
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE COMPUTACIÓN

ENHANCING QDAGS FOR HIGHER-DIMENSIONAL QUERIES

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MATILDE RIVAS LAGOS

PROFESOR GUÍA:
GONZALO NAVARRO
PROFESOR GUÍA 2:
DIEGO ARROYUELO

MIEMBROS DE LA COMISIÓN:
BENJAMÍN BUSTOS

AIDAN HOGAN
JUAN REUTTER

SANTIAGO DE CHILE
2026

Resumen

El join es una operación fundamental en las bases de datos relacionales y de grafos. Las solu-
ciones tradicionales, con un enfoque de join de a pares, suelen generar resultados intermedios
grandes que exceden el tamaño final del resultado. Una tarea común en las bases de datos
de grafos es la búsqueda de subgrafos, lo que requiere llevar a cabo varios joins. Aunque
los algoritmos de join Worst-Case Optimal (WCO) tienen una complejidad computacional
acotada por la cota Atserias-Grohe-Marx (AGM), t́ıpicamente requieren gran indexamiento,
que a su vez requiere una cantidad significativa de recursos de memoria, lo que los hace
imprácticos para resolver consultas de subgrafos a gran escala.

Esta tesis extiende el Qdag, un framework que representa bases de datos como quadtrees
comprimidos y provee algoritmos de join WCO en espacio cercano al óptimo. Sin embargo,
el Qdag original está limitado a consultas de baja dimensionalidad (hasta 5 variables) debido
a la dependencia exponencial del tiempo de ejecución con la dimensión del resultado.

Presentamos dos contribuciones principales para superar esta limitante. Primero, introduci-
mos una versión modificada del Qdag, llamado high arity Qdag, con un nuevo algoritmo de
join que resuelve consultas de aridad arbitraria a través del uso de un arreglo inicializable
de contadores, eliminando el ĺımite sobre el número de variables en la consulta. Segundo,
desarrollamos un algoritmo de join que utiliza generalized hypertree decompositions (GHD)
como planes de consulta, potencialmente logrando una mejor complejidad que la cota AGM.
Este algoritmo basado en GHD no solo reduce la dimensionalidad efectiva de los joins a re-
solver, también aprovecha la naturaleza compacta de los Qdags para almacenar los resultados
intermedios de manera eficiente.

Evaluamos nuestras soluciones con el dataset de Wikidata, mostrando que el algoritmo basado
en GHD presenta mejoras de rendimiento significativas en relación al Qdag original. Aunque
el high arity Qdag tiene un peor rendimiendo que el Qdag original en queries de aridad baja,
permite procesar patrones complejos previamente fuera del rango de capacidades del Qdag,
manteniendo la cota AGM.

Estos resultados muestran que nuestras mejoras éxitosamente extienden las capacidades del
Qdag, manteniendo sus ventajas fundamentales. También establecen una base para seguir
mejorando los algoritmos de join y la búsqueda en grafos.

i

Abstract

Join processing is a fundamental operation in relational and graph databases, with tradi-
tional pair-wise approaches often generating large intermediate results that exceed the final
output size. A common task in graph databases is subgraph matching, which requires ex-
ecuting many joins. While Worst-Case Optimal (WCO) join algorithms achieve optimal
time complexity bounded by the Atserias-Grohe-Marx (AGM) bound, they typically require
heavy indexing, which needs significant memory resources that make them impractical for
large-scale subgraph matching queries.

This thesis extends the Qdag, a framework that represents databases as compressed quadtrees
and supports WCO join algorithms with near space-optimality. However, the original Qdag
is limited to lower-dimensional queries (up to 5 variables) due to its exponential runtime
dependence on output dimension.

We present two main contributions to overcome these limitations. First, we introduce a
modified Qdag structure with a new multijoin algorithm that handles queries of arbitrary
arity through an initializable array of counters, removing the limit on the number of query
variables. Second, we develop a join algorithm that uses generalized hypertree decompo-
sition (GHD) as a query plan, potentially achieving better complexity bounds than AGM.
This GHD-based algorithm not only reduces the effective dimensionality for applying WCO
algorithms but also leverages the compact nature of Qdags to efficiently store intermediate
results.

We evaluated our solutions on the Wikidata dataset, showing that the GHD-based algorithm
provides significant performance improvements over the original Qdag. While the high arity
Qdag has a worse time performance than the original Qdag in lower-arity queries, it enables
processing of complex graph patterns previously beyond the Qdag’s capabilities, and it is
still WCO.

These results show that our enhancements successfully extend Qdag capabilities while pre-
serving their core advantages, and establish a foundation for further improving join algo-
rithms.

ii

Este trabajo se lo dedico a todas las personas que ven valor en hacer cosas, en crear, en
pensar, en sentir, en frustrarse, y en no dejar que un conjunto de if-else y vectores de

tokens vivan la vida por ellos.

iii

Acknowledgments

He vivido un sinf́ın de vidas en el transcurso de esta tesis y agradezco a cada persona que
tocó alguna de esas vidas por recordarme todas las posibilidades y maravillas que esconde
este mundo. Si no me creen lo primero, les doy algunas cifras: tej́ı dos chalecos y empecé
otros tres que probablemente nunca terminaré; viajé a 20 ciudades; fui a clases de salsa,
bachata, ballet, yoga, twerk y pilates; también tomé talleres de canto y cerámica; participé
en dos competencias de pitch (una en Francia!) con proyectos diferentes y mi equipo salió
segundo en ambas; lei 160 libros y no terminé ninguna serie; participé de al menos 10 noches
de trivia y sacamos podio en la mayoŕıa; hice 12 disfraces; tuve 4 trabajos diferentes: el
IMFD, el proyecto AVES, Fire2A en el ISCI y CeroAI (más la Ocean Hackathon que a veces
se sent́ıa como un trabajo real); participé en 2 papers que llevan meses en revisión; hice 2
cursos online sobre medio ambiente; viv́ı la pandemia, me independicé y me compromet́ı;
nacieron mis tres sobrinos; conversé con mucha gente interesante e hice y deshice amistades.

Concrétamente, quiero agradecer a mi familia por enseñarme a darlo todo por las cosas que
me importan, a tomarme en serio lo que amerita ser serio, y con risas lo demás. Seremos
controladores pero al menos somos chistosos. Muchas gracias a mi mamá y mi papá por
todos los abrazos y consejos que me dieron a causa de la tesis.

Agradezco a todos mis amigos por mantenerme anclada durante este proceso. A mis amigas
del colegio, que me hacen recordar que hay vida afuera de Beauchef. A los frens del DCC:
ColoColo es Chile. Muchas gracias por ser una burbuja de compasión, chistes estúpidos y
entendimiento sin tener que decir ninguna palabra.

Debo hacer mención especial de algunas personas cuya amistad me permitió seguir adelante
en los momentos más dif́ıciles. Ann, gracias por recibirme tantas veces en tu casa y por
enseñarme a no estresarme por tonteras. La frase “qué haŕıa la Ann en esta situación” me ha
ahorrado harto cortisol, aśı que podŕıas decir que tu perspectiva me ha salvado al menos unos
d́ıas de vida. Has sido un lugar seguro y lleno de risas para mı́. Kari y Benja, qué manera de
reirnos. Es realmente impresionante como dentro de la misma conversación podemos hacer
un chiste estupid́ısimo que nos saca carcajadas, y luego alguno dice un comentario tan sabio
que saca aplausos. Gracias por mantenerme aflote, espero con ansias el reencuentro.

Por sobretodo agradezco a Cristóbal por acompañarme en esta traveśıa que a ratos parećıa
infinita. Sin su paciencia para debuggear, este trabajo derechamente no hubiera sido posible.
Aśı como sin su cariño, su confianza en mis capacidades o sus palabras de ánimo. Gracias
por aguantar mi desorden y por lavar los platos cuando estuve abrumada por meterme en
tantas cosas a la vez. Espero que sepas que nunca cambiaré.

iv

v

Contents

1 Introduction 1

1.1 Thesis Outline . 2

2 Graph Databases 4

2.1 Graph Databases and Worst Case Optimal Joins 4

2.2 Yannakakis Algorithm . 6

2.3 Generalized Hypertree Decompositions . 7

2.4 EmptyHeaded . 7

3 The Qdag 9

3.1 Succinct Data Structures and Basic Operations 9

3.2 Region Quadtrees . 10

3.2.1 Generalization to Higher Dimensions 10

3.2.2 Compact Representation . 12

3.3 Qdag . 12

3.3.1 Data Structure . 13

3.3.2 Original Join Algorithm . 13

3.3.3 Limitations . 16

4 Higher arity Qdags 17

4.1 Multijoin algorithm . 17

4.2 Implementaion . 18

vi

4.2.1 Adding Bitmap Support for Large Nodes 18

4.2.2 Extending dimensions . 19

4.2.3 Traversal and Intersection . 20

5 GHD-Based Algorithm 22

5.1 Proposed Algorithm . 22

5.2 Semijoin support in Qdags . 23

5.2.1 Active bitmap . 24

5.2.2 Tree traversal . 25

5.2.3 Pruning . 25

5.3 Algorithm Implementation . 27

5.3.1 Handling Generalized Hypertree Decompositions 27

5.3.2 Algorithm Execution . 28

6 Experimental Evaluation 30

6.1 Methodology . 30

6.1.1 Experimental setup . 31

6.2 Results and Discussion . 33

6.2.1 Space usage . 33

6.2.2 Query decompositions . 34

6.2.3 General execution time . 38

6.2.4 Pruning during semijoin . 40

6.2.5 Reduction Parallelization . 46

7 Conclusion 47

7.1 Future Work . 48

Bibliography 50

Appendix A Space Usage of GHD-optimal algorithm 51

vii

List of Tables

4.1 M ′ table used to extend Q from {A,C} to {A,B,C}. The bit at the index
1 in the original dimensional space {A,C} maps to the positions 1 and 3 in
the space {A,B,C}. The bitstring ’00’ turns into both ’010’ and ’000’ in the
extended space. 19

4.2 M table used to go from the space {A,B,C} to {A,C}. A bit at position 2 in
the extended space maps to the 0 position in the original dimension, as does
a bit at the 0 position. 19

6.1 Average and median number of results per query pattern used in the experiments. 32

6.2 Index space in bytes per tuple. 34

6.3 Space usage factors for input relations and intermediate results relative to final
result size when using the original Qdag across different query patterns. . . . 34

6.4 Space usage factors for input relations and intermediate results relative to final
result size when using high-arity Qdags across different query patterns. . . . 35

6.5 Percentage of queries in which the fastest decomposition was the one that
yielded the least amount of intermediate results after the multijoin reduction. 38

6.6 Number of queries per pattern that resulted in timeouts (execution was longer
than 1800 seconds) when using the multijoin and high arity Qdags, alongside
the average execution time for those queries when using the GHD-based join
algorithm and high arity Qdags. 39

6.7 Statistics for query times per pattern using the original Qdag. 40

6.8 Statistics for query times per pattern using the high arity Qdag, asterisks
indicate that some queries timed out after 1800 seconds. 40

6.9 Multiplying factor . 45

6.10 Percentage change between using the parallel GHD-based algorithm execution
and the sequential one. A positive value means the parallel version decreased
execution time and a negative value indicates execution time was increased by
the parallel version. 46

viii

A.1 Space used to store the relations at each step of the algorithm of a J3 query,
in bytes. Intermediate results depend on the chosen GHD. 52

A.2 Space used to store the relations at each step of the algorithm of a T3 query,
in bytes. Intermediate results depend on the chosen GHD. 53

A.3 Space used to store the relations at each step of the algorithm in a Ti3 query,
in bytes. Intermediate results depend on the chosen GHD. 54

A.4 Space used to store the relations at each step of the algorithm of a J4 query,
in bytes. Intermediate results depend on the chosen GHD. 55

A.5 Space used to store the relations at each step of the algorithm of a T4 query,
in bytes. Intermediate results depend on the chosen GHD. 56

A.6 Space used to store the relations at each step of the algorithm of a Ti4 query,
in bytes. Intermediate results depend on the chosen GHD. 57

A.7 Space used to store the relations at each step of the algorithm in a Bowtie
query, in bytes. 58

A.8 Space used to store the relations at each step of the algorithm in a Triangle
Tadpole query, in bytes. 59

A.9 Space used to store the relations at each step of the algorithm in a Square
Tadpole query, in bytes. 60

A.10 Space used to store the relations at each step of the algorithm in a Triangle
Barbell query, in bytes. 61

A.11 Space used to store the relations at each step of the algorithm of a Square
Barbell query, in bytes. 62

A.12 Space used to store the relations at each step of the algorithm in a Pentagon
Barbell query, in bytes. 63

ix

List of Figures

2.1 An example of searching for a triangle pattern a in the network b. Highlighted
nodes and edges are found matches. 5

2.2 Example of Yannakakis algorithm for acyclic join queries. 6

2.3 Different GHD options for a query pattern composed of six attributes. 7

3.1 A quadtree representing the relation R(A,B) 11

3.2 An illustration of the multijoin algorithm for R(A,B) ▷◁ S(B,C) ▷◁ T (A,C).
a shows how the relations are extended to another dimension and b depicts
the intersection process. 14

4.1 Example of the bitvector of a qdag with 7 attributes (2d = 128). A qdag node
spans two 64-bit words in the bitvector. 18

4.2 Example of intersecting nodes from relations R, S, and T . In C, dashes
symbolize that a counter was not initialized. After processing the third Qdag,
C[3] = 3, which is the number of relations, so the descent would continue down
the node at position 3 in the extended dimension. The mapping function M
of each Qdag is then used to determine the equivalent node in every relation,
for example in Qdag T we would descend on MT [3] = 1. 21

5.1 Diagram depicting our proposed strategy. In this example the query is a
join between 6 relations, R has the attributes b and c, S the attributes a
and b, and so on. The cyclic query is decomposed into a GHD with three
nodes, each representing a join between relations. These joins are solved using
Qdag’s algorithm, obtaining a join tree with three nodes. Finally, Yannakakis
algorithm is used to get the query results. 23

6.1 A graph showing social relationships between people transformed into the
tables “Spouse” and “Friend”. 31

6.2 The query patterns used in the experiments. 32

x

6.3 Query decompositions tested in patterns made up of a three attributes (J3,
T3, Ti3) and b four attributes (J4, T4, Ti4). 33

6.4 Query times (in seconds) of different generalized hypertree decompositions of
query patterns, using the original Qdag variant on the Wikidata benchmark. 36

6.5 Query times (in seconds) of different generalized hypertree decompositions of
query patterns, using the high arity Qdag variant on the Wikidata benchmark. 37

6.6 Query times (in seconds) of different generalized hypertree decompositions
of queries with 3 relations. In each decomposition, the smallest, medium or
largest relation was in a single node, and the remaining two in another. The
original Qdag variant was used to query the Wikidata benchmark. These
results were obtained without using the -O3 optimization flag. 39

6.7 Query times (in seconds) for query patterns, using the original qdag variant
on the Wikidata benchmark. 41

6.8 Query times (in seconds) for query patterns, using the GHD-based algorithm
and the original Qdag variant on the Wikidata benchmark. 42

6.9 Query times (in seconds) for query patterns, using the high arity Qdag variant
on the Wikidata benchmark. 43

6.10 Query times (in seconds) for query patterns, using the GHD-based algorithm
and the high arity Qdag variant on the Wikidata benchmark. 44

6.11 Histogram showing the percentage change in total query time when using the
pruning optimization during semijoins, over all queries done. A positive per-
centage change indicates that pruning decreases execution time, and a negative
number means query time increased when pruning was done. 45

xi

Chapter 1

Introduction

In the field of relational databases, the natural join operation is a fundamental primitive
that combines data from multiple tables by combining tuples from participating relations
that share the same values for common attributes. The results of a join query provide a
comprehensive view of the data by aggregating information from various sources. Traditional
query plans have often relied on pair-wise joins, transforming the query into a series of
intermediate join operations between two tables at a time. However, this approach is known
to be suboptimal in many cases, generating large intermediate results that may exceed the
final output size [10].

