmaps. We will use it in Section 6.
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Solution 3 (Mmphfs on Bitmaps) [Belazzougui et al. 2009] A bitmap B[1, n]
with m 1s can be stored in O(m lg lg n

m ) bits so that rank1(B, i), if B[i] = 1, is com-
puted in O(1) time. If B[i] = 0 the query returns an arbitrary value. Alternatively,
the bitmap can be stored in O(m lg lg lg n

m ) bits and the query time is O(lg lg n
m ).

There are also various efficient solutions for general sequences. One uses wavelet
trees [Grossi et al. 2003; Navarro 2012], which we describe soon for other appli-
cations. When we only need to solve Problem 4 and the sequence does not offer
relevant compression opportunities, as will be the case in this survey, the following
result is sufficient (although the results can be slightly improved [Belazzougui and
Navarro 2012]). We will use it mostly in Section 6 as well.

Solution 4 (Rank/Select/Access on Sequences) [Golynski et al. 2006; Grossi
et al. 2010] A sequence C[1, n] over alphabet [1..D] can be stored in n lgD+o(n lgD)
bits so that query rank can be solved in time O(lg lgD) and, either C[i] can be ac-
cessed in O(1) time and query select can be solved in O(lg lgD) time, or vice versa.

2.3.2 Range Minimum Queries (RMQs) and Lowest Common Ancestors (LCAs).
Many document retrieval solutions make heavy use of the following problem on
arrays of integers.

Problem 5 (Range Minimum Query, RMQ) Preprocess an array L[1, n] of
integers so that, given a range [sp, ep], we can output the position of a minimum
value in L[sp, ep], rmqL(sp, ep) = argmini≤p≤jL[p].

The RMQ problem has a rich history, which we partially cover in Appendix A.
An interesting data structure related to it is the Cartesian tree [Vuillemin 1980].

Definition 3 (Cartesian Tree) The Cartesian tree of an array L[1, n] is a binary
tree whose root corresponds to the position p of the minimum in L[1, n], and the
left and right children are, recursively, Cartesian trees of L[1, p−1] and L[p+ 1, n],
respectively. The Cartesian tree of an empty array interval is a null pointer.

Cartesian trees are instrumental in relating RMQs with the following problem.

Problem 6 (Lowest Common Ancestor, LCA) Preprocess a tree so that, given
two nodes u and v, we can output the deepest tree node that is an ancestor of both
u and v.

The main results we need on RMQs are summarized in the following two solu-
tions. The first is a classical result stating that the problem can be solved in linear
space and optimal time.

Solution 5 (RMQ) [Harel and Tarjan 1984; Schieber and Vishkin 1988; Berkman
and Vishkin 1993; Bender and Farach-Colton 2000] The problem can be solved using
linear space and preprocessing time, and constant query time.

The second result shows that, by storing just O(n) bits from the original array
L, we can solve RMQs without accessing L at query time. This is relevant for the
compressed solutions.
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Solution 6 (RMQ) [Fischer and Heun 2011] The problem can be solved using
2n+o(n) bits, linear preprocessing time, and constant query time, without accessing
the original array at query time. This space is asymptotically optimal.

Similarly, the related LCA problem can be solved in constant time using linear
space, and even on a tree representation that uses 2n + o(n) bits for a tree of n
nodes (e.g., that of Sadakane and Navarro [2010]).

2.3.3 Wavelet Tres. Finally, we introduce the wavelet tree data structure [Grossi
et al. 2003], which is used for many document retrieval solutions, and whose struc-
ture is necessary to understand in this survey.

A wavelet tree over a sequence C[1, n] is a perfectly balanced binary tree where
each node handles a range of the alphabet. The root handles the whole alphabet
and the leaves handle individual symbols. At each node, the alphabet is divided by
half and the left child handles the smaller half of the symbols and the right child
handles the larger half. Each node v represents (but does not store) a subsequence
Cv of C containing the symbols of C that the node handles. What each internal
node v stores is just a bitmap Bv, where Bv[i] = 0 iff Cv[i] belongs to the range of
symbols handled by the left child of v, otherwise Bv[i] = 1.

Over an alphabet [1..D], the wavelet tree has height dlgDe and stores n bits per
level, thus its total space is ndlgDe bits, that is, the same of a plain representation
of C. For it to be functional, we need that the bitmaps Bv can answer rank and
select queries, thus the total space becomes n lgD + o(n lgD) bits. Within this
space, the wavelet tree actually represents C: to recover C[i], we start at the root
node v. If Bv[i] = 0 then C[i] belongs to the first half of the alphabet, so we continue
the search on the left child of the root, with the new position i← rank0(Bv, i). Else
we continue on the right child, with i ← rank1(Bv, i). When we arrive at a leaf
handling symbol d, it holds C[i] = d. The process takes O(lgD) time. Within this
time the wavelet tree can also answer rank and select queries on C, as well as many
other operations. See Makris [2012] and Navarro [2012] for full surveys.

An example of wavelet trees is given in Appendix G, in a proper context. A
formal definition of wavelet trees follows.

Definition 4 (Wavelet Tree) A wavelet tree over a sequence C[1, n] on alphabet
[1..D] is a perfectly balanced binary tree where the ith node of height h (being the
leaves of height 0) is associated to the symbols d such that dd/2he = i. The node
v handling symbols [a..b] ⊆ [1..D] represents the subsequence Cv of C consisting of
the symbols in [a..b]. For each node v we store a bitmap Bv[1, |Cv|] where Bv[i] = 0
iff the left child of v is associated with symbol Cv[i].

3. OCCURRENCE RETRIEVAL INDEXES

In this section we cover indexes that handle collections of general sequences, but
that address the more traditional problem of finding or counting all the occurrences
of a pattern P in a text T (i.e., computing occ(P, T ) or |occ(P, T )|). We focus on
those upon which document retrieval indexes are built: suffix trees, suffix arrays,
and compressed suffix arrays.
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3.1 Generalized Suffix Trees

Consider a text T [1, n] = T1$T2$ . . . TD$ over alphabet Σ ∪ {$}. Now consider the
n suffixes of the form S = {Td[i, nd]$, 1 ≤ d ≤ D, 1 ≤ i ≤ nd + 1}. The Generalized
Suffix Tree (GST) of T is a data structure storing those n strings in S.2

To describe the GST, we start with a tree where the edges are labeled with
symbols in Σ ∪ {$}, and where each string in S can be read by concatenating the
labels from the root to a leaf. No two edges leaving a node have the same label,
and they are ordered left to right according to those labels. The string label of a
node v, str(v), is the concatenation of the characters labeling the edges from the
root to the node. Thus, each string label in the tree is a unique prefix in S, and
there is exactly one tree leaf per string in S.

To obtain a GST from this tree we carry out three steps: (1) remove all nodes v
with just one child u, prepending the label of the edge that connects v to its parent
to the label that connects u and v (now edges will be labeled with strings); (2)
attach to leaves the starting position of their suffix in T ; (3) retain only the first
character and the length of the strings labeling the edges, that is, labels will be of
the form (c, `), with c ∈ Σ ∪ {$} and ` > 0.

Example. We introduce our running example text collection. To combine read-
ability and manageability, we consider an alphabet of syllables on a hypothetic lan-
guage.3 The alphabet of our texts will be Σ = {la,ma,me,mi}. Our document collec-
tion D = {T1, T2, T3, T4} will have D = 4 texts, T1 = ”mi ma ma”, T2 = ”la ma la”,
T3 = ”me mi ma”, T4 = ”la me me”. Their lengths are n1 = n2 = n3 = n4 = 3.
They are concatenated into a single text

T = ”mi ma ma $ la ma la $ me mi ma $ la me me $”

of length n = 16. Fig. 1 shows the individual suffix trees of the texts, plus the GST
of T (which we also call the GST of D).

Note that, because we do not use a distinct “$” terminator per document, some
anomalies arise in our example, with leaves corresponding to several symbols. As
explained, those do not cause any problem in practice.

As mentioned, suffix trees (which are GSTs of only one text T1$) and GSTs
are used for many complex tasks [Apostolico 1985; Gusfield 1997; Crochemore
and Rytter 2002], yet in this survey we will only describe the simplest one as an
occurrence retrieval index. In this case, given a pattern P [1,m], we find the so-
called locus of P , that is, the highest suffix tree node v such that P is a prefix
of str(v). The locus can be found by a well-known traversal procedure, in O(m)
time on integer alphabets4 (see the given references for details). Once we find the
locus v, occ(P, T ) = occ(str(v), T ) is the set of positions attached to the leaves
descending from v. Thus occ(P, T ) can be listed in time O(m+ |occ(P, T )|), or we
can record |occ(str(v), T )| in each node v so that we can count the number of times
P occurs in T in time O(m).

2For technical reasons each “$” symbol should be different, but this is not done in practice. We

prefer to ignore this issue for simplicity.
3Suspiciously close to Spanish.
4If σ is not taken as a constant we require perfect hashing to obtain O(m) time and linear space
for the structure; otherwise O(m lg σ) time is achieved with binary search on the children.
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Fig. 1. The individual suffix tree of each document and the GST of the concatenated text T , in
our running example text collection. For legibility we omit the edge length when it is 1.

Example. A search for P = ”mi” or for P = ”mi ma” in the GST will end up in
the rightmost child v of the root. Hence occ(P, T ) = {10, 1}.

A formal succinct definition of GSTs, plus a couple of key concepts, follows.

Definition 5 (Generalized Suffix Tree, GST) The generalized suffix tree of a
text collection D = {T1, T2, . . . , TD} is a path-compressed trie storing all the suffixes
of T = T1$T2$ . . . TD$, where the $ is a special character. The string label str(v)
of a node v is the concatenation of the string labels of the edges from the root to v.
The locus of a pattern P is the highest node v such that P is a prefix of str(v).
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Note that the search times are independent of the length of the text T , which is
a remarkable property of suffix trees. Other good properties are that it takes linear
space (i.e., O(n) words) since it has n leaves and no unary nodes, and that it can be
built in linear time for constant alphabets [Weiner 1973; McCreight 1976; Ukkonen
1995], and also on integer alphabets [Farach 1997; Kärkkäinen et al. 2006].

The GST is a useful tool to group the O(n2) possible substrings of T (and hence
possible search patterns) into O(n) nodes, where each node represents a group of
substrings that share the same occurrence positions in T . This allows one to store,
in linear space, information that is useful for document retrieval. For example,
one can associate to each GST v node the number of distinct documents where
str(v) appears, df(str(v)), which allows us to solve in O(m) time and linear space
the problem of computing docc. This ability has been exploited several times for
document retrieval. Note, on the other hand, that the linear space of GSTs is
actually O(n lg n) bits, as the tree pointers must at least distinguish between the
O(n) different nodes (thus lg n+O(1) bits are needed for each pointer), and some
further data is stored. Thus their space usage is a concern in practice.

3.2 Suffix Arrays

The suffix array [Manber and Myers 1993; Gonnet et al. 1992] of a text T is a
permutation of the (starting positions of) suffixes of T , so that the suffixes are
lexicographically sorted. Alternatively, the suffix array of T is the sequence of
positions attached to the leaves of the suffix tree, read left to right.

Definition 6 (Suffix Array) The suffix array of a collection D = {T1, T2, . . . , TD}
is an array A[1, n] containing a permutation of [1..n], such that T [A[i], n] ≺ T [A[i+
1], n] for all 1 ≤ i < n, where T [1, n] = T1$T2$ . . . TD$.

Suffix arrays also take linear space and can be built in O(n) time, without the
need of building the suffix tree first [Kim et al. 2005; Ko and Aluru 2005; Kärkkäinen
et al. 2006]. They use less space than suffix trees, but still their space usage is high.

Example. Fig. 2 illustrates the suffix array for our example.

An important property of suffix arrays is that each subtree of the suffix tree
corresponds to an interval of the suffix array, namely the one containing its leaves.
In particular, having A and T , one can just binary search the suffix array interval
corresponding to the occurrences of a pattern P [1,m], in O(m lg n) time (that is,
O(lg n) comparisons of m symbols).5 Another way to see this is that, since suffixes
are sorted in A, all those starting with P form a contiguous range. Once we
determine that all the occurrences of P are listed in A[sp, ep], we have |occ(P, T )| =
ep− sp+ 1 and occ(P, T ) = {A[sp], A[sp+ 1], . . . , A[ep]}.

3.3 Compressed Suffix Arrays

A compressed suffix array (CSA) over a text collection D is a data structure that
emulates a suffix array on T within less space, usually providing even richer func-
tionality. At most, a CSA must use O(n lg σ) bits of space, that is, proportional to

5By storing more data, this can be reduced to O(m+ lgn) time [Manber and Myers 1993].
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Fig. 2. The suffix array of text T on our running example.

the size of the text stored in plain form (as opposed to the O(n lg n) bits of classical
suffix arrays). There are, however, several CSAs using as little as nHk(T )+o(n lg σ)
bits, where Hk(T ) ≤ lg σ is the k-th order empirical entropy of T . This is a lower
bound to the bits-per-symbol achievable on T by any statistical compressor that
encodes each symbol according to the k symbols that precede it in the text [Manzini
2001]. That is, nHk(T ) is the least space a statistical encoder can achieve on T .

