
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

A STUDY ON REPETITIVENESS MEASURES FOR STRINGS

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN COMPUTACIÓN

CRISTIAN URBINA

PROFESOR GUÍA:
GONZALO NAVARRO

MIEMBROS DE LA COMISIÓN:
HIDEO BANNAI

CRISTIÁN RIVEROS
MATÍAS TORO

Este trabajo ha sido parcialmente financiado por ANID-Subdirección de Capital
Humano/Doctorado Nacional/2021-21210580, Fondos Basales FB0001 y AFB240001,

Proyecto Fondecyt 1-230755, y Beca NIC Chile.

SANTIAGO DE CHILE
2025

Resumen

En áreas como la Bioinformática, muchas veces es necesario manejar colecciones de datos
altamente repetitivos. Por ejemplo, dos genomas humanos comparten cerca del 99.9% de su
contenido. Existe la necesidad, tanto para la ciencia como para la industria, de mantener estas
enormes colecciones de texto en forma comprimida. Compresores tradicionales basados en
la entroṕıa de Shannon no son adecuados cuando los datos son repetitivos, pues únicamente
explotan las frecuencias de los śımbolos. Por esta razón, encontrar medidas de repetitividad
y también compresores que la exploten se ha vuelto un problema de investigación relevante.

En esta tesis estudiamos distintas medidas de repetitividad desde un punto de vista
matemático y algoŕıtmico: sus propiedades combinatoriales, sus limitaciones, eficiencia de
compresores relacionados, y también sus relaciones con otras medidas de repetitividad.

Comenzamos estudiando propiedades del número de corridas de un mismo śımbolo en
la transformada de Burrows-Wheeler de un texto. Analizamos cuánto puede cambiar esta
medida al insertar, eliminar, o sustituir un solo śımbolo. También mostramos resultados
similares para la operación más compleja de aplicar un morfismo sobre un texto. Estos
resultados son relevantes, pues en ciertos contextos los datos pueden cambiar en el tiempo.

También exploramos otras formas de explotar la repetitividad en textos. Primero, presen-
tamos una manera de utilizar los llamados sistemas de Lindenmayer (L-systems), los cuales
se basan en morfismos, como representaciones comprimidas, y estudiamos propiedades de
su medida asociada. Más aún, combinamos los L-systems con técnicas mejor establecidas
de copy-paste, dando como resultado los NU-systems, los cuales mostramos que son más
poderosos que otros compresores que explotan solo mecanismos de copy-paste.

Aunque el tamaño de los L-systems y NU-systems puede ser mucho menor que δ —
una cota inferior estable para la repetitividad— en escenarios relevantes, la tarea de proveer
acceso directo para ellos en tiempo polilogaŕıtmico ha sido elusiva. Por esto, introducimos una
extensión de las gramáticas libres de contexto (GLC), llamada iterated straight-line programs
(ISLPs), las cuales pueden ser más pequeñas que δ y a la vez proveer acceso directo eficiente.
También presentamos un método de balanceo para generalizaciones de GLCs, para simplificar
la tarea de brindar acceso directo a posibles extensiones futuras de GLCs.

Nuestra última contribución consiste en extender las medidas de repetitividad para textos
regulares a textos bidimensionales. Existen muchos tipos de datos en dos dimensiones, como
matrices, grafos y coordenadas, entre otros. Estos tipos de datos son abundantes en áreas de
la ciencia como la Astronomı́a, y también pueden ser de naturaleza altamente repetitiva.

i

ii

Abstract

In areas like Bioinformatics, it is often necessary to handle big collections of highly repetitive
data. For example, two human genomes share 99.9% of their content. There is a need in
science and industry to maintain those huge string collections in compressed form. Traditional
compressors based exclusively on Shannon’s entropy are not suitable for repetitive data, as
they only exploit bias in symbol frequencies. Finding good measures of repetitiveness and
also compressors exploiting this repetitiveness has then become a relevant research problem.

In this thesis, we study repetitiveness measures from a mathematical and algorithmic
point of view: their combinatorial properties, their limits, the efficiency of the related com-
pressors, and their relationships with other repetitiveness measures.

We start by studying combinatorial properties of the number of equal-letter runs of the
Burrows-Wheeler transform of the text. We show how much this measure can change after
performing an insertion, deletion, or substitution of a single symbol. We exhibit similar
results for the more complex operation of string morphism application. These results are
relevant because in several contexts data can change over time.

We also explore alternative ways to exploit repetitiveness on strings. We find a way to use
so-called Lindenmayer systems (L-systems), which build on string morphisms, as compressed
representations of strings, and study the properties of its associated repetitiveness measure.
Further, we combine L-systems with more established copy-paste techniques yielding the NU-
systems, which we show to be considerably more powerful in terms of space than all the other
state of the art compressors exploiting only copy-paste mechanisms.

While the size of L-systems and NU-systems can be much smaller than the measure δ —
which is considered to be stable lower-bound for repetitiveness— in some relevant scenarios,
the task of providing direct access on them in polylogarithmic time has been elusive. We
introduce then an extension of context-free grammars (CFGs), called iterated straight-line
programs (ISLPs), which can also be smaller than δ and support efficient direct access.
We also provide a method for balancing some general extensions of CFGs, with the aim of
simplifying the task of providing direct access on them, if another relevant extension were
devised in the future.

Our final contribution is extending repetitiveness measures from regular strings to two-
dimensional strings. There exist many types of data that are two-dimensional, like matrices,
graphs, coordinates, and so on. These types of data are abundant in fields like Astronomy,
and can also be very repetitive in nature.

iii

iv

Thank you for reading.

v

vi

Acknowledgments

My Ph. D. journey is finally coming to its end. Overall, I have enjoyed the trip, and want
to thank all the people that has made this experience an enjoyable one.

I start by thanking the people that motivated me to pursue a Ph. D. in the first place.
I thank my friends Mara Malewski and Francisco Olivares for their valuable, long lasting
and symbiotic friendship. I thank professors Pablo Pérez-Lantero, Rodrigo Abarzúa, Rosa
Barrera, Alexis Rojas, and Mónica Soto, for encouraging me to pursue a postgraduate degree.

I thank my supervisor Gonzalo Navarro for his unconditional support during all these
years. He gave me a lot of freedom to work, and I always felt trusted, which I really appreciate.
He was always up for discussion; gave me a lot of feedback on my work; and helped me with
whatever I needed. I hope we might keep working together in the future.

I am also grateful to the people from the Department of Computer Science (DCC) of the
University of Chile: Sandra Gáez, Angélica Aguirre, Paz Zañartu, and many others. They
helped me a lot when I needed it, and answered all my questions about the Ph.D. program.

I thank professors Marinella Sciortino and Gabriele Fici, for hosting me at the University
of Palermo, not once, but two times. They gave me the opportunity to work in some really
interesting topics. I also thank my friend Giuseppe Romana, who I met there at University
of Palermo. All of them were very kind and supportive. I think we work very well together.

I also thank the nice people and friends I met by attending conferences: Luca Parmigiani,
Zsuzsanna Lipták, Cecilia Hernández, Fernanda Sanchirico, Ariel Cáceres, Albani Olivieri,
Alejandro Pacheco, Diego Ortego, Josefa Robert, Lorenzo Carfagna, and many others.

I must give a special mention to my family: my parents Veronica and Cristian, my siblings
Fabian and Noelia; my dogs Ada, Fox, and Choquita; and my mother’s cats Horacio, Julieta,
Horacia and Fea. There are also my friends from my hometown: Gonzalo, Javier, Victor,
Lucas, Bryan, Maŕıa José, Pamela, and others. They bring some fun to my life.

During my second stay at Palermo, I met a lot of people that changed my perspective on
many topics. I thank Richard, Mart́ın, Chloé, Andy, Yulyana, Ali, Jasmine, Axel, Dhruv,
Shahed, Benny, and many others for their valuable friendship and insights on life. I owe a
special thank to my friends Diletta and Jayne for always being there when I needed them.

Finally, I thank Éric Tanter, Mat́ıas Toro, Cristián Riveros and Hideo Bannai, for agreeing
to participate in my Ph.D. defense, and giving me valuable feedback.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 3

1.3 Contribution . 3

1.4 Structure of the Thesis . 5

1.5 Notation and Conventions . 6

2 Combinatorics on Words 7

2.1 Basic Concepts . 7

2.2 Primitive Words, Powers, and Lyndon Words 9

2.3 String Morphisms . 10

2.4 Sturmian Words . 12

3 Text Compression and Indexing 13

3.1 Compressibility Measures . 13

3.2 Empirical Entropy . 14

3.3 Text Indexing . 16

3.4 Sensitivity to String Transformations . 17

4 Measuring Repetitiveness 18

4.1 Parsing-based Measures . 19

4.2 Grammar-based Measures . 20

ix

4.3 Burrows-Wheeler Transform . 22

4.4 String Attractors . 23

4.5 The Measure δ . 24

4.6 Summary . 25

5 Sensitivity Properties of the Burrows-Wheeler Transform 26

5.1 Additive Sensitivity of BWT to Edit Operations 26

5.1.1 Characterizing the BWT of wk . 27

5.1.2 BWT of wk after an edit operation 32

5.1.3 Additive sensitivity for r$. 35

5.1.4 The relationship between r and r$. 40

5.2 Sensitivity of BWT to Morphism Application 40

5.2.1 Preliminaries . 41

5.2.2 Morphisms and sorted rotations of words 42

5.2.3 Binary morphisms preserving r . 45

5.2.4 Binary morphisms increasing r by a constant 47

5.2.5 Morphisms with an unbounded increase on r 50

5.2.6 Comparison with other repetitiveness measures 53

6 New Repetitiveness Measures Based on Self-Similarity 55

6.1 Deterministic L-systems and the Measure ℓ 57

6.1.1 Decompression . 58

6.1.2 Access . 59

6.1.3 Sensitivity to string transformations 62

6.2 Breaking the Repetitiveness Lower Bound δ 62

6.3 Uncomparability of ℓ with Other Measures 65

6.4 Macro-systems . 66

6.5 NU-systems . 72

x

6.5.1 Decompression algorithm . 72

6.5.2 The measure ν . 74

6.5.3 Properties . 76

6.6 Variants of L-systems and the Measure ℓ . 77

7 Extending Grammar-Based Measures 86

7.1 Generalized SLPs and How to Balance Them 87

7.2 Iterated Straight-Line Programs . 91

7.3 Accessing ISLPs . 94

7.3.1 Specializing the result . 94

7.3.2 Data structures . 97

7.3.3 Direct access . 100

7.3.4 Extracting substrings . 101

7.3.5 Composable functions on substrings 103

7.4 Revisiting RLSLPs . 107

7.4.1 More general functions . 107

7.4.2 Application: Karp-Rabin fingerprints 109

8 Extending Repetitiveness Measures to the Two-dimensional Space 113

8.1 Basics on 2D Strings . 114

8.2 Measures δ and γ in two dimensions . 115

8.3 (Run-length) Straight-line Programs for 2D Strings 118

8.4 Macro Schemes for 2D Strings . 120

8.5 Differences Between the 1D and the 2D Setting 121

8.6 Effectiveness of Linearization Techniques . 124

9 Conclusion 126

9.1 Summary of Contributions . 126

9.2 Future Work . 129

xi

List of Figures

4.1 Grammar tree of an SLP generating the word abracadabra 21

4.2 BWT matrix of the string w = mississippi 22

4.3 Asymptotic relations between repetitiveness measures. 25

5.1 Scheme of the BWT matrix of a word wk with k > 5 31

5.2 BWTs of the word wk and its variants after different edit operations 35

5.3 BWT matrix for the words w = abbaba, Φ(w), and Φ̃(w) 47

5.4 Thue–Morse-like morphism τp,q ≡ (abp, baq) with p, q > 1 on a binary word w 49

5.5 BWT matrix of zk and θ(zk) . 52

6.1 Asymptotic relations between ℓ, ν, and other repetitiveness measures. 56

6.2 Example of a string with δ = Ω(ℓ
√
n) . 64

6.3 Asymptotic relations between the measure ℓ and its variants 85

7.1 The DAG and SC-decomposition of a RLSLP 90

7.2 Asymptotic relations between git and other repetitiveness measures 93

7.3 Data structures built for an ISLP rule . 98

8.1 2D string attractor for Mm×n . 117

8.2 2D macro scheme with 6 phrases for I7 . 121

8.3 Matrix Ak for k = 4 . 123

xii

Chapter 1

Introduction

In this chapter we define the motivation, scope, and overall structure of the thesis. We also
highlight the main contributions of this work.

The outline of this chapter is as follows.

• In Section 1.1, we present a brief motivation for studying repetitiveness measures.

• In Section 1.2, we formally state the thesis goals.

• In Section 1.3, we present our main contributions, mentioning the articles where these
results appeared, and how the author of this thesis was involved in them.

• In Section 1.4, we give a general outline of the remaining chapters of the manuscript.

• Finally, in Section 1.5, we explain and clarify the notations and conventions used along
the manuscript.

1.1 Motivation

In areas like Bioinformatics, it is often necessary to handle big collections of highly repetitive
data. For example, two human genomes share 99.9% of their content [115]. In another
scenario, for sequencing a genome, one extracts so-called reads (short substrings) from it,
with a “coverage” of up to 100X, which means that each position appears on average in 100
reads.1 There is a need in science and industry to maintain those huge string collections in
compressed form. Traditional compressors based exclusively on Shannon’s entropy are not
suitable for repetitive data, as they only exploit bias in symbol frequencies for compressing.
Finding good measures of repetitiveness and also compressors exploiting this repetitiveness
has then become a relevant research problem.

1https://www.illumina.com/science/technology/next-generation-sequencing/

plan-experiments/coverage.html

1

There is an increasing interest in (1) defining measures of compressibility (i.e., functions
from strings to R aiming to quantify the compressibility of strings) that are useful for highly
repetitive texts, (2) developing compressed text representations whose size can be bounded
in terms of those measures, and (3) providing efficient (i.e., polylogarithmic time) access
methods to those compressed texts, so that algorithms can be run on them without ever
decompressing the texts [99, 100]. We call lower-bounding measures those satisfying (1),
reachable measures those (asymptotically) reached by the size of a compressed representation
(2), and accessible measures those reached by the size of representations satisfying (3).

For example, the size γ of the smallest “string attractor” of a text T —γ and the other
measures in this paragraph will be properly defined in upcoming chapters— is a lower bound-
ing measure, unknown to be reachable [71], and smaller than the size reached by all known
compressors exploiting repetitiveness. The size b of the smallest “bidirectional macro scheme”
of T [127], and the size z of the Lempel-Ziv parse of T [85], are the reachable measures with
the best theoretical and observed performance in terms of space on highly repetitive texts,
with z being computable in linear time and b being NP-hard to compute. The size grl of
the smallest run-length context-free grammar generating (only) T is the smallest accessible
measure to date, though NP-hard to compute. It holds γ ≤ b ≤ z ≤ grl for every text.

One of the most attractive lower bounding measures devised so far is δ [79]. This measure
has several nice properties: it can be computed in linear time and lower bounds all previous
measures of compressibility, including γ, for every text. While δ is known to be unreachable,
the measure δ∗ = δ log n log σ

δ logn
, where σ is the size of the alphabet, retains many of its good

properties, on top of being reachable: Ω(δ∗) is the space needed to represent some text family
for each n, σ, and δ; within O(δ∗) space it is possible to represent every text T and access
any length-λ substring of T in time O(λ+log n) [79], together with more powerful operations
[79, 78, 69]. On the other hand, δ∗ is not a lower bound for most repetitiveness measures, as
δ is. In particular, it holds that grl = O(δ∗).

There is plenty of room for studying compressibility measures for highly repetitive texts,
as it is still a relatively new line of research. For improving the current state of the art
on repetitiveness measures —which basically means finding smaller reachable measures, or
finding accessible measures whose size is smaller than grl— it is necessary to study them
from a mathematical and algorithmic point of view: their combinatorial properties, their
limitations, the efficiency of their related compressors, and their relationships with other
repetitiveness measures.

Exploring alternative ways to exploit repetitiveness on strings is also fundamental, as
most of the state of the art compressors and measures of repetitiveness are based exclusively
on copy-paste techniques (i.e., techniques considering almost exclusively explicit copies of
substrings as source of repetitiveness), which could be a limiting factor. There could be
other types of regularities that have not been explored yet.

Another open flank regarding measuring repetitiveness is how to do it when the data
is presented in other formats. For instance, there exist many types of data that are two-
dimensional, like matrices, graphs, coordinates, and so on. These types of data are abundant
in fields like Astronomy, and can also be very repetitive in nature. And yet, not many
advances have been made in this matter in the latest years.

2

1.2 Thesis Statement

We focus on building a solid foundation and intuition on how to handle repetitiveness. More
specifically, we

1. study state of the art repetitiveness measures from a combinatorial point of view;

2. design novel repetitiveness measures for strings that can help us to understand the
limitations of state of the art repetitiveness measures;

3. generalize repetitiveness measures for strings to data structured in other ways, like
matrices.

We firmly believe that to find better ways of handling the huge volumes of data and query
requirements of today’s world, it is fundamental to build a strong foundation on repetitiveness
measures and their limitations.

1.3 Contribution

The content of this manuscript has been retrieved mostly from articles on which the author
of this thesis has worked on. We present these articles grouped by topics and then sorted by
date of publication.

The first group of articles contains the following.

[60] S. Giuliani, S. Inenaga, Z. Lipták, G. Romana, M. Sciortino, and C. Urbina. Bit catas-
trophes for the Burrows-Wheeler transform. In Proc. 27th International Conference
on Developments in Language Theory (DLT 2023), volume 13911 of Lecture Notes in
Computer Science, pages 86–99. Springer, 2023.

[42] G. Fici, G. Romana, M. Sciortino, and C. Urbina. On the impact of morphisms on
BWT-runs. In Proc. 34th Annual Symposium on Combinatorial Pattern Matching
(CPM 2023), volume 259 of Leibniz International Proceedings in Informatics, pages
10:1–10:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[61] S. Giuliani, S. Inenaga, Z. Lipták, G. Romana, M. Sciortino, and C. Urbina. Bit catas-
trophes for the burrows-wheeler transform. Theory of Computing Systems, 69(2):19,
2025.

In these articles we present new combinatorial properties of the famous Burrows-Wheeler
transform, with respect to edit operations and morphism application. In concrete, the author
of this thesis mostly worked on lower bounding the additive sensitivity of the number of BWT-
runs to edit operations, introducing the notions of abelian order-preserving morphism and
abelian order-reversing morphism, and characterizing the BWT of binary words after the
application of Thue-Morse-like morphisms and the period-doubling morphism.

3

The second group of articles contains the following.

[105] G. Navarro and C. Urbina. On stricter reachable repetitiveness measures. In Proc.
28th International Symposium on String Processing and Information Retrieval (SPIRE
2021), volume 12944 of Lecture Notes in Computer Science, pages 193–206. Springer,
2021.

[106] G. Navarro and C. Urbina. L-systems for measuring repetitiveness. In Proc. 34th
Annual Symposium on Combinatorial Pattern Matching (CPM 2023), volume 259 of
Leibniz International Proceedings in Informatics, pages 25:1–25:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

[108] G. Navarro and C. Urbina. Repetitiveness measures based on string morphisms. The-
oretical Computer Science, 1043:115259, 2025.

In these articles we approach the task of measuring repetitiveness in strings using string
morphisms. We show several properties of our new defined measures, and establish asymp-
totic relations with other state of the art measures.

The third group of articles contains the following.

[103] G. Navarro, F. Olivares, and C. Urbina. Balancing run-length straight-line programs.
In Proc. 29th International Symposium on String Processing and Information Retrieval
(SPIRE 2022), volume 13617 of Lecture Notes in Computer Science, pages 117–131.
Springer, 2022.

[107] G. Navarro and C. Urbina. Iterated straight-line programs. In Proc. 16th Latin Ameri-
can Theoretical Informatics Symposium (LATIN 2024), volume 14578 of Lecture Notes
in Computer Science, pages 66–80. Springer, 2024.

[104] G. Navarro, F. Olivares, and C. Urbina. Generalized straight-line programs. Acta
Informatica, 62(1):14, 2025.

In these articles we extend grammar compression techniques and known balancing proce-
dures to a more general framework. In concrete, the author of this thesis mostly contributed
on extending context-free grammars to generalized straight-line programs (GSLPs), adapting
a well-known balancing procedure for SLPs [52] to work on GSLPs, specifying GSLPs to
iterated straight-line programs (ISLPs), and providing direct access to arbitrary positions of
the text using ISLPs.

Finally, we have the following article.

[24] L. Carfagna, G. Manzini, G. Romana, M. Sciortino, and C. Urbina. Generalization
of repetitiveness measures for two-dimensional strings. In Proc. 31th International
Symposium on String Processing and Information Retrieval (SPIRE 2024), volume
14899 of Lecture Notes in Computer Science, pages 57–72. Springer, 2024

4

In this article we work on the problem of extending repetitiveness measures to higher
dimensional spaces. The author of this thesis contributed on defining bidimensional versions
of state of the art repetitiveness measures, establishing separations between them, as well as
showing that linearizations techniques might be suboptimal as a compression booster for 2D
strings.

1.4 Structure of the Thesis

The structure of this thesis is as follows.

• In Chapter 2, we present some basic concepts from the field of Combinatorics on words
used throughout this thesis.

• In Chapter 3, we presents some basic concepts of the field of Text compression and
indexing.

• In Chapter 4, we focus on the notion of repetitiveness. In particular, we focus on how
we can exploit this repetitiveness to achieve high compression rates. We present state
of the art repetitiveness measures, and asymptotic relations among them.

• In Chapter 5 we study one of the most famous and widely used tools in Text Com-
pression: the Burrows-Wheeler transform (BWT). The BWT is a permutation of the
symbols in a text, and it is often used to boost compressibility. When a text is highly
repetitive, the BWT tends to have long equal-letter runs, making it suitable for run-
length compression. The size of the run-length encoding of the BWT is a widely used
measure of repetitiveness. In concrete, we study how much the number of BWT equal-
letter runs can vary after the application of an edit operation like insertion, deletion
and substitution; or the more complex operation of morphism application.

• In Chapter 6, we explore alternative ways to exploit repetitiveness on strings. We
find a way to use so-called Lindenmayer systems (L-systems), which build on string
morphisms, as compressed representations of strings, and study the properties of its
associated repetitiveness measure ℓ, which is always smaller than the size g of the
smallest context-free grammar generating (only) the text.

We combine L-systems with more established copy-paste techniques and define NU-
systems (and its associated measure ν), which we show to be considerably more powerful
in terms of space than all the other state of the art compressors exploiting only copy-
paste mechanisms.

We show that ℓ and ν, for some string families, can break the better established measure
δ based on substring complexity, a lower bound for most measures and compressors
exploiting repetitiveness.

Further, we show that by preprocessing some variants of the L-systems, we can provide
direct access to arbitrary positions of the text in logarithmic time. No strong upper
bounds were found for the size of these variants, though.

5

• In Chapter 7, we generalize a recent result that states that Straight-Line Programs
(SLPs) can be balanced, to a general class of grammars we call Generalized SLPs
(GSLPs). We then specialize GSLPs to so-called Iterated SLPs (ISLPs).

We prove that ISLPs break, for some text families, the measure δ. Further, ISLPs can
support efficient extraction of substrings. This was the first compressed representation
for repetitive texts of size upper bounded by the size grl of the smallest Run-Length
Straight-Line Program (RLSLP), breaking δ in some string families, and at the same
time, supporting direct access to arbitrary text symbols in polylogarithmic time.

• In Chapter 8, we extend some repetitiveness measures for strings to two-dimensional
strings, i.e., matrices with their entries over an alphabet Σ. This is important because
2D strings are a fairly common form of data, an they can be highly repetitive.

We start by proving some results relating these new measures. We also show that there
are important differences in these relations with respect to the 1D setting.

Finally, we show that a systematic study specific to higher dimensional strings is nec-
essary, as applying one-dimensional compressors on 2D strings after the use of some
standard linearization technique can lead in some cases to poor compressibility.

• In Chapter 9, we summarize our contributions, and present some open questions, and
further lines of research.

1.5 Notation and Conventions

We clarify some notations and conventions utilized in the thesis manuscript.

Strings/words/texts: We utilize variables a, b, c, d and others to refer to arbitrary symbols
or letters. We utilize variables w, x, y, z, u, v and others to refer to arbitrary strings. We use
boldface to emphasize that a string is infinite by the right, e.g. w = aaa · · · . For concrete
letters, we use typewritter font, e.g. abracadabra is a word on the alphabet {a, b, c, d, r}.
When considering topics within the fields of Text Compression and Text Indexing, we usually
refer to strings as texts, and use T, S and other capital letters to denote them.

Numbers: We focus mainly on discrete problems, so p, q, n,m, i, j, k, t, r are usually natural
numbers or integers depending on the context. If the base of a logarithm is not specified,
log n stands for the logarithm in base 2 of n.

Computational model: To measure the space needed to store a value (e.g. a string or an
integer), and also to measure the time utilized by algorithms, we assume the transdichotomous
RAM model of computation [46]. In this model, the space utilized is measured in words of
Θ(log n) bits, where n is the size of the input (typically, of the uncompressed string or text).
Access to a specific word, arithmetical and logical operations are assumed to take constant
time.

6

Chapter 2

Combinatorics on Words

In this chapter, we introduce some terminology1, concepts and elementary results in Combi-
natorics on Words, that are needed to understand the rest of thesis.

The outline of the chapter is as follows.

• In Section 2.1, we present some basic definitions on strings, and provide some examples
to illustrate them.

• In Section 2.2, we explore one of the most elementary ideas studied in Combinatorics
on Words, the notion of primitiveness. We also present a fundamental theorem char-
acterizing primitive words, by Lyndon and Schützenberger.

• In Section 2.3, we explain what a string morphism is, and also exhibit some relevant
highly repetitive infinite words that can be defined by using them, usually called mor-
phic words.

• Finally, in Section 2.4, we introduce the family of Sturmian words, i.e., aperiodic infinite
binary words of minimal complexity, which have been widely studied in the Combina-
torics on words field, and also have been used to prove separations between repetitive-
ness measures.

2.1 Basic Concepts

We explain some basic concepts on strings.

Alphabets and finite strings. An (ordered) alphabet is a finite set of symbols Σ =
{a1, . . . , aσ} extended with a total order a1 < · · · < aσ. A (finite) string w is a finite

1There are some differences in how the areas of Text Compression and Combinatorics on Words refer
to the same objects. For instance, in Text Compression it is usual to refer to a sequence of symbols as a
string, or a text. In Combinatorics on Words, strings are simply called words. Our choice is to use the most
appropriate term and notation depending on the context.

7

sequence w[1]w[2] · · ·w[n] of symbols where w[i] ∈ Σ for i ∈ [1 . . n], and its length is denoted
by |w| = n. The unique empty string, whose length is 0, is denoted by ε. The set of all finite
strings over Σ is denoted by Σ∗. The set of non-empty finite strings is denoted by Σ+. We
let alph(w) ⊆ Σ be the set of letters actually appearing in w.

Substrings, prefixes and suffixes. Let x = x[1] · · ·x[n] and y = y[1] · · · y[m] be strings;
the concatenation operation x · y (or just xy) yields the string x[1] · · ·x[n] y[1] · · · y[m]. We
denote by wk the concatenation of w with itself, k times. Let w = xyz. Then y (resp., x, z)
is a substring (resp., prefix, suffix) of w. It is proper if it is not equal to w, and non-trivial if
it is distinct from ε and w. The notation w[i . . j] stands for the substring w[i]w[i+1] · · ·w[j]
if i ≤ j, and ε otherwise. We also use the conventions w[i . . j] = w[. . j] = w[1 . . j] if i < 1,
and w[i . . j] = w[i . .] = w[i . . n] if j > n. Substrings are sometimes called factors.

Run-length encoding. The run-length encoding of a string w[1 . . n] is a sequence of pairs
rle(w) = (a1, p1), (a2, p2), . . . , (ak, pk) where each ai is a single symbol, each pi is a pos-
itive integer, and such that w = ap11 ap22 · · · apkk and ai ̸= ai+1 for i ∈ [1 . . (k − 1)]. E.g.
rle(aaaabaaabb) = (a, 4), (b, 1), (a, 3), (b, 2).

Reverse of a string and palindromes. The reverse of a string w[1 . . n] is defined as the
string wR = w[n] ·w[n− 1] · · ·w[1]. A string w such that w = wR is said to be a palindrome.
E.g. the word racecar is a palindrome.

Rotations of a string The i-th rotation (or conjugate) of w is the string rotw(i) =
w[i . . n] · w[1 . . (i − 1)] for each i ∈ [1 . . n]. The multiset of rotations R(w) contains all the
(possibly repeated) rotations of w. Rx(w) contains all the possibly repeated rotations of
w starting with the prefix x. E.g. R(abaa) = {aaab, aaba, abaa, baaa} and Raa(abaa) =
{aaab, aaba}.

Infinite strings. A (right) infinite string w (we use boldface to emphasize them) over
an alphabet Σ is a mapping from Z+ to Σ. The length of an infinite string is denoted ω,
which is greater than n for any n ∈ Z+. The concatenation x · y is well-defined when x is
finite and y infinite, as x · y = x[1] · · ·x[|x|]y[1]y[2] · · · . The definitions of substring, prefix,
and suffix carry over to infinite strings. Note that proper prefixes of infinite strings are
always finite strings, and suffixes are always infinite strings. The notations w[i], w[i . . j] and
w[i . .] = w[i]w[i+ 1] · · · also carry over to infinite strings.

Lexicographic order Let < be the total order relation among the symbols in Σ. Let x and
y be (possibly infinite) strings. The lexicographic order among strings is defined inductively
as follows: i) No string is lexicographically smaller than itself. ii) The empty string ε is
assumed to be lexicographically smaller than any other string. iii) For non-empty strings the
lexicographic order is defined by the relation x < y if and only if x = ax′ and y = by′ with
a < b. or a = b and x′ < y′.

8

Factor complexity of strings. Let F (w) be the set of distinct substrings of w, where w
may be infinite or not. The factor complexity function of w counts the number of different
substring in w for each possible length k. Formally, Pw(k) = |{x ∈ F (w) | |x| = k}|.

Edit operations, edit distance, and Hamming distance Let w = xy be a finite string
with x, y strings, and a and b symbols. Then w′ = xay can be obtained from w via an
insertion. Similarly, if w = xay, then w′ = xy and w′ = xby can be obtained via a deletion
and a substitution, respectively. These three operations are called edit operations. As a
shortcut, if w[1 . . n], then ŵ = w[1 . . n− 1].

The edit distance dedit(x, y) between two finite strings x and y counts the minimum
number of edit operations needed to transform x into y, or vice versa (both numbers coincide).
If x and y have the same length, their Hamming distance, which counts the number of
mismatches between them, is dH(x, y) = |{i ∈ [1 . . |x|] |x[i] ̸= y[i]}|.

Symbol frequencies, Parikh vectors and balancedness. We denote by |w|a the num-
ber of as appearing in w. Moreover, if x is a string, we let |w|x be the number of possi-
bly overlapping occurrences of x within w. The Parikh vector of a word w is defined as
parikh(w) = (|w|a1 , |w|a2 , . . . , |w|aσ), that is, the Parikh vector encompasses the frequencies
of each symbol in w.

A (possibly infinite) word w is balanced if for every two substring x and y of the same
length and any symbol a ∈ Σ, it holds ||x|a−|y|a| ≤ 1, that is, for each symbol, their frequency
in x and y almost coincides. A finite word w is circularly balanced if all its rotations are
balanced. E.g. the word abaababa is circularly balanced.

2.2 Primitive Words, Powers, and Lyndon Words

We introduce the notion of primitiveness.

Definition 2.2.1 A string w = a1 · · · an is periodic with period p if ai = ai+p for i ∈
[1 . . n − p]. If n/p is an integer, then w is a power of a1 . . . ap, that is, w = (a1 . . . ap)

n/p. A
word w is primitive if w = uk implies that k = 1.

Simply put, primitive words are those that cannot be written as a power of another word.

Example 2.2.2 The word abaab is primitive. In fact, any word of length p with p a prime
number is either primitive, or it is equal to ap, for some symbol a. On the other hand, the
word abaaba is not primitive, because it can be written as (aba)2.

Similar notions are defined for infinite words.

Definition 2.2.3 An infinite word w is periodic with period p if ai = ai+p for all i ∈ Z+. It
is ultimately periodic if it can be written as w = x · y with y periodic. If an infinite word is

9

not ultimately periodic, then it is aperiodic.

Example 2.2.4 The word w = abaω is ultimately periodic, but not periodic. The sequence
of digits of any irrational number is an aperiodic infinite word.

One key result concerning primitiveness and powers is the following lemma by Lyndon
and Schützenberger [91].

Lemma 2.2.5 (Lyndon and Schützenberger) Two words x, y ∈ Σ+ commute, i.e., xy = yx,
if and only if they are powers of the same word z, i.e., x = zp and y = zq for some p, q > 0.

From this lemma, some equivalent characterizations of primitive words can be derived.

Lemma 2.2.6 ([114]) Let w = a1 . . . an. The following conditions are equivalent:

1. w is primitive.

2. w ̸= xy for any two non-empty commuting words x and y.

3. w has n distinct rotations.

Some basic results on primitiveness are the following.

Lemma 2.2.7 Any word w can be written uniquely as w = xp for some primitive word x
and some positive integer p.

Lemma 2.2.8 A word w = xp with x primitive and p a positive integer has |x| distinct
rotations.

Among primitive words, there is a relevant subclass that has been widely studied.

Definition 2.2.9 A Lyndon word is a word w that is primitive and lexicographically strictly
smaller than any of its rotations.

Example 2.2.10 The word aaaaab is Lyndon, whereas its rotation aaaaba is not. Also, the
word ababab is not Lyndon because it is not primitive.

2.3 String Morphisms

The set Σ∗ together with the (associative) concatenation operator and the (identity) string
ε form a monoid structure (Σ∗, ·, ε). A morphism on strings is a function φ : Σ∗

1 → Σ∗
2

satisfying φ(x · y) = φ(x) · φ(y) for all x and y (i.e., a function preserving the monoid
structure), where Σ1 and Σ2 are arbitrary alphabets. To define a morphism on strings, it
is sufficient to define how it acts over the symbols in its domain. The pairs (a, φ(a)) for
a ∈ Σ1, usually denoted a → φ(a), are called the rules of the morphism, and there are |Σ1|

10

of them. If Σ1 = Σ2, then the morphism is called an endomorphism. We sometimes use the
notation φ ≡ (φ(a1), . . . , φ(aσ)) to describe the action of a morphism on the letters of Σ.
The notation φi(x), as it is usual with functions, denotes the iteration of φ starting on x, i
times. The notation φω(x) stands for limi→∞ φi(x) if the limit exists.

Let φ : Σ∗
1 → Σ∗

2 be a morphism on strings. Some useful definitions are width(φ) =
maxa∈Σ1 |φ(a)| and size(φ) =

∑
a∈Σ1
|φ(a)|. A morphism is non-erasing if ∀a ∈ Σ1, |φ(a)| >

0, expanding if ∀a ∈ Σ1, |φ(a)| > 1, k-uniform if ∀a ∈ Σ1, |φ(a)| = k > 1, and it is a coding
if ∀a ∈ Σ1, |φ(a)| = 1 (i.e., it is 1-uniform).

Morphisms can be used to define infinite sequences with low factor complexity (precisely,
with pw(n) = O(n2)), among some other regularity properties. We are interested in studying
these kind of sequences, as low factor complexity generally implies a high degree of repeti-
tiveness.

Definition 2.3.1 Let φ : Σ∗ → Σ∗ be a string morphism. Then, φ is prolongable on a
symbol a if φ(a) = ax for some string x ̸= ε.

If a morphism φ is prolongable on a symbol a, then for each i, j with 0 ≤ i ≤ j, it holds
that φi(a) is a prefix of φj(a). Moreover, the infinite word

w = φω(a) = axφ(x)φ2(x) · · ·

is well defined, and it is the unique infinite fixed-point of φ starting with the symbol a [90].

By considering the fixed-points of prolongable morphisms, some relevant classes of infinite
words arise.

Definition 2.3.2 Let φ : Σ∗ → Σ∗ be a string morphism prolongable on a symbol a ∈ Σ,
and let τ : Σ→ Γ be a coding. Then,

1. the fixed-point φω(a) is called a purely morphic word ;

2. the image τ(φω(a)) is called a morphic word ;

3. if φ is k-uniform for some k > 1, the image τ(φω(a)) is called an automatic word.

A particularly relevant family of words is defined by the morphism Φ ≡ (ab, a) known as
the Fibonacci morphism. The finite words Φi(a) are called finite Fibonacci words, and their
limit Φω(a) is a purely morphic word called the Fibonacci word.

The class of morphic words properly contains both the class of purely morphic words and
the class of automatic words. On the other hand, neither the class of purely morphic words
nor the class of automatic words is a subset one of the other. A recent survey shows detailed
examples on this matter [2].

As we already foreshadowed, the classes of morphic words, purely morphic words, and
automatic words are limited in the number of distinct factors they can contain. It has been
proven that the number of different factors of length n appearing in these kinds of words is
O(n2), O(n log n), and O(n), respectively [39].

11

2.4 Sturmian Words

One of the most studied string families in Combinatorics on Words are the so-called Sturmian
words [90]. They will prove useful for us because of their high degree of repetitiveness, and
many properties. They are defined as follows.

Definition 2.4.1 An infinite word w is said to be Sturmian if Pw(n) = n+ 1 for all n ≥ 0.

Note that, because Pw(1) = 2, Sturmian words are infinite binary words. Hence, in the
following we assume Σ = {a, b}.

It is known that if there exists some n0 such that Pw(n0) ≤ n0 then w is periodic
[90]. In this sense, Sturmian words are aperiodic infinite binary words with minimal factor
complexity. There are many other equivalent definitions of Sturmian words [90]. Among
them, the following one will be particularly useful for us in Chapter 5.

Theorem 2.4.2 Let w be an infinite binary word. Then, w is Sturmian if and only if it is
aperiodic and balanced.

Among Sturmian words, a special class can be easily constructed algorithmically [90].

Definition 2.4.3 Given an infinite sequence of integers d0, d1, d2, . . ., with d0 ≥ 0, di > 0
for all i > 0, called directive sequence, we define their associated standard Sturmian words
as s0 = b, s1 = a, and si+1 = s

di−1

i si−1, for i ≥ 1. An infinite word w is said to be a
characteristic Sturmian word if it is the limit of an infinite sequence of standard Sturmian
words, i.e., w = limi→∞ si.

We illustrate the above definition and construction in Example 2.4.4.

Example 2.4.4 Consider the directive sequence 1, 1, 1, The words s0 = b, s1 = a,
s2 = ab, s3 = aba, s4 = abaab, and so on, are exactly (with the exception of s0) the
finite Fibonacci words. The limit of this sequence of words is the infinite Fibonacci word
abaababaabaab · · · . Thus, the Fibonacci word is a characteristic Sturmian word.

12

Chapter 3

Text Compression and Indexing

In this chapter we present the basic concepts within the field of Text Compression and
Indexing needed to understand the following chapters.

The chapter is structured as follows:

• In Section 3.1, we introduce some basic definitions regarding compressibility measures.

• In Section 3.2, we present a widely used compressibility measure known as empirical
entropy, and show why it does not work so well on repetitive datasets.

• In Section 3.3, we present the basic queries to be answered on text collections.

• In Section 3.4, we introduce the concepts of additive and multiplicative sensitivity of
compressibility measures to string transformations.

3.1 Compressibility Measures

We start by introducing a formalization of the notions of compressor and compressibility
measure.

Definition 3.1.1 A lossless text compressor 1 (or just compressor) is an algorithm C : Σ∗ →
Γ∗ such that there exists a decompression algorithm D for which D(C(w)) = w, for any
w ∈ Σ∗. The string C(w) is called a compressed representation of w.

Definition 3.1.2 A compressibility measure µ is a function µ : Σ∗ → N.

For a compressibility measure to be meaningful or useful, it should capture the degree
of compressibility of strings in some way. That is, the more compressible is a string w, the

1In this work we focus only on lossless text compression, that is, the compressed representation together
with the decompression algorithm must always allow us to recover the original text. This is different from
lossy compression, which is used for instance, for compressing images. In this type of compression, some
information might be permanently lost after the compression process.

13

smaller the value µ(w) should be. Naturally, the strings for which a compressibility measure
takes a low value are highly dependent on the particular features of the texts to be exploited.

Definition 3.1.3 We say that a measure µ is reachable if we can represent every string
w[1 . . n] within O(µ(w)) space (where the asymptotics refer to n).

Example 3.1.4 Let C be a compressor, and µC(w) = |C(w)|. The measure µC is reachable
by definition, as we can represent any string in that space by using the compressor C.

We measure space in Θ(log n)-bit words following the conventions of the transdichotomous
RAM model of computation. Hence, O(µ(w)) space means O(µ(w) log n) bits. We can
represent any symbol in the alphabet of w[1 . . n] using a constant number of words as long
as |Σ| = O(nd) for some constant d ≥ 0.

We introduce some terminology that will come handy when comparing compressibility
measures in terms of their asymptotic behavior.

Definition 3.1.5 A compressibility measure µ1 is smaller or lower bounds another com-
pressibility measure µ2 if µ1(w) = O(µ2(w)) for every w[1 . . n] ∈ Σ∗. If, in addition, there
is an infinite string family F ⊆ Σ∗ where µ1(w) = o(µ2(w)) for every w[1 . . n] ∈ F , we say
that µ1 is strictly smaller or strictly lower bounds µ2. Two compressibility measures µ1 and
µ2 are equivalent if each one lower bounds the other, and uncomparable if µ1 = o(µ2) on a
string family F1 and µ2 = o(µ1) on another string family F2.

Compressibility measures remove the implementation noise from compressors, allowing a
simpler mathematical analysis in terms of their space usage. When measures are based on a
compressor, they allow us to understand how well these compressors can perform on certain
domains, or how sensitive these compressors are to string transformations. They also allow
us to compare the performance of different compressors in a simplified way. Some measures
which are not based on actual compressors can be used to upper-bound or lower-bound other
measures, which is useful to provide theoretical guarantees on the performance of theoretical
and practical compressors.

3.2 Empirical Entropy

A fundamental notion in text compression is Kolmogorov’s complexity. Essentially, this
measure quantifies the minimum space needed to represent any given string in a computer,
with the representation being a computer program that outputs the string. We define it in
terms of Turing machines as follows.

Definition 3.2.1 The Kolmogorov’s complexity K(w) of a string w, is the number of bits
needed to describe the Turing machine with the shortest description, that outputs w when
run on an empty tape.

While Kolmogorov’s complexity is the ideal measure of compressibility in terms of space,

14

it is uncomputable, that is, we cannot get it using a computer program that always halts.

Theorem 3.2.2 ([30]) It is undecidable for a string w and an integer k if K(w) ≤ k.

The problem of Kolmogorov’s complexity being unpractical has motivated the design of
a variety of compressors trying to approximate this value. They do so by exploiting the
regularities that are most likely to be present on the texts.

One of the most practical computable measures of compressibility is the empirical entropy
of the text. It is defined as follows.

Definition 3.2.3 The zero-order empirical entropy of a string w[1 . . n] is

H0(w) =
∑
a∈Σ

|w|a
n

log
n

|w|a
.

When the only sources of compressibility to be exploited are the relative frequencies of
symbols, the zero-order empirical entropy is a tight lower bound to the output size of any
compressor.

If instead, contexts of length k for some fixed k are believed to be a better predictor for
the following symbol, the k-th order empirical entropy of the text might be a better choice.

Definition 3.2.4 The k-th order empirical entropy of the a string w[1 . . n] is

Hk(w) =
∑
x∈Σk

|w|x
n
H0(wx),

where wx is the string formed by the characters following x in w. Empirical entropy has
been and still is the base of many widely used text compressors like gzip2 and bzip2 3. These
are usually called statistical compressors [10].

Empirical entropy and statistical compressors do not perform well when considering highly
repetitive strings. Consider any string w[1 . . n]. One can notice that for any k > 0, it holds
that H0(w) = H0(w

k), as the relative frequencies for each symbol in alph(w) are the same in
both w and wk. In other words, for both strings we need the same amount of bits to represent
their symbols. This means that any compressor reaching zero-order empirical entropy needs
Θ(nH0(w)) bits to represent w and Θ(knH0(w)) bits to represent wk. A similar analysis
holds for Hk [81].

A better alternative to represent wk would be to encode it as a pair (w, k). To do
so, we might encode w in Θ(nH0(w)) bits using some statistical compressor, and then en-
code k using O(log k) bits with any basic integer representation. This sums to a total of
O(log(k) + nH0(w)) bits, which can be orders of magnitude smaller than what a naive sta-
tistical compressor may achieve when applied on wk.

2https://www.gnu.org/software/gzip/manual/gzip.html
3https://sourceware.org/bzip2/

15

In Chapter 4, we present compressibility measures and compressors that are able to detect
this kind of redundancies, thereby performing better thanH0 andHk on text where the degree
of repetitiveness is high.

3.3 Text Indexing

There exists many questions one may want to ask about a text. Let T [1 . . n] and P [1 . .m]
be two strings with m ≤ n. The most relevant queries under the scope of this thesis are the
following.

• access(T, i): Outputs the symbol T [i], with i ∈ [1 . . n].

• extract(T, i, j): Outputs the string T [i . . j], with i, j ∈ [1 . . n].

• locate(T, P): Outputs a list containing the starting position of each occurrence of the
pattern P [1 . .m] within T [1 . . n].

• count(T, P): Outputs the number of distinct occurrences of the pattern P [1 . .m] within
T [1 . . n].

Example 3.3.1 Let a text T = abracadabra and a pattern P = bra. Then, access(T, 5) =
c, extract(T, 4, 8) = acada, locate(T, P) = {2, 9} and count(T, P) = 2.

When both T and P are stored in uncompressed form, the optimal time to answer direct
access queries is O(1). Using O(|T |) extra space to store some data structures on top of
T , one can answer locate and count in O(m + |T |P) and O(m) time, respectively, which is
optimal as it is always necessary to read the pattern, and in the case of locate(T, p), we also
need to report the occurrences of P .

