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Resumen

El principal objetivo de los sistemas de recuperacion de informacién (SRI) es encontrar, lo
més rapido posible, la mejor respuesta para una consulta de un usuario. Esta no es una
tarea simple: la cantidad de informaciéon que los SRI manejan es tipicamente demasiado
grande como para permitir busquedas secuenciales, por lo que es necesario la construccion de
indices. Sin embargo, la memoria es un recurso limitado, por lo que estos deben ser eficientes
en espacio y al mismo tiempo rapidos para lidiar con las demandas de eficiencia y calidad.
La tarea de disenar e implementar un indice que otorgue un buen compromiso en velocidad
y espacio es desafiante tanto del punto de vista tedrico como préctico. En esta tesis nos
enfocamos en el uso, diseno e implementacion de estructuras de datos compactas para crear
nuevos indices que sean més rapidos y consuman menos espacio, pensando en ser utilizados
en SRI sobre lenguaje natural.

Nuestra primera contribucién es una nueva estructura de datos que compite con el indice
invertido, que es la estructura clésica usada en SRIs por mas de 40 anos. Nuestra nueva
estructura, llamada Treaps Invertidos, requiere espacio similar a las mejores alternativas en
el estado del arte, pero es un orden de magnitud mas rapido en varias consultas de interés,
especialmente cuando se recuperan unos pocos cientos de documentos. Ademés presentamos
una version incremental que permite actualizar el indice a medida que se van agregando
nuevos documentos a la coleccion. También presentamos la implementaciéon de una idea
teodrica introducida por Navarro y Puglisi, llamada Dual-Sorted, implementando operaciones
complejas en estructuras de datos compactas.

En un caso mas general, los SRI permiten indexar y buscar en colecciones formadas
por secuencias de simbolos, no solamente palabras. En este escenario, Navarro y Nekrich
presentaron una solucién que es 6ptima en tiempo, que requiere de espacio lineal y es capaz
de recuperar los mejores k documentos de una coleccién. Sin embargo, esta solucion tedrica
requiere mas de 80 veces el tamano de la coleccion, haciéndola poco atractiva en la practica.
En esta tesis implementamos un indice que sigue las ideas de la solucion 6ptima. Disenamos e
implementamos nuevas estructuras de datos compactas y las ensamblamos para construir un
indice que es 6rdenes de magnitud més rapido que las alternativas existentes y es competitivo
en términos de espacio. Ademés, mostramos que nuestra implementacion puede ser adaptada
facilmente para soportar colecciones de texto que contengan lenguaje natural, en cuyo caso
el indice es méas poderoso que los indices invertidos para contestar consultas de frases.

Finalmente, mostramos céomo las estructuras de datos, algoritmos y técnicas desarrolladas
en esta tesis pueden ser extendidas a otros escenarios que son importantes para los SRI. En
este sentido, presentamos una técnica que realiza agregacion de informacion de forma eficiente
en grillas bidimensionales, una representacion eficiente de registros de accesos a sitios web que
permite realizar operaciones necesarias para mineria de datos, y un nuevo indice que mejora
las herramientas existentes para representar colecciones de trazas de paquetes de red.



Abstract

The ultimate goal of modern Information Retrieval (IR) systems is to retrieve, as quickly as
possible, the best possible answer given a user’s query. This is not a simple task: the amount
of data that IR systems handle is typically too large to admit sequential query processing,
so IR systems need to build indexes to speed up queries. However, memory resources are
limited, so indexes need to be space-efficient and, at the same time, fast enough to cope
with current efficiency and quality standards. The task of designing and implementing an
index that provides good trade-offs in terms of space and time is challenging from both a
theoretical and a practical point of view. In this thesis we focus on the use, design and
implementation of compact data structures to assemble new faster and smaller indexes for
information retrieval on natural language.

We start by introducing a new data structure that competes with the inverted index, the
structure that has been used for 40 years to implement IR system. We call this new index
Inverted Treaps and show that it uses similar space as state-of-the-art alternatives, but it
is up to an order of magnitude faster at queries, particularly when less than a few hundred
documents are returned. In addition, we introduce an incremental version that supports
online indexing of new documents as they are added to the collection. We also present the
implementation of a theoretical idea introduced by Navarro and Puglisi, dubbed Dual-Sorted,
by engineering complex query processing algorithms on compact data structures.