CSAs are well covered in a relatively recent survey [Navarro and Mäkinen 2007],
so we only summarize the operations they support. First, given a pattern P , they
find the intervalA[sp, ep] of the suffixes that start with P , in time tsearch(m). Second,
given a cell i, they return A[i], in time tSA. Third, they are generally able to
emulate the inverse permutation of the suffix array, A−1[j], also in time tSA. This
corresponds to asking which cell of A points to the suffix T [j, n]. Finally, many
CSAs are self-indexes, meaning that they are able to extract any substring T [i, j]
without accessing T , so the text itself can be discarded. Those CSAs replace T
by a (usually) compressed version that can in addition be queried. The following
definition captures the minimum functionality we need from a CSA in this article.

Definition 7 (Compressed Suffix Array, CSA) A compressed suffix array is
a data structure that simulates a suffix array on text T [1, n] over alphabet [1..σ]
using at most O(n lg σ) bits. It finds the interval A[sp, ep] of a pattern P [1,m] in
time tsearch(m), and computes any A[i] or A−1[j] in time tSA.

For example, a recent CSA [Belazzougui and Navarro 2011] requires nHk(T )(1+
o(1)) + O(n) bits of space and offers time complexities tsearch = O(m) and tSA =
O(lg n). Another recent one [Barbay et al. 2010] uses nHk(T )(1 + o(1)) + o(n) bits
and offers tsearch = O(m lg lg σ) and tSA = O(lg n(lg lg σ)2). Both are self-indexes.
Many older ones can be found in the survey [Navarro and Mäkinen 2007].

4. DOCUMENT LISTING

Muthukrishnan [2002] gave an optimal solution to the document listing problem
(Problem 1), within linear space, that is, O(n lg n) bits (see Janardan and Lopez
[1993] and Matias et al. [1998] for previous work). Muthukrishnan introduced the
so-called document array, which has been used frequently since then.

Definition 8 (Document Array) Given a document collection D, its text T ,
and the suffix array A[1, n] of T , the document array C[1, n] contains in each C[i]
the number of the document suffix A[i] belongs to.

It is not hard to see that all we need for document listing is to determine the
interval A[sp, ep] corresponding to the pattern and then output the set of distinct
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Fig. 3. The C and L arrays for our running example.

values in C[sp, ep]. This gives rise to the following algorithmic problem.

Problem 7 (Color Listing) Preprocess an array C[1, n] of colors in [1..D] so
that, given a range [sp, ep], we can output the different colors in C[sp, ep].

To solve this problem, Muthukrishnan defines a second array, which is also fun-
damental for many related problems.

Definition 9 (Predecessors Array) Given an array C[1, n], the predecessors ar-
ray of C is L[1, n] such that L[i] = max{1 ≤ j < i, C[j] = C[i]} ∪ {0}.

That is, array L links each position in C to the previous occurrence of the same
color, or to position 0 if this is the first occurrence of that color in C.

Example. Fig. 3 illustrates arrays C and L on our running example. We show
how L acts as a linked list of the occurrences of color 1.

Muthukrishnan’s solution to color listing is then based on the following lemma,
which is immediate to see.

Lemma 1 [Muthukrishnan 2002] If a color d occurs in C[sp, ep], then its leftmost
occurrence p ∈ [sp, ep] is the only one where it holds L[p] < sp.

From the lemma, it follows that all we have to do for color listing is to find all
the values smaller than sp in L[sp, ep]. To do this in optimal time, Muthukrishnan
makes use of RMQs (more precisely, Solution 5). The algorithm proceeds recur-
sively. It starts with the interval [i, j] = [sp, ep]. It first finds p = rmqL(i, j). If
L[p] < sp, then C[p] is a new distinct color in C[sp, ep] and can be reported im-
mediately. Then we continue recursively with the intervals [i, p− 1] and [p+ 1, j].
If, instead, L[p] ≥ sp, then position p is not the first occurrence of color C[p] in
C[sp, ep], and moreover no position in C[i, j] is the first of its color. Thus we termi-
nate the recursion for the current interval [i, j]. Note that we always compare L[p]
with the original sp limit, even inside a recursive call with a smaller [i, j] interval.

The recursive calls define a binary tree: at each internal node (where L[p] < sp)
one distinct color appearing in C[sp, ep] is reported, and two further calls are made.
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Fig. 4. Color listing on C[11, 16] in our running example.

Leaves of the recursion tree (where L[p] ≥ sp) report no colors. Hence the recursion
tree has twice as many nodes as colors reported, and thus the algorithm is optimal
time. Indeed, it is interesting to realize that what this algorithm is doing is to
incrementally build the top part of the Cartesian tree of L[sp, ep], recall Definition 3.

Example. For a relevant example, consider color listing over C[sp, ep] = C[11, 16]
in the array of Fig. 4 (this corresponds to document listing of a lexicographic pattern
range [”ma ma”, ”mi ma”], which is perfectly possible on suffix arrays).

We start with p = rmqL(i, j) = rmqL(sp, ep) = rmqL(11, 16) = 12. Since
L[p] = L[12] = 7 < 11 = sp, we report color C[p] = C[12] = 4. Now we continue on
the left subinterval, L[i, p−1] = L[11, 11]. Here obviously we have p = 11, and since
L[11] = 8 < 11 we report C[11] = 1. Now we go to the right of the initial recursive
call, for L[13, 16]. We compute p = rmqL(13, 16) = 14. Since L[14] = 9 < 11, we
report C[14] = 3, and recurse on both sides of p. The left side is L[13, 13]. Since
L[13] = 12 ≥ 11, we do not report this position and terminate the recursion. The
right side is L[15, 16]. Once again, we compute p = rmqL(15, 16) = 16, and since
L[16] = 11 ≥ 11, we also terminate the recursion here. Note we have not needed to
examine L[15] to know it does not contain new colors. We have correctly reported
the colors 4, 1, and 3.

In the bottom part of the figure we show the part of the Cartesian tree of L[11, 16]
we have uncovered, or what is the same, the tree of the recursive calls. Shaded nodes
represent colors reported (also marked in C), empty nodes represent cells where the
recursion ended, and dotted nodes are the part we have not visited of the Cartesian
tree (usually much more than just one node).

The algorithm is not only optimal time but also real time: As it reports the color
before making the recursive calls, the top part of the Cartesian tree can be thought
of as generated in preorder. Thus it takes O(1) time to list each successive result.

Solution 7 (Color Listing) [Muthukrishnan 2002] The problem can be solved in
linear space and real time.

In addition to this machinery, Muthukrishnan uses a suffix tree on T to compute
the interval [sp, ep]. This immediately gives an optimal solution to the document
listing problem.
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Solution 8 (Document Listing) [Muthukrishnan 2002] The problem can be solved
in O(m+ docc) time and O(n lg n) bits of space.

Muthukrishnan [2002] considered other more complex variants of the problem,
such as listing the documents that contain t or more occurrences of the pattern, or
that contain two occurrences of the pattern within distance t. Those also lead to
interesting, albeit more complex, algorithmic problems.

In practical terms, Muthukrishnan’s solution may use too much space, even if
linear. It has been shown, however, that his very same idea can be implemented
within much less space: just O(n) bits on top of a CSA (Definition 7). We cover
those developments in the next section.

5. DOCUMENT LISTING IN COMPRESSED SPACE

Sadakane [2007] addressed the problem of reducing the space of Muthukrishnan’s
solution. He replaced the suffix tree by a CSA, and proposed the first RMQ solution
that did not need to access L (this one used 4n+o(n) bits; the one we have referenced
in Solution 6 uses the optimal 2n + o(n)). Thus array L was not necessary for
computing RMQs on it. Muthukrishnan’s algorithm, however, needs also to ask if
L[p] < sp in order to determine whether this is the first occurrence of color C[p].
Sadakane uses instead a bitmap V [1, D] (set initially to all 0s), so that if V [C[p]] = 0
then the document has not yet been reported, so we report it and set V [C[p]]← 1.

Just as before, Sadakane ends the recursion at an interval [i, j] when its minimum
position p satisfies V [C[p]] = 1. There is a delicate point about the correctness of
this algorithm, which is not stressed in that article. Replacing the check L[p] < sp
by V [C[p]] = 0 only works if we first process recursively the left interval, [i, p− 1],
and then the right interval, [p + 1, j]. In this case one can see that the leftmost
occurrence of each color is found and the algorithm visits the same cells of Muthukr-
ishnan’s (we prove this formally in Appendix B, and also give an example where
an error occurs otherwise).

Sadakane’s technique yields the following solution, which uses O(n) bits on top
of the original array, as opposed to Muthukrishnan’s O(n lg n) bits used for L.

Solution 9 (Color Listing) [Sadakane 2007] The problem can be solved using
O(n) bits of space on top of array C, and in real time.

The reader may have noticed that we should reinitialize V to all zeros before pro-
ceeding to the next query. A simple solution is to remember the documents output
by the algorithm, so as to reset those entries of V after finishing. This requires
docc lgD ≤ D lgD bits, which may be acceptable. Otherwise, array V could be
restored by rerunning the algorithm and using the bits with the reverse meaning.
In practice, however, this doubles the running time. A more practical alternative
is to use a classical solution to initialize arrays in constant time [Mehlhorn 1984].
Although this solution requires O(D lgD) extra bits, we show in Appendix C how
to reduce the space to O(D) = O(n) bits, and even D + o(D) bits.

By combining Solution 9 with any CSA, we also obtain a slightly improved version
of Solution 8.
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Fig. 5. The structures for document listing in compressed space, on our running example. The
grayed structures are not stored. We draw the Cartesian tree of L to represent rmqL.

Solution 10 (Document Listing) [Sadakane 2007] The problem can be solved in
time O(tsearch(m) + docc) and |CSA|+ n lgD + O(n) bits of space, where CSA is a
CSA indexing D.

Note that we have removed array L, but C is still used to report the actual
colors. For the specific case of document listing, Sadakane also replaced array C
by noticing that it can be easily computed from the CSA and a bitmap B[1, n]
that marks with 1s the positions of the “$” symbols in T . Then, using the rank
operation (Problem 4) we compute C[i] = 1 + rank1(B,A[i] − 1). While rank can
be computed in constant time (Solution 1), the computation of A[i] using the CSA
(Definition 7) requires time tSA. Overall, the following result is obtained.

Solution 11 (Document Listing) [Sadakane 2007] The problem can be solved in
time O(tsearch(m) + docc tSA) and |CSA|+O(n) bits of space, where CSA is a CSA
indexing D.

Example. Fig. 5 illustrates the components of Sadakane’s solution.

Hon et al. [2009] managed to reduce the O(n)-bit term in the space complexity
to just o(n). They group b consecutive entries in L. Then they create a sampled
array L′[1, n/b] where each entry contains the minimum value in the corresponding
block of L. The RMQ data structure is built over L′, and they run the algorithm
over the blocks that are fully contained in L[sp, ep]. Each time a position in L′ is
reported, they consider all the b entries in the corresponding block of L, reporting
all the documents that have not yet been reported. Only if all of them have already
been reported can the recursion stop. They also process by brute force the tails of
the interval L[sp, ep] that overlap blocks. Therefore they have a multiplicative time
overhead of O(b) per document reported, in exchange for reducing the O(n)-bit
space to O(n/b).

This idea only works if we first process the left subinterval, then mark the doc-
uments in the block where the minimum was found, and then process the right
subinterval, for the same delicate reason we have described on Sadakane’s method.
Otherwise, marking as visited other documents than the one holding the minimum
L value (namely all others in the block) can make the recursion stop earlier than it
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should. We prove the correctness of this technique in Appendix D, where we also
show that the result can be incorrect if applied in a different order.

The other O(n) bits of space come from the bitmap B that marks the positions of
terminators in T . Since B has only D bits set, it is easily represented in compressed
form using Solution 2.

Solution 12 (Document Listing) [Hon et al. 2009] The problem can be solved
in time O(tsearch(m) + docc tSA lgε n) and |CSA|+D lg(n/D) +O(D) + o(n) bits of
space, where CSA is a CSA indexing D, for any constant ε > 0.

6. COMPUTING TERM FREQUENCIES

As explained in the Introduction, the term frequency tf(P, d) is a key component
in many relevance formulas, and thus the problem of computing it for the docu-
ments that are output by a document listing algorithm is relevant. In terms of the
document array, this leads to the following problem on colors, which as explained
has its own important applications in various data mining problems.

Problem 8 (Color Listing with Frequencies) Preprocess an array C[1, n] of
colors in [1..D] so that, given a range [sp, ep], we can output the distinct colors in
C[sp, ep], each with its frequency in this range.

Given a color d, computing its frequency in C[sp, ep] is easily done via rank
operations (Problem 4): rankd(C, ep)− rankd(C, sp− 1). Therefore, any solution to
color listing (e.g., Solution 9) plus any solution to computing rank on sequences (e.g.,
Solution 4) yields a solution to color listing with frequencies. Indeed, Solution 4 is
close to optimal [Belazzougui and Navarro 2012]. Thus, one can solve color listing
with frequencies using o(n lgD) additional bits and O(lg lgD) per color output.

Somewhat surprisingly, the problem can be solved faster by noticing that we do
not need the full power of rank queries on C. Belazzougui et al. [2013] replace the
rank-enabled sequence representation of C by a weaker representation using less
space and time, but sufficient for this purpose. They use one mmphf Bd (recall
Solution 3) for each color d, marking the positions Bd[i] = 1 where C[i] = d. Then,
if one knew that i and i′ are the first and last occurrences of color d in C[sp, ep],
one could compute the color frequency as rank1(Bd, i

′)− rank1(Bd, i) + 1.
Note that Muthukrishnan’s algorithm naturally finds the leftmost occurrence i.