On the other hand, when either the text T , the pattern P , or both are presented in
compressed form, the times given above to answer these queries are not necessarily achievable.
For instance, Verbin and Yu [128] showed that when using some compression techniques based
on context-free grammars, access always takes Ω(log n/ log log n) time.

Therefore, when dealing with compressed representations reaching O(µ) space for some
compressibility measure µ, is it usual to focus first in reaching efficient time for these queries,
as optimal time might be difficult to achieve. We understand by efficient time any time that
is at most O(polylog n) times worse than the optimal time.

Definition 3.3.2 The measure µ is accessible if we can answer access(T, i) inO(polylog (n))
time using O(µ) space.

16

3.4 Sensitivity to String Transformations

When dealing with datasets that might change over time, common sense is that it would
be practical to have compressed representations that may be easily be updated after an edit
operation on the original dataset. That is, starting from a compressed representation C(w)
of a string w, it should be fast to obtain a compressed representation C(w′) of w′ where
dedit(w,w

′) = 1. Naturally, this can only be satisfied if |C(w′)| is close enough to |C(w)|,
otherwise just outputting the new representation would take considerable time.

In this thesis, we consider a simpler related problem. We are interested in measuring
how much a compressibility measure can vary after applying an edit operation, or more
generally, a string transformation, to the original text. Naturally, reachable measures that
do not change much after an edit operation are good candidates to perform well in an online
setting, though finding a way to perform the update is another problem.

The change on a measure after applying a string transformation on a text can be quantified
either additively or multiplicatively by taking the difference or the ratio, respectively. Given
a measure and a string transformation, we define their additive sensitivity function and
multiplicative sensitivity function as follows.

Definition 3.4.1 Let µ : Σ∗ → R+ be a compressibility measure, and op : Σ∗ → Σ∗ be any
string transformation. Then,

ASµ,op(n) = max
w∈Σn
{|µ(op(w))− µ(w)|} and

MSµ,op(n) = max
w∈Σn
{µ(op(w))/µ(w)}.

These definitions have already been introduced for edit operations [1], though for these
it is customary to consider the set of all possible insertions/substitutions/deletions instead
of just a fixed one. Sensitivity has also be defined for the reverse operation [59].

In general, we are interested in upper bounding and lower bounding these two functions.
For instance, if ASµ,op(n) = O(1), this means that µ is highly resistant to the transformation
op, as µ can increase only by a constant.

On the other hand, the multiplicative sensitivity is more useful to show that a measure
is highly sensitive to some string transformation, by finding a growing lower bound to this
function.

Another useful concept when analyzing measures is the notion of monotonicity.

Definition 3.4.2 A measure µ is monotone upon a string operation op if for any string w
it holds µ(op(w)) ≥ µ(w).

17

Chapter 4

Measuring Repetitiveness

As we showed in Chapter 3, statistical compressors whose space is lower bounded by the
empirical entropy of the text, do not scale well when considering powers of the same text.
That is, statistical compressors cannot detect and exploit the simplest form of repetitive-
ness one can think of. This observation makes clear the need of designing text compressors
and compressibility measures that are suitable for scenarios where the data is highly repeti-
tive. The prime examples of this kind of data are the enormous genome collections used in
Bioinformatics.

We will say that a compressibility measure µ is a repetitiveness measure, if it (arguably)
captures the degree of repetitiveness of strings. The more repetitive is a string w, the smaller
the value µ(w) should be. In general, a repetitive string is understood as one containing many
copies of the same substrings, but there is no single agreed-upon measure of repetitiveness.

In this chapter, we present and explain the most relevant repetitiveness measures to be
considered in this thesis. We illustrate those we work with at a deeper level. The chapter is
structured as follows.

• In Section 4.1, we present repetitiveness measures based on parsings like the size of
the famous Lempel-Ziv parse of the text and its variants; and others like bidirectional
macro schemes.

• In Section 4.2, we present repetitiveness measures based on context-free grammars.

• In Section 4.3, we introduce the Burrows-Wheeler transform, which yields a permuta-
tion of the symbols of the text, and two closely related repetitiveness measures based
on the number of equal-letter runs of this transform.

• In Section 4.4, we explain the concept of a string attractor, and introduce the measure
γ based on it, which is a lower bound to all reachable measures presented before.

• In Section 4.5, we explain how the substring complexity function is used to define a
repetitiveness measure called δ, which lower bounds γ and is considered a lower bound
for repetitiveness.

18

• In Section 4.6, we end with a brief summary of the asymptotic relations between repet-
itiveness measures.

All of the measures, except δ and (possibly) γ, are reachable because they are defined as
the size of some compression method; in all those cases the represented string w[1 . . n] can
be decompressed in optimal time, O(n). More in-depth surveys on repetitiveness measures
exist [99, 100].

4.1 Parsing-based Measures

A parsing of size k is a factorization of a string w into non-empty phrases, w = w1 ·w2 · · ·wk

where wi ∈ Σ+ for 1 ≤ i ≤ k. Several compressors work by parsing w in a way that just
some summary information about the phrases enables recovering w.

The Lempel-Ziv (LZ) parsing [85] processes a string greedily from left to right, always
forming the longest phrase that has a copy (called a source) starting inside some previous
phrase, or else forming an explicit phrase of length 1. Lempel-Ziv compression encodes non-
explicit phrases as pairs (p, l), where p indicates where the source starts in w and l is the
phrase length. In LZ, the source can overlap the new phrase. The LZ-no parsing, instead,
does not allow the source overlap the new phrase. The LZ-end parsing [80] requires, in
addition, that the source ends at a previous phrase boundary. All of these parsings can be
constructed in linear time [85, 70], and their number of phrases are denoted by z, zno, and
ze, respectively. While z and zno are optimal among the parsings satisfying their respective
conditions, this is not always the case for ze. The size of the optimal LZ-end parsing, i.e.,
a factorization where each phrase wi+1 appears as a suffix of w1 . . . wj for some j ≤ i, is
denoted by zend, and it is NP-hard to compute [7]. Because of the optimality of z, zno, and
zend, it holds that z ≤ zno ≤ zend ≤ ze for every string. We illustrate the differences between
the LZ variants in Example 4.1.1.

Example 4.1.1 Consider the string w = abracadabracadabracadabra. Then, we have

LZ(w) = a · b · r · a · c · a · d · abracadabracadabra
LZno(w) = a · b · r · a · c · a · d · abracad · abracadabra
LZe(w) = a · b · r · a · c · a · d · abracad · abracad · abra

where the source of every non-explicit phrase is the first position. Hence, z(w) = 8, zno(w) =
9, and ze(w) = 10.

A bidirectional macro scheme (BMS) [127] is any parsing where each phrase of length
greater than 1 has a copy starting at a different position (to its left or to its right) in such
a way that the original string can be recovered by following these pointers (assuming that
the phrases of length 1 store their symbol explicitly). The measure b(w) is defined as the
size of the smallest BMS for w. It strictly lower bounds all the other reachable repetitiveness
measures [102], except for the ones we define in this thesis. Computing b(w) is NP-hard [51].

19

Example 4.1.2 Let w = abaababaabaababaababaabaababaabaab. A BMS for w is

abaababaabaababaaba · b · a · abaababaabaab.

The source of the first phrase begins at position 14 and ends at position 32, the second and
third phrase are explicit symbols, and the source of the fourth phrase begins at position 14
and ends at position 26. Note how the source of the first phrase is to its right, and the source
of the fourth phrase is to its left. Hence, b(w) ≤ 4.

Another interesting parsing-based measure is the size of the greedy lexicographic parsing
of w, denoted as v(w) [102]. This parsing processes w from left to right, taking as the
next phrase the longest common prefix between the unprocessed part of the string and its
lexicographically smaller suffix (a unique symbol $, smaller than the others, is assumed to
exist at the end of w). It forms an explicit phrase of length one if the longest common prefix
is empty or no predecessor exists. It has been proven that b strictly lower bounds v [102].

4.2 Grammar-based Measures

A context-free grammar (CFG) is a 4-tuple G = (V,Σ, R, S), where V is a set of symbols
called the variables, Σ is an alphabet of terminals such that V ∩ Σ = ∅, R ⊆ V × (V ∪ Σ)∗

is called the set of rules, and S ∈ V is the initial variable. For the sake of readability,
we write the rules (A, x) as A → x. Let u, v ∈ (V ∪ Σ)∗. If A → x is a rule, then uAv
yields uxv, denoted as uAv ⇒ uxv. We say that u derives v if u ⇒∗ v, where ⇒∗ is the
reflexive-transitive closure of the relation ⇒. The language generated by the grammar G is
L(G) = {w ∈ Σ∗ |S ⇒∗ w}, that is, the strings of terminals that can be derived from the
initial variable.

A straight-line program (SLP) is a CFG G such that for any variable there is exactly one
rule, which can be either a terminal rule A→ a with a ∈ Σ, or a binary rule A→ BC where
B,C ∈ V , and satisfying that for each A ∈ V and u ∈ (V ∪Σ)∗, if A⇒∗ u, then A does not
occur in u, that is, there are no cycles in the derivation of the grammar. These conditions
ensure that the language of the SLP G is a singleton L(G) = {w}.

Since there are no cycles, the variables of an SLP can always be given a total order, so that
if A→ BC, then B,C < A. We only consider CFGs with one rule per variable, that admit
such a total order, though the right-hand sides of rules may have zero or more terminals and
variables. That is, if A→ αBβ is a rule, then B < A. Such CFGs are guaranteed to generate
a unique string, which is denoted exp(G) = w. We extend this notation to the unique strings
generated by the variables of the grammar.

The size of a CFG G = (V,Σ, R, S) is size(G) =
∑{|x| | A → x ∈ R}, the sum of the

lengths of the right-hand sides of its rules. The repetitiveness measure g(w) is defined as
the least size of a CFG G generating w. Computing g(w) is NP-hard [121, 31], though there
exist log-approximations [63, 121].

Another measure related to CFGs that strictly lower bounds g(w) is grl(w), the least
size of a run-length CFG (RLCFG) generating w [110]. RLCFGs extend CFGs by allowing

20

A0 abracadabra

A1 abra A2 cadabra

A3 ab A4 ra A5 cad A1 abra

A7 a A8 b A9 r A7 a A6 ca A11 d

A10 c A7 a

Figure 4.1: Grammar tree of an SLP G generating the word abracadabra. The grammar is
defined by the binary rules A0 → A1A2, A1 → A3A4, A2 → A5A1, A3 → A7A8, A4 → A9A7,
A5 → A6A11, A6 → A10A7, and the terminal rules A7 → a, A8 → b, A9 → r, A10 → c,
A11 → d. At the right of each node there is the expansion of each variable. The height of
the SLP is 4, and its size is 19

constant-size rules of the form A → Bk for k > 1 and B ∈ V , and we again consider only
RLCFGs that follow a total order in their variables. RLCFGs can be a log-factor smaller
than CFGs in some string families like {an |n ≥ 0}, where g = Θ(log n) and grl = O(1).

Some useful notions related to SLPs and RLSLPs are the following. The derivation or
parse tree of an SLP is an ordinal tree where the nodes are the variables, the root is the
initial variable, and the leaves are the terminal variables. The children of a node are the
variables appearing in the right-hand side of its rule (in left-to-right order). The height of an
SLP or RLSLP is the length of the longest path from the root to a leaf node in its derivation
tree. The derivation tree of RLSLPs is analogous to that of SLPs; the nodes labeled A, for
the rules A → Bt, have t children labeled B. The grammar tree is obtained by pruning the
parse tree so that only the leftmost occurrence of a nonterminal is retained as an internal
node and all the others become leaves. Rules A→ Bt are represented as the node A having
a left child B (which can be internal or a leaf) and a special right child denoting Bt−1 (which
is a leaf). The size of the grammar tree is proportional to the size of the grammar. We show
an example in Figure 4.1.

Composition-systems [53] extend CFGs with constant-size extraction rules of the form
A → B[i : j] for some i, j ∈ [1 . . |exp(B)|], which mean that exp(A) = exp(B)[i . . j].
Still, the symbols must be ordered and it must hold B < A for such a rule to be valid.
Collage-systems [73] extend CFGs with run-length rules and extractions, thereby combining
composition-systems and RLCFGs. The size c(w) of the smallest collage-system deriving w
lower bounds z [102], while z strictly lower bounds grl [16].

21

i m i s s i s s i p p

i p p i m i s s i s s

i s s i p p i m i s s

i s s i s s i p p i m

I = 5 m i s s i s s i p p i

p i m i s s i s s i p

p p i m i s s i s s i

s i p p i m i s s i s

s i s s i p p i m i s

s s i p p i m i s s i

s s i s s i p p i m i

Figure 4.2: BWT matrix of the string w = mississippi. The row where w appears is
colored in gray. Its run-length encoding is (p, 1)(s, 2)(m, 1)(i, 1)(p, 1)(i, 1)(s, 2)(i, 2), hence
r(w) = 8.

4.3 Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) is a reversible transformation of a word, which
usually makes it more compressible [21]. The combinatorial formulation of the BWT con-
sists in sorting all the rotations (repeated rotations can appear multiple times) of the word
lexicographically, and then concatenating the last symbol of each rotation, in order.

Definition 4.3.1 Let w be a word of length n, and w1, w2, . . . , wn be the sequence of rotations
of w in lexicographic order. Then, bwt(w) = w1[n]w2[n] · · ·wn[n].

A useful concept when analyzing the BWT of a text is its BWT matrix.

Definition 4.3.2 Let w be a word of length n. The BWT matrix of w is a square matrix
M of dimension n, whose cells are defined as mi,j = wi[j], where wi is the i-th rotation of w
in lexicographic order. The index of the occurrence of w in the sequence of sorted conjugates
is denoted by I.

In Figure 4.2 it can be seen the BWT-matrix of the word mississippi.

Though the length of bwt(w) is the same as the length of w, the run-length encoding
of bwt(w) tends to be orders of magnitude smaller when the string is highly repetitive.
Intuitively, this happens because if a substring ax of w is repeated many times, the rotations
starting with x will contain many as as their last symbols. The proximity and abundance of
these as make it more likely to form long clusters of the same symbol in the BWT.

In Text Indexing, it is customary to consider the run-length encoding of the $-terminated
version of the BWT, because of its relation with the suffix tree data structure. Nevertheless,
the size of the run-length encoding of the BWT can vary wildly depending on whether this
$ is appended or not at the end of the string [60]. Hence, we consider them two different
measures. We introduce their definitions.

22

Definition 4.3.3 Let w ∈ Σ and assume $ < a for all a ∈ Σ. Then, r(w) = rle(bwt(w))
and r$(w) = rle(bwt(w$)).

On of the reasons of why r$ and r are widely studied is that there exist indexes that can
answer locate and count in O(r$) space [50].

Regarding the relation of r and r$ with other measures, it has been proved that b ≤ 2r$ =
O(r$) [102, Theorem 9]. A similar result can be easily derived for r, from [102, Theorem 9]
and the following lemma.

Lemma 4.3.4 ([119, Lemma 16]) Let w ∈ Σ+ be a Lyndon word. Then, for all u, v ∈ Σ∗

such that w = uv, it holds r(vu) + 1 ≤ r$(w) ≤ r(vu) + 2.

Proposition 4.3.5 It always holds that b = O(r).

Proof. Let w′ = vu ∈ Σ+ and w = uv be its Lyndon rotation (i.e., the smallest rotation
of w′ in lexicographic order). By Lemma 4.3.4, it holds r(w′) = Θ(r$(w)). Therefore, as
b(w) ≤ 2r$(w) [102], there exists a BMS for w of size O(r(w′)). This macro scheme can
be transformed into a macro scheme for w′ of at most twice the size, by reorganizing the
phrases, and then splitting as needed those phrases whose source previously started in the
prefix u and ended in the suffix v of w.

BWT based measures are uncomparable to reachable measures other than b; and v in the
case of r$, for which it holds v = O(r$) [102]. It is known that r and r$ are Θ(n) in circular
de Bruijn strings over the binary alphabet [9], while v, g, ze, and even nHk/ log n (i.e., the
statistical entropy measured in words) are O(n/ log n). On the other hand, in even Fibonacci
words, r is O(1) [95] while r$, v and c are Ω(log n) [102].

4.4 String Attractors

In an attempt of defining a general framework, and finding a suitable lower bound for
grammar-based and parsing-based compressors, Kempa and Prezza introduced the notion
of a string attractor [71].

Definition 4.4.1 A string attractor for a text w[1 . . n] is a set of positions Γ ⊆ [1 . . n] such
that for each substring w[i . . j] of w, there exist integers i′, j′ ∈ [1 . . n] and k ∈ Γ, such that
w[i . . j] = w[i′ . . j′] and i′ ≤ k ≤ j′.

That is, a string attractor is a set Γ such that every substring of w has a copy covering a
position in Γ. By using string attractors, Kempa and Prezza define the following measure.

Definition 4.4.2 We denote by γ(w) the size of the smallest string attractor for w.

Example 4.4.3 Consider the string w = abracadabra. A string attractor for w is the set
Γ = {1, 2, 3, 5, 7}. The set Γ is minimal because by definition its size cannot be smaller than

23

|alph(w)|. Thus, γ(w) = 5.

In the same work, Kempa and Prezza showed that the problem of finding the smallest
k-attractor —i.e., a set of positions such that any substring of length at most k is covered
by at least one of these positions— is NP-hard for k ≥ 3 [71]. Recently, the same result was
proved to hold also for k = 2 [48].

It is easy to see that γ lower bounds b: we can construct an string attractor of size at
most 2b from the smallest BMS, by including in the attractor the positions corresponding to
an explicit phrase or a phrase border in the BMS. Moreover, Bannai et al. [6] showed that γ
is a strict lower bound for b via Thue–Morse words. On the other hand, it is still unknown
whether space γ, or even o(γ log(n/γ)), is reachable.

Similarly to r and r$, the measure γ has attracted much attention in the Combinatorics
on Words community because of its simple but elegant mathematical formulation. Mantaci
et al. [93] studied many combinatorial properties of string attractors, e.g., they show that
γ is not monotonic. They also propose a circular variant of string attractors, which has
been recently further studied [118]. Many recent works have focused on characterizing γ for
prefixes of relevant infinite words [26, 82, 55, 56, 38].

4.5 The Measure δ

Recently, Kociumaka et al. [116, 79] introduced a repetitiveness measure based on the factor
complexity function Pw(k), which counts for each possible k the number of distinct substrings
of length k appearing in w. It is defined as follows.

Definition 4.5.1 Let w[1 . . n] be a string of length n. The measure δ is

δ(w) = max
k∈[1. .n]

Pw(k)/k.

In Example 4.5.2 we show a family of strings for which it is easy to compute δ solely from
their definition.

Example 4.5.2 Consider the string w = abaababaabaababaababa. This string is a finite
Fibonacci word, and also a standard Sturmian word, hence it holds Pw(k) ≤ k + 1 for all
k ∈ [1 . . n]. Note that the value Pw(k)/k is maximized when k = 1. Thus, δ(w) = 2.

The measure δ possesses many desirable properties. First, it has been shown that δ =
O(γ) and there exists string families where δ = o(γ) [79]. This makes δ an strict lower bound
for all reachable and unreachable repetitiveness measures to date. Also, it is straightforward
that δ is insensitive to reversals, and Akagi et al. [1] proved that δ can only increase by a
constant additive value after an edit operation. Moreover, the measure δ can be computed
in O(n) time and space [79]. These properties have made δ the gold standard for measuring
repetitiveness.

Nevertheless, the measure δ has some shortcomings. The biggest issue is that O(δ) space

24

is unreachable [79]. It has been shown that the related measure δ∗ = O(δ log n log σ
δ logn

) can be

reached and shares similar properties [79], although it is not a lower bound for most measures
like ze, g, r$ and r. The measure δ∗ is worst-case optimal, that is, for every values n, σ and
δ there is a string family that needs Ω(δ∗) to be represented [79]. It is possible to obtain
representations using O(δ∗) space in polynomial time, that can answer pattern matching
queries in almost-optimal time [79, 78].

The measure δ has lead to some interesting upper bounds on other repetitiveness mea-
sures. Some representations of size O(δ∗) are run-length grammars [79, 78], hence it fol-
lows that grl is upper bounded by O(δ log n log σ

δ logn
) ⊆ O(δ log n

δ
). The measure g is up-

per bounded by O(γ log2 n
γ
) ⊆ O(δ log3 n

δ
) [79, 71]. The measure r$ is upper bounded by

O(δ log δmax(1, log n
δ log δ

)) ⊆ O(δ log2 n) [68], and it was recently proved that so is r [119,

Corollary 18]. Kempa and Saha [72] showed that ze = O(δ log2 n
δ
). From these bounds, we

conclude that even if the repetitiveness measures presented can vary on some string fami-
lies, they are still close enough to each other, at most within a polylogarithmic factor (more
precisely, an O(log3 n) factor with current knowledge).

4.6 Summary

We summarize the known relations between repetitiveness measures in Figure 4.3.

δ γ b c z grl g

v r$

zno zend ze

δ log(n/δ) δ log3 n

nHk/ log n

r δ log δ log(n/δ)

δ log2(n/δ)

Figure 4.3: Asymptotic relations between state of the art repetitiveness measures. A solid
arrow from a measure v1 to a measure v2 means that it always holds that v1 = O(v2). A
double solid arrow from v1 to v2 means that it also exists a string family where v1 = o(v2).
A dashed arrow from v1 to v2 means that there exists a family where v1 = o(v2).

In Chapter 6 and Chapter 7 we introduce new repetitiveness measures and relate them
to those mentioned in this chapter.

25

Chapter 5

Sensitivity Properties of the
Burrows-Wheeler Transform

In this chapter, we show some results on the sensitivity to string transformations of the
measures r and r$ described in Chapter 4.

Recently, Giuliani et al. [59] showed that the measure r can grow by a Θ(log n) multiplica-
tive factor after applying the reverse operation on the input string. In another work, Giuliani
et al. [60] showed that the measures r and r$ can increase by a Θ(log n) multiplicative factor
after applying any edit operation. Moreover, in the same work the authors show that both
measures can increase by a Θ(

√
n) additive factor after applying any edit operation.

This chapter is structured in two main sections.

• In Section 5.1, we give complete proofs for the results concerning the Θ(
√
n) additive

increase of the measures r and r$ when applying any edit operation.

• In Section 5.2, we study the impact of morphism applications on the measure r. Though
morphism applications are widely used (e.g., they can be used to define many types of
codes), they have not been extensively studied regarding their impact on repetitiveness
measures. We focus mostly on r, but we also provide results for other repetitiveness
measures in order to compare how differently they behave.

5.1 Additive Sensitivity of BWT to Edit Operations

In this section, we exhibit an infinite family of strings on which a single edit operation
can cause an additive increment of r by Θ(

√
n), improving known results on the additive

sensitivity of BWT-runs to edit operations. Such a family is defined as follows.

Definition 5.1.1 For any k > 5, let si = abiaa and ei = abiabai−2 for all 2 ≤ i ≤ k− 1, and

26

qk = abka. Then,

wk = (
k−1∏
i=2

siei)qk = (
k−1∏
i=2

abiaaabiabai−2)abka.

The length of these strings can be easily computed from their definition.

Observation 5.1.2 Let n = |wk| for some k > 5. It holds that n =
∑k−1

i=2 (3i+4)+(k+2) =
(3k2 + 7k − 18)/2. Moreover, it holds that k = Θ(

√
n).

The following lemma will be used to show how the rotations of wk can be sorted according
to the factorization s2e2 · · · sk−1ek−1qk.

Lemma 5.1.3 Let k > 5 be an integer. Then, s2 < e2 < s3 < e3 < . . . < sk−1 < ek−1 < qk.
Moreover the set U =

⋃k−1
i=2 {si, ei} ∪ {qk} is prefix-free, that is, for each two distinct strings

in U , none of them is a prefix of the other.

Proof. For the first claim, note from the definition of the strings ei, si and qk, that for
i ∈ [2 . . k − 1] it holds si < ei, for i ∈ [2 . . k − 2] it holds ei < si+1, and it holds ek−1 < qk.
For the second claim, observe that for any two distinct strings x and y in the set U starting
with abja and abj

′
a respectively, there are two possible cases. If j = j′ then x and y are si

and ei respectively, and none of them is a prefix of the other. Otherwise, w.l.o.g. j < j′, so
x = abjax′ and y = abjby′ for some x′ and y′. Hence x[j + 2] ̸= y[j + 2] and none of them is
a prefix of the other. Thus, the set U is prefix-free.

5.1.1 Characterizing the BWT of wk

In this subsection we characterize the BWT of the word

wk = (
k−1∏
i=2

siei)qk = (
k−1∏
i=2

abiaa · abiabai−2) · abka.

To do so, we divide its BWT matrix into disjoint ranges of consecutive rotations sharing the
same (specific) prefixes, and characterize the substring of bwt(wk) corresponding to each one
of these prefixes.

Definition 5.1.4 Given x,w ∈ Σ∗, we denote by β(x,w) the substring of bwt(w) corre-
sponding to the range of contiguous rotations prefixed by x. We omit the second parameter
of β(x,w) when it is clear from the context.

The structure of the whole BWT matrix of wk is summarized in Figure 5.1. The following
series of lemmas characterize the substring of bwt(wk) corresponding to each range to be
considered.

Lemma 5.1.5 (β(ak−2b)) Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first
rotation in the BWT matrix is ak−3qk · · · b.

27

Proof. The first rotation in lexicographic order must start with the longest run of a’s. By
definition of wk, the longest run of a’s has length k − 2, and it is obtained by concatenating
the suffix ak−3 of ek−1 with qk, which is preceded by a b (otherwise we could extend the run
of a’s).

Lemma 5.1.6 (β(aib) for 4 ≤ i ≤ k − 3) Given the word wk = (
∏k−1

i=2 siei)qk for some
k > 5, and an integer 4 ≤ i ≤ k − 3, the rotations in the BWT matrix starting with aib are
ai−1si+2 · · · b < ai−1si+3 · · · a < . . . < ai−1sk−1 · · · a < ai−1qk · · · a.

Proof. One can notice that, for all 4 ≤ i ≤ k − 3, the (circular) factor aib can only be
obtained, for all i+ 2 ≤ j ≤ k, from the concatenation of the suffix ai−1 of ej−1, with either
the prefix ab of sj, if i+ 2 ≤ j ≤ k − 1, or the prefix ab of qk, if j = k. By Lemma 5.1.3, we

can sort these rotations according to the lexicographic order of
⋃k−1

j=i {sj} ∪ {qk}. Note that

all these rotations end with an a, with the exception of the rotation starting with ai−1si+2,
since it is where the only occurrence of baib can be found.

Lemma 5.1.7 (β(aaab)) Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first five
rotations in the BWT matrix starting with aaab are aae2 · · · b < aae3 · · · b < aae4 · · · b <
aas5 · · · b < aae5 · · · b, while the remaining are aas6 · · · a < aae6 · · · b < . . . < aask−1 · · · a <
aaek−1 · · · b < aaqk · · · a.

Proof. Analogously to the proof of Lemma 5.1.6, some of the rotations starting with aaab

can be obtained, for all 5 ≤ j ≤ k, from the concatenation of the suffix aa of ej−1, with
either the prefix ab of sj, if 5 ≤ j ≤ k − 1, or the prefix ab of qk, if j = k. However, in this
case we have more rotations starting with aaab, that are those rotations starting with the
suffix aa of sj′ concatenated with the prefix ab of ej′ , for all 2 ≤ j′ ≤ k − 1. Thus, all the
rotations starting with aaab are sorted according to the lexicographic order of the words in⋃k−1

j=5{sj} ∪
⋃k−1

j′=2{ej′} ∪ {qk}. Note that all the rotations starting either with aasj, for all
6 ≤ j ≤ k − 1, or with aaqk, end with a. On the other hand, the rotations starting either
with aas5 or with aaej, for all 2 ≤ j ≤ k − 1, end with a b.

Lemma 5.1.8 (β(aab)) Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first five rota-
tions in the BWT matrix starting with aab are as2 · · · b < ae2 · · · a < ae3 · · · a < as4 · · · b <
ae4 · · · a, while the remaining are as5 · · · a < ae5 · · · a < . . . < ask−1 · · · a < aek−1 · · · a <
aqk · · · a.

Proof. Each of the rotations starting with aaab from Lemma 5.1.7 induces a rotation starting
with aab, obtained by shifting on the left one character a. It follows that all of these
rotations end with an a. The other rotations starting with aab are the one obtained by
concatenating the suffix a of e3 and the prefix ab of s4, and the one obtained by concatenating
the suffix a of qk and the prefix ab of s2. Moreover, both the rotations end with a b. The
thesis follows by sorting the rotations according to the lexicographic order of the words in
{s2} ∪

⋃k−1
j=4{sj} ∪

⋃k−1
j′=2{ej′} ∪ {qk}.

Lemma 5.1.9 (β(ab)) Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first k − 2
rotations in the BWT matrix starting with ab are abak−3qk · · · b < abak−4sk−1 · · · b < . . . <

28

abs3 · · · b, the following four rotations are s2 · · · a < e2 · · · a < s3 · · · b < e3 · · · a, and the
remaining are s4 · · · a < e4 · · · a < . . . < sk−1 · · · a < ek−1 · · · a < qk · · · a.

Proof. For any two distinct integers i, i′ ≥ 0, we have that abaib < abai
′
b if and only if i > i′.

Thus, the first rotation in lexicographic order starting with ab is the one which is followed
by the longest run of a’s. The smallest of these rotations can be found by concatenating the
suffix abak−3 of ek−1 with the prefix ab of qk, followed by the suffix abai−2 of ei−1 concatenated
with the prefix ab of si, for all 3 ≤ i ≤ k − 1 taken in decreasing order. By construction of
ei, for all 3 ≤ i ≤ k − 1, these rotations must end with a b.

The remaining rotations starting with ab are exactly those rotations having as prefix
either si or ei, for all 2 ≤ i ≤ k − 1, or qk. Note that all of these rotations are obtained by
shifting on the left one character a from the rotations starting with aab from Lemma 5.1.8,
with the exception of the one starting with s3. It follows that the latter ends with a b, while
all the other rotations with an a.

Lemma 5.1.10 (β(ba)) Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first k − 5
rotations in the BWT matrix starting with ba are bak−3qk · · · a < bak−4sk−1 · · · a < . . . <
ba3s6 · · · a, followed by baae2 · · · b < baae3 · · · b < baae4 · · · b < baas5 · · · a < baae5 · · · b,
then by baae6 · · · b < baae7 · · · b < . . . < baaek−1 · · · b < bas2 · · · b < bas4 · · · a, and finally
by babak−3qk · · · b < babak−4sk−1 · · · b < . . . < babs3 · · · b < bs3 · · · a.

Proof. One can notice that we have as many circular occurrences of ba as the number of
maximal (circular) runs of b’s in wk. Then, for all 2 ≤ i ≤ k − 1, we have (i) one run of b’s
in si, and (ii) two runs in ei, and (iii) one run in qk.

For the case (i), we have one rotation starting with baaei, for each 2 ≤ i ≤ k − 1. Since
each run of b’s within each word from

⋃k−1
i=2 {si} is of length at least 2, all rotations in (i) end

with a b.

For the case (ii), for all 2 ≤ i ≤ k−1, we can distinguish between two sub-cases, based on
where ba starts: if either (ii.a) from the first run of b’s in ei, or (ii.b) from the second one. For
the case (ii.a), we can see that these rotations are of the type babai−2si+1, if 2 ≤ i < k − 2,
and babak−3qk. Analogously to the case (i), each rotations for case (ii.a) end with a b. Each
rotation in (ii.b) is obtained by shifting two characters on the right each rotation in (ii.a).
Therefore, all of these rotations end with an a and have prefixes of the type bai−2si+1, if
2 ≤ i < k − 2, or bak−3qk.

For the case (iii), the rotation starting with ba in qk has bas2 as prefix, and it is preceded
by a b.

Observe that only for (ii.b) we have rotations starting with baaaa. Hence, the first
rotation in lexicographic order is the one starting with bak−3qk, followed by those starting
with bak−4sk−1 < bak−5sk−2 < . . . < baaas6.

Among the remaining rotations, those having prefix baaa either start with baas5 from
(ii.b), or baaei from (i), for all 2 ≤ i ≤ k − 1. Thus, by Lemma 5.1.3, we can sort them
according to the order of the words in {s5} ∪

⋃k−1
i=2 {ei}. Then, the remaining rotations with

29

prefix baa are those starting with bas2 from (iii), and bas4 from (ii.b). Finally, let us focus
on the rotations from case (ii.a). These rotations are sorted according to the length of the
run of a’s following the common prefix bab, similarly to the sorting of the rotations from
the case (ii.b). The last rotation left is the one starting with bs3 from case (ii.b). Since this
rotation is greater than each word from case (ii.a), this is the greatest rotation of wk starting
with ba and the thesis follows.

Lemma 5.1.11 (β(bja) for all 2 ≤ j ≤ k − 1) Given the word wk = (
∏k−1

i=2 siei)qk for some
k > 5, and an integer 2 ≤ i ≤ k − 2, the first k − i rotations in the BWT matrix starting
with bia are biaaei · · · a < biaaei+1 · · · b < . . . < biaaek−1 · · · b < bias2 · · · b, followed by
biabak−3qk · · · b < biabak−4sk−1 · · · b < . . . < biabai−1si+2 · · · b < biabai−2si+1 · · · a.

Proof. All runs of b’s of length at least 2 ≤ i ≤ k−2, either appear in (i) sj or (ii) ej, for all
i ≤ j ≤ k− 1, or in (iii) qk. Let us consider the three cases separately. For all i ≤ j ≤ k− 1,
the rotation starting within sj (i) has as prefix biaaej. For all i ≤ j ≤ k − 2, the rotation
starting within ej (ii) has as prefix biabaj−2sj+1, and for j = k− 1 we have the rotation with
prefix biabak−3qk. Finally, the rotation starting within qk (iii) has as prefix bias2.

By construction, we can see that first we have all the rotations from case (i) sorted
according to the lexicographic order of the words in

⋃k−1
j=i {ei} (Lemma 5.1.3), then we have

the rotation from case (iii), and finally the rotation from case (ii), sorted according to the
decreasing length of the run of a’s following the common prefix biab.

Moreover, note that only when the run of b’s is of length exactly i the rotation end with
an a. Thus, the only for the rotations ending with an a are those starting within si and ei,
i.e., those with prefix biaei and biabai−2si+1.

Lemma 5.1.12 (β(bka)) Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the last four
rotations of the BWT matrix are bk−1aaek−1 · · · a < bk−1as2 · · · b < bk−1abak−3qk · · · a <
bkas2 · · · a.

Proof. Observe that the only rotations with prefix bk−1a either start within sk−1, or qk, or
ek−1. These rotations have prefix respectively bk−1aaek−1, b

k−1as2, and bk−1abak−3qk. One
can see that these rotations taken in this order are already sorted, and only the rotation
starting within qk ends with a b, while the other two with an a. Finally, the only occurrence
of bk is within qk. Hence, the last rotation in lexicographic order starts with bkas2, and since
the run of b’s is maximal it ends with an a, and the thesis follows.

The following proposition puts together the BWT computations carried out for all blocks
of consecutive rows, highlighting which prefixes are shared.

30

Block
prefix

Ordering
factor

BWT

ak−2b bk−1a b

ak−3b
bk−2aa b

bk−1a a
...

...
...

a4b

b5aa b

b6aa a
...

...
bk−1a a

aaab

bab b

bbaba b

bbbabaa b

bbbbaa b

bbbbabaaa b

bbbbbaa a

bbbbbabaaaa b
...

...
bk−2aa a

bk−2abak−3 b

bk−1a a

Block
prefix

Ordering
factor

BWT

aab

baa b

bab a

bbaba a

bbbaa b

bbbabaa b

bbbbaa a

bbbbabaaa a
...

...
bk−2aa a

bk−2abak−3 a

bk−1a a

ab

ak−3qk b

ak−4sk−1 b
...

...
s3 b

baa a

bab b

bbaa b

bbaba a

bbbaa a

bbbabaa a
...

...
bk−1a a

Block
prefix

Ordering
factor

BWT

ba

ak−4qk a

ak−5sk−1 a
...

...
a2s6 a

ae2 b

ae3 b

ae4 a

as5 a

ae5 b

ae6 b
...

...
aek−1 b

s2 b

s4 a

bak−3qk b

bak−4sk−1 b
...

...
bs3 b

bbbaa a

Block
prefix

Ordering
factor

BWT

bba

ae2 a

ae3 b
...

...
aek−1 b

s2 b

bak−3qk b

bak−4sk−1 b
...

...
bas4 b

bas3 a
...

...
...

bk−1a

aek−1 a

s2 b

bak−3qk a

bka s2 a

Figure 5.1: Scheme of the BWT matrix of a word wk with k > 5. The block prefix column
shows the common prefix shared by all the rotations in a block. The ordering factor column
shows the factor following the block prefix of a rotation, which decides its relative order
inside its block. The BWT column shows the last character of each rotation. The dashed
lines divide sub-ranges of rotations for which the BWT follows distinct patterns.

Proposition 5.1.13 Given an integer k > 5, let wk = (
∏k−1

i=2 siei)qk. Then,

β(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β(a3b) = b5(ab)k−6a,

β(a2b) = baaba2k−8,

β(ab) = bk−2aaba2k−6,

β(ba) = ak−5bbbabk−4abk−2a,

β(bja) = ab2k−2j−1a for all 2 ≤ j ≤ k − 1, and

β(bka) = a.

Hence, the BWT of the wk is bwt(wk) =
∏k−1

i=2 β(a
k−ib) ·∏k

i=1 β(b
ia). Moreover, r(wk) =

6k − 12.

Proof. The words β(ak−2b), β(aib) for all 4 ≤ i ≤ k − 2, β(a3b), β(a2b), β(ab), β(ba),
β(bja) for all 2 ≤ j ≤ k − 1, and β(bka), are the concatenations of the last characters of
the rotations from Lemma 5.1.5, Lemma 5.1.6, Lemma 5.1.7, Lemma 5.1.8, Lemma 5.1.9,
Lemma 5.1.10, Lemma 5.1.11, and Lemma 5.1.12 respectively. Moreover, every rotation used
to build β(aib) is smaller than each rotation used to build β(ai

′
b), for every 1 ≤ i′ < i ≤ k−2.

31

Symmetrically, every rotation used to build β(bja) is greater than each rotation used to build
β(bj

′
a), for every 1 ≤ j′ < j ≤ k. Since we have considered all the disjoint ranges of rotations

of wk based on their common prefix, the word
∏k−1

i=2 β(a
k−ib) ·∏k

i=1 β(b
ia) is the BWT of wk.

With the structure of bwt(wk), we can easily derive its number of runs. The word∏k−4
i=2 (β(a

k−ib)) has exactly 2(k−6) runs: we start with 2 runs from β(ak−2b)β(ak−3b) = bba,
and then, concatenating each other β(aib) up to β(a4b) adds 2 new runs each. It is easy
to see that β(aaab), β(aab), and β(ab), have 2(k − 5), 4, and 4 runs, respectively. More-
over, the boundaries between these words do not merge, nor with β(a4b) in the case of
β(aaab). The word β(ba) has exactly 7 runs but it merges with β(ab) and β(bba), hence
we only charge 5 runs to this word. The remaining part of the BWT, i.e.,

∏k
i=2(β(b

ia)),
has 2(k − 2) + 1 runs: we start with 3 runs from β(bba), and then, concatenating each
other β(bia) up to β(bk−1a) adds 2 new runs each. The word β(bka) does not add new
runs, as it consists only of an a that merges with the previous one. Overall, we have
2(k − 6) + 2(k − 5) + 4 + 4 + 5 + 2(k − 2) + 1 = 6k − 12, and the claim holds.

5.1.2 BWT of wk after an edit operation

The following lemmas describe the BWT of wk after some specific edit operations are applied.
Instead of proving the whole structure of the BWT from the beginning, we compare how the
edit operation changes either the relative order or the last character of the rotations of wk. To
do so, in this part we use the notation β(v) and β⋆(v) to denote the BWT in correspondence
of the rotations with prefix v ∈ Σ∗ of wk and w′

k respectively, where w′
k is obtained after

applying to wk an specific edit operation. The number of runs in the BWT of w′
k can easily

be derived by comparing its BWT to the BWT of wk, for which we explicitly counted the
number of runs, so we omit that part of the proofs. All the edit operations on wk we show
in this subsection increase the number r(wk) by a Θ(k) additive factor. To give an intuition,
this increment comes mainly from the β⋆(bja) ranges for 2 ≤ j ≤ k− 2, because for each one
of the corresponding ranges β(bja) = ab2k−2j−1a in bwt(wk), one of the b’s is either moved
to the top or the bottom of the range, in a consistent manner for each j (it depends on the
edit operation if the b goes to the top or the bottom of the range, but it is the same behavior
for all the ranges considered). Then, two ranges that originally agreed on their last and first
character in wk are now separated by a b, adding this way 2 new runs for each j.

Lemma 5.1.14 (BWT of wka) Given an integer k > 5, for wka it holds that

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = bb5(ab)k−6a,

β⋆(a2b) = aaaba2k−8,

β⋆(ab) = bk−2aaba2k−6,

β⋆(ba) = ak−5bbbbabk−5abk−2a,

β⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, bwt(wka) =
∏k−1

i=2 β
⋆(ak−ib) ·∏k

i=1 β
⋆(bia). Moreover, it holds that r(wka) = 8k− 20.

32

Proof. By Lemmas 5.1.5 and 5.1.6, we can see that appending an a after qk does not affect
the BWT in the range of rotations having aib as prefix, for all 4 ≤ i ≤ k − 2. Thus,
β⋆(aib) = β(aib) for all 4 ≤ i ≤ k − 2.

The rotation starting with aas2, which is not a circular factor of wk, ends with a b.
By Lemma 5.1.7, we can see that such a rotation is the smallest one with prefix aaab

in lexicographic order, while the other rotations maintain their relative order. Therefore,
β⋆(aaab) = b · β(aaab).

By Lemma 5.1.8, the rotation with prefix as2 is still the smallest rotation starting with
aab, with the difference that in this case, it ends with the last a of qk. It follows that β

⋆(aab)
is obtained by replacing the first b of β(aab) with an a.

Both the order and the last symbol of all the rotations having as prefix ab described in
Lemma 5.1.9 is not affected from the insertion of the a, and therefore β⋆(ab) = β(ab).

Let us now consider all the rotations of wk with prefix bjas2, for all 1 ≤ j ≤ k. One can
notice that wka does not have any rotation starting with bjas2, for all 1 ≤ j ≤ k, but instead
it has rotations starting with bjaas2. Thus, for all 1 ≤ j ≤ k − 1, to obtain β⋆(bja) from
β(bja) we have to remove the b in correspondence of the rotations starting with bjas2, and
add a b in correspondence of the rotations bjaas2. By Lemmas 5.1.10, 5.1.11, and 5.1.12,
such rotations are placed right before the rotation starting with bjaae2.

Finally, the last rotation has still the same prefix bka and ends with an a, and the thesis
follows.

Lemma 5.1.15 (BWT of ŵk) Given an integer k > 5, for ŵk it holds that

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bk−2baba2k−6,

β⋆(ba) = ak−5bbbabk−5abk−2ba,

β⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, bwt(ŵk) =
∏k−1

i=2 β
⋆(ak−ib) ·∏k

i=1 β
⋆(bia). Moreover, it holds that r(ŵk) = 8k−20.

Proof. Analogously to the previous Lemma, if we look in Lemmas 5.1.5, 5.1.6, and 5.1.7,
at the structure of the BWT in correspondence of the rotations starting with aib, for all
3 ≤ i ≤ k−2, we can notice that the order or the symbols in the BWT is not affected. Thus,
for all 3 ≤ i ≤ k − 2, we have β⋆(aib) = β(aib).

Since the last a of qk is omitted, the circular factor as2 does not appear anymore in ŵ.
Thus, β⋆(aab) is obtained by removing the first b from β(aab), since by Lemma 5.1.8 it is in
correspondence of the rotation with prefix as2.

33

On the other hand, we can observe from Lemma 5.1.9 that the rotation with prefix s2
maintains its relative order also in ŵk, but its last symbol is now a b instead of an a.

For each 1 ≤ j ≤ k, the rotation starting with bjas2 of wk does not appear in ŵk, but
in fact it is replaced by one having bjs2 as prefix and ending in the same way. When j = 1,
by Lemma 5.1.10 such a rotation is located between the last two rotations with the prefix
ba, which start by babs3 and bs3 respectively. When 2 ≤ j ≤ k − 1, by Lemmas 5.1.11 and
5.1.12, the rotation starting with bjs2 is greater than all the other rotations with prefix bja.
Thus, for all 1 ≤ j ≤ k − 1, we obtain β⋆(bja) by moving the b in correspondence of the
rotation starting with bas2 from β(bja) and placing it in correspondence of bjs2. Finally, the
last rotation has still the same prefix bka and ends with an a, and the thesis follows.

Lemma 5.1.16 (BWT of ŵkb) Given an integer k > 5, for ŵkb it holds that

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bk−2baba2k−6,

β⋆(ba) = ak−5bbbabk−5abk−2ba,

β⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k − 1,

β⋆(bka) = b and

β⋆(bk+1a) = a.

Hence, bwt(ŵkb) =
∏k−1

i=2 β
⋆(ak−ib) · ∏k+1

i=1 β
⋆(bia). Moreover, it holds that r(ŵkb) =

8k − 20.

Proof. For the rotations in correspondence of the rotations starting with an a, notice that
replacing the last a of wk for a b or removing the last a affects the BWT in the same way.
Therefore, β⋆(aib) is the same as Lemma 5.1.15 for all 1 ≤ i ≤ k − 2.

The same behaviour can be noticed on the rotations with prefix bja, for all 1 ≤ j ≤ k−1,
while the rotation starting with bka is now preceded by a b.

With respect to the other edit operations, we have the range of rotations starting with
bk+1a, which consists solely in bk+1s2 · · · a.

The structure of the BWT of wk and other words obtained by applying one or more edit
operations on wk are summed up in Figure 5.2.

For a given word w ̸= ε, let wins, wdel, and wsub be the words obtained by applying on w
an insertion, a deletion, and a substitution of a character respectively.

We compare the number of runs of wk and its variations and notice that the difference
after applying one of the edit operations is Θ(k) in the three cases.