To illustrate this limitation, consider finding triangles in a social network represented by a
single relation R(x, y) that denotes connections between users. A traditional pair-wise plan
for the query R(x, y) ▷◁ R(y, z) ▷◁ R(z, x) would first, for example, compute all R(x, y) ▷◁
R(y, z) tuples, potentially generating O(N2) intermediate results for a graph with N edges,
even though the final output cannot exceed O(N3/2) triangles [4].

The definition of the Atserias, Grohe and Marx (AGM) bound has been a significant break-
through in this area, providing tight bounds on the output size of a join query in terms of the
sizes of the participating relations [4]. Building upon this, the concept of Worst-Case Op-
timal (WCO) join algorithms has emerged, where the algorithms have a worst-case runtime
that is essentially bounded by the AGM bound. In other words, if the worst-case output size
is Q* results, a WCO join algorithm will run in time O(Q*), possibly multiplied by polylogs
or data-independent factors.

The emergence of graph databases has introduced new challenges in join processing. Graph
databases represent data as nodes and relationships, having applications in social networks,
bioinformatics, and knowledge bases like Wikidata1. A common task done in these systems is
to search for occurrences of a particular configuration of nodes and edges within the network.
For example, we may want to obtain all the nodes and edges in a network that form a square,
or a more complex shape. These configurations are called basic graph patterns, and in this
work we simply refer to them as patterns. Pattern matching queries are based on the join

1More information about Wikidata can be found here https://www.wikidata.org/wiki/Wikidata:

Main_Page

1

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page

operation, making efficient join processing central to their performance.

While WCO join algorithms achieve optimal time complexity, they usually lack efficiency
in their space requirements. Current implementations require significant memory resources
to store intermediate results, index structures and auxiliary data structures [3]. This space
requirement becomes prohibitive when processing large graphs, in which the number of po-
tential matches can grow rapidly with the size of the input. For example, the open-source
graph database MilleniumDB [13] uses 156 bytes per triple to store the Wikidata dataset [2].

Compact data structures offer a promising approach to reduce memory usage while main-
taining efficient query processing capabilities, by representing data in compressed form while
supporting fast operations. The first index proposed to address this is the Qdag, which rep-
resents graph databases as compressed quadtrees and offers a WCO join algorithm that is
time-optimal and nearly space-optimal [9]. However, the Qdag is limited to lower-dimensional
queries (in regards to the number of variables in the query), as its running time is exponential
in the dimension. This means that it stops being competitive when the results yield relations
with 5 or more attributes, or in other words, it cannot search for graph patterns composed
of more than 5 nodes within a competitive time.

In this thesis, we explore how the integration of Qdags into a Generalized-Hypertree-based
query decomposition strategy affects the trade-off between time complexity and space effi-
ciency of subgraph matching queries in graph databases. Our initial hypothesis is that the
proposed algorithm will reduce query times not only in complex queries but also in simpler
ones. This is because Qdags excel in low-attribute queries (subgraph patterns composed of 3
nodes), so it is ideal for solving the subqueries yielded by the query decomposition. We also
hypothesize that these improved times will come at a very small memory cost when com-
pared to existing solutions, due to the fact that Qdags would use a significantly less amount
of space to store intermediate query results.

The main objective of this thesis is to build upon the Qdag to extend its applicability to more
complex graph pattern operations. The first specific objective is to introduce modifications to
Qdags that allow them to be used to solve higher-arity join queries and semijoin queries. We
also aim to present an algorithm to address the efficiency challenge in WCO join algorithms
and go beyond the AGM bound, through using a generalized hypertree decomposition of the
query as a query plan. Our final specific objective is to compare our algorithms to existing
solutions in terms of time and space usage.

The complete source code for both solutions can be found in a public Github repository:
https://github.com/matildeRivas/ccqQDAGS.

1.1 Thesis Outline

The thesis is organized as follows:

Chapter 2: Graph Databases presents graph databases and their challenges.

Chapter 3: The Qdag introduces the central data structure used in our algorithm, along

2

with key concepts of compact data structures.

Chapter 4: Higher-arity Qdags presents an alternative Qdag structure and multijoin al-
gorithm for solving queries of arbitrary arity.

Chapter 5: GHD-based algorithm describes a new join algorithm for solving cyclic queries.

Chapter 6: Experimental Evaluation presents an empirical analysis of our algorithms,
comparing them to the original Qdag.

Chapter 7: Conclusions summarizes our findings and contributions. We also discuss di-
rections for future research.

3

Chapter 2

Graph Databases

This chapter is dedicated to presenting graph databases, which are the basis of our research
motivation. We start by explaining how they store data, the concept of graph pattern
matching and how it relates to the join operation, and the advances that have been made in
the field of join queries.

2.1 Graph Databases and Worst Case Optimal Joins

Graph databases represent information as a network, in which nodes are entities and edges
indicate how they are connected. To understand how two entities are related, we look at the
triples they form. A triple is composed of a subject, a predicate, and an object. The two nodes
are the subject and the object, while the arc is the predicate. Graph databases are commonly
used to integrate data coming from different sources, since it is not necessary to know all of
the data types that will be stored beforehand. Let us say we have a database that stores all of
an organization’s information, and a node representing an employee in the organization. This
employee could be connected to another employee through the predicates referredBy and
supervises, and to a node representing a city through the predicate livesIn. To add more
information that is only applicable to a particular employee, for example leadsProject, we
do not have to update an “employee” table and modify all of its tuples as we would in a
relational database. Instead, we just add the node representing the project and the edge
linking the employee to the project.

Graph pattern matching is looking for instances of a template of nodes and edges in the
larger graph. For example, say that we have a graph database representing a social network
and we want to find all groups of three mutually connected friends. To do this, we would
look for triangles in the graph, as in Figure 2.1.

Edges often connect different types of nodes through various relationships. Pattern match-
ing is done by executing join queries over the edge relations of a graph. Consider finding
researchers who collaborate with people from the same university. We can express this as
a join query: Collaborates(x, y) ▷◁ WorksAt(x, z) ▷◁ WorksAt(y, z). The query joins three

4

(a) (b)

Figure 2.1: An example of searching for a triangle pattern (a) in the network (b). Highlighted
nodes and edges are found matches.

relations: a collaboration between researchers (x, y), and their institutional affiliations (x, z)
and (y, z).

Traditional pairwise join query plans face performance challenges when matching complex
graph patterns [10]. A traditional plan might first compute Collaborates ▷◁ WorksAt to
find all collaborator-institution pairs, even though many of these intermediate results may
not lead to a complete pattern match. An alternative is to conduct a multiway join, in
which multiple relations are processed at once. Worst Case Optimal (WCO) join algorithms
compute multiway joins in a single pass, eliminating many unnecessary intermediate results
and thus reducing the use of resources.

The AGM bound proves that for the triangle query above, no instance of relations with
N edges can output more than O(N3/2) triangles. Traditional pair-wise join plans produce
Ω(N2) intermediate results and exceed this bound, making them sub-optimal in the worst
case. WCO join algorithms, such as Leapfrog Triejoin [12], achieve the AGM bound by
avoiding large intermediate results through different strategies, commonly based on either
ordering the participating attributes in a way that is optimal to a specific query, or building
additional data structures [11].

The theoretical optimality of WCO join algorithms extends beyond triangle queries to general
join patterns. For a join query over relations of size N , if the AGM bound states that the
maximum output size is O(Nk), then WCO algorithms guarantee a runtime of O(Nk) [4].
This matches the best possible runtime in the worst case, as any algorithm must at least
read all results.

5

2.2 Yannakakis Algorithm

If a join query is acyclic, then it can be solved using the Yannakakis algorithm in time
O(|input| + |output|) [14]. For a query to be acyclic, it needs to have a join tree, in which
each node is a participating relation and two nodes are connected by an edge if they share
an attribute. 2.2a depicts a join tree for the query R1 ▷◁ R2 ▷◁ R3 ▷◁ R4.

The general idea of the Yannakakis algorithm is to do two sweeps of the join tree, first from
the leaves to root, and then from root to the leaves. In each sweep a node will constrain the
next node (either its parent or child depending on the sweep) by doing a semijoin between
the two relations, eliminating the tuples that do not have a match. A final sweep is made by
doing a join on the reduced tables. Figure 2.2 shows this process step by step using a basic
example.

Since the first two sweeps are proportional to input size, and the final sweep is proportional
to the output size, this algorithm’s runtime is O(|input|+ |output|).

(a) Original query join tree (b) Join tree after bottom-up traversal

(c) Join tree after top-down traversal (d) Output after final join

Figure 2.2: Example of Yannakakis algorithm for acyclic join queries.

6

2.3 Generalized Hypertree Decompositions

A query can be represented as a hypergraph1, in which each attribute is expressed as a node,
and relations are represented by hyperedges [5]. A generalized hypertree decompositions
(GHD) of a hypergraph is a pair (T, λ), in which T is a tree and λ is a function mapping a
set of hyperedges of the hypergraph to each node of T . A GHD node contains a subset of
attributes such that for every relation in the query, its attributes are contained in one or more
nodes. In the tree, nodes that share a common attribute must form a connected subtree. If
each tree node contained the attributes of a single relation then it would be a join tree.

We define the width of a GHD node v as the AGM bound of the join query over λ−1(v), in
other words, the maximum number of tuples returned by the join query of all the attributes
contained in the node. The Fractional Hypertree Width (FHTW) bound of a query is the
minimum width of all the possible GHDs of the query.

Figure 2.3: Different GHD options for a query pattern composed of six attributes.

2.4 EmptyHeaded

EmptyHeaded is a graph processing engine that proposed a novel join algorithm and query
planner, based on GHD and tries [1]. Given a join query and its hypergraph representation,
EmptyHeaded uses a heuristic to select a GHD for the query. This GHD is effectively a query
plan, with each node in the GHD representing a multiway join that must be calculated. A
worst-case optimal join algorithm is used on each node of the GHD, simplifying the query
into a tree with the intermediate results as nodes. Yannakakis algorithm is then performed
on the resulting acyclic query. This algorithm runs in time O(Nw + |output|), where w is the
width of the GHD used. This means the performance of EmptyHeaded is strongly tied to the

1The hypergraph does not fully capture the query, as it loses the order of the attributes in a relation.

7

selection of a query’s GHD. Regardless of this, EmptyHeaded’s algorithm complies with the
AGM bound, and in some cases it can outperform this bound and instead be bounded by the
FHTW bound [10]. In this work, we will refer to this algorithm as being “GHD-optimal”.

EmptyHeaded stores triples as tries in main memory, and a recent set of experiments showed
that it requires more space for indexing (in terms of bytes per triple) than almost all of
the other alternatives it was compared to [3]. Also, even though EmptyHeaded offers fast
runtimes, the experimental evidence suggests that its space requirements prevent it from
performing well in real-world scenarios.

8

Chapter 3

The Qdag

In this chapter we introduce the fundamental concepts underlying this thesis and its related
work. We begin defining the basic data structures used in succinct representations, then
proceed to describe the data structure upon which our work is based: the Qdag.

3.1 Succinct Data Structures and Basic Operations

The field of succinct data structures aims to represent objects using space close to their
information-theoretic lower bound while supporting operations efficiently. Central to many
succinct representations is the bitmap or bitvector, defined as follows:

Definition 3.1.1 (Bitmap). A bitmap B[1, n] is a sequence of n bits, where B[i] ∈ {0, 1}
for 1 ≤ i ≤ n.

Two essential operations on bitmaps are rank and select. For a bitmap B[1, n] and b ∈ {0, 1}:

rankb(B, i) = the number of b’s in B[1, i]

selectb(B, i) = the position of the i-th b in B.

For example, take the bitmap B = 00100110. The operation rank1(B, 4) = 1 because there
is only one 1 in the first four bits, and select0(B, 3) = 4 because the third 0 is in the fourth
bit of the bitvector.

These operations can be implemented in constant time using additional data structures that
require o(n) bits of space, where n is the length of the bitmap [8]. Bitmaps are fundamen-
tal building blocks for many compact data structures because of their space efficiency and
support for fast operations.

9

3.2 Region Quadtrees

A region quadtree (quadtree) is a hierarchical data structure designed to represent points in
a two-dimensional grid of size ℓ× ℓ, where ℓ is assumed to be a power of 2. The structure is
defined recursively as follows:

Base cases:

• For ℓ = 1: The quadtree is represented by a single bit, 1 if the cell contains a point, 0
if empty.

• For ℓ > 1: If the grid contains no points, the quadtree is a leaf node.

Recursive case: When ℓ > 1 and the grid contains points, the quadtree is an internal node
with exactly four children, each representing one of the ℓ/2× l/2 quadrants of the grid.

The position of a point (x, y) in a quadtree can be determined by interleaving the bits of x
and y coordinates in their binary representation, creating a single value called the Morton
code or Z-order value. The labels that trace the path from root to leaf form a unique sequence
for each point in the grid.

3.2.1 Generalization to Higher Dimensions

The definition of a quadtree can be generalized to represent points in higher dimensions.
Given a d-dimensional grid G of size ℓd, each internal node splits into 2d children. Each child
represents a subspace of size (l/2)d, and these subspaces are ordered following the Morton
code. A leaf in the quadtree is either empty or represents one point.

The Morton ordering is determined by interleaving the binary representations of the coordi-
nates. For any point (x1, ..., xd) in the d-dimensional space, we take the most significant bit
of each coordinate and concatenate them to form a d-bit string. This string, interpreted as a
binary number i where 0 ≤ i < 2d, determines which child of the current node contains the
point. This process repeats with subsequent bits until reaching a leaf node.

As with the 2-dimensional representation, each point in the structure is uniquely identified
by the sequence of log(l) d-bit labels along the path from the root to its corresponding leaf.

A relation R with d attributes can be represented as a grid of points of dimension d. Each
dimension corresponds to the domain of its corresponding attribute, and every point in the
grid coincides with a tuple in the relation. By extension, a relation can also be represented as
a quadtree. This is illustrated by Figure 3.1, which shows a grid and a quadtree representation
of a relation.

10

B

A

0 2 4 6 8 10 12 14

1

3

5

7

9

11

13

15

(a) Grid representing the tuples in relation R(A,B).

0 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1

10

10

01

01

(b) Quadtree depicting the points of R(A,B).

Figure 3.1: A quadtree representing the relation R(A,B) =
{(0, 15), (1, 1), (1, 14), (2, 2), (3, 2), (4, 6), (5, 7), (12, 3), (12, 6), (12, 7), (13, 6), (13, 7)}. (a)
Representation of R(A, B) in a 22

d × 22
d
grid. The tuples in R are represented by the black

squares. (b) The quadtree representing R. The grayed squares are internal nodes, each 1 at
the last level indicates a tuple. The labels in the path from the root to a leaf form a string
that encodes the coordinates that form the tuple using Morton code. For example, the
highlighted path forms the string ’10100101’, the first dimension (A) is denoted by the bits
in odd positions, while the second dimension (B) is at the even bits. Decoding the string
results in the tuple being (1100,0011) = (12, 3), which correspond to the red square in (a).