In a more general scenario, IR systems are required to handle collections containing ar-
bitrary sequences of symbols instead of just words. On general string collections Navarro
and Nekrich introduced a time-optimal and linear-space solution for retrieving the top-k best
documents from a string collection given a pattern. However, in practice, the theoretical
solution requires more than 80 times the size of the collection, making it unpractical. In
this thesis, we implement an index following the ideas of the optimal solution. We design
and engineer new compact data structures and assemble them to construct a compact index
that is orders of magnitude faster than state-of-the-art alternatives and is competitive in
terms of space. We also show that our implementation can be easily adapted to support text
collections of natural language, in which case the index is much more powerful than inverted
indexes to handle phrase queries.

Finally, we show how the data structures, algorithms and techniques developed in this
thesis can be extended to other scenarios that are important for IR. We present a technique
to perform efficient aggregated queries on two-dimensional grids. We also present a space-
efficient representation of web access logs, which supports fast operations required by web
usage mining processes. Finally, we introduce a new space-efficient index that performs
fast query processing on network packet traces and outperforms similar existing networking
tools.
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What, Why and How



Chapter 1

Introduction

We are facing an information overload problem [6]. The huge amount of information gener-
ated by users on the Internet is making the task of storing, searching and retrieving relevant
information a big challenge for computer scientists and engineers. Modern Information Re-
trieval (IR) systems [40, 50, I7] have to deal with this humongous amount of data while
serving millions of queries per day on billions of Web pages. The most prominent challenges
when building IR systems are (1) quality, (2) time, and (3) space. The quality problem boils
down to defining a suitable score scheme that returns the best possible answer to a user’s
query. Score functions range from very simple (such as “term frequency”, the number of times
the query appears in the document) to very sophisticated ones. In many cases, a simple score
function is used to filter a few hundred candidate documents and more sophisticated rankings
are then computed on those [40 [105]. This is because of the second concern, time. Text
collections are usually too large to admit a sequential query processing. Indexes are data
structures built on the text to speed up queries, and this is connected with the third chal-
lenge: space. Designing and implementing an index that provides a good trade-off in terms
of space and time is a challenging problem from both a theoretical and a practical point of
view.

Compact Data Structures is a Computer Science research field motivated by the need
to handle increasing amounts of data in main memory while taking advantage of the large
performance gap between the different levels of the memory hierarchy. It has achieved impor-
tant theoretical and practical breakthroughs, such as representing trees of n nodes using just
2n + o(n) bits while supporting powerful constant-time navigation [14], representing texts
within their high-order entropy space while supporting fast extraction of arbitrary segments
and pattern searches [I18] [66] or representing Web graphs within about 1 bit per edge [29],
just to name a few. An area that has surprisingly remained outside of this recent virtuous
circle of achievements is IR. IR is precisely where most of the early research on compressed
text and index representations focused. The combination of text and index compression is
a classical topic treated in IR textbooks over the past decade [17, [166]. It might be argued
that IR has not been included in recent research because space efficiency is a closed problem
in this area, but this is not the case.

The inverted indez is the central data structure in every IR system. No matter if the index



is stored on disk or in main memory, reducing its size is crucial. On disk, it reduces transfer
time. In main memory, it increases the size of the collections that can be managed within
a given RAM budget, or alternatively reduces the number of servers that must be allocated
in a cluster to hold the index, the energy they consume, and the amount of communication
in the network. Compression of inverted indexes is possibly the oldest and most successful
application of compressed data structures (e.g., see Witten et al. [166]).

Inverted indexes have been designed for so-called Natural Language scenarios, that is,
where queryable terms are predefined and are not too numerous as compared to the size of
the collection. For example, they work very well on collections where the documents can be
easily tokenized into “words”, and queries are also formed by words. This scenario is common
for documents written in most Western languages. However, inverted indexes are not suitable
for documents where words are difficult to segment, such as documents written in East Asian
languages, or in agglutinating languages such as Finnish and German, where one needs to
search for particles inside the words. There are also sequence collections with no concept of
words such as software source repositories, MIDI streams, DNA and protein sequences. We
will refer to these sequences as general sequences. These scenarios are more complicated to
handle, since virtually any text substring is a potential query.

IR systems have to provide very precise results in response to user queries, often identifying
a few relevant documents among increasingly larger collections. These requirements can be
addressed via a two-stage ranking process [163, [40]. In the first stage, a fast and simple
filtration procedure extracts a subset of a few hundred or thousand candidates from the
possibly billions of documents forming the collection. In the second stage, more complex
learned ranking algorithms are applied to the reduced candidate set to obtain a handful of
high-quality results. In this thesis, we focus on improving the efficiency of the first stage,
freeing more resources for the second stage and thus increasing the overall performance. Top-
k query processing is the key operation for solving the first stage. Given a query, the idea is
to retrieve the k£ most “relevant” documents associated to that query for some definition of
relevance.