With a different aim, Sadakane [2007] had shown how to compute the rightmost
occurrence i′. He creates another RMQ (now meaning range maximum query)
structure over a variant of L where each element points to its successor rather than
its predecessor. Run over this new RMQ, Muthukrishnan’s algorithm will find i′

instead of i, for each document d in C[sp, ep].
Sadakane [2007] then uses sorting to match the i and i′ position of each document

d, whereas Belazzougui et al. [2013] avoids the sorting but uses O(D lg n) further
bits. In Appendix E we show how both can be avoided with a dictionary that takes
just O(lgD) bits per listed color plus o(D) total space. In this dictionary we insert
the leftmost occurrences (with document identifiers as keys) and later search for the
rightmost occurrences. Then, by using the faster variant of Solution 3, Belazzougui
et al. [2013] obtain the following result.
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Solution 13 (Color Listing with Frequencies) [Belazzougui et al. 2013] The
problem can be solved in optimal time and O(n lg lgD) bits on top of array C.

Note that, compared to Solution 9, that listed the colors without frequencies, the
real time has become “just” optimal, and the extra space of O(n) bits has increased,
yet it is still o(n lgD) as long as D = o(n). Note also that this solution cannot
compute the frequency of an arbitrary color, but only of those output by the color
listing algorithm.

The corresponding problem on documents is defined as follows.

Problem 9 (Document Listing with Frequencies) Preprocess a document col-
lection D so that, given a pattern string P , one can compute {(d, df(P, d)), df(P, d)>0}.

Välimäki and Mäkinen [2007] were the first to propose reducing this problem
to color listing with frequencies on the document array C. Their most interesting
idea is that the whole document listing problem can be reduced to rank and select
operations on C: Array L can be simulated as L[i] = selectC[i](C, rankC[i](C, i) −
1). Thus, they simulate the original document listing algorithm of Muthukrishnan
[2002] over this representation of L, using the O(n)-bit RMQ of Solution 6, and
using a CSA (Definition 7) to obtain the range C[sp, ep]. Although they used
wavelet trees (Definition 4) to represent C, using instead Solution 4 yields the
following result.

Solution 14 (Document Listing with Frequencies) [Välimäki and Mäkinen
2007] The problem can be solved in time O(tsearch(m) + docc lg lgD) and |CSA| +
n lgD + o(n lgD) bits of space, where CSA is a CSA indexing D.

Combining this idea with Solution 13, so that we need only constant-time access
to C, we immediately obtain a time-optimal solution.

Solution 15 (Document Listing with Frequencies) [Belazzougui et al. 2013]
The problem can be solved in time O(tsearch(m)+docc) and |CSA|+n lgD+o(n lgD)
bits of space, where CSA is a CSA indexing D.

Still, the space is much higher than the near-optimal one of Solutions 11 and
12. The document array is usually much larger than the text or its CSA. Sadakane
[2007] proposed instead a solution that, once the leftmost and rightmost positions i
and i′ of document d are known, computes tf(P, d) using the local CSA of document
d. This doubles the total CSA space, but avoids storing the document array. We
describe this solution in Appendix F.

Solution 16 (Document Listing with Frequencies) [Sadakane 2007] The prob-
lem can be solved in time O(tsearch(m) + docc tSA) and 2|CSA|+O(n) bits of space,
where CSA is a CSA indexing D.

If we use the mmphf-based solution of Belazzougui et al. [2013] to compute the
frequencies, instead of doubling the CSA space, the following results are obtained
by using variants of Solution 3.
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Solution 17 (Document Listing with Frequencies) [Belazzougui et al. 2013]
The problem can be solved in time O(tsearch(m) + docc tSA) and |CSA|+O(n lg lgD)
bits of space, where CSA is a CSA indexing D. By adding O(docc lg lgD) time, the
space can be reduced to |CSA|+O(n lg lg lgD) bits.

All the solutions described build over the original algorithm of Muthukrishnan
[2002]. There is another line of solutions that, although not much competitive in
terms of complexities, yields good practical results and builds on different ideas.
We describe this thread in Appendix G; the main result obtained follows.

Solution 18 (Document Listing with Frequencies) [Gagie et al. 2012] The
problem can be solved in time O(tsearch(m) + docc lg(D/docc)) and |CSA|+n lgD+
o(n lgD) bits of space, where CSA is a CSA indexing D.

We note that, while document listing could be carried out within just o(n) extra
bits on top of the CSA, reporting frequencies requires significantly more space. This
is similar to what we observed for color listing. In Appendix I (Solution 36) we will
show how to use the solutions for top-k retrieval to perform document listing with
frequencies using only o(n) bits on top of the CSA.

7. COMPUTING DOCUMENT FREQUENCIES

Document frequency df(P ), the number of distinct documents where a pattern
occurs, is used in many variants of the tf-idf weighting formula, as mentioned in
the Introduction. In other contexts, such as pattern mining, it is a measure of how
interesting a pattern is.

Problem 10 (Document Frequency) Preprocess a document collection D so
that, given a pattern P , one can compute df(P ), the number of documents where P
appears.

Sadakane [2007] showed that this problem has a good solution. One can store
2n+o(n) bits associated to the GST of D so that df(P ) can be computed in constant
time once the locus node of P is known. We describe his solution in Appendix H.

Solution 19 (Document Frequency) [Sadakane 2007] The problem can be solved
in O(tsearch(m)) time using |CSA|+O(n) bits of space.

On the other hand, in terms of the document array, computing document fre-
quency leads to the following problem, which is harder but of independent interest.

Problem 11 (Color Counting) Preprocess an array C[1, n] of colors in [1..D]
so that, given a range [sp, ep], we can compute the number of distinct colors in
C[sp, ep].

This problem is also called categorical range counting and it has been recently
shown to require at least Ω(lg n/ lg lg n) time if using space O(n polylog(n)) [Larsen
and van Walderveen 2013]. Indeed, it is not difficult to match this lower bound:
By Lemma 1, it suffices to count the number of values smaller than sp in L[sp, ep]
[Gupta et al. 1995]. This is a well-known geometric problem, which in simplified
form follows.
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Fig. 6. The grid representation of array L in our running example.

Problem 12 (Two-Dimensional Range Counting) Preprocess an n × n grid
of n points so that, given a range [r1, r2] × [c1, c2], we can count the number of
points in the range.

Our problem on L becomes a two-dimensional range counting problem if we
consider the points (L[i], i). Then our two-dimensional range is [0, sp−1]× [sp, ep].

Example. Fig. 6 shows the grid corresponding to array L in our running example,
where we have highlighted the query corresponding to C[11, 16]. As expected, two-
dimensional range counting indicates that there are 3 points in [0, 10]× [11, 16], and
thus 3 distinct colors in C[11, 16].

Two-dimensional range counting has been solved in O(lg n/ lg lg n) time and
n lg n + o(n lg n) bits of space by Bose et al. [2009]. Unsurprisingly, this time is
also optimal within O(npolylog(n)) space [Pătraşcu 2007].

Solution 20 (Color Counting) [Gupta et al. 1995; Bose et al. 2009] The problem
can be solved in O(lg n/ lg lg n) time and n lg n+ o(n lg n) bits of space.

We note that the space in this solution does not account for the storage of the
color array C[1, n] itself, but it is additional space (the solution does not need to
access C, on the other hand). Gagie et al. [2013] used this same reduction, but
resorting to binary wavelet trees instead of the faster data structure of Bose et al.
Instead, they reduced the n lg n bits of this wavelet tree, and also made the time
dependent on the query range (we ignore compressibility aspects of their results).

Solution 21 (Color Counting) [Gagie et al. 2013] The problem can be solved in
O(lg(ep− sp+ 1)) time and n lgD + o(n lgD) +O(n) bits of space.

Again, this result does not consider (nor needs) the storage of the array C itself.



22 · G. Navarro

8. MOST IMPORTANT DOCUMENT RETRIEVAL

We move on now from the problem of listing all the documents where a pattern
occurs to that of listing only the k most important ones. In the simplest scenario,
the documents have assigned a fixed importance, as defined in Problem 3. By means
of the document array, this can be recast into the following problem on colors.

Problem 13 (Top-k Heaviest Colors) Preprocess an array C[1, n] of colors in
[1..D] with weights in W [1, D] so that, given a range [sp, ep] and a threshold k, we
can output k distinct colors with highest weight in C[sp, ep].

A first observation is that, if we reorder the colors so that their weights W become
decreasing, W [d] ≥ W [d + 1], then the problem becomes that of reporting the k
colors with lowest identifiers in C[sp, ep]. This is indeed achieved by Gagie et al.
[2009] using consecutive range quantile queries on wavelet trees, as explained in
Appendix G (Solution 37), and it is easy to adapt the subsequent improvement
[Gagie et al. 2012] to stop after the first k documents are reported. It is not hard
to infer the following result, where the wavelet tree can also reproduce any cell of
C (and thus replace C, if we accept its access time).

Solution 22 (Top-k Heaviest Colors) [Gagie et al. 2012] The problem can be
solved in O(k lg(D/k)) time and n lgD+ o(n lgD) bits of space. Within this space
we can access any cell of C in time O(lgD).

Note that this assumes that we can freely reorder the colors. If this is not the case
we need other D lgD bits to store the permutation. On the other hand, by spending
linear space (O(n lg n) bits), we can use the improved range quantile algorithms of
Brodal et al. [2011]. In this case, however, an optimal-time solution by Karpinski
and Nekrich [2011] is preferable.

Solution 23 (Top-k Heaviest Colors) [Karpinski and Nekrich 2011] The prob-
lem can be solved in real time and O(n lgD) bits of space.

Therefore, we obtain the following results for document retrieval problems.

Solution 24 (Top-k Most Important Documents) [Karpinski and Nekrich 2011]
The problem can be solved in time O(tsearch(m) + k) and |CSA| + O(n lgD) bits of
space, where CSA is a CSA indexing D.

Solution 25 (Top-k Most Important Documents) [Gagie et al. 2012] The prob-
lem can be solved in time O(tsearch(m) + k lg(D/k)) and |CSA|+ n lgD + o(n lgD)
bits of space, where CSA is a CSA indexing D.

We defer the results using compressed space to Section 10 (Solution 31).

9. TOP-K DOCUMENT RETRIEVAL

We now consider the general case, where the weights of the documents may depend
on P as well. Hon et al. [2009] introduced a fundamental framework to solve this
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general top-k document retrieval problem. All the subsequent work can be seen as
improvements that build on their basic ideas (see Hon et al. [2010a] for prior work).

Their basic construction enhances the GST of the collection D so that the local
suffix tree of each document Td is embedded into the global GST. More precisely,
let u be a node of the suffix tree of document Td, and let w be its parent in that
suffix tree. Further, let occ(u) = tf(u, d) be the number of leaves below u in the
suffix tree of Td. There must exist nodes u′ and w′ in the GST of D with the same
string labels, str(u′) = str(u) and str(w′) = str(w). Then we record a pointer
labeled d from u′ to w′, with weight occ(u). Thus the set of parent pointers for
each document d forms a subgraph of the GST that is isomorphic to the suffix tree
of Td. From the fact that the pointers labeled d correspond to an embedding of the
suffix tree of Td into the GST, the following crucial lemma follows easily.

Lemma 2 [Hon et al. 2009] Let v be a nonroot node in the GST of D. For each
document d where str(v) occurs tf(v, d) > 0 times, there exists exactly one pointer
from the subtree of v (including v) to a proper ancestor of v, labeled d and with
weight tf(v, d).

To see this, note that if str(v) occurs in Td, there must be a node u of the suffix
tree of Td mapped to u′ in GST, which is below v (or is v itself). If we follow the
successive upward pointers from u′, we go over v at some point,6 so there must be
at least one such pointer from a subtree of v to a proper ancestor of v. On the
other hand, there cannot be two such pointers leaving from u′′ and u′′′, because the
LCA of both nodes must also be in the suffix tree of Td, and hence u′′ and u′′′ must
point to this LCA or below it. But since u′′ and u′′′ descend from v, their LCA
also descends from v, so their pointers point at or below v. Notice, moreover, that
the source u′ of this unique pointer has a weight tf(u, d), which must be tf(v, d),
since all the occurrences of v in document d are in nodes below u′ in the GST.

Example. Fig. 7 illustrates how the suffix tree of document T1 is embedded in the
GST, in our running example. The upward pointers describe the topology of the
local suffix tree. Note that for all the patterns that appear in T1, such as ”ma”,
”mi ma”, and ”ma ma”, but not ”la” nor ”me”, there is exactly one upward pointer
leaving from the subtree of the locus and arriving at an ancestor of the locus.

Hon et al. [2009] store the pointers at their target nodes, w′. Thus, given a
pattern P , we find its locus v in the GST, and then the ancestors v1, v2, . . . of v
record exactly one pointer labeled d per document where P appears, together with
the weight tf(P, d). However, we only want those pointers that originate in nodes
u′ within the subtree of v. For this sake, the pointers arriving at each node w′

are stored in preorder of the originating nodes u′, and thus those starting from
descendants u′ of v form a contiguous range in the target nodes w′. Furthermore,
we build RMQ data structures (this time choosing maxima, not minima) on the
tf(P, d) values associated to the pointers. Fig. 8 (left) illustrates the scheme.

The node v has at most m ancestors. In principle we have to binary search
those m arrays to isolate the ranges of the pointers leaving from the subtree of

6Since Td 6= ε, there are at least two distinct symbols in Td$, and thus its root is mapped to the
root of the GST. So we always cross v at some point.
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Fig. 7. The embedding of the suffix tree of T1 in the global GST. The nodes are shown grayed
and the upward pointers as thick arrows.