11

3.2.2 Compact Representation

Quadtrees can be implemented as an array of bitvectors B0, B1, ...Bn each representing a level
of the tree. The number of levels in the tree is log(ℓ), where ℓ is the size of the relational
domain. Each bitvector Bi stores the nodes at depth i as a concatenation of bits, with each
node being 2d bits long. The bits in a node represent its child nodes or, going back to the grid
of points, a quadrant in its decomposition. If a bit is 1, then it means there are points in that
child node, if it is a 0 then that subtree is empty. Levels only store non-empty nodes, so a
level contains as many nodes as there were 1s in the previous level. This means that the j-th
child of a node that starts at position n at level Bi is found at position 2d ·rank1(Bi, n+j)+1
in Bi+1.

3.3 Qdag

A Qdag is a data structure that builds upon compact quadtrees to represent relations and,
more importantly, evaluate multijoin queries in WCO time. This structure is composed of
a quadtree representing a relation and a O(2d) mapping function that allows for the virtual
traversal of the generalization of said quadtree to a higher dimension [9]. With this, we
can extend a relation with new attributes and perform joins as intersections in a higher-
dimensional space while only storing the original relations, and without calculating or storing
intermediate join results.

To better understand this last point, take the relationsR(A,B) = {(1, 2), (3, 5)} and S(B,C) =
{(2, 4), (1, 5)}, represented as Qdags. Using the Qdag multijoin algorithm, the join operation
R(A,B) ▷◁ S(B,C) is actually calculated as R′(A,B,C)∩ S ′(A,B,C), with R′ and S ′ being
the relations R and S extended to the higher dimensional space {A,B,C}, so R′(A,B,C) =
{(1, 2, 4), (1, 2, 5), (3, 5, 4), (3, 5, 5)} and S ′(A,B,C) = {(1, 2, 4), (3, 2, 4), (1, 1, 5), (3, 1, 5)}. The
intersection of R′ and S ′ is {(1, 2, 4)}, which is the result of R(A,B) ▷◁ S(B,C) .

Recent experiments show that Qdags can even compress the database representation [9].
They also conclude that the Qdag index uses less space than other WCO algorithms. In
particular, Qdags require around 250 times less space than EmptyHeaded. This gives Qdags
the advantage of fitting higher up on the memory hierarchy, and thus being faster in some
cases. Another benefit of the Qdag algorithm is that the output of a join query is obtained
in its compressed quadtree representation, so further processing can be done to it, like using
it for another query.

With regard to experimental runtime, Qdags are competitive in queries with low dimension-
ality. When producing relations of five or more attributes, they fare worse than other WCO
algorithms.

12

3.3.1 Data Structure

Definition 3.3.1 (Qdag). Let Qd′ be a quadtree representing a relation with d′ attributes.
A Qdag Qd for d ≥ d′ is defined as a pair (Qd′ ,M), where M : [0, 2d − 1] → [0, 2d

′ − 1].
The Qdag represents a quadtree Q (which is called the completion of Qd′) according to the
following rules:

1. If Qd′ represents a single cell, then Q represents a single cell with identical content.

2. IfQd′ represents a d
′-dimensional grid empty of points, thenQ represents a d-dimensional

grid empty of points.

3. Otherwise, both Qd′ and Q have internal root nodes. For each 0 ≤ i < 2d, the i-th
child of Q is the quadtree represented by the Qdag (C(Qd′ ,M [i]),M), where C(Qd′ , j)
denotes the j-th child of Qd′ ’s root node.

The Qdag represents the same relation R as its completion.

The quadtree component of the Qdag is implemented in a compact way, as explained in
Subsection 3.2.2. The mapping function M of a Qdag is used to lift the quadtree’s dimension
without having to directly store all of its new nodes. Consider a point defined in d′ dimensions
as (x0, . . . , xd′). When extending the dimension to d, we generate an augmented set of points
by adding new coordinate values yd∗ such that yd∗ ∈ {0, . . . , d} \ {0, . . . , d′}, covering all
possible combinations of these new dimensions. The mapping function indicates that the
i-th child of a node in the Qdag Qd points to the M [i]-th child of the corresponding node in
the original quadtree Qd′ . To traverse the Qdag, we look at the node to which it originally
corresponds with the mapping function. Note that attributes may be reordered or interleaved
in the extension process. For example, a Qdag with attribute set A′ = {B,D} may be
extended to A = {A,B,C,D}.

3.3.2 Original Join Algorithm

The Qdag proposes a WCO join algorithm we will refer to as multijoin. In general terms, the
multijoin algorithm goes as follows. The Qdag representations of the participating relations
are extended to all the attributes appearing in the query. The intersection of all the Qdags
is computed, generating a quadtree that contains the values present in all the relations and
thus the results of the join query. This is done by simulating a synchronized traversal along
all the extended Qdags. A graphical representation of the multijoin process can be seen in
Figure 3.2.

The key operations in the multijoin algorithm are Extend and AND, which will now be detailed.

Extending dimensions

The first step in the multijoin algorithm is to extend each relation to include all attributes
in the query. When we extend a Qdag to include new attributes, we are moving from a

13

(a) (b)

Figure 3.2: An illustration of the multijoin algorithm for R(A,B) ▷◁ S(B,C) ▷◁ T (A,C). (a)
shows how the relations are extended to another dimension and (b) depicts the intersection
process.

space with a certain dimension d′ to one of higher dimension d, but we need to maintain
the relationships between nodes in both spaces. For instance, if we start with a relation
containing attributes (A, B, D) and extend it to include C, creating (A, B, C, D), we are
moving from a structure where each node has 8 children (d′ = 23) to one where each node
has 16 children (d = 24).

Consider a node in the extended space with Morton code ’1010’. This code represents the
tuples whose binary encoding will continue with a ’1’ for attributes A and C, and a ’0’ in B and
D. If the corresponding node in the original space does not have children, then the extended
node will not either. To check this we project the code by keeping only the bits corresponding
to our original attributes (A, B, D). In this case, we get M [1010] = 100, because we keep
the first, second, and fourth positions. Both Morton codes ’1000’ and ’1010’ in the extended
space project to ’100’ in the original space, because they only differ in attribute C, which
was not in our original relation.

The Extend operation, detailed in Algorithm 1, first computes the mapping function M and

then creates a lookup table of size O(22
d′
). This table contains one entry per possible 2d

′
bit

encoding, indicating the encoding of the corresponding set of children in dimension d. These
two, M and the lookup table, allow jumping between dimensions d and d′. The first lowers
a node’s dimension and the latter lifts it by returning the node’s encoding in the extended
dimension; we refer to this operation as “materializing a node”.

14

Algorithm 1 Extend (Q,A)
Require: A qdag Q = (Q′,M ′) representing a relation R(A′), and a set A such that A′ ⊆ A.
Ensure: A qdag (Q′,M) whose completion represents the relation R(A′)× All(A \ A′).
1: create array M [0, 2d − 1]
2: d← |A|, d′ ← |A′|
3: for i← 0, . . . , 2d

′ − 1 do
4: md′ ← the d′-bits binary representation of i
5: md′ ← the projection of md′ to the positions in which the attributes of A′ appear in
A

6: i′ ← the value in [0, 2d
′ − 1] corresponding to md′

7: M [i]←M ′[i′]
8: end for
9: return (Q′,M)

Tree traversal and intersection

To navigate through a Qdag we use the operations Value and Child, shown in Algorithms
2 and 3. The first one indicates whether the subgrid represented by a Qdag is empty, a full
single cell (tree leaf), or non-empty (internal tree node). Child allows us to descend through
the i -th child of an internal node.

Algorithm 2 Value (Q)

Require: A qdag Q = (Q′,M) with grid side ℓ.
Ensure: The integer 1 if the grid is a single point, 0 if the grid is empty, and 1

2
otherwise.

1: if ℓ = 1 then return the integer Q′

2: if Q′ is a leaf then return 0
3: return 1

2

Algorithm 3 Child (Q, i)

Require: A qdag Q = (Q′,M) on a grid of dimension d and side ℓ, and a child number
0 ≤ i < 2d. Assumes Q′ is not a leaf or an integer.

Ensure: A qdag Qi = (Q′′,M) corresponding to the i-th child of Q.
1: return (Q[M(i)],M)

After the Qdags are extended to the resulting dimension, the multijoin algorithm calls a
recursive function called And, both shown in Algorithms 5 and 4 respectively. This function
is in charge of traversing the Qdags simultaneously, getting the intersection, and generating
the output. Given the current tree level and the current node in each Qdag, the algorithm
checks which children are present in every node and recurses only on them.

To traverse the Qdags, the algorithm keeps a list of the current nodes being visited on each
Qdag’s quadtree. The lookup table for each Qdag is used to materialize its rspective node,
obtaining its encoding in the extended dimension. These encodings are intersected using the

15

bitwise-and operations (&), resulting in a bitvector of size 2d whose active bits (set to ’1’)
determine which children to recurse on.

The descent and pruning continue until the leaves of the tree are reached. All the leaves
reached are intersection results and are written to the output. The output is written from
bottom to top when returning from the recursive call. If intersection results have been found
in the subtree of a child node, then their positions are stored in a list containing all the bits
which should be ’1’ in the current level. The result Qdag is constructed from these lists.

Algorithm 4 And (Q1, . . . , Qn)

Require: n Qdags Q1, . . . , Qn representing relations R1(A), . . . , Rn(A).
Ensure: A quadtree representing the relation

⋂n
i=1 Ri(A).

1: m← min{Value(Q1), . . . ,Value(Qn)}
2: if ℓ = 1 then return the integer m
3: if m = 0 then return a leaf
4: for i← 0, . . . , 2d − 1 do
5: Ci ← And(Child(Q1, i), . . . ,Child(Qn, i))
6: end for
7: if max{Value(C0), . . . ,Value(C2d−1)} = 0 then return a leaf
8: return a quadtree with children C0, . . . , C2d−1

Algorithm 5 Multijoin (R1, . . . , Rn)

Require: Relations R1, . . . , Rn stored as quadtrees Q1, . . . , Qn; each relation Ri is over at-
tributes Ai and A =

⋃
Ai.

Ensure: A quadtree representing the output of J = R1 ▷◁ · · · ▷◁ Rn.
1: for i← 1, . . . , n do
2: Let Qi be the qdag (Qi, Id(Ai))
3: Q′

i ← Extend(Qi,A)
4: end for
5: return And(Q′

1, . . . , Q
′
n)

3.3.3 Limitations

Although Qdags are competitive in queries with low dimensionality, when producing relations
of five or more attributes they can be slower than other WCO algorithms [9]. Higher arity
relations also significantly increase the amount of space needed to perform the join operation,
due to the lookup tables used to materialize Qdag nodes. Since the table for a relation R is of
size O(22

d
), where d is the number of attributes in the original relation, if R has 5 attributes

then the lookup table for just one participating relation would have 232 entries.

16

Chapter 4

Higher arity Qdags

As stated in Chapter 3, a fundamental limitation in the original Qdag implementation was
its constraint on the number of participating variables in join queries, which was restricted
to a maximum of five. This significantly hampered the applicability of Qdags to complex
real-world queries where joins may involve multiple variables across relations. For example,
finding friend groups that are connected by a mutual friend in a social network.

Adding support for more complex joins required making changes to both the underlying
data structures and the multijoin algorithm. In this chapter we present our first approach to
enabling support for join queries of any number of variables in the Qdag structure; we call
this Qdag variant the higher-arity qdag.

4.1 Multijoin algorithm

The high arity join algorithm works much in the same way as the original one: participating
Qdags are extended to all attributes, they are virtually traversed simultaneously and we
descend into the nodes’ intersections. Here is where the main difference lies: the children
through which we must recurse are no longer obtained by materializing the Qdag nodes and
doing a bitwise and (&) operation between them. With higher arity join queries, extended
Qdag nodes can get to be large and the previous strategy is no longer viable.

To obtain the children through which we must descend in a node, we now use an array of
counters. Each counter represents a position in the resulting Qdag node, and keeps track of
how many Qdags have a child in that position. At a given node, for each Qdag we obtain
the positions of all its children in the node and increment the corresponding counters in the
array. When a counter reaches the number of Qdags that are part of the join query, it means
that all Qdags have a child in the bit corresponding to the counter, and thus should be part
of the traversal.

17

4.2 Implementaion

4.2.1 Adding Bitmap Support for Large Nodes

In the original Qdag representation, each level of the quadtree is encoded as a bitmap. These
bitmaps are internally implemented using an array of 64-bit words stored in an array. Each
bit in the vector represents the presence or absence of a subtree at a particular position in
the level.

Originally, the implementation imposed an upper limit on the size of individual nodes: a
node could span at most 32 bits. This constraint ensured that all node representations fit
entirely within a single 64-bit word of the bitmap, simplifying encoding and query logic.

In order to support higher-dimensional queries, where kd > 64, it became necessary to lift
this restriction. In the new approach, nodes are allowed to span multiple 64-bit chunks in
the array. This required revising the encoding logic to correctly handle nodes that cross word
boundaries to account for multi-word node representations. Figure 4.1 shows an example of
the bitmap representing a level in a Qdag with 7 attributes, in which every node would be
composed of 2d = 27 = 128 bits. In this case a node would be represented by two contiguous
64-bit words, and if we were to materialize it, we would have to retrieve both of these.

This extension enables the data structure to accommodate arbitrarily large values of 2d, so
it supports a wider range of queries than the original Qdag.

0110101101001101011010101101010101001101...

input:

01001101...01101011...01101011... 01101010... 11010101... 01001101...

resulting rank bv:

01001101...01101011...01101011... 01101010... 11010101... 01001101...

real nodes for kd=128:

11010101... 01001101...
result of accessing the third node:

Figure 4.1: Example of the bitvector of a qdag with 7 attributes (2d = 128). A qdag node
spans two 64-bit words in the bitvector.

18

4.2.2 Extending dimensions

The original Qdag process of extending dimensions consisted of creating a lookup table and
the mapping function M , which allow jumping between dimensions within a Qdag. Creating
a lookup table is no longer feasible in higher-arity join queries, since the space required to
store them grows exponentially with dimension, O(2(2

d)). In high-arity Qdags, instead of
materializing nodes and working with bitwise operations, we work with the indices of the
children within a node, i.e. the position of the bits set to 1.

We replaced the lookup tables with a mapping table M ′, which maintains a one-to-many
relationship between the children of the original Qdag and its extension. For each index i
corresponding to a child in the original Qdag, M ′[i] returns a list of positions j such that
M [j] = i. In other words, M ′[i] indicates which children of the extended node depend on child
i of the original Qdag. In this way, we use M to answer the question: which original Qdag
position (bit) resulted in a given position in an extended node? And we use M ′ to answer:
which positions does this bit in the original node transform to in the higher dimension?

For example, take Qdag Q that represents the relation R(A,C). If we were to extend Q to
incorporate the attribute B to represent R′(A,B,C), we would generate the tables M ′ and
M as shown in Tables 4.1 and 4.2.

index in d′ indices in d
0 0, 2
1 1, 3
2 4, 6
3 5, 7

Table 4.1: M ′ table used to extend Q from {A,C} to {A,B,C}. The bit at the index 1 in
the original dimensional space {A,C} maps to the positions 1 and 3 in the space {A,B,C}.
The bitstring ’00’ turns into both ’010’ and ’000’ in the extended space.

index in d index in d′

0 0
1 1
2 0
3 1
4 2
5 3
6 2
7 3

Table 4.2: M table used to go from the space {A,B,C} to {A,C}. A bit at position 2 in
the extended space maps to the 0 position in the original dimension, as does a bit at the 0
position.