In the case of solving top-k query processing on natural language collections, the inverted
index requires extra data structures and complex algorithms in order to avoid having to
perform a full evaluation of all documents. Authors in the past [152, [12],[59, [131], [13] proposed
different algorithms, index organizations, and compression techniques to reduce the amount
of work that a top-k query requires, and hopefully, reduce the size of the index at the same
time. Despite the existing findings, we show that with a combination of recent well-engineered
compact data structures and new algorithms, there is still room for improvement.

In order to handle the case of indexing a general sequence, traditional solutions build a
suffix tree [164] or a suffiz array [107], which are both indexes that can count and list all
the individual occurrences of a string in the collection, in optimal or near-optimal time. Still
this functionality is not sufficient to solve top-k query processing efficiently. The problem of
finding top-k documents containing a substring, even with a simple relevance measure like
term frequency, is challenging. Current state of the art solutions are complex to implement
and their solutions demand 3 to 5 times the size of the data, making them impractical for
large-scale scenarios.



In this thesis we present new compact indexes for IR on natural language, and also show
extensions of these techniques to other relevant IR scenarios. In the first part we provide a
comprehensive study of the basic concepts, compact data structures, and techniques that are
employed.

In the second part, we present two new representations of the inverted index and new
query algorithms for solving the top-k problem. The first technique is dubbed Dual-Sorted
and is based on the work of Navarro and Puglisi [122]. We present this data structure and
the implementation details for making it space-efficient and competitive in terms of query
processing times. The second technique is dubbed inverted treaps, which is based on the treap
data structure for representing the key elements of an inverted index and allows performing
efficient top-k query processing algorithms. We also present an incremental version of this
data structure, that can be applied in more complex scenarios. We performed comprehensive
experiments and compared these new approaches to existing state-of-the-art techniques.

In the third part, we show a new compact index for solving top-k document retrieval
problem on general sequences, based on an optimal theoretical solution presented by Navarro
and Nekrich [I19]. In this part we also present two techniques that are fundamental for an
efficient implementation of the theoretical solution, for solving top-k two-sided queries on
two-dimensional grids. For solving these queries, we introduce a new data structure, named
the K2-treap. At the end of this part, we present an experimental study of this index for
general sequences and also for natural language. Our index is considerably faster than other
approaches that are within the same space requirements.

In the fourth part we show how these techniques can be extended to other scenarios that
are relevant for IR systems such as web access logs, indexing network packet traces and for
solving aggregated two-dimensional queries on OLAP databases.

Finally, in the fifth part, we conclude with the main contributions of this thesis and discuss
the future work.

Figure[L.1I]shows the outline of this thesis, separated by parts and their main contributions.

1.1 Publications derived from the Thesis

The main contributions of this thesis have appeared in the following articles. We categorize
the conference articles according to the CORE conference ranking (http://core.edu.au/
index.php/conference-rankings).

Journals

1. Practical Compact Indexes for Top-k Document Retrieval. Simon Gog, Roberto Konow
and Gonzalo Navarro. ACM Journal of Ezperimental Algorithms (JEA). Submitted
2016. The main results of this article are discussed in Part [TI.

2. Inverted Treaps. Roberto Konow, Gonzalo Navarro, Charles L.A Clarke and Alex
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Figure 1.1: Outline of this thesis. Dotted lines represent extensions and applications derived
from the main data structures and algorithms developed in the thesis.
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D.

Lopez-Ortiz. ACM Transactions on Information Systems (TOILS). Submitted 2016.
Part [l discusses the main results of this article.

. Aggregated 2D Range Queries on Clustered Points [33]. Nieves R. Brisaboa, Guillermo

de Bernardo, Roberto Konow, Gonzalo Navarro and Diego Seco. Information Systems,
pages 34-49, 2016. Chapter [I0] and Chapter [7] describes the main results of this article.

. PcapWT: An Efficient Packet Extraction Tool for Large Volume Network Traces [9].

Young-Hwan Kim, Roberto Konow, Diego Dujovne, Thierry Turletti, Walid Dabbous,
and Gonzalo Navarro. Computer Networks, 79:91-102, 2015. Chapter [12] describes the
results of this article.