Fig. 8. The linear-space schemes for top-k documents. On the left, the GST with the locus node

shadowed. From the arrays of its ancestors (targets of pointers) we choose the areas (shadowed)
of those leaving from the subtree of the locus. We draw the pointers that go to the grandparent of

the locus. Solid arrows leave from the subtree of the locus and dashed ones from other descendants
of the grandparent node. On the right, the mapping of those arrays into a grid, where the row is

the depth of the target and the column is the preorder of the source.

v. A technical improvement reduces the time to find those ranges from O(m lgD)
to O(m) time, let vi[spi, epi] be those ranges. Then, with an RMQ on each such
interval we obtain the positions pi where the maximum weight in each such array
occurs. Those m weights are inserted into a max-priority queue bounded to size k
(i.e., the (k + 1)th and lower weights are always discarded). Now we extract the
maximum from the queue, which is the top-1 answer. We go back to its interval
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Fig. 9. The locus of P = ”ma” and the area of the list that corresponds to it.

vi[spi, epi] and cut it into two, vi[spi, pi−1] and vi[pi+ 1, epi], compute their RMQ
positions, and reinsert them in the queue. After repeating this process k times, we
have obtained the top-k documents.

Solution 26 (Top-k Documents) [Hon et al. 2009] The problem can be solved
in O(m+ k lg k) time and O(n lg n) bits of space.

Example. Fig. 9 shows the arrays of target nodes, in the format (d, tf(u′, d)),
sorted by preorder of the source nodes but omitting the preorder information for
clarity. We shadow the locus node v of P = ”ma”. In this small example the
locus has only one proper ancestor, the root v1. The range v1[sp1, ep1] = v1[7, 9]
in that array corresponds to the pointers leaving from the subtree of v. An RMQ
structure over this array lets us find in constant time the top-1 answer, v1[7] = (d =
1, tf(P, d) = 2). To get the top-2 answer we split the interval into v1[7, 6] (empty)
and v1[8, 9], and pick the largest of the two.

Note that the weights tf(P, d) can be replaced by any other measure that is a
function of the locus of P in the suffix tree of Td. This includes some as sophisticated
as dmin(P, d), the minimum distance between any two occurrences of P in d.

Navarro and Nekrich [2012] improved the space and time of this solution by using
a different way of storing the pointers. They consider a grid of size O(n)×O(n) so
that a pointer from node u′ to node w′ is stored as a point (depth(w′), preorder(u′))
in this grid, associated to the document d and with weight tf(u′, d). Then, once the
locus v of P is found in the suffix tree, the problem is reduced to that of finding
the k heaviest points in the range [0, depth(v) − 1] × [preorder(v), preorder(v) +
subtreesize(v) − 1] on the grid (note that there may be several points in a single
place of this grid, which can be dealt with by creating unique columns for them).
This is, again, a geometric problem. We illustrate it in Fig. 8 (right).

The key to achieving optimal time is to note that the height of the query range is
at most m, and we have already spent O(m) time to find the pattern. Navarro and
Nekrich show that, if we can spend time proportional to the row-size of the query
range, then it is possible to report each top-k point in constant time. In addition,
they manage to slightly reduce the space.
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Fig. 10. The grid representation of the pointers and the query.

Solution 27 (Top-k Documents) [Navarro and Nekrich 2012] The problem can
be solved in O(m+ k) time and O(n(lgD + lg σ)) bits of space.

Other weights than tf(P, d) can also be used in this (and also Hon et al.’s) solu-
tion, yet the space here becomes O(n(lgD + lg σ + lg lg n)) bits.

Example. Fig. 10 illustrates Navarro and Nekrich’s representation of the pointers
on a grid. In our example the grid is just of height two, and there is no more than
one pointer per cell. The query area is shaded.

We note that Solutions 26 and 27 are online, that is, we do not need to specify k
in advance, but can run the algorithms and stop them at any time, after reporting
k documents. Interestingly, the optimal online solution immediately yields opti-
mal solutions to various outstanding challenges left open by Muthukrishnan [2002].
First, if we want to list all the documents where a pattern appears more than t
times, we simply run the online algorithm until it outputs the first document d with
tf(P, d) < t. Second, if we want to list all the documents where two occurrences
of the pattern appear within distance at most t, we do the same with the dmin
weighting function. Muthukrishnan [2002] had obtained sophisticated solutions for
those problems, which were optimal-time and linear-space only for t fixed at index
construction time. Now we can solve those problems as particular cases, in linear
space and optimal time, defining t at query time, and even in online form.

Muthukrishnan’s solutions, on the other hand, work for general color range prob-
lems, not only for document retrieval. This opens the question of whether we can
also solve the corresponding top-k problem on colors.

Problem 14 (Top-k Colors) Preprocess an array C[1, n] of colors in [1..D] so
that, given a range [sp, ep] and a threshold k, we can output k colors with highest
frequency in C[sp, ep].

For k = 1 this problem is called the range mode problem. The best exact solution
is by Chan et al. [2012], who achieve linear space but a high time, O(

√
n/ lg n).

The problem admits, however, good approximations. An (1 + ε)-approximation to
the range mode problem is to find an element whose frequency is at least 1+ε times
less than that of the range mode. Greve et al. [2010] show that one can find such
an approximation in O(lg(1/ε)) time and O((n/ε) lg n) bits of space.

Gagie et al. [2013] extends the solution to find approximate top-k colors, where
one guarantees that no ignored color occurs more than 1 + ε times than a reported
color. The technique composes the approximate solution for top-1 color with a
wavelet tree on C (Definition 4), so that one such structure is stored for each
sequence Cv associated to wavelet tree node v. For the top-1 answer, say d1, it is
sufficient to query the root. For the top-2 answer, d2, we must exclude d1 from
the solution. This is done by considering all the siblings of the nodes in the path
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Fig. 11. The process of solving top-k colors.

from the root to the leaf d1 of the wavelet tree. The maximum over all those top-1
queries gives the top-2. For the top-3, we must repeat the process to exclude also
d2 from the set, and so on. We maintain a priority queue with all the wavelet
tree nodes that are candidates for the next answer. After returning k answers, the
queue has k lgD candidates (as the root-to-leaf paths are of length lgD). By using
an appropriate priority queue implementation, Solution 28 is obtained.

Solution 28 (Top-k Colors) [Gagie et al. 2013] An (1+ε)-approximation for the
problem takes O(k lgD lg(1/ε)) time and O((n/ε) lgD lg n) bits of space.

Example. Fig. 11 illustrates the process. On the left, we query C[4, 13], finding
on the root that 4 is the most frequent color. To find the top-2 result, we remove 4
from the alphabet by partitioning the root node (which handles symbols [1..4]) into
two wavelet tree nodes: that handling [1..2] and that handling [3] (on the right).
Now we perform the query on both arrays, finding that 2 is the most frequent color
from both nodes. If we wanted the top-3, it would be decided between wavelet tree
leaves handling [1] and [3].

This result is not fully satisfactory for two reasons. First, the space is super-
linear. Second, it is approximate. The second limitation, however, seems to be
intrinsic. Chan et al. [2012] show that it is unlikely, even for k = 1, to obtain
times below Θ(nω/2−1) using space below Θ(nω/2), where ω is the matrix multipli-
cation exponent (best known value is ω = 2.376). This is a case where document
retrieval queries, which translate into specific colored range queries (where the pos-
sible queries come from a tree) are much easier than general colored range queries.

On the other hand, there has been much research, and very good results, on
solving the top-k documents problem in compressed space (for the tf measure). We
describe the most important results next.

10. TOP-K DOCUMENT RETRIEVAL IN COMPRESSED SPACE

In their seminal paper, Hon et al. [2009] also presented the first compressed solution
to the top-k document retrieval problem under measure tf. The idea is to sample
some suffix tree nodes and store the top-k answer for those sampled nodes. The
sampling mechanism guarantees that this answer must be “corrected” with just a
small number of suffix tree leaves in order to solve any query.

Assume for a moment that k is fixed and let b = k lg2+ε n. We choose the GST
leaves whose suffix array position is a multiple of b, and mark the LCA of each
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pair of consecutive chosen leaves. This guarantees that the LCA of any two chosen
leaves is also marked.7 At each of the n/b marked internal nodes v, we store the
result top(D, str(v), k). This requires O(k lg n) bits per sampled node, which adds
up to O(n/ lg1+ε n) bits. The subgraph of the GST formed by the marked nodes
(preserving ancestorship) is called τk.

Instead of storing the GST, we store the trees τk, for all k values that are powers
of 2. All the τk trees add up to O(n/ lgε n) = o(n) bits. Given a top-k query, we
solve it in tree τk′ , where k′ = 2dlg ke = O(k) is the power of 2 next to k.

Just as the pattern P has a locus node v in the GST, it has a locus v′ in τk′ ,
using the same Definition 5. It is not hard to see that, since the nodes of τk′ are
a subset of those of the GST, v′ must descend from v (or be the same). A way to
find v′ is to use a CSA and obtain the range [sp, ep] of P , then restrict it to the
closest multiples of b′ = k′ lg2+ε n, [sp′′, ep′′] ⊆ [sp, ep], then take the (sp′′/b)th and
(ep′′/b)th leaves of τk′ , and finally take v′ as the LCA of those two leaves. The
following property is crucial.

Lemma 3 [Hon et al. 2009] The node v′ ∈ τk′ covers a range [sp′, ep′] such that
[sp′′, ep′′] ⊆ [sp′, ep′] ⊆ [sp, ep].

It holds that [sp′′, ep′′] ⊆ [sp′, ep′] because v′ is the LCA of leaves sp′′ and ep′′ in
the GST, and it holds that [sp′, ep′] ⊆ [sp, ep] because v is the LCA of [sp, ep] and
it is an ancestor of v′. Moreover, note that sp′ − sp ≤ b and ep− ep′ ≤ b.

Node v′ has precomputed the top-k answer for [sp′, ep′] (moreover, the top-k′

answer). We only need to correct this list with the documents that are mentioned
in A[sp, sp′ − 1] and A[ep′ + 1, ep], and those ranges are shorter than b. It is also
possible that [sp′′, ep′′] = ∅, but in this case it holds that [sp, ep] is shorter than 2b
and thus the answer can be computed from scratch by examining those O(b) cells.
Fig. 12 illustrates the scheme. The locus v is in gray and the marked node v′ in
black. The areas that must be traversed sequentially are in bold.

In the general case, we have up to k precomputed candidates and must correct
the answer with O(b) suffix array cells. We traverse those cells one by one and
compute the corresponding document d using A as in Solution 11. Now, each such
document d may occur many more times in C[sp′, ep′], yet be excluded from the
top-k precomputed list. Therefore, we need a mechanism to compute its frequency
tf(P, d) in C[sp, ep]. Note that we cannot use the technique of Solution 16, because
we do not have access to the first and last occurrence of d in C[sp, ep].

We do have access, however, to either the first (if we are scanning C[sp, sp′ − 1])
or the last (if we are scanning C[ep′+ 1, ep]) position of d in C[sp, ep]. Appendix F
explains how Hon et al. compute tf(P, d) in O(tSA lg n) time in this case. Once we
know the frequency, we can consider including d in the top-k candidate list (note d
might already be in the list, in which case we have to update its original frequency,
which only considers C[sp′, ep′]). This yields a total cost of O(b tSA lg n) time to
solve the query. By using a compressed bitmap representation (Solution 2) for the
bitmap B that marks the document beginnings, we obtain the following result.

7We are presenting the marking scheme as simplified by Navarro and Valenzuela [2012], where
this property is proved.
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Fig. 12. The compressed top-k retrieval scheme.

Solution 29 (Top-k Documents) [Hon et al. 2009] The problem can be solved
in time O(tsearch(m) + k tSA lg3+ε n) and 2|CSA|+D lg(n/D) +O(D) + o(n) bits of
space, where CSA is a CSA indexing D, for any constant ε > 0.

Note that the space simplifies to 2|CSA| + o(n) if D = o(n). There have been
several technical improvements over this idea [Gagie et al. 2013; Belazzougui et al.
2013]. The best current results, however, have required deeper improvements.

One remarkable idea arised when extending the mmphfs of Solution 17 to top-k
retrieval. The idea of Belazzougui et al. [2013] is that, if a document d occurs in the
left ([sp, sp′ − 1]) and the right ([ep′ + 1, ep]) tails of the interval, then we know its
first and last occurrence in C[sp, ep], and thus the mmphfs can be used to compute
tf(P, d) fast. The problem are the documents d that appear only in one of the tails.
Belazzougui et al. [2013] prove, however, that there can be only k+

√
2bk elements

of this kind that can make it to the top-k list.
To see this, let fmin be the kth frequency in the top-k stored set. Then all the

other documents have frequency ≤ fmin. The first k documents of the tail can
immediately enter the list, if they now reach frequency fmin + 1. However, the
next documents to enter the top-k list must now reach frequency fmin + 2, and
thus we need to scan at least 2k cells of the tail to complete the next batch of k
candidates. Similarly, the next k candidates require scanning at least 3k cells to
reach frequency fmin + 3, and so on. To incorporate sk elements we need to scan
Ω(s2k) cells. Since we scan at most b cells, the bound O(

√
bk) follows.

With some care, the frequency of all those potential candidates can be stored
as well (for example, their frequency must be in the narrow range [fmin − b +
1, fmin], and instead of storing the document identifiers d we can mark one of their
occurrences in [sp, sp′ − 1] or ep′ + 1, ep], either of length at most b. We can then
obtain d using the CSA, using only O(lg lgn) bits to specify d and its frequency.