This mapping enables efficient traversal of the extended dimensional space by providing direct

19

access to relevant positions without having an entry for each possible node in the original
Qdag. Instead, we keep an entry for each dimension in the original Qdag. This means
that if d = 2, instead of having three separate entries for “0011”, “0001”, and “0010”, we
keep entries for the indices “2” and “3”. The space complexity of this auxiliary structure is
proportional to 2d rather than 22

d
, making it feasible even for high-dimensional joins.

4.2.3 Traversal and Intersection

As in the original multijoin algorithm, the traversal and intersection of the trees are performed
through the recursive function And. At each tree level, the algorithm looks at the current
node in every Qdag to determine which child nodes are common to all of them and then
proceeds to recursively process only those mutually existing children.

Intersecting nodes

As stated in Section 4.1, we utilize an array of counters to intersect the nodes and determine
which children to recurse on. This array has at most as many counters as the arity of the
join query (2d). For each node of the participating Qdags we obtain the positions of their
bits that are set to 1. Taking a bit with index i within a node in a Qdag, for each element j
in M ′[i], we increment the counter located at C[j] by one. If at any moment C[j] == n, with
n being the number of Qdags participating in the join, then we must continue descending
through the jth child in every Qdag, so it is added to the list of children to recurse. The
intersection condition is checked each time a counter is incremented to avoid traversing the
entirety of C, which is of size 2d. In this way, the work done is proportional to the size of
possible join results.

Using a traditional array to store the counters is not ideal since initializing each one in 0
would require a time proportional to 2d. To reduce the cost of building C, we use what we
refer to as an “initializable array”. This data structure models an array of counters that only
initializes a counter when it is accessed for the first time. This means that we only initialize
counters that represent positions that could potentially yield a join result.

Figure 4.2 exemplifies the intersection process of three nodes using M ′ and C.

Obtaining child indices

A key part of the new intersection method is that instead of materializing a node, we obtain
the indices of the bits that are set to 1. Given that nodes in higher-arity joins can have high
dimensions, iterating through all kd′ bits to find set bits would be inefficient. We added a
function called select next to the existing bitmap structure to directly identify the set bits.
For a bitmap B[1, n] and b ∈ {0, 1}:

select next(B, i) = index of the first j ≥ i for which B[j] = 1

20

M ′
R M ′

S M ′
T

0 0, 1
1 2, 3
2 4, 5
3 6, 7

0 0, 4
1 1, 5
2 2, 6
3 3, 7

0 0, 2
1 1, 3
2 4, 6
3 5, 7

Node in R: 0100

M ′
R[R→ select next(0100)] = M ′

R[1] = {2, 3}
C[2] = 0 + 1

C[3] = 0 + 1

Node in S: 0101

M ′
S[S → select next(0101)] = M ′

S[1] = 1, 5 M ′
S[S → select next(0001)] = M ′

S[3] = {3, 7}
C[1] = 0 + 1 C[5] = 0 + 1

C[3] = 1 + 1 C[7] = 0 + 1

Node in T: 0110

M ′
T [T → select next(0110)] = M ′

T [1] = 1, 3 M ′
T [T → select next(0010)] = M ′

T [2] = {4, 6}
C[1] = 1 + 1 C[4] = 0 + 1

C[3] = 2 + 1 C[6] = 0 + 1

C = [−, 2,−,3, 1, 1, 1, 1]

Figure 4.2: Example of intersecting nodes from relations R, S, and T . In C, dashes symbolize
that a counter was not initialized. After processing the third Qdag, C[3] = 3, which is the
number of relations, so the descent would continue down the node at position 3 in the
extended dimension. The mapping function M of each Qdag is then used to determine the
equivalent node in every relation, for example in Qdag T we would descend on MT [3] = 1.

A node can be made up of multiple 64-bit “words”. To obtain the next set bit, we use a bit
mask in the current word (the one i is a part of) to isolate bits from index i onward, and
return the index of the least significant bit within the word. If the masked word results in 0,
then the next set bit is not in this word and we must scan subsequent words until we find one
that is non-zero. We then retrieve the position of the least significant set bit in that word.

21

Chapter 5

GHD-Based Algorithm

Experimental results show that there are some graph patterns in which the Qdag does not
perform as well as other systems. As we discussed in the previous chapters, Qdag’s WCO join
algorithm is the most efficient when queries have up to three attributes, but it is not always
competitive in queries of 4 or 5 attributes. Also, the WCO algorithms tested by Arroyuelo
et al. were generally slower than traditional ones when searching for “star patterns”, which
are comprised of a central node that is related to three or more other nodes [9].

Nevertheless, Qdags obtain competitive time performance while requiring much less space
than the alternatives. EmptyHeaded beats the Qdag in execution time when searching for
certain patterns, but at a very high cost in terms of memory usage. This is due to the
production of large intermediate results during the execution of the algorithm.

In this chapter we explore the possibility of improving Qdags’ performance in more com-
plex queries, particularly in query patterns that contain more than 3 attribute nodes. We
propose a new join strategy inspired by EmptyHeaded’s approach, that leverages Qdags’
success with lower-dimensional queries. We provide implementations using both the orig-
inal dimensionally-restricted Qdags and the Qdag variant introduced in Chapter 4. First
we describe the algorithm in general, then we share its implementation details, including
the necessary modifications made to Qdags. Finally, we describe the algorithm execution
process.

5.1 Proposed Algorithm

The general idea of our proposed algorithm is to, as in EmptyHeaded, use a GHD of the
initial query as a query plan. That is, transform the (possibly cyclic) query graph into a tree
in which the nodes represent sub-queries, including cyclic joins. The sub-queries are then
solved using Qdag’s multijoin algorithm as explained in Section 3.3.2. This yields a join tree
of Qdags, on which Yannakakis algorithm for acyclic join queries is used to obtain the final
results. Figure 5.1 shows a diagram of our proposed strategy.

Qdags’ high performance in low-dimension join queries and the fact that they are composi-

22

tional (the output of the join query is also a Qdag) make them an ideal candidate for solving
the GHD nodes. This would address EmptyHeaded’s high memory usage while potentially
improving query times.

Figure 5.1: Diagram depicting our proposed strategy. In this example the query is a join
between 6 relations, R has the attributes b and c, S the attributes a and b, and so on. The
cyclic query is decomposed into a GHD with three nodes, each representing a join between
relations. These joins are solved using Qdag’s algorithm, obtaining a join tree with three
nodes. Finally, Yannakakis algorithm is used to get the query results.

5.2 Semijoin support in Qdags

In this section we detail the addition of the semijoin operation to the Qdag, needed to
perform Yannakakis’ join algorithm. The essence of the algorithm is the same for both of our
implementations, but there are differences that will be detailed in the end of this section.

The semijoin operation is a key component of Yannakakis’ algorithm for solving acyclic join
queries. A semijoin between relationsR and S, denoted asR⋉S, produces the subset of tuples
from R that participate in the join with S, preserving only the attributes of R. In other words,
it reduces relations by filtering out tuples that would not contribute to a join result while
preserving the original schema structure of the filtered relation. It can be expressed as R⋉S =
πR(R ▷◁ S), where ▷◁ represents the natural join operation and πR denotes projection onto the
attributes of R. The semijoin operation can be done between multiple relations; in this thesis
we implement a semijoin operator that operates across multiple relations but only constrains
the leftmost relation. This enables us to filter a target relation against multiple constraint
relations simultaneously, and only tuples from the leftmost relation that have matching values
in all subsequent relations are preserved in the result set. For example, consider the relations
R(a, b) = {(1, 2), (3, 2), (4, 5)}, S(b, c) = {(2, 2), (2, 6), (8, 3)}, T (a, d){(1, 7), (4, 3), (1, 5)}.
The operation R⋉ (S, T) would yield the result {(1, 2)}.

As explained in Section 3.3.2, extending the dimension of a Qdag creates many “virtual
tuples”. Say we have the relations R(a, b) and S(b, c). When doing a join, we would want
to retrieve all matches resulting from R = {(1, 2), (3, 2), (4, 5)} and S = {(2, 7), (2, 8), (4, 9)},
which would produce the join result R ▷◁ S = {(1, 2, 7), (1, 2, 8), (3, 2, 7), (3, 2, 8)}, but in a
semijoin, we do not need to materialize these results. If a tuple from R is part of a match, we
just want to retrieve or preserve that original tuple. In our example, computing R⋉S would
yield {(1, 2), (3, 2)} because those tuples in R have matching values in S. Doing a semijoin
instead of a standard join also avoids creating an additional output Qdag structure, since we
can modify the constrained Qdag to reflect the results.

23

5.2.1 Active bitmap

In our semijoin algorithm, when a match is found during the traversal of the participating
Qdags, instead of creating a new Qdag with the resulting tuples, we mark the corresponding
node in the original Qdag that is being constrained. To implement this, we added an addi-
tional bitmap array to the quadtree structure, called active. Like with the original node
bitmaps, we maintain one active bitmap per level of the quadtree. The active bitmap
indicates which bits of the original quadtree (each representing a tuple) are currently ’active’
in the relation—in other words, which tuples have not been filtered out through a semijoin
operation. If a bit is set in the original level bitmap but it is not set in active, then it is
as if it were not set in either. Only bits that are set to 1 in both bitmaps are considered to
have a subtree when traversing a Qdag.

Initially, when creating the Qdag, the active bitmap contains only 1s because all tuples in
the relation exist and must be considered. Later, when performing a semijoin, some tuples
are filtered out and their corresponding bits are unset. It is important to note that the active
bitmap maintains the same dimensions as the node bitmap for each level, with a one-to-one
bitwise correspondence. This ensures that each bit in the active bitmap corresponds directly
to the same position in the node bitmap.

The original bitmap cannot be modified because it is static and is used for tree navigation,
maintaining node order, and rank operations. The quadtree and node configuration were
generated based on specific tuples. Removing tuples could alter the tree structure and would
require recalculating all values, which would be costly considering the amount of semijoins
that are done in our proposed algorithm. Therefore, the active bitmap approach allows us
to logically filter tuples without physically modifying the underlying data structure.

It is important to note that the addition of this bitmap affects the multijoin algorithm and
general materialization of Qdags as well. Whenever a node is materialized we must check its
active bitmap. If a bit is not marked in the active bitmap, the corresponding tuple will
be excluded from query processing without physically removing it from the data structure.

When traversing Qdags during a multijoin, we only descend through bits that are set in
active. In the case of high arity Qdags, this means that the select next method we
described in Section 4.2.3 will operate on active, obtaining the set bits that are still active
in the Qdag.

In the original Qdag variant, which works with materialized nodes, the series of 2d bits that
form a node are now computed as a bitwise and operation (&) between the original node
bitmap and its corresponding active bitmap of the quadtree, in the initial dimension d′. For
example, if the original node has bits 1101 and the active bitmap has 1100, the resulting
node would be the materialization of 1100 using the lookup table, effectively filtering out the
third tuple.

24

5.2.2 Tree traversal

The semijoin algorithm works similarly as the original multijoin: all the participating Qdags
are extended to the query dimension and then a recursive function is used to virtually traverse
and intersect the trees. The extension method depends on the Qdag variant used. When
the semijoin is performed on the original Qdag variant, the mapping function and auxiliary
lookup tables are created. In the case of high arity Qdags, the two mappings are calculated.

The intersection and traversal of the Qdags is performed by a recursive function called
semiAnd. This function descends through the participating Qdags following the same traver-
sal strategy employed in the Multijoin algorithm, applying the appropriate method for each
variant. When the algorithm identifies a join result during the traversal, it updates the active
bitmap of the leftmost Qdag by marking the bits that correspond to the matching tuple at
each level of the tree. The specific bit positions to mark are determined using the mapping
function M , which translates the indices of the extended dimensional space (d) back to the
original dimension of the leftmost relation (d′).

5.2.3 Pruning

As stated previously, multiple join results can originate from the same tuple in the constrained
relation. Since we are doing a semijoin, how many matches a tuple is a part of, or what they
are, is not relevant; we just want to know which tuples in the constrained relation are part of
any matches. Generating all possible matches would be unnecessary work, as it would require
traversing the same subtree to mark the same tuple (bit) multiple times without providing
additional information. An ideal optimization would be to stop checking a node once we
determine that all its bits and its descending subtree will survive the semijoin. This pruning
prevents redundant computation by avoiding the re-exploration of subtrees that have already
been processed and determined as satisfying the join conditions, translating into significant
time savings, particularly when processing dense datasets.

To implement this optimization, we maintain a temporary bitmap throughout the semijoin
operation that both tracks the results at the leaf level and indicates internal nodes with
completed subtrees. When traversing a set of relations, if we encounter a node from the con-
strained relation (the leftmost Qdag in the semijoin) that is already marked in this temporary
bitmap, we treat it as a leaf node and avoid descending further into its subtree. We mark
internal nodes during the same recursion that traverses the relations during the intersection.
If, upon returning from the recursive call, all 2d children of the current node, v, are marked
in the temporary bitmap, we also mark the current node. Then, when returning via another
branch and reaching another node that corresponds to the same node v in the constrained
relation, it will already be marked.

Once the intersection traversal is complete, we recursively traverse the temporary bitmap to
propagate the 1s from the leaves bottom-up to all their ancestors. In this way, we rebuild
the path from root to leaf of all the results.

After this propagation, we perform a bitwise AND (&) between each level of active and the

25

temporary bitmap, updating the former. The final result is a quadtree with an accompanying
bitmap that efficiently represents which tuples in the original relation participate in joins with
other relations, without the need to materialize all possible join combinations.

Skipping marked bits

As stated previously, when descending through the Qdags we skip the subtrees that are
already marked in the temporary bitmap. The implementation of this optimization occurs
during the child selection phase of the recursive tree traversal. When determining which
children nodes to recurse into, the algorithm consults the temporary bitmap to identify and
skip bits that are already marked as processed. This selective traversal can significantly
reduce the computational overhead in subsequent join operations within the same multijoin
or semijoin execution.

Original Qdag Variant

For the original Qdag variant, this is implemented through bitwise operations. When selecting
children to recurse in a given node, the algorithm performs a bitwise AND operation between
the left node and the negation of the corresponding node in the temporary bitmap, in the
original dimension. This bitwise operation produces a result that indicates which bits remain
to be explored in the left Qdag subtree, filtering out the already-processed regions. This
operation can be expressed as:

remaining bits = left Qdag node&∼temporary bitmap node

Once the filtered result is obtained, the algorithm materializes these remaining bits and
performs an intersection with the materialized nodes from the other Qdags participating in
the semijoin operation. This intersection ensures that only the unprocessed bits from the
leftmost Qdag that are present across all Qdags are considered for further traversal. It is
important to note that the filtering of the processed bits is done in the original dimension of
the leftmost Qdag, not the extended dimension.

High Arity Variant

In the case of high-arity Qdags, the implementation differs significantly as nodes are not
materialized during traversal. While the algorithm still uses the temporary bitmap to mark
results and completed subtrees, it uses the array of counters C, introduced in Section 4.2.3,
to avoid traversing though completed subtrees.

To mark a subtree as fully processed, the corresponding value in the counter array C is set to
n+ 1, where n represents the number of relations participating in the semijoin operation, as
shown in Algorithm 6. This marking strategy is effective because the traversal algorithm only
descends through nodes whose counter value is exactly n. By setting the counter to n + 1,
the algorithm ensures that marked subtrees are never revisited during subsequent traversal
phases.