Conferences

Faster and Smaller Inverted Indices with Treaps [10I] . Roberto Konow, Gonzalo
Navarro, Charles Clarke, and Alejandro Lopez-Ortiz. Proceedings of the 36th ACM
Special Interest Group in Information Retrieval (SIGIR) Conference, pages 193-202,
2013. Part [T discusses the main results of this article.

. Faster Compact Top-k Document Retrieval [I00]. Roberto Konow and Gonzalo Navarro.

Proceedings of the 23rd Data Compression Conference (DCC), pages 351-360, 2013.
Part [[ITl discusses the main results of this article.



B Conferences

7. K*-Treaps: Range Top-k Queries in Compact Space [32]. Nieves Brisaboa, Guillermo
de Bernardo, Roberto Konow, and Gonzalo Navarro. Proceedings of the 21st String
Processing and Information Retrieval conference (SPIRE), pages 215-226. LNCS 8799,
2014. Chapter [I0] describes the results of this article.

8. Efficient Representation of Web Access Logs [45]. Francisco Claude, Roberto Konow,
and Gonzalo Navarro. Proceedings of the 21st String Processing and Information Re-
trieval conference (SPIRE), pages 65-76. LNCS 8799, 2014. Chapter [11| describes the

results of this article.

9. Dual-Sorted Inverted Lists in Practice[99]. Roberto Konow and Gonzalo Navarro. Pro-
ceedings of 19th the String Processing and Information Retrieval conference (SPIRE),
pages 295-306. LNCS 7608, 2012. Section [3.3]and Chapter [5] describes the main results
of this article.
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1.3 Research Stays and Internships
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Tutundjian. Manager: Anand Lakshminath. June 2014 to September 2014.



Chapter 2

Basic Concepts

In this chapter, we define and explain the main concepts, data structures, and algorithms
that are employed in the development of this thesis.

2.1 Computation model

All data structures used in this thesis work in the word-RAM model. In this model, the
memory is divided into cells storing words of w = ©(logn) bits, where n is the size of
the data. Any cell can be accessed and modified in constant time and is able to represent
any integer in the set {0,...,2* — 1}. In addition, other operations such as arithmetic
operations, comparisons, and bitwise Boolean operations (and, or, exclusive-or, <<, >>),
are also considered to require constant time.

2.2 Sequences, Documents and Collections

We define a sequence S of length n that contains symbols over an alphabet ¥ of size . We
define a collection of D documents D = {d;,ds, . ..,dp} containing symbols from an alphabet
Y of size o, and |d;| denotes the number of symbols of document d;. The total length of the
collection is Zi’;l |d;| = n and we call C the concatenation of its documents, where at the
end of each d; a special symbol # is used to mark the end of that document and the symbol
$ marks the end of the collection. It holds $ < # < ¢ for all ¢ € ¥. Figure shows an
example of a collection containing 3 documents with a total length of n = 15.

Another scenario is when a collection of documents contains text of Natural Language.
In this case, the alphabet 3 can be divided into two disjoint sets: separators (i.e., space,
tab) that separate words, and symbols that belong to the words. The set of distinct words
form what is called the vocabulary of the collection. Natural language collections follow two
empirical laws that are well accepted in IR [17]: Heaps’ Law and Zipf’s law. Heaps’ law
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Figure 2.1: Concatenation C of our 3-document example collection D.

states that the vocabulary of a text of n words is of size V = Kn® = O(n?), where K and
depends on the text and 0 < § < 1. On the other hand, Zipf’s law attempts to capture the
distribution of the frequencies, that is, the number of occurrences of the words in the text.
It states that the i—th most frequent word in the collection has frequency f;/i*, where f
is the frequency of the most frequent word and « is a text dependent parameter. In other
words, these two laws establish that the number of distinct terms (the size of the vocabulary)
is much smaller than the collection, and that natural language documents contain few words
that occur frequently and many words that rarely occur in the text.

2.3 Empirical Entropy

A widely used measure of the compressibility of a fixed sequence is the empirical entropy
[137]. For a sequence S of length n containing symbols from an alphabet X of size o, the
zero-order entropy is defined as followsH

N n
Hy(S) = Z#ogn— (2.1)
cEX ¢

where n, is the number of occurrences of symbol ¢ in S. Hy(S) gives the average number of
bits needed to represent a symbol in S if the same symbol always receives the same code.

If we take into account the context in which the symbol appears, we can achieve better
compression ratios by extending the definition to the kth order empirical entropy:

m(s) = 3 s (2.2

where §°¢ is the sequence of symbols preceded by the context ¢ in S. It can be proved that
0 < Hi(S) < Hp1(S) < -+ < Hy(S) < logo.