Recently, Tsur [2013] improved this result further, by noticing that the idea of
limiting the number of candidates can be extended to the case where the document
appears in both tails. This is because the only interesting ranges are those that
correspond to GST nodes, and the leaves covered by the successive unmarked an-
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cestors of v′ (until reaching the nearest marked ancestor) form O(b) increasing sets
of leaves, so the reasoning of Belazzougui et al. [2013] applies verbatim.

The surprising result is that all the possible candidates for the nonmarked nodes,
and their frequencies, can be precomputed and stored. There is no need at all to
use mmphfs (nor local CSAs or document arrays) to solve a top-k query! This
yields the first result for this problem with essentially optimal space, and moreover
very competitive time.

Solution 30 (Top-k Documents) [Tsur 2013] The problem can be solved in time
O(tsearch(m)+k(tSA+lg k+lg lg n) lg k lg n(lg lg n)4) and |CSA|+D lg(n/D)+O(D)+
o(n) bits of space, where CSA is a CSA indexing D.

Assuming we use a CSA with tSA = O(lg1+ε n), the time simplifies toO(tsearch(m)+
k lg k lg2+ε n). If D = o(n), the space simplifies to the optimal |CSA|+ o(n).

On the other hand, Belazzougui et al. [2013] show that these ideas can be applied
to solve the top-k most important problem in compressed space. In this case they
sort the document identifiers by decreasing weight, and each marked node in τk
stores simply the k smallest document identifiers in the range. There is no need
of the individual CSAs to compute term frequencies. Further, they speed up the
traversal of the blocks of size O(b) by subsampling them and creating minitrees
τ ′k′ inside each block. Therefore, instead of collecting the candidates from at most
one tree and traversing two blocks, we must collect the candidates from at most
one tree, two minitrees, and two subblocks, the latter being sequentially traversed.
Those minitrees store the top-k′ answers for selected nodes, just as the global one,
with the difference that instead of a document identifier, they store a CSA position
inside the block where such document appears, as before. This allows them to
encode each document identifier in O(lg lg n) bits and thus use smaller miniblocks.

Solution 31 (Top-k Most Important Documents) [Belazzougui et al. 2013]
The problem can be solved in time O(tsearch(m)+k tSA lg k lgε n) and |CSA|+D lg(n/D)+
O(D) +o(n) bits of space, where CSA is a CSA indexing D, for any constant ε > 0.

With the above assumptions on tSA and D, this simplifies to O(tsearch(m) +
k lg k lg1+ε n) time and |CSA| + o(n) bits. The space is asymptotically optimal
and the time is close to that for document listing (Solution 11).

Recently, Hon et al. [2013] translated this result back into top-k (most frequent)
document retrieval. The solution of Belazzougui et al. [2013] does not work for
this problem because one cannot easily compose two (or, in this case, three) partial
top-k most frequent document answers into the answer of the union (as a global
top-k answer could be not a top-k answer in any of the sets). This worked for the
top-k most important document problem, which is easily decomposable.

However, Hon et al. [2013] consider the trees and the minitrees in a slightly
different way. There are two kinds of trees, the original ones, τk, and a new set of
(also global) trees, ρk. This new set of trees uses shorter blocks, of length c < b.
For each node v ∈ ρk, we consider the highest node u ∈ τk that descends from v
(there is at most one such highest node, because τk is LCA-closed). Further, the
area covered by v is wider than that of u by at most c leaves on each extreme.
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For v they store only the top-k answers that are not already mentioned in the
top-k answers of u. Those answers must necessarily appear at least once outside
the area of u, and thus they can be encoded, similarly to Belazzougui et al. [2013],
as an offset of O(lg lg n) bits. Their frequency is not stored, but computed using
individual CSAs as in Solution 29. Then a top-k query requires collecting results
from one τk tree node, from one ρk tree node, plus two traversals over O(c) leaves.
Overall, they obtain the same result of Belazzougui et al. [2013], but now for the
more difficult top-k most frequent document retrieval.

Solution 32 (Top-k Documents) [Hon et al. 2013] The problem can be solved
in time O(tsearch(m) + k tSA lg k lgε n) and 2|CSA| + D lg(n/D) + O(D) + o(n) bits
of space, where CSA is a CSA indexing D, for any constant ε > 0.

Again, with the above assumptions on tSA and D, this simplifies to O(tsearch(m)+
k lg k lg1+ε n) time and 2|CSA| + o(n) bits. This is the best time that has been
achieved for top-k retrieval when using this space.

Very recently, Navarro and Thankachan [2013a] managed to combine the ideas of
Solutions 30 and 32 to obtain what is currently the fastest solution within optimal
space. They define a useful data structure called the sampled document array, which
collects every sth occurrence of each distinct document in the document array,
and stores it with a rank/select capable sequence representation (Solution 4). The
structure also includes a bitmap of length n that marks the cells of the document
array that are sampled. A compressed representation of this bitmap gives constant-
time rank and select within O((n/s) lg s) + o(n) bits (Solution 2). By choosing
s = lg2 n, say, the whole structure requires just o(n) bits, and it can easily compute
the frequency of any document d inside any range C[sp, ep] in time O(lg lgD), with
a maximum error of O(s). Therefore, we only need to record O(lg s) = O(lg lg n)
bits to correct the information given by the sampled document array.

With this tool, they can use Solution 32 without the second |CSA| bits needed to
compute frequencies. Computing frequencies is necessary for the top-k candidates
found in τk and ρk, and also for the O(c) documents that are found when traversing
the leaves. Now, Tsur [2013] showed that onlyO(

√
ck) frequencies need to be stored.

Added to the fact that now they require only O(lg lgn) bits to store a frequency,
this allows them to use a smaller block size c for ρk, and thus solve queries faster.

Solution 33 (Top-k Documents) [Navarro and Thankachan 2013a] The prob-
lem can be solved in time O(tsearch(m) + k tSA lg2 k lgε n) and |CSA|+D lg(n/D) +
O(D) +o(n) bits of space, where CSA is a CSA indexing D, for any constant ε > 0.

This simplifies to O(tsearch(m) + k lg2 k lg1+ε n) time and |CSA| + o(n) bits with
the above assumptions. It is natural to ask whether it is possible to retain this space
while obtaining the time of Solution 32, and even the ideal time O(tsearch(m)+k tSA).

There have been, on the other hand, much faster solutions using the n lgD bits
of the document array [Gagie et al. 2013; Belazzougui et al. 2013]. An interesting
solution from this family [Hon et al. 2012a] is of completely different nature: They
start from the linear-space Solution 26 and carefully encode the various components.
Their result is significantly faster than any of the other schemes (we omit an even
faster variant that uses 2n lgD bits).
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Solution 34 (Top-k Documents) [Hon et al. 2012a] The problem can be solved
in time O(tsearch(m) + (lg lg n)6 + k(lg σ lg lg n)1+ε) and |CSA| + n lgD + o(n lgD)
bits of space, where CSA is a CSA indexing D, for any constant ε > 0.

The best solution in this line [Navarro and Thankachan 2013b], however, is closer

in spirit to Solution 32. They use the document array and
√

lg∗ n levels of gran-
ularity to achieve close to optimal time per element, O(lg∗ n). A further technical
improvement reduces the time to O(lg∗ k).

Solution 35 (Top-k Documents) [Navarro and Thankachan 2013b] The prob-
lem can be solved in time O(tsearch(m)+k lg∗ k) and |CSA|+n lgD+o(n lgD+n lg σ)
bits of space, where CSA is a CSA indexing D, for any constant ε > 0.

In Section 5 we showed how document listing can be carried out using the optimal
|CSA|+o(n) bits of space, while the solutions for document listing with frequencies
require significantly more space. However, for top-k problems we have again efficient
solutions using |CSA|+o(n) bits of space. In Appendix I we build on those solutions
to achieve document listing with frequencies within optimal space.

Solution 36 (Document Listing with Frequencies) The problem can be solved
in time O(tsearch(m) + docc tSA lg docc lgε n) and |CSA|+D lg(n/D) +O(D) + o(n)
bits of space, where CSA is a CSA indexing D, for any constant ε > 0.

11. PRACTICAL DEVELOPMENTS

Many of the theoretical developments we have described are simple enough to be
implementable, in some cases after some algorithm engineering tuning. In this
section we describe the results obtained by the implementations we are aware of.

11.1 Document Listing with Term Frequencies

There are few doubts that Solution 11 is a good practical method for plain docu-
ment listing (although recent experiments show that one can do much faster using
somewhat more space [Ferrada and Navarro 2013]). The situation, however, is not
so clear for Solution 16, which gives the term frequencies of the listed documents.
This solution was independently implemented in two occasions [Culpepper et al.
2010; Navarro et al. 2011] and found in both cases to use much more space than
expected. This is probably because the individual indexes CSAd pose a constant-
space overhead that is significant for relatively small documents (see a discussion of
implementation issues of CSAs in a previous survey [Ferragina et al. 2009]). While
this solution is expected to be slower than using an explicit document array, the
fact that it also uses more space might be an artifact that can be solved with a more
careful implementation that represents all the CSAd arrays as a single structure.

Välimäki and Mäkinen [2007] presented the first experimental results showing
that, as expected, the document array was a fast but space-consuming structure
for this problem (Solution 14). Culpepper et al. [2010] implemented the quantile-
based listing algorithm (Solution 37), showing its superiority in time and space over
Solutions 16 and 14, yet space was still an issue. They also considered a baseline
solution storing inverted indexes for q-grams, which was also inferior.



Document Retrieval on General Sequence Collections · 33

50
60

8 12 13 18 60

5

10

500

7

doc

array

doc
array

8 10 14 18 2416

1

0.5

0.01
0.02

0.001
0.004

0.1
wavelet

tree

compr. wtree

sequence
fast

geometric

mmphf

comp

CSAs
 

Fig. 13. Schema of experimental results for document listing (left) and top-k document retrieval

(right). The x-axis is the space in bits per character (bpc) and does not include the 4–8 bpc of
the global CSA. The time, on the y-axis, is on the left the milliseconds (msec) to solve the whole

document listing query, and on the right the msec per each of the k results of the top-k query.

Navarro et al. [2011] introduced a technique to compress the wavelet tree of the
document array. The idea is based on an observation by González and Navarro
[2007], who compressed suffix arrays by differentially encoding and then grammar-
compressing them. The reason why this work has deep roots (see a thorough
discussion in Navarro and Mäkinen [2007]), but it can be summarized as: repetitive
texts induce long areas in the suffix array that are identical to other areas, yet
with the values shifted by 1. In a document array, most of those areas become just
plain repetitions, as the suffix shifted by 1 usually falls in the same document [Gagie
et al. 2013]. However, just grammar-compressing the document array is not enough,
because one needs rank operations on the sequence in order to run the document
listing algorithm on it. Navarro et al. [2011] grammar-compressed the bitmaps
Bv stored at the wavelet tree nodes, when this was convenient (they showed that
the repetitions at the root level faded away at deeper levels). They also replaced
the quantile-based Solution 37 by the always faster and simpler Solution 18. As a
result, they obtained document listing solutions that were about twice as slow and
required about half the space, when the text collection was compressible.

Finally, Belazzougui et al. [2013] implemented Solution 17 using mmphfs. Al-
though it loses to the compressed wavelet trees on compressible texts, it offers a
more stable performance, always using less space than uncompressed wavelet trees.
Their time performance, however, is significantly worse.

Fig. 13 (left) gives some rough numbers on a typical desktop computer (a 2GHz
Intel Xeon with 16GB RAM and 2MB cache, using C/C++ with full optimization
and no multicore parallelism), averaging over various types of text collections.8

Here “doc array” stands for the uncompressed document array, “comp doc array”
for the compressed document array, “mmphf” for the solution based on mmphfs,
and “CSAs” for the implementation using individual CSAs. It is likely that an
implementation of Solution 36 will require less space than all these solutions, yet
probably it will be significantly slower than document-array-based solutions.

8These experimental results are newer than those in Navarro and Valenzuela [2012].
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11.2 Top-k Documents

The most interesting ideas of Culpepper et al. [2010] were two heuristics for top-k
document retrieval that used just the plain document array. The best was a pri-
oritized document listing that took advantage that, as we backtrack in the wavelet
tree, we can know the sums of the tf(P, d) values over all the documents d repre-
sented in each wavelet tree node (this is just the size of the interval [sp, ep] on the
node). In the traversal they gave priority to the nodes with higher ep−sp+1. They
kept in a priority queue the wavelet tree nodes about to be traversed (initially just
the root). Then they extracted the node with largest ep − sp + 1 value. If it was
a leaf, they reported the corresponding document. Otherwise they inserted both
children in the queue. Then the first k leaves extracted are the answer. Later,
Culpepper et al. [2012] showed that the idea works well at a much larger scale and
even competes, up to some degree, with inverted-index top-k based solutions, on
natural language text collections. See also the preceding work by Patil et al. [2011].

The first implementation of the succinct top-k framework of Hon et al. [2009]
was by Navarro and Valenzuela [2012]. They focused on Solution 29, yet using
a document array instead of the individual CSAs (which, as explained, did not
work well in practice). They made several optimizations, in particular replacing
the brute-force scanning of the blocks by an adaptation of the prioritized document
listing of Culpepper et al. [2010]. This traversal is stopped as soon as it delivers
documents with frequencies below the kth candidate already known.