26

Algorithm 6 Filter Children for traversal during High-Arity Semijoin

Require: level: current tree level, node: current node identifier
Require: C: counter array, n: number of relations in join
Require: M ′: mapping from children to element sets
Require: Q: Qdag structure, result: bitmap for filtering
1: procedure FilterChildren(level, node, C, n,M ′, Q, result)
2: children array ← empty array of size kd
3: n children← 0
4: Q.get children result(level, node, children array, n children, result)
5: for i = 0 to n children− 1 do
6: cur child← children array[i]
7: size← |M ′[cur child]| ▷ Size of element set for current child
8: for j = 0 to size− 1 do
9: element←M ′[cur child][j] ▷ Get j-th element from child’s set

10: C[element]← n+ 1 ▷ Mark subtree as complete
11: end for
12: end for
13: end procedure

5.3 Algorithm Implementation

5.3.1 Handling Generalized Hypertree Decompositions

To support generalized hypertree decompositions (GHDs), we implemented a tree structure.
Each GHD node contains a list of Qdags corresponding to the relations assigned to that node
in the decomposition, along with pointers to its child nodes. For the purposes of this work,
we assume that the decomposition process has been performed manually, as automatic query
decomposition falls outside the scope of this thesis. Beyond standard accessor and setter
methods for managing children and relations, the GHD class provides methods for executing
join operations across the decomposition structure.

Core Operations

The GHD implementation supports the three primary operations necessary for Yannakakis’
algorithm on acyclic queries:

• exec multijoin: This method executes the multijoin operation between all Qdags
contained within the node.

• constrained by children: This recursive function does a bottom-up traversal of the
tree, performing a semijoin that constrains the Qdag in the current node based on the
Qdags of its child nodes.

27

• constrain children: This operation does a top down traversal of the tree, in which
at every node it iterates through each child node and performs a semijoin between the
child’s Qdag and the current node’s Qdag to constrain the child relation.

5.3.2 Algorithm Execution

In this section we go through each phase of the algorithm’s execution, from the initial con-
struction of data structures through the final result computation. This is also shown in
Algorithm 7.

Initialization Phase The algorithm begins by reading the input data and constructing the
necessary data structures. Qdag representations are created for all input relations and then
a GHD is constructed manually. Once the initialization is complete, the algorithm is invoked
on the root node of the GHD.

Node Reduction Each GHD node is reduced by calling the method exec multijoin, re-
placing its list of relations for the resulting Qdag. This function supports both recursive
and parallel execution. In the first, each node sequentially passes the exec multijoin op-
eration to its children. In the parallel version, multiple nodes can be processed concurrently
by different threads. After this phase, a GHD node only contains one Qdag (relation) and
a list of child pointers, resulting in a simplified query tree in which each node contains the
intermediate results of its corresponding subquery.

Constraint Propagation After the simplified join tree is obtained, the Yannakakis algo-
rithm begins. This phase consists of two operations. First, the constrained by children

method performs a bottom-up traversal of the tree, executing one semijoin per node to prop-
agate constraints from leaves toward the root. During this traversal, the Qdag of each node
is constrained by the Qdag of its children, eliminating its tuples that cannot contribute to the
final result. Following this, constrain children is invoked and does a top-down traversal
of the tree. In this step, each already-reduced Qdag node filters the tuples of its children’s
Qdags by performing semijoins.

Final Join The algorithm performs a final join operation using the Qdag multijoin algorithm
on all nodes in the simplified tree structure. Since the constraint propagation phases have
eliminated non-contributing tuples, this final join operates on significantly reduced interme-
diate results while still producing the complete query answer represented as a Qdag.

28

Algorithm 7 GHD-Optimal Join Algorithm - serial version

Require: root: root node of the GHD tree
Ensure: qResult: Qdag containing the join result
1: function Yannakakis(root) ▷ Execute multijoin on all tree levels
2: root.DeepExecMultijoin ▷ Bottom-up constraint propagation
3: root.ConstrainedByChildren ▷ Top-down constraint propagation
4: root.ConstrainChildren ▷ Final multijoin to obtain query result
5: crossProduct← All Qdags in tree
6: qResult←MultiJoin(crossProduct)
7: return qResult
8: end function

29

Chapter 6

Experimental Evaluation

In this chapter we share the experimental evaluation of our proposed algorithms, comparing
them to the original Qdags both in terms of memory usage and query time. First, we describe
the general methodology used for assessing algorithmic performance. Then, we share how our
proposed GHD-optimal algorithm compares to the original Qdag multijoin in both high-arity
and regular Qdags.

All of our experiments ran on an AMD EPYC 7343 CPU at 1.5 GHz, with 32 cores and 64
threads, 32 MB of cache, and 1 TB of RAM. Our source code was compiled using g++ with
flags –std=c++17, -O3, and -fopenmp in the case of the GHD-optimal algorithm.

6.1 Methodology

To evaluate the work proposed in this thesis, we adopted the methodology used to assess
the Qdag upon its publication [9] with some minor modifications. We measured the perfor-
mance of our algorithms when querying for patterns on a subgraph of the Wikidata database
provided by the Wikidata Graph Pattern Benchmark [7].

The graph contains 81,426,573 RDF triples (subject, predicate, object), which use 2,101
predicates. We store the information as a relational database in which a relation corresponds
to a predicate, so we have 2,101 “tables” in total. The predicate tables store the pairs of
subjects and objects that are connected through that predicate and form a triple on the
graph, as depicted in Figure 6.1. More formally, the relation pi contains every pair (s, o) such
that the triple (s, pi, o) exists in the graph. This approach limits the kinds of queries that can
be answered. For example, if we wanted to know all the predicates that link a given subject
and object, we would have to query every predicate table. In a single-table approach that
stores all the triples as (subject, predicate, object), this would be a straightforward query.

30

Figure 6.1: A graph showing social relationships between people transformed into the tables
“Spouse” and “Friend”.

6.1.1 Experimental setup

We evaluated the different Qdag variants using 12 distinct query patterns, as illustrated in
Figure 6.2. For each pattern, we executed 50 queries using the Wikidata predicates described
in the previous section. Six of these query patterns were selected from the Wikidata Graph
Pattern Benchmark [7], specifically choosing the patterns that previously demonstrated the
poorest performance for Qdags [9]. The remaining six patterns consist of cyclic queries that
had not been previously tested on Qdags, allowing us to assess performance on more complex
queries. Some query patterns exceed the original Qdag limitation of 5 attributes, so they are
only used to assess higher-arity Qdags.

The experimental data was generated following the methodology established by the Wikidata
Graph Pattern Benchmark. First, we deployed the Wikidata subgraph on an Apache Jena
server, then systematically queried the database to identify 50 distinct predicate combina-
tions for each pattern that would produce non-empty results 1. Since cycles represent the
most computationally expensive components of query processing, we implemented additional
controls to ensure experimental diversity: we limited the frequency with which any given set
of predicates could form the same cycle structure across different queries. This approach
prevented any single predicate combination from dominating the results, which is impor-
tant because some cycles process much faster or slower than others, and repeated inclusion
of the same high-performing or low-performing cycle would skew the overall performance
measurements.

Patterns can be decomposed in different ways, including grouping all relations in a single
multijoin. To test how the GHD of a query affects its execution time, we compared the
performance of the join algorithm using different GHDs on queries J3, T3, Ti3, J4, T4, and
Ti4. Figure 6.3 shows how the relations in these queries were grouped in each decomposition.
Although some decompositions appear to be the same, in practice they are different due to
the data of the relations. For example configurations 1 and 3 in 6.3a are both schemes in

1The code is publicly available at https://github.com/matildeRivas/query-pattern-finder

31

(a) Patterns queried with both Qdag variants.

(b) Patterns queried with high arity Qdags.

Figure 6.2: The query patterns used in the experiments.

Pattern J3 J4 T3 Ti3 T4 Ti4
Average 1131.18 292.78 29.6 203545.22 1304.88 2248722.76
Median 5.0 4.0 2.0 2.5 2.0 3.0
Pattern triangle tp square tp bowtie triangle bb square bb pentagon bb
Average 5.7 4.42 6.38 2.92 8.54 20.88
Median 1.0 2.0 1.0 1.0 2.0 2.0

Table 6.1: Average and median number of results per query pattern used in the experiments.

which a path of two relations is in one GHD node, and the remaining relation is in another
one. In the abstract these are both the same decomposition, but for a given set of three
relations, the two GHDs may yield very different runtimes.

32

(a)

(b)

Figure 6.3: Query decompositions tested in patterns made up of (a) three attributes (J3, T3,
Ti3) and (b) four attributes (J4, T4, Ti4).

6.2 Results and Discussion

6.2.1 Space usage

Table 6.2 shows the space used to store the input relations in bytes per tuple. The Qdag
variant modified for the GHD-based algorithm uses almost 50% more space than the original
Qdag (published by Arroyuelo et al. [9]). This is because our new Qdags have an additional
bitmap active, which is dimensionally the same as the bitmap used to store the quadtree.
Even with this increase in space usage, Qdags still drastically outperform other systems in
this regard. In comparison, for the Wikidata benchmark Emptyheaded uses 1292.28 bytes
per tuple and Jena 48.42 bytes per tuple [9].

33

Qdag variant Average Space
original 6.76
new 9.97

Table 6.2: Index space in bytes per tuple.

The GHD-optimal algorithm produces intermediate results which the original multijoin does
not. The reduction step of the algorithm, in which the multijoin is applied to every node
in the GHD, generates a new Qdag representing the join result of each node. Appendix A
contains the size in bytes of these intermediate results for each query, computed using the
high arity Qdag. Results that we specifically refer to in this discussion are highlighted in the
Appendix.

The size of these intermediate results varies on the query decomposition. While in the great
majority of cases the first multijoin pass reduces the size of the working data in orders
of magnitude, in some decompositions the multijoin produces intermediate results that are
larger than the original input data. For example, the participating relations in one specific
Ti4 query were initially stored in 3, 051, 200 bytes (for 624,395 total tuples). The three
decompositions we tried yielded the following intermediate result sizes, respectively: 40,548,
16,305,972 and 390,516; the size of the final join results was 16,746 bytes. In this particular
case, the second decomposition greatly increased the size of the working data, producing
intermediate results that are 100 times larger than the final join results.

Tables 6.3 and 6.4 show the ratio between input size and result size, and intermediate result
size and result size. These values were calculated using the decomposition that performed
the best in terms of query execution time.

Table 6.3: Space usage factors for input relations and intermediate results relative to final
result size when using the original Qdag across different query patterns.

Pattern Avg input Median input Avg intermediate Median intermediate
J3 567.49 280.63 81.23 21.73
T3 726.91 453.81 63.86 33.21
Ti3 241.82 95.26 59.12 16.89
J4 830.73 468.62 39.13 4.35
T4 1247.34 1073.23 63.7 7.81
Ti4 503.59 216.17 243.84 8.0
triangle tadpole 1419.76 1037.65 244.87 52.74
bowtie 2096.97 1954.46 52.19 1.84

In the next section we will further analyze how these intermediate results relate to the total
query execution time.

6.2.2 Query decompositions

As can be seen in Figures 6.4 and 6.5, the chosen decomposition of a query directly affects
its performance. While the average query times for a given pattern appear similar across

34

Table 6.4: Space usage factors for input relations and intermediate results relative to final
result size when using high-arity Qdags across different query patterns.

Pattern Avg input Median input Avg intermediate Median intermediate
J3 611.32 312.02 97.49 28.16
T3 783.74 551.59 85.59 38.55
Ti3 263.05 114.2 72.82 19.03
J4 877.18 533.5 41.97 5.25
T4 1355.29 1295.96 76.14 8.63
Ti4 572.66 253.34 56.24 8.58
triangle tadpole 1549.43 1082.39 402.73 61.55
square tadpole 2017.64 1786.57 377.76 51.08
bowtie 2193.56 2114.0 56.63 2.02
triangle barbell 2216.49 1952.94 609.47 591.07
square barbell 1330.69 1228.72 378.57 231.35
pentagon barbell 445.47 404.46 54.99 21.51

different decompositions, when examined at a deeper level, individual query performance
shows there is a significant difference between the best and worst performing decompositions
for each individual query. It is also apparent that the decompositions behave in the same
way in both Qdag variants.

In queries composed of three relations (J3, T3, and Ti3) Configuration 7 was equivalent to
doing a multijoin with all three, which is why this decomposition is consistently slower than
the others. The first three decompositions (Configurations 1 to 3) are akin to a pairwise
join and in average they are a bit slower than Configurations 4 to 6, in which two GHD
nodes contain two relations. Nevertheless, as stated before, this decomposition scheme is not
always the one that yields results the fastest.

In patterns like T3, the first three tested decompositions are identical in terms of how the
attributes relate to each other, and only differ in the actual tuple values. Each decomposition
yielded the fastest results of the three in a third of the queries, and the best-performing
decomposition for a query outperformed the worst-performing one by an average factor of
12. This shows that the “pattern” of decomposition is not the only relevant factor, and the
data values themselves hold relevant information.

From these results, we can conclude that there is no decomposition that is always optimal
for a given pattern, and which decomposition is best suited for a query depends on the
participating relations. This means that the specific properties of the participating relations
and their data must be taken into account to select an appropriate decomposition strategy.

To investigate whether there exists a predictable relationship between decomposition effi-
ciency and intermediate result size, we measured the percentage of queries in which the
decomposition that yielded the least number of tuples after the reduction step was also the
fastest to execute. The results, presented in Table 6.5, reveal mixed patterns across different
query patterns. In T4 and Ti4, there is a strong correlation, but in all others the correlation
is low. These lower correlation strengths indicate that intermediate result size is not a sig-
nificant factor in determining execution time. This makes sense because a small set of tuples
can yield large results, or require a lot of processing due to how they are distributed in the

35

Figure 6.4: Query times (in seconds) of different generalized hypertree decompositions of
query patterns, using the original Qdag variant on the Wikidata benchmark.

36

Figure 6.5: Query times (in seconds) of different generalized hypertree decompositions of
query patterns, using the high arity Qdag variant on the Wikidata benchmark.

37

quadtree.

Pattern Coincidence
J3 60%
J4 46%
T3 52%
Ti3 36%
T4 70%
Ti4 76%

Table 6.5: Percentage of queries in which the fastest decomposition was the one that yielded
the least amount of intermediate results after the multijoin reduction.

We tested a simple heuristic for choosing the decomposition of pattern queries composed of
three relations to determine whether relation size could serve as a reliable predictor of the
overall execution time. The heuristic was based on relation size, where we systematically
placed either the smallest, medium-sized, or largest relation (in terms of number of tuples)
in a single node of the decomposition tree, with the remaining two relations grouped in
another node. There is a noticeable difference in average execution time when the largest
relation is isolated in a single node of the decomposition, as can be seen in Figure 6.6. This
configuration tends to produce higher average query times compared to decompositions that
isolate smaller relations. However, the high degree of variability in all configurations means
that this difference, while observable in aggregate statistics, does not translate to reliable
performance predictions for individual queries, in particular in the Ti3 pattern.

Although the heuristic based on the original relation sizes seems like a good naive approach,
it is not consistent. Simple heuristics based solely on relation size are inconsistent because
smaller relations may generate large intermediate results when they have high connectivity or
overlapping value ranges with other relations, while larger relations might be more selective.
Heuristics that take into account all the characteristics of the underlying data should be
explored. Some data properties worth considering are the number of tuples in each relation,
how the data is distributed across attributes, and how value ranges overlap.