34

Word β($) β(a$) β(aa$) β(aib) β(a3b) β(a2b) β(ab)

wk ε ε ε bak−i−2 b5(ab)k−6a baaba2k−8 bk−2aaba2k−6

wka ε ε ε bak−i−2 bb5(ab)k−6a aaaba2k−8 bk−2aaba2k−6

ŵk ε ε ε bak−i−2 b5(ab)k−6a aaba2k−8 bk−2baba2k−6

ŵkb ε ε ε bak−i−2 b5(ab)k−6a aaba2k−8 bk−2baba2k−6

wk$ a b ε bak−i−2 b5(ab)k−6a aaba2k−8 bk−2$aba2k−6

wkb$ b ε ε bak−i−2 b5(ab)k−6a aaba2k−8 bbk−2$aba2k−6

wkbb$ b ε ε bak−i−2 b5(ab)k−6a aaba2k−8 bbk−2$aba2k−6

wka$ a a b bak−i−2 b5(ab)k−6a aaba2k−8 bk−2$aba2k−6

Word β(b$) β(ba) β(bb$) β(bja) β(bka) β(bk+1) r(·)
wk ε ak−5bbbabk−4abk−2a ε ab2k−2j−1a a ε 6k − 12

wka ε ak−5bbbbabk−5abk−2a ε bab2k−2j−2a a ε 8k − 20

ŵk ε ak−5bbbabk−5abk−2ba ε ab2k−2j−2ab a ε 8k − 20

ŵkb ε ak−5bbbabk−5abk−2ba ε ab2k−2j−2ab b a 8k − 20

wk$ ε bak−5bbbabk−5abk−2a ε bab2k−2j−2a a ε 8k − 16

wkb$ a ak−5bbbabk−5abbk−2a ε ab2k−2j−1a a ε 6k − 13

wkbb$ b ak−5bbbabk−5abbk−2a a ab2k−2j−2ab a ε 8k − 17

wka$ ε bak−5bbbabk−5abk−2a ε bab2k−2j−2a a ε 8k − 16

Figure 5.2: BWTs of the word wk and its variants after different edit operations. The word
in the intersection of the column β(x) with the row w is the range of bwt(w) corresponding
to all the rotations that have x as a prefix. The columns β(aib) and β(bja) represent ranges
of columns from i ∈ [k − 2 . . 4] (in that order) and j ∈ [2 . . k − 1], respectively. Note that
the prefixes in the columns are disjoint, and cover all the possible ranges for the set of words
considered. The BWT of each word is the concatenation of all the words in its row from left
to right. In the last column appears the number of BWT runs of each of these words.

Proposition 5.1.17 There exists an infinite family of words w such that: (i) r(wins)−r(w) =
Θ(
√
n); (ii) r(wdel)− r(w) = Θ(

√
n); (iii) r(wsub)− r(w) = Θ(

√
n).

Proof. The family is composed of the words wk with k > 5. Let n = |wk|. If wins
k = wka,

wdel
k = ŵk, and wsub

k = ŵkb, from Proposition 5.1.13, Lemma 5.1.14, Lemma 5.1.15, and
Lemma 5.1.16, we have that r(wka) = r(ŵk) = r(ŵkb) = r(wk)+(2k−8). From Observation
5.1.2, we have that 2k − 8 = Θ(

√
n).

5.1.3 Additive sensitivity for r$

In this subsection, we discuss the additive sensitivity when r$ is considered. Similar results
have been proven regarding the multiplicative sensitivity [60].

The following proposition [60] shows that for some specific edit operations r$ might not
be majorly affected. This result will be used later on some propositions.

35

Proposition 5.1.18 ([60]) Let c be smaller than or equal to the smallest character in a
word v, then r$(v) ≤ r$(vc) ≤ r$(v) + 1.

In general, appending, deleting, or substituting with a symbol that is not the smallest of
the alphabet can increase the number of runs of a word by an additive factor of Θ(

√
n). We

show this in the following series of lemmas.

Lemma 5.1.19 (BWT of wk$) Given an integer k > 5, for wk$ it holds that

β⋆($) = a

β⋆(a$) = b

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bk−2$aba2k−6,

β⋆(ba) = bak−5bbbabk−5abk−2a,

β⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, bwt(wk$) = β⋆($) · β⋆(a$) ·∏k−1
i=2 β

⋆(ak−ib) ·∏k
i=1 β

⋆(bia). Moreover, it holds that
r(wk$) = 8k − 16.

Proof. The first rotation of bwt(wk$) is $wk and ends with an a because wk ends with an a.
Hence, β⋆($) = a. There is also a rotation a$ŵk, which ends with a b because ŵk ends with a
b. Hence, β⋆(a$) = b. It is left to compare the remaining ranges β⋆(v) with respect to β(v).

It is easy to see from Lemma 5.1.5, Lemma 5.1.6, and Lemma 5.1.7 that β⋆(aib) = β(aib)
for all 3 ≤ i ≤ k − 2.

The rotation starting with as2 in wk does not exist anymore when $ is appended to wk. By
Lemma 5.1.8 the remaining rotations keep their last symbols and relative order. Therefore,
β⋆(aab) is the same as β(aab) but with the first character removed, i.e., β⋆(aab) = aaba2k−8.

For the rotations starting with ab, it happens that the rotation that originally started with
s2 in wk, now ends with a $. By Lemma 5.1.9, the remaining rotations do not change their
last symbol. Also, all the rotations keep their relative order. Hence, β⋆(ab) = bk−2$aba2k−6.

In the case of the rotations starting with ba, the rotation that originally started with bas2
now starts with ba$s2 and is the smallest of its range. From Lemma 5.1.10 the remaining
rotations keep their last symbols and relative order. Hence, β⋆(ba) = bak−5bbbabk−5abk−2a.

For the rotations starting with bja for 2 ≤ j ≤ k− 1, one can notice that after appending
$ to wk, the rotation that previously started with bjas2 and ended with a b, now starts with
bja$s2 and still ends with a b. Moreover, this rotation is smaller than the rotation starting
with bjaaej. From Lemma 5.1.11 and Lemma 5.1.12 we can see that all the other rotations
keep their relative order and last symbols. The rotation starting with bjaaej still ends with

36

an a, but now is the second smallest of its range. Hence, β⋆(bja) = bab2k−2j−2a for all
2 ≤ j ≤ k − 1.

Finally, it is clear that β⋆(bka) = a, as there is only one maximal run of k symbol b’s,
and it is not preceded by $.

Lemma 5.1.20 (BWT of wkb$) Given an integer k > 5, for wkb$ it holds that

β⋆($) = b

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bbk−2$aba2k−6,

β⋆(b$) = a,

β⋆(ba) = ak−5bbbabk−5abbk−2a,

β⋆(bja) = ab2k−2j−1a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, bwt(wkb$) = β⋆($) · (∏k−1
i=2 β

⋆(ak−ib)) · β⋆(b$) · (∏k
i=1 β

⋆(bia)). Moreover, it holds
that r(wkb$) = 6k − 13.

Proof. The first rotation of bwt(wkb$) is $wkb. Hence, β⋆($) = b. There is also a rotation
b$wk, which ends with an a because wk ends with an a. Hence, β⋆(b$) = a. It is left to
compare the remaining ranges β⋆(v) with respect to β(v).

It is easy to see from Lemma 5.1.5, Lemma 5.1.6, and Lemma 5.1.7 that β⋆(aib) = β(aib)
for all 3 ≤ i ≤ k − 2.

The rotation starting with as2 in wk does not exist anymore when b$ is appended to wk.
By Lemma 5.1.8 the remaining rotations keep their last symbols and relative order. Therefore,
β⋆(aab) is the same as β(aab) but with the first character removed, i.e., β⋆(aab) = aaba2k−8.

For the rotations starting with ab, it happens that the rotation that originally started
with s2 in wk, now ends with a $ when b$ is appended. Also, there is a new rotation starting
with ab$ that ends with b, and is clearly the smallest of the range. By Lemma 5.1.9, the
remaining rotations do not change their last symbol. Also, all the rotations that come from
wk keep their relative order. Hence, β⋆(ab) = bbk−2$aba2k−6.

In the case of the rotations starting with ba, the rotation that originally started with
bas2 now starts with bab$s2 and can be found just before the rotation starting with babak−2.
From Lemma 5.1.10 the remaining rotations keep their last symbols and relative order. Hence,
β⋆(ba) = ak−5bbbabk−5abbk−2a.

For the rotations starting with bja for 2 ≤ j ≤ k− 1, one can notice that after appending
b$ to wk, the rotation that previously started with bjas2 and ended with a b, now starts
with bjab$s2 and still ends with a b. Moreover, this rotation is still strictly in between the

37

rotations starting with bjaaej and bjabaj−2sj+1 (qk instead of sj+1 if j = k−1). From Lemma
5.1.11 and Lemma 5.1.12, we can see that the latter two rotations are still the smallest and
greatest of the range, and both end with an a. Also, all the other rotations keep their last
symbols. Hence, β⋆(bja) = β(bja) for all 2 ≤ j ≤ k − 1.

Finally, it is clear that β⋆(bka) = a, as there is only one maximal run of k symbol b’s,
and it is not preceded by $.

Lemma 5.1.21 (BWT of wkbb$) Given an integer k > 5, for wkbb$ it holds that

β⋆($) = b

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bbk−2$aba2k−6,

β⋆(b$) = b,

β⋆(ba) = ak−5bbbabk−5abbk−2a,

β⋆(bb$) = a,

β⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, bwt(wkbb$) = β⋆($) · (∏k−1
i=2 β

⋆(ak−ib)) · β⋆(b$) · β⋆(ba) · β⋆(bb$) · (∏k
i=2 β

⋆(bia)).
Moreover, it holds that r(wkb$) = 8k − 17.

Proof. The first rotation of bwt(wkbb$) is $wkbb. Hence, β⋆($) = b. There is another new
rotation b$wkb. Hence, β⋆(b$) = b. There is also a rotation bb$wk that ends with an a

because wk ends with an a. Hence, β⋆(bb$) = a. It is left to compare the remaining ranges
β⋆(v) with respect to β(v).

It is easy to see from Lemma 5.1.5, Lemma 5.1.6, and Lemma 5.1.7 that β⋆(aib) = β(aib)
for all 3 ≤ i ≤ k − 2.

The rotation starting with as2 in wk does not exist anymore when bb$ is appended to wk.
By Lemma 5.1.8 the remaining rotations keep their last symbols and relative order. Therefore,
β⋆(aab) is the same as β(aab) but with the first character removed, i.e., β⋆(aab) = aaba2k−8

.

For the rotations starting with ab, it happens that the rotation that originally started
with s2 in wk, now ends with a $ when bb$ is appended. Also, there is a new rotation starting
with abb$ that ends with b, and can be found just before the rotation starting with s2. By
Lemma 5.1.9, the remaining rotations do not change their last symbol. Also, all the rotations
that come from wk keep their relative order. Hence, β⋆(ab) = bk−2b$aba2k−6.

In the case of the rotations starting with ba, the rotation that originally started with bas2
now starts with babb$s2 and can be found just before the rotation starting with bs3 (the

38

greatest on the range). From Lemma 5.1.10 we can see that the remaining rotations keep
their last symbols and relative order. Hence, β⋆(ba) = ak−5bbbabk−5abk−2ba.

For the rotations starting with bja for 2 ≤ j ≤ k− 1, one can notice that after appending
bb$ to wk, the rotation that previously started with bjas2 and ended with a b, now starts
with bjabb$s2 and still ends with a b. Moreover, this rotation is greater than the rotation
starting with bjabaj−2sj+1 (qk instead of sj+1 if j = k− 1). From Lemma 5.1.11 and Lemma
5.1.12 we can see that all the other rotations keep their relative order an last symbols. The
rotation starting with bjabaj−2sj+1 (qk instead of sj+1 if j = k − 1) still ends with an a, but
now is the second greatest of its range. Hence, β⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k − 1.

Finally, it is clear that β⋆(bka) = a, as there is only one maximal run of k symbol b’s,
and it is not preceded by $.

Lemma 5.1.22 (BWT of wka$) Given an integer k > 5, for wka$ it holds that

β⋆($) = a

β⋆(a$) = a

β⋆(aa$) = b

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bk−2$aba2k−6,

β⋆(ba) = bak−5bbbabk−5abk−2a,

β⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, bwt(wka$) = β⋆($) · (∏k−1
i=2 β

⋆(ak−ib)) · β⋆(b$) · (∏k
i=1 β

⋆(bia)). Moreover, it holds
that r(wka$) = 8k − 16.

Proof. We obtain bwt(wka$) = abwt(wk$) by applying Proposition 5.1.18 to the words wka$
and wk$, and we already know the structure of bwt(wk$) by Lemma 5.1.19.

With all these intermediates lemmas, we obtain the following.

Proposition 5.1.23 There exists an infinite family of words such that: (i) r$(wb)−r$(w) =
Θ(
√
n); (ii) r$(ŵ)− r$(w) = Θ(

√
n); (iii) r$(ŵa)− r$(w) = Θ(

√
n).

Proof. Such a family is composed of the words wkb with k > 5. The proof follows from
Lemma 5.1.19, Lemma 5.1.20, Lemma 5.1.21, Lemma 5.1.22, and Observation 5.1.2.

39

5.1.4 The relationship between r and r$

Now we address the differences between the measures r and r$. In fact, not only are the mea-
sures r and r$ not equal over the same input, but they may differ by a Θ(log n) multiplicative
factor, or by a Θ(

√
n) additive factor [60]. We show the latter result.

Proposition 5.1.24 There exists an infinite family of words w such that r$(w) − r(w) =
Θ(
√
n), where n = |w|.

Proof. The family consists of the words wk for all k > 5. From Proposition 5.1.13 and Lemma
5.1.19, it holds r$(wk)− r(wk) = 2k− 4. By Observation 5.1.2, it holds 2k− 4 = Θ(

√
n).

The results in this section suggest that when using BWT-based compressors (both vari-
ants), one has to be specially careful when edits operations are performed on the input string.
This means that on top of r and r$ not being ideal as measures of repetitiveness, BWT-based
compressors are not ideal for dynamic settings.

5.2 Sensitivity of BWT to Morphism Application

In the field of Combinatorics on Words, morphisms are a fundamental tool for generating
repetitive sequences, with multiple applications. For instance, injective morphisms, known as
codes, are widely used in the fields of Information Theory, Data Compression, and Cryptog-
raphy [13]. The relationship between morphisms and the measure r has been studied in the
context of a subclass of infinite words generated by morphisms, i.e., the purely morphic words
[20, 47]. In this section, we focus on the impact of morphism application on the number of
BWT equal-letter runs of finite words.

In Subsection 5.2.1, we explain some specific concepts and present some already known
results on Sturmian morphisms, which are needed in the remaining of the section.

In Subsection 5.2.2, we prove that a binary morphism is cyclic (i.e., the images of both
letters are powers of the same word) if and only if the image of every word under this
morphism has the same number of BWT equal-letter runs, regardless of the input word. We
also prove other results relating morphisms and words sharing the same Parikh vector (i.e.,
having the same number of occurrences of each letter), which can be of independent interest.

Then, in Subsection 5.2.3 we find a novel characterization of Sturmian morphisms [14, 97]
in terms of BWT equal-letter runs: they are exactly the binary morphisms that preserve
the number of BWT equal-letter runs of every binary word containing both letters of the
alphabet. This characterization is interesting from a combinatorial point of view, because
Sturmian morphisms are a widely studied subject [14, 97]. It also builds another bridge
between Combinatorics on Words and Data Compression.

Further, in Subsection 5.2.4 we show a wide class of morphisms, which we call Thue–
Morse-like morphisms, that increase the number of BWT equal-letter runs by 2 on every

40

binary word containing both letters of the alphabet. Moreover, for each even number 2k,
we can find a wide class of binary morphisms, obtained by composing Sturmian and Thue–
Morse-like morphisms, that increase the BWT equal-letter runs of every binary words by
exactly 2k. Note that this is exhaustive for the binary alphabet. In fact, unless considering
powers of a single letter, every binary word has an even number of BWT equal-letter runs.
In addition, we can use the aforementioned morphisms to construct arbitrarily large families
of binary words having all the same number of BWT equal-letter runs, for every fixed (even)
number, and converging to an infinite aperiodic word.

At the other end of the spectrum, in Subsection 5.2.5 we show that there are binary
morphisms (in particular, the so-called period-doubling morphism) that can highly increase
the number of BWT equal-letter runs of binary words. We show that the increase in the
number of BWT equal-letter runs can be Ω(

√
n), where n is the length of the original word.

In Section 5.2.6, we show that this degree of increase cannot occur in other relevant reachable
repetitiveness measures, like z or g.

5.2.1 Preliminaries

A morphism φ : Σ∗ → Γ∗ is cyclic if there exists a word z ∈ Γ∗ such that φ(a) ∈ z∗, for
each a ∈ Σ. Otherwise, it is called acyclic. Note that the fixed-point of a cyclic morphism
is periodic. In the case of a binary morphism, it is known that φ is cyclic if and only if
φ(ab) = φ(ba).

A Sturmian morphism is a morphism that maps infinite Sturmian words into infinite
Sturmian words. Some combinatorial characterizations of Sturmian morphisms have been
proved [14]. In particular, a binary morphism φ is Sturmian if and only if it is acyclic and
balanced (i.e., it maps balanced words to balanced words). Berstel and Séébold [14] also
proved the following characterization:

Theorem 5.2.1 ([14]) An acyclic morphism φ is Sturmian if and only if it is locally Sturmian,
that is, there exists a Sturmian word s such that φ(s) is Sturmian.

Let us denote the following morphisms:

E :

{
a 7→ b

b 7→ a
Φ :

{
a 7→ ab

b 7→ a
Φ̃ :

{
a 7→ ba

b 7→ a

The morphism Φ is called the Fibonacci morphism, since its fixed point is the Fibonacci
word abaababaabaababaab · · · . The monoid {E,Φ, Φ̃}∗ generated by E, Φ, and Φ̃, by using
the composition operator ◦, is known as the Sturm monoid. The following theorem [97],
shows the combinatorial structure of Sturmian morphisms.

Theorem 5.2.2 A morphism is Sturmian if and only if it belongs to {E,Φ, Φ̃}∗.

The Burrows–Wheeler transform is strictly related to the notions of balance, Sturmian
word and morphism, as shown in the following proposition.

41

Proposition 5.2.3 Let w be a word such that alph(w) = {a, b}. Then the following are
equivalent:

1. w is circularly balanced;

2. w ∈ R(sℓ), for some standard Sturmian word s and for some ℓ > 0;

3. r(w) = 2;

4. w = (φ(a))ℓ for a Sturmian morphism φ and for some ℓ > 0.

Proof. The equivalence of 1, 2 and 3 is in [95, 116]. The equivalence with 4 is in [33] (see
also Proposition 10 in [113]).

5.2.2 Morphisms and sorted rotations of words

We introduce some definitions regarding the rotations of morphic images of words.

Definition 5.2.4 Let φ : Σ∗ 7→ Γ∗ be a morphism. Then, we define the multisets

Iφ(w) = {φ(w′) |w′ ∈ R(w)}
Sφ(w) = {vφ(w′)u |u, v ∈ Γ+, uv = φ(a) for some a ∈ Σ, and aw′ ∈ R(w)}.

The multiset Iφ(w) corresponds to the rotations of φ(w) obtained by applying φ to the
rotations of w. The multiset Sφ(w) corresponds to all the remaining rotations of φ(w). We
refer to the multiset Iφ(w) as the I-rotations of φ(w), and to the multiset Sφ(w) as the
S-rotations of φ(w). These two multisets could have elements that end up being equal, as
we show in the following example.

Example 5.2.5 Let φ ≡ (a, bab), which is an acyclic binary morphism. Then, ab is primitive
but φ(ab) = abab is not. Moreover, Iφ(w) = {abab, baba} = Sφ(w).

We now prove some combinatorial properties of words having the same Parikh vector.
Note that two rotations of the same word have the same Parikh vector. By using such
properties, we prove that, in the case of the binary alphabet, the lexicographic order among
the rotations of a given word is either preserved or reversed, after a morphism is applied. This
is a key point to show that the number of BWT-runs cannot decrease after the application
of a binary morphism. This is no longer true for larger alphabets.

The following lemma shows that distinct words having the same Parikh vector must have
Hamming distance of at least 2.

Lemma 5.2.6 Let w1, w2 ∈ Σ∗ be such that w1 ̸= w2 and parikh(w1) = parikh(w2). Then,
dH(w1, w2) ≥ 2.

Proof. By definition of dH , we have that dH(w1, w2) = 0 if and only if w1 = w2. So, let us
suppose by contradiction that dH(w1, w2) = 1. Then, there exist two finite words u, v ∈ Σ∗

42

and two distinct indices i, j ∈ [1 . . σ] with i < j, such that w1 = uaiv and w2 = uajv. It
follows that the Parikh vectors of w1 and w2 are respectively

parikh(w1) = (|u|a1 + |v|a1 , . . . , |u|ai + |v|ai + 1, . . . , |u|aj + |v|aj , . . . , |u|aσ + |u|aσ)
and

parikh(w2) = (|u|a1 + |v|a1 , . . . , |u|ai + |v|ai , . . . , |u|aj + |v|aj + 1, . . . , |u|aσ + |u|aσ).
Thus, we obtain that the parikh(w1) ̸= parikh(w2), a contradiction.

Since all the words in the same conjugacy class share the same Parikh vector, we can
derive the following

Corollary 5.2.7 Let w ∈ Σ∗ be a word. Then, for every word w′ ∈ R(w) such that w′ ̸= w,
one has dH(w,w

′) ≥ 2.

Here, we introduce and study new properties of some classes of morphisms, which are
related to the number of BWT-runs.

Definition 5.2.8 A morphism φ is abelian order-preserving if for every pair of distinct words
x and y having the same Parikh vector, it holds that x < y ⇐⇒ φ(x) < φ(y).

Definition 5.2.9 A morphism φ is abelian order-reversing if for every pair of distinct words
x and y having the same Parikh vector, it holds that x < y ⇐⇒ φ(x) > φ(y).

In general, a morphism can be neither abelian order-preserving nor abelian order-reversing:

Example 5.2.10 A cyclic morphism is trivially not abelian order-preserving nor abelian
order-reversing. The acyclic morphism φ ≡ (b, a, c) is also neither of them. This can be
verified on the rotations of the words abc and φ(abc) = bac.

However, all acyclic morphisms with a binary domain are either abelian order-preserving
or abelian order-reversing, as we show in the following lemma.

Lemma 5.2.11 Let φ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, φ is either abelian
order-preserving or abelian order-reversing.

Proof. Let φ ≡ (α, β) be an acyclic morphism (i.e., αβ ̸= βα). For the proof, we assume
that |α| ≤ |β|, and the other case is treated symmetrically. Factorize φ as (α, β) = (α, αkv),
where k ≥ 0 is as big as possible. This factorization is unique, and α is not a prefix of v,
otherwise, k is not as big as possible. Also, v ̸= ε and v ̸= α because the morphism φ is
acyclic. Let x = uaz1 and y = ubz2 be two distinct binary words with the same Parikh vector.
Note that a b has to appear in z1, since otherwise x has fewer b’s than y. Let z1 = atbz′1 for
some t ≥ 0 and z′1 ∈ {a, b}∗. We can write x = uaatbz′1. Then, φ(x) = φ(u)αkααtvφ(z′1) and
φ(y) = φ(u)αkvφ(z2). We proceed by case analysis.

If v is not a prefix of α, then the order between φ(x) and φ(y) depends only on the order
between α and v. The reason is that φ(x) and φ(y) share a common prefix φ(u)αk, followed

43

by α and v respectively, which differ at some position from left to right. Hence, if α < v, we
obtain x < y ⇐⇒ φ(x) < φ(y); if v < α, then we obtain x < y ⇐⇒ φ(x) > φ(y).

If v is a proper prefix of α and k > 0, rewrite φ(y) = φ(u)αkvαz′2. We can do this because
y has to have at least one letter after ub and both images α and β start with α (in the case
of β because k > 0). We note that the common prefix φ(u)αk is followed by αv in φ(x)
(αv is a prefix of αα), and by vα in the case of φ(y). The order between φ(x) and φ(y)
is then completely determined by the order between αv and vα. This happens because αv
and vα are words of the same length which must be distinct, as implied by the inequality
αβ = ααkv ̸= βα = αkvα. Hence, if αv < vα, we obtain x < y ⇐⇒ φ(x) < φ(y); if
vα < αv, then we obtain x < y ⇐⇒ φ(x) > φ(y).

No other case is possible. By construction, α is not a prefix of v. Also, α ̸= v, so if v is
a prefix of α, it has to be a proper prefix. If this is the case, as |α| ≤ |αkv| and |v| < |α|, k
has to be at least 1.

Using Lemma 5.2.11 we can easily derive the following corollary.

Corollary 5.2.12 Let w be a binary word and let φ be an acyclic morphism. Then, for
all pairs of rotations u, v of w, either u < v ⇐⇒ φ(u) < φ(v) (when φ is abelian order-
preserving), or u < v ⇐⇒ φ(u) > φ(v) (when φ is abelian order-reversing).

We introduce new measures to study how the action of a morphism affects the BWT-runs.

Definition 5.2.13 Let φ be a morphism and w a word. We define

∆+
φ (w) = r(φ(w))− r(w)

and

∆×
φ (w) =

r(φ(w))

r(w)
.

Acyclic binary morphisms cannot decrease the number of BWT-runs of any word.

Theorem 5.2.14 Let φ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then ∆+
φ (w) ≥ 0 for every

w ∈ {a, b}∗.

Proof. Let φ ≡ (α, β). Since r(w) = r(wm) for every w ∈ Σ∗ and m > 1, let us assume
that w is primitive. For the proof, we assume that |α| ≥ |β|, and the other case is treated
symmetrically. First, let us consider the case where β is not a suffix of α. Let moreover
x ∈ Σ∗ be the longest common suffix between α and β. It follows that there exist α′, β′ ∈ Σ+

such that α = α′x and β = β′x, and that the last symbol of α′ is different from the last of β′

(otherwise x would be longer). Let Rx(φ(w)) denote the multiset of rotations of φ(w) with x
as a prefix. Note that if x = ε, then Rx(φ(w)) = Iφ(w). Since x appears in both α and β, it
follows that |Rx(φ(w))| ≥ |w|. Specifically, for each i ∈ [1 . . |w|], there exists ti ∈ Rx(φ(w))
such that ti = xφ(w[i + 1 . . |w|] · w[1 . . i − 1])v, where v is either α′ or β′, depending on
whether w[i] is a or b respectively. The lexicographical order of these |w| rotations of φ(w)
with the same prefix correspond to the lexicographical order of the rotations in Iφ(w), since

44

by Corollary 5.2.7 the words
⋃|w|

i=1{φ(w[i + 1, |w|] · w[1 . . i − 1])} must differ in at least one
position. By Corollary 5.2.12 this is either in the same or in the reverse order with respect to
the sorting of the rotations of w. Thus, there exists an injective coding λ : {a, b}∗ 7→ Σ′∗ ⊆ Σ
such that either λ(bwt(w)) or λ(bwt(w)R) is a subsequence of bwt(φ(w)), and therefore
r(φ(w)) ≥ r(w).

Let us now consider the case where β is suffix of α. Then, there exists a primitive word
u ∈ Σ+ and two integers p ≥ q ≥ 1 such that β = uq, and α = α′up, with α′ ∈ Σ+ that does
not have u as suffix. Note that α′ ̸= ε, otherwise we would have αβ = upuq = uqup = βα,
i.e. φ would not be acyclic. Let x be the longest common suffix between α′ and u. If x ̸= α′,
from analogous arguments to the case where β is not a suffix of α, we have at least r(w)
equal-letter runs in Rxup(φ(w)). Otherwise, if x = α′, let us consider the word y ∈ Σ+ such
that u = yx. We can then consider the longest common suffix x′ between xy and yx, which
must be a proper suffix (otherwise u would not be primitive), and apply the same reasoning
over the set Rx′xup(φ(w)) and the thesis follows.

The following example shows that Theorem 5.2.14 does not hold in the case of larger
alphabets.

Example 5.2.15 Consider the acyclic morphism φ ≡ (b, a, c). Then, bwt(bcba) = bcab

and bwt(φ(bcba)) = bwt(acab) = cbaa.

An immediate consequence of Theorem 5.2.14 is the following.

Corollary 5.2.16 Let φ : {a, b}∗ 7→ Σ∗ be an acyclic morphism. Then, ∆×
φ (w) ≥ 1, for

every w ∈ {a, b}∗.

The following theorem provides a characterization of cyclic morphisms in terms of the
number of BWT-runs.

Theorem 5.2.17 A morphism φ : {a, b}∗ 7→ Σ∗ is cyclic if and only if there exists k > 0
such that r(φ(w)) = k for all w ∈ {a, b}∗.

Proof. If φ ≡ (α, β) is cyclic then there exists a primitive word u ∈ Σ∗ such that α = up

and β = uq, for some p, q ≥ 0. Therefore, for each word w ∈ {a, b}∗, we have r(φ(w)) =
r(up·|w|a+q·|w|b) = r(u). The other implication is a consequence of Theorem 5.2.14. In fact,
by contraposition for each k > 0 we can find a word w such that r(w) > k (for instance, the
i-th Thue–Morse finite word such that i > k

2
[20]), which leads to r(φ(w)) ≥ r(w) > k as

well.

5.2.3 Binary morphisms preserving r

This section is devoted to characterizing binary morphisms such that the number of BWT
equal-letter runs is preserved after the action of the morphism on any binary word. First,
we show with an example that this property is not trivial.

45

Example 5.2.18 Let θ ≡ (ab, aa) be the period-doubling morphism. It can be verified that
∆+

θ (ab) = 0, ∆+
θ (aab) = 2, and ∆+

θ (aaabbaabab) = 4.

Next, we show that every Sturmian morphism fixes the number of BWT-runs. From the
definition of E, Φ, and Φ̃, and by Lemma 5.2.11, we derive the following.

Lemma 5.2.19 Let w ∈ {a, b}∗ be a binary word. Then, for all pairs of rotations u and v
of w, and for each χ ∈ {E,Φ, Φ̃}, it holds that u < v if and only if χ(u) > χ(v).

We prove that the number of BWT-runs is preserved by the morphisms that are the
generators of the Sturmian morphisms. Note that from the following lemma a method can
be derived to construct bwt(φ(w)) starting from bwt(w), for every Sturmian morphism φ and
every binary word w.

Lemma 5.2.20 Let w ∈ {a, b}∗ be a binary word with |alph(w)| = 2. Then, for all χ ∈
{E,Φ, Φ̃}, one has r(w) = r(χ(w)). More in detail, one has bwt(E(w)) = bwt(w)R and
bwt(Φ(w)) = bwt(Φ̃(w)) = bwt(w)R · a|w|a .

Proof. Since for each word w and each integer k > 0 we have r(w) = r(wk), let us assume
that w is a primitive word. From Lemma 5.2.19, the case χ = E is trivial: in fact, from it
follows that bwt(E(w)) = bwt(w)R, and therefore r(w) = r(E(w)).

For the case χ = Φ one can observe that every b that occurs in Φ(w) is obtained from
Φ(a), and therefore it is always preceded by an a. Thus, the rotations of Φ(w) left to cover
are all those starting with an a, which therefore must also start with either Φ(a) or Φ(b).
By Lemma 5.2.19, and by observing that Φ(a) ends with a b and Φ(b) ends with an a, we
have that bwt(Φ(w)) = bwt(w)R · a|w|a . Thus, we need to check if the run of a’s at the end
merges with the last symbol of bwt(w)R. This is equivalent to checking that the first symbol
of bwt(w) is a b, and by contradiction if the first rotation in lexicographical order is ua for
some u ∈ {a, b}n−1, then au is a conjugate of w and au < ua for each binary word w, a
contradiction.

For the case χ = Φ̃, one can see for any binary word w = w1w2 · · ·wn we have that
Φ(w) = Φ(w1w2 · · ·wn) = av1av2 · · · avn, where for each i ∈ [1 . . n] we have vi = b if wi = a,
or vi = ε if wi = b. On the other hand, for the same word w we have Φ̃(w) = Φ̃(w1w2 · · ·wn) =
v1av2 · · · avna, where analogously to the previous case vi = b if wi = a, or vi = ε if wi = b.
One can notice that Φ(w) and Φ̃(w) are conjugate, and the thesis follows.

A graphical interpretation of Lemma 5.2.20 is shown in Figure 5.3.

The following theorem shows a new characterization of Sturmian morphisms.

Theorem 5.2.21 Let φ be a binary morphism. Then, the following are equivalent:

1. ∆+
φ (w) = 0 for every word w with |alph(w)| = 2;

2. φ is a Sturmian morphism.

46

M(w)

aabba b

abaab b

abbab a

baabb a

babaa b

bbaba a

M(Φ(w))

a.a.ab.a.ab.a b.
a.ab.a.ab.ab. a.
a.ab.ab.a.a.a b.
ab.a.a.ab.a.a b.
ab.a.ab.ab.a. a.
ab.ab.a.a.ab. a.
b.a.a.ab.a.ab. a

b.a.ab.ab.a.a. a

b.ab.a.a.ab.a. a

M(Φ̃(w))

a. a.a.ba.a.ba. b

a. a.ba.a.ba.b a.
a. a.ba.ba.a.a. b

a. ba.a.a.ba.a. b

a. ba.a.ba.ba. a.
a. ba.ba.a.a.b a.
b a.a.a.ba.a.b a.
b a.a.ba.ba.a. a.
b a.ba.a.a.ba. a.

Figure 5.3: From left to right, the BWT matrix for the words w = abbaba, Φ(w), and
Φ̃(w) respectively. For M(Φ(w)) and M(Φ̃(w)), we separate with dots the images of symbols
from w. The rotations in bold of M(Φ(w)) and M(Φ̃(w)) correspond to the words in IΦ(w)
and IΦ̃(w) respectively. The block of rotations in gray at the end of both M(Φ(w)) and
M(Φ̃(w)) are in correspondence of the equal-letter run of a’s of length |w|a, which occurs for
every w ∈ {a, b}∗. One can see that bwt(Φ(w)) = bwt(Φ̃(w)) = bwt(w)R · a|w|a .

Proof. By Theorem 5.2.2 and Lemma 5.2.20, all Sturmian morphisms preserve the number
of BWT-runs. Conversely, suppose that φ preserves the number of BWT-runs. By Theo-
rem 5.2.17, such a morphism must be acyclic. Let s = lim si be a characteristic Sturmian
word. For every i, the word φ(si) has 2 runs in its BWT, hence it is circularly balanced
(Proposition 5.2.3). Let us consider the word φ(s) = limφ(si). It is balanced and aperiodic,
since it is obtained by applying an acyclic morphism to a Sturmian word [25]. Then, φ(s) is
Sturmian by using Theorem 2.4.2, whence φ is a Sturmian morphism by applying Theorem
5.2.1.

5.2.4 Binary morphisms increasing r by a constant

The next step after characterizing Sturmian morphisms as those fixing BWT equal-letter
runs on binary words, is to find other binary morphisms that increase the number of BWT-
runs always by the same fixed constant. Remind that if such a constant exists, it has to be
an even integer because the BWT of any binary word starts with b and ends with a.

We show that for every k > 0, we can find a morphism increasing the BWT-runs of any
binary word by exactly 2k. We do so by showing a family of binary morphisms that increase
the BWT-runs always by 2, which then we can compose as we want. This family is formed by
binary morphisms that are similar to the famous Thue–Morse morphism τ ≡ (ab, ba). The
structure of the BWT of Thue–Morse words has been studied before and it is well understood
[20, 36]. We generalize such results by showing how to derive bwt(φ(w)) from bwt(w) for
every Thue–Morse-like morphism φ and every binary word w.

Definition 5.2.22 A binary morphism is Thue–Morse-like if it has the form τp,q ≡ (abp, baq)
for some p, q > 0.

47

We prove the following proposition, which is crucial to obtain the main result of this
section. Figure 5.4 highlights the key aspects of the proof.

Proposition 5.2.23 For every binary word w such that alph(w) = {a, b}, the I-rotations of
τp,q(w) are contiguous in the BWT matrix of τp,q(w), and their last letters spell bwt(w).

Proof. Let w be a binary word of length n such that alph(w) = {a, b}. Observe that
τp,q ≡ (abp, baq) is abelian order-preserving, so the I-rotations of τp,q(w) maintain their
relative order. Because τp,q(a) ends with b and τp,q(b) ends with a, if we consider only

the I-rotations of τp,q(w) and take the last letter of each, we obtain bwt(w), which starts with
a and ends with b. It remains to show that all the I-rotations of τp,q(w) are contiguous in its
BWT matrix.

If p > 1, each S-rotation starting with a, has to start either with aib for some 2 ≤ i ≤ q+1,
or with abaq, and both of these prefixes are smaller than abp. If p = 1, an S-rotation starting
with a is smaller than the word a(baq)n−1baq−1, which is smaller than a rotation having
(ab)iba as a prefix for some 0 < i < n. The I-rotations that start with a have prefixes of
such type. In both cases, we obtain that the S-rotations starting with a are smaller than
the I-rotations starting with a. A symmetric argument shows that S-rotations starting with
b are greater than the I-rotations starting with b. Thus, the I-rotations are contiguous and
the thesis holds.

Now we are ready to show that Thue–Morse-like morphisms increase the number of BWT-
runs of binary words always by 2.

Lemma 5.2.24 For every binary word w such that alph(w) = {a, b}, it holds that
bwt(τp,q(w)) = b|w|ba(q−1)|w|b · bwt(w) · b(p−1)|w|aa|w|a ,

and that r(τp,q(w)) = r(w) + 2.

Proof. We show that the block of bwt(τp,q(w)) that corresponds to the S-rotations starting
with the letter a is equal to b|w|ba(q−1)|w|b . If q = 1, all the S-rotations starting with a end
with the letter b. If q > 1, the only S-rotations that start with a and end with b have as a
prefix either aq+1b or aqbaq. The smallest S-rotation starting with a and ending with a starts
with aqbpab or aqbpba. Hence, S-rotations starting with a and ending with b appear before
those ending with a.

It follows that the block of bwt(τp,q(w)) defined by the S-rotations starting with a spells
b|w|ba(q−1)|w|b , because of their order, and because each of these rotations is in correspondence
with some specific a inside τp,q(b) for some specific b of w. Only one of these a’s per image
produces a rotation ending with b, and the other q − 1 a’s yield rotations ending with a.

Showing that the block of bwt(τp,q(w)) corresponding to the S-rotations starting with the
letter b equals b(p−1)|w|aa|w|a is handled symmetrically.

By using Proposition 5.2.23, we obtain

bwt(τp,q(w)) = b|w|ba(q−1)|w|b · bwt(w) · b(p−1)|w|aa|w|a .

48

a . . . b

... BWT matrix(w) x

b . . . a

τp,q≡(abp,baq)
========⇒

p,q>1

aq+1bp . . . b
... Block 1

...
aqbaq . . . b

aqbp . . . a
... Block 2

...
abaq . . . a

abp . . . a

... Block 3 x

baq . . . b

babp . . . b
... Block 4

...
bpaq . . . b

bpabp . . . a
... Block 5

...
bp+1aq . . . a

Figure 5.4: Scheme showing the action of a Thue–Morse-like morphism τp,q ≡ (abp, baq) with
p, q > 1 on a binary word w with alph(w) = {a, b}. At the left is the BWT matrix of w. At
the right is the BWT matrix of τp,q(w). The cases where p = 1 or q = 1 are similar with
Block 2 or Block 4 omitted.

As bwt(w) starts with a and ends with b, we have that r(τp,q(w)) = r(w) + 2, and the thesis
holds.

As a consequence of Theorem 5.2.21 and Lemma 5.2.24, we obtain the following corollary.

Corollary 5.2.25 Given a non-negative even integer 2t, there exists a binary morphism φ
such that ∆+

φ (w) = 2t and ∆×
φ (w) ≤ t+ 1, for every word w with |alph(w)| = 2.

Proof. We can construct the morphism φ ∈ ({E,Φ, Φ̃}∪{(abp, baq) | p, q > 0})∗ such that φ is
obtained by composing, in any order, exactly t morphisms taken in the set {(abp, baq) | p, q >
0} and an arbitrary number of Sturmian morphisms. By Theorem 5.2.21 and Lemma 5.2.24,
it holds that ∆+

φ (w) = 2t. The value of the function ∆×
φ (w) = (r(w)+2t)/r(w) = 1+2t/r(w)

is maximized when r(w) = 2. This maximum is ∆×
φ (w) = t+ 1.

We conclude this section by showing a simple algorithm that allows us to construct an
arbitrarily large family of words w1, w2, . . . with exactly 2t BWT-runs each. In Algorithm
1, a morphism φ such that ∆+

φ (w) = 2(t − 1) for every binary word is required. Note that
Corollary 5.2.25 assures that such a morphism exists.

Moreover, each word wi is a prefix of the next word wi+1, so that the infinite word
w = limi→∞wi is well defined, and it is aperiodic. This is given because it holds for the

49

Algorithm 1 Algorithm for constructing words with 2t BWT-runs

Input : A morphism φ with ∆+
φ (w) = 2(t− 1). A sequence of positive integers d1, . . . , dk.

Output: A sequence of words w1, w2, . . . , wk where r(wi) = 2t for any 1 ≤ i ≤ k.
1: w−1 ←− φ(b)
2: w0 ←− φ(a)
3: for i ∈ [1 . . k] do
4: wi ←− wdi

i−1wi−2

5: return w1, . . . , wk

(implicit) standard Sturmian words si for i ∈ [1 . . k] being used, which are circularly balanced
(i.e., r(w) = 2 on them, as reported in Proposition 5.2.3), and their limit is a characteristic
Sturmian word, which is aperiodic.

5.2.5 Morphisms with an unbounded increase on r

There exist morphisms that do not behave as well as Sturmian and Thue–Morse-like mor-
phisms with respect to r. If we consider an alphabet of size greater than 2, we can always
find a morphism φ such that the values ∆+

φ (w) and ∆×
φ (w) are arbitrarily large.

Lemma 5.2.26 Let Σ = {c1, . . . , ck, a, b} with k ≥ 1. Let Φ ≡ (ab, a) be the Fibonacci
morphism. Then, r(w) = k + 3 if w belongs to {Φ2i(a)c1c2 · · · ck | i ≥ 1}.

Proof. We prove the result by induction on k ≥ 1. Observe that the words Φ2i(a) for i ≥ 1
are Fibonacci words ending with the letter a. It is known that in these words, if we append
the letter c1 smaller than a at the end, then the number of runs becomes 4 [102, Theorem 11].
For the inductive step, suppose that r(Φ2i(a)c1 . . . ck−1) = k + 2. When appending ck at the
end, the rotations that do not start with ck keep their relative order, and the rotation that
originally ended with ck−1 now ends with ck. Hence, they define the same number of runs
as before. The rotation starting with ck can be found after the rotation starting with ck−1,
which does not end with b, and before the first rotation starting with a, which ends with b.
Hence, the number of runs increases by 1. Thus, r(Φ2i(a)c1 . . . ck) = k + 3.

Lemma 5.2.27 Let Σ = {c1, . . . , ck, a, b} with k ≥ 1. Let Φ ≡ (ab, a) be the Fibonacci
morphism, and φ ≡ (c1, c2, . . . , ck, ab, a) be a morphism on the alphabet Σ. Then, r(w) =
Ω(log n) for every w ∈ {φ(Φ2i(a)c1c2 · · · ck) | i ≥ 1}.

Proof. The morphism φ maps a Fibonacci word ending with a having c1 . . . ck appended at
the end, to the next Fibonacci word, which ends with b, having c1 . . . ck appended at the end.
For k = 1, it is known that the number of runs in this family is Ω(log n) [60]. In a similar
way to Lemma 5.2.26, it is possible to prove by induction that appending ck at the end of
φ(Φ2i(a)c1c2ck−1) adds 2 runs when k = 2 and exactly 1 new run when k > 2.

Proposition 5.2.28 For each alphabet Σ with size greater than 2 there exist a morphism
φ, satisfying that for every k, there is a word w ∈ Σ∗ such that ∆+

φ (w) ≥ k and ∆×
φ (w) ≥ k.

50

Proof. This is immediate from Lemma 5.2.26 together with Lemma 5.2.27.

Finding examples like the previous ones for binary morphisms is trickier, but at least in
the case of ∆+

φ , it is possible. An example of a binary morphism for which the value ∆+
φ (w)

can be arbitrarily large is the period-doubling morphism denoted by θ and defined by the
rules θ(a) = ab and θ(b) = aa.

Lemma 5.2.29 Let θ be the period-doubling morphism. For any positive integer k there
exist a word w such that ∆+

θ (w) > k.

Proof. W.l.o.g assume that k > 2. For i ∈ [2 . . k] define the words

si = abia · ui and ei = abia · uR
i , where ui = a2k−ibai−2

We say that si is a starting factor, and ei is an ending factor. Observe that si (resp. ui) is
always smaller than ei (resp. u

R
i). Moreover, it holds that if i < j, then ui < uj < uR

j < uR
i .

We define the word zk = (Πk
i=2siei)a

k and show that ∆+
θ (zk) = 2k. Figure 5.5 shows the

structure of both BWTs and highlights the increase in the number of runs.

Consider the rotations of zk starting with bia with 1 < i ≤ k. The left shift of the
unique rotation starting with the i-th starting factor, and the left shift of the unique rotation
starting with the i-th ending factor, are the smallest and greater, respectively. Both of them
end with the letter a. The remaining rotations starting with bia (if any) have to end with b

because in them the prefix bia corresponds to a suffix of a longer run of b’s followed by an a.

In the case of the rotations of zk starting with ba, the one starting in the last b of ek, has
bakak as a prefix, so it is the smallest of them. Also, this rotation is preceded by the factor
abkaak−2, which ends in a. The greatest rotation starting with ba is the one starting with
the b preceding e2, which is followed by abb and preceded also by an a. In the case of the
rotations of zk starting with a, the smallest of them ends with the letter b as in any binary
word. The greatest is the rotation starting with abkauR

k which is preceded by the letter a.