Another optimization was to factor out the redundancies that arise because the
same node may store the top-k answers in some τk and then the top-2k answers in
τ2k. They store all the top-k precomputed solutions in τ1 (which contains the other
trees) for the maximum k where each node stores answers. The other trees store
only their topology plus pointers to τ1.

The experiments compare all these solutions, including several variants to store
the τk trees and representations of the document array (including one based on
Solution 4, where only the basic brute-force block traversal algorithm can be im-
plemented). The results show that the data structures of Hon et al. [2009] pose very
little extra space and considerably improve upon the time performance of the basic
heuristics [Culpepper et al. 2010]. They also show that the improvements make a
significant difference with brute-force scanning, even when this is implemented over
the faster sequence representation of Solution 4. The different variants of wavelet
trees, compressed or not, dominate the time/space map.

Fig. 13 (right) gives some rough numbers. Here “wavelet trees” refers to plain
wavelet trees and “compr. wtree” to compressed wavelet trees (on compressible
texts). The basic heuristics without the structures τk use almost the same space,
but require more time (in some cases very little, in others up to 10 times more). The
brute-force solution on the fast sequence implementation is called “fast sequence”.

Recently, some attempts at directly implementing the linear space solutions have
been made. Konow and Navarro [2013] implemented Solution 27, replacing the
complex optimal-time top-k algorithm on the grid by a simpler one [Navarro et al.
2013]. The fact that the suffix tree height is O(lg n) with high probability (whp) on
rather general assumptions on the text [Szpankowski 1993], yields time complexity
O(m + (k + lg lg n) lg lg n) (whp). They also improve the space by removing from
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the grid the points with term frequency 1 (this idea was also mentioned by Hon
et al. [2012a]). If the grid returns less than k answers, a normal document listing
on the document array is used to obtain further documents to complete the answer.
Their performance is shown in Fig. 13 (right) under the name “geometric”. The
space is not small, but the structure is an order of magnitude faster than the others.

Another probably practical solution, yet to be implemented [Hon et al. 2012a],
departs from the linear-space solution of Hon et al. [2009]. The results, summarized
in Solution 34, will probably translate directly into a practical result, comparable
to that of Konow and Navarro [2013].

It is illustrative to take a look at the direct implementations of other proposals
to see how drastic the above space savings are. For example, Hon et al. [2010a]
implemented a predecessor of the linear-space index of Hon et al. [2009]. While
they obtain times in the range 0.01k–0.02k msec, their index takes about 4,000
bpc (i.e., 250 times the space of the text!). Still, we can probably reduce current
spaces further, as suggested by Solutions 30 and 33, but possibly at the price of a
significantly higher time, since a CSA is much slower than a wavelet tree.

12. EXTENSIONS

We have focused on a few fundamental document retrieval problems. However,
there are more complex and challenging ones. Arguably, the most important ex-
tension are queries formed by more than one pattern string. The document listing
problem then becomes listing the documents where some of the patterns appear
(union queries), or all of the patterns appear (intersection queries) or, generalizing,
where at least t of the patterns appear (thresholded queries). The corresponding
top-k problems aim at finding the k highest weighted documents among those that
qualify, where the weight considers all the patterns appearing in the document.

Those problems are well known in the inverted index literature, where most of
the research focuses on intersections (see Barbay et al. [2009] for a recent survey).
There is a difficulty measure (i.e., a lower bound) that applies to the corresponding
problem of intersecting (inverted) lists: the number of jumps from one list to an-
other when reading the documents from all the lists in increasing order. Gagie et al.
[2013] consider the intersection problem on color arrays (and hence on document
arrays) represented as wavelet trees, and show that they can achieve a complexity
close to that lower bound. With respect to top-k algorithms on inverted indexes,
those for intersections usually carry out a boolean intersection first and then filter
the highest frequencies, so they can be extended to document retrieval using Gagie
et al.’s solution. The algorithms for top-k unions generally process the documents
in decreasing frequency order. It is not difficult to adapt the top-k document re-
trieval techniques we have covered to retrieve the results online, that is, without
knowing k a priori. This lets them simulate the sequential access to an inverted
list where the documents are listed in decreasing frequency order, and thus any
algorithm on inverted lists can be simulated on top of these iterators.

A more theoretical line of research aims at time complexities that are independent
of the inverted lists. Ferragina et al. [2003] show that the intersection problem
for two patterns of length O(m) can be solved using O(n3/2 lg n) words of space
and O(m +

√
n + docc) time. This space is impractical in most cases. It was

improved to O(n lg n) words by Cohen and Porat [2010], although the time raised
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to O(m +
√
n docc lg2.5 n). Then it was further improved [Hon et al. 2010b] to

linear space and O(m +
√
n docc lg2 n) time, by extending the succinct framework

(Solution 26) so that all pairs of marked nodes are preprocessed (thus the nodes
must be much larger now, hence the complexity). Hon et al. [2010b] also generalize
the solution to handle top-k retrieval (where docc becomes k in the time) and to
handling up to t patterns, for t fixed at indexing time. Here the time worsens to
O(mt+n1−1/tdocc1/tpolylog(n)), which quickly tends to linear time. Fischer et al.
[2012] showed that this problem is indeed much more difficult than those involving
one pattern: any solution using O(m+ docc + polylogn) time on a pointer machine
requires Ω(n(lg n/ lg lg n)3) bits of space. It is likely that the problem is actually
much harder than what the lower bound suggests.

An interesting variant of this problem is to list the documents where a pattern
does not appear. Muthukrishnan [2002] shows that this can be solved in real time
and linear space, yet his solution does not seem amenable to the space-reduction
techniques that have been developed for the simple document listing problem. How-
ever, this query is most interesting when combined with other patterns that must
appear in the documents. This was addressed by Fischer et al. [2012] and improved
to linear space by Hon et al. [2012b], who achieve O(m+

√
n lg lg n+

√
n docc lg2.5 n)

time to handle one “positive” and one “negative” pattern. This problem seems as
difficult as handling two “positive” patterns, but no lower bound is known.

Another extension that has been considered is to add further restrictions to
the documents to be retrieved, for example adding to each document a numeric
parameter (such as date, version number, etc.) and let queries specify a range of
acceptable values for this parameter. Karpinski and Nekrich [2011] and Navarro
and Nekrich [2012] consider this kind of extensions, and show they can be solved
with a slightly higher cost than the version without parameters. For example,
parameterized top-k queries can be solved in time O(m + log1+ε n + k logε n) and
linear space, for any constant ε > 0 [Navarro and Nekrich 2012].

Another dimension the current research is just starting to explore are the compu-
tation models. Most of the current work refers to static indexes and deterministic
worst-case sequential algorithms in main memory. For example, a recent work [Shah
et al. 2013] addresses the top-k problem under the external memory model. They

obtain linear space and the almost optimal I/O time O(m/B+lgB n+lg(h) n+k/B)

for any constant h (lg(h) n means taking logarithm h times), where B is the disk
block size. By using very slightly superlinear space, O(n lg∗ n) words, they reach
the optimal I/O time O(m/B + lgB n + k/B). They also show how to solve top-
k queries in main memory in O(k) time once the locus is known, which enables
other more complex queries. As another example, in a recent update to their
work, Navarro and Nekrich [2013] further improve their top-k solution to the RAM-
optimal time O(m/ lgσ n + k), and also consider the dynamic scenario where doc-
uments can be inserted and removed from the collection. They obtain query time
O(m(lg lg n)2/ lgσ n+lg n+k lg lg k), and O(lg1+ε n) time per character inserted or
deleted for any constant ε > 0, which are not far from optimal as well.



Document Retrieval on General Sequence Collections · 37

Problem Sol. Time Space

Color Listing 9 Real Data + O(n)

Color Listing with Frequencies 13 Optimal Data + O(n lg lgD)

Color Counting 20 lgn/ lg lgn n lgn+ o(n lgn)

21 lg(ep− sp+ 1) n lgD + o(n lgD) +O(n)

Top-k Heaviest Colors 23 Real O(n lgD)

22 k lg(D/k) n lgD + o(n lgD) ∗

Top-k Colors ((1+ε)-approximation) 28 k lgD lg(1/ε) O((n/ε) lgD lgn)

Table 1. Best time/space complexities achieved for range color problems. The asterisk means

that the structure contains sufficient information to reproduce any array cell in O(lgD) time.

13. CONCLUSIONS

While document retrieval on several Western natural languages can be handled
with simple inverted indexes, extending this task to other languages and scenarios
requires solving document retrieval on general sequence collections. This has proven
to be much more algorithmically challenging and has stimulated a fair amount
research in the last decade. Many of those problems can be reduced to “range
color” problems, which have many additional applications in data mining.

Table 1 gives the time/space complexities achieved for the different range color
problems we have considered in this survey. While the solutions to the variants
of color listing are rather satisfactory, those for color counting and top-k heaviest
colors have good time complexities, but their space is linear. Worse, there exist
only approximate efficient solutions to top-k colors (and this seems to be intrinsic),
which in addition require superlinear space.

Table 2 gives simplified time/space complexities for the document retrieval prob-
lems we have considered. Each category is ordered by decreasing space (consid-
ering, when they are not directly comparable, the most common case). There
are optimal-time solutions to all the problems, yet requiring linear space (except,
notably, computing document frequency). On the other hand, there are asymptot-
ically space-optimal solutions in all cases, adding just o(n) bits on top of a CSA
(except, again, document frequency, which adds O(n)). Some of those solutions
have been assembled or precised along this survey. The space-optimal solutions re-
quire, however, polylogarithmic time. There are various tradeoffs in between using
more space and less time, but it is unknown whether they are optimal.

On the practical side, all the successful implemented solutions use the document
array represented with wavelet trees. For document listing with frequencies, these
solutions require about 3 times the size of the collection, and replace it. The most
space-efficient solutions may reach, on compressible collections, as little as 12 bpc,
and take a few tens of msec to run a query. The more space-demanding solutions
(and all the solutions on incompressible collections) take as much as 26 bpc and
solve the queries in a few msec. For top-k queries the most compressed solutions
use about k msec, whereas the most space-demanding ones take k–4k microseconds.

In general, the current solutions give satisfactory time performance, but their
space requirements are still too high. This is in sharp contrast with the pattern
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Problem Sol. Time (+tsearch(m)) Space (+|CSA|)

Document Listing 10 1 n lgD

12 lg1+ε n o(n)

Document Listing with Frequencies 15 1 n lgD

16 lg1+ε n |CSA|+O(n)

17 lg1+ε n O(n lg lg lgD)

36 lg docc lg1+ε n o(n)

Document Frequency 19 1 O(n)

Top-k Most Important Documents 24 1 O(n lgD)

25 lg(D/k) n lgD

31 lg k lg1+ε n o(n)

Top-k Documents 27 1 O(n lgD + n lg σ)

35 lg∗ k n lgD + o(n lg σ)

32 lg k lg1+ε n |CSA|+ o(n)

33 lg2 k lg1+ε n o(n)

Table 2. Best time/space complexities achieved for document retrieval problems. We assume to
simplify that tSA = lg1+ε n for some constant ε > 0, and that D = o(n). Times are in addition

to tsearch(m) (this is just m for Solution 27) and per element output. We write space n lgD for
n lgD + o(n lgD).

matching problem, which the CSAs solve efficiently in optimal space (i.e., the en-
tropy of the collection) and in addition replace the collection [Navarro and Mäkinen
2007; Ferragina et al. 2009]. We believe that the recent optimal-space solutions
should be the basis of the next generation of practical document retrieval indexes.
Still, their theoretical time complexities suggest that a good deal of algorithm en-
gineering will be necessary to render their times acceptable.

To conclude, an interesting question is whether these more general data structures
will ever be able to compete with inverted indexes in the very same niche the latter
have been designed for. While we do not expect inverted indexes to be overthrown
in typical natural language queries, we do believe the suffix-array-based solutions for
general sequences will prove more efficient in handling more sophisticated queries,
where the simple bag-of-words model is insufficient. This includes features that are
becoming standard in search engines, such as phrase patterns [Patil et al. 2011;
Fariña et al. 2012; Culpepper et al. 2012], approximate pattern matching [Navarro
et al. 2001; Celikik and Bast 2009], and autocompletion queries [Bast et al. 2008;
Hsu and Ottaviano 2013], to name a few. The given references show either that
suffix-array-based solutions are superior to inverted indexes, or that the latter have
to be significantly extended to cope with those types of queries.
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APPENDIX

A. RANGE MINIMUM QUERIES AND LOWEST COMMON ANCESTORS

The RMQ problem has a fascinating history, intimately related to the LCA problem.
Harel and Tarjan [1984] showed that the LCA problem could be solved in constant
time after a linear-time preprocessing, but their algorithm was quite complicated.
Schieber and Vishkin [1988] managed to somehow simplify the algorithm while
retaining its optimality. Berkman and Vishkin [1993] showed that, if one traverses
the tree in preorder and writes down the depths of the touched nodes in an array,
then the LCA problem on the tree becomes an RMQ problem on the array of depths
(one also needs a pointer from each tree node to its first occurrence in the array).
This RMQ problem is particular because consecutive array entries differ by ±1, and
this was exploited by Berkman and Vishkin to solve it. Gabow et al. [1984] showed
that, in turn, a general RMQ problem could be converted into an LCA problem,
by considering the Cartesian tree [Vuillemin 1980] of the array (Definition 3). The
observation Gabow et al. made is that rmqL(sp, ep) corresponds to the LCA of the
nodes corresponding to array positions i and j of the Cartesian tree of L.