6.2.3 General execution time

When comparing the execution time of our algorithms, we chose the GHD that performed the
best for each of the 50 queries. For plotting and statistical purposes, we recorded timeouts as
1800 seconds. Query times for each algorithm in the original Qdag version are compared in
Figure 6.7, while results for the high-arity variant are shown in Figures 6.9 and 6.10, which
is a close up of only the GHD-based algorithm results.

Only the multijoin algorithm in its high-arity variant timed out, Table 6.6 shows the number
of queries the algorithm timed out in for each pattern and the average execution time the
GHD-based algorithm took in those queries. In patterns T4 and Ti4, the multijoin algorithm
timed out twice and the GHD optimal algorithm took 1.05s and 0.52s in average to retrieve
results for the each query respectively. In the case of square barbell queries, the multijoin
timed out in 12% of the queries, for which our proposed algorithm retrieved results in 0.75s

38

Figure 6.6: Query times (in seconds) of different generalized hypertree decompositions of
queries with 3 relations. In each decomposition, the smallest, medium or largest relation
was in a single node, and the remaining two in another. The original Qdag variant was
used to query the Wikidata benchmark. These results were obtained without using the -O3
optimization flag.

in average. The multijoin algorithm was unable to compute most pentagon barbell queries
(70%) before timing out, while the GHD-based algorithm was able to retrieve results at an
average of 0.57 seconds.

Pattern Number of timeouts (after 1800s) Average query time for GHD [s]
T4 2 1.05
Ti4 1 0.52

square barbell 6 0.75
penta barbell 35 0.57

Table 6.6: Number of queries per pattern that resulted in timeouts (execution was longer
than 1800 seconds) when using the multijoin and high arity Qdags, alongside the average
execution time for those queries when using the GHD-based join algorithm and high arity
Qdags.

As can be seen in Figure 6.7 and Table 6.7, in the original Qdag our proposed algorithm
outperforms the multijoin in all patterns save for triangle tadpole, in which the averages
differ by ∼0.05 seconds, while their medians are just 0.01 seconds apart. In the T3 query
pattern the GHD-based algorithm has a better average query time (0.01 seconds) than the
multijoin (0.04 seconds), but the latter has a lower median. The multijoin algorithm also
exhibits more variability in query times than the GHD-based one, which is consistent in most
patterns except for Ti3 and Ti4.

In the high arity Qdag version, the GHD-based algorithm performs significantly better than
the multijoin across all queried patterns, often by orders of magnitude. For simple patterns
such as J3 and Ti3, the GHD algorithm achieves average query times of 0.05 and 0.16 seconds
respectively, compared to multijoin’s 0.92 and 3.56 seconds. The performance gap becomes
more pronounced for complex patterns, where the multijoin becomes prohibitively expensive
in terms of query time. The GHD-based algorithm completes T4 queries in 0.15 seconds
on average, while multijoin requires 100.17 seconds. The most significant difference occurs

39

in the square and pentagon barbell patterns, in which the GHD-based algorithm completed
the queries at an average of 0.45 and 0.43 seconds respectively, while the multijoin took
305.99 seconds on average for the square barbell and 1514.88 seconds in the pentagon barbell
queries, with multiple queries timing out after 1800 seconds.

Comparing the performance of both Qdag variants reveals that the original Qdag yields
faster results than the high arity version in both the multijoin and the proposed GHD-based
algorithm, across all comparable patterns. Table 6.9 shows the average factor by which
queries worsen for each pattern. We can see that the multijoin algorithm worsens by a
greater factor than the GHD-based algorithm. This can be explained by the fact that while
the high-arity intersection process, namely the select next operation, is slower and more
complex, the GHD-based algorithm lowers the dimensionality of the queries that need to be
computed. This results in less data being processed at a time and faster results.

The original Qdag’s inability to handle larger queries limits its applicability, making the high
arity variant necessary despite the performance trade-offs.

Pattern Mean MJ Median MJ Std. dev. MJ Mean GHD Median GHD Std. dev. GHD
J3 0.29 0.04 0.64 0.03 0.01 0.04
T3 0.04 0.0 0.16 0.01 0.01 0.02
Ti3 1.13 0.06 4.08 0.09 0.01 0.42
J4 1.46 0.15 4.59 0.03 0.02 0.04
T4 58.03 0.04 278.46 0.08 0.01 0.17
Ti4 39.72 6.97 98.48 0.09 0.04 0.22

triangle tadpole 0.05 0.01 0.13 0.11 0.02 0.18
bowtie 0.13 0.02 0.25 0.02 0.01 0.03

Table 6.7: Statistics for query times per pattern using the original Qdag.

Pattern Mean MJ Median MJ Std. dev. MJ Mean GHD Median GHD Std. dev. GHD
J3 0.92 0.12 2.06 0.05 0.02 0.08
J4 7.38 0.64 24.05 0.05 0.03 0.07
T3 0.13 0.01 0.49 0.02 0.01 0.04
Ti3 3.56 0.18 13.16 0.16 0.01 0.81
T4 100.17* 0.15 369.92 0.15 0.02 0.34
Ti4 162.41* 29.87 381.55 0.38 0.08 1.82

triangle tadpole 0.21 0.02 0.6 0.19 0.04 0.31
square tadpole 3.56 0.54 10.36 0.25 0.07 0.5

bowtie 0.67 0.08 1.3 0.04 0.01 0.06
triangle barbell 2.82 0.55 5.05 0.11 0.1 0.1
square barbell 305.99* 78.77 571.92 0.45 0.3 0.37
penta barbell 1514.88* 1800.0 521.58 0.43 0.29 0.58

Table 6.8: Statistics for query times per pattern using the high arity Qdag, asterisks indicate
that some queries timed out after 1800 seconds.

6.2.4 Pruning during semijoin

We measured the effect that the semijoin pruning step, described in Section 5.2.3, had on
the overall execution time by calculating the percentage change in the query time when the

40

Figure 6.7: Query times (in seconds) for query patterns, using the original qdag variant on
the Wikidata benchmark.

41

Figure 6.8: Query times (in seconds) for query patterns, using the GHD-based algorithm and
the original Qdag variant on the Wikidata benchmark.

42

Figure 6.9: Query times (in seconds) for query patterns, using the high arity Qdag variant
on the Wikidata benchmark.

43

Figure 6.10: Query times (in seconds) for query patterns, using the GHD-based algorithm
and the high arity Qdag variant on the Wikidata benchmark.

44

Pattern Mean factor mj Mean factor ghd
J3 2.9 1.48
T3 2.33 1.17
Ti3 2.8 1.25
J4 4.36 1.56
T4 3.77 1.51
Ti4 4.27 1.95
triangle tadpole 3.34 1.54
bowtie 4.43 1.35

Table 6.9: Multiplying factor

GHD-based algorithm was executed with and without the pruning step. Figure 6.11 shows
the distribution of the percentage change in all queries performed with the original Qdag
variant. A positive percentage change means that the pruning step reduced query time,
while a negative value indicates query time was actually increased when pruning was done.
Around half of the queries performed better without pruning, which means that the amount
of work saved by stopping the descent of an already-visited subtree does not compensate for
the overhead produced by checking the pruning conditions and materializing the temporary
bitmap.

Figure 6.11: Histogram showing the percentage change in total query time when using the
pruning optimization during semijoins, over all queries done. A positive percentage change
indicates that pruning decreases execution time, and a negative number means query time
increased when pruning was done.

45

6.2.5 Reduction Parallelization

We measured the effect of parallelizing the node reduction step in the GHD-based algorithm
by comparing execution times between the parallel and sequential versions across different
pattern types. The results show mixed outcomes for parallelization, with performance im-
provements heavily dependent on the specific pattern being processed. Patterns T3, Ti3,
Triangle Tadpole, and Triangle Barbell show negative percentage differences, indicating that
the parallel version actually increases execution time by 4-11% on average, due to paral-
lelization overhead outweighing the benefits for these less computationally intensive queries.
In contrast, more complex patterns such as Ti4, J4, and the pentagon barbell demonstrate
improvements with the parallel approach, showing 11-18% reductions in execution time on
average and maximum improvements reaching up to 46% for Ti4. The mixed results sug-
gest that parallelization of the node reduction step provides benefits for computationally
demanding patterns where the parallel processing gains exceed the thread-coordination over-
head, while simpler patterns may be better served by the sequential approach. This opens
the possibility of defining a heuristic for determining which node-reduction approach to use
based on the complexity of the query.

Pattern Mean difference Median difference Most hindrance Most improvement
J3 1.92 6.29 -136.56 37.1
J4 11.09 8.83 -67.08 45.03
T3 -7.41 4.05 -91.47 42.71
Ti3 -11.88 -1.85 -121.36 41.02
T4 10.57 9.24 -34.31 43.53
Ti4 17.5 23.02 -34.98 46.77

triangle tadpole -7.75 -1.06 -88.15 9.41
square tadpole 12.57 9.58 -7.34 42.91

bowtie 0.33 4.28 -60.55 39.56
triangle barbell -4.58 -4.08 -23.09 15.3
square barbell 2.3 0.88 -14.29 35.79
penta barbell 18.51 18.95 -4.22 45.86

Table 6.10: Percentage change between using the parallel GHD-based algorithm execution
and the sequential one. A positive value means the parallel version decreased execution time
and a negative value indicates execution time was increased by the parallel version.

46

Chapter 7

Conclusion

In this thesis, we have implemented an alternative Qdag variant that is not limited to queries
of at most 5 attributes, extending its capabilities and applicability for more complex queries.
This high arity Qdag variant addresses a fundamental constraint of the original implemen-
tation, permitting queries of graph patterns that were previously unsupported. While our
results show that this variant has a lower performance than the original Qdag for join queries
with fewer than 5 attributes, it is a promising proof of concept that can be improved. We
give some directions of future work on this in Section 7.1.

We also added support for semijoin operations to both Qdag variants, which opens the
possibility of implementing other algorithms that benefit from semijoins in the future.

Another significant contribution of this thesis is the implementation of a new algorithm for
conducting join queries in graph databases that uses generalized hypertree decompositions as
query plans, and is capable of surpassing the AGM bound. This algorithm was implemented
in both the original Qdag and the high arity version. Our experimental evaluation showed
that the new algorithm generally delivers faster results compared to the existing multijoin
approach, with limited space overhead. The algorithm also exhibits less performance vari-
ability than the multijoin, and in the high arity version completed queries that had resulted
in timeouts when using multijoin algorithms.

From the experimental analysis, we can conclude that the chosen decomposition strategy
significantly influences the execution time. While most tested decompositions yielded faster
results than the multijoin, a “bad” decomposition can create large intermediate results that
slow down the query or create what is essentially a pairwise-join query plan.

Our investigation of decomposition selection heuristics showed that simple approaches based
solely on relation size are insufficient to predict optimal performance, as the computational
cost depends on how multiple data characteristics combine during query execution.

Based on our performance evaluation across both Qdag variants, queries involving fewer
than 5 attributes are best served by the GHD-based algorithm implemented on the original
Qdag variant, as this provides the best performance for small queries. For larger queries
that exceed the 5-attribute limit, the GHD-based algorithm implementation in the high arity

47

version should be used. In this work we were not able to detect a pattern for when it is
advisable to use the parallel version of the GHD-based algorithm, or the pruning step of the
semijoin algorithm since they both gave varied results.

This thesis successfully achieved its main objective of extending the capabilities of the Qdag
data structure introduced by Arroyuelo et al. [9], allowing it to handle more complex graph
pattern operations. The first specific objective was fully met through the introduction of
modifications that enable Qdags to solve higher-arity join queries while guaranteeing Worst
Case Optimality. Similarly, the second objective was achieved by introducing a more effi-
cient approach to joins based on generalized hypertree decompositions, making the index
more apt for real-world data and queries. However, the final objective regarding the com-
parison of our algorithms to existing solutions was only partially met. We were only able to
compare our approaches to the original Qdag, leaving out solutions such as Emptyheaded.
Despite this limitation, the experimental results obtained provide valuable insights into the
performance characteristics of our proposed methods in terms of both time and space usage.
Our contributions provide solutions for complex pattern matching that was previously un-
supported or inefficient, and establish a foundation for future research in query optimization
and decomposition selection strategies.

7.1 Future Work

High arity Qdags are necessary for solving larger queries, but the join operation’s running
time is higher than in the original Qdag variant in both of our proposed algorithms. This
increase in execution time is due to the Qdag intersection process being more laborious, it
requires obtaining the index of every set bit in a node instead of doing a bitwise And between
materialized nodes. To reduce the high arity Qdag’s execution time we propose storing nodes
in a level as sparse arrays instead of bitmaps. In this way obtaining the 1s in a node should
be much faster, since it eliminates the need to sequentially select all the set bits.

Our GHD-based join algorithm currently requires the user to provide a GHD for the join
query. If this GHD is suboptimal, the algorithm may cease to be WCO. The next step in this
work is to determine a heuristic for selecting a query’s GHD that can guarantee worst-case
optimality or even FHTW optimality, add automatic query decomposition to our algorithm,
and compare the resulting system to EmptyHeaded. To create this heuristic, we need to
study how skew, value overlap, data size, attribute distribution and other data properties
affect query time.

Another runtime enhancement that can be done in the GHD-based algorithm is to find a
heuristic for determining when it would be convenient to use semijoin pruning or the parallel
GHD node reduction method. Since both of these had mixed results, sometimes speeding
up query times but at other times slowing down, it would be ideal to see if this can be
determined beforehand with some accuracy.

Finally, another future point of study is using Qdags to represent and operate on relations of
more than two attributes. Currently, it is technically possible, but it has not been formalized
or explored in terms of applications.

48

Bibliography

[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and
Christopher Ré. Emptyheaded. ACM Transactions on Database Systems, 42(4):1–44,
2017.

[2] D. Arroyuelo, D. Campos, A. Gómez-Brandón, G. Navarro, C. Rojas, and D. Vrgoc.
Space & time efficient leapfrog triejoin. In Proc. 7th Joint Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analytics (NDA),
page article 2, 2024.

[3] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-
Ledesma, and Adrián Soto. Worst-case optimal graph joins in almost no space. In
Proceedings of the 2021 International Conference on Management of Data, SIGMOD-
/PODS ’21, page 102–114, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[4] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for
relational joins. In 49th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 739–748. IEEE
Computer Society, 2008.

[5] Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and Francesco Scarcello.
Hypertree decompositions: Structure, algorithms, and applications. In IN PROC. OF
WG’05, 2005.

[6] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. Wikidata graph pattern
benchmark (wgpb) for rdf/sparql, October 2019.

[7] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. A worst-case optimal
join algorithm for sparql. Lecture Notes in Computer Science The Semantic Web –
ISWC 2019, page 258–275, 2019.

[8] J. Ian Munro. Tables. In V. Chandru and V. Vinay, editors, Foundations of Software
Technology and Theoretical Computer Science, pages 37–42, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[9] G. Navarro, J. Reutter, and J. Rojas. Optimal joins using compact data structures.
In Proc. 23rd International Conference on Database Theory (ICDT), pages 21:1–21:21,
2020.

49

[10] Hung Q Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: New developments
in the theory of join algorithms. SIGMOD Rec., 42(4):5–16, February 2014.

[11] Dung Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q. Ngo, Christo-
pher Ré, and Atri Rudra. Join processing for graph patterns: An old dog with new tricks.
In Proceedings of the GRADES’15, GRADES’15, New York, NY, USA, 2015. Association
for Computing Machinery.

[12] Todd L Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algorithm. In
Proc. International Conference on Database Theory, 2014.