With the general structure of the BWT of zk in mind, now we analyze the BWT of θ(zk).
The morphism θ is order-reversing and all the I-rotations of θ(zk) start with the letter a.
S-rotations of θ(zk) starting with the letter b are always preceded by an a, and it is easy to
see that this run of a’s merges with the last a in the greatest I-rotation. The S-rotations
starting with an a have an even number of a’s before the first b appears, and also end with
the letter a. This implies that they appear grouped after all the I-rotations of the form
(aa)iab for some 1 ≤ i ≤ k, and before all the I-rotations starting with (aa)i−1ab. As the
smallest and greatest rotations of each of these blocks of I-rotations end with b (because of
the action of θ), it follows that the group of S-rotations starting with (aa)ib increases the
number of runs of the BWT of θ(zk) by 2 with respect to the BWT of zk. This happens for
1 ≤ i ≤ k, so the overall increase in r after applying the morphism θ is exactly 2k.

From the lemma above we can deduce that there are binary morphisms that can greatly
increase the number of BWT-runs of some words. We define the sensitivity of BWT-runs

51

a b
...

...
... x

a bkauR
k . . . a

ba a2kb . . . a
...

...
... y

ba bb . . . a

b2a u2 . . . a

b2a u3 . . . ab
...

...
...

...
b2a uk . . . abk−2

b2a uR
k . . . abk−2

...
...

...
...

b2a uR
3 . . . ab

b2a uR
2 . . . a

...
...

...
...

bka uk . . . a

bka uR
k . . . a

θ≡(ab,aa)
=======⇒
reverse order

b a

ab aa
...

...
... x

ab θ(bkauR
k) . . . ab

(aa)b a

(aa)ab θ(a2kb) . . . ab
...

...
... y

(aa)ab θ(bb) . . . ab

(aa)2b a

(aa)2ab θ(u2) . . . ab

(aa)2ab θ(u3) . . . aa
...

...
...

...
(aa)2ab θ(uk) . . . aa

(aa)2ab θ(uR
k) . . . aa

...
...

...
...

(aa)2ab θ(uR
3) . . . aa

(aa)2ab θ(uR
2) . . . ab

(aa)3b a
...

...
...

...
(aa)kb a

(aa)kab θ(uk) . . . ab

(aa)kab θ(uR
k) . . . ab

Figure 5.5: To the left is the BWT matrix of zk. To the right is the BWT matrix of θ(zk), here
displayed in reverse order. Each gray row represents a block of rotations from Sθ(zk) starting
with the same prefix, highlighted in the first column. Each one of these block except the first
one yields 2 extra runs on bwt(θ(zk)). The words x and y correspond to the concatenation of
the last letters of blocks of the BWT matrix of zk whose form is unknown, but do not play
a role in the increase on r(θ(zk)).

to morphism application in a similar way to how Akagi et al. define the sensitivity of
repetitiveness measures to edit operations [1].

Definition 5.2.30 The BWT additive sensitivity and BWT multiplicative sensitivity for a
morphism φ are respectively, the functions

ASr,φ(n) = max
w∈Σn

(∆+
φ (w)) and MSr,φ(n) = max

w∈Σn
(∆×

φ (w))

Proposition 5.2.31 Let θ be the period-doubling morphism. It holds that ASr,θ(n) =
Ω(
√
n).

Proof. The length of the words zk in Lemma 5.2.29 is n = Θ(k2). We showed that ∆+
θ (zk) =

2k = Θ(
√
n) on these words. For values of n in between |zk| and |zk+1|, it is easy to see that

for the word zka
j for 0 < j < |zk+1| − |zk|, it still holds that ∆+

θ (zka
j) = 2k, as none of the

key aspects of the proof of Lemma 5.2.29 changes. Thus, the claim holds.

52

5.2.6 Comparison with other repetitiveness measures

Morphisms behave very differently when other repetitiveness measures are considered. For
instance, any morphism φ increases the size z(w) of the Lempel-Ziv parsing of any word
by at most an additive constant depending only on φ. This holds for any alphabet size, as
shown by Constantinescu and Ilie [35, Lemma 8].

Lemma 5.2.32 Let φ : Σ∗ → Γ∗ be any morphism. For every word w, it holds that
z(φ(w)) ≤ z(w) + k where k is a constant depending only on φ.

The result of Constantinescu and Ilie can easily be extended to the LZ parsing without
overlaps, the optimal (not the greedy) LZ-end parsing, and bidirectional macro schemes. We
can show a similar result for the size g(w) of the smallest deterministic context-free grammar
generating only w. This can be further generalized to the size of the smallest run-length
context-free grammar, and also to the size of the smallest collage system.

Lemma 5.2.33 Let φ : Σ∗ → Γ∗ be any (possible erasing) morphism. For every word w, it
holds that g(φ(w)) ≤ g(w) + k where k is a constant depending only on φ.

Proof. Given a deterministic context-free grammar G of size |G| generating w, we construct
a grammar generating φ(w). For each occurrence of a terminal symbol a in any rule of the
grammar, replace it with a new non-terminal Aa. For each terminal symbol add the rule
Aa → φ(a). The size of the resulting grammar is g′ ≤ |G|+ k where k =

∑
a∈Σ |φ(a)|. Let G

be the smallest grammar generating w, and then the thesis holds. If the resulting grammar
has erasing rules, we can delete them, and replace the occurrences of those erasing variables
in other variables by ε. We repeat this recursively. The size of the resulting grammar can
only decrease, so the thesis still holds.

If for some fixed measure and morphism, this morphism increases the value of the measure
always by at most a fixed constant, then we can derive an easy upper bound for the family
of words obtained by iterating that morphism.

Proposition 5.2.34 Let µ be a repetitiveness measure and φ be a morphism. Suppose that
for every word w it holds that µ(φ(w)) ≤ µ(w)+k for a constant k depending only on µ and
φ. Then, µ = O(i) in the family {φi(w) | i ≥ 0}.

Proof. Let k′ = µ(φ(w)). We show by induction that µ(φi(w)) ≤ ki+ k′ for any i ≥ 1. For
i = 1, clearly µ(φ(w)) ≤ k + k′. Let i > 1 and suppose the claim is true for i − 1. Then,
µ(φi(w)) ≤ µ(φi−1(w)) + k ≤ (k(i− 1) + k′) + k ≤ ki+ k′.

The families on the proposition above are known as D0L-sequences [120]. As a direct
consequence of Lemma 5.2.33 and Proposition 5.2.34, it holds that all repetitiveness measures
upper-bounded by g are O(i) on the family of words belonging to a fixed D0L-sequence. In
fact, the result we obtain is even more general because we can apply any morphism to words
obtained from a D0L-sequence increasing the size of the grammar only by a fixed constant.

53

Proposition 5.2.35 For every (possibly erasing) morphisms φ and λ, and every word w, it
holds that g = O(i) in the family {λ ◦ φi(w) | i ≥ 0}.

Proof. By Lemma 5.2.33 and Proposition 5.2.34, it holds that g(φi(w)) = O(i) for every
(possibly erasing) morphism φ. By Lemma 5.2.33, one has g(λ ◦ φi(w)) ≤ g(φi(w)) + k for
every (possibly erasing) morphism λ, and a constant k depending on λ. Thus, g(λ◦φi(w)) =
O(i).

It is unknown if an analogous result is true for r. In fact, even for the restricted case of
purely morphic words, this is known to hold only for the binary case [47].

54

Chapter 6

New Repetitiveness Measures Based
on Self-Similarity

In this chapter, we explore a source of repetitiveness that is more structural than the one
captured by the measures δ, γ, and bidirectional macro schemes. It is captured by string
morphisms, so we define new measures based on them. We call this source of repetitiveness
self-similarity. We show that by exploiting this source, we can sharply break the lower bound
for repetitiveness given by δ.

The chapter is structured as follows.

• In Section 6.1, we introduce our simplest mechanisms exploiting self-similarity, which we
call L-systems, and build upon deterministic Lindenmayer systems [88, 89], in particular
on the variant called CPD0L-systems. A CPD0L-system describes the language of the
images, under a coding τ , of the powers of a non-erasing morphism φ starting from a
string s (called the axiom), that is, the set {τ(φi(s)) | i ≥ 0}. L-systems extend CPD0L-
systems with two parameters, d and n, so as to unambiguously describe the string
w = τ(φd(s))[1 . . n]. The size of the shortest description of an L-system generating w
in this way is called ℓ(w). Intuitively, ℓ captures repetitiveness because any occurrence
of a symbol a in φi(s) expands to the same string in φi+j(s) for every j. The resulting
repetitiveness is, however, structured by the morphism φ, instead of completely free as
in BMSs. We show how to perform basic operations like decompression or direct access
on L-systems, and prove that they are monotone upon appending prefixes.

• In Section 6.2, we show that ℓ can be much smaller than δ, by up to a Θ(
√
n) factor.

We also show that ℓ can be Ω(δ log n) in other string families, which makes ℓ uncom-
parable to δ. This implies that the lower bound δ does not capture the same kind of
repetitiveness. On the other hand, we show that ℓ = O(g). This bound is important
because it implies that δ can be only polylogarithmically smaller than ℓ, and places ℓ
within the map of known repetitiveness measures.

• In Section 6.3, we expose string families where ℓ is larger than the output of several
repetitiveness-aware compressors like grl, ze, r and r$. We then conclude that ℓ is
uncomparable to almost all measures other than g, which suggests that the source of

55

ν

δ γ

min(ℓ, b)

b r/r$

ze

grl g

ℓ

δ

Figure 6.1: Asymptotic relations between ℓ, ν, and other repetitiveness measures. A double
solid arrow from v1 to v2 means that it always holds that v1 = O(v2), and there exists a
string family where v1 = o(v2). A dashed arrow from v1 to v2 means that there exists a
family where v1 = o(v2). We suggest the reader to check Figure 4.3 for further implications.

repetitiveness it captures is largely orthogonal to the typical cut-and-paste of macro
schemes.

• In Section 6.4, we introduce macro-systems, which are a reformulation of bidirectional
macro schemes, in the sense that the size of the smallest (internal) macro system is
Θ(b), where b is the size of the smallest BMS. This formulation makes them easy to
combine with L-systems in the following section.

• In Section 6.5, we introduce NU-systems, which elegantly combine L-systems and BMSs,
and the measure ν, defined as the size of the smallest NU-system generating the string.
We introduce a string family where ν is asymptotically strictly smaller than both ℓ
and b, which shows that NU-systems are indeed relevant and positions ν as the unique
smallest reachable repetitiveness measure to date that captures both kinds of repet-
itiveness in non-trivial ways. We also study how to decompress NU-systems and its
sensitivity to some operations on the string.

• In Section 6.6, we study various ways of simplifying L-systems and show that, in all the
cases we considered, we end up with a weaker repetitiveness measure. We also show
that some of those weaker variants of ℓ can be of independent interest, as they speed
up some relevant processes like decompression and direct access.

Overall, our results contribute to understanding how to measure repetitiveness and how
to exploit it in order to build better compressors. Figure 6.1 shows how our new measures ℓ
and ν relate to other measures in the literature.

56

6.1 Deterministic L-systems and the Measure ℓ

In this section we study a mechanism for generating infinite sequences called deterministic
Lindenmayer systems (L-systems) [88, 89], which build on string morphisms. L-systems
were initially utilized as a tool to model the growth of plants and algae [88, 89]. They also
have been used to define infinite words with interesting self-similarity and factor complexity
properties [120]. For these reasons, L-systems have been studied extensively from a practical
and mathematical point of view. We adapt L-systems to generate finite repetitive strings.
L-systems are, in essence, grammars with only non-terminals, which typically generate longer
and longer strings, in a levelwise fashion. For our purposes, we will also specify at which level
d to stop the generation process and the length n of the string w to generate. The generated
string w[1 . . n] is then the prefix of length n of the sequence of variables obtained at level d.

We adapt, in particular, the variant called CPD0L-systems, though we will use the generic
name L-systems for simplicity. Formally, a CPD0L-system is a 4-tuple L = (Σ, φ, τ, s),
where Σ is the alphabet, φ is the set of rules (a non-erasing endomorphism on Σ∗), τ is
a coding on Σ∗, and s ∈ Σ is the initial symbol or the axiom. The system generates the
sequence (τ(φd(s)))d∈N. The “D0L” stands for deterministic L-system with 0 interactions,
which means that the L-system has one rule per symbol and that rules are context-free. The
“P” stands for propagating, which means that φ is non-erasing. Finally, the “C” stands for
coding, which means that the system is extended with a coding. To define a compressor based
on CPD0L-systems, we extend them to 6-tuples by fixing d and using another parameter n,
so we can uniquely determine a string of the sequence generated by the system and then
extract a prefix from it.

Definition 6.1.1 (L-systems) An L-system is a 6-tuple L = (Σ, φ, τ, s, d, n) where Σ is the
alphabet, φ is the set of rules (a non-erasing endomorphism on Σ∗), τ is a coding on Σ∗,
s ∈ Σ is the axiom, and d and n are two non-negative integers. The string generated by L is
w = τ(φd(s))[1 . . n].

We now define the size of an L-system and the measure ℓ.

Definition 6.1.2 (Measure ℓ) The size of an L-system L = (Σ, φ, τ, s, d, n) is size(L) =
size(φ)+ |Σ|+3. The measure ℓ(w) is defined as the size of the smallest L-system generating
w.

The size of an L-system accounts for the lengths of the right-hand sides of the rules in
φ, the coding τ , the axiom symbol, and the values d and n, so we can effectively represent
the system using O(size(L)) space. Hence, the measure ℓ is reachable. As a convention, we
always assume that d and |Σ| are in nO(1). Otherwise, we would need ω(1) Θ(log n)-bit words
to represent the integer d or the symbols of the alphabet. We also assume that size(L) ≤ 3n
(and hence |Σ| ≤ 3n), as there is always a trivial L-system L = (Σ′, {s → w}, id, s, 1, n)
generating w, of size n+ |Σ′|+3, where Σ′ contains the symbols actually appearing in w, and
id is the identity function. A finer-grained analysis of the number of bits needed to represent
an L-system of size ℓ yields O(ℓ log |Σ|+ log n) bits, the second term corresponding to d and
n; note Σ contains the alphabet of w.

57

Algorithm 2 Decompressing L-system L = (Σ, φ, τ, s, d, n) in time O(dn); invoke with
decompress(s, d, n).

Input : Symbol a to expand, number of levels d, maximum length to output n > 0.
Output: The string τ(φd(a))[1 . . n′] with n′ = min(n, |φd(a)|). Returns n− n′.
1: function decompress(a, d, n)
2: if d = 0 then
3: output τ(a)
4: return n− 1

5: let a→ b1 · · · bk ∈ φ
6: for i← 1 to k do
7: n← decompress(bi, d− 1, n)
8: if n = 0 then return 0
9: return n

6.1.1 Decompression

In this subsection we design and analyze algorithms for decompressing L-systems. The de-
compression of L-systems is, in principle, very similar to that of context-free grammars,
except that we must keep track of the level so as to output τ(a) when we reach a symbol a
at level d. We must also keep track of the number of symbols already output so as to stop
when they reach n.

This simple procedure, depicted in Algorithm 2, takes time O(dn); consider the example
system L = ({a, b, c}, {a→ ab, b→ c, c→ b}, τ, a, d, n). The root of this inefficiency is the
cycle b↔ c, which allows the string not to grow with d. Removing “unary” symbols, that is,
with right-hand side of length 1, is not as simple as with CFGs, but it is possible and yields
better decompression time.

To properly eliminate unary symbols, we define the function f : Σ → Σ such that
f(a) = b iff the rule for a starts with b, a → b · · · . In our example, f(a) = a, f(b) = c,
and f(c) = b. A representation of function f can be built in O(|Σ|) time and space so that
fh(a) can be computed in constant time for any h ≥ 0 [98]. We also define function g as
g(a) = min

(
{h ≥ 0 | fh(a) is not a unary symbol} ∪ {+∞}

)
. In our example, g(a) = 0 and

g(b) = g(c) = +∞. It is an easy exercise to build function g in time O(|Σ|), by trying, for
each a not already visited, a, f(a), f 2(a), . . . until finding the first non-unary symbol fh(a),
and then filling g(fk(a)) = h− k for all 0 ≤ k ≤ h, or +∞ for all of them if we fall in a loop
of unary symbols.

Algorithm 3 shows the improved procedure. Every unary path in the derivation of the
output is now traversed in constant time. The nodes of the recursion tree then have at least
two children, except for those on the rightmost path, which may have only one child included
in the prefix of length n. Since the recursion tree has n leaves and depth d, it has O(n+ d)
nodes, the term n counting the leaves and their non-unary ancestors, and d counting those
rightmost nodes that are possibly unary. The bound is tight; consider our example L-system
with small n and large d. The total decompression time is then O(|Σ|+n+d), where O(|Σ|)
counts the time to build f and g. Recall we can assume |Σ| = O(n).

58

Algorithm 3 Decompressing L-systems L = (Σ, φ, τ, s, d, n) in time O(n + d); invoke with
decompress(s, d, n).

Input : Symbol a to expand, number of levels d, maximum length to output n > 0.
Output: The string τ(φd(a))[1 . . n′] with n′ = min(n, |φd(a)|). Returns n− n′.
1: function decompress(a, d, n)
2: h← g(a)
3: if h ≥ d then
4: output τ(fd(a))
5: return n− 1

6: b← fh(a)
7: let b→ b1 · · · bk ∈ φ
8: for i← 1 to k do
9: n← decompress(bi, d− h− 1, n)

10: if n = 0 then return 0
11: return n

Theorem 6.1.3 Given an L-system L = (Σ, φ, τ, s, d, n), we can compute its represented
string in time O(n+ d).

In case d is significantly larger than n, the following solution that decompresses in time
O(|Σ| + n log d) may be of interest. With functions f and g, we follow a procedure similar
to one used on CFGs [54] for decompressing in real time: To decompress a symbol a with
d levels, we first output fd(a). Now let b = fd−1(a) and b → a b2 · · · bk. We recursively
decompress b2, . . . , bk with d = 0. Now let c = fd−2(a) and c → b c2 · · · cr. We recursively
decompress c2, . . . , cr with d = 1, and so on. The procedure finishes when we have output n
symbols or we have completely expanded a with d levels.

This algorithm outputs a symbol per unit of work done, except when we try c = fh(a)
for some h = d − 1, . . . , 0 and c is unary. Those unary symbols that we visit as we return
from level d take one unit of work and yield no symbols. To avoid wasting time on them,
we use function g. Instead of trying out all the values of h from d − 1 to 0, we use binary
search to skip the unary nodes; see Algorithm 4. The binary search is possible because, if
g(fd/2(a)) ≥ d/2, then the largest 0 ≤ h < d with a non-unary symbol is in [0 . . d/2 − 1],
otherwise it is in [d/2 . . d − 1]. In the worst case, this poses a penalty of O(log d) to every
symbol output. The bound is tight even if we use doubling search; consider the L-system
L = ({a, b, c}, {a→ ba, b→ c, c→ b}, τ, a, d, n) with large d.

Theorem 6.1.4 Given an L-system L = (Σ, φ, τ, s, d, n), we can compute its represented
string in time O(n log d).

6.1.2 Access

A more ambitious goal in compression formats is to provide direct access to the represented
string w, that is, being able to retrieve w[i . . j] without the need to decompress the whole w.
This can be done in time O(j − i + log n) on grammar-based representations [18], but it is

59

Algorithm 4 Decompressing L-systems L = (Σ, φ, τ, s, d, n) in time O(n log d); invoke with
decompress(s, d, n).

Input : Symbol a to expand, number of levels d, maximum length to output n > 0.
Output: The string τ(φd(a))[1 . . n′] with n′ = min(n, |φd(a)|). Returns n− n′.
1: function decompress(a, d, n)
2: output τ(fd(a))
3: n← n− 1
4: if n = 0 then return 0
5: h← d− 1
6: while h ≥ 0 do
7: b← fh(a)
8: let b→ b1 · · · bk ∈ φ
9: for j ← 2 to k do

10: n← decompress(bj, d− h− 1, n)
11: if n = 0 then return 0
12: h← max

(
{k ∈ [0 . . h−1] | k + g(fk(a)) < h} ∪ {−1}

)
(binsearch)

13: return n

not known if it can be done on bidirectional macro schemes or even Lempel-Ziv variants.

We first focus on accessing the single symbol w[i]. For any a ∈ Σ, we define al = φl(a)
as the string obtained by iterating l times the morphism φ on a. Now let a→ b1 · · · bk ∈ φ,
then we define pla(t) =

∑t
r=1 |blr| for 0 ≤ t ≤ k.

We begin the extraction of w[i] from the axiom a0 = s, with i0 = i. Let r0 ≥ 1 be
such that pda0(r0 − 1) < i0 ≤ pda0(r0), and a0 → b1 · · · bk ∈ φ. Then w[i] = τ(ad−1

1 [i1]), with
a1 = br0 and i1 = i0 − pda0(r0 − 1). After continuing for d levels, we finally have w[i] = τ(ad).
Algorithm 5 shows the process.

With binary search, the algorithm takes time O(d log |φ|). We can improve it by using
instead interval-biased search trees [18] on the sequences pla. With those trees, the search for x
on a sequence of values i1 < · · · < it within a universe of size u takes time O(log(u/(ir+1−ir)),
if ir < x ≤ ir+1. By pruning the values of the sequences pla to a maximum of n, we have that
the first search, on s, will take time O(log(n/|ad−1

1 |)), the second one O(log(|ad−1
1 |/|ad−2

2 |)),
and so on, which telescopes to O(d + log n). Note that n ≤ |φ|d, so d + log n = O(d log |φ|)
and it could be less.

Let us now consider how to preprocess the L-system to compute pla. We define the
|V | × |V | matrix Mφ, so that Mφ[a][b] is the number of times b appears in the right-hand
side of the rule for a (cf. [123]). Formally, if a→ b1 · · · bk ∈ φ, then Mφ[a][b] = |{r | br = b}|.
Now note that the vector L1 = Mφ × [1 · · · 1]T is such that L1[a] = |a1|, and in general,
Ll = M l

φ × [1 · · · 1]T satisfies Ll[a] = |al|. Since Mφ contains only |φ| nonzero entries, we
can compute all the vectors Ll by defining L0 = [1 · · · 1]T and each Ll = Mφ × Ll−1 for
l = 1, . . . , d, in O(d(|φ| + |V |)) = O(d|φ|) total time and O(|φ| + d|V |) space. Once the
vectors Ll are obtained, we can compute the functions pla in O(d|φ|) space and time. The
interval-biased search trees are built in linear time and space, which adds up to O(d|φ|) in
our case.

60

Algorithm 5 Accessing w[i] from L-system L = (Σ, φ, τ, s, d, n) in time O(d+log n); invoke
with access(s, d, i).

Input : Axiom s to expand, number of levels d, position to access 1 ≤ i ≤ n.
Output: The symbol τ(φd(s)[i]).
1: function Access(s, d, i)
2: let pla be precomputed for all a ∈ Σ, l ∈ [0 . . d− 1]
3: a← s
4: for l← d to 1 do
5: let a→ b1 · · · bk ∈ φ
6: let r be such that pla(r − 1) < i ≤ pla(r) (interval-biased search)
7: i← i− pla(r − 1)
8: a← br
9: return τ(a)

Theorem 6.1.5 After an O(d|φ|) space and time preprocessing of an L-system L =
(Σ, φ, τ, s, d, n) representing w, we can extract any substring w[i . . j] in timeO(j−i+d+log n).

Proof. We have already described the preprocessing and how to access an individual cell.
Assume we access w[i] and w[j]. Their paths along Algorithm 5 may coincide for some levels,
until they diverge on the right-hand side of some rule a → b1 · · · bk at some level l. From
levels t = l . . d, the access to w[i] computes values rt = r from the right-hand sides of the
rules of at in line 6. Similarly, the access to w[j] computes values r′t and a′t. We then output
the following strings, in this order, which form w[i . . j]:

1. τ(φd−t(brt)), τ(φ
d−t(brt+1)), . . ., with at → b1 · · · , for t = d, d− 1, . . . , l + 1.

2. τ(φd−l(brl+1)), . . ., τ(φ
d−l(br′l−1)).

3. τ(φd−t(b1)), . . . , τ(φ
d−t(br′t−1)), with a′t → b1 · · · , for t = l + 1, l + 2, . . . , d.

Each of those whole subtrees, say for symbols bl
′
, are decompressed in optimal time using

function decompress(b, l′, |bl′| = Ll′ [b]) from Algorithm 3. Since the algorithm decompress
the whole symbol, its recursion tree has |bl′ | leaves and then it has maximum height |bl′ |;
therefore it runs in optimal time O(|bl′ |).

The extraction time O(j − i + log n) is near-optimal for any representation of size O(g)
[128], which we show to be the case of L-systems in Section 6.2. The extra term O(d),
which is related to the height of the grammar, has been removed (or reduced to O(log n)) on
grammars via heavy-path decomposition of the parse tree [18] or by balancing the grammar
[52]. Applying either technique to L-systems is an interesting challenge. Another relevant
challenge is to decrease our heavy preprocessing space and time of O(d|φ|), even if we can
perform it once and then answer many extraction queries.

In this sense, the closest result to ours, by Salomaa [123], precomputes the characteristic
function of the matrix Mφ, which allows computing |φd(s)| in time O(|Σ| log d) (the function

61

has |Σ| terms that include polynomials and exponents on d). By precomputing the function
for every possible initial symbol a ∈ Σ, we use O(|Σ|2) space (which typically compares
favorably to our space O(d|φ|)) and can compute any value pla in time O(|Σ| log d); this yields
an extraction time of O(j − i + (d + log n)|Σ| log n). The precomputation time for the |Σ|
symbols is O(|Σ|3.7) arithmetic operations, dominated by the time to find the characteristic
function on integer matrices [64]. Shallit and Swart [125] aim to remove the O(d) term from
the extraction time, by using the cycles in the grammar in order to jump near the desired
level. They manage to compute any φd(a)[i] in time bounded by a polynomial (yet of degree
10) in |Σ|, width(φ), log d and log i.

6.1.3 Sensitivity to string transformations

When considering repetitiveness measures, it is often useful to know how they can change
after applying relevant string transformations on the input. In the case of the measure ℓ, we
can show that this measure is monotone with respect to prepending symbols.

Proposition 6.1.6 Let w ∈ Σ+ and a symbol a. It holds that ℓ(aw) ≤ ℓ(w) +O(1).

Proof. Assume first that a ∈ Σ. Let L = (Σ, φ, τ, s, d, n) be a minimal L-system representing
w, and two new distinct symbols b, s′ ̸∈ Σ. Let the L-system L′ = (Σ′, φ′, τ ′, s′, d′, n′), with
Σ′ = Σ ∪ {b, s′}, φ = φ ∪ {b → b, s′ → bs}, τ ′ = τ ∪ {b → a, s′ → s′}, d′ = d + 1, and
n′ = n+ 1. Clearly L′ generates aw and its size is size(L) + 5. Thus, ℓ(aw) ≤ ℓ(w) + 5. If
a ̸∈ Σ then we just let b = a and the claim follows.

On the other hand, basic edit operations like the insertion, deletion, or substitution of
a single symbol at an arbitrary position (or even just at the end of the string) are not
straightforward to handle. More complex operations like reversing w, or applying to it a
string morphism different from φ, are also non-trivial to analyze.

6.2 Breaking the Repetitiveness Lower Bound δ

The measure δ is a (strict) lower bound to all the other usually considered repetitiveness
measures [79, 99]. It is also a lower bound to the k-th order empirical entropy, which is
a lower bound for statistical compression [99]. This implies that δ is an asymptotic lower
bound to the size of almost every existing compressor and compressibility measure to date.

Since δ is unreachable in general [79], we cannot expect to find a reachable measure smaller
than δ. We are interested, instead, in reachable measures that also capture repetitiveness
and go below δ in some restricted but relevant scenarios. While it is always possible to
design a measure that breaks δ on some specific string families, we require this measure to
be competitive, meaning that it is at least as good as other better established measures like
z, g, or r/r$.

62

As we show next, the repetitiveness measure ℓ satisfies those conditions. Indeed, we show
that δ and ℓ are uncomparable. We first show that ℓ can be larger than δ by a logarithmic
factor.

Lemma 6.2.1 There exist string families where ℓ = Ω(δ log n).

Proof. Kociumaka et al. [79] exhibit a string family of 2Θ(log2 n) elements with δ = O(1), so
it needs Ω(log2 n) = Ω(δ log2 n) bits to be represented with any method. On the other hand,
an L-system of size ℓ is described with (at most) O(ℓ log n) bits. Therefore ℓ = Ω(log n) =
Ω(δ log n) in this family.

On the other hand, ℓ is a competitive repetitiveness measure: the smallest L-system for
a string is always asymptotically smaller than the smallest grammar. This shows that the
measure ℓ is always reasonable for repetitive strings.

Lemma 6.2.2 It always holds that ℓ = O(g).

Proof. Consider a grammar G = (V,Σ, R, S) of height h generating w[1 . . n]. If there are
rules A → ε, remove them and remove A from all right-hand sides, iterating until all those
rules disappear. We now define the equivalent L-system L = (V ∪Σ, R′, τ, S, h, n), where R′

contains all the rules in R plus the rules a→ a for all a ∈ Σ. The coding is set to τ = id.

It is clear that this L-system produces the same derivation tree of G, reaching terminals
a at some level. Those remain intact up to the last level, h, thanks to the rules a → a. At
this point the L-system has derived w[1 . . n].

The size of the L-system is that of G plus O(|Σ|), which is of the same order of the size
of G because every symbol a ∈ Σ appears on the right-hand side of some rule (if not, we can
remove a from Σ).

We now exhibit a string family where δ is Θ(
√
n) times bigger than the smallest L-system.

That is, ℓ can perform much better than δ in some scenarios.

Lemma 6.2.3 There exists a string family where δ = Θ(ℓ
√
n).

Proof. Consider an L-system Ld = (Σ, φ, τ, s, d, n), where

Σ = {a, b, c}
φ = {a→ a, b→ ab, c→ cb}
τ = id

s = c

n = 1 +
d(d+ 1)

2

63

c b a b a a b

c b a b a a b a a a b a a a a b a a a a a b

s3 =

s6 =

Figure 6.2: All the substrings of length 6 of the string s6 of Lemma 6.2.3 starting inside some
position i ≤ |s3| = 7 are distinct, because the runs of a’s considered have all different and
increasing lengths, and d is big enough. The last of the substrings considered is underlined.
Extending these substrings one position to the left yields |s3| different strings of length 7, so
the claim holds for even and odd values of d ≥ 2.

for any d ≥ 0. By iterating the morphism φ we obtain the words sd = φd(s):

φ0(c) = c

φ1(c) = cb

φ2(c) = cbab

φ3(c) = cbabaab

φ4(c) = cbabaabaaab

φ5(c) = cbabaabaaabaaaab

and so on, from which we extract as a prefix the whole word. It is easy to check by induction
that, for each d ≥ 0, the string generated by the system Ld is sd = cΠd−1

i=0 a
ib, which has

length 1 + d(d+1)
2

.

It holds that ℓ is Θ(1) in this family: the system is essentially the same for every string
in the family; the only changes are the integers d and n, which always fit in constant space.

On the other hand, the first |s⌊d/2⌋| = 1+ ⌊d/2⌋(⌊d/2⌋+ 1)/2 substrings of length d of sd
(for d ≥ 2) are completely determined by the b’s they cross, and the number of a’s at their
extremes, so they are all distinct. An example can be seen in Figure 6.2.

This gives the lower bound δ = Ω(d) = Ω(
√
n). The upper bound O(√n) holds trivially

for run-length grammars, as the strings considered have Θ(
√
n) runs of a’s followed by b’s,

so δ = O(grl) = O(
√
n). Therefore, it holds δ = Θ(

√
n) = Θ(ℓ

√
n) in this string family.

The strings of Lemma 6.2.3 are easy to describe, yet hard to represent with copy-paste
mechanisms. Intuitively, the simplicity of the sequence relies on the fact that many substrings
can be structurally described in terms of previous ones, so it is arguably highly repetitive,
though not via copy-paste. The repetitiveness in this family is better captured by an L-
system, instead.

As a corollary of Lemmas 6.2.1 and 6.2.3, we obtain that ℓ and δ are uncomparable as
repetitiveness measures.

Corollary 6.2.4 The measures ℓ and δ are uncomparable.

64

6.3 Uncomparability of ℓ with Other Measures

Given the uncomparability of ℓ and δ, a natural question is which other measures are also
uncomparable to ℓ. We show in this section that this holds for almost every other repeti-
tiveness measure. To do so, we first recall the string family of Kociumaka et al. [79], which
needs Ω(log2 n) bits to be represented with any method. This string family will be crucial in
the following proofs.

Definition 6.3.1 ([79]) The string family K is formed by all the infinite strings s over {a, b}
constructed as follows:

1. Let s[1] = b.

2. For any i ≥ 2, choose a position ji in [2 · 4i−2 + 1 . . 4i−1] and set s[ji] = b.

3. If j > 1 and j ̸= ji for any i ≥ 2, let s[j] = a.

The family Kn for n ≥ 0 is formed by all the prefixes of length n of some string in K.

It is easy to see that the strings in the family Kn have Θ(log n) symbol b’s. Also, note
that with the possible exception of the first two positions, there are no consecutive b’s.

We are now ready to prove that, in general, it does not hold that ℓ = O(grl), making
L-systems uncomparable to RLCFGs.

Lemma 6.3.2 There exists a string family where ℓ = Ω(grl log n/ log log n).

Proof. Consider the string family Kn needing Ω(log2 n) bits (or Ω(log n) space) to be repre-
sented with any method [79]. Strings in Kn have O(log n) runs of a’s separated by b’s, so it is
easy to see that grl = O(log n) in this family. Because of this, and because grl is a reachable
measure, it holds that grl = Θ(log n) in Kn. On the other hand, the minimal L-system
for a string in this family can be represented with O(ℓ log |Σ| + log n) ⊆ O(ℓ log ℓ + log n)
bits, which must be in Ω(log2 n) bits because the L-system is also reachable. It follows that
ℓ = Ω(log2 n/ log log n), since otherwise

ℓ log ℓ = o((log2 n/ log log n) log(log2 n/ log log n)) = o(log2 n),

which contradicts ℓ being reachable. Therefore, in this string family it holds that ℓ =
Ω(grl log n/ log log n).

The same result holds for LZ-like parsings. Even the greedy LZ-End parsing (the largest
of them) can be asymptotically smaller than ℓ in some string families.

Lemma 6.3.3 There exists a string family where ℓ = Ω(ze log n/ log log n).

Proof. Take each string in Kn and prepend an to it. This new family of strings still needs
Ω(log2 n) bits to be represented with any method because the size of the family is the same,

65

and n just doubled. Just as in Lemma 6.3.2, it holds that ℓ = Ω(log2 n/ log log n) in this
family. On the other hand, the LZ-End parsing needs Θ(log n) phrases only to represent
the prefix anb, and then for each run of a’s followed by b, its source is aligned with anb, so
ze = Θ(log n). Thus, ℓ = Ω(ze log n/ log log n).

The same result also holds for the number of equal-letter runs of the Burrows-Wheeler
transform of a string.

Lemma 6.3.4 There exists a string family where ℓ = Ω(r log n/ log log n).

Proof. Consider the family Kn again. Clearly r = Ω(log n), because r is reachable. Be-
cause a string in this family has O(log n) b’s, its BWT has also O(log n) runs of a’s sep-
arated by b’s (or the unique $, if included). Therefore, it holds that r = Θ(log n) and
ℓ = Ω(r log n/ log log n) in this string family.

We conclude that the measure ℓ is uncomparable to almost every other repetitiveness
measure. We summarize these results in the following theorem.

Theorem 6.3.5 The measure ℓ is uncomparable to the repetitiveness measures δ, γ, b, v, c,
grl, z, zno, zend, ze, r and r$.

Proof. There exist string families where ℓ = o(δ). In these families, it holds ℓ = o(µ) where
µ is any of the measures considered above, because δ lower bounds them all. On the other
hand, all the measures above are upper-bounded by at least one of ze, grl, or r, which by
Lemmas 6.3.2, 6.3.3, and 6.3.4, respectively, can be asymptotically smaller than ℓ for some
string families.

This shows that ℓ, although reachable and competitive, captures the regularities in strings
in a form that is largely orthogonal to other repetitiveness measures.

6.4 Macro-systems

In this section we give a first step in combining L-systems with bidirectional macro schemes
(BMSs) [127], by redefining BMSs in a way that makes them compatible with L-systems.
This will allow us combining them in a straightforward manner. In our way, we obtain a
generalization of BMSs. In Section 6.5 we combine macro-systems with L-systems, showing
that mixing morphisms and copy-paste is more powerful than the sum of its parts.

We use the following formalism for BMSs.

Definition 6.4.1 A bidirectional macro scheme (BMS) for w[1 . . n] is a parse
(x1, s1), . . . , (xb, sb) of non-empty phrases, where w = x1 · · ·xb and the second component
is as follows: if xi = a is a single symbol, then it will be represented explicitly and si =⊥;

66

otherwise si is a position in w such that w[si . . si + |xi| − 1] = xi, indicating where we can
copy xi from. The BMS takes O(b) space, by representing the pairs (xi, si) implicitly as
(|xi|, si) if |xi| > 1, and explicitly as (xi,⊥) if |xi| = 1. We say that the size of the BMS is b.

To decompress a BMS, we define the function ϕ(j) that tells where to copy w[j] from:
let et =

∑t
i=1 |xi| and let p be such that ep−1 < j ≤ ep, that is, j belongs to the component

(xp, sp) of the parse. Then, ϕ(j) =⊥ if |xp| = 1 (an explicit symbol) and otherwise ϕ(j) =
(sp − 1) + (j − ep−1).

A BMS is valid if for each j there exists k ≥ 0 such that ϕk(j) =⊥, and thus w[j] =
w[ϕk−1(j)] if k > 0, and an explicit symbol if k = 0. We can then obtain w[1 . . n] in O(n)
time by:

1. Marking every cell as unknown, w[j]← ? for all 1 ≤ j ≤ n.

2. Computing all et = et−1 + |xt| and assigning all the explicit symbols, w[et]← xt when
|xt| = 1, for all 1 ≤ t ≤ b.

3. For each remaining unknown cell w[j] = ? on a left-to-right pass over w, find the
smallest k such that w[ϕk(j)] ̸= ? in time O(k) and then fill w[ϕr(j)]← w[ϕk(j)] for all
0 ≤ r < k.

We now define and study macro-systems.

Definition 6.4.2 A macro-system is a tuple M = (V,Σ, R, S), where V is a finite set of
symbols called the variables, Σ is a finite set of symbols disjoint from V called the terminals,
R is the set of rules (exactly one per variable)

R : V → (V ∪ Σ ∪ {A[i : j] | A ∈ V, i, j ∈ N})∗,

and S ∈ V is the initial variable. If R(A) = α is the rule for A, we also write A → α. The
symbols A[i : j] are called extraction symbols. The rule A→ ε is permitted only for A = S.
The size of a macro-system is the sum of the lengths of the right-hand sides of the rules,
size(M) =

∑
A∈V |R(A)|.

We now define the string generated by a macro-system as the expansion of its initial
symbol, exp(S). Such expansions are defined as follows.

Definition 6.4.3 Let M = (V,Σ, R, S) be a macro-system. The expansion of a symbol is a
string over Σ∗ defined inductively as follows:

• If a ∈ Σ then exp(a) = a.

• If S → ε, then exp(S) = ε.

• If A→ B1 · · ·Bk is a rule, then exp(A) = exp(B1) · · · exp(Bk).

• exp(A[i : j]) = exp(A)[i . . j].

67

We say that the macro-system is valid if there is exactly one solution w ∈ Σ∗ for exp(S).
We only admit valid macro-systems, and say they generate w.

There are several reasons why a macro-system can be invalid. For example, the equations
for exp(S) may have infinite solutions, as in S → S or S → S[1 : 2]. It might also have no
solutions, as in S → aS or S → S[2 : 3]. On the other hand, there can be valid solutions
involving overlaps, like S → aS[1 : 3], which solves to (only) exp(S) = aaaa.

Note that a macro-system looks very similar to a composition-system. The difference is
that the latter impose an order to the variables so that each rule references only previous
variables. Further, a run-length rule A → Bt can be translated in macro-systems as A →
BA[1 : (t−1) · |exp(B)|], therefore macro-systems are at least as powerful as collage-systems.
The following example shows that they can be asymptotically strictly smaller.

Example 6.4.4 The smallest collage-system generating the Fibonacci string Fk (where F1 =
b, F2 = a, and Fk+2 = Fk+1Fk) is of size Θ(log |Fk|) [102, Thm. 32]. Instead, we can mimic
a BMS of size 4 [102, Lem. 35] with a constant-sized macro-system generating Fk, as follows
(with fk = |Fk|):

S → S[fk−2 + 1, fk − 2] b a S[fk−2 + 1, 2fk−2] if k is odd,

S → S[fk−2 + 1, fk − 2] a b S[fk−2 + 1, 2fk−2] if k is even.

We now show how to decompress a macro-system. We note that, because there is no
clear decompression order among the variables, expansion rules must be applied carefully for
decompression, so that we expand only what is needed from the referenced variables.

Theorem 6.4.5 A macro-system M = (V,Σ, R, S) can be decompressed, or determined to
be invalid, in O(N) time and space, where N =

∑
A∈V |exp(A)|.

Proof. We first determine the expansion lengths of all the variables, using the recurrence:

• |exp(a)| = 1 if a ∈ Σ.

• |exp(A)| = |exp(B1)|+ · · ·+ |exp(Bk)| if A→ B1 · · ·Bk.

• |exp(A[i : j])| = j − i+ 1.

The expansion lengths are computed in timeO(size(M)) by a simple procedure that recurses
on the case A→ B1 · · ·Bk. If this procedure falls in a loop, then the system is invalid. The
reason is that we do not recurse on the extractions exp(A[i : j]). Therefore, if we arrive again
to exp(A) along the recursive expansion to compute |exp(A)|, then A→k X ·A · Y for some
k > 0, so either |exp(XY)| > 0 and then the expansion of A is infinite, or |exp(XY)| = 0
and exp(A) can be any string. In either case, M is invalid (note that an invalid system like
S → S[2 : 3] will still pass this test, however).

Once the lengths are calculated, we create strings EA[1 . . |exp(A)|] for all A ∈ V , with all
their cells marked as unknown, EA[r] ← ? for all r. The decompression process will fill all

68

Algorithm 6 Defining a symbol when decompressing a macro-system.

Input : Terminal or variable A and position r to define from exp(A).
Output: Assigns exp(A)[r] to EA[r] and any other position discovered along the process.
1: function define(A, r)
2: if r ̸∈ [1 . . |exp(A)|] then return “invalid system” (out of bounds)

3: if EA[r] =⊥ then return “invalid system” (loop detected)

4: if EA[r] ̸=? then return EA[r] (already known)

5: if A = a (a terminal) then return a

6: EA[r]←⊥ (will be defined in the process)
7: if A→ B1 · · ·Bk (a variable) then
8: let p be such that

∑p−1
j=1 |exp(Bj)| < r ≤∑p

j=1 |exp(Bj)|
9: EA[r]← define(Bp, r −

∑p−1
j=1 |exp(Bj)|)

10: else if A = B[i : j] (an extraction) then
11: EA[r]← define(B, i+ r − 1)

12: return EA[r]

the necessary cells so that ES has no unknown positions, at which point the decompressed
string is exp(S) = ES.

We successively define the symbols ES[1] to ES[|exp(S)|], which will trigger other defini-
tions. The definition of a symbol V [r] proceeds recursively, as shown in Algorithm 6. Note
that we mark the traversed positions with ⊥ to detect loops that flag the system as invalid.
More importantly, although the recursion may visit many cells to define some EA[r] = c,
all those visited cells get assigned the value c as we return from the recursion. Since we
define some new cell per unit of work, the total decompression cost is O(N), which absorbs
O(size(M)).

Line 8 of Algorithm 6 might suggest that we need a logarithmic-time binary search. We
can, instead, precompute arrays PA[1 . . |exp(A)|] for every A→ B1 · · ·Bk, so that we assign
1 to PA[1 . . |exp(B1)|], 2 to PA[|exp(B1)| + 1 . . |exp(B1)| + |exp(B2)|], and so on. After this
O(N) space and time preprocessing, line 8 boils down to p ← PA[r]. The sum of line 9 can
be similarly precomputed in an array CA of size k ≤ |exp(A)| for every A.

Example 6.4.6 Now we show how to recover the string F7 from the macro-system with
rules

S → S[6 : 11]ABS[6 : 10], A→ a, B → b.

We first determine the expansion lengths of the variables of the macro-system: |exp(A)| = 1,
|exp(B)| = 1, and |exp(S)| = 13. Then, we precompute the arrays

PS[1 . . 13] = [1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4] and CS[1 . . 4] = [6, 7, 8, 13].

With these arrays precomputed, we initialize the array

ES[1 . . 13] = [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

In a left-to-right fashion, we run Algorithm 6 to recover ES[i] for i ∈ [1 . . 13]. We start
by running define(S, 1), which sets ES[1] to ⊥, meaning that this cell is in the process of

69

being defined (if possible). As S is a variable, we fall in line 7 of the algorithm. We obtain
p ← PS[1] = 1 and continue recursively with define(S[6 . . 11], 1). The algorithm then falls
in line 10, and calls define(S, 6). This call falls in line 7, hence we get p = PS[6] = 1, and
recursively call define(S[6 : 11], 6). In this call, we fall again in line 10, which recursively
calls define(S, 11). The next recursive call is for define(S, 8). At this point the array ES is

ES[1 . . 13] = [⊥, ?, ?, ?, ?,⊥, ?,⊥, ?, ?,⊥, ?, ?].

The call for define(S, 8) obtains p = 3 and calls define(B, 1), which in turn calls define(b, 1),
which in line 5 returns b. This is assigned to EB[1] when we return to define(B, 1), in line
9. As we return from the recursion to define(S, 8), define(S, 11), define(S, 6), and finally
define(S, 1), the array ES becomes

ES[1 . . 13] = [b, ?, ?, ?, ?, b, ?, b, ?, ?, b, ?, ?].

We now continue with define(S, 2), which sets ES[1] = ES[7] = EA[1] = a. The next call, for
define(S, 3), calls define(S, 8), which this time returns b in line 4, as its value was already
uncovered. The state of ES is now

ES[1 . . 13] = [b, a, b, ?, ?, b, a, b, ?, ?, b, ?, ?].

We leave the completion of the other entries to the reader.