Finally, Bender and Farach-Colton [2000] simplified the methods up to a point
that the solution was considered to be practical: To solve the general RMQ problem,
one builds the Cartesian tree and solves the LCA problem on it instead. To solve
that LCA problem, one traverses the tree and converts it into a restricted RMQ
(±1) problem. To solve that problem, one precomputes solutions to all intervals
whose length is a power of 2, rmqL(i, i + 2` − 1), so that any interval L[sp, ep] is
covered by two such (overlapping) intervals, [sp, sp + 2` − 1] and [ep − 2` + 1, ep],
for ` = blg(ep − sp + 1)c. To avoid using O(n lg n) words of space with all those
precomputed intervals, one precomputes only the intervals starting at multiples of
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1
2 lg n. Queries then cover a number of whole intervals plus two partial ones at the
tails. For the part covered by whole intervals we have two candidates to be the
answer, as explained. For the tails, since this is a restricted (±1) RMQ problem,

there are only 2
1
2 lgn =

√
n possible distinct intervals, and thus a precomputed

table of sublinear size can answer RMQ queries on all the possible ranges within
any possible interval. We then compare the (up to) 4 candidate cells in L and
return the minimum. This explains Solution 5.

A new twist to the problem was given by Fischer and Heun [2011], who aimed
at solving the RMQ problem without accessing the array L. They showed that it is
sufficient to store 2n+ o(n) bits in order to answer RMQ queries in constant time.
The idea is to start with the Cartesian tree and convert it into a general tree by
the well-known isomorphism: We create a special root for the general tree, and the
nodes in the leftmost branch of the binary tree are the children of the root. Their
right subtrees are recursively converted into general trees. It can then be proved
that rmqL(i, j) is obtained by first computing the LCA of the ith and jth nodes
(in preorder) of this general tree, and then taking the child of this node in the path
to node j. Various compact tree representations can carry out those operations in
O(1) time and using 2n+ o(n) bits (e.g., that of Sadakane and Navarro [2010]).

Note we must solve the LCA problem on those compact tree representations. It
is particularly convenient that the representation resorts to balanced parentheses:
one traverses the tree in preorder, opens a parenthesis when arriving at a node and
closes it when leaving the node. Since the tree depth increases by 1 when opening
a parenthesis and decreases by 1 when closing it, the LCA problem on the tree
becomes naturally a restricted (±1) RMQ operation on the very same 2n bits of
the parenthesis representation. Thus we can solve it by adding o(n) bits on top
of the 2n bits of the parentheses representation (i.e., the array of ±1 values), as
explained. Note that we have not accessed L at all, and this explains Solution 6.

Furthermore, by noting that each Cartesian tree yields different RMQ answers for
some query, and that there are about 4n/n3/2 different binary trees on n nodes, one
can see that lg(4n/n3/2) = 2n − O(lg n) bits are necessary to distinguish between
all the possible arrays L. Thus Solution 6 is asymptotically optimal.

B. PROOF OF CORRECTNESS OF SADAKANE’S ALGORITHM

While Muthukrishnan [2002] gives a detailed proof of the correctness of his algo-
rithm, the variant of Sadakane [2007] is not clearly proved correct. As this is a
nonobvious issue, here we prove Sadakane’s algorithm correct. More precisely, we
prove it is correct when it visits the left subtree first.

Both Muthukrishnan’s and Sadakane’s algorithms are described in detail Sec-
tion 4. It is useful to realize that both algorithms reconstruct the top part of the
Cartesian tree of L[sp, ep]. Muthukrishnan’s is known to reconstruct precisely the
nodes p where L[p] < sp (by the definition of L, these are the leftmost occurrences
of each document), and we prove now that Sadakane’s algorithm does the same.
Let us call CT the part of the Cartesian tree reconstructed by the algorithms.

We assume Muthukrishnan’s algorithm also visits the left subtree first (although
in its case this does not make a difference), and prove by induction that both
algorithms process the same intervals [i, j], in the same order, and perform the
same action. Both start with [sp, ep], compute the position p = rmqL(sp, ep),
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and split the interval at p, because there must be some value smaller than sp in
[sp, ep], and thus L[p] < sp (Muthukrishnan’s algorithm), and because bitmap V is
all zeroed in the beginning (Sadakane’s algorithm).

Now consider a general interval [i, j], where by inductive hypothesis both algo-
rithms have performed exactly the same steps until now. Both algorithms will
compute p = rmqL(i, j). Now there are two cases:

—L[p] < sp. Then Muthukrishnan’s algorithm will report document C[p], which
means it is the first time it sees this document. By the inductive hypothesis,
Sadakane’s algorithm has visited the same documents until now, thus it is also the
first time it sees document C[p]. Hence it holds V [C[p]] = 0, and the algorithm
also reports C[p]. Then both split the interval at p and continue processing it.

—L[p] ≥ sp. This means that the first occurrence of C[p] in [sp, ep] is to the left of
p. Moreover, it is to the left of i (otherwise the rmq operation would have given
that position instead of p). Since Muthukrishnan’s algorithm finds the leftmost
occurrence of each document in the interval, and we assume it reconstructs CT
in left-to-right preorder, any node to the left of i must have already been recon-
structed, because it will not be visited later. Then, Muthukrishnan’s algorithm
has already output C[p] and, by the inductive hypothesis, Sadakane’s algorithm
has already output C[p] as well. Thus V [C[p]] = 1, and then both algorithms
terminate the recursion in this node.

This completes the proof. The following example shows that indeed an error can
occur if we process the recursive calls in the wrong order.

Example. In Fig. 4, consider color listing in the interval C[5, 11], where the four
colors appear. Run Sadakane’s algorithm going left first and verify that it behaves
exactly as Muthukrishnan’s algorithm. Now consider processing the right interval
first. We start with p = rmqL(5, 11) = 8, report C[8] = 1 and set V [1] ← 1.
Now we go right and process C[9, 11]. Here we find p = rmqL(9, 11) = 9, report
C[9] = 3 and set V [3]← 1. Then we process C[10, 11], find p = rmqL(10, 11) = 10,
and since C[10] = 2 and V [2] = 0, we report color 2 and set V [2] ← 1 (note that
Muthukrishnan’s algorithm would not have reported color 2 here because L[p] ≥ sp).
Finally it processes C[11, 11], where color C[11] = 1 is not reported because V [1] is
already 1. Now we finally go to the left child of the initial recursive call, interval
C[5, 7]. Here we compute p = rmqL(5, 7) = 5, and since C[5] = 2 and V [2] = 1,
the recursion terminates without having reported color C[7] = 4.

C. CONSTANT-TIME ARRAY INITIALIZATION IN LINEAR-BIT SPACE

The classical solution to this problem uses linear space, that is, O(D lgD) extra
bits on top of the array (see Ex. 2.12, page 71 in Aho et al. [1974], or a complete
description by Mehlhorn [1984], Sec. III.8.1). We show here how to implement the
solution using only O(D) bits. To be precise, we are interested in implementing the
following data structure.

Definition 10 (Initializable Array) An initializable array is a data structure
V [1, D] that supports the operations init(V,D, v), read(V, i) and write(V, i, v). The
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Fig. 14. On the left, the classical scheme, tripling the space. On the right, our compact solution

using 3n extra bits.

first operation initializes V [i] ← v for all 1 ≤ i ≤ D; the second obtains V [i] and
the third sets V [i]← v.

The classical technique is as follows. We use a second array U [1, D] and a stack
S[1, D], both storing indices in [1..D]. An additional variable 0 ≤ t ≤ D tells the
current size of S, and variable I stores the initialization value.

Initialization of the whole structure, init(V,D, v), consists of setting t ← 0 and
I ← v. The invariant maintained by the structures is as follows:

V [i] is initialized ⇐⇒ (1 ≤ U [i] ≤ t ∧ S[U [i]] = i) ,

which is immediately correct once we set t = 0. The idea is to distinguish initialized
entries V [i] because U [i] = j and there is a back pointer S[j] = i. Let us take an
uninitialized entry V [i]. Value U [i] is not initialized either. If U [i] < 1 or U [i] > t,
we know for sure that V [i] is not initialized. Yet it could be that 1 ≤ U [i] ≤ t. But
then it is not possible that S[U [i]] = i because entry U [i] in S has been used to
initialize another entry V [i′] and then S[U [i]] = i′ 6= i. Operation read(V, i) is as
follows. If V [i] is initialized, then it returns V [i], otherwise it returns I. Operation
write(V, i, v) is as follows. If V [i] is not initialized, it first sets t← t+ 1, U [i]← t,
and S[t]← i. After the possible initialization, it sets V [i]← v. It is interesting that
one can even uninitialize V [i], by setting S[U [i]]← S[t], U [S[t]]← U [i], t← t− 1.
Fig. 14 (left) illustrates the basic technique.

To reduce space we use, instead of array U and stack S, a bit vector B[1, D]
so that B[i] = 1 iff V [i] has been initialized. This way we require only D bits in
addition to V . Of course the problem translates into initializing B[i]← 0 for all i.
We now take advantage of RAM model of computation, with word size w ≥ lgD.

As B is stored as a contiguous sequence of bits, let us interpret this sequence
as an array B′[1, D′] of D′ = dD/we entries, each entry holding a computer word
of w bits of B. We can apply now the classical solution to B′, so that B′ can
be initialized in constant time (at value B′[i] = 0). The extra space on top of
B′ is 2D′ lgD′ ≤ 2D bits. Together with B′, the space overhead of the solution
is 3D bits. Now, in order to determine whether V [i] is initialized, we just check
B[i]: We compute q = bi/wc and r = i mod w and check the bit number r + 1 of
B′[q + 1]. If B′[q + 1] is not yet initialized, we know B[i] = 0 and thus V [i] is not
yet initialized. To initialize V [i] we set the (r + 1)-th bit of B′[q + 1], previously
initializing B′[q + 1]← 0 if needed. Fig. 14 (right) illustrates our solution.

We note that this idea can be carried out further one more level to achieve
D + o(D) extra bits of space, instead of 3D.
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D. PROOF OF CORRECTNESS OF HON ET AL.’S ALGORITHM

We prove that the document listing using o(n) additional bits of Hon et al. [2009]
is correct if we first process the left subinterval, then the block where the minimum
lies, and then the right subinterval. Moreover, we show that we obtain at least one
new document to list per block scanned.9 The need to process the recursion in this
order is not clear at all in the original paper [Hon et al. 2009].

We show by induction on the size of the current subinterval L[i, j] that, if we start
the procedure with the elements that already appear in C[sp, i − 1] marked, then
we find and mark the leftmost occurrence of each distinct symbol not yet marked,
spotting at least one new element per block scanned.

This is trivial for the empty interval. Now consider the minimum position in
L′[k′], which contains the leftmost occurrence of some element C[k], for some k
within the block of L′[k′]. If C[k] is already marked, it means it appears in C[sp, i−
1], and thus it holds L[k] ≥ sp, and the same holds for all the values in L[i, j]. Thus
if all the elements in the block of L′[k′] are marked, we can safely stop the procedure.

Otherwise, before doing any marking, we recursively process the interval to the
left of block k′, which by inductive hypothesis marks the unique elements in that
interval. Now we process the current block, finding at least the new occurrence
of element C[k] (which cannot appear to the left of k′). Once we mark the new
elements of the current block, we process the interval to the right of k′, where the
inductive hypothesis again holds.

The following is an example where an incorrect result is obtained if one processes
the block before the left branch of the recursion.

Example. Consider the color array C = 〈2, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1〉, its predeces-
sor array L = 〈0, 0, 2, 3, 1, 5, 6, 7, 8, 0, 10, 11〉, and grouping factor b = 2. Thus, we
have L′ = 〈0, 2, 1, 6, 0, 10〉. If the query is for the interval [3, 12], it is mapped to
[2, 6] in L′. The minimum is in L′[5] = 0, which makes the algorithm mark colors
C[9] = 2 and C[10] = 1, setting V [1] ← 1 and V [2] ← 1. Now we go left and con-
sider subinterval L′[2, 4], with the minimum in L′[3] = 1. The corresponding colors
are C[5] = 2 and C[6] = 2. But since V [2] = 1, both cells are already reported and
the algorithm finishes in this branch of the recursion, missing color C[3] = C[4] = 3.

E. COMPACT DYNAMIC DICTIONARIES IN CONSTANT WORST-CASE TIME

We describe a dynamic structure that stores r distinct keys over a universe [1..D],
with t-bit satellite data, using O(rt) + o(r lgD + D) bits. The structure supports
searches and updates in constant worst-case time. This is folklore but a clear
explanation is not easy to find, to the best of our knowledge.

We split the universe of keys [1..D] into buckets of size b = lg2D. To each bucket
we associate a pointer to a data structure managing the keys that fall in that bucket
(this can be initialized in constant time, see Appendix C). Given a key we find its
bucket in constant time with a simple division.

9This is a joint result with Djamal Belazzougui and will be published elsewhere. We include it
here for completeness.
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The structure that handles each bucket is a B-tree with arity a =
√

lgD. Since
the local universe of the bucket is of size b, the height of the B-tree is h = O(lga b) =
O(1). Furthermore, the keys inside the bucket require only O(lg lgD) bits, therefore
all the keys in an internal B-tree node fit in O(a lg lgD) = o(lgD) bits, and thus
we can find the subtree containing a key in O(1) time using a precomputed table of
O(2o(lgD)b lg b) = o(D) bits. Thus the B-tree searches require constant time O(h).