2.4 Huffman Codes

Given a sequence S[1,n| = 1, x, . .., x, containing n elements from an alphabet of size o, we
can encode each value of the sequence using |log, o | + 1 bits E| However, this representation

We will always use log z to denote log, x, unless otherwise stated.
2 Assuming it is possible to map any symbol to an integer in [1..0].



does not take into account that some elements may appear more frequently than others and
thus we can represent the sequence in a more efficient way. One way to reduce the space
is to use variable-length codes, that is, employ codes that have different amounts of bits for
different symbols. One family of variable-length codes are the ones that take advantage of
statistical properties of the sequences and are referred to as statistical codes. The idea is
to assign smaller codes to the symbols that occur more frequently and larger codes for the
infrequent symbols. However, the task of assigning codes is not trivial: on the one hand, they
have to be as small as possible, on the other hand, they have to be prefiz-free. Prefix-free
codes are uniquely decodable codes, since there is no code that is a prefix of another one.

Huffman codes [89] are prefix-free codes and belong to the family of statistical encoders.
They represent a sequence S[1,n] using less than Hy(S)+ 1 bits per symbol, which is optimal
(among methods that encode symbols separately). The algorithm to generate the codes
builds what is known as a Huffman tree and is used to assign different codes to the symbols.
The procedure to generate such codes and building the tree is as follows: first, one node for
each distinct symbol is created; these are regarded as leaf nodes and store the symbol and
its frequency of occurrences in S. The two least frequent nodes, x and y, are then taken out
of the set of nodes and merged together into a new internal node v, which is assigned as the
parent of x and y. The frequency of v is the sum of the frequencies of its children. This
procedure is repeated as long as two or more nodes remain without merging. The process
finishes when a unique node remains, which is the root of the Huffman tree. Every left branch
is labeled as 0 and the right one is labeled as 1. The code for each symbol is generated as
the concatenation of the labels of the traversal path from the root to its leaf. The Huffman
tree can be constructed in O(ologo) time if the symbols are not sorted according to their
frequencies and in O(o) time if the symbols are sorted. The encoding procedure has to store
the codeword lengths. An example of the Huffman tree and the generated codes are shown

in Figure[2.2]

2.5 Integer Encoding Mechanisms

Given a sequence of positive integers S[1,n] = x1,...,z,, and letting M be the maximum
integer in that sequence, it is possible to be represented using [log, M| bits per element and
have access to any position in constant time. One problem with this representation is that
it is not space-efficient if many integers are much smaller than others, so it is possible to
represent the sequence more efficiently. For instance, we can use statistical compression such
as Huffman codes. However, in some applications smaller values are more frequent, so in
this case one can directly encode the numbers with codes that give shorter codes to smaller
numbers. The advantage with this idea is that it is not necessary to store a mapping of
the symbols to their codes, which can be prohibitive when the set of distinct numbers is too
large.

In this section we briefly describe the most used and popular encoding mechanisms for
integer sequences. We assume that the integer to be encoded is positive (x > 0) and we
define BINARY (z, ) as a function that returns the binary representation of a positive integer
x using ¢ bits by adding leading zeroes as needed. We will refer to |x| as the number of bits
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Figure 2.2: Top: A sequence over ¥ = [1,8]. The Huffman tree and the resulting Huffman
codes are shown below. Numbers next to the tree nodes represent the accumulated frequency
of that node.

that are needed to represent = in binary.

2.5.1 Bit-aligned Codes

Bit-aligned codes are used in the case of representing sequences containing small integers.
We describe here the most representative codes of this family of encodings. We show an
example of the encodings in Table

Unary Codes [143]. An integer z > 1 is coded as a binary sequence with  — 1 one bits
followed by a zero bit, UNARY(x) = 1°710. For example, the integer 4 is represented as
UNARY (4) = 1110. This encoding mechanism is usually only suitable for very small x values.