We now compare macro-systems, which can be decompressed in time O(N), with BMSs,
which can be decompressed in time O(n). We define a restricted class of macro-systems we
call internal, which turn out to be equivalent to BMSs, and can also be decompressed in time
O(n).

Definition 6.4.7 A macro-systemM = (V,Σ, R, S) generating w is internal if every variable
is reachable from S in the graph G(V,E) where, if A→ B1 · · ·Bk ∈ R, it holds that (A,Br) ∈
E for every variable (not terminal or extraction) Br. We call m(w) the size of the smallest
internal macro-system representing w.

Intuitively, in an internal macro-system, the expansion exp(A) of every variable A occurs
in the string represented by the system. We first show the equivalence between internal
macro-systems and BMSs; we show later how to decompress them in optimal time.

Theorem 6.4.8 Given a BMS of size b generating w, there exists an internal macro-system
of size b generating w.

Proof. Let (x1, s1), . . . , (xb, sb) be the BMS generating w = x1 · · ·xb. We construct an in-
ternal macro-system M = ({S},Σ, R, S) with the single rule S → S1 · · ·Sb, where Si is the
single terminal xi if si = ⊥, and the extraction symbol S[si, si + |xi| − 1] if not. The system
is valid because its only solution, for each j, is the explicit value of w[j] if ϕ(j) =⊥, or else
w[j] = w[ϕk−1(j)] where ϕk(j) =⊥ and thus w[ϕk−1(j)] is explicit in the macro-system.

Theorem 6.4.9 For every internal macro-system M = (V,Σ, R, S) of size m generating w,
there is a BMS of size at most m generating w.

70

Proof. We first compute |exp(A)| for every variable A ∈ R as done in the proof of Theo-
rem 6.4.5. We then build a pruned parse tree for the macro-system, as follows. We start by
creating the root and labeling it with the tuple ⟨S, 1, |exp(S)|⟩. The first time we create a
node labeled ⟨A, l, r⟩ ∈ V , with A → B1 · · ·Bk ∈ R, we create k children of the node, label
them

⟨B1, l, l + |exp(B1)| − 1⟩,
⟨B2, l + |exp(B1)|, l + |exp(B1)|+ |exp(B2)| − 1⟩, . . . ,
⟨Bk, r − |exp(Bk)|+ 1, r⟩,

and visit them recursively, left to right. In all other cases, that is, when A is a terminal
symbol, an extraction symbol, or not the first occurrence of a variable, those nodes are
leaves of the tree. If the macro-system is valid, this procedure will finish in time O(m) as
in Theorem 6.4.5, and if the system is internal it will produce exactly one internal node per
variable A ∈ V . It is then easy to see that the pruned parse tree has m + 1 nodes, |V | of
which are internal.

The procedure maintains the invariant that, if ⟨A, l, r⟩ labels a node of the pruned parse
tree, then w[l . . r] = exp(A); we say that pos(A) = l and note that this is the leftmost
substring of w derived from A. The leaves of the pruned parse tree, ⟨X1, l1, r1⟩, . . . , ⟨Xb, lb, rb⟩
read from left to right, define a parse of w (note that Xt can be a variable, a terminal, or an
extraction symbol).

Finally, we build a BMS for w, with one phrase per leaf label ⟨Xt, lt, rt⟩. If Xt = a is a
terminal, then the phrase is (a,⊥), recording the explicit symbol. IfXt = A is a variable, then
the phrase is (exp(A), pos(A)), pointing to the leftmost substring derived from A. Finally, if
Xt = A[i : j] is an extraction symbol, then the phrase is (exp(A)[i . . j], pos(A) + i− 1), also
pointing inside the leftmost substring of w derived from A (we detect that the macro-system
is invalid if j > |exp(A)|).

The resulting BMS represents w and cannot have loops; otherwise there would be more
no solution, or more than one solution, to the macro-system M and it would be invalid. The
size of the BMS is b ≤ m.

That is, BMSs are equivalent to internal macro-systems. General macro-systems could
be smaller in principle, though we have not found an example where this happens. (There
exists an analogous situation with internal collage-systems [102].) It is now immediate that
we can decompress internal macro-systems in linear time.

Corollary 6.4.10 Given an internal macro-system M = (V,Σ, R, S) representing string
w[1 . . n], we can compute w in time O(n).

Proof. The proof of Theorem 6.4.9 shows that we can produce, in time O(size(M)), the
parse ⟨X1, l1, r1⟩, . . . ⟨Xb, lb, rb⟩. From it, we build a macro-system M ′ = ({S},Σ, R′, S)
equivalent to M , that is, generating w, with the single rule R′ = {S → S1 · · ·Sb}. The
symbols St are only terminals and extractions: St = a if Xt = a is a terminal, St = S[pos(A) :
pos(A) + |exp(A)| − 1] if Xt = A is a variable, and St = S[pos(A) + i − 1 : pos(A) + j − 1]

71

if Xt = A[i : j] is an extraction symbol. We can now apply the decompression technique of
Theorem 6.4.5 on M ′, which takes time O(N), as in M ′ it holds that N = n. In an internal
macro-system it also holds that size(M) ≤ n because |exp(A)| ≥ k if A → B1 · · ·Bk. The
total time is then O(n).

6.5 NU-systems

A NU-system1 is a formalism that generates a unique string in a way similar to an L-system,
in the sense that terminals are not distinguished from variables and termination is defined
by levels. The key difference is that, on the right-hand side of rules, a NU-system can have
special extraction symbols of the form A(l)[i : j], similar to the extractions symbols in macro-
systems, whose meaning is to generate the l-th level from A, and then extract the substring
starting at position i and ending at position j.

Definition 6.5.1 A NU-system is a tuple U = (V,R,Γ, S), where V is a set of variables,
S ∈ V is the initial symbol, Γ : V → V is a coding, and R is a set of rules where the
right-hand sides may contain extractions, that is, R : V → (V ∪ E)+ with

E = {A(l)[i : j] | A ∈ V ∧ l ∈ N ∧ (i, j ∈ N ∨ −i,−j ∈ N)}.

The symbol A(l)[i : j] is materialized by expanding symbol A for l levels to obtain Al, and
then replacing A(l)[i : j] by the substring Al[i . . j] if i and j are positive, or by Al[|Al| − i+
1 . . |Al|− j+1] if they are negative. Note that this may imply recursively materializing other
extractions. We use A(l)[: j] as a shorthand for A(l)[1 : j] if j is positive, and A(l)[i :] as a
shorthand for A(l)[i : −1] if i is negative. The string represented by U is then Γ(S1).

Just as macro-systems, we will only consider valid NU-systems whose circular references
can be solved by our decompression algorithm. This implies, by definition, that ν is reachable.

6.5.1 Decompression algorithm

The decompression process is akin to that of macro-systems, except that now we have several
levels l for the same symbol A.

For every extraction A(l)[i : j] in R we will prepare the strings A0, A1, . . . , Al, where A0 =
A, and their reverses A0

rev, A
1
rev, . . . , A

l
rev. Our goal is to determine S1. We can determine the

lengths of all the first levels, |A1| = |A1
rev|: Let A→ B1 · · ·Bk, then it holds |A1| =∑k

r=1 |Br|,
where |Br| = 1 if Br ∈ V and |Br| = j − i + 1 if Br = B(l′)[i : j] ∈ E. The lengths of the
following levels cannot be determined yet, as they depend on how the extractions will expand
(we might never need to determine some of them along the decompression process).

We now define every A1 and A1
rev as follows. We start with an empty string A1 and

consider B1 to Br. If Br ∈ V , we append Br to A1. If, instead, Br = B(l′)[i : j], we append

1This is an enhanced version of the NU-systems defined in the conference version of this work [105, 106],
and should be taken as the definitive one.

72

Bl′ [i] · Bl′ [i + 1] · · ·Bl′ [j] if i and j are positive, and Bl′
rev[−j] · Bl′

rev[−j + 1] · · ·Bl′
rev[−i] if

they are negative. We call these symbols references. We define A1
rev analogously, putting the

symbols and references in reverse order. If l′ = 1 in a reference, it might be that some B1[k]
or B1

rev[k] is already defined, in which case we replace the reference by its value. For every
remaining reference A1[t]/A1

rev[t] = Bl′ [k]/Bl′
rev, we set a pointer from the cell Bl′ [k]/Bl′

rev to
A1[t]/A1

rev[t]. This pointer will be used later to copy the value of Bl′ [k]/Bl′
rev onto A

1[t]/A1
rev[t]

when the former becomes known.

Once the strings A1 and A1
rev are defined in this way for all A ∈ V , we start defining the

strings A2 and A2
rev. From left to right, for every A1[t] = B ∈ V , we append B1 to A2. Note

that B1 includes symbols and references; both are appended to A2 and the corresponding
pointers to cells of A2 are added (there may be several pointers leaving from a single cell).
The process of scanning A1 to form A2 finishes when we hit some A1[t] that is a reference,
because we do not yet know how it expands. Analogously, we define the maximal possible
prefix of A2

rev by scanning A1
rev left to right. From the parts of A2 and A2

rev we could define,
we also expand a maximal prefix of A3 and A3

rev, and so on until defining as much as possible
from Al and Al

rev.

In the process, every time we define any symbol Ak[t] ∈ V or Ak
rev[t] ∈ V , we check the

possible pointers leaving that cell, and propagate the symbol to those cells. Those defined
cells can trigger, recursively, further propagations by pointers, and also further expansions
of prefixes, where we had stopped expanding because we had hit a reference that now has
became a regular symbol.

We continue this process until either we completely define S1 without references, or we
have no further expansions to make and have not fully defined S1. In the latter case, the NU-
system is invalid. Because we define some cell of some Ak for each unit of work performed,
we have the following result.

Theorem 6.5.2 A NU-system U = (V,R,Γ, S) can be decompressed, or determined to be
invalid, in time O(N), where N =

∑
A∈V

∑lA
k=0 |Ak|, Ak is the expansion of A after k levels,

and lA is the maximum l value for an extraction A(l)[i : j] found in R (with lA = 0 if no
extraction for A exists).

A simplified bound for the extraction time is given by N = lmax

∑
A∈V |Almax|, where

lmax = maxA∈V lA. Compared to the time to decompress a macro-system (Theorem 6.4.5),
the time is now multiplied by the number of levels used.

Example 6.5.3 Consider the NU-system with rules

A → A B

B → B

S → A T (2)[2 : 4] S(3)[1 : 3] T

T → S(1)[5 : 7] T (3)[1 : 3]

We will omit the reversed symbols because there are no negative offsets. We first generate

73

the level 1 as follows:

A1 = A B

B1 = B

S1 = A T 2[2] T 2[3] T 2[4] S3[1] S3[2] S3[3] T

T 1 = S1[5] S1[6] S1[7] T 3[1] T 3[2] T 3[3]

We now expand as much as possible the next levels, as follows (we omit A and B, which are
trivial as they do not participate in extractions):

S2 = A B · · ·
S3 = A B B · · ·

Since there are references to those new symbols, we can further complete S1:

S1 = A T 2[2] T 2[3] T 2[4] A B B T

And those newly defined symbols are referenced from T 1, which now becomes:

T 1 = A B B T 3[1] T 3[2] T 3[3]

This enables defining prefixes of T 2 and T 3:

T 2 = A B B B · · ·
T 3 = A B B B B · · ·

With those, we can now complete S1:

S1 = A B B B A B B T

The string represented by the NU-system is then Γ(ABBBABBT). Note that we could have
decompressed the represented string even if there was a circular reference that did not affect
S1; for example if the rule for T was T → S(1)[5 : 7] T (3)[1 : 3] T (1)[7 : 8].

6.5.2 The measure ν

The smallest NU-system generating a string will define a new measure of repetitiveness we
call ν.

Definition 6.5.4 The size of the NU-system U = (V,R,Γ, S) is size(U) = |V | + 1 +∑
A∈V |R(A)|, where the size of an expansion is taken as 4 when computing |R(A)|. We call

ν = ν(w) the size of the smallest NU-system generating w.

A first result stems from the fact that NU-systems encompass macro-systems and L-
systems.

Theorem 6.5.5 It always holds that ν = O(min(ℓ, b)).

74

Proof. Given an L-system L = (Σ, φ, τ, s, d, n), we can define a NU-system U = (V,R,Γ, S)
as follows. Let V = Σ ∪ {S}, where S ̸∈ Σ, and Γ = τ , and let R = φ ∪ {S → s(d)[1 : n]}.
The NU-system will then expand d levels of s and extract the first n symbols to form S1,
and finally will apply Γ = τ to S1 = φd(s)[1 . . n]. It is clear that U is valid, as it does not
contain circular references. It then holds that ν = O(ℓ).

Consider now an internal macro-system M = (V,Σ, R, S). By the proof of Corol-
lary 6.4.10, we can convert M into a system with a single rule S → S1 · · ·Sb, where
Sr is either a symbol of V or an extraction S[i : j]. We then construct a NU-system
U = ({S ′} ∪ Σ, R′,Γ, S ′) where Γ = id and R′ = {S ′ → S ′

1 · · ·S ′
b}: if Sr = a ∈ Σ, then

S ′
r = a; if instead Sr = S[i : j], then S ′

r = S ′(1)[i : j]. It is clear that U generates
the same string as M , and it is valid iff the macro-system M is valid. It then holds that
ν = O(b) = O(m).

An immediate corollary is that ν is uncomparable with δ.

Corollary 6.5.6 The measures δ and ν are uncomparable.

Proof. It follows because ν = O(ℓ) and ℓ = o(δ) on some string families (Lemma 6.2.3), while
on the other hand δ is unreachable on some string families and ν is always reachable.

Finally, we show that NU-systems exploit the features of L-systems and macro-systems in
a way that, for some string families, can reach sizes that are unreachable for both L-systems
and BMSs independently.

Theorem 6.5.7 There exists a family of strings where ν = o(min(ℓ, b)).

Proof. Let Km be the family of strings of length m defined by Kociumaka et al. [79], needing
Ω(log2m) bits to be represented with any method (Def. 6.3.1), now over the alphabet {0, 1}.
We construct a new family F = {x · y[1 . .m] |x ∈ Km}, where y is the infinite fixed point
generated by the L-system utilized in Lemma 6.2.3. Hence, the strings in F have length
n = 2m, and belong to {0, 1, a, b, c}+.

As shown in Lemma 6.3.2, it holds that ℓ = Ω(log2 n/ log log n) in Km. The same bound
then holds on F : if there is an L-system that generates an element in F , we generate the
corresponding prefix of Km by changing the L-system prefix length from n to m. On the
other hand, b = Ω(

√
n) on F , because δ = Ω(

√
n) on prefixes of y by Lemma 6.2.3,and δ is

monotone with respect to the appending of prefixes or suffixes.

We now build a smaller NU-system for F . Let x be a string in Km with k symbols 1. Let
ij be the number of 0’s in x between the (j − 1)-th and the j-th 1’s, for j ∈ [2 . . k]. Also,
let i1 and ik+1 be the number of 0’s at the left and right extremes of x. We construct the

75

NU-system U = (V,R,Γ, S) as follows:

V = {0, 1, a, b, c, S}
R = {0→ 00, 1→ 1, a→ a, b→ ab, c→ cb}

∪ {S → 0(m)[: i1]10(m)[: i2]1 . . . 0(m)[: ik]10(m)[: ik+1]c(m)[: m]}
Γ = {0→ 0, 1→ 1, a→ a, b→ b, c→ c}

By construction, this NU-system generates the string x ·y[: m] of length n, and its axiom
has size 4(k+2)+k, where k = Θ(log n). Hence, it holds that ν is O(log n) for these strings.
Thus, ν = o(min(ℓ, b)) in the family F we have constructed.

NU-systems can then be smaller representations than those produced by any other com-
pression method exploiting repetitiveness. This shows that combining copy-paste mechanisms
with iterated morphisms is able, at least in principle, to further improve compression. On
the other hand, finding the smallest NU-system is very likely NP-hard, and its extraction
time is not bounded in terms of the size of the string that is generated.

6.5.3 Properties

We now study sensitivity, monotonicity, and other properties of NU-systems. We start show-
ing that NU-systems grow nicely upon concatenations.

Proposition 6.5.8 If w1, w2 ∈ Σ∗, then ν(w1 · w2) = O(ν(w1) + ν(w2)).

Proof. Let U1 = (Σ1, R1,Γ1, S1) and U2 = (Σ2, R2,Γ2, S2) be (minimal) NU-systems generat-
ing w1 and w2, respectively. Note that Σ1 might be not disjoint from Σ2. Then a NU-system
U = (Σ, R,Γ, S) generating w1 · w2 can be built as follows. First, let Σ′

k = {⟨k, a⟩ | a ∈ Σk},
for k = 1, 2, be marked versions of the alphabets Σ1 and Σ2, so that Σ′

1 ∩ Σ′
2 = ∅. The

alphabet of U is then Σ = Σ1 ∪ Σ2 ∪ Σ′
1 ∪ Σ′

2 ∪ {S}, where S is a new initial symbol. For
k = 1, 2, let R′

k be identical to Rk, except that each occurrence of a ∈ Σk is replaced by
⟨k, a⟩ ∈ Σ′

k. The rules of U are then the set

R = R′
1 ∪R′

2 ∪ {S → ⟨1, S1⟩(1)[1 : |⟨1, S1⟩1|] ⟨2, S2⟩(1)[1 : |⟨2, S2⟩1|]}.

Note that the lengths |⟨1, S1⟩1| = |S1
1 | and |⟨2, S2⟩1| = |S1

2 | are known because U1 and U2 are
valid NU-systems. Finally, for k = 1, 2, let Γ′

k : Σ′
k → Σk, so that Γ′

k(⟨k, a⟩) = Γk(a), and
then Γ = Γ′

1 ∪ Γ′
2 ∪ {a→ a | a ∈ Σ1 ∪ Σ2 ∪ {S}}. It is easy to see that U generates w1 · w2,

and then ν(w1 · w2) ≤ size(U) = O(size(U1) + size(U2)) = O(ν(w1) + ν(w2)).

This proposition shows, in particular, that NU-systems behave well upon appending and
prepending of symbols.

Corollary 6.5.9 If a ∈ Σ and w ∈ Σ∗, then ν(aw) ≤ ν(w)+O(1) and ν(wa) ≤ ν(w)+O(1).

76

Proof. It is (almost) a particular case of Proposition 6.5.8, where either ν(w1) = O(1) or
ν(w2) = O(1) because w1 = a or w2 = a. Instead of creating full new alphabets Σ′

1 and Σ′
2,

we retain the alphabet of w and only create a special symbol for a (say, ⟨a⟩) and the rule
⟨a⟩ → ⟨a⟩, so that it is not modified along the derivation of w. The coding is then extended
with the rule ⟨a⟩ → a.

We now show that NU-systems are essentially monotonic, that is, one cannot obtain a
smaller NU-system representing an extension of a string, except for constant additive factors.

Proposition 6.5.10 If w ∈ Σ∗ and 1 ≤ i ≤ j ≤ |w|, then ν(w[i . . j]) ≤ ν(w) +O(1).

Proof. Given U = (Σ, R,Γ, S) generating w, the system U ′ = (Σ′, R′,Γ′, S ′) generates
w[i . . j], where S ′ ̸∈ Σ is a new initial symbol, Σ′ = Σ ∪ {S ′}, R′ = R ∪ {S ′ → S(1)[i : j]},
and Γ′ = Γ ∪ {S ′ → S ′}.

Those results imply that NU-systems behave well under edits on the represented string.

Corollary 6.5.11 If w ∈ Σ∗ and w′ is obtained from w by applying one edit operation
(insertion, deletion, or substitution of a symbol), then ν(w′) ≤ ν(w) +O(1).

Proof. All the edits on w[1 . . n] can be expressed in terms of concatenating symbols or
substrings of w: deleting the position i yields w[1 . . i− 1] · w[i + 1 . . n], substituting it by a
yields w[1 . . i− 1] · a ·w[i+1 . . n], and inserting a at position i yields w[1 . . i− 1] · a ·w[i . . n].
Corollary 6.5.9 and Proposition 6.5.10 show how to build NU-systems of size ν(w) + O(1)
for all those expressions. For example, to insert a at position i we create rule S ′ → S(1)[1 :
i− 1] ⟨a⟩S(1)[i : n] for a new initial symbol S ′ and treat ⟨a⟩ as in Corollary 6.5.9.

Proposition 6.5.12 If w[1 . . n] ∈ Σ∗ and w′ = w[n] · · ·w[1] is its reversal, then ν(w′) =
ν(w).

Proof. We reverse all the rules, as well as the extractions A(l)[i : j], which are reversed as
A′(l)[−j : −i], where A′ denotes the reverse of A. By the symmetry of the decompression
process, it is clear that the reversed system is valid as long as the original one is.

6.6 Variants of L-systems and the Measure ℓ

In this section we study which features of L-systems are key for their compression power, and
which are superfluous. We define and compare several classes of restricted L-systems and
their corresponding compressibility measures. It turns out that all the natural restrictions
to the L-system we consider yield reduced compression power.

First, we define the restricted classes of L-systems under scope.

77

Algorithm 7 Decompressing in real time the prolongable L-system L = (Σ, φ, τ, s, d, n);
invoke with decompress(s, n).

Input : Axiom s to expand, length to output n > 0.
Output: The string τ(φd(s))[1 . . n] with d large enough.
1: function decompress(s, n)
2: w[1]← s
3: r ← 1
4: p← 1
5: while true do
6: let w[r]→ b1 · · · bk ∈ φ
7: r ← r + 1
8: for i← 1 to k do
9: w[p]← bi

10: output τ(bi)
11: if p = n then return

12: p← p+ 1

Definition 6.6.1 Let L = (Σ, φ, τ, s, d, n) be an L-system. We say L is expanding when φ
is expanding. We say L is k-uniform for some k ≥ 2, or just uniform, when φ is k-uniform.
We say L is prolongable, if φ is prolongable on s (i.e., if s → sx is a rule, with x ̸= ε). We
say L is codingless if τ = id (i.e., the identity coding).

We define some compressibility measures based on L-systems that satisfy some of those
restrictions.

Definition 6.6.2 The measure ℓe(w) (resp., ℓu(w)) denotes the size of the smallest expanding
(resp., uniform) L-system generating w. The measure ℓp(w) denotes the size of the smallest
prolongable L-system generating w. The measure ℓc(w) denotes the size of the smallest
codingless L-system generating w. The measure ℓpc(w) denotes the size of the smallest
prolongable and codingless L-system generating w. The measure ℓpu(w) denotes the size of
the smallest prolongable and uniform L-system generating w.

It is known that different classes of L-systems produce different classes of languages and
infinite words [111]. Some of these classes also differ in the factor complexity of the sequences
they can generate [112]. It is interesting to understand how these differences in terms of ex-
pressive power and factor complexity translate into the compression power of the L-systems.
In particular, prolongable L-systems generate a class of infinite words called morphic words;
codingless and prolongable L-systems generate the class of purely morphic words; and pro-
longable uniform L-systems generate the so-called automatic words [4]. So even if restricting
L-systems reduces their compression power, they still can be useful to compress prefixes of
infinite words in these classes, and working on them may be more efficient than on general
L-systems.

For example, in a prolongable system (i.e., using O(ℓp) space), Algorithm 7 shows how
to decompress the represented string in real time (i.e., each successive symbol of w is written
in O(1) time). As another example, in an expanding system (i.e., using O(ℓe) space) we

78

can always limit the depth to ⌈log2 n⌉, by starting from the axiom fd−⌈log2 n⌉(s), and obtain
optimal O(n) decompression time using just Algorithm 2. The cost for extracting w[i . . j] we
obtained in Section 6.1.2 is also reduced, to O(|φ| log n) = O(ℓe log n) preprocessing space
and time, and O(j − i+ log n) extraction time. Further, if a system is k-uniform (i.e., using
O(ℓu) space), then we know easily the size to which every symbol expands after l levels,
in which case we can efficiently extract w[i . . j] without need of any preprocessing or extra
space: in lines 6–7 of Algorithm 5 we simply use r ← ⌈i/kl⌉ and i ← 1 + ((i − 1) mod kl).
The time is then O(j − i+ d). Further, if d > ⌈logk n⌉, we can slightly modify the L-system
so that its axiom is fd−⌈logk n⌉(s), as explained, and obtain extraction time O(j − i+ logk n).

As a consequence, we can upper bound the size g of the smallest grammar with respect
to the measure ℓe (and ℓu). To do so, we observe that we can always simulate an L-system
L with depth d, with a CFG of size O(d · size(L)). As the value d can be bounded for
expanding and uniform L-systems, we obtain the following result.

Lemma 6.6.3 For any L-system L, there exists a CFG G of size |G| = O(d · size(L))
generating the same string. Further, it always holds that g = O(ℓe log n).

Proof. Let L = (Σ, φ, τ, s, d, n) be an L-system generating w[1 . . n]. Consider the derivation
tree of L, which is obtained as follows: the root is a node labeled s at depth 0. If A is a node
at depth i ∈ [0 . . d− 2], then the children of A at depth i + 1 are the symbols in φ(A) read
from left to right. For i = d − 1, the children of A are the symbols in τ(φ(A)) read from
left to right. The nodes at each depth i spell out a string Li, where L0 = s and Ld = w.
We create a CFG G = (V,Σ, R, S) that simulates L as follows. The set V contains, for each
variable A ∈ Σ of the L-system, d nonterminals A0, . . . , Ad−1. The terminals of the grammar
are the set of L-system variables, that is, Σ. Then, for each L-system rule A → B1 · · ·Bk

appearing at depth 0 ≤ i ≤ d − 2 of the L-system, we add Ai → (B1)i+1 · · · (Bk)i+1 to the
set of rules R. Further, for each rule A → B1 · · ·Bk appearing at depth d − 1 in L, we add
the grammar rule Ad−1 → τ(B1) · · · τ(Bk) to R (this is well defined because each Bi belongs
to Σ). Finally, the initial symbol of G is S = s0. Note that the derivation trees of G and L
are topologically identical and spell the same string at depth d. Hence, the grammar G is of
size at most (d+1) · size(L) and generates a string w+, of which the desired string w[1 . . n]
is a prefix.

We now modify G to generate exactly w[1 . . n]. The idea is to create a new nonterminal
per level Li that will expand to a prefix of the string some nonterminal of that level expands
to. Our new initial symbol (of level 0) will be S ′ = s′0, whose expansion must be pruned
to length l0 = n. In general, given a nonterminal Ai → (B1)i+1 · · · (Bk)i+1 whose expan-
sion must be pruned to length li, we define ki as the maximum position j < k such that
|exp((B1)i+1 · · · (Bj)i+1)| < li. We then need to fully expand the symbols (B1)i+1 · · · (Bki)i+1,
and then expand a prefix of length li+1 = li − |exp((B1)i+1 · · · (Bki)i+1)| of (Bki+1)i+1. We
therefore create a new rule A′

i → (B1)i+1 · · · (Bki)i+1 · (Bki+1)
′
i+1, and recursively continue

in level i + 1 with the task of creating a variant (Bki+1)
′
i+1 of (Bki+1)i+1 whose expansion is

pruned to length li+1. In the process we at most double the size of G, which is thus of size
O(d · size(L)).

For the second claim, if an L-system is expanding and d > log n, then the prefix w[1 . . n]

79

of Ld is generated from the first symbol of Ld−⌈logn⌉, which can then be made the axiom
and d reduced to ⌈log n⌉. In this case, the grammar G produced is of size O(size(L) log n).
Thus, g = O(ℓe log n).

As ℓc = O(g) by Lemma 6.2.2 (the coding used in the proof has τ = id), and g =
O(ℓe log n) by Lemma 6.6.3, we obtain the following corollary.

Corollary 6.6.4 It always holds that ℓc = O(ℓe log n).

Surprisingly, all the restricted L-systems (except possibly uniform systems) outperform δ
on some string family. We already showed this for ℓpc (and thus ℓp and ℓc) in Lemma 6.2.3,
where the L-system we used was prolongable and without coding. The next lemma proves
that the same holds for ℓe.

Lemma 6.6.5 There exists a string family where ℓe = O(1) and δ = Ω(log n).

Proof. We use a small modification of the D0L-sequence described by Ehrenfeucht et al. [39,
Lemma 5]. For simplicity, let d be a power of 16, and define the following expanding L-system:

L = ({a, b, c},
{a→ a2, b→ b16, c→ cbab},
τ = id,

s = c,

d,

n = |φ(log2 d)+1(s)|).
By definition ℓe = O(1) in this family of strings (where we vary d; by the formula of n,
the distinct elements of the family are obtained for values of d that are powers of 16). Let
x = bab. The string generated by this system is w = cxφ(x)φ2(x) · · ·φlog2 d(x). Note that
we use prefix truncation to obtain a string that is orders of magnitude shorter than φd(s).
We do this to ensure that the value d is large enough with respect to n. Now consider the
images of the form φi(x) for i ≥ 1. First note that φi(x) = b16

i
a2

i
b16

i
and its length is

2 ·16i+2i. The length of the string w is then n = 1+
∑log2 d

i=1 (2 ·16i+2i) = Θ(d4). Therefore,
d = Θ(4

√
n).

We now show that δ = Ω(log d). To do so, we get a lower bound on the number of length-d
substrings of the form bpa2

u
bq. The string φi(x) is a substring of w, for i ∈ [1 . . log2 d]. In

particular, a length-d factor of the required form can appear inside φi(x) only if |φi(x)| ≥ d.
This condition is verified if i ≥ log16 d. Observe that φlog16 d(x) contains 2log16 d = dlog16 2 < d
a’s, that φlog2 d(x) contains d a’s, and that both strings contain at least d b’s at each side of
the a’s. Hence, for each i ∈ [log16 d . . log2 d] we can slide a window of length d containing a2

i

starting at every possible position, surrounded by b’s. This yields

log2 d∑
i=log16 d

(d− 2i + 1) = Θ(d log d)

distinct substrings of length d. Thus, δ = Ω(log d) = Ω(log 4
√
n) = Ω(log n).

80

In the rest of the section we show that, despite still breaking the barrier of δ for some
string families, each of the restrictions we can put to L-systems reduces their compression
power, so all the features we have included in L-systems are needed to reach the measure ℓ.

We start by showing that ℓ can be asymptotically strictly smaller than ℓp. That is,
restricting L-systems to be prolongable yields a weaker measure. We will actually prove that
ℓp can be asymptotically larger than ℓc, the L-systems without codings.

Lemma 6.6.6 There exists a string family where ℓp = Ω(ℓc log n/ log log n).

Proof. Let F = {an−1b |n ≥ 1}. Clearly, ℓc is constant in this string family: the L-system
Ln = (Σ, φ, τ, s, d, n) where Σ = {a, b}, φ = {a → a, b → ab}, τ = id, s = b, and d = n − 1
produces each string in F by changing only the value of n accordingly. Note that these
L-systems are not prolongable.

Now let Ln = (Σn, φn, τn, s, dn, n) be the smallest prolongable L-system generating an−1b.
Let k = |Σn| and t = width(φn) > 1. Observe that it is only necessary to have one symbol
c ∈ Σn with τn(c) = b because there is only one b in an−1b, so w.l.o.g. assume that b ∈ Σn

and τn(b) = b. As the system is prolongable, each level is a prefix of the next one. This
implies that the morphism should be iterated until b appears for the first time, and then we
can safely extract the prefix. This must happen in the first k iterations of the morphism;
otherwise, b is not reachable from s. The reason is that, if an iteration does not yield a
new symbol, then no new symbols will appear since then, and there are no more than k
symbols. Once b appears, it cannot be deleted in the following levels, so it cannot appear
before position n. Hence, tk ≥ n, implying k ≥ logt n. By definition, ℓp ≥ k ≥ logt n
and ℓp ≥ t, so ℓp ≥ max(t, logt n). This is Ω(log n/ log log n): if t ≤ log n/ log log n, then
logt n ≥ log n/ log log n. Thus, ℓp = Ω(ℓc log n/ log log n) in this string family.

We can prove a similar result for uniform systems.

Lemma 6.6.7 There exists a string family where ℓp = Ω(ℓu log n/ log log n).

Proof. It is not difficult to see that ℓu is constant in the family {a2kb | k ≥ 0}: consider the
axiom s = c and the rules c → ab, a → aa, b → bb, the level d = k and the prefix length
n = 2k + 1. The same argument as in Lemma 6.6.6 yields that ℓp = Ω(ℓu log n/ log log n) for
this string family.

We now show that if we remove the coding from prolongable L-systems (which corresponds
to the variant ℓpc) we end with a much worse measure. We change the usual alphabet for
clarity of presentation.

Lemma 6.6.8 There exists a string family where ℓpc = Ω(ℓp
√
n).

Proof. We prove that ℓpc = Θ(n) on F = {0n−11 |n ≥ 2}, whereas ℓp = O(√n). Any
minimal codingless prolongable L-system generating 0n−11 must contain the rule 0→ 0n−11,
which implies ℓpc = Θ(n). This is because if the L-system is prolongable and the coding

81

is the identity: i) the initial symbol must be s = 0 as it will appear as a prefix of all the
following iterations; ii) in the prolongable rule 0 → 0x, if |φ(0)| ≤ n, then the non-empty
string x can contain only 0s and 1s, otherwise undesired symbols would appear in the final
string. If x does not contain 1s, then 1 is unreachable from 0, which is a contradiction. So,
it must be the case that x contains a least one 1, and the first of them has to be at position
n.

On the other hand, we can construct a prolongable L-system for 0n−11, with its coding
defined as τ(1) = 1 and τ(c) = 0 for every other symbol c ̸= 1 as follows: Let n − 1 =
k⌊
√
n− 1⌋+ j with ⌊

√
n− 1⌋ > 3, k > 1, and 0 ≤ j < ⌊

√
n− 1⌋ (k and j are integers). We

assume n is sufficiently big so the constraints are satisfied. Then, we define the following
rules

a→ ab

b→ ck−1d

c→ 0⌊
√
n−1⌋−1

d→ 0⌊
√
n−1⌋−3+j1,

and set the initial symbol s = a. The first four levels of the L-system before applying the
coding τ are

φ0(a) = a

φ1(a) = ab

φ2(a) = abck−1d

φ3(a) = abck−1d0(⌊
√
n−1⌋−1)(k−1)0⌊

√
n−1⌋−3+j1,

and it can be verified that

|φ3(a)| = 3 + (k − 1) + (⌊
√
n− 1⌋ − 1)(k − 1) + (⌊

√
n− 1⌋ − 3 + j) + 1 = n.

Moreover, we can deduce from the observation above that τ(φ3(a)) = 0n−11, as only the sym-
bol 1 is mapped to 1 by the coding. The claimed L-system is then L = ({a, b, c, d, 0, 1}, φ, τ, s =
a, 3, n}), and it generates 0n−11 as required, for n bigger than some constant. The size of the
L-system is clearly Θ(

√
n).

By using the same family above, the following corollary holds.

Corollary 6.6.9 There exists a string family where ℓpc = Ω(ℓcn).

Proof. Just note that ℓc is constant in the family used in Lemma 6.6.8.

It is surprising that this weak measure ℓpc can be much smaller than δ for some string
families, as mentioned before. On the other hand, it does not hold that ℓpc = O(g) for every
string family, because g = Θ(log n) on {0n−11 |n ≥ 1}.

Corollary 6.6.10 The measure ℓpc is uncomparable to the measures δ and g.

82

If we restrict L-systems to be expanding, we also end up with a weaker measure. This
shows that, in general, it is not possible to transform L-systems into expanding ones without
incurring an increase in size.

Proposition 6.6.11 There exists a string family where ℓe = Ω(ℓpc
√
n/ log n).

Proof. Such a family is the one of Lemma 6.2.3. In this family, ℓpc = O(1). On the
other hand, from Lemma 6.6.3, it holds that ℓe = Ω(g/ log n) ⊆ Ω(δ/ log n). Recall that
δ = Θ(

√
n) in this string family, so g = Ω(

√
n). (Further, a grammar of size g = O(√n) is

easily obtained by setting A0 → b, Ai+1 → aAi, and the initial rule S → cA0A1 · · ·Ad−1.)
Hence, ℓe = Ω(

√
n/ log n) = Ω(ℓpc

√
n/ log n).

Finally, we show that L-systems can be asymptotically strictly smaller than codingless
L-systems on some string families.

Lemma 6.6.12 There exists a string family where ℓ = o(ℓc).

Proof. Let F = {bbakba2k | k ≥ 1}. The L-system Ll = (Σl, φl, τ, d, k, 2
k + k + 2) where

Σl = {a, b, c, d} φl :


a 7→ a

b 7→ b

c 7→ cc

d 7→ bbabcc

τ :


a 7→ a

b 7→ b

c 7→ a

d 7→ b

can generate each word in F by changing k. Hence, ℓ = O(1) in this family.

We now show that any codingless L-system generating bbakba2
k
has size ω(1). Assume

for the sake of contradiction that a constant-size codingless L-system L = (Σ, φ, id, s, d, n)
generates w = bbakba2k. Then, there exists a constant α such that |Σ| ≤ α and width(φ) ≤
α. The longest string L could generate would have length αd. Hence, d = Ω(log n) = Ω(k).

Let b0, b1, . . . , bd be the sequence of the first symbols of φi(s), for 0 ≤ i ≤ d (so b0 = s).
By the pigeonhole principle, for sufficiently big values of k (and consequently big values of d),
this sequence has a period of length q starting from bp, with p+ q ≤ α ≤ d. Then there exist
indexes t and j such that t = d− jq and p ≤ t < p+ q. By the q-periodicity of the sequence
starting at bt, it holds that φq(bt) = btx for some (possibly empty) string x. Moreover, as
there is no coding, it must be that bt = bd = b.

Let us then define a new L-system L′ = (Σ ∪ {s′}, φ′, id, s′, d′, n), with a new (initial)
symbol s′ → φt(s) and otherwise φ′ = φq; moreover d′ = 1+((d− t)/q). Clearly, L′ generates
w and there is also a constant α′ such that |Σ|+ 1 ≤ α′ and width(φ′) ≤ α′. There are two
possibilities: (i) |φ′(b)| > 1 or (ii) |φ′(b)| = 1. In case (i), we have φ′(b) = bbx for a possibly
empty string x of bounded length, because (φ′)d

′
[2] = b = φ′(b)[2]. As there is no coding and

φ′ is prolongable on b, the image φ′(b) is a prefix of φ′d′(s′), and so is φ′2(b) = bbxbbxφ′(x).
This is a contradiction for large enough k, as the third b appears after just a constant number
of symbols. Therefore the only possible case is (ii), that is, φ′(b) = b. This implies that b is
part of a cycle in the original morphism φ.

83

We now reason analogously on the third symbol of the derivation from s′. Let b′0, b
′
1, . . . , b

′
d′

be the sequence of the third symbols of (φ′)i(s′), for 0 ≤ i ≤ d′. Then, since α′ is a constant,
there must exist a period of length q′ starting at b′p′ , with p′ + q′ ≤ α′ ≤ d′, and the

corresponding values t′ = d′ − j′q′ and p′ ≤ t′ < p′ + q′, so that (φ′)q
′
(b′t′) = b′t′x

′ for some
possibly empty string x′. Because there is no coding, it must be that b′t′ = a and that x is a

prefix of ak−1ba2
k
. If x were non-empty, it would still have its length bounded by a constant.

Hence, for sufficiently big values of k, it must be that x = ar for some r ≥ 1. Therefore,
φ′j′q′(a) yields Ω(2d

′
) a’s in the first run, which is a contradiction. Thus, (φ′)q

′
(a) = a. This

also implies that a belongs to a cycle in the original morphism φ.

We shift our attention again to the morphism φ. We now prove that d = O(k). We
note that φd(s) must contain a run of exactly k a’s. Since |φj(a)| = 1 for every j, there
must be some other symbol c in the derivation of the run such that, for some constant t,
φt(c) contains at least one a and at least one c; otherwise the constant-sized system cannot
generate an arbitrary number of a’s. But then, there are Ω(d/t) = Ω(d) occurrences of a in
the run; hence d = O(k).

In the following we use some definitions and known results by Salomaa [123], who studied
the growth rates of D0L-systems. A letter c is said to be expanding on φ if there exists j
such that φj(c) = xcycz. A codingless L-system has exponential growth with d if and only
if an expanding letter appears in its derivation [123, Thm. 1]. For convenience, we extend
this definition so that a letter c is also expanding when φj(c) = xc′y for some j, and c′ is
expanding, that is, if we consider c as the axiom of the system, then it has exponential growth.
This extension implies that any expanding symbol contains at least one expanding symbol
in its image under φ. As d = Θ(k), the only way this system could possibly generate a string
of length over 2k, is that the system uses an expanding letter in its derivation. Hence, s has
to be expanding using our extended definition. Note also that a and b are not expanding, as
they belong to single-symbol cycles.

We construct two sequences, c0, c1, . . . , cd and x1, . . . , xd, such that c0 = s, ci is expanding,
xi does not contain expanding letters, and φ(ci) = xi+1ci+1yi+1 (i.e., ci+1 is the first expanding
symbol in the image of ci). It is clear that

φd(s) = φd−1(x1)φ
d−2(x2) · · ·φ(xd−1) · (xd · cd · yd) · φ(yd−1) · · ·φd−2(y2)φ

d−1(y1).

Note that the strings xi have length bounded by the constant width(φ) and no expanding
symbols. Hence, φ grows polynomially on them. On the other hand, cd is an expanding
symbol, hence distinct from a and b, appearing at a position o(2k). This yields a contradiction
for sufficiently big values of k.

We have shown that imposing restrictions on the length of the rules of an L-system, forcing
them to be prolongable, or removing the coding, does impact their compression power. On
the other hand, these restricted L-systems may simplify and speed up some relevant processes
like decompressing or direct accessing the represented string. We summarize the results of
this section in Figure 6.3, which also includes the measure ν from Section 6.4.

84

ℓ ℓe ℓu ℓpu

ℓp ℓpc

ℓc g ℓe log n

min(ℓ, b)ν

bδ

Figure 6.3: Asymptotic relations between the measure ℓ and its variants, the measure ν, and
other relevant state of the art repetitiveness measures. A solid arrow from a measure v1 to
a measure v2 means that it always holds that v1 = O(v2). A double solid arrow from v1 to
v2 means that it also exists a string family where v1 = o(v2). A dashed arrow from v1 to v2
means that there exists a family where v1 = o(v2).

85

Chapter 7

Extending Grammar-Based Measures

In Chapter 6, we introduced the measures ℓ and ν, based on L-systems and NU-systems
respectively, which can be considerably smaller than δ in some relevant string families. This
fact questions if δ should be considered as a golden measure for repetitiveness. On the other
hand, providing efficient direct access in O(ν) or even O(ℓ) space has been an elusive task.
In the case of L-systems, the provided methods for direct access depend on the depth of the
system, which can be O(n). It is possible to provide efficient direct access in O(ℓe log n)
space, though it does not break δ.

In this chapter, we go further and show how to extend straight-line programs in order to
obtain compression devices defining reachable measures that can break the δ lower bound,
while also providing efficient poly-logarithmic time access to arbitrary positions of the text
in competitive space (smaller than O(grl)).

This chapter is structured as follows.

• In Section 7.1, we extend a famous result of Ganardi et al. [52], which shows that any
SLP of size g generating a text of length n can be balanced, i.e., we can produce another
SLP of size O(g) whose derivation tree is of height O(log n). Our extension is called
Generalized SLPs (GSLPs), which allow rules of the form A → x (of size |x|), where
x is a program (in any Turing-complete formalism) that outputs the right-hand side of
the rule (a string of non-terminals). We show that, if every non-terminal appearing in
x’s output occurs at least twice, then the GSLP can be balanced in the same way as
SLPs.

• In Section 7.2, we explore a particular case of GSLP we call Iterated SLPs (ISLPs).
ISLPs extend SLPs (and RLSLPs) by allowing a more complex version of the rule
A → Bt, namely A → Πk2

i=k1
Bic1

1 · · ·Bict
t , of size 2 + 2t. We show that some text

families are generated by an ISLP of size O(δ/√n), thereby sharply breaking the Ω(δ)
barrier.

• In Section 7.3, using the fact that ISLPs are GSLPs and thus can be balanced, we show
how to extract a substring of length λ from the ISLP in time O(λ + log2 n log log n),
as well as computing substring queries like range minimum and next/previous smaller

86

value, in time O(log2 n log log n).

• Finally, in Section 7.4, we apply the balancing result to RLSLPs, which allow rules of
the form A→ Bt. While the results on ISLPs are directly inherited (because RLSLPs
are ISLPs) with the polylogs becoming just the nearly-optimal O(log n) [128], we give
a general technique to compute a wide family of “composable” queries f on substrings
(i.e., f(X · Y) can be computed from f(X) and f(Y)).

7.1 Generalized SLPs and How to Balance Them

We introduce a new class of SLP which we show can be balanced so that its derivation tree
is of height O(log n).

Definition 7.1.1 A generalized straight-line program (GSLP) is an SLP that allows special
rules of the form A→ x, where x is a program (in any Turing-complete language) of length
|x| whose output OUT(x) is a nonempty sequence of variables, none of which can reach A.
The rule A → x contributes |x| to the size of the GSLP; the standard SLP rules contribute
as usual. A special rule A→ x is said to be balanceable if every variable occurring in OUT(x)
appears at least twice on it. A GSLP is said to be balanceable if all its special rules are
balanceable.

We can choose any desired language to describe the programs x. Though in principle |x|
can be taken as the Kolmogorov complexity of OUT(x), we will focus on very simple programs
and on the asymptotic value of |x|.

We will prove that any balanceable GSLP can be balanced without increasing its asymp-
totic size. Our proof generalizes that of Ganardi et al. [52, Thm. 1.2] for SLPs in a similar
way to how it was extended to balance RLSLPs [103]. Just as Ganardi et al., in this section
we will allow SLPs to have rules of the form A → B1 · · ·Bt, of size t, where each Bj is a
terminal or a nonterminal; this can be converted into a strict SLP of the same asymptotic
size, incurring only in an additive O(log n) increase in height.

We introduce now some definitions and state some results, from the work of Ganardi et
al. [52], that we need in order to prove our balancing result for GSLPs.

A directed acyclic graph (DAG) is a directed multigraph D = (V,E) without cycles (nor
loops). We denote by |D| the number of edges in this DAG. For our purposes, we assume
that any DAG has a distinguished node r called the root, satisfying that any other node can
be reached from r and r has no incoming edges. We also assume that if a node has k outgoing
edges, they are numbered from 1 to k, so edges are of the form (u, i, v). The sink nodes of
a DAG are the nodes without outgoing edges. The set of sink nodes of D is denoted by W .
We denote the number of paths from u to v as π(u, v), and π(u, V) =

∑
v∈V π(u, v) for a set

V of nodes. The number of paths from the root to the sink nodes is n(D) = π(r,W).