[13] D. Vrgoc, C. Rojas, R. Angles, M. Arenas, D. Arroyuelo, C. Buil-Aranda, A. Hogan,
G. Navarro, C. Riveros, and J. Romero. MillenniumDB: An open-source graph database
system. Data Intelligence, 5(3):560–610, 2023.

[14] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases,
7th International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages
82–94. IEEE Computer Society, 1981.

50

Appendix A

Space Usage of GHD-optimal
algorithm

These results were obtained using the high arity Qdag variant. The intermediate result size is
the space used by the Qdags resulting from the multijoin reduction step of the GHD-optimal
algorithm.

51

Table A.1: Space used to store the relations at each step of the algorithm of a J3 query, in
bytes. Intermediate results depend on the chosen GHD.

input intermediate 1 intermediate 2 intermediate 3 results
1,205,382 232,724 510,524 482,876 2,938
2,504,814 3,966,860 422,108 2,023,748 5,986
196,950 87,452 35,252 112,268 2,938

4,991,334 1,996,556 684,524 4,473,620 556,498
4,507,782 160,076 181,916 4,284,236 2,938
2,133,390 1,768,892 75,908 332,228 2,938
1,050,678 59,324 839,780 193,364 3,298
462,102 293,132 136,412 377,612 105,130

1,912,086 1,215,044 639,956 83,492 3,370
2,278,686 592,244 121,028 2,025,044 ,2938
109,710 18,692 16,652 85,340 2,938

11,628,534 154,556 332,108 11,389,868 54,538
1,357,614 3,267,308 342,236 1,283,108 7,618
402,054 179,084 376,796 242,660 3,346

2,453,814 77,252 79,604 2,332,796 3,010
5,539,302 5,593,412 67,508 48,620 2,938
1,575,582 374,108 1,127,900 101,180 3,274
2,566,782 806,108 2,256,164 485,828 2,938
6,538,782 3,483,356 143,732 2,994,548 5,962
198,510 118,556 69,596 23,420 2,938
177,270 25,820 21,548 144,284 2,938

1,329,030 129,212 166,028 1,172,420 3,442
3,700,806 103,028 458,036 3,207,044 2,938
1,412,430 170,852 1,167,740 111,524 2,938
278,406 33,044 136,292 118,412 2,938

7,015,254 4,013,348 579020 3067724 82,354
1,475,022 489,188 667,172 378,260 2,938
175,566 61,748 40,940 113,276 4,426

1,568,382 379,292 644,588 1,167,068 6,922
4,600,998 4,088,948 259,700 613,820 6,466
108,558 21,332 42,836 60,836 2,938

2,466,870 3,928,916 547,052 2,025,596 241,906
4,634,406 646,172 1,140,644 3,049,436 2,938
3,031,926 54,908 26,780 2,974,076 4,378
3,002,118 154,076 1,933,412 2,837,276 11,818
5,537,382 5,431,436 84,140 60,836 3,154
421,806 187,052 545,180 221,684 2,938
897,462 116,348 334,508 464,564 2,938

2,979,462 103,124 2,618,060 307,124 2,938
3,802,326 96,836 3,695,540 26,708 3,058
3,073,062 87,788 585,764 2,912,660 2,938

97,110 58,484 58,124 28,436 2,938
2,258,094 1,488,668 194,588 611,012 2,938
1,422,126 1,317,092 111,908 159,452 28,762
9,061,686 8,247,716 5,847,80 843,092 825,778
18,450,102 14,052,428 1,485,380 4,284,236 2,938

772,662 2,060,516 50,948 667,748 2,938
1743294 953,420 129,380 778,580 9,370

1,611,846 155,372 48,212 1,421,516 7,786
734,694 5,765,564 18,236 91,436 3,034

52

Table A.2: Space used to store the relations at each step of the algorithm of a T3 query, in
bytes. Intermediate results depend on the chosen GHD.

input intermediate 1 intermediate 2 intermediate 3 results
4,106,262 3,475,004 460,292 465,188 3,466
1,254,126 673,292 583,676 334,436 2,938
4,250,622 1,675,076 296,684 2,577,884 3,826
476,094 29,540 158,900 300,260 2,938

4,614,318 1,173,404 2,237,948 3,039,260 93,466
4,722,510 3,782,012 541,292 1,333,244 6,754
413,238 238,196 41,468 199,580 2,938

5,537,526 3,973,892 446,036 1,516,364 2,938
1,280,718 27,116 137,732 1,128,812 2,938
881,334 138,596 722,852 255,356 15,154

1,442,382 1,226,804 175,460 85,748 2,938
298,734 122,204 120,860 70,052 2,938

1,647,678 83,348 25,364 1,570,700 3,442
4,282,302 3,735,980 356,996 892,244 2,938
6,370,854 121,028 63,332 6,433,196 2,938
1,730,646 1,332,956 904,316 375,428 2,938
1,603,374 1,228,220 63,380 355,532 2,938
2,061,198 61,580 1,322,780 699,212 2,938
444,438 216,284 37,412 201,236 2,938

1,535,142 195,212 1,256,036 627,284 5,986
2,617,878 192,476 1,725,812 731,444 2,938
2,625,342 1,147,748 697,340 1,387,364 2,938
1,679,118 63,124 49,180 1,665,388 2,834
1,788,126 1,228,220 391,604 179,852 2,938
2,984,550 623,108 66,836 2,339,036 2,938
575,046 31,004 567,644 43,700 5,890
82,734 25,220 38,540 32,780 2,938

1,082,190 142,340 515,444 436,148 2,938
595,806 435,668 122,852 53,132 2,938

8,113,062 6,493,724 528,212 1,632,932 14,554
6,534,990 6,486,188 36,860 50,180 2,938
850,686 78,884 763,772 32,060 2,938

1,815,246 127,604 23,828 1,679,468 2,938
197,574 57,308 94,268 130,412 25,186
107,022 47,588 33,116 41,348 2,938

1,984,950 90,188 786,332 1,133,564 2,938
3,764,406 3,630,188 139,076 89,684 2,938
931,734 782,324 105,476 64,196 2,938
871,038 746,180 85,172 54,452 2,938

11,497,230 762,836 10,583,156 1,439,756 4,282
829,230 437,540 375,020 102,956 2,938

11,473,134 784,124 10,594,964 173,228 2,938
5,006,862 4,962,716 37,028 20,420 2,938
701,670 250,244 134,876 408,692 2,938

1,274,382 56,132 410,444 838,220 3,466
5,584,782 5,164,076 215,228 372,404 5,338
1,993,206 850,628 108,596 1,122,308 2,938
541,470 73,844 333,284 179,300 2,938

5,084,190 4,962,716 100,100 30,548 2,938
6,663,390 6,486,188 190,844 50,444 2,938

53

Table A.3: Space used to store the relations at each step of the algorithm in a Ti3 query, in
bytes. Intermediate results depend on the chosen GHD.

input intermediate 1 intermediate 2 intermediate 3 results
953,550 53,756 499,364 408,692 2,938
44,646 16,676 23,708 120,500 16,762
735,558 181,268 627,572 604,820 74,338

3,236,742 2,083,532 840,140 1,172,276 67,234
180,534 104,372 44,972 57,932 2,938
115,974 45,068 77,852 25,484 2,938
235,398 150,404 49,124 125,156 2,938
235,518 145,892 33,668 74,828 2,938
449,958 40,340 38,828 379,748 2,938
134,310 45,332 84,788 32,060 2,938

5,080,734 2,023,484 30,012,812 3,049,172 2,938
2,400,390 724,196 54,572 1,771,436 5,002
395,382 44,900 275,228 94,916 2,938
242,670 271,196 62,084 28,940 4,834
341,310 238,724 62,300 126,164 2,938

2,924,766 1,714,556 1,283,204 409,484 2,938
270,126 117,836 50,732 139,724 2,962
863,478 777,116 78,260 43,412 2,938
131,166 18,956 23,012 98,588 2,938
450,318 361,436 97,748 180,836 3,466
813,654 667,748 34,196 288,308 2,938

1,229,934 838,748 515,396 73,748 3,490
1,640,718 1,555,700 151,820 123,644 56,506
625,254 201,140 283,100 314,948 11,530

4,955,910 473,708 4,125,044 919,940 62,674
130,182 54,284 37,364 101,516 2,938

8,583,054 5,460,428 2,978,300 190,916 2,938
540,942 94,340 25,916 435,668 2,938
214,494 102,116 54,980 95,540 2,938
919,782 574,148 347,756 57,692 5,098

1,706,094 34,436 22,436 1,659,284 2,938
507,486 399,836 82,268 87,524 4,522
629,766 528,164 92,276 59,396 2,938
445,326 129,164 278,612 166,364 20,338
288,678 225,932 141,092 38,300 3,730

1,245,102 698,228 325,748 305,252 2,938
1,800,486 220,148 565,580 1,058,468 2,938
715,110 657,668 32,852 45,356 2,938
991,182 698,228 71,828 242,972 2,938

4,242,822 4,120,076 24,757,436 4,921,964 144,151,642
236,790 115,316 82,748 129,740 18,634

1,085,670 838,748 243,380 207,020 2,938
225,678 45,908 2,186,468 170,108 3,058
781,014 33,428 741,812 53,180 2,938
677,574 73,124 608,228 36,764 2,938
227,838 165,452 124,820 112,076 33,730
210,342 47,492 159,836 40,604 3,394
666,462 495,332 123,572 67,484 2,938
206,598 304,532 260,708 448,172 1,421,290
789,630 204,140 367,508 411,284 4,522

54

Table A.4: Space used to store the relations at each step of the algorithm of a J4 query, in
bytes. Intermediate results depend on the chosen GHD.

input intermediate 1 intermediate 2 intermediate 3 results
367,496 7,332 20,868 5,916 3,138

3,890,768 362,964 30,516 57,132 3,138
3,653,984 25,788 7,884 23,076 3,138
1,794,176 23,556 8,196 16,452 3,210
1,077,632 62,892 144,180 66,204 14,346
4,226,120 73,716 69,252 109,716 3,402
1,155,080 193,908 563,988 694,380 3,138
7,288,088 208,332 181,884 32,484 6,042
5,545,904 6,367,524 1,025,484 2,349,636 3,138
8,915,816 2,191,332 428,724 79,188 98,994
1,913,072 78,996 50,964 198,276 12,594
935,720 38,748 8,124 6,084 3,138

1,483,832 10,644 59,700 12,252 3,138
5,261,600 2,721,444 77,820 45,612 29,010
6,634,592 77,436 60,636 676,428 3,138
6,228,704 295,836 292,092 5,867,532 31,554
3,555,848 1,446,492 4,721,772 676116 5,874
14,261,432 8,031,372 14,499,396 2,767,908 6,954
7,605,128 4,907,100 223,476 21,636 3,642
4,918,928 92,820 12,012 9,300 3,498
4,687,232 773,052 12,228 1,231,500 3,138
3,826,352 67,356 6,756 15,036 3,138
931,328 21,948 7,980 18,996 5,178

5,970,968 278,508 327,804 108,252 3,162
5,169,704 2,239,668 1,607,772 1,191,636 12,066
3,493,784 186,732 242,700 24,396 3,138
8,034,848 80,988 119,316 95,988 3,138
1,211,096 115,500 42,588 127,308 3,138
1,210,184 8,292 7,116 72,204 3,186
939,536 43,020 113,196 34,908 8,394

5,614,088 16,860 7,612,644 10,650,492 2,3634
5,205,752 101,940 177,660 303,156 3,138
2,038,760 119,100 85,500 57,300 3,138
2,281,928 258,084 34,548 67,596 45,042
458,936 26,748 20,604 28,284 3,138

6,140,096 98,460 5,901,276 106,740 253,650
6,324,608 39,396 54,564 10,620 3,138
3,711,488 14,364 21,660 31,212 4,122
12,279,584 2,341,332 1,658,700 1,234,308 3,690
1,594,304 17,148 230,340 8,052 3,138
3,014,576 69,828 91,596 348,612 3,522
9,442,208 28,236 1,910,604 169,332 3,618
1,287,512 359,076 219,972 117,660 9,906
641,000 11,820 6,612 21,828 3,186

3,483,296 162,132 169,476 47,220 7,218
1,448,216 66,804 922,860 6,828 3,138
2,340,456 5,300 21,380 11,804 3,034
590,912 9,924 14,676 279,468 7,410

4,560,344 7,620,156 79,572 73,692 103,770
6,783,080 115,188 116,532 5,921,148 4,386

55

Table A.5: Space used to store the relations at each step of the algorithm of a T4 query, in
bytes. Intermediate results depend on the chosen GHD.

input intermediate 1 intermediate 2 intermediate 3 results
2,805,200 39,468 124,860 24,492 3,138
6,205,856 28,884 228,228 208,164 3,138
9,391,136 158,244 6,676,164 141,372 3,642
1,377,968 49,380 15,156 218,964 3,138
6,676,088 33,012 43,044 139,644 55,170
6,632,264 66,252 28,740 14,220 3,138
1,67,672 44,868 133,788 50,364 3,138
4,091,384 125,436 18,924 7,044 3,138
4,462,328 246,972 121,140 80,004 3,138
1,966,832 343,740 262,764 549,492 63,618
9,316,616 28,068 276,780 371,628 3,138
2,678,360 2,6556 85,380 95,772 3,138
1,390,256 75,708 107,580 86,436 10,026
1,038,464 18,972 595,212 39,972 3,642
5,273,720 399,732 805,476 361,524 3,138
13,884,248 12,597,108 57,108 43,140 3,138
6,071,312 2,780,868 80,964 54,564 3,834
13,926,368 1,998,492 4,853,652 1,666,068 3,666
9,344,168 573,468 302,868 363,516 5,106
7,128,632 57,108 5,508 5,724 3,138
6,781,112 753,564 190,668 289,212 3,138
2,921,240 768,708 89,004 324,588 3,138
4,356,680 12,780 10,692 81,012 3,138
2,196,752 1,174,020 495,084 437,964 319,218
2,522,072 23,004 689,292 23,052 3,138
4,680,512 7,212 7,284 402,156 3,138
2,229,752 76,980 204,012 60,492 3,138
770,360 7,932 9,084 6,900 3,138

2,533,568 1,037,292 1,181,172 1,326,492 3,138
3,981,704 252,540 19,956 19,404 3,138
5,612,432 282,036 728,844 169,068 3,138
10,983,272 4,261,908 4,572,516 5,198,004 3,416,586
4,236,344 6,588 30,036 134,916 3,138
7,839,632 277,644 363,108 3,180,300 3,642
1,111,280 33,156 7,308 5,604 3,138
3,578,936 186,564 1,572,156 186,012 11,754
11,701,400 1,302,948 1,303,092 11,033,508 3,666

550,856 19,044 20,436 23,964 4,650
13,868,048 2,690,772 3,351,228 6,677,940 3,138
4,042,040 74,340 258,060 76,716 3,138
732,464 10,092 31,356 33,948 3,138

5,210,816 13,332 415,308 36,132 3,138
5,709,296 153,828 18,132 11,388 3,,138
6,535,376 3,090,180 911,268 461,532 3,138
4,118,888 247,212 427,092 53,796 3,138
9,830,288 146,172 1,846,836 555,252 3,138
888,896 45,108 137,148 45,084 7,482

1,670,888 10,884 17,436 19,836 3,138
3,162,752 227,580 35,556 32,316 3,138
1,103,240 144,564 37,044 25,308 3,570