Gamma Codes (7) [143]. Gamma codes represent |z| using unary code and then con-
catenate it with the binary representation of x —2!°6%) or, in other words, = without its most
significant bit. It is defined as v(x) = UNARY(|2|)BINARY (x — 2°¢%) |z| — 1). For example,
consider the number x = 7, and the binary length of the binary code is |z| = 1+ |log 7] =3
(110 in unary) and 7 — 2% = 3 (11 in binary), the concatenation is the binary sequence
~(7) = 11011. The amount of bits required for coding any = using v codes is 1 + 2|log x|
bits.
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Delta Codes [143]. The idea is to represent the length of the code using < encoding
and then concatenate it with the binary representation of the symbol z without its most
significant bit. That is d(x) = v(|z|)BINARY (v — 21°82] |z| —1). For z = 7, the length of the
binary code is |z| = 3, so it is represented as 101 using v encoding. The final representation
is 10111. Encoding a number using Delta codes uses 1 + 2[loglog(z + 1)| + [logz| bits and
it may be of interest when z is too large to be efficiently represented by ~+ codes.

Rice Codes [138], 143]. Rice Codes receive two values as inputs: the symbol z and a
parameter b. The encoding is performed by representing ¢ = |(z — 1)/2°] in unary and then
representing r = n—¢2?—1 in binary using b bits. The final code is the concatenation of r and
q as RICE(x) = UNARY([(x — 1)/2°])BINARY(n — ¢2° — 1,b). Consider the same example as
before with = 7 and choosing b = 2. UNARY(|6/4]) = 10 and BINARY((7 —4 — 1),b) = 10,
therefore RICE(7) = 1010. Rice codes require | (x — 1)/2°] + b+ 1 bits in total.

Integer | Unary v ) Rice(b = 2)
1 0 0 0 000
2 10 100 1000 001
3 110 101 1001 010
4 1110 11000 10100 011
) 11110 11001 10101 1000
6 111110 11010 10110 1001
7 1111110 11011 10111 1010
8 11111110 1110000 11000000 1011
9 111111110 1110001 11000001 11000
10 1111111110 1110010 11000010 11001

Table 2.1: Encoding positive integers using different bit-aligned encoding techniques.

2.5.2 Byte-aligned Codes

Bit-aligned codes can be inefficient at decoding since they require several bitwise operations
which are not always efficiently implemented. Therefore, byte-aligned [147] or word-aligned
codes [168], [IT] are preferred when the speed is the main concern. Examples of this family
of techniques are Variable Byte (VByte), Simple9, and PForDelta. We briefly describe the
most representative methods of this family below:

Simple-9 [11I]. Simple-9 is a 32-bit word-aligned encoding scheme. This mechanism packs
as many numbers as possible into a 32-bit word by assigning an equal number of bits to each
symbol. A selector value (b) has to be chosen and is encoded using 4 bits in a 32 bit word.
The rest of the 28 bits from the 32-bit word will store as many integers as possible using a
fixed amount of bits that depends on the selector value. We show in Table 2.2 the number
of integers in a 32-bit word for different selector b values, the bits per integer (bpi) that are
used and amount of bits that are not used. Other versions [I3] extend this approach to make
use of 64-bit words, having 60 bits instead of 28 bits available for data.

11



Selector b | Ints | bpi | wasted bits
0 1 28 0
1 2 14 0
2 3 9 1
3 4 7 0
4 5 5 3
5 7 4 0
6 9 3 1
7 14 2 0
8 28 1 0

Table 2.2: Different configurations for Simple9 depending on the selector value b

Variable Byte [165]. Variable Byte (vByte) is designed to represent large integers. The
idea is to split the integer x; into [|x|/7] byte chunks using 7 bits as payload and the most
significant bit is used as a “continuation” bit. The continuation bit is set to 0 for the last byte
of x; and to 1 if another byte needs to be read. In practice, vByte provides a good trade-off
between space and time, and is also considered simple to implement.

Varint [56]. Varint is Google’s version of vByte that improves the decoding performance
by reducing the branch miss-prediction caused by the continuation bit. The main difference
is the use of two bits containing the exact amount of bytes that are required to be read at
the beginning of the encoding chunks. Therefore, except for the first chunk, one can use the
complete word for the other chunks. In practice, Varint decoding speed can be up to four
times faster than vByte.

PForDelta [172]. PForDelta provides a very simple and fast decoding, which is usually
preferable for many applications. This mechanism analyzes a fixed-size block of integers and
chooses a sufficient number of bits to represent most of them. For example, suppose that in
a block of 128 integer numbers, 90% of them are smaller than 32. We can then choose b, the
number of bits per integer as 5, since most of the numbers will fit in 5 bits. Now we allocate
128 x 5 bits, plus some extra space for the 10% that will not fit into 5 bits. In practice, this
scheme is one of the fastest for decoding and achieves good compression ratios.