One can interpret an SLP G generating a string T as a DAG D: There is a node for each
variable in the SLP, the root node is the initial variable, variables of the form A → a are

87

the sink nodes, and a variable with rule A → B1B2 · · ·Bt has outgoing edges (A, i, Bi) for
i ∈ [1 . . t]. Note that if D is a DAG representing G, then n(D) = |exp(G)| = |T |.

Definition 7.1.2 (Ganardi et al. [52, page 5]) Let D = (V,E) be a DAG, and define
the pairs λ(v) = (⌊log2 π(r, v)⌋, ⌊log2 π(v,W))⌋) for every v ∈ V . The symmetric centroid
decomposition (SC-decomposition) of a DAG D produces a set of edges between connected
nodes with the same λ pairs defined as Escd(D) = {(u, i, v) ∈ E |λ(u) = λ(v)}, partitioning
D into disjoint paths called SC-paths (some of them possibly of length 0).

The set Escd can be computed in O(|D|) time. If D is the DAG of an SLP G, then |D|
is O(|G|). The following lemma justifies the name “SC-paths”.

Lemma 7.1.3 (Ganardi et al. [52, Lemma 2.1]) Let D = (V,E) be a DAG. Then every node
has at most one outgoing and at most one incoming edge from Escd(D). Furthermore, every
path from the root r to a sink node contains at most 2 log2 n(D) edges that do not belong
to Escd(D).

Note that the sum of the lengths of all SC-paths is at most the number of nodes of the
DAG, or equivalently, the number of variables of the SLP.

The following definition and technical lemma are needed to construct the building blocks
of our balanced GSLPs.

Definition 7.1.4 (Ganardi et al. [52, page 7]) A weighted string is a string T ∈ Σ∗ equipped
with a weight function || · || : Σ → N\{0}, which is extended homomorphically. If A is a
variable in an SLP G, then we write ||A|| for the weight of the string exp(A) derived from A.

Lemma 7.1.5 (Ganardi et al. [52, Proposition 2.2]) For every non-empty weighted string
T of length n one can construct in linear time an SLP G generating T with the following
properties:

• G contains at most 3n variables.

• All right-hand sides of G have length at most 4.

• G contains suffix variables1 S1, . . . , Sn producing all non-empty suffixes of T .

• every path from Si to some terminal symbol a in the derivation tree of G has length at
most 3 + 2(log2 ||Si|| − log2 ||a||).

With this machinery, we are ready to prove the main result of this section. Note that we
require that GSLP’s special rules are always the endpoint of some SC-path, which makes the
argument of Ganardi et al. [52] for regular SLPs easily applicable to GSLPs: the balancing
procedure does not involve the special variables of the GSLPs.

Theorem 7.1.6 Given a balanceable GSLP G generating a string T , it is possible to con-
struct an equivalent GSLP G′ of size O(|G|) and height O(log n) in O(|G|+t(G)) time, where

1Namely, exp(Si) = T [i..n], for i ∈ [1..n].

88

t(G) is the time needed to compute the lengths of the expansion of each variable in G.

Proof. Transform the GSLP G into an SLP H by (conceptually) replacing their special rules
A→ x by A→ OUT(x), and then obtain the SC-decomposition Escd(D) of the DAG D of H.
Observe that the SC-paths of H use the same variables of G, so it holds that the sum of the
lengths of all the SC-paths of H is less than the number of variables of G. Also, note that any
special variable A→ x of G is necessarily the endpoint (i.e., the last node of a directed path)
of an SC-path in D. To see this note that λ(A) ̸= λ(B) for any B that appears in OUT(x),
because log2 π(A,W) ≥ log2(|OUT(x)|B ·π(B,W)) ≥ 1+ log2 π(B,W), where |OUT(x)|B is the
number of occurrences of B within OUT(x)—so |OUT(x)|B ≥ 2 because G is balanceable. This
implies that the balancing procedure of Ganardi et al. on H, which transforms the rules of
variables that are not the endpoint of an SC-path in the DAG D, will not touch variables
that were originally special variables in G.

Let ρ = (A0, d0, A1), (A1, d1, A2), . . . , (Ap−1, dp−1, Ap) be an SC-path of D. It holds that
for each Ai with i ∈ [0 . . p−1], in the SLP H its rule goes to two distinct variables, one to the
left and one to the right. Thus, for each variable Ai, with i ∈ [0 . . p− 1], there is a variable
A′

i+1 that is not part of the path. Let A′
1A

′
2 · · ·A′

p be the sequence of these variables. Let
L = L1L2 · · ·Ls be the subsequence of left variables of the previous sequence. Then construct
an SLP of size O(s) ⊆ O(p) for the sequence L (seen as a string) as in Lemma 7.1.5, using
|exp(Li)| in H as the weight function. In this SLP, any path from the suffix nonterminal Si

to a variable Lj has length at most 3+2(log2 ||Si|| − log2 ||Lj||). Similarly, construct an SLP
of size O(t) ⊆ O(p) for the sequence R = R1R2 · · ·Rt of right symbols in reverse order, as in
Lemma 7.1.5, but with prefix variables Pi instead of suffix variables. Each variable Ai, with
i ∈ [0 . . p − 1], derives the same string as wlApwr, for some suffix wl of L and some prefix
wr of R. We can find rules deriving these prefixes and suffixes in the SLPs produced in the
previous step, so for any variable Ai, we construct an equivalent rule of length at most 3.
Add these equivalent rules, and the left and right SLP rules to a new GSLP G′. Do this for
all SC-paths. Finally, add the original terminal variables and special variables (which are
left unmodified) of the GSLP G, so G′ is a GSLP equivalent to G.

Figure 7.1 shows an example where the special GSLP rules are of the form A → Bt,
meaning t copies of B (i.e., the GSLP is an RLSLP).

The SLP constructed for L has all its rules of length at most 4, and 3s ≤ 3p variables.
The same happens with R. The other constructed rules also have a length of at most 3, and
there are p of them. Summing over all SC-paths, we have O(|G|) size. The special variables
cannot sum up to more than O(|G|) size. Thus, the GSLP G′ has size O(|G|).

Any path in the derivation tree of G′ is of length O(log n). To see why, let A0, . . . , Ap be
an SC-path. Consider a path from a variable Ai with i ∈ [0, p], to the occurrence of some
variable within the string of variables produced by the right-hand side of Ap in G′. Clearly,
this path has length at most 2 (i.e., from Ai to Ap and from Ap to such variable). Now
consider a path from Ai to a variable A′

j in the sequence L of left variables of the SC-path,
with i < j ≤ p (that is, A′

j is a variable that diverges from the SC-path before reaching Ap).
By construction this path is of the form Ai → Sk →∗ A′

j (where →∗ represents a path) for
some suffix variable Sk (if the occurrence of A′

j is a left symbol), and per Lemma 7.1.5 its
length is at most 1+3+2(log2 ||Sk||−log2 ||A′

j||) ≤ 4+2 log2 ||Ai||−2 log2 ||A′
j||. Analogously,

89

A01 106

A11 105

A21 104

A31 89

A41 75

A56 15

A67 14

A77 13

A87 12

A97 10

A1042 2

A1149 1 A1257 1

A0 → A1A12

A1 → A11A2

A2 → A5A3

A3 → A4A6

A4 → A5
5

A5 → A11A6

A6 → A7A12

A7 → A8A12

A8 → A10A9

A9 → A5
10

A10 → A11A12

A11 → 0

A12 → 1

Figure 7.1: The DAG and SC-decomposition of an unfolded RLSLP generating the string
0(0(01)612)6(01)513. The value to the left of a node is the number of paths from the root to
that node, and the value to the right is the number of paths from the node to sink nodes.
Red edges belong to the SC-decomposition of the DAG. Blue (resp. green) edges branch
from an SC-path to the left (resp. to the right).

if A′
j is a right variable, the length of the path is bounded by 1+3+2(log2 ||Pk||−log2 ||A′

j||) ≤
4+2 log2 ||Ai||−2 log2 ||A′

j|| (where Pk is some prefix variable). We call all these paths whose
length we bounded weight-balanced paths.

Now consider a maximal path from the root to a leaf in the derivation tree of G′. Factorize
it as

A0 →∗ A1 →∗ · · · →∗ Ak

where each Ai is a variable of H (and also of G and D), and in between each Ai and Ai+1, in
the DAG D there is almost an SC-path, except that the last edge is not in Escd. Each path
Ai →∗ Ai+1 is a weight-balanced path in the constructed GSLP G′. Simply put, in G′, either
the path goes directly from Ai to the SC-path endpoint and follows an edge from there to
Ai+1, or it goes through a suffix (or prefix) variable. In either case, the length of these paths
is bounded by 2 or by 4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||), respectively.

The length of the full path from root to leaf in G′ is then at most

k−1∑
i=0

(4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||) ≤ 4k + 2 log2 ||A0|| − 2 log2 ||Ak||

90

By Lemma 7.1.3, k ≤ 2 log2 n, which yields the upper bound O(log n).

To have standard SLP rules of size at most two, delete rules in G′ of the form A → B
(replacing all A’s by B’s), and note that rules of the form A → BCDE or A → BCD can
be decomposed into rules of length 2, with only a constant increase in size and depth.

The balancing procedure uses O(|G| + t(G)) time and O(|G| + s(G)) auxiliary space,
where t(G) and s(G) are the time and space needed to compute and store the set of all
the pairs (B, |OUT(x)|B), where B appears |OUT(x)|B > 0 times in OUT(x), for every special
variable A → x. With this information the set Escd(D) can be computed in O(|G| + t(G))
time, instead of O(|H|) time. The SLPs of Lemma 7.1.5 are constructed in linear time in
the lengths of the SC-paths, which sum to O(|G|) in total.

7.2 Iterated Straight-Line Programs

We now define iterated SLPs and show that they can be much smaller than δ.

Definition 7.2.1 An iterated straight-line program of degree d (d-ISLP) is an SLP that
allows in addition iteration rules of the form

A→
k2∏

i=k1

Bic1
1 · · ·Bict

t

where 1 ≤ k1, k2, 0 ≤ c1, . . . , ct ≤ d are integers, B1, . . . , Bt are variables that cannot
reach A (so the ISLP generates a unique string), and the product of strings refers to their
concatenation. Iteration rules have size 2 + 2t = O(t) and expand to

exp(A) =

k2∏
i=k1

exp(B1)
ic1 · · · exp(Bt)

ict

where if k1 > k2 the iteration goes from i = k1 downwards to i = k2. The size size(G) of a
d-ISLP G is the sum of the sizes of all of its rules.

Definition 7.2.2 The measure git(d)(T) is defined as the size of the smallest d-ISLP that
generates T , whereas git(T) = mind≥0 git(d)(T).

The following observations show that ISLPs subsume RLSLPs, and thus, can be smaller
than the smallest L-system.

Proposition 7.2.3 For any d ≥ 0, it always holds that git(d) = O(grl).

Proof. Just note that a rule A → ∏t
i=1B

i0 from an ISLP simulates a rule A → Bt from a
RLSLP. In particular, 0-ISLPs are equivalent to RLSLPs.

Proposition 7.2.4 For any d ≥ 0, there exists a string family where git(d) = o(ℓ).

91

Proof. We shown in Chapter 6 a family with grl = o(ℓ) [106]. Hence, git(d) is also o(ℓ) in
this family.

We now show that d = 1 suffices to obtain ISLPs that are significantly smaller than δ for
some string families.

Lemma 7.2.5 Let d ≥ 1. There exists a string family with git(d) = O(1) and δ = Ω(
√
n).

Proof. Such a family is formed by the strings sk =
∏k

i=1 a
ib. The 1-ISLPs with initial rule

Sk →
∏k

i=1A
iB, and rules A → a, B → b, generate each string sk in the family using O(1)

space. On the other hand, it holds that δ = Ω(
√
n) in the family csk of Chapter 6. As δ can

only decrease by 1 after the deletion of a character [1], δ = Ω(
√
n) in the family sk too.

On the other hand, ISLPs can perform worse than other compressed representations;
recall that δ ≤ γ ≤ b ≤ r/r$.

Lemma 7.2.6 Let µ ∈ {r, r$, ℓ}. For any d ≥ 0, there exists a string family with git(d) =
Ω(log n) and µ = O(1).

Proof. Consider the family of Fibonacci words defined recursively as F0 = a, F1 = b, and
Fi+2 = Fi+1Fi for i ≥ 0. Fibonacci words cannot contain substrings of the form x4 for any x ̸=
ε [65]. Consider an ISLP for a Fibonacci word and a rule of the form A→∏k2

i=k1
Bic1

1 · · ·Bict
t .

Observe that if cr ̸= 0 for some r, then max(k1, k2) < 4, as otherwise exp(Br)
4 occurs in

T . Similarly, if cr = 0 for all r, then |k1 − k2| < 3, as otherwise exp(B1 · · ·Bt)
4 appears in

T . In the latter case, we can rewrite the product with k1, k2 ∈ [1 . . 3]. Therefore, we can
unfold the product rule into standard SLP rules of total size at most 9t (3t variables raised
to at most 3 each because we assumed our word is Fibonacci). Hence, for any d-ISLP G
generating a Fibonacci word, there is an SLP G′ of size O(|G|) generating the same string.
As g = Ω(log n) in every string family, we obtain that git(d) = Ω(log n) in this family too.
On the other hand, r$, r, and ℓ are O(1) in the even Fibonacci words [102, 95, 105].

Lemma 7.2.7 For any d ≥ 0, there exists a string family satisfying that z = O(log n) and
git(d) = Ω(log2 n/ log log n).

Proof. Let T (n) be the length n prefix of the infinite Thue-Morse word2 [3] on the alphabet
{a, b}. Let k1, ..., kp be a set of distinct positive integers, and consider strings of the form
S = T (k1)|1T (k2)|2 · · ·T (kp−1)|p−1T (kp), where |i’s are unique separators and k1 is the largest
of the ki. Since the sequences T (ki) are cube-free3 [3], there is no asymptotic difference in
the size of the smallest SLP and the smallest ISLP (similarly to Lemma 7.2.6) for the string
S. Hence, git(d) = Θ(g) in this family. It has been proved that g = Ω(log2 k1/ log log k1)
and z = O(log k1) for some specific sets of integers where p = Θ(k1) [16]. Thus, the result
follows.

2This is the binary infinite sequence obtained by starting with 0 and appending the binary complement
of the string obtained so far, that is, 0 1 10 1001 10010110 . . .

3Those are the sequences that do not contain three consecutive identical substrings.

92

ν

δ γ

min(ℓ, b)

b z

r/r$

ze

grlgit g

ℓ δ

Figure 7.2: Asymptotic relations between ℓ, ν, git and other repetitiveness measures. A
double solid arrow from v1 to v2 means that it always holds that v1 = O(v2), and there exists
a string family where v1 = o(v2). A dashed arrow from v1 to v2 means that there exists a
family where v1 = o(v2). We suggest the reader to check Figure 4.3 for further implications.

We summarize in Figure 7.2 how git is related to other repetitiveness measures.

One thing that makes ISLPs robust is that they are not very sensitive to reversals, mor-
phism application, or edit operations (insertions, deletions, and substitutions of a single
character). The measure git(d) behaves similarly to SLPs in this matter, for which it has
been proved that g(T ′) ≤ 2g(T) after an edit operation that converts T to T ′ [1], and that
g(φ(T)) ≤ g(T)+ cφ with cφ a constant depending only on the morphism φ [42]. This makes
git(d) much more robust to string operations than measures like r and r$, which are highly
sensitive to all these transformations [59, 60, 42, 1].

Lemma 7.2.8 Let G be a d-ISLP generating T . Then there exists a d-ISLP of size |G|
generating the reversed text TR. Let φ be a morphism. Then there exists a d-ISLP of size
|G| + cφ generating the text φ(T), where cφ is a constant depending only on φ. Moreover,
there exists a d-ISLP of size at most O(|G|) generating T ′ where T and T ′ differ by one edit
operation.

Proof. For the first claim, note that reversing all the SLP rules and expressions inside the
special rules, and swapping the values k1 and k2 in each special rule is enough to obtain a
d-ISLP of the same size generating TR.

For the second claim, we replace rules of the form A → a with A → φ(a), yielding a
grammar of size less than |G|+∑a∈Σ |φ(a)|. Then we replace these rules with binary rules,
which asymptotically do not increase the size of the grammar.

For the edit operations, we proceed as follows. Consider the derivation tree of the ISLP,
and the path from the root to the character we want to substitute, delete, or insert a character

93

before or after. Then, we follow this path in a bottom up manner, constructing a new variable
A′ for each node A we visit. We start at some A→ a, so we construct A′ → x where either
x = c or x = ac or x = ca or x = ε depending on the edit operation. If we reach a node
A → BC going up from B (so we already constructed B′), we construct a node A′ → B′C
(analogously if we come from C). If we reach a node A→∏k2

i=k1
Bic1

1 · · ·Bict
t going up from a

specific Br with r ∈ [1 . . t] (so we already constructed B′
r) at the k-th iteration of the product

with k1 ≤ k ≤ k2 and being the q-th copy of Br inside Bkcr
r , then we construct the following

new rules

A1 →
k−1∏
i=k1

Bic1
1 · · ·Bict

t , A2 →
k∏

i=k

Bic1
1 · · ·Bicr−1

r−1 , A3 →
q−1∏
i=1

Bi0

r ,

A4 →
kcr∏

i=q+1

Bi0

r , A5 →
k∏

i=k

Bicr+1

r+1 · · ·Bict
t , A6 →

k2∏
i=k+1

Bic1
1 · · ·Bict

t

A′ → A1A2A3B
′
rA4A5A6

which are equivalent to A (except by the modified, inserted, or deleted symbol) and sum to
a total size of at most 6t+ 21. As t ≥ 1, it holds that (6t+ 21)/(2t+ 2) ≤ 7. After finishing
the whole process, we obtain a d-ISLP of size at most 8|G|. Note that this ISLP contains
ε-rules. It also contains some non-binary SLP rules, which can be transformed into binary
rules, at most doubling the size of the grammar.

7.3 Accessing ISLPs

We have shown that git(d) breaks the lower bound δ already for d ≥ 1. We now show that
the measure is accessible. Concretely, we will prove the following result along Sections 7.3.2
to 7.3.4. Before proving it, Section 7.3.1 shows how the result can be specialized by properly
bounding h and d. At the end, Section 7.3.5 extends the result to computing functions over
substrings, without need of extracting them first.

Theorem 7.3.1 Let T [1 . . n] be generated by a d-ISLP G of height h. Then, we can build
in time O((|G| + d)d⌈d log d/ log n⌉) and space O(|G| + d⌈d log d/ log n⌉) a data structure
of size O(|G|) that extracts any substring of T of length λ in time O(λ + (h + log n +
d)d⌈d log d/ log n⌉) on a RAM machine of Θ(log n) bits, using O(h+ d⌈d log d/ log n⌉) addi-
tional words of working space.

7.3.1 Specializing the result

Before proving Theorem 7.3.1, we obtain a useful special case by showing that both h and
d can be bounded to O(log n) without increasing the asymptotic size of G. Theorem 7.3.1
then implies the following result.

Theorem 7.3.2 Let T [1 . . n] be generated by an ISLP G. Then, we can build in time
O((|G|+log n) log n log log n) and space O(|G|+log n log log n) a data structure of size O(|G|)

94

that extracts any substring of T of length λ in time O(λ+log2 n log log n) on a RAM machine
of Θ(log n) bits, using O(log n log log n) additional words of working space.

To prove that Theorem 7.3.1 implies Theorem 7.3.2, we first show that we can always
make h = O(log n) without asymptotically increasing the size of the ISLP.

Lemma 7.3.3 Given a d-ISLP G generating a string T [1 . . n], it is possible to construct a
d′-ISLP G′ of size O(|G|) that generates T , for some d′ ≤ d, with height h′ = O(log n). The
construction requires O((|G|+ d)d⌈d log d/ log n⌉) time and O(|G|+ d⌈d log d/ log n⌉) space.

Proof. ISLPs are GSLPs: they allow rules of the form A→∏k2
i=k1

Bic1
1 · · ·Bict

t of size 2+ 2t,
and a simple program of size O(t) writes the corresponding right-hand symbols (a sequence
over {B1, . . . , Bt}) explicitly. Note that, if k1 ̸= k2 for every special rule, then the correspond-
ing GSLP is balanceable for sure, as no symbol in any output sequence can appear exactly
once. If k1 = k2 for some special rule, instead, the output may have unique symbols Bi0

j or

B1cj
j . In this case we can split the rule at those symbols, in order to ensure that they do not

appear in special rules, without altering the asymptotic size of the grammar. For example,
A → Bi2

1 B
i0

2 B
i3

3 B
i
4B

i0

5 (i.e., k1 = k2 = i for some i > 1) can be converted into A → A1A2,
A1 → A3B2, A2 → A4B5, A3 → Bi2

1 , A4 → Bi3

3 B
i
4. The case k1 = k2 = 1 corresponds to

A→ B1 · · ·Bt and can be decomposed into normal binary rules within the same asymptotic
size.

We can then apply Theorem 7.1.6. Note the exponents of the special rules A → x are
retained in general, though some can disappear in the case k1 = k2 = 1. Thus, the parameter
d′ of the balanced ISLP satisfies d′ ≤ d.

The time to run the balancing algorithm is linear in |G|, except that we need to count, in
the rules A → ∏k2

i=k1
Bic1

1 · · ·Bict
t , how many occurrences of each nonterminal are produced.

If we define

pc(k) =
k∑

i=1

ic, (7.1)

then Bj is produced pcj(k2)− pcj(k1 − 1) times on the right-hand side of A.

Computing pc(k) straightforwardly takes time Ω(k), which may lead to a balancing time
proportional to the length n of T . In order to obtain time proportional to the grammar size
|G|, we need to process the rule for A in time proportional to its size, O(t). We show next
how this can be done, by regarding pc(k) as a polynomial on k.

Proposition 7.3.4 After a preprocessing time of O(d2⌈d log d/ log n⌉), and within
O(d⌈d log d/ log n⌉) working space, we can compute any polynomial pc(k) in time
O(d⌈d log d/ log n⌉).

95

Proof. An alternative formula4 [76] computes pc(k) using rational arithmetic (note c ≤ d):

pc(k) = kc +
1

c+ 1
·

c∑
j=0

(
c+ 1

j

)
bj · kc+1−j. (7.2)

The formula requires O(c) ⊆ O(d) arithmetic operations once the numbers bj are computed.
Those bj are the Bernoulli (rational) numbers. All the Bernoulli numbers from b0 to bd can
be computed in O(d2) arithmetic operations using the recurrence

d∑
j=0

(
d+ 1

j

)
bj = 0,

from b0 = 1. The numerators and denominators of the rationals bj fit in O(j log j) =
O(d log d) bits,5 so they can be operated in time O(⌈d log d/ log n⌉) in a RAM machine
with word size Θ(log n). The total construction time of the Bernoulli numbers is then
O(d2⌈d log d/ log n⌉), and they can be maintained in O(d⌈d log d/ log n⌉) space.

Therefore, once we build the Bernoulli rationals bj in advance, in time
O(d2⌈d log d/ log n⌉), the processing time for a rule of size O(t) is O(t d⌈d log d/ log n⌉), which
adds up to O(|G| d⌈d log d/ log n⌉) for all the grammar rules. Storing the precomputed values
bj during construction requires d⌈d log d/ log n⌉ extra space.

We now prove that we can always make d = O(log n) without changing the size of the
ISLP. From now on in the chapter, we will disregard for simplicity the case k1 > k2 in the
rules A→ Πk2

i=k1
Bic1

1 · · ·Bict
t , as their treatment is analogous to that of the case k1 ≤ k2.

Lemma 7.3.5 If a d-ISLP G generates T [1 . . n], then there is also a d′-ISLP G′ of the same
size that generates T , for some d′ ≤ log2 n.

Proof. For any rule A =
∏k2

i=k1
Bic1

1 · · ·Bict
t , any i ∈ [k1 . . k2], and any cj, it holds that

n ≥ |exp(A)| ≥ icj , and therefore cj ≤ logi n, which is bounded by log2 n for i ≥ 2. Therefore,
if k2 ≥ 2, all the values cj can be bounded by some d′ ≤ log2 n. A rule with k1 = k2 = 1 is
the same as A → B1 · · ·Bt, so all values cj can be set to 0 without changing the size of the
rule.

An even more special case.

The case d = O(1) deserves to be stated explicitly because it yields near-optimal substring
extraction time, and because it already breaks the space lower bound Ω(δ). We then plug
d = O(1) and (per Lemma 7.3.3) h = O(log n) in Theorem 7.3.1 to obtain the following
result.

4See Wolfram Mathworld’s https://mathworld.wolfram.com/BernoulliNumber.html, Eqs. (34) and
(47).

5See https://www.bernoulli.org, sections “Structure of the denominator”, “Structure of the nomina-
tor”, and “Asymptotic formulas”.

96

Corollary 7.3.6 Let T [1 . . n] be generated by a d-ISLP G, with d = O(1). Then, we can
build in O(|G|) time and space a data structure of size O(|G|) that extracts any substring of
T of length λ in time O(λ+ log n) on a RAM machine of Θ(log n) bits.

Note that the corollary achieves O(log n) access time for a single symbol. Verbin and
Yu [128] showed that any data structure using space s to represent T [1 . . n] requires time
Ω(log1−ε n/ log s) time, for any ε > 0. Since even SLPs can use space s = O(log n) on some
texts, they cannot always offer access time O(log1−ε n) for any constant ε. This restriction
applies to even smaller grammars like RLSLPs and d-ISLPs for any d.

7.3.2 Data structures

We now start to prove Theorem 7.3.1. In this subsection we focus on defining proper data
structures that let us efficiently compute the length of the expansion of any prefix of the
right-hand side of every rule

A→
k2∏

i=k1

Bic1
1 · · ·Bict

t .

This will be used in Section 7.3.3 to provide direct access to the content of exp(A). While our
problem is easily solved by storing the (k2 − k1 + 1) · t cumulative lengths, we cannot afford
that space. The challenge is to support these queries within space O(t), that is, proportional
to the size of the rule.

Our key idea is that, though t can be large, there are only d + 1 distinct values cj. We
will exploit this because, per Lemma 7.3.5, d can be made O(log n).

Navigating within a block

We start focusing on a single “block” Bic1
1 · · ·Bict

t , for fixed i. Our goal here is to efficiently
compute the length of the expansion of Bic1

1 · · ·Bicr
r (i.e., a prefix of the block). Formally, we

will compute the function

fr(i) =
r∑

j=1

|exp(Bj)| · icj ,

for any r ∈ [1 . . t]. We now show how to do thisin time O(d), using O(t) space for rule A.
We use two structures:

• We precompute an array SA[1 . . t] storing cumulative length information, as follows

SA[r] =
∑

1≤j≤r,cj=cr

|exp(Bj)|.

That is, SA[r] adds up the lengths, up to Br, of the expansions of (only) those symbols
that must be multiplied by icr .

97

1 2 3 4 5 6 7 8 9

2 3 6 7 14 13 5 3 18

1 2 1 0 0 1 2 3 0

SA

CA

fr=8(i) = 3i3 + 5i2 + 13i+ 14

fr=9(i) = 3i3 + 5i2 + 13i+ 18

f+(k) = 9
12k

4 + 38
12k

3 + 117
12 k2 + 304

12 k

Figure 7.3: Data structures built for the ISLP rule A → ∏5
i=1B

iCi2DiEEEiBi2Ci3D, with
|exp(B)| = 2, |exp(C)| = 3, |exp(D)| = 4, and |exp(E)| = 7. On the right we show some of
the polynomials that are computed with these data structures.

• A second array, CA[1 . . t], stores the values c1, . . . , ct. We preprocess CA to solve pre-
decessor queries of the form

pred(A, r, c) = max{j ≤ r, CA[j] = c},

that is, the latest occurrence of c in CA to the left of position r, for every c = 0, . . . , d.

To compute fr(i), we first calculate the values rc = pred(A, r, c) for all c. We then evaluate
fr(i) in O(d) time by adding up SA[rc] · ic, because SA[rc] adds up all those |exp(Bj)|, for
j ≤ r, that must be multiplied by ic in fr(i).

Example 7.3.7 The left part of Figure 7.3 shows the arrays SA and CA of an example
rule. The first (Bi), third (Di), and sixth (Ei) symbols are raised to the power i = i1

(i.e., c1 = c3 = c6 = 1). Thus, SA[1] = 2 = |exp(B)|, SA[3] = 6 = SA[1] + |exp(D)|, and
SA[6] = 13 = SA[3] + |exp(E)|. To compute f8(i), we will sum the coefficients of i1, i2, and
i3. The term to be multiplied by i1 is SA[6], because 6 = pred(A, 8, 1) is the last position
in [1 . . 8] of a symbol raised to power i1 = i (it is Ei). In SA[6] = 13 we have the sum of
all the lengths that must be multiplied by i. Similarly, in SA[pred(A, 8, 2) = 7] we have the
total length 5 of the rules that must be multiplied by i2 (which includes Ci2 and Bi2), and
in SA[pred(A, 8, 3) = 8] we have the total length 3 of the rules to be multiplied by i3 (which
is just Ci3). We then compute f8(i) = 13 · i+ 5 · i2 + 3 · i3.

We now show how to build SA and how to precompute CA so that the d + 1 queries
pred(A, r, c) are computed in O(d) time.

Building SA. Array SA is built in time O(t) once all the lengths |exp(·)| have been com-
puted, by traversing the nonterminals B1, . . . , Bt in the rule of A while maintaining in an
array L[Bj] the last position of each distinct nonterminal Bj seen so far in the rule. For-
mally, the invariant is that, once we arrive at Br, it holds L[B] = max{i < r, Bi = B} for all
symbols B ∈ {B1, . . . , Br−1} (and L[B] = 0 if B has not appeared before Br). We initialize
SA[0] ← 0 and, at step r, we fill SA[r] ← SA[L[Br]] + |exp(Br)| and then set L[Br] ← r
to restore the invariant. Storing L requires O(|G|) space at construction time; we use lazy
initialization to avoid O(|G|) initialization time.

98

Algorithm 8 Computing fr(i) for nonterminal A, in time O(d)
Input : Values i and r, arrays SA and CA, and precomputed values pred(A, (d+1)j, c) for

every j and c.
Output: The value fr(i).
1: j ← ⌈r/(d+ 1)⌉ − 1 // the chunk where r belongs
2: for c← 0, . . . , d do // collect last occurrence of each c to the left of the chunk
3: rc ← pred(A, (d+ 1)j, c) // this is precomputed

4: for k ← (d+ 1)j + 1, . . . , r do // update last occurrences within the chunk
5: c← CA[k]
6: rc ← k

7: s← 0 // knowing the last occurrences of each c up to r, compute fr(i)
8: p← 1
9: for c← 0, . . . , d do

10: s← s+ SA[rc] · p
11: p← p · i
12: return s

Preprocessing CA. We preprocess CA as follows: we cut CA into chunks of length d +
1, and for each chunk CA[(d + 1) · j + 1 . . (d + 1) · (j + 1)] we store precomputed values
pred(A, (d + 1) · j, c) for all c ∈ {0, . . . , d}. That is, each chunk stores the predecessor of
every c to its left in CA. Those precomputed values require only O(t) space because there
are d+1 of them per chunk. They can be computed in O(t) time, on a left-to-right traversal
of CA, by using an array L′[0 . . d] analogous to L, which at each position records the last
ocurrence seen so far of each value c ∈ {0, . . . , d}. The values L′[0 . . d] after processing each
position (d+ 1) · j are precisely the values pred(A, (d+ 1) · j, c) we store with the chunk j.

Once this precomputation is completed, we answer queries as follows. To compute the
values rc = pred(A, r, c) for all c, we find the chunk j = ⌈r/(d + 1)⌉ − 1 where r belongs,
initialize every rc = pred(A, (d+ 1) · j, c) for every c (which is stored with the chunk j), and
then scan the chunk prefix CA[(d + 1) · j + 1 . . r] left to right, correcting every rc ← k if
c = CA[k], for k = (d+ 1) · j + 1 . . r.

Algorithm 8 summarizes the whole process to compute fr(i), and the next lemma sum-
marizes our result.

Lemma 7.3.8 After O(|G|) precomputation time using O(|G|+d) working space, we obtain
data structures that use O(|G|) space and can compute any fr(i) in time O(d).

Navigating between blocks

We now complete the calculation of the expansion length of any prefix of the rule of A. The
following function adds up the expansion lengths of several whole “blocks”.

f+(k) =
k∑

i=k1

ft(i),

99

that is, f+(k) is the cumulative sum of the length of the whole expressions Bic1
1 · · ·Bict

t until
i = k. The problem is, again, that we cannot afford the space of simply storing the |k2−k1|+1
values f+(k). We will instead compute f+(k) by reusing the same data structures we already
store for fr(i).

Just as in Algorithm 8, for each c = 0, . . . , d, we compute tc = pred(A, t, c) and sc =
SA[tc], which is the total expansion length of the symbols that must be multiplied by ic in
the whole rule. We then multiply sc by the sum of the factors ic from i = k1 to i = k,
sc ·
∑k

i=k1
ic = sc ·(pc(k)−pc(k1−1)), where pc(k) is defined in Eq. (7.1). Finally, we compute

f+(k) =
d∑

c=0

sc · (pc(k)− pc(k1 − 1)).

Since pc(k) is a polynomial on k of maximum degree c+1 (see Eq. (7.2)), f+(k) is a polynomial
on k of maximum degree d+ 1.

Example 7.3.9 Consider the ISLP of Lemma 7.2.5, defined by the rules S → ∏k2
i=1 A

iB,
A → a, and B → b. The polynomials associated with the representation of the rule S are
ic1 = i and ic2 = 1. Then, we construct the auxiliary polynomials f1(i) = |exp(A)|ic1 = i
and f2(i) = |exp(A)|ic1 + |exp(B)|ic2 = i+1. Finally, we construct the polynomial f+(k) =∑k

i=1 f2(i) =
∑k

i=1(i + 1) = 1
2
k2 + 3

2
k. Indeed, our calculation yields t0 = 2 and t1 = 1,

SA[1] = SA[2] = 1, s0 = s1 = 1, s0(p0(k) − p0(0)) = k and s1(p1(k) − p0(k)) =
k(k+1)

2
, and

f+(k) is then k + k(k+1)
2

. Figure 7.3 shows a more complex example.

As shown in Proposition 7.3.4, we can compute all the Bernoulli polynomials, and then
the coefficients of all the polynomials pc(k) in time O(d2⌈d log d/ log n⌉). This yields the
following result.

Lemma 7.3.10 Once the structures of Lemma 7.3.8 are built, we can build in time
O(d2⌈d log d/ log n⌉) additional data structures that use O(d⌈d log d/ log n⌉) space, which
can compute any f+(k) in time O(d⌈d log d/ log n⌉).

7.3.3 Direct access

Now that we can efficiently compute the expansion lengths of rule prefixes, we face our
simplest query: given the data structures of size O(|G|) defined in the previous sections,
return the symbol T [l] given an index l. Instead of using extra space to store precomputed
values, we start the query process by computing all the polynomials pc(k), which are the same
for every rule, in time O(d2⌈d log d/ log n⌉). With those polynomial coefficients precomputed,
we can compute any f+(k), as well as any fr(i), for any rule in time O(d⌈d log d/ log n⌉),
using Lemmas 7.3.8 and 7.3.10.

For SLPs with derivation tree of height h, the problem is easily solved in O(h) time
by storing the expansion size of every nonterminal, and descending from the root to the
corresponding leaf using |exp(B)| to determine whether to descend to the left or to the right

100

of every rule A→ BC. The general idea for d-ISLPs is similar, but now determining which
child to follow in repetition rules is more complex.

To access the l-th character of the expansion of A → ∏k2
i=k1

Bic1
1 · · ·Bict

t we first find the
value i such that f+(i − 1) < l ≤ f+(i) by using binary search (we let f+(i − 1) = 0 when
i = k1). Then, we find the value r such that fr−1(i) < l − f+(i− 1) ≤ fr(i) by using binary
search on the subindex of the functions (we let fr−1(i) = 0 for any i when r = 1). We then
know that the search follows by Br, with offset l − f+(i − 1) − fr−1(i) inside |exp(Br)|icr .
The offset within Br is then easily computed with a modulus. Algorithm 9 gives the details,
using succ to denote the binary search in an ordered set (i.e., succ([x1 . . xm], l) = j iff
xj−1 < l ≤ xj).

We carry out the first binary search so that, for every i we try, if f+(i) < l we immediately
answer i+ 1 if l ≤ f+(i+ 1); instead, if l ≤ f+(i), we immediately answer i if f+(i− 1) < l.
As a result, the search area is initially of length |exp(A)| and, if the answer is i, the search
has finished by the time the search area is of length ≤ f+(i)− f+(i− 1) = ft(i). Thus, there
are O(1 + log(|exp(A)|/ft(i))) binary search steps. The second binary search is modified
analogously so that it carries out O(1 + log(ft(i)/(i

cr |exp(Br)|))) steps. Summing the costs
of both binary searches, and because icr ≥ 1, we have at most O(1+log(|exp(A)|/|exp(Br)|))
steps. As the search continues by Br, the sum of binary search steps telescopes to O(h+log n)
on an ISLP of height h: assume we traverse the ISLP from the initial symbol A1 to the symbol
Ah. The sum of the binary search costs is of the order of

(1 + log(|exp(A1)|/|exp(A2)|)) + (1 + log(|exp(A2)|/|exp(A3)|))
+ · · ·+ (1 + log(|exp(Ah−1)|/|exp(Ah)|))

= h+ log(|exp(A1)|/|exp(Ah)|) ≤ h+ log n.

This yields our result for accessing a single symbol.

Lemma 7.3.11 After the construction-time precomputation of Lemma 7.3.8 and the query-
time preprocessing O(d2⌈log d/ log n⌉) of Lemma 7.3.10, we can access any symbol T [l] in
time O((h+ log n) d⌈d log d/ log n⌉).

Example 7.3.12 We show how to access the b at position 14 of the string T =
∏5

i=1 a
ib.

Consider the ISLP G and its auxiliary polynomials computed in Example 1. We start by
computing f+(2) = 5. As l > 5, we go right in the binary search and compute f+(4) = 14.
As l ≤ 14 we go left, compute f+(3) = 9 and find that i = 4. Hence, T [l] lies in the expansion
of AiB = A4B at position l1 = l − f+(i − 1) = 5. Then, we compute f1(4) = 4. As l1 > 4,
we turn right and compute f2(4) = 5, finding that r = 2. Hence, T [l] lies in the expansion of
Bi0 = B1 at position l2 = l1 − fr−1(i) = 1.

7.3.4 Extracting substrings

The last piece for proving Theorem 7.3.1 is to show how to extract substrings from T . Once
we have accessed T [l], it is possible to output the substring T [l . . l + λ − 1] in O(λ + h)
additional time, as we return from the recursion in Algorithm 9. We carry the parameter λ

101

Algorithm 9 Direct access on d-ISLPs of height h in O((h+ log n+ d)d) operations

Input : A variable A of an ISLP, and a position l ∈ [1, |exp(A)|].
Output: The character exp(A)[l].
1: function access(A, l)
2: if A→ a then // found the leaf in the parse tree for T [l]
3: return a
4: else if A→ BC then // go left or right as on classic SLPs
5: if l ≤ |exp(B)| then
6: return access(B, l)
7: else (l > |exp(B)|)
8: return access(C, l − |exp(B)|)
9: else (A→∏k2

i=k1
Bic1

1 · · ·Bict
t) // find the proper descendant node

10: i← succ([f+(k1) . . f
+(k2)], l)

11: l← l − f+(i− 1)
12: r ← succ([f1(i) . . ft(i)], l)
13: l← l − fr−1(i)
14: return access(Br, (l − 1 mod |exp(Br)|) + 1)

of the number of symbols (yet) to output, which is first decremented when we finally find
the first symbol, T [l], which we now output immediately. From that point, as we return from
the recursion, we output up to λ following symbols and return the number of remaining
symbols yet to output, until λ = 0. See Algorithm 10.

To analyze this algorithm, we note that it visits λ consecutive leaves in the parse tree,
plus their ancestors. This is because the algorithm does not visit any node that is not an
ancestor of a leaf that must be output: it first traverses towards T [l], and then enters into
a node only if there are remaining descendant leaves to visit (i.e., λ > 0). The ancestors
of those leaves are composed of (i) the leftmost and rightmost paths that lead to T [l] and
T [l+ λ− 1], and (ii) a set of complete subtrees between those paths. The former contain up
to 2h nodes; the latter include up to λ leaves and thus up to λ internal nodes, as there are
no nodes of degree 1 in the parse tree.

The analysis also shows up in Algorithm 10. We distinguish two types of recursive calls.
Initially the substring to extract is within one of the children of the grammar tree node, and
thus only one recursive call is made. Those are the cases of lines 7, 11, and 17. The number
of those calls is limited by the the height h of the grammar. Once we reach a node where
the substring to extract spreads across more than one child, the λ symbols to output are
distributed across more than one recursive call, ending in line 3 when outputting individual
symbols. Those recursive calls form a tree with no unary paths and λ leaves, thus they add
up to O(λ).

A final detail is that, in line 21 of Algorithm 10, we need to compute icr . This can be done
with modular exponentiation in time O(log cr) ⊆ O(log d). If λ ≥ |exp(Bicr

r)|, then the time
O(log cr) to compute icr is absorbed by the time to traverse the subtree of Bicr

r .6 Otherwise,
Bicr

r is the rightmost symbol of the parse tree that we will traverse; this can happen h times

6Except if i = 1, where the result is simply 1 for any cr.

102

only. This issue then adds O(h log d) to the total time, which is absorbed by the time to
reach T [l]; recall Lemma 7.3.11.

The total space for the procedure is O(h) for the recursion stack (which is unneces-
sary when returning a single symbol, since recursion can be eliminated in that case), plus
O(d⌈d log d/ log n⌉) for the precomputed Bernoulli rationals.7 This concludes the proof of
Theorem 7.3.1.

7.3.5 Composable functions on substrings

Other than extracting a text substring, we aim at computing more general functions on
arbitrary ranges T [p . . q], in time that is independent of the length q − p + 1 of the range.
We show how to compute some functions that have been studied in the literature, focusing
on composable ones.

Definition 7.3.13 A function f from strings is composable if there exists a function g such
that, for every pair of strings X and Y , it holds f(X · Y) = g(f(X), f(Y)).

We focus for now on two popular composable functions, which find applications for ex-
ample on grammar-compressed suffix trees [45, 50].

Definition 7.3.14 A range minimum query (RMQ) on T [p . . q] returns the leftmost position
where the minimum value occurs in T [p . . q]. Formally,

rmq(T, p, q) = min{k ∈ [p . . q] | ∀k′ ∈ [p . . q], T [k] ≤ T [k′]}.

Definition 7.3.15 A next/previous smaller value query (NSV/PSV) on T [p . . n]/T [1 . . p]
and with value v finds the smallest/largest position following/preceding p with value at most
v. If there is no such a position, it returns n+ 1/ 0. Formally,

nsv(T, p, v) = min({q | q ≥ p, T [q] < v} ∪ {n+ 1}),
psv(T, p, v) = max({q | q ≤ p, T [q] < v} ∪ {0}).

We show next how to efficiently solve those queries on ISLPs.

Range Minimum Queries

Solving RMQs on an SLP G is simple thanks to composability. More precisely, what is
composable is an extended function f(X) = ⟨m, v, ℓ⟩ where m = rmq(X, 1, |X|), v = X[m],
and ℓ = |X|. Then, given f(X) = ⟨mx, vx, ℓx⟩ and f(Y) = ⟨my, vy, ℓy⟩, it holds f(X · Y) =
⟨mx, vx, ℓx + ℓy⟩ if vx ≤ vy, and ⟨ℓx +my, vy, ℓx + ℓy⟩ otherwise, which is computable in time
O(1). We also compute f(a) = ⟨1, a, 1⟩ in O(1) time.

7As these do not depend on the query, they could be precomputed at indexing time and be made part of
the index, at a very modest increase in space.

103

To compute RMQs on an SLP G, we first preprocess the grammar to store f(exp(A)) =
⟨m, v, ℓ⟩ for each nonterminal A, in the form of the pair rmq(A) = ⟨m, v⟩ and the length
ℓ = |exp(A)|. Thanks to the composability of f , this is easily built in O(|G|) time in a
bottom-up traversal of the grammar.

To solve rmq(T [p . . q]) on the SLP, we descend from the root towards T [p . . q] (guided
by the stored expansion lengths |exp(A)|) until finding a leaf (if p = q), or more typically a
rule A → BC such that T [p . . q] = exp(B)[p′ . . |exp(B)|] · exp(C)[1 . . q′]. At this point we
split into two recursive calls, one computing rmq on a suffix of exp(B) (a suffix call) and
another on a prefix of exp(C) (a prefix call). By making the recursive calls return rmq(B) in
O(1) time when the range spans the whole string exp(B), we ensure that those prefix/suffix
calls perform only one further (nontrivial) recursive call, and thus the query is solved in O(h)
time, traversing at most two root-to-leaf paths in the parse tree. Algorithm 11 shows the
details.

To solve RMQs on ISLPs, we observe that the expansion of A→∏k2
i=k1

Bic1
1 · · ·Bict

t always
contains the same symbols. Further, the RMQ of exp(A) occurs always in the first block,
i = k1, and it depends essentially on the sequence B1 · · ·Bt. To handle these rules, we prepro-
cess them as follows. Let rmq(Bj) = ⟨mj, vj⟩. Then, we build the string v1 · · · vt and precom-
pute an RMQ data structure on it that answers queries rmqA(p, q) = rmq(v1 · · · vt, p, q). It
is possible to build such a data structure in O(t) time and bits of space, such that it answers
queries in O(1) time [44], so this adds just O(|G|) time and bits to the grammar prepro-
cessing cost. With this structure, we can simulate the extension of our rmq(A) precomputed
pairs to any subsequence Bica

a · · ·Bicb
b of Bic1

1 · · ·Bict
t : rmq(Bic1

1 · · ·Bict
t , a, b) = ⟨m, v⟩, where

rmq(v1 · · · vt, a, b) = m′, rmq(Bm′) = ⟨m′′, v⟩, and m = fm′−1(i) +m′′. The time to compute
this is dominated by the O(d) cost to compute fm′−1(i).