56

Table A.6: Space used to store the relations at each step of the algorithm of a Ti4 query, in
bytes. Intermediate results depend on the chosen GHD.

input intermediate 1 intermediate 2 intermediate 3 results
772,088 1,234,332 234,204 43,812 16,651,290
465,920 5,964 6,516 14,820 3,138
430,208 44,460 43,332 261,228 5,802

1,973,912 12,852 22,620 360,396 3,138
806,552 69,948 41,124 121,620 3,738
749,312 76,092 347,772 143,196 4,794

12,733,328 4,637,676 203,436 296,316 3,138
852,896 50,268 92,316 187,092 3,738

3,382,880 49,548 33,780 520,020 3,138
2,169,968 31,476 157,044 17,604 3,138
1,007,144 447,204 69,660 79,956 4,890
1,552,664 28,620 328,740 68,628 3,138
1,077,968 8,508 155,052 5,796,516 3,714
2,137,880 102,468 1,150,332 127,308 3,666
460,280 14,388 22,836 24,036 3,738

1,509,272 37,620 437,292 49,932 3,186
2,363,888 72,036 54,588 54,684 4,794
1,248,080 332,916 91,164 94,308 4,866
12,310,496 42,180 3,186,060 102,804 3,138

897,872 358,716 160,908 453,636 89,994
1,871,408 2,134,092 1,380,036 4,274,436 3,663,357,114
203,120 5,964 21,732 5,508 3,138

3,592,184 1,435,644 156,444 222,660 3,642
393,896 13,836 33,468 8,724 3,138

2,479,592 14,844 122,748 67,884 62,202
14,306,192 1,623,852 6,546,276 1,934,340 3,138
2,550,536 619,044 29,292 26,916 3,138
494,456 12,540 17,868 47,628 3,138

2,597,720 462,852 730,668 854,604 4,074
759,176 27,972 142,644 69,564 3,138

3,660,704 48,348 527,100 56,340 3,138
1,434,464 10,884 7,932 99,228 3,138
1,437,440 54,492 120,156 141,156 4,266
4,157,888 207,324 660,684 1,214,964 4,218
794,984 98,892 74,748 72,348 3,138
776,552 72,444 73,836 90,468 9,114

4,593,536 16,860 16,548 163,764 14,562
2,698,256 203,316 1,239,180 76,668 43,554
1,020,488 259,068 101,244 20,100 3,138
290,600 61,956 110,700 35,796 5,442
622,280 51,036 13,956 5,508 3,138

1,014,848 18,372 41,172 89,364 3,138
2,351,528 99,924 55,740 285,156 3,138
3,051,200 40,548 16,305,972 390,516 16,746
1,616,912 93,156 183,708 85,308 10,218
4,432,328 250,452 86,604 245,028 9,138
1,641,752 55,236 3,363,420 70,116 185,586
513,848 40,116 10,836 8,292 15,954
458,696 59,580 62,988 106,764 3,714

57

Table A.7: Space used to store the relations at each step of the algorithm in a Bowtie query,
in bytes.

input intermediate results results
3,428,292 7,884 4,842
6,450,876 5,508 3,138
4,998,708 5,844 4,722
6,277,188 5,508 3,138
2,835,180 5,508 3,258
4,383,084 6,276 3,138
4,110,564 8,652 3,138
7,509,300 8,028 3,138
4,347,060 6,756 3,138
7,529,100 6,372 3,138
7,325,652 15,684 4,026
10,724,388 9,972 3,402
10,453,908 6,276 3,138
1,585,596 5,508 3,138
1,273,068 13,164 3,570
11,843,916 13,116 3,570
7,041,636 7,620 3,138
5,595,660 5,580 3,138
2,690,436 5,940 3,138
1,919,316 8,316 3,138
6,975,036 6,108 3,138
5,337,852 6,036 3,138
5,134,404 15,348 3,834
7,474,980 1,720,000 3,402
6,685,068 868,956 3,594
6,685,068 868,956 3,138
6,534,084 803,940 3,690
8,301,420 5,940 3,138
7,140,756 5,964 3,138
7,978,260 6,636 3,234
6,581,676 1,720,000 3,690
7,785,228 804,756 3,354
6,699,756 6,396 3,186
7,832,820 1,730,000 3,762
6,747,348 7,236 3,234
7,042,908 869,772 3,186
14,083,476 7,860 3,138
5,936,580 7,500 3,162
6,668,628 6,324 3,138
9,391,212 6,324 3,138
7,312,068 6,324 3,138
12,107,172 6,324 3,138
7,842,492 6,324 3,138
4,264,620 5,868 3,138
9,141,636 5,508 3,138
4,404,348 6,324 3,138
15,143,364 5,940 3,138
12,722,700 5,508 3,138
12,619,356 188,652 3,138
13,107,228 5,508 3,138

58

Table A.8: Space used to store the relations at each step of the algorithm in a Triangle
Tadpole query, in bytes.

input intermediate results results
400,354 6,492 3,162
363,538 5,916 3,138
449,530 8,124 3,138

10,879,330 1,284,420 3,138
2,303,746 29,772 3,138
3,437,074 555,372 3,138
5,889,394 296,628 5,298
6,191,842 128,676 3,546
3,117,994 219,660 3,138
9,274,498 7,959,590 3,138
5,425,258 771,228 3,138
1,488,874 231,732 3,138
12,763,234 83,532 3,138
9,374,602 8,556 3,138
1,915,474 204,948 3,138
457,642 242,796 3,354

9,074,578 611,652 3,138
1,442,674 163,788 3,138
11,451,898 67,884 3,138
13,905,850 10,969,600 3,138
13,900,474 8,867,920 3,138
2,368,282 204,948 3,138
833,914 95,964 3,138

7,630,282 1,620,440 3,138
2,907,874 1,462,260 3,138
8,756,770 7,959,590 3,138
6,022,378 139,476 3,138
876,442 13,668 3,138

4,873,498 144,276 3,138
927,562 137,388 3,138
904,834 89,508 3,138
898,474 79,548 3,138
975,442 95,964 3,138

7,500,346 1,866,320 4,146
10,516,498 2,292,250 3,138
7,385,770 842,628 10,290
4,558,594 1,870,400 10,290
1,262,290 19,020 3,138
10,299,226 7,959,590 3,138
3,356,002 59,436 3,138
8,211,226 489,180 3,138
7,513,330 15,828 3,138
1,140,370 11,700 3,162
1,705,546 184,116 3,234
7,543,618 189,636 3,282
5,455,186 65,100 3,138
4,825,258 1,024,480 4,962
4,982,746 1,064,000 5,370
6,513,562 949,644 3,138
6,358,138 2,847,880 3,138

59

Table A.9: Space used to store the relations at each step of the algorithm in a Square Tadpole
query, in bytes.

input intermediate results results
3,716,796 59,316 3,674
5,607,564 9,924 3,530
11,795,028 1,170,000 3,530
7,938,564 2,780,000 3,530
6,482,148 1,190,000 3,842
10,153,716 5,532 3,530
10,085,652 5,532 3,530
11,558,700 5,980,000 3,842
16,696,620 4,720,000 3,842
11,662,908 3,490,000 3,842
1,178,364 54,948 3,530
7,710,276 1,050,000 3,962
6,384,060 298,284 3,530
1,768,308 341,796 3,530
11,679,540 245,916 4,082
10,780,908 71,196 4,634
11,796,396 1,350,000 4,082
12,441,900 39,756 3,530
7,557,012 85,764 3,530
7,408,956 18,804 3,530
12,532,164 744,684 3,674
10,999,140 537,420 3,674
10,995,444 327,684 3,674
6,244,572 673,404 3,530
7,253,556 4,720,000 4,106
6,306,588 180,324 3,530
16,661,172 16,100,000 3,530
6,244,236 43,188 7,058
7,057,908 12,156 4,034
6,321,804 16,620 5,210
10,077,420 526,332 3,530
5,166,204 2,780,000 3,530
4,519,308 280,644 3,530
4,182,780 583,332 3,530
5,193,084 52,332 4,034
4,690,548 11,100 4,034
5,044,308 150,780 4,034
5,146,644 200,436 4,034
5,042,748 56,772 4,322
5,042,748 56,772 4,322
11,428,908 2,770,000 3,530
5,195,316 3,450,000 3,554
8,780,820 1,870,000 3,530
2,841,396 30,468 3,530
2,557,788 91,332 3,530
3,570,924 171,012 3,530
4,297,068 68,844 4,058
4,476,948 14,796 4,106
8,501,700 11,000,000 3,554
8,491,428 20,748 3,554
8,628,348 33,900 3,554

60

Table A.10: Space used to store the relations at each step of the algorithm in a Triangle
Barbell query, in bytes.

input intermediate results results
3,871,310 1,190,000 3,554
2,961,566 1,190,000 3,626
5,628,422 4,290,000 3,530
4,475,414 755,774 3,554
10,617,734 355,502 3,530
10,118,246 350,270 3,530
2,029,766 350,270 3,530
1,677,278 75,542 3,986
6,486,254 3,340,000 4,010
7,454,582 1,130,000 4,010
4,272,110 1,130,000 4,010
5,161,910 53,390 3,530
6,486,254 53,390 3,530
6,486,254 53,390 3,530
6,486,254 53,390 3,530
6,830,414 500,054 3,530
7,466,150 1,140,000 3,530
7,466,150 1,140,000 3,530
9,928,910 3,750,000 4,538
14,558,150 3,810,000 6,554
13,916,582 3,750,000 4,538
8,943,998 3,760,000 4,538
14,707,358 10,600,000 3,530
13,954,766 10,600,000 3,530
7,000,454 2,650,000 3,722
9,200,414 2,640,000 4,394
6,013,910 2,640,000 3,530
9,349,742 2,700,000 3,530
8,836,718 2,640,000 3,530
9,421,142 2,640,000 3,530
6,834,374 3,750,000 4,394
5,996,870 2,820,000 3,794
6,834,374 3,750,000 3,650
5,996,870 2,820,000 3,530
7,423,622 175,526 4,658
22,641,062 808,862 3,530
11,504,270 3,420,000 3,530
11,267,774 3,420,000 4,346
12,244,406 3,430,000 3,530
11,501,174 3,420,000 3,530
11,511,062 3,420,000 3,530
12,055,646 3,420,000 3,530
11,305,382 1,190,000 4,058
11,289,902 1,190,000 4,010
11,290,214 1,570,000 3,626
2,648,150 1,580,000 3,794
3,269,054 1,560,000 5,114
9,856,214 131,342 3,626
6,306,278 2,340,000 3,530
6,780,494 2,340,000 3,530

61

Table A.11: Space used to store the relations at each step of the algorithm of a Square Barbell
query, in bytes.

input intermediate results results
8,126,226 584,798 18,474
4,753,842 502,526 9,450
8,126,226 609,158 17,610
6,086,130 499,502 8,970
5,062,098 502,022 9,450
5,982,954 503,174 9,450
5,175,138 502,838 14,634
8,329,674 498,782 7,722
4,930,938 498,134 7,722
9,010,938 498,134 7,722
12,949,146 514,766 8,970
5,836,050 498,398 7,722
8,287,530 2,628,850 25,770
14,254,410 757,046 8,298
8,287,530 2,628,850 8,970
8,861,082 2,086,770 7,914
7,897,530 2,026,550 8,682
10,653,906 2,060,820 7,914
10,653,906 2,061,830 7,914
16,620,786 2,315,800 7,914
10,653,906 2,060,820 7,914
10,653,906 2,053,890 10,794
9,863,994 2,048,700 8,970
10,653,906 2,082,090 7,914
10,653,906 2,060,820 7,914
10,653,906 2,061,830 7,914
10,653,906 2,061,490 10,794
9,584,226 2,027,460 7,914
9,863,994 2,056,670 8,970
10,653,906 2,053,890 10,794
9,863,994 2,066,730 7,914
15,857,730 6,221,290 7,722
12,263,562 6,229,650 7,722
8,008,338 6,212,100 7,722
16,615,818 7,115,920 7,722
19,222,914 6,402,490 7,722
16,463,010 10,600,700 9,930
17,383,866 10,638,500 9,930
24,350,058 10,670,400 9,930
18,621,426 10,580,200 9,930
6,592,818 26,870 8,202
11,321,010 2,797,210 8,682
20,554,602 1,124,630 7,914
25,699,482 13,479,400 9,546
25,699,482 13,676,800 9,546
25,699,482 13,479,400 9,546
13,040,802 1,506,090 7,722
5,019,642 1,425,420 7,722
13,214,946 1,756,550 7,722
13,077,618 1,468,240 11,178

62

Table A.12: Space used to store the relations at each step of the algorithm in a Pentagon
Barbell query, in bytes.

input intermediate results results
10,569,982 139,966 29,050
10,569,982 139,966 29,050
9,125,686 139,558 24,442
14,887,198 174,646 30,970
9,946,750 177,286 30,970
3,852,382 498,646 24,442
8,169,430 498,646 24,442
20,681,806 504,838 24,442
8,868,382 525,862 24,442
11,427,598 498,646 24,442
17,119,822 1,025,710 28,282
19,726,078 1,049,970 24,826
21,991,246 1,247,690 24,826
19,172,614 1,043,110 24,442
17,526,574 664,318 55,162
17,529,286 664,318 55,162
20,759,206 664,342 81,274
6,087,406 541,198 28,666
9,282,694 765,550 35,194
12,891,934 471,238 48,250
9,072,742 471,790 52,090
8,948,182 403,726 33,274
9,072,742 423,406 33,274
12,884,686 755,110 24,826
12,834,526 755,110 24,826
12,844,270 755,110 24,826
13,325,974 755,110 24,826
13,489,318 5,113,270 30,202
14,247,406 5,113,270 30,202
13,018,294 5,113,270 30,202
21,213,598 5,113,270 29,050
34,823,590 504,454 24,442
8,085,430 591,070 34,426
12,834,142 571,078 24,442
20,721,190 727,366 24,442
16,117,750 5,113,340 45,562
14,888,638 5,113,340 45,562
15,045,238 5,113,370 46,330
14,888,638 5,113,340 43,258
23,083,942 5,113,340 43,258
9,911,374 401,398 24,442
9,911,374 408,670 156,922
14,005,414 471,790 156,922
9,885,814 420,550 24,442
17,824,606 458,614 157,306
20,613,790 5,115,620 33,274
12,975,190 669,670 30,202
18,296,806 10,580,300 42,490
21,551,278 10,580,300 30,970

63

	Introduction
	Thesis Outline

	Graph Databases
	Graph Databases and Worst Case Optimal Joins
	Yannakakis Algorithm
	Generalized Hypertree Decompositions
	EmptyHeaded

	The Qdag
	Succinct Data Structures and Basic Operations
	Region Quadtrees
	Generalization to Higher Dimensions
	Compact Representation

	Qdag
	Data Structure
	Original Join Algorithm
	Limitations

	Higher arity Qdags
	Multijoin algorithm
	Implementaion
	Adding Bitmap Support for Large Nodes
	Extending dimensions
	Traversal and Intersection

	GHD-Based Algorithm
	Proposed Algorithm
	Semijoin support in Qdags
	Active bitmap
	Tree traversal
	Pruning

	Algorithm Implementation
	Handling Generalized Hypertree Decompositions
	Algorithm Execution

	Experimental Evaluation
	Methodology
	Experimental setup

	Results and Discussion
	Space usage
	Query decompositions
	General execution time
	Pruning during semijoin
	Reduction Parallelization

	Conclusion
	Future Work

	Bibliography
	Appendix Space Usage of GHD-optimal algorithm