SIMD based. A recent trend exploits the advantages of SIMD operations available on
modern CPUs. For example, Varint-G8IU [I5]] tries to encode as many integers as possible
into 8 consecutive bytes preceded by a one-byte descriptor, and uses SIMD instructions to
encode/decode. Another example is the SIMD-BP128 [151] encoding mechanism, which can
be seen as an adaptation of Simple9 using 128-bit SIMD words.

QMX. Recently, Trotman [157] introduced a new mechanism to encode integers, called
QMX. This encoding scheme combines word-aligned, SIMD and run-length techniques, re-
sulting in a highly space effective and extremely quick decoding scheme.

12



2.6 Rank, Select and Access

Three basic operations that are widely used in succinct data structures are RANK, SELECT
and ACCESS in sequences. Given a sequence S[1,n] containing symbols from an alphabet %
of size o, these operations are defined as follows.

e RANK,(S, z) returns the number of elements equal to b up to position z.
e SELECT,(S, x) returns the position of the z-th occurrence of b in B.

e ACCESS(S, x) returns the symbol at position = of the sequence. This operation will also

be denoted as S|x].

Figure shows an example of RANK and SELECT operations over a binary sequence S.

4= 1 2 3 4 5 6 7 8 9 10 11
s=lofofafafa]of1{ofof1]1]
\ ) A
RANK,(S,5) = 3 SELECT,(S,6) = 11
RANKO(S,E)) =2 SELECTO(S,4) =8

Figure 2.3: Example of RANK and SELECT operations on a binary sequence S[1, 11].

2.6.1 Binary Sequences

We describe how RANK and SELECT operations can be efficiently performed in the special
case of sequences B[l,n| containing binary symbols (o = 2).

Uncompressed solution We describe the classic representation introduced by Munro
[113] and Clark [44] that requires o(n) bits of extra space to the n bits required for the
sequence. This solution is able to answer RANK, SELECT and ACCESS in constant time. In
order to answer RANK we start by dividing the sequence B in super-blocks of length s = log; ,
We store in an array S[1, %] the corresponding answers for each RANK up to the end of each
super-block. There are n/s values to be stored in array S, and none of them can be bigger

than n, so the space required for this array is = logn = lfg”n = o(n) bits. We proceed with

another subdivision of B into smaller blocks of length b = k’% bits. Each super-block of size
s has s/b blocks. We store into an array R[1,n/b] the corresponding RANK results relative to
each super block. Each value of R therefore requires at most log s bits. Summing up, we have
2logs = inogl(olggin)/Q) < 4”11((’213“ = o(n) bits. Finally, a table T[1,2%][1,b] is constructed
containing the pre-computed results of RANK for any position of any segment of b bits. There
are 2° possible sequences of bits of size b, and for each one the maximum value is b, requiring
in total 2°-blogb < \/TE lognloglogn = o(n) bits for storing table T'. To answer RANK; (B, 1)

we proceed as follows: we determine the relative positions of ¢ in the arrays S, R and table
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T, such that 7 is decomposed as ¢ = j- s+ k-b+r. To obtain the final result we continue by
summing S[j] + R[j(3) + k] + T[B[j-s+k-b,j-s+ (k+1)-b]][r]. Note that we can answer
RANK((B, i) by performing i — RANK; (B, ).

In order to support SELECT in constant-time a similar procedure is performed: instead
of dividing the sequence into blocks and super-blocks of fixed size, we divide the sequence
according to the number of bits that are set. This way, we have blocks of variable length but
every block will contain a fixed amount of 1’s inside them. As before, a similar table T" with
precomputed values is constructed and stored.

An implementation of this solution was introduced by Gonzalez et al. [80] supporting
RANK and ACCESS in constant time and SELECT in O(logn) time E] Experimental results
show that this implementation requires only 5% extra space of the original sequence to
support these operations. We will refer to this implementation as RG. In practice, operation
SELECT,(B, z) is answered by performing a binary search on the values from the arrays S[1, 2]
and R[1,n/b] and then sequentially scanning until the the position where the number of ones
equals x.

Compressed solution. A compressed representation of the bitmap B that is able to an-
swer RANK and SELECT operations was presented by Raman et al. [I35] [136]. Their solution
reduces the space required to represent the bitmap to nHy(B) + o(n) bits.