At query time, when we arrive at such a node A with limits p and q, we proceed as in
lines 10–13 of Algorithm 9 to find the values ip and rp, and iq and rq, corresponding to p and
q, respectively (just as we find i and r for l in Algorithm 9). There are several possibilities:

1. If ip = iq and rp = rq, then p and q fall inside exp(Bi
crp

rp). They may be both inside
a single copy of exp(Brp), in which case we continue with a single recursive call. Or
they may span a (possibly empty) suffix of exp(Brp), zero or more copies of exp(Brp),
and a (possibly empty) prefix of exp(Brp). The query is then solved with at most two
recursive calls on Brp (which are prefix/suffix calls), and the information on rmq(Brp).
We compose as explained those (up to) three results, and add f+(ip− 1) + frp−1(ip) to
the resulting position so as to place it within exp(A).

2. If ip = iq and rp < rq, then we must also consider the subsequence B
i
crp+1
p

rp+1 · · ·B
i
crq−1
p

rq−1 , in

case rq−rp > 1. This additional candidate to the RMQ is found with rmq(B
i
c1
p

1 · · ·B
i
ct
p

t , rp+
1, rq − 1), in time O(d) as explained.

3. If ip < iq, we must also add a suffix of of B
i
c1
p

1 · · ·B
i
ct
p

t , the whole B
(ip+1)c1

1 · · ·B(ip+1)ct

t

(if iq − ip > 1), and a prefix of B
i
c1
q

1 · · ·B
i
ct
q

t (if iq − ip = 1). All those are included with
our simulation of queries rmq(Bic1

1 · · ·Bict
t , a, b).

104

Overall, we perform either one recursive call (when p and q are inside the same Brp), or
two prefix/suffix recursive calls (for a suffix of Brp and a prefix of Brq). The analysis is then
the same as for the SLPs, yielding time O(hd). This is in addition to (and dominated by)
the O((h+ log n)d⌈d log d/ log n⌉) time, plus the preprocessing time of O(d2⌈d log d/ log n⌉),
due to the binary searches needed to find ip, iq, rp, and rq, as for direct access (recall
Lemma 7.3.11).

Theorem 7.3.16 Let T [1 . . n] be generated by a d-ISLP G of height h. Then, we can build
in time O((|G|+ d)d⌈d log d/ log n⌉) and space O(|G|+ d⌈d log d/ log n⌉) a data structure of
size O(|G|) that computes any query rmq(T, p, q) in time O((h+ log n+ d)d⌈d log d/ log n⌉)
on a RAM machine of Θ(log n) bits, using O(h+d⌈d log d/ log n⌉) additional words of working
space.

Since we can make both h and d be O(log n) per Lemmas 7.3.3 and 7.3.5, we have the
following corollary.

Corollary 7.3.17 Let T [1 . . n] be generated by an ISLP G. Then, we can build in time
O((|G|+log n) log n log log n) and space O(|G|+log n log log n) a data structure of size O(|G|)
that computes any query rmq(T, p, q) in time O(log2 n log log n) on a RAM machine of
Θ(log n) bits, using O(log n log log n) additional words of working space.

Finally, the following specialization is relevant, as for example it encompasses 1-ISLPs
(which may break δ) and RLSLPs, and matches the analogous result on SLPs.

Corollary 7.3.18 Let T [1 . . n] be generated by a d-ISLP G with d = O(1). Then, we can
build in time and space O(|G|) a data structure of size O(|G|) that computes any query
rmq(T, p, q) in time O(log n) on a RAM machine of Θ(log n) bits.

Next/Previous Smaller Value

Let us consider query NSV; query PSV is analogous. NSV is composable if we extend it to
function f(X, v) = ⟨p, ℓ⟩, where p = nsv(X, 1, v) and ℓ = |X|. If f(X, v) = ⟨px, ℓx⟩ and
f(Y, v) = ⟨py, ℓy⟩, then f(X · Y) = ⟨p, ℓx + ℓy⟩, where p = px if px ≤ ℓx, else p = ℓx + py if
py ≤ ℓy, and p = ℓx + ℓy + 1 otherwise. The composition takes O(1) time.

The procedure to compute nsv(T, p, v) on an SLP is depicted in Algorithm 12. We reuse
the precomputed pairs rmq(A) = ⟨m, v⟩ of RMQs, using rmq(A).v to refer to v. Importantly,
the algorithm uses that field to notice in constant time that the answer is not within exp(A)
(lines 2–3). In this case we say that the call to A fails (to find the answer within exp(A)).
As for RMQs, the algorithm may perform two calls on A→ BC, which only happens when
the call on B fails, but then the call on B is a suffix call and the call on C is a prefix call.
Note that, in this asymmetric query with no right limit, a prefix call on C is a call on the
whole exp(C); we call it a whole-symbol call. As explained, those calls take O(1) time when
they fail. Therefore,

• The suffix call starting from B, which finally fails, cannot branch again into two recur-

105

sive calls at a symbol A′ → B′C ′, because once the call on B′ fails, the call on C ′ is a
whole-symbol call, and this fails in constant time.

• The prefix call starting from C cannot branch again into two recursive calls at a symbol
A′ → B′C ′, because this occurs only if the call on B′ fails. Since this is a whole-symbol
call on B′, it fails in constant time.

Since at most two paths are followed from the first branching into two calls, the total time
is O(h).

To extend the algorithm to ISLPs we must consider, as for the case of RMQs, the
special rules. Just as in that case, the answer to a query nsv(exp(A), p, v) with A →
Πk2

i=k1
Bic1

1 · · ·Bict
t depends essentially on the smallest values of the nonterminal expansions,

exp(Bj). Let again rmq(Bj) = ⟨mj, vj⟩. We preprocess the string v1 · · · vt to solve queries
nsv(v1 · · · vt, p). This preprocessing takes O(t log t) time and O(t) space, and answers NSV
queries in time O(logε t) for any constant ε > 0 [109] (those are modeled as orthogonal range
successor queries on a grid).

We can then simulate precomputed values nsv(Bic1
1 · · ·Bict

t , p, v) = q, where p refers to
Bicp

p · · ·Bict
t , with the value nsv(v1 · · · vt, p, v) = q′ precomputed as explained, nsv(Bq′ , 1, v) =

q′′ obtained with a recursive call, and q = fq′−1(i) + q′′. Note that the recursive call is for a
whole symbol, and we are sure to find the answer inside it: if nsv(v1 · · · vt, p, v) = t + 1, we
return ft(i) + 1 without making any recursive call. At query time, after finding ip and rp as
for RMQs, we have the following cases:

1. We may have to recurse on a nonempty suffix of Brp , finishing if we find the answer
inside it. If not, there may be more copies of Brp ahead of position p, in which case
we either determine in constant time that there is no answer inside Brp , or we recurse
with a whole-symbol call on Brp and find the answer inside it, thereby finishing.

2. If not finished, we may have to consider a block suffix B
i
crp+1
p

rp+1 · · ·B
i
ct
p

t . This is handled

by computing nsv(B
i
c1
p

1 · · ·B
i
ct
p

t , rp+1, v) as explained, possibly making a whole-symbol
recursive call, only when we are sure to find the answer inside it.

3. If not, we may find the answer in the next block, B
(ip+1)c1

1 · · ·B(ip+1)ct

t , in the same way
as in point 2. If we find no answer here, then there is no answer to NSV and we return
|exp(A)|+ 1.

Just as for the case of SLPs, we traverse only two paths along the process: even if now
we have a sequence of more than two symbols (not just A→ BC), we are able to determine
with a constant amount of nsv queries whether there is an answer to the right of the failing
recursive call, and in which symbol we must recurse to find it. The main difference with the
cost of RMQs is the O(logε t) ⊆ O(logε |G|) time incurred to compute nsv queries, and the
corresponding O(t log t) construction time, which adds up to O(|G| log |G|).

Theorem 7.3.19 Let T [1 . . n] be generated by a d-ISLP G of height h. Then, for any
constant ε > 0, we can build in time O(|G|(log |G| + d⌈d log d/ log n⌉) + d2⌈d log d/ log n⌉)

106

and space O(|G|+ d⌈d log d/ log n⌉) a data structure of size O(|G|) that computes any query
psv/nsv(T, p, v) in time O(h logε |G| + (h + log n + d)d⌈d log d/ log n⌉) on a RAM machine
of Θ(log n) bits, using O(h+ d⌈d log d/ log n⌉) additional words of working space.

Corollary 7.3.20 Let T [1 . . n] be generated by an ISLP G. Then, we can build in time
O((|G|+log n) log n log log n) and space O(|G|+log n log log n) a data structure of size O(|G|)
that computes any query psv/nsv(T, p, v) in time O(log2 n log log n) on a RAM machine of
Θ(log n) bits, using O(log n log log n) additional words of working space.

Corollary 7.3.21 Let T [1 . . n] be generated by a d-ISLP G with d = O(1). Then, for any
constant ε > 0, we can build in time O(|G| log |G|) and space O(|G|) a data structure of
size O(|G|) that computes any query psv/nsv(T, p, v) in time O(log n logε |G|) on a RAM
machine of Θ(log n) bits.

7.4 Revisiting RLSLPs

As pointed out in Proposition 7.2.3, RSLPs are equivalent to 0-ISLPs, because an ISLP rule
A → ∏k2

i=k1
Bi0 corresponds exactly to the RLSLP rule A → B|k2−k1|+1. We can then apply

Lemma 7.3.3 over any RLSLP to obtain an equivalent RLSLP of the same asymptotic size
and height O(log n). Once we count with a balanced version of any RLSLP, we can reuse
Corollaries 7.3.6, 7.3.18, and 7.3.21, to obtain a similar result for RLSLPs. Note that we can
improve those results because we do not need to preprocess the grammar to simulate the rmq
and nsv queries on blocks, because in an RLSLP all the cases of run-length rules A → Bt

fall inside the subcase 1 of RMQs and NSVs.

Corollary 7.4.1 Let T [1 . . n] be generated by a RLSLP G. Then, we can build in time and
space O(|G|) data structures of size O(|G|) that (i) extract any substring T [l . . l + λ− 1] in
time O(λ + log n), (ii) compute any query rmq(T, p, q) in time O(log n), and (iii) compute
any query psv/nsv(T, p, v) in time O(log n), on a RAM machine of Θ(log n) bits.

Those results on RLSLPs have already been obtained before [50, 32], but our solutions
exploiting balancedness are much simpler once projected into the run-length rules. We now
exploit the simplicity of RLSLPs to answer a wider range of queries on substrings.

7.4.1 More general functions

We now expand our results to a wide family of composable functions that can be computed
in O(log n) time on top of balanced RLSLPs. We prove the following result.

Theorem 7.4.2 Let f be a composable function from strings to a set of size nO(1), com-
putable in time tf for strings of length 1, with its composing function g being computable
in time tg. Then, given an RLSLP G representing T [1 . . n], there is a data structure of size
O(|G|) that can be built in time O(|G|(tf + tg log n)) and that computes any f(T [i . . j]) in
time O(tg log n).

107

Proof. By Theorem 7.1.6, we can assume G is balanced. We store the values L[A] = |exp(A)|
and F [A] = f(exp(A)) for every variable A, as arrays. These arrays add only O(|G|) extra
space because the values in F fit in O(log n)-bit words. Let us overload the notation and use
f(A, i, j) = f(exp(A)[i . . j]). Algorithm 13 shows how to compute any f(A, i, j); by calling
it on the start symbol S of G we compute f(T [i . . j]) = f(S, i, j).

Just as for ISLPs, in the beginning we follow a single path along the derivation tree, with
only one recursive call per argument A (lines 6, 8, and 17). The cost of those calls adds up
to the height of the grammar, O(log n). This path finishes at a leaf or at an internal node A
where exp(A)[i . . j] spans more than one child of A in the derivation tree, in which case we
may perform two recursive calls. Note that in the only places where this may occur (lines
10–11 and 18–19) those recursive calls will be prefix/suffix calls (i.e., either i = 1 or j = L[A]
when we call f(A, i, j)). We now focus on bounding the cost of prefix/suffix calls.

We define c(A) as the highest cost to compute f(A, i, L[A]) or f(A, 1, j) over any i and j
(i.e., the cost of prefix/suffix calls), charging 1 to the number of calls to function f and tg to
each invocation to function g. We assume for simplicity that tg ≥ 1 and prove by induction
that c(A) ≤ (1+2tg)d(A)+2tg log |exp(A)|, where d(A) is the distance from A to its deepest
descendant leaf in the derivation tree. This certainly holds in the base case of leaves, where
d(A) = 1; it is included in lines 2–3.

In the inductive case of rules A → BC (lines 4–12), we note that there can be two calls
to f, but in prefix/suffix calls one of those calls spans the whole symbol—line 10 in a prefix
call or line 11 in a suffix call. Calls that span the whole symbol finish in line 3 and therefore
cost just 1. Therefore, we have c(A) ≤ 1 + max(c(B), c(C)) + tg, which by induction is

c(A) ≤ 1 + max(c(B), c(C)) + tg

≤ 1 + tg +max((1+2tg)d(B) + 2tg log |exp(B)|, (1+2tg)d(C) + 2tg log |exp(C)|)
≤ (1 + 2tg)(1 + max(d(B), d(C))) + 2tg logmax(|exp(B)|, |exp(C)|))
≤ (1 + 2tg)d(A) + 2tg log |exp(A)|).

In the inductive case of rules A → Bt (lines 13–21), a similar situation occurs in lines
18–19: only one of the two recursive calls is nontrivial. Therefore, it holds c(A) ≤ 1 +
c(B)+2tg log t+2tg, where the term 2tg log t comes from the recursive procedure to compute
fc(t

′′ − t′ − 1) in line 20; the logarithm is in base 2. Because t = |exp(A)|/|exp(B)|, by
induction we have

c(A) ≤ 1 + c(B) + tg(2 + 2 log(|exp(A)|/|exp(B)|))
≤ 1 + (1 + 2tg)d(B) + 2tg log |exp(B)|+ 2tg(1 + log(|exp(A)|/|exp(B)|))
= (1 + 2tg)(1 + d(B)) + 2tg log |exp(A)| = (1 + 2tg)d(A) + 2tg log |exp(A)|.

Therefore, the procedure costs c(A) = (1+2tg)d(A)+2tg log |exp(A)| = O(tg · log n) from
the nonterminal A where the single path splits into two.

Arrays L and F can be precomputed in time O(|G|(tf+tg log n)) via a postorder traversal
of the grammar tree. We compute f for every distinct individual symbol and g for each
distinct nonterminal A, whose children have by then their L and F entries already computed.

108

In the case of rules A → Bt, the entry F [A] can be computed in time O(tg log t) with the
same mechanism used in line 20 of Algorithm 13.

We show in the next subsection how to use this result to compute a more complicated
function, which in particular we do not know how to compute efficiently on ISLPs.

7.4.2 Application: Karp-Rabin fingerprints

Given a string T [1 . . n], a suitable integer c, and a prime number µ ∈ O(n), the Karp-Rabin
fingerprint [66] of T [i . . j], for 1 ≤ i ≤ j ≤ n, is defined as

κ(T [i . . j]) =

(
j∑

k=i

T [k] · ck−i

)
mod µ.

Computation of fingerprints of text substrings from their grammar representation is a
key component of various compressed text indexing schemes [32]. While it is known how to
compute it in O(log n) time using O(|G|) space on an RLSLP G [32, App. A], we show now
a much simpler procedure that is an application of Theorem 7.4.2.

Note that, for any split position p ∈ [i . . j − 1], it holds

κ(T [i . . j]) =

(
κ(T [i . . p]) + κ(T [p+ 1 . . j]) · cp−i+1

)
mod µ. (7.3)

We use this property as a basis for the efficient computation of fingerprints on RLSLPs.

Theorem 7.4.3 (cf. [17, 32]) Given an RLSLP G representing T [1 . . n] and a Karp-Rabin
fingerprint function κ, there is a data structure of size O(|G|) that can be built in time
O(|G| log n) and computes fingerprints of arbitrary substrings of T in O(log n) time.

Proof. Let f(X) = ⟨κ(X), c|X|⟩ be the function f to apply Theorem 7.4.2. We then define

g(⟨κx, cx⟩, ⟨κy, cy⟩) = ⟨(κx + κy · cx) mod µ, (cx · cy) mod µ⟩,

which can be computed in time tg = O(1).

It is easy to see that, by Eq. (7.3), f(XY) = ⟨κ(XY), c|XY |⟩ = ⟨(κ(X) + κ(Y) · c|X|) mod
µ, (c|X| · c|Y |) mod µ⟩ = g(⟨κ(X), c|X|⟩, ⟨κ(Y), c|Y |⟩) = g(f(X), f(Y)). Therefore, application
of Theorem 7.4.2 leads to a procedure that computes f(T [i . . j]) = ⟨κ(T [i . . j]), cj−i+1 mod µ⟩
in time O(log n) and using O(|G|) extra space.

109

Algorithm 10 Length-λ substring access on ISLPs of height h in O(h+ λ) extra time

Input : A variable A of an ISLP, a position l ∈ [1, |exp(A)|] and a length λ > 0.
Output: Outputs exp(A)[l . . l + λ − 1] and returns the number of symbols it could not

extract (if l + λ− 1 > |exp(A)|).
1: function extract(A, l, λ)
2: if A→ a then // found the leaf in the parse tree for T [l], first output
3: output a
4: λ← λ− 1
5: else if A→ BC then // go left and/or right as in classic SLPs
6: if l ≤ |exp(B)| then
7: λ← extract((B, l, λ))
8: if λ > 0 then // go also right if there are symbols yet to output
9: λ← extract(C, 1, λ))

10: else (l > |exp(B)|)
11: λ← extract(C, l − |exp(B)|, λ)
12: else (A→∏k2

i=k1
Bic1

1 · · ·Bict
t) // find the first proper descendant node

13: i← succ([f+(k1) . . f
+(k2)], l)

14: l← l − f+(i− 1)
15: r ← succ([f1(i) . . ft(i)], l)
16: l← l − fr−1(i)
17: λ← extract(Br, (l − 1 mod |exp(Br)|) + 1, λ)
18: k ← ⌈l/|exp(Br)|⌉+ 1
19: while i ≤ k2 ∧ λ > 0 do // iterate on the subsequent blocks
20: while r ≤ t ∧ λ > 0 do // iterate on the subsequent block symbols Br

21: while k ≤ icr ∧ λ > 0 do // iterate within the copies of Br

22: λ← extract(Br, 1, λ)
23: k ← k + 1

24: k ← 1
25: r ← r + 1

26: r ← 1
27: i← i+ 1

28: return λ

110

Algorithm 11 Range minimum queries on SLPs of height h in O(h) time

Input : A variable A of an SLP and positions 1 ≤ p ≤ q ≤ |exp(A)|.
Output: Returns rmq(exp(A)[p . . q]) and the corresponding minimum value.
1: function rmq(A, p, q)
2: if (p, q) = (1, |exp(A)|) then return rmq(A) (which is precomputed)
3: else if A→ BC then // first see if we go only left or only right
4: if q ≤ |exp(B)| then return rmq(B, p, q)
5: else if p > |exp(B)| then return rmq(C, p− |exp(B)|, q − |exp(B)|)
6: else (p ≤ |exp(B)| < q) // else compose a left suffix and a right prefix call
7: ⟨ml, vl⟩ ← rmq(B, p, |exp(B)|)
8: ⟨mr, vr⟩ ← rmq(C, 1, q − |exp(B)|)
9: if vl ≤ vr then return ⟨ml, vl⟩
10: else return ⟨|exp(B)|+mr, vr⟩

Algorithm 12 Next smaller values on SLPs of height h in O(h) time

Input : A variable A of an SLP, position 1 ≤ p ≤ |exp(A)|, and threshold v.
Output: The position nsv(exp(A), p, v).
1: function nsv(A, p, v)
2: if rmq(A).v ≥ v then // whole symbols detect failure immediately
3: return |exp(A)|+ 1
4: else if A→ a then
5: return 1
6: else if A→ BC then
7: if p ≤ |exp(B)| then // first try to find the answer inside exp(B)
8: p← nsv(B, p, v)
9: if p ≤ |exp(B)| then // return the answer if found

10: return p

11: return |exp(B)| + nsv(C, p− |exp(B)|, v) // else try on the whole C

111

Algorithm 13 Computation of general string functions in RLSLPs in O(log n) steps
Input : A variable A of an RLSLP (with its arrays L and F as global variables), and two

positions 1 ≤ i ≤ j ≤ |exp(A)|.
Output: f(exp(A)[i . . j]).
1: function f(A, i, j)
2: if (i, j) = (1, |exp(A)|) then // whole symbols solved in constant time
3: return F [A]
4: else if A→ BC then // try to recurse only left or right
5: if j ≤ |exp(B)| then
6: return f(B, i, j)
7: else if |exp(B)| < i then
8: return f(C, i− |exp(B)|, j − |exp(B)|)
9: else (i ≤ |exp(B)| < j) // compose left suffix and right prefix calls

10: fl ← f(B, i, |exp(B)|)
11: fr ← f(C, 1, j − |exp(B)|)
12: return g(fl, fr)

13: else (A→ Bt) // run-length rule spanning from t′ to t′′

14: t′ ← ⌈i/|exp(B)|⌉
15: t′′ ← ⌈j/|exp(B)|⌉
16: if t′ = t′′ then // still recurse on only one symbol
17: return f(B, i− (t′ − 1) · |exp(B)|, j − (t′ − 1) · |exp(B)|)
18: fl ← f(B, i− (t′ − 1) · |exp(B)|, |exp(B)|) // left suffix call
19: fr ← f(B, 1, j − (t′′ − 1) · |exp(B)|) // right prefix call
20: Compute fc(t

′′ − t′ − 1) using the recurrence // many whole symbols

fc(k)←


f(ε) if k = 0;

F [B] if k = 1;

g(fc(k/2), fc(k/2)) if k is even;

g(F [B], fc(k − 1)) if k is odd.

21: return g(g(fl, fc(t
′′ − t− 1)), fr) // compose left, middle, right

112

Chapter 8

Extending Repetitiveness Measures to
the Two-dimensional Space

Two-dimensional data, ranging from images to matrices, often contains inherent redundancy,
wherein identical or similar substructures recur throughout the dataset. This great source of
redundancy can be exploited for compression. Very recently, Brisaboa et al. [19] introduced
the 2D Block Trees to compress images, graphs, and maps.

On the theoretical side, while in the one-dimensional case much attention has been given to
the study and analysis of measures of repetitiveness to assess the performance of compressed
indexing data structures [99, 100], in the two-dimensional context there is still no systematic
study of measures that can effectively capture repetitiveness. In the one-dimensional case,
an important role is played by the δ measure, which computes the maximum number of
substrings of the same length that occur in a text, and by the γ measure, which represents
the smallest sets of positions (string attractors) in the text at which all substrings can be
found. These measures, although unreachable or unknown to be reachable, lower bound
all other repetitiveness measures based on copy-paste mechanisms. Furthermore, the worst-
case optimal space to represent a text can be expressed as a function of δ [79]. In the
two-dimensional case, an important step in this direction has been made by Carfagna and
Manzini in [22], where the repetitiveness measures δ and γ are extended to square two-
dimensional strings, by exploring square substructures within the data. They have shown
that some properties that hold for one-dimensional strings are still preserved in the two-
dimensional case, and the space used by a two-dimensional block tree has been bounded in
terms of their extension of δ.

In this chapter, we extend some repetitiveness measures to generic two-dimensional strings.
The chapter is structured as follows.

• In Section 8.1, we introduce some general notions on 2D strings and give some examples.

• In Section 8.2, we generalize the measures δ and γ to the 2D setting, which differently
from the measures defined by Carfagna and Manzini [22], use rectangular substrings,
instead of squares, in their definition. We show that our measures, while retaining many
of the properties valid in one-dimensional case, can behave very differently compared

113

to those defined by Carfagna and Manzini [22], even when applied to one-dimensional
strings.

• In Section 8.3, we generalize straight-line programs (SLPs) and run-length straight-
line programs (RLSLPs) to 2D strings. We introduce a new repetitiveness measure g
based on 2D SLPs. We also introduce 2D RLSLPs and the correspondent repetitiveness
measure grl.

• In Section 8.4, we introduce macro schemes for 2D strings that generalize bidirectional
macro schemes. We also show that the mutual relationship among g, grl and the size
b of the smallest valid 2D macro scheme are the same as for one-dimensional strings.

• We show in Section 8.5, that the relationship between δ, γ, and the other repetitiveness
measures are lost when they are extended to the 2D setting. Indeed, it is well known
that for 1D strings the relationship δ ≤ γ ≤ b ≤ grl ≤ g holds. In the 2D setting, it
can happen that δ = Ω(g 4

√
N/ logN) for some 2D string families, where N is the size

of the 2D string.

• Finally, in Section 8.6, we use our generalized measures to analyze the effectiveness of
linearizations, i.e., the transformation of the input matrix into a 1D string, which is
then compressed. We measure the effectiveness of this technique for the simple row-by-
row linearization, and show that the compression obtained can be substantially worse
than what could be achieved using 2D SLPs.

Overall, our results shed some light on the difficulties of detecting and exploiting repet-
itiveness in the 2D setting, and show that some concepts/tools introduced in 1D are less
effective in 2D.

We believe it could be worthwhile to explore 2D compression algorithms based on gram-
mar compression (approaching the measures g and grl) and copy-paste (approaching the
measure b) as methods to represent 2D strings.

8.1 Basics on 2D Strings

Let Σ = {a1, a2, . . . , aσ} be an ordered alphabet. A 2D string Mm×n is a (m × n)-matrix
with m ≥ 1 rows and n ≥ 1 columns such that each element M [i][j] belongs to Σ. The size
of Mm×n is N = mn. Note that a position in Mm×n consists of a pair (i, j), with 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Note that traditional one-dimensional strings are a special case of 2D strings
with m = 1. We denote by Σm×n the set of all 2D strings with m rows and n columns over
Σ. A 2D string in Σm×n is called a square if m = n.

The concatenation between two matrices is a partial operation that can be performed
horizontally (⊖) or vertically (⊖), with the constraint that the number of rows or columns
coincide, respectively. Such operations have been described in [57] where concepts and tech-
niques of formal languages have been generalized to two dimensions. We illustrate how 2D
strings can be concatenated in Example 8.1.1.

114

Example 8.1.1 Consider the 2D strings

A =

[
a b a

a b b

]
, B =

[
b b a b

b b b b

]
, and C =

a a a

a a b

a b b

 .

We can obtain new 2D strings by using ⊖ and ⊖, respectively:

A ⊖ B =

[
a b a b b a b

a b b b b b b

]
, and A⊖ C =


a b a

a b b

a a a

a a b

a b b

 .

Note that A⊖B and A ⊖ C are undefined.

We denote by Mm×n[i1 . . i2][j1 . . j2] the submatrix starting at position (i1, j1) and ending
at position (i2, j2). We say that a 2D string F is a factor or substring of Mm×n if there exist
two positions (i1, j1) and (i2, j2) such that F = Mm×n[i1 . . i2][j1 . . j2].

Definition 8.1.2 Given a 2D string Mm×n, the 2D substring complexity function PM counts
for each pair of positive integers (k1, k2) the number of distinct (k1 × k2)-factors in Mm×n.

We show how PM works in Example 8.1.3.

Example 8.1.3 Consider the 2D strings

M =


a a b b

a a b b

a a b b

a a b b

a a b b

 , F1 =

a b

a b

a b

 , F2 =

[
a a

a a

]
, F3 =

[
b b

b b

]
and F4 =

[
a b

a b

]
.

The 2D string F1 is a (3 × 2)-factor of M , as F1 = M [2 . . 4][2 . . 3]. Moreover, it can be
verified that F2, F3 and F4 are the only (2× 2)-factors of M . Hence, PM(2, 2) = 3.

8.2 Measures δ and γ in two dimensions

We start by extending the combinatorial measures δ and γ. The following definition extends
the measure δ to 2D strings.

Definition 8.2.1 Let Mm×n be a 2D string and PM be the 2D substring complexity function
of Mm×n. Then, δ(Mm×n) = max{PM(k1, k2)/(k1k2), 1 ≤ k1 ≤ m, 1 ≤ k2 ≤ n}.

Note that for 1D strings (i.e., when m = 1) the above definition coincides with the one-
dimensional version of δ. Recently, Carfagna and Manzini introduced another alternative
extension of δ, here denoted by δ□ [22], which is limited to square 2D input strings and
only considers square factors for computing the substring complexity. Below we report the
definition of such a measure, applied to a generic two-dimensional string.

115

Definition 8.2.2 Let Mm×n be a 2D string and PM be the 2D substring complexity of
Mm×n. Then, δ□(Mm×n) = max{PM(k, k)/k2, 1 ≤ k ≤ min{m,n}}.

From the definitions of δ□ and δ, the following lemma easily follows.

Lemma 8.2.3 For every 2D string Mm×n it holds that δ(Mm×n) ≥ δ□(Mm×n).

Although the two measures δ and δ□ may seem similar, considering square factors instead
of rectangular ones may result in very different values. Example 8.2.4 shows how different
the two measures can be when applied to one-dimensional strings, while Example 8.2.5 shows
that there exist families of square 2D strings for which δ□ = o(δ).

Example 8.2.4 Given a 1D string S ∈ Σn, let M1×n ∈ Σ1×n be the matrix such that
M1×n[1][1 . . n] = S[1 . . n]. Since the only squares that occur in M1×n are the factors of size
1× 1, it holds δ□(M1×n) = PM(1, 1)/12 ≤ |Σ|. On the other hand, δ(M1×n) = δ(S).

Example 8.2.5 Let Mn×n be the square 2D string in [22, Lemma 4]. Assuming n is a perfect
square, the first row of Mn×n is the string S = B1B2 . . B√

n/2 composed by
√
n/2 blocks, each

one of size 2
√
n, with Bi = 1i0(2

√
n−i). The remaining rows of Mn×n are all #n. In [22, Lemma

4] it is shown that δ□(Mn×n) = O(1). On the other hand, note that for i ∈ [2 . .
√
n/2] and

j ∈ [0 . .
√
n− i], the strings 0j1i0

√
n−j−i are all different substrings of length

√
n of S. Since

these substrings are in total Ω(n), it holds δ(Mn×n) = Ω(
√
n).

The following definition generalizes to 2D strings the notion of string attractor.

Definition 8.2.6 A 2D string attractor for a 2D string Mm×n is a set Γ ⊆ [1 . .m] ×
[1 . . n] with the property that any substring M [i . . j][k . . l] of Mm×n has an occurrence
M [i′ . . j′][k′ . . l′] such that ∃(x, y) ∈ Γ with i′ ≤ x ≤ j′ and k′ ≤ y ≤ l′. The size of
the smallest attractor for Mm×n is denoted by γ(Mm×n).

When m = 1 the above definition coincides with the one for 1D strings, hence the measure
γ inherits the properties for the one-dimensional case. In particular: γ is not monotone and
computing γ(Mm×n) is NP-hard [93, 71]. In addition, the following property holds.

Proposition 8.2.7 For every 2D string Mm×n, it is δ(Mm×n) ≤ γ(Mm×n).

Proof. Just as in the 1D case, for any 2D string M it holds PM(k1, k2) ≤ k1k2γ(M).

The next proposition shows that in the 2D context, the gap between δ and γ can be larger
than the one-dimensional case, where it is logarithmic [79].

Proposition 8.2.8 For every m,n ≥ 1 there exists a 2D string Mm×n such that δ(Mm×n) =
O(1) and γ(Mm×n) = Ω(min(m,n)).

Proof. Let Ik be the k × k identity matrix. For every m,n ≥ 1, let us consider the 2D
string Mm×n such that Mm×n[1 . .min(m,n)][1 . .min(m,n)] = Imin(m,n), and all the remaining

116

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0




Figure 8.1: 2D string attractor for the matrix Mm×n of Proposition 8.2.8. The cells whose
positions belong to the string attractor are underlined. We show how M [1 . . 1][1 . . 6] has an
occurrence M [2 . . 2][1 . . 6] crossing the string attractor position (2, 2).

symbols are 0’s. When either m = 1 or n = 1 the proof is trivial from known results on
1D strings, so let us assume m,n ≥ 2. Let us further assume m < n. Next we show that
Γ = {(2, 2) . . (m− 1,m− 1)} ∪ {(1,m), (m, 1), (m,m+1)} is an attractor for Mm×n. All the
substrings of Mm×n that contain at least two occurrences of 1’s have an occurrence crossing
the position (i, i), for some 1 < i < m, while all the substrings that consist of only 0’s have
an occurrence aligned with one of the 0’s at position (1,m), (m, 1), or (m,m + 1). The
remaining factors contain only one occurrence of 1’s that do not cross any position in Γ.
These factors of size k1×k2 have to cross either the 1 in position (1, 1) or in position (m,m),
and therefore it is either k1 = 1 and k2 < m, or vice versa. Observe that all these factors
have another occurrence either starting in (2, 2) or ending in (m − 1,m − 1), and therefore
Γ is an attractor of Mm×n. Since Mm×n has m + 1 distinct columns the above attractor
has minimum size, i.e., γ(Mm×n) = m + 1. We illustrate these string attractors in Figure
8.1. On the other hand, there exist at most k1 + k2 distinct substrings of size k1 × k2 in
Mm×n: k1 + k2 − 1 correspond to substrings where the diagonal of Mm×n touches ones of
the positions in the left or upper borders of the factor; the last one is the string of only 0’s.
Hence δ(Mm×n) ≤ 2. The case m > n is treated symmetrically by considering the attractor
Γ′ = {(2, 2) . . (n− 1, n− 1)}∪ {(1, n), (n, 1), (n+1, n)}. For the case n = m it is Mm×n = In
and reasoning as above it is easy to see that Γ′′ = {(2, 2) . . (n− 1, n− 1)} ∪ {(1, n), (n, 1)} of
size n is a minimal attractor for In and that δ(In) ≤ 2.

In [22] the authors introduced an alternative definition of string attractors for square 2D
input strings in which they consider only square factors. We can define such a measure,
denoted by γ□, also for generic 2D strings, by simply considering only square substrings of
Mm×n in Definition 8.2.6. From the definitions of γ and γ□ we immediately get the following
relationship:

Lemma 8.2.9 For every 2D string Mm×n it holds that γ(Mm×n) ≥ γ□(Mm×n).

The following example shows that γ and γ□ can be asymptotically different.

Example 8.2.10 Consider again the m ×m identity matrix Im. For each k ≤ m, a k × k
square factor of Im either consists of i) all 0’s, or ii) all 0’s except only one diagonal composed

117

by 1’s. Hence, all square factors of type i) have an occurrence that includes position (m, 1)
(i.e. the bottom left corner), while all those of type ii) have an occurrence that includes the
position (⌊m/2⌋, ⌊m/2⌋) (i.e. the 1 at the center). It follows that γ□(Im) = 2 ∈ O(1), while
from the proof of Proposition 8.2.8 it can be deduced that γ(Im) = Θ(m).

The measures δ and γ inherit from the 1D case the property that δ is unreachable and γ
is unknown to be reachable [99]. In the next sections, we show how to generalize to the 2D
case the measures g, grl, and b which are reachable both in 1D and 2D.

8.3 (Run-length) Straight-line Programs for 2D Strings

In this section we consider a generalization of straight-line programs for the two-dimensional
space, which was first introduced in [11], and we use it to generalize the measures g and grl
to 2D strings.

Definition 8.3.1 LetMm×n be a 2D string. A 2-dimensional straight-line program (2D SLP)
for Mm×n is a 2D context-free grammar G = (V,Σ, R, S) where V is the set of variables, Σ
is the set of terminals disjoint from V , R is the set of rules (there is exactly one rule per
variable), and S is the initial variable; such that it uniquely generates Mm×n. The definition
of the right-hand side of a variable can have the form

A→ a, A→ B ⊖ C, or A→ B ⊖ C,

where a ∈ Σ and B,C ∈ V . We call these definitions terminal rules, horizontal rules, and
vertical rules, respectively. The expansion of a variable is defined as

exp(A) = a, exp(A) = exp(B) ⊖ exp(C), or exp(A) = exp(B)⊖ exp(C),

respectively. The size of a 2D SLP is the sum of the sizes of all right-hand sides of the rules
of the grammar, where we assume the terminal rules have size 1, and the horizontal and
vertical rules have size 2.

Definition 8.3.2 The measure g(Mm×n) is defined as the size of the smallest 2D SLP gen-
erating Mm×n.

It is easy to see that the above definition coincides with that of the measure g for one-
dimensional strings if only horizontal concatenations are considered.

Similarly to regular SLPs, 2D SLPs cannot compress to constant space.

Proposition 8.3.3 It always holds that g(Mm×n) = Ω(log(mn)).

Proof. From the initial variable S, each substitution step can double the size of the current
2D string of variables. Hence, a 2D SLP of size g can produce a 2D string of size at most
2⌊g/2⌋. Therefore, a string of size N = mn needs a grammar of size Ω(log2(mn)).

118

Proposition 8.3.4 The problem of determining if there exists a 2D SLP of size at most k
generating a text Mm×n is NP-complete.

Proof. Observe that the 1D version of the problem, known to be NP-complete [31], reduces
to the 2D version by considering 1D strings as matrices of size 1× n.

As in the 1D case, we can extend 2D SLPs with run-length rules, obtaining more powerful
grammars.

Definition 8.3.5 A 2-dimensional run-length straight-line program (2D RLSLP) is a 2D
SLP that in addition allows special rules, which are assumed to be of size 2, of the form

A→ ⊖kB and A→ ⊖kB

for k > 1, with their expansions defined as

exp(A) = exp(B) ⊖ exp(B) ⊖ · · · ⊖ exp(B)︸ ︷︷ ︸
k times

exp(A) = exp(B)⊖ exp(B)⊖ · · · ⊖ exp(B)︸ ︷︷ ︸
k times

respectively.

Definition 8.3.6 The measure grl(Mm×n) is defined as the size of the smallest 2D RLSLP
generating Mm×n.

Proposition 8.3.7 For every 2D string Mm×n it holds that grl(Mn×n) ≤ g(Mm×n). More-
over, there are infinite string families where grl = o(g).

Proof. The first claim is trivial by definition. The second claim is proven by considering the
family of 1× n matrices M1×n = an for which g = Ω(log n) and grl = O(1).

A useful definition for 2D SLPs/RLSLPs is the following.

Definition 8.3.8 The grammar tree of a 2D SLP is an ordered labeled tree where S is
the root, and the children of a variable A are the variables in its right-hand side. The
tree is pruned, so only the first occurrence of each variable (i.e., the leftmost occurrence at
the highest height) is an internal node, and the remaining occurrences are leaves. For 2D
RLSLPs, each horizontal run-length variable has two children: B, which is a leaf only if it is
the first occurrence of B, and ⊖k−1B, which is always a leaf. The treatment is analogous for
vertical rules.

The size of the grammar tree is proportional to the size of the 2D SLP/RLSLP, as each
variable appears only once as internal node.

119

8.4 Macro Schemes for 2D Strings

The notion of macro scheme and the corresponding measure b can be naturally generalized
to 2D strings with the following definition.

Definition 8.4.1 A 2D macro scheme for a string Mm×n is any factorization of Mm×n into
a set of disjoint phrases (i.e., a multiset of substrings of Mm×n that can be concatenated
together to form Mm×n) such that any phrase is either a square of dimension 1× 1 called an
explicit symbol/phrase, or it is a copied phrase with rectangular shape whose source in Mm×n

starts at a different position. For a 2D macro scheme to be valid or decodable, there must
exist a function map : ([1 . .m]× [1 . . n]) ∪ {⊥} → ([1 . .m]× [1 . . n]) ∪ {⊥} such that:

1. map(⊥) = ⊥, and if M [i][j] is an explicit symbol, then map(i, j) = ⊥;
2. for each copied phrase M [i1 . . j1][i2 . . j2], it must hold that map(i1 + t1, i2 + t2) =

map(i1, i2) + (t1, t2) for (t1, t2) ∈ [0 . . j1 − i1] × [0 . . j2 − i2], where map(i1, i2) is the
upper left corner of the source for M [i1 . . j1][i2 . . j2];

3. for each (i, j) ∈ [1 . .m]× [1 . . n] there exists k > 0 such that mapk(i, j) = ⊥.

Definition 8.4.2 We define b(Mm×n) as the size of the smallest valid 2D macro scheme for
Mm×n.

We illustrate a macro scheme for the 7× 7 identity matrix I7 in Figure 8.2. We carefully
describe the underlying map of this macro scheme in Example 8.4.3.

Example 8.4.3 Let In be the n× n identity matrix. A macro scheme for In consists of the
phrases {X1, X2, X3, X4, X5, X6} where: i) X1 = In[1][1] is an explicit symbol (the 1 in the
top-left corner); ii) X2 = In[1][2] is an explicit symbol; X3 = In[2][1] is an explicit symbol;
X4 = In[1][3 . . n] is a phrase with source (1, 2); X5 = In[3 . . n][1] is a phrase with source
(2, 1); and X6 = In[2 . . n][2 . . n] is a phrase with source (1, 1). The underlying function map

is defined as map(1, 1) = map(1, 2) = map(2, 1) = ⊥, map(1, j) = (1, j − 1) for j ∈ [3 . . n],
map(i, 1) = (i − 1, 1) for i ∈ [3 . . n], and map(i, j) = (i − 1, j − 1) for i, j ∈ [2 . . n] × [2 . . n].
One can see that mapn(i, j) = ⊥ for each i and j. Hence, the macro scheme is valid and
b(In) ≤ 6.

The following two propositions show that the computability properties of b and its rela-
tionship with the measures grl and g are preserved in the 2D context.

Proposition 8.4.4 The problem of determining if there exists a valid 2D macro scheme of
size at most k for a text Mm×n is NP-complete.

Proof. The 1D version of the problem, which is known to be NP-complete [51], reduces to
the 2D version of the problem in constant time.

Proposition 8.4.5 For every 2D string Mm×n it holds that b(Mm×n) ≤ grl(Mm×n). More-
over, there are string families where b = o(grl).

120

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

Figure 8.2: Macro scheme with 6 phrases for I7. The entries (1, 1), (1, 2), and (2, 1) are
explicit symbols. The remaining phrases point to the source from where they are copied.

Proof. We show how to construct a macro scheme from a 2D RLSLP, representing the same
2D string and having the same asymptotic size. Let G be a 2D RLSLP generating Mm×n

and consider its grammar tree.

Each leaf of the grammar tree corresponding to a variable that expands to a single symbol
at cell M [i][j], induces an explicit phrase of the parsing at that specific cell.

A leaf of the grammar tree corresponding to an occurrence of the variable A expanding
at cells M [i1 . . i2][j1 . . j2] becomes a phrase of the parsing at these cells, and its source is
aligned with the upper left corner of the expansion on Mm×n of the internal occurrence of A
in the grammar tree.

For a leaf ⊖k−1B induced by an horizontal run-length variable, which expands to
M [i1 . . i2][j1 . . j2] in Mm×n, we construct a phrase at these cells, pointing to the occurrence
of exp(B) at its left in Mm×n. We do analogously, for 2D vertical run-length rules.

This parsing is decodable and its size is bounded by the size grl of the grammar. For a
family where b = o(grl), this holds for the 1D version [102].

8.5 Differences Between the 1D and the 2D Setting

In the 1-dimensional context, for each string S ∈ Σ∗ it holds that δ ≤ γ ≤ b ≤ grl ≤ g.
In particular, while δ ≤ γ and b ≤ grl ≤ g truly rely on their definitions, the missing link
between γ and b has been proved by Kempa and Prezza by showing how any macro scheme
of size b induces a suitable string attractor with at most 2b positions [71]. Later, Bannai et
al. [6] showed that for 1D strings there is a separation between γ and b by using the family
of Thue-Morse words, a string family for which γ = O(1) and b = Θ(log n).

In the previous sections, we have shown that on the 2D setting the same relationships
between δ and γ hold, as well as the one between b, grl, and g. However, unlike the 1D
setting, we can have 2D strings for which the measure b is asymptotically smaller than γ.

121

Proposition 8.5.1 There exists a 2D string family where γ = Ω(b
√
N), where N is the size

of the 2D string.

Proof. As shown in the proof of Proposition 8.2.8, γ = Ω(n) in the family of identity matrices
In. On the other hand, in Example 8.4.3 we showed how to construct a macro scheme with
only 6 phrases for the same family of strings, i.e., b = O(1). The claim follows since for every
identity matrix In it holds that n =

√
N .

It follows that, when considering a 2D setting, the measure b can be much better than γ.
Hence, both measures are uncomparable with each other. A follow up question is whether
the relationship between the measures δ and b on the 2-dimensional context is preserved. As
the following proposition shows, not only the measure b can be asymptotically smaller than
δ, but it can be asymptotically smaller than δ□ too.

Proposition 8.5.2 There exists a 2D string family where δ□ = Ω(b 4
√
N), where N is the

size of the 2D string.

Proof. Let k > 3. Let F(k) be a set containing all the 2D strings of dimensions k×k where:

1. exactly two cells, in distinct rows, contain a 1;

2. the 1 on the row above cannot be more to the right than the 1 on the row below;

3. all the remaining cells contain 0’s.

There are
(
k
2

)
ways to choose two distinct rows to verify condition 1), and then k2 ways to

choose which cells in these rows contain the 1’s. However, only k(k+1)/2 of these 2D strings
satisfy condition 2). Hence, there exist exactly k2(k − 1)(k + 1)/4 such strings in F(k).

Let us now construct a 2D string Ak containing all the k×k strings in F(k) as substrings.
Let B(i, j) be the k × k string containing a 1 in position (1, 1), and another 1 in position
(i, j). The matrix Ak is defined as follows: for each i ∈ [2 . . k] take the k × k2 substring
containing only 0’s and append it below the k × k2 matrix B(i, 1) ⊖ B(i, 2) ⊖ · · · ⊖ B(i, k).
Then, concatenate all these matrices from top to bottom. Finally, append to the left and to
the right a (k− 1)2k× k substring containing only 0’s. Schematically, the matrix Ak has the
following form:

0k×k 0k×k . . . 0k×k 0k×k

0k×k B(2, 1) . . . B(2, k) 0k×k
...