Each B-tree is in its own memory area, which can contain up to O(b) nodes, so
the tree pointers require only O(lg lgD) bits. Hence the a pointers to the children
can also be updated in constant time in the RAM model. Insertions and deletions
of keys can, therefore, be carried out in constant worst-case time. Since each key
may induce the creation of O(h) nodes and also stores its satellite data, the total
number of bits stored in B-tree nodes is rt+O(ra lg lgD) = r(t+ o(lgD)).

The O(D/b) memory areas for the B-trees, adding up to r(t+ o(lgD)) bits, are
stored in “extendible arrays” [Raman and Rao 2003]. These pose an overhead of
O(rt) + o(r lgD) + O((D/b) lgD) bits and handle the accesses and grow/shrink
operations on the memory areas in constant worst-case time. Since (D/b) lgD =
o(D), we have the promised total space of O(rt) + o(r lgD+D) bits, and constant
worst-case time for all the operations. In addition, we can maintain a linked list of
the nonempty buckets to allow for O(r)-time traversal of the set.

Note that it is easy to carry out predecessor searches in the B-trees. By adding
the structure of van Emde Boas et al. [1977] on the buckets, we retain the same
asymptotic space and support predecessor searches and updates in time O(lg lgD).

F. COMPUTING A TERM FREQUENCY IN COMPRESSED SPACE

Sadakane [2007] maintains, in addition to the global CSA, a CSA for the local
suffix array Ad of each document Td. Since the pointers of Ad are interspersed in
A in the same order, we can do the following to map a global entry A[i] to the
corresponding local entry Ad[j] in its document d. First, compute the global text
position p = A[i]. Then find the corresponding document d = 1 + rank1(B, p − 1)
and its starting position in T , s = 1+select(B, d−1). Finally, use the inverse suffix
array to map the local offset p−s+1 into the local suffix array of d, j = A−1d [p−s+1].
This is done in time tSA with the CSAs of A and Ad.

Example. Let us map A[10] to its local suffix array. Fig. 15 illustrates the nec-
essary components. We compute p = A[10] = 6 using the global CSA. Now we
compute the corresponding document, d = 1 + rank1(B, 6− 1) = 2, its starting posi-
tion s = 1 + select(B, 2− 1) = 5, and the local offset p− s+ 1 = 2. Now we obtain
A−12 [2] = 4 with the local CSA of document 2. Certainly, A2[4] = 2 points to the
local suffix ”ma la $”, which is the same global suffix A[10] = 6.

Now imagine we know the first and last occurrence positions of a document d in
C[sp, ep], say i and i′, as explained in Section 6. We use the above procedure to
map them to positions j and j′ in Ad. Those are clearly the first and last suffixes
of Ad that start with P , and therefore tf(P, d) = j′− j+ 1. Since for all reasonable
CSAs it holds

∑
d |CSAd| ≤ |CSA|, we have Solution 16.

Hon et al. [2009] show how the same tf(P, d) can be computed, in time O(tSA lg n),
if we know only the leftmost position i or the rightmost position i′ of the document
in the range. Say it is the position i. We map this position to Ad[j], and carry
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Fig. 15. The structures for mapping global to local CSA positions.
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Fig. 16. The wavelet tree of array C in our running example. Grayed data is not represented.

out an exponential search for the largest position j′ ≥ j such that Ad[j
′] is mapped

back to some A[i′] with i′ ≤ ep. When we find such j′, we have tf(P, d) = j′− j+ 1
(we also discover i′ in the process). This mapping from Ad[j

′] to A[i′] is the inverse
of the one we described from A[i] to Ad[j], and it is computed analogously.

G. DOCUMENT LISTING USING WAVELET TREES

We start with an example of the wavelet tree structure and then show how we use
it for document listing.

Example. Fig. 16 displays the wavelet tree for our array C. Since we have D = 4
symbols, the wavelet tree has 2 bitmap levels (plus the leaves, which are virtual and
not stored). Each node shows its Cv sequence (which is not stored) in gray and its
Bv bitmap (which is stored) in black. Each level stores n bits. To recover C[9] we
start at the root node v and read Bv[9] = 1. Thus we go to the right child u of v,
where the original position 9 becomes rank1(Bv, 9) = 4 in Cu. Now Bu[4] = 0, so
we go to the left child of u and reach the leaf of symbol 3, thus C[9] = 3.

Gagie et al. [2009] showed that the wavelet tree of C allows for a completely
different document listing algorithm, based on the following basic problem (also
known as range selection queries).

Problem 15 (Range Quantile) Preprocess an array C[1, n] of integers so that,
given a range [sp, ep] and an index q, we can return the qth smallest element in
C[sp, ep].
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Gagie et al. solved this problem over a wavelet tree representation of C as follows.
We start at the root v with interval [sp, ep]. We count the number of 0s in Bv[sp, ep],
with z = rank0(Bv, ep)− rank0(Bv, sp− 1). Now, if q ≤ z, then the answer belongs
to the integers handled by the left child of the root, thus we remap the interval to
sp′ = rank0(Bv, sp− 1) + 1 and ep′ = rank0(Bv, ep) and continue recursively on the
left child of the root. Otherwise, we remap the interval to sp′ = rank1(Bv, sp−1)+1
and ep′ = rank1(Bv, ep) and continue recursively on the right child of the root, this
time looking for q−z instead of q. When we arrive at a leaf, this is the qth smallest
value in C[sp, ep]. The process takes O(lgD) time. Observe that the final ep−sp+1
value is the frequency of the qth element in the array.

Example. We obtain the median of C[5, 11], that is, q = 4. At the root node v we
count the number of 0s in Bv[5, 11] using rank0(Bv, 11)−rank0(Bv, 5−1) = 5. Since
5 ≥ 4 = q, the qth element of C[5, 11] is on the left child u of v. Thus we descend to
u, mapping the interval [5, 11] to [rank0(Bv, 5− 1) + 1, rank0(Bv, 11)] = [3, 7]. Now
we count the number of 0s in Bu[3, 7] using rank0(Bu, 7) − rank0(Bu, 3 − 1) = 2.
Since 2 < 4 = q, the qth element of Cu[3, 7] is on the right child w of u. Now we
remap the interval [3, 7] to [rank1(Bu, 3 − 1) + 1, rank1(Bu, 7)] = [2, 4], and since
we move to the right, we set q ← q − 2 = 2. Now we arrive at w and, since it
corresponds to the leaf of symbol 2, we conclude that the median of C[5, 11] is 2.
Moreover, it occurs 4− 2 + 1 = 3 times in C[5, 11].

It is possible to solve the range quantile problem in time O(lg n/ lg lg n) using
O(n lg n) bits (assuming D = O(n)) [Brodal et al. 2011], and this is optimal within
O(n polylog(n)) space [Jørgensen and Larsen 2011]. In this survey we are more
interested in solutions using sublinear extra space, thus we state the wavelet tree
result. It is an open problem to obtain optimal time within sublinear extra space.

Solution 37 (Range Quantile) [Gagie et al. 2009] The problem can be solved in
O(lgD) time on a representation of C that uses n lgD + o(n lgD) bits of space.

Gagie et al. use range quantile queries to solve document listing as follows. They
first ask for the q = 1st quantile of C[sp, ep], thus obtaining the smallest document
in the range, d, and its frequency, tf(P, d). Then they report d and set q ←
q + tf(P, d). Now they ask for the qth element in C[sp, ep], which gives the second
smallest document in the range with its frequency, and so on, until all the documents
are reported. Note they do not resort to Muthukrishnan’s technique, nor they need
RMQs. Moreover, they return the documents in increasing order.

While their complexity is not competitive with our previous solutions, a simpli-
fication of their method improves it [Gagie et al. 2012]. Instead of quantile queries,
just traverse all the wavelet tree paths from the root, towards left and right children,
stopping either when the interval [sp, ep] becomes empty, or when we arrive at a
leaf handling an integer d, where we report document d with tf(P, d) = ep− sp+ 1.

Example. Let us list the different values in C[12, 15] using range quantile queries.
We ask for the q = 1st element and get that it is 3, which appears 2 times. Thus
we set q ← q + 2 = 3 and ask for the q = 3rd element, getting 4, which occurs 2
times. Thus we set q ← q + 2 = 5, which is larger than our interval, so we finish.
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Let us now proceed by a recursive traversal. We map the interval C[12, 15] to the
left child of the root, obtaining [8, 7], which is empty, so there are no elements to
report in this subtree. On the right child of the root, the interval is mapped to [5, 8].
Now we map to its left child, obtaining [3, 4] at the leaf of symbol 3, so we report 3
with frequency 4− 3 + 1 = 2. Now we go to the right child, mapping [5, 8] to [3, 4].
Now we arrive at the leaf of symbol 4, which we also report with frequency 2.

It is shown that the time per item output of the recursive traversal improves as
more documents are listed. This results in Solution 18.

H. COMPUTING DOCUMENT FREQUENCY IN COMPRESSED SPACE

The idea is as follows [Hui 1992]. For a node v of the suffix tree, let tf(v, d) =
tf(str(v), d) for short. Thus, if v is the locus of pattern P , it holds tf(P, d) =
tf(v, d). Now let us define u(v) =

∑
d,tf(v,d)>0 tf(v, d) − 1. It is not hard to see

that occ(P, T ) =
∑
d,tf(P,d)>0 tf(P, d) = df(P ) + u(v). Thus we can easily compute

df(P ) = occ(P, T )− u(v) in a suffix tree where u(v) is computed for all the nodes.
Sadakane [2007] shows how to store this information compactly as follows. Value

u(v) is also the number of times the LCA of two consecutive leaves of Td de-
scend from v in the GST, for any d. Thus, if we define h(w) as the number
of times the LCA of two such consecutive leaves is exactly w, it holds u(v) =∑
w descends from v h(w). By storing the h(w) values in preorder, we can compute

u(v) by adding up all the h(w) values in a contiguous range. Furthermore, one
can see that each pair of consecutive leaves of the same document adds 1 to some
h(w) value, and thus

∑
w h(w) = n −D < n. This allows us to store all the h(w)

values in unary, that is, concatenating 1h(w)0 to a bitmap H[1, 2n], so that if p
is the preorder of node v and s is the number of nodes in its subtree, we have
u(v) = select0(H, p + s − 1) − select0(H, p − 1) − s. The suffix tree topology can
also be represented with O(n) bits so that the required operations on the suffix
tree, including finding the node v that covers the suffix array interval [sp, ep], can
be carried out in constant time [Sadakane and Navarro 2010]. On top of any CSA,
this yields Solution 19.

Example. Fig. 17 illustrates the data structure on our example GST. We show u
and h besides each internal node, and the bitmap representation H on the bottom.
For example, ”ma”, with locus v, occurs in df(”ma”) = occ(”ma”, T ) − u(v) =
4− 1 = 3 distinct documents, where occ(”ma”, T ) is the number of leaves below v.

I. OPTIMAL-SPACE SOLUTION TO DOCUMENT LISTING WITH FREQUENCIES

In this section we build on the solutions of Section 10 to achieve document listing
with frequencies within optimal space, obtaining Solution 36.

Very roughly, the idea is to use Solution 29, and more precisely the refinement
of Solution 33, and ask for the top-k documents in the range, for successive powers
of 2 for k until all the documents in the range are returned with their frequencies.

Let ck be the block size for tree ρk, for k = 1, 2, 4, . . . , D. After determining
[sp, ep] in O(tsearch(m)) time, we obtain the corresponding locus of P in the suc-
cessive trees ρk, each in constant time using an LCA operation, as explained, on
the maximum ck-aligned range [sp′′, ep′′] contained in [sp, ep]. We continue until
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Fig. 17. The data structure to compute document frequencies (onlyH and the suffix tree topology
are represented) on our running example GST.

the locus for some ρk stores less than k candidates, which means that there are
less than k distinct documents in the range, or when reaching k = D. For that k,
the top-k candidate list includes all the distinct documents in [sp′, ep′], with their
frequencies. Moreover, since the locus in tree ρk/2 still had k/2 distinct elements
in its [sp′, ep′] range, it holds k/2 ≤ docc, and thus k = O(docc).

To complete this precomputed set (which is actually computed on the fly with the
help of τk and the sampled document array), we must traverse the O(ck) elements
of A that are in [sp, ep] \ [sp′, ep′] and add them to the result. In those leaves we
will find (i) elements that already appear in [sp′, ep′], and thus their frequency has
been obtained from the top-k candidate list, and (ii) new elements that do not
appear in [sp′, ep′]. This means that we do not need to store the frequencies of
the O(

√
ck) candidates of Tsur [2013], but just the O(k lg lg n) bits to correct the

frequency information of the top-k list. Documents found in [sp, ep] \ [sp′, ep′] and
not in the top-k list are known to have frequency zero in [sp′, ep′].

To manage the set of candidates, insert the new elements that appear, increase
the counters of the elements visited, and finally collect them all for listing, we store
the document identifiers in a dictionary, which offers constant worst-case time for
the operations (see Appendix E).

The time is related to the block size ck = k `k. Since tree ρk has O(n/ck) nodes,
the sum of the space for the lists stored in it is O((n/ck)k lg lg n) = O((n/`k) lg lg n).
Choosing `k = lg k lgε n, the space for ρk is O(n lg lg n/(lg k lgε n)) bits. Added

over all the trees ρk for k = 2i, this gives total space O(n lg lg n/ lgε n)
∑lgD
i=0 1/i =

O(n lg lg n lg lgD/ lgε n) = o(n) bits.