...
...

...
...

0k×k 0k×k . . . 0k×k 0k×k

0k×k B(k, 1) . . . B(k, k) 0k×k

We can move a k×k window containing both 1’s of some matrix B(i, j) for some i and j to find
any string in F(k) as a substring of Ak. Thus, it holds that δ□(Ak) = Ω(k2). Let i ∈ [2 . . k]
and j ∈ [1 . . k]. Moreover, the size of Ak is N = m× n = 2k(k − 1)× k(k + 2) = Θ(k4).

122

Now we show how to construct a valid macro scheme for Ak. The intuition for the macro
scheme is to first create phrases for the rectangles containing only 0’s surrounding the central
part of Ak. Then, we observe that the submatrices B(i, 1) ⊖B(i, 2) ⊖ · · · ⊖B(i, k) contain only 3
types of rows: 1) 0k

2
; 2) (10k−1)k; or 3) (10k)k−11. Thus, we can use O(1) phrases for the first

occurrence (at the top) of rows of type 2) and 3), and then use them as a reference for the other
occurrences. More in detail, the macro scheme contains the phrases {X1, . . . , X12} where: i)
X1 = Ak[1][1] is an explicit phrase containing a 0; ii) X2 = Ak[2 . . k][1] is a phrase with source
(1, 1); iii)X3 = Ak[1 . . k][2 . . n] is a phrase with source (1, 1); iv)X4 = Ak[k+1 . .m][1 . . k] is a
phrase with source (1, 1); v) X5 = Ak[k+1 . .m][k(k+1)+1 . . n] is a phrase with source (1, 1);
vi) X6 = Ak[k+ 1][k+ 1] is an explicit phrase containing a 1; vii) X7 = Ak[k+ 1][k+ 2 . . 2k]
is a phrase with source (1, 1); viii) X8 = Ak[k + 1][2k + 1 . . k(k + 1)] is a phrase with
source (k + 1, k + 1); ix) X9 = Ak[k + 2][k + 1] is an explicit phrase containing a 1; x)
X10 = Ak[k+2][k+2 . . 2k+1] is a phrase with source (1, 1); xi)X11 = Ak[k+2][2k+2 . . k(k+1)]
is a phrase with source (k + 2, k + 1); xii) X12 = Ak[k + 3 . . 2k][k + 1 . . k(k + 1)] is a phrase
with source (1, 1).

Observe that the remaining phrases refer to the matrix Ak[2k + 1 . .m][k + 1 . . k(k + 1)],
with rows of the type 1), 2), and 3) described above. Hence, each range of consecutive rows
of type 1) (i.e. of all 0’s) can be copied from the (biggest) block of consecutive rows of 0’s
starting at the beginning of phrase X12, and we have 2(k − 2) of such phrases. For each
row of type 2) we use a single phrase pointing to the beginning of its first occurrence, at the
beginning of phrase X6, and we have exactly k− 2 of such rows. Analogously, for each of the
k − 2 rows of type 3), we use a single phrase pointing to the beginning of phrase X9. Thus,
the total size of the macro scheme built is indeed 12 + 4(k − 2) = O(k). Hence, we proved
that δ□ = Ω(bk). As k = Θ(4

√
N), the claim follows.

0 0

0 0

0 0

0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0





0 0

0 0

0 0

0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Figure 8.3: Matrix Ak for k = 4. To the left, we highlight the substrings B(i, j), and show
how to obtain other strings in F(k) by moving a 4 × 4 window. To the right, we show the
macro scheme described in Proposition 8.5.2, which is formed by exactly 4(k + 1) phrases.
Each arrow shows the source from where the phrases are copied.

An example on A4 can be seen in Figure 8.3. Observe that we can obtain the same result

123

if we compare b and δ□ on a square matrix, i.e., with the same setting from [22]. In fact,
since the measure δ□ is monotone, we can append columns of 0’s to the left or to the right of
Ak until we obtain a square preserving the lower bound δ□ = Ω(k2), while a suitable macro
scheme may require at most O(1) new phrases.

As δ□ ≤ δ for all 2D strings, we derive the following corollary.

Corollary 8.5.3 There exists a 2D string family where b = o(δ).

Even 2D SLPs can be noticeably smaller than δ□.

Proposition 8.5.4 There exists a 2D string family where δ = Ω(g 4
√
N/ logN), where N is

the size of the 2D string.

Proof. We show that in the same family of strings Ak of Proposition 8.5.2, it holds that
g = O(4

√
N logN) whereas δ□ = Ω(

√
N). Notice that it is always possible to generate a

string 0k1×k2 with a 2D SLP of size Θ(log(k1k2)). Hence, we can obtain 2D SLPs generating
all the phrases of this type in the macro scheme of Proposition 8.5.2, having total size bounded
by O(logN b) = O(b logN) = O(4

√
N logN). Similarly, to generate (10k−1)k and (10k)k−11

we need 2D SLPs whose size sums to O(log k) = O(logN). Finally, we need O(4
√
N logN)

new rules to merge all the 2D SLPs described before. The total size of the 2D SLP is indeed
O(4
√
N logN). Thus, the result follows.

Corollary 8.5.5 There exists a string family where g = o(δ).

We argue that the uncomparability of δ (or δ□) and γ (or γ□) with g is enough to conclude
that δ and γ are weak measures when it comes to consider 2-dimensional strings. Some
improved versions of these results can be found in the conference version of this chapter [24].

8.6 Effectiveness of Linearization Techniques

A classical heuristic for compressing 2D strings is to transform a matrix Mm×n into a 1D
string S and use a one-dimensional compressor on S. Having generalized 1D measures to 2D
strings, it is natural to measure the effectiveness of linearization techniques by comparing, for
a given measure µ, the values µ(Mm×n) and µ(S) where S is a linearization of Mm×n. Clearly,
for each matrix, there exists a linearization that makes the 2D string highly compressible:
we can visit in order from left to right and from top to bottom all the occurrences of a1 ∈ Σ,
followed by all the occurrences of a2 ∈ Σ, and so on, obtaining a string consisting in |Σ|
equal-letter runs. However, this method requires an ad-hoc linearization for each matrix
which may require substantial additional information to retrieve the original input. It is
therefore customary in the literature to consider linearization techniques that can be inverted
efficiently in terms of both time and space.

One of the simplest linearization techniques consists in mapping Mm×n to the string
rlin(Mm×n) =

⊙i=m
i=1 M [i][1..n] = M [1][1..n] · · ·M [m][1..n], obtained by concatenating its

124

rows. The (lack of) effectiveness of this simple technique with respect to grammar com-
pression has been already shown [11, Theorem 2] with an example of a matrix Tn of size
(2n+1 − 1) × (2n + 1)2n such that g(Tn) = O(n), while g(rlin(Tn)) = Ω(2n). The following
proposition shows a similar result for the measure δ.

Proposition 8.6.1 There exists a family of square matricesMn×n such that δ(Mn×n) = O(1)
and δ(rlin(Mn×n)) = Ω(n).

Proof. Let Mn×n be obtained by appending to the identity matrix In−1 a row of 0’s at the
bottom, and then a column of 1’s at the right. For each k1, k2, PM(k1, k2) is at most 3(k1+k2).
We can see this by considering three cases: the submatrices that do not intersect the last row
or column, the submatrices intersecting the last row, and the submatrices intersecting the
last column. In each case, the distinct submatrices are associated to where the diagonal of 1’s
intersects a submatrix (if it does so). This can happen in at most k1 + k2 different ways. As
3(k1 + k2)/k1k2 ≤ 6, we obtain δ(Mn×n) = O(1). On the other hand, for each k ∈ [0 . . n− 2]
and i ∈ [0 . . n−k−2], each factor 0i10k10n−k−i−2 appears in rlin(Mn×n). There are n−k−1
of these factors for each k. Summing over all k, we obtain PM(n)/n = (n − 1)/2 = Ω(n).
Thus, δ(rlin(Mn×n)) = Ω(n), and the claim follows.

Note that the same result holds trivially for b from the above proof, and a slightly weaker
result can be shown for grl and g.

Proposition 8.6.2 There exists a family of square matricesMn×n such that b(Mn×n) = O(1)
and b(rlin(Mn×n)) = Ω(n).

Proposition 8.6.3 There exists a family of square matrices Mn×n such that µ(Mn×n) =
O(log n) and µ(rlin(Mn×n)) = Ω(n), where µ ∈ {g, grl}.

We do not conclude that linearizations are worthless, as their performance is highly
dependent on the specific 2D string given. What we conclude is that we should keep looking
for measures made specifically for 2D strings, which might or not include some kind of
linearization step in between.

125

Chapter 9

Conclusion

Throughout this thesis, we have studied the phenomenon of repetitiveness in data, mostly
from a theoretical point of view. To do so, we have studied combinatorial properties of
well established state of the art repetitiveness measures, like the number of equal-letter
runs in the Burrows-Wheeler transform of the text. We also designed and studied novel
repetitiveness measures based on string morphisms and enhanced context-free grammars,
in order to further understand the limits of current compression techniques used on highly
repetitive texts. Moreover, we extended many repetitiveness measures from strings to work
on two-dimensional data. Overall, we believe the results presented on this manuscript may
shed some light on what needs to be added to state of the art compression techniques, in
order to achieve better compression, or to work in more general datasets.

This chapter is structured as follows.

• In Section 9.1, we give an in-depth summary of the main contributions we have made
on this thesis.

• In Section 9.2, we present some open questions and problems we left open for future
work.

9.1 Summary of Contributions

We give a brief summary on the main contributions we have made through this thesis.

Chapter 5: Sensitivity Properties of the Burrows-Wheeler Transform

In the first part of Chapter 5, we introduced a string family wk with k ≥ 5, for which we can
apply either an insertion, deletion or substitution, and increase the number of BWT-runs
in the resulting word with respect to r(wk) by a Θ(

√
n) additive factor. This substantially

improves the known Ω(log n) lower bound for additive sensitivity of r to all edit operations,

126

recently proven by Akagi et al. [1]. Moreover, we showed the same result holds for the
variant r$, and also proved that the difference between r and r$ can be Ω(

√
n). These results

in conjunction with the results on the multiplicative sensitivity of r [60], show that when
working with the BWT, small changes to strings should be taken into account.

In the second part of Chapter 5, we studied the impact of morphism application on
the number of BWT equal-letter runs of finite words. Firstly, we characterized Sturmian
morphisms as the binary morphisms preserving the number of BWT equal-letter runs for
all binary words containing both letters. Besides being interesting on its own, when this
characterization is used in conjunction with the rest of our results, it allows us to construct
binary words with any desired number of BWT-runs, and morphisms with known behavior.
This can have practical applications, for instance, in experimentation. In fact, we showed
an infinite family of binary morphisms called Thue–Morse-like morphisms, which increase
the number of BWT-runs of binary words by 2. As a consequence, we have extended the
results of Brlek et al. [20] on the number of BWT-runs of words generated by iterating the
composition of the Fibonacci morphism with the Thue–Morse morphism to any composition
of Sturmian morphisms and Thue–Morse-like morphisms. Also, we are able to construct infi-
nite sequences of words of increasing length, having all exactly 2k BWT-runs, and converging
to an aperiodic infinite word at their limit. While the result on Sturmian morphisms is a
complete characterization, it is unknown if the compositions of Thue–Morse-like and Stur-
mian morphisms are the only binary morphisms increasing the number of BWT-runs exactly
by 2. Then, we showed that when the alphabet size of the domain is σ > 2, the values
r(φ(w)) − r(w) and r(φ(w))/r(w) can be arbitrarily large for some morphisms. In the case
of the binary alphabet, we went further and showed that there exists morphisms where the
additive sensitivity is Ω(

√
n). Finally, we showed that the impact of morphism application on

BWT-runs is quite different from the impact of morphisms on other repetitiveness measures
based on popular compression schemes, like context-free grammars and LZ factorizations. In
these measures, the additive increase after morphism application is bounded by a constant
depending only on the morphism and the measure.

Chapter 6: New Repetitiveness Measures Based on Self-Similarity

We introduced a new repetitiveness measure we call ℓ, which exploits the self-similarity
present on texts by representing them as the iteration of some string morphism over a starting
symbol (modulo some other technicalities). This new measure can break the limits of δ —a
measure considered a stable lower bound for repetitiveness— by a wide margin (a factor of
Θ(
√
n)). On the other hand, ℓ can be asymptotically weaker than the space reached by several

compressors based on run-length context-free grammars, many Lempel-Ziv variants, and the
Burrows-Wheeler transform. Only the size of context-free grammars is an upper bound to
ℓ. This suggests that the self-similarity exploited by L-systems is mostly independent of the
source of repetitiveness exploited by other compressors and measures, which build on copy-
paste mechanisms. We also show that several attempts to simplify or restrict L-systems lead
to weaker measures.

In terms of improving compression, on the other hand, we introduced the measure ν,
which aims to unify the repetitiveness induced by self-similarity and by explicit copies. This

127

measure is the size of the smallest NU-system, a natural way to combine L-systems (with
minimum size ℓ) with macro schemes (with minimum size b ≥ δ). In line with our finding
that ℓ and δ are mostly orthogonal, we proved that ν is strictly more powerful than min(ℓ, b),
which makes ν one of the smallest reachable measures of repetitiveness to date.

In a more general perspective, Chapter 6 pushes a little further the discussion of what
we understand by a repetitive string. Intuitively, repetitiveness is about copies, and macro
schemes capture those copies pretty well, but there are other aspects in a text that could be
repeated besides explicit copies, such as general patterns, or the relative ordering of symbols.
Macro schemes capture explicit copies, L-systems capture so-called self-similarity, and NU-
systems capture both.

Chapter 7: Extending Grammar-Based Measures

In Chapter 7, we have generalized a recent result by Ganardi et al. [52], which shows how
to balance any SLP while maintaining its asymptotic size. Our generalization, called GSLP,
allows in addition any rule of the form A → x where x is a program, of size |x|, that
generates the actual (possibly much longer) right-hand side as long as every variable it
contains appears at least twice. While we believe that this general result can be of wide
interest to balance many kinds of generalizations of SLPs, we demonstrate its usefulness
on a particular generalization of SLPs we call Iterated SLPs (ISLPs), which enable right-
hand sides of the form A → Πk2

i=k1
Bic1

1 · · ·Bict
t , of size O(t). We say a grammar is a d-

ISLP when d is the maximum value of cj along all those rules; we also call git the size
of the smallest ISLP that generates a given text. ISLPs are interesting in the context of
compressibility measures for repetitive texts, as they are the first mechanism achieving size
O(δ/√n) on some texts of length n —even with d = 1— while supporting polylogarithmic-
time access —O(log2 n log log n)— to arbitrary text symbols. This result is obtained thanks
to the possibility of balancing the ISLP, and is extended to computing other substring queries
like range minima and next/previous smaller value, which are useful for implementing suffix
trees on repetitive text collections [50]. A further restriction, d = O(1), yields O(log n) time
for all the above queries, which is nearly optimal [128] for accessing the text in any grammar-
compressed form. This class includes RLSLPs, which extend SLPs with the rule A→ Bt and
are equivalent to 0-ISLPs. We exploit again the possibility of balancing RLSLPs and show a
technique to efficiently compute a wide class of substring queries we call “composable”, that
is, where f(X · Y) can be computed from f(X) and f(Y), e.g., Karp-Rabin fingerprints.

Chapter 8: Extending Repetitiveness Measures to the 2-Dimensional Space

In Chapter 8, we proposed the first complete extension of repetitiveness measures for one-
dimensional strings to generic two-dimensional strings. In particular, we introduced ex-
tensions of the measures δ and γ to the two-dimensional case based on distinct factors of
arbitrary rectangular shapes, as well as the extensions of the measures g, grl, and b, which
are based on copy-paste mechanisms. We studied the mutual relationships between these
measures and showed that δ ≤ γ and b ≤ grl ≤ g. Further, we proved that, unlike in the 1D
context where δ ≤ γ ≤ b ≤ grl ≤ g, the two classes of measures become incomparable when

128

2D strings are considered. Indeed, depending on the 2D input, the measures g, grl, and b
can be asymptotically smaller than δ and γ. The results here presented suggest that in the
2D case, the measures δ and γ (as well as their square-based versions introduced in [22, 23])
are not satisfactory for capturing the regularities of a generic two-dimensional string, which
are instead effectively detected by g, grl, and b measures. At the same time, we have shown
that the use of linearization strategies as preprocessing to compress two-dimensional input
do not seem to be very effective.

9.2 Future Work

We present some open questions on the topics explored on this thesis. We also present some
ideas for future research on other topics within the scope of repetitiveness measures, which
we did not discuss in the previous chapters.

Chapter 5: Sensitivity Properties of the Burrows-Wheeler Transform

With respect to the sensitivity of BWT-runs to edit operations, there are still some directions
for future investigation, mostly regarding if the bit catastrophes we have found could occur
for string families with different asymptotic values of r, or if these are just anomalies that can
happen in extremely specific cases. First, we ask whether there exist families of words with
r = ω(1) for which edit operations can cause a multiplicative increase of Ω(log n). Another
interesting question is whether the upper bound O(r log r log n) from [1] for the additive
sensitivity of r is tight. A weaker question is whether there exists an infinite family with
r = ω(1) on which one edit operation can cause an additive increase of ω(r) in the number
of runs of the BWT. All these questions are also valid for the variant r$.

Regarding the impact of morphisms on BWT-runs, we are working on some open questions
we left. Probably the most interesting one is the following: what is a sufficient and necessary
condition for a binary morphism φ, to have r(φ(w))−r(w) ≤ 2k (for some k > 0 depending on
φ) for every binary word w? Actually, we already have a characterization of these morphisms,
to be published soon [43]. In this upcoming work we also show that for binary morphisms,
r(φ(w))/r(w) is always bounded by a constant depending only on φ.

In the future, we plan to study how to extend the results on morphism fixing BWT-runs,
and morphisms increasing BWT-runs by a fixed natural number, to alphabets of size greater
than 2, or to the variant r$.

Chapter 6: New Repetitiveness Measures Based on Self-Similarity

We left some open flanks on L-systems and NU-systems. Although we believe that the
measures ℓ and ν are NP-hard to compute, this still needs to be proved. There is also the
following question: is ν = O(γ), or at least o(γ log(n/γ)), for every string family? Recall
that γ and o(γ log(n/γ)) space is unknown to be reachable [71].

129

On the practical side of things, there is the question of whether we can approximate
both measures, or answer common queries like access, locate and count efficiently in O(ℓ)
or O(ν) space. For L-system, there are some works attempting to infer an L-system given
an image or sequence [12, 62], which are based on genetic algorithms, though there are
no guarantees on how these approaches would work on general sequences. In the case of
NU-systems, even decompression seems non-trivial.

Finally, we believe that the variants ℓe and ℓp may be worthy of further study. They could
be used for experiments and answering queries on prefixes of relevant families of infinite words,
like morphic words and automatic words.

Chapter 7: Extending Grammar-Based Measures

Several questions remain open on ISLPs. One is about the cost to find the smallest ISLP that
generates a given string w; we conjecture the problem is NP-hard as it is for plain SLPs and
RLSLPs. Indeed, since RLSLPs correspond exactly to 0-ISLPs, finding the smallest 0-ISLP
is NP-hard. It is open to extend this result to d-ISLPs for other values of d.

A second question is whether we can build an index withinO(git) space that offers efficient
pattern matching. While ISLPs support random access to the text, the typical path followed
for SLPs [34] and for RLSLPs [32, App. A] cannot be directly applied for ISLPs, because
iteration rules, which are of size O(t), would require indexing Θ(kt) positions. Computing
Karp-Rabin fingerprints [66] on text substrings, which can be done in logarithmic time on
SLPs and RLSLPs and enable substring equality and longest common prefix computations
on w, is also challenging on general ISLPs.

Chapter 8: Extending Repetitiveness Measures to the 2-Dimensional Space

Regarding 2D repetitiveness measures, there are several open questions, as most of them
were recently introduced. It has been shown that the 2D-Block Tree [19] —a data structure
introduced for indexing 2D highly repetitive strings— can perform way worse than g on some
relevant 2D string families [24]. This suggests it could be worthwhile to explore possible
approximation strategies for b and g, as well as 2D versions of greedy grammar construction
algorithms like the ones described in [8, 102].

We have make important advances regarding the query power of 2D SLPs. In fact, in
the (currently under revision) journal version of our paper on 2D repetitiveness measures, we
have shown how to provide access in O(grl) space and O(log n) time. It is left open how to
implement more complex queries like locate and count.

One can note that in the 1D setting, most repetitiveness measures can be upper bounded
with respect to O(δ log(n/δ)), or another function of δ. Currently, there is not something like
that for the 2D setting. Hence, we think it is important to find a meaningful combinatorial
lower bound µ for b, g and grl, so we can upper bound these 2D measures by a function of µ.

Finally, while we have shown some results on the issues of some commonly used lineariza-

130

tion techniques for 2D strings, we believe it may be helpful to approach this topic in a more
systematic and general manner.

Other Topics on Repetitiveness Measures

There are some interesting directions for future research on the general topic of repetitiveness
measures.

Recently, Bannai et al. [5] showed that a certain restriction on Lempel-Ziv parsing that
enables access to arbitrary positions of the text inO(log n) predecessor queries, always reaches
size O(grl). The size z∗ ≥ z of such parsing is then a new accessible repetitiveness measure
that outperforms RLSLPs. The same string family that was used to show that z can be
o(grl) serves to show that z∗ can be o(grl); therefore z∗ is a new accessible measure strictly
better than grl that should be further studied.

There is also the promising and recently introduced repetitiveness measure χ(w) de-
fined as the size of the smallest suffixient set of a string [37]. It always holds that χ(w) ≤
2min(r$(w), r$(w

R)) [37], and it can be computed efficiently in linear time [29]. Because this
measure has been recently introduced, there are many open question one can think of. For
instance, what is the sensitivity of χ(w) to the most common string transformations? Or,
can we generalize χ(w) to the 2-dimensional setting in a satisfactory manner? Moreover, the
formulation of suffixient sets is interesting from a combinatorial point of view, similarly to
the formulation of string attractors. Hence, we think studying how suffixient set can help to
characterize relevant families of words (e.g., Sturmian words) can be an interesting line of
work.

131

Bibliography

[1] T. Akagi, M. Funakoshi, and S. Inenaga. Sensitivity of string compressors and repeti-
tiveness measures. Information and Computation, 291:104999, 2023.

[2] J.-P. Allouche, J. Cassaigne, J. Shallit, and L. Zamboni. A taxonomy of morphic
sequences. CoRR, 1711.10807, 2017.

[3] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In Se-
quences and their Applications, pages 1–16. Springer London, 1999.

[4] J.-P. Allouche and J. Shallit. Automatic Sequences - Theory, Applications, Generaliza-
tions. Cambridge University Press, 2003.

[5] H. Bannai, M. Funakoshi, D. Hendrian, M. Matsuda, and S. Puglisi. Height-bounded
Lempel-Ziv encodings. CoRR, 2403.08209, 2024.

[6] H. Bannai, M. Funakoshi, T. I, D. Köppl, T. Mieno, and T. Nishimoto. A separation
of γ and b via Thue–Morse words. In Proc. 28th International Symposium on String
Processing and Information Retrieval (SPIRE 2021), volume 12944 of Lecture Notes in
Computer Science, pages 167–178. Springer, 2021.

[7] H. Bannai, M. Funakoshi, K. Kurita, Y. Nakashima, K. Seto, and T. Uno. Optimal
LZ-end parsing is hard. In Proc. 34th Annual Symposium on Combinatorial Pattern
Matching (CPM 2023), volume 259 of Leibniz International Proceedings in Informatics,
pages 3:1–3:11. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

[8] H. Bannai, M. Hirayama, D. Hucke, S. Inenaga, A. Jez, M. Lohrey, and C. Reh.
The smallest grammar problem revisited. IEEE Transactions on Information Theory,
67(1):317–328, 2021.

[9] D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, and M. Raffinot. Composite repetition-
aware data structures. In Proc. 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015), pages 26–39. Springer, 2015.

[10] T. Bell, J. Cleary, and I. Witten. Text compression. Prentice-Hall, Inc., USA, 1990.

[11] P. Berman, M. Karpinski, L. Larmore, W. Plandowski, and W. Rytter. On the com-
plexity of pattern matching for highly compressed two-dimensional texts. Journal of
Computer and System Sciences, 65(2):332–350, 2002.

[12] J. Bernard and I. McQuillan. Techniques for inferring context-free lindenmayer systems
with genetic algorithm. Swarm and Evolutionary Computation, 64:100893, 2021.

132

[13] J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata, volume 129 of Ency-
clopedia of mathematics and its applications. Cambridge University Press, 2010.

[14] J. Berstel and P. Séébold. A characterization of Sturmian morphisms. In Proc. 18th
International Symposium on Mathematical Foundations of Computer Science (MFCS
1993), volume 711 of Lecture Notes in Computer Science, pages 281–290. Springer,
1993.

[15] V. Berthé, A. de Luca, and C. Reutenauer. On an involution of Christoffel words and
Sturmian morphisms. European Journal of Combinatorics, 29(2):535–553, 2008.

[16] P. Bille, T. Gagie, I. Gørtz, and N. Prezza. A separation between RLSLPs and LZ77.
Journal of Discrete Algorithms, 50:36–39, 2018.

[17] P. Bille, I. Gørtz, P. Cording, B. Sach, H. Vildhøj, and S. Vind. Fingerprints in
compressed strings. Journal of Computer and System Sciences, 86:171–180, 2017.

[18] P. Bille, G. Landau, R. Raman, K. Sadakane, S. Satti, and O. Weimann. Random access
to grammar-compressed strings and trees. SIAM Journal on Computing, 44(3):513–539,
2015.

[19] N. Brisaboa, T. Gagie, A. Gómez-Brandón, and G. Navarro. Two-dimensional block
trees. Computer Journal, 67(1):391–406, 2024.

[20] S. Brlek, A. Frosini, I. Mancini, E. Pergola, and S. Rinaldi. Burrows-Wheeler transform
of words defined by morphisms. In Proc. 30th International Workshop on Combinatorial
Algorithms (IWOCA 2019), volume 11638 of Lecture Notes in Computer Science, pages
393–404. Springer, 2019.

[21] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

[22] L. Carfagna and G. Manzini. Compressibility measures for two-dimensional data. In
Proc. 30th International Symposium on String Processing and Information Retrieval
(SPIRE 2023), volume 14240 of Lecture Notes in Computer Science, pages 102–113.
Springer, 2023.

[23] L. Carfagna and G. Manzini. The landscape of compressibility measures for two-
dimensional data. IEEE Access, 12:87268–87283, 2024.

[24] L. Carfagna, G. Manzini, G. Romana, M. Sciortino, and C. Urbina. Generalization
of repetitiveness measures for two-dimensional strings. In Proc. 31th International
Symposium on String Processing and Information Retrieval (SPIRE 2024), volume
14899 of Lecture Notes in Computer Science, pages 57–72. Springer, 2024.

[25] J. Cassaigne. Sequences with grouped factors. In Proc. 3rd International Conference
on Developments in Language Theory (DLT 1997), pages 211–222. Aristotle University
of Thessaloniki, 1997.

[26] J. Cassaigne, F. Gheeraert, A. Restivo, G. Romana, M. Sciortino, and M. Stipulanti.
New string attractor-based complexities for infinite words. Journal of Combinatorial
Theory, Series A, 208:105936, 2024.

133

[27] G. Castiglione, A. Restivo, and M. Sciortino. Hopcroft’s Algorithm and Cyclic Au-
tomata. In Proc. 2nd International Conference on Language and Automata Theory
and Applications (LATA 2008), volume 5196 of Lecture Notes in Computer Science,
pages 172–183. Springer, 2008.

[28] G. Castiglione, A. Restivo, and M. Sciortino. Circular Sturmian words and Hopcroft’s
algorithm. Theoretical Computer Science, 410(43):4372–4381, 2009.

[29] D. Cenzato, F. Olivares, and N. Prezza. On computing the smallest suffixient set. In
Proc. 31th International Symposium on String Processing and Information Retrieval
(SPIRE 2024), volume 14899 of Lecture Notes in Computer Science, pages 73–87.
Springer, 2024.

[30] G. Chaitin, A. Arslanov, and C. Calude. Program-size complexity computes the halting
problem. EATCS Bulletin, 57, 1995.

[31] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. She-
lat. The smallest grammar problem. IEEE Transactions on Information Theory,
51(7):2554–2576, 2005.

[32] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro, and N. Prezza.
Optimal-time dictionary-compressed indexes. ACM Transactions on Algorithms,
17(1):article 8, 2020.

[33] W.-F. Chuan. Sturmian morphisms and alpha-words. Theoretical Computer Science,
225(1-2):129–148, 1999.

[34] F. Claude, G. Navarro, and A. Pacheco. Grammar-compressed indexes with logarithmic
search time. Journal of Computer and System Sciences, 118:53–74, 2021.

[35] S. Constantinescu and L. Ilie. The Lempel–Ziv complexity of fixed points of morphisms.
SIAM Journal on Discrete Mathematics, 21(2):466–481, 2007.

[36] M. Crochemore, T. Lecroq, and W. Rytter. 125 Problems in Text Algorithms: with
Solutions. Cambridge University Press, 2021.

[37] L. Depuydt, T. Gagie, B. Langmead, G. Manzini, and N. Prezza. Suffixient sets. CoRR,
abs/2312.01359, 2023.

[38] L. Dvořáková. String attractors of Episturmian sequences. Theoretical Computer Sci-
ence, 986(C), 2024.

[39] A. Ehrenfeucht, K.P. Lee, and G. Rozenberg. Subword complexities of various classes
of deterministic developmental languages without interactions. Theoretical Computer
Science, 1(1):59–75, 1975.

[40] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc.
41st IEEE Symposium on Foundations of Computer Science (FOCS 2000), pages 390–
398. IEEE Computer Society, 2000.

134

[41] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20,
2007.

[42] G. Fici, G. Romana, M. Sciortino, and C. Urbina. On the impact of morphisms on
BWT-runs. In Proc. 34th Annual Symposium on Combinatorial Pattern Matching
(CPM 2023), volume 259 of Leibniz International Proceedings in Informatics, pages
10:1–10:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[43] G. Fici, G. Romana, M. Sciortino, and C. Urbina. Morphisms and bwt-run sensitivity,
2025.

[44] J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

[45] J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-bounded compressed suffix
trees. Theoretical Computer Science, 410(51):5354–5364, 2009.

[46] M. Fredman and D. Willard. Surpassing the information theoretic bound with fusion
trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

[47] A. Frosini, I. Mancini, S. Rinaldi, G. Romana, and M. Sciortino. Logarithmic equal-
letter runs for BWT of purely morphic words. In Proc. 26th International Conference
on Developments in Language Theory (DLT 2022), volume 13257 of Lecture Notes in
Computer Science, pages 139–151. Springer, 2022.

[48] J. Fuchs and P. Whittington. The 2-Attractor Problem Is NP-Complete. In Proc.
41st International Symposium on Theoretical Aspects of Computer Science (STACS
2024), volume 289 of Leibniz International Proceedings in Informatics, pages 35:1–
35:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.

[49] T. Gagie, G. Navarro, and N. Prezza. On the approximation ratio of Lempel-Ziv
parsing. In Proc. 13th Latin American Theoretical Informatics Symposium (LATIN
2018), volume 10807 of Lecture Notes in Computer Science, pages 490–503. Springer,
2018.

[50] T. Gagie, G. Navarro, and N. Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. Journal of the ACM, 67(1):2:1–2:54, 2020.

[51] J. Gallant. String Compression Algorithms. PhD thesis, Princeton University, 1982.

[52] M. Ganardi, A. Jez, and M. Lohrey. Balancing straight-line programs. Journal of the
ACM, 68(4):27:1–27:40, 2021.

[53] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding. In Proc. 5th Scandinavian Workshop on Algorithm The-
ory (SWAT 1996), volume 1097 of Lecture Notes in Computer Science, pages 392–403,
1996.

[54] L. Gasieniec, R. Kolpakov, I. Potapov, and P. Sant. Real-time traversal in grammar-
based compressed files. In Proc. 15th Data Compression Conference (DCC 2005), pages
458–, 2005.

135

[55] F. Gheeraert, G. Romana, and M. Stipulanti. String attractors of fixed points of k-
bonacci-like morphisms. In Proc. 14th International Conference on Combinatorics on
Words (WORDS 2023), volume 13899 of Lecture Notes in Computer Science, pages
192–205. Springer, 2023.

[56] F. Gheeraert, G. Romana, and M. Stipulanti. String attractors of some simple-parry
automatic sequences. Theory of Computing Systems, 2024.

[57] D. Giammarresi and A. Restivo. Two-dimensional languages. In Handbook of Formal
Languages (3), pages 215–267. Springer, 1997.

[58] R. Giancarlo. A generalization of the suffix tree to square matrices, with applications.
SIAM Journal on Computing, 24(3):520–562, 1995.

[59] S. Giuliani, S. Inenaga, Z. Lipták, N. Prezza, M. Sciortino, and A. Toffanello. Novel
results on the number of runs of the Burrows-Wheeler-transform. In Proc. 47th Inter-
national Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2021), pages 249–262, 2021.

[60] S. Giuliani, S. Inenaga, Z. Lipták, G. Romana, M. Sciortino, and C. Urbina. Bit catas-
trophes for the Burrows-Wheeler transform. In Proc. 27th International Conference
on Developments in Language Theory (DLT 2023), volume 13911 of Lecture Notes in
Computer Science, pages 86–99. Springer, 2023.

[61] S. Giuliani, S. Inenaga, Z. Lipták, G. Romana, M. Sciortino, and C. Urbina. Bit catas-
trophes for the burrows-wheeler transform. Theory of Computing Systems, 69(2):19,
2025.

[62] J. Guo, H. Jiang, B. Benes, O. Deussen, X. Zhang, D. Lischinski, and H. Huang. Inverse
procedural modeling of branching structures by inferring l-systems. ACM Transactions
on Graphics, 39(5), 2020.

[63] A. Jeż. Approximation of grammar-based compression via recompression. Theoretical
Computer Science, 592:115–134, 2015.

[64] E. Kaltofen and G. Villard. On the complexity of computing determinants. Computa-
tional Complexity, 13:91–130, 2004.

[65] J. Karhumäki. On cube-free ω-words generated by binary morphisms. Discrete Applied
Mathematics, 5(3):279–297, 1983.

[66] R. Karp and M. Rabin. Efficient randomized pattern-matching algorithms. IBM Jour-
nal of Research and Development, 31(2):249–260, 1987.

[67] A. Kawamoto, T. I, D. Köppl, and H. Bannai. On the hardness of smallest RLSLPs
and collage systems. In Proc. 34th Data Compression Conference (DCC 2024), pages
243–252, 2024.

[68] D. Kempa and T. Kociumaka. Resolution of the Burrows-Wheeler transform conjecture.
Communications of the ACM, 65(6):91–98, 2022.

136

[69] D. Kempa and T. Kociumaka. Collapsing the hierarchy of compressed data structures:
Suffix arrays in optimal compressed space. In Proc. 64th IEEE Annual Symposium on
Foundations of Computer Science (FOCS 2023), pages 1877–1886, 2023.

[70] D. Kempa and D. Kosolobov. LZ-end parsing in linear time. In Proc. 25th Annual
European Symposium on Algorithms (ESA 2017), volume 87 of Leibniz International
Proceedings in Informatics, pages 53:1–53:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017.

[71] D. Kempa and N. Prezza. At the roots of dictionary compression: String attractors. In
Proc. 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018),
page 827–840. Association for Computing Machinery, 2018.

[72] D. Kempa and B. Saha. An upper bound and linear-space queries on the LZ-end
parsing. In Proc. 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2022), pages 2847–2866, 2022.

[73] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage
system: A unifying framework for compressed pattern matching. Theoretical Computer
Science, 298(1):253–272, 2003.

[74] J. Kieffer and E.-H. Yang. Grammar-based codes: A new class of universal lossless
source codes. IEEE Transactions on Information Theory, 46(3):737–754, 2000.

[75] D. Kim, Y. Kim, and K. Park. Generalizations of suffix arrays to multi-dimensional
matrices. Theoretical Computer Science, 2003.

[76] D. Knuth. Johann faulhaber and sums of powers. Mathematics of Computation,
61(203):277–294, 1993.

[77] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM Journal
on Computing, 6(2):323–350, 1977.

[78] T. Kociumaka, G. Navarro, and F. Olivares. Near-optimal search time in δ-optimal
space, and vice versa. Algorithmica, 86(4):1031–1056, 2024.

[79] T. Kociumaka, G. Navarro, and N. Prezza. Towards a definitive compressibility measure
for repetitive sequences. IEEE Transactions on Information Theory, 69(4):2074–2092,
2023.

[80] S. Kreft and G. Navarro. LZ77-like compression with fast random access. In Proc. 20th
Data Compression Conference (DCC 2010), pages 239–248, 2010.

[81] S. Kreft and G. Navarro. On compressing and indexing repetitive sequences. Theoretical
Computer Science, 483:115–133, 2013.

[82] J. Shallit L. Schaeffer. String attractors for automatic sequences. CoRR,
abs/2012.06840, 2020.

[83] B. Langmead and S. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357–359, 2012.

137

[84] N. Larsson and A. Moffat. Off-line dictionary-based compression. Procedings of the
IEEE, 88(11):1722–1732, 2000.

[85] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on
Information Theory, 22(1):75–81, 1976.

[86] A. Lempel and J. Ziv. Compression of two-dimensional data. IEEE Transactions on
Information Theory, 32(1):2–8, 1986.

[87] H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics, 26(5):589–595, 2010.

[88] A. Lindenmayer. Mathematical models for cellular interactions in development I. Fil-
aments with one-sided inputs. Journal of Theoretical Biology, 18(3):280–299, 1968.

[89] A. Lindenmayer. Mathematical models for cellular interactions in development II.
Simple and branching filaments with two-sided inputs. Journal of Theoretical Biology,
18(3):300–315, 1968.

[90] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, New York, NY, USA, 2002.

[91] R. Lyndon and M-P. Schützenberger. The equation am = bncp in a free group. Michigan
Mathematical Journal, 9(4):289–298, 1962.

[92] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

[93] S. Mantaci, A. Restivo, G. Romana, G. Rosone, and M. Sciortino. A combinatorial
view on string attractors. Theoretical Computer Science, 850:236–248, 2021.

[94] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, and L. Versari. Measuring the clus-
tering effect of BWT via RLE. Theoretical Computer Science, 698:79–87, 2017.

[95] S. Mantaci, A. Restivo, and M. Sciortino. Burrows–Wheeler transform and Sturmian
words. Information Processing Letters, 86(5):241–246, 2003.

[96] G. Manzini. An analysis of the Burrows–Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

[97] F. Mignosi and P. Séébold. Morphismes Sturmiens et règles de Rauzy. Journal de
théorie des nombres de Bordeaux, 5(2):221–233, 1993.

[98] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permu-
tations and functions. Theoretical Computer Science, 438:74–88, 2012.

[99] G. Navarro. Indexing highly repetitive string collections, part I: Repetitiveness mea-
sures. ACM Computing Surveys, 54(2):article 29, 2021.

[100] G. Navarro. Indexing highly repetitive string collections, part II: Compressed indexes.
ACM Computing Surveys, 54(2):article 26, 2021.

138

[101] G. Navarro. The compression power of the BWT: technical perspective. Communica-
tions of the ACM, 65(6):90, 2022.

[102] G. Navarro, C. Ochoa, and N. Prezza. On the approximation ratio of ordered parsings.
IEEE Transactions on Information Theory, 67(2):1008–1026, 2021.

[103] G. Navarro, F. Olivares, and C. Urbina. Balancing run-length straight-line programs.
In Proc. 29th International Symposium on String Processing and Information Retrieval
(SPIRE 2022), volume 13617 of Lecture Notes in Computer Science, pages 117–131.
Springer, 2022.

[104] G. Navarro, F. Olivares, and C. Urbina. Generalized straight-line programs. Acta
Informatica, 62(1):14, 2025.

[105] G. Navarro and C. Urbina. On stricter reachable repetitiveness measures. In Proc.
28th International Symposium on String Processing and Information Retrieval (SPIRE
2021), volume 12944 of Lecture Notes in Computer Science, pages 193–206. Springer,
2021.

[106] G. Navarro and C. Urbina. L-systems for measuring repetitiveness. In Proc. 34th
Annual Symposium on Combinatorial Pattern Matching (CPM 2023), volume 259 of
Leibniz International Proceedings in Informatics, pages 25:1–25:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

[107] G. Navarro and C. Urbina. Iterated straight-line programs. In Proc. 16th Latin Ameri-
can Theoretical Informatics Symposium (LATIN 2024), volume 14578 of Lecture Notes
in Computer Science, pages 66–80. Springer, 2024.

[108] G. Navarro and C. Urbina. Repetitiveness measures based on string morphisms. The-
oretical Computer Science, 1043:115259, 2025.

[109] Y. Nekrich and G. Navarro. Sorted range reporting. In Proc. 13th Scandinavian Sympo-
sium on Algorithmic Theory (SWAT 2012), volume 7357 of Lecture Notes in Computer
Science, pages 271–282, 2012.

[110] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Fully dynamic data structure
for LCE queries in compressed space. In 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz International
Proceedings in Informatics, pages 72:1–72:15, 2016.

[111] J.-J. Pansiot. On various classes of infinite words obtained by iterated mappings. In
Proc. 1st LITP Spring School on Theoretical Computer Science (LITP 1984), volume
192 of Lecture Notes in Computer Science, pages 188–197, 1984.

[112] J.-J. Pansiot. Subword complexities and iteration. Bulletin of the European Association
for Theoretical Computer Science, 26:55–62, 1985.

[113] G. Paquin. On a generalization of Christoffel words: Epichristoffel words. Theoretical
Computer Science, 410(38-40):3782–3791, 2009.

[114] H. Petersen. On the language of primitive words. Theoretical Computer Science,
161(1):141–156, 1996.

139

[115] M. Przeworski, R. Hudson, and A. Di Rienzo. Adjusting the focus on human variation.
Trends in Genetics, 16(7):296—302, 2000.

[116] S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. Smith. Sublinear algorithms for
approximating string compressibility. Algorithmica, 65(3):685–709, 2013.

[117] A. Restivo and G. Rosone. Balanced words having simple Burrows–Wheeler transform.
In Proc. 13th International Conference on Developments in Language Theory (DLT
2009), volume 5583 of Lecture Notes in Computer Science, pages 431–442. Springer,
2009.

[118] G. Romana. Algorithmic view on circular string attractors. In Proc. 24th Italian
Conference on Theoretical Computer Science (ICTCS 2023), volume 3587 of CEUR
Workshop Proceedings, pages 169–180. CEUR-WS.org, 2023.

[119] G. Romana. Repetitiveness Measures based on String Attractors and Burrows-Wheeler
Transform: Properties and Applications. PhD thesis, Università degli Studi Palermo,
2023.

[120] G. Rozenberg and A. Salomaa. The mathematical theory of L systems. Academic press,
1980.

[121] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science, 302(1-3):211–222, 2003.

[122] H. Sagan. Space-Filling Curves. Universitext. Springer, New York, NY, 1994.

[123] A. Salomaa. On exponential growth in Lindenmayer systems. Indagationes Mathemat-
icae (Proceedings), 76(1):23–30, 1973.

[124] M. Sciortino and L. Zamboni. Suffix automata and standard Sturmian words. In
Proc. 11th International Conference on Developments in Language Theory (DLT 2007),
volume 4588 of Lecture Notes in Computer Science, pages 382–398. Springer, 2007.

[125] J. Shallit and D. Swart. An efficient algorithm for computing the ith letter of φn(a).
In Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999),
pages 768–775, 1999.

[126] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[127] J. Storer and T. Szymanski. Data compression via textual substitution. Journal of the
ACM, 29(4):928–951, 1982.

[128] E. Verbin and W. Yu. Data structure lower bounds on random access to grammar-
compressed strings. In Proc. 24th Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2013), volume 7922 of Lecture Notes in Computer Science, pages 247–258,
2013.

140

	Introduction
	Motivation
	Thesis Statement
	Contribution
	Structure of the Thesis
	Notation and Conventions

	Combinatorics on Words
	Basic Concepts
	Primitive Words, Powers, and Lyndon Words
	String Morphisms
	Sturmian Words

	Text Compression and Indexing
	Compressibility Measures
	Empirical Entropy
	Text Indexing
	Sensitivity to String Transformations

	Measuring Repetitiveness
	Parsing-based Measures
	Grammar-based Measures
	Burrows-Wheeler Transform
	String Attractors
	The Measure Delta
	Summary

	Sensitivity Properties of the Burrows-Wheeler Transform
	Additive Sensitivity of BWT to Edit Operations
	Characterizing the BWT of wk
	BWT of wk after an edit operation
	Additive sensitivity for r$
	The relationship between r and r$

	Sensitivity of BWT to Morphism Application
	Preliminaries
	Morphisms and sorted rotations of words
	Binary morphisms preserving BWT equal-letter runs
	Binary morphisms increasing BWT equal-letter runs by a constant
	Morphisms with an unbounded increase on BWT equal-letter runs
	Comparison with other repetitiveness measures

	New Repetitiveness Measures Based on Self-Similarity
	Deterministic L-systems and the Measure ell
	Decompression
	Access
	Sensitivity to string transformations

	Breaking the Repetitiveness Lower Bound delta
	Uncomparability of ell with Other Measures
	Macro-systems
	NU-systems
	Decompression algorithm
	The measure ``nu''
	Properties

	Variants of L-systems and the Measure ell

	Extending Grammar-Based Measures
	Generalized SLPs and How to Balance Them
	Iterated Straight-Line Programs
	Accessing ISLPs
	Specializing the result
	Data structures
	Direct access
	Extracting substrings
	Composable functions on substrings

	Revisiting RLSLPs
	More general functions
	Application: Karp-Rabin fingerprints

	Extending Repetitiveness Measures to the Two-dimensional Space
	Basics on 2D Strings
	Measures Delta and Gamma in two dimensions
	(Run-length) Straight-line Programs for 2D Strings
	Macro Schemes for 2D Strings
	Differences Between the 1D and the 2D Setting
	Effectiveness of Linearization Techniques

	Conclusion
	Summary of Contributions
	Future Work