The idea is to divide the sequence into blocks of size b = log". A block will be assigned to
a class ¢; if it contains exactly ¢; 1s. Since each block has b bits, we have at most b+ 1 classes.
However, each class ¢; has at most ( ) different shuffles of its bits. We can represent any
block B; as a pair (¢;, 0;), where ¢; indicates the class and 0; is the offset within that class. For
example, the class ¢, for blocks of length b = 3 containing 2 ones is ¢; = {011,101,110} and
their offsets are oo = {0, 1,2}. The binary representation of each class ¢; requires [log(b+1)]
bits. We will store in a sequence C[1, [n/b]] the class of each block, requiring a total of
[n/b]log(b + 1)] = (n/b)logb + O(n/b) bits. The offsets o; are stored separately in a
sequence O[1,n/b], and each o; component requires [log (fﬂ bits, so the total space in bits
for representing sequence O[1,n/b] is:

> e (2)] < s (1) bt <o TT () + i

=1

log (Z) + [n/b] < nHy(B) + [n/b]
where m is the number of 1’s in the sequence [128].

In order to support RANK and SELECT operations we still need to add additional arrays
storing relative results, pointers and precomputed tables, similarly to the uncompressed so-
lution. Raman et al. [I36] solution obtains a final space bound of nHy(B) + o(n). We will
refer to practical implementations of this approach as RRR. In practice, the cost of handling

3Please note, that even though SELECT can be solved in O(1), most implementations use a binary search
to solve select, thus making the implementation of SELECTO(logn) time
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a reduced-space bitmap is that queries are up to two times slower than the uncompressed
alternative (RG).

Other solutions. Several other practical implementations have been proposed. Okahonara
and Sadakane [126] presented a data structure called SDArray that requires nHy(B) + 2m +
o(m) bits for representing a bitmap with m 1s. It is able to support SELECT in constant time,
and RANK and ACCESS in time O(log(n/m)). Vigna [160] introduced an implementation that
uses SIMD words to improve the space and speed of RANK and ACCESS operations. Navarro
and Providel [134, [121] presented a new representation that improved the space/time tradeoffs
for SELECT operations. Recently, Kérkkéinen et al. [97] introduced the hybrid bit vector which
divides the bitmap into blocks and then chooses the best encoding of each block separately
from the techniques previously described. Most of the techniques previously described were
implemented and improved to support large bit sequences by Gog et al. [77].

2.6.2 General Sequences

There are different approaches for solving RANK, SELECT and ACCESS for the case of general
sequences (i.e., 0 > 2). A naive solution consists in creating a bitmap B;[1,n] for each
distinct symbol ¢ € X, by setting B;[x] = 1 iff S[z] = i. The operations RANK and SELECT
can then be solved by querying the corresponding bitmap B;. However, this solution requires
no + o(no) bits if an uncompressed solution is used (i.e., RG). Another drawback of this
solution is that one has to traverse o bitmaps in order to answer ACCESS in the worst case,
making it unpractical for sequences having large alphabets. We can improve the size by using
the SDArray, where the space becomes nHy(S) + O(n) bits, however method ACCESS is still
inefficient.

The most popular data structure employed to solve RANK, SELECT and ACCESS operations
on general sequences is the wavelet tree [81) 117] . We describe in detail the properties and
virtues of this structure in Section Other very competitive alternatives are GMR [79] and
Alphabet Partitioning (AP) [19] solutions. We briefly describe these solutions below, however
we do not explain how the inner mechanisms work.

GMR. Golynski et al. [79] presented a data structure that uses nlog o+ o(nlogo) bits and
answers SELECT in constant time. This data structure requires O(loglog o) time to answer
ACCESS and RANK operations. GMR is of interest when the speed of the operations is the main
concern and for big alphabets, since the size of the final structure is not compressed.

Alphabet Partitioning. In the case where the alphabet of the sequence is big and the
size is the main concern, the technique called alphabet partitioning is preferred. It supports
RANK, SELECT, and ACCESS operations in O(loglog o) time and represents the sequence S
in nHy(S) + o(nHy(S) + n) bits.
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2.7 Wayvelet Tree

In this section we describe the main properties and operations of the wavelet tree |81, [117].
We start by describing the composition of the data structure and then explain how the wavelet
tree answers RANK, SELECT and ACCESS operations. We then describe other applications of
the wavelet trees when representing grids.

2.7.1 Data Structure

Let S[1,n] be a sequence of symbols from a finite alphabet ¥ of size . For simplicity we will
assume that ¥ = [1..0]. The wavelet tree over an alphabet [a..b] C [1..0] is a balanced binary
tree that stores a bit sequence in every node except the leaves. It has b — a 4+ 1 leaves and
if @ # b it has at least an internal node, v,,,; that represents S[1,n]. The root of the tree is
represented by a bit sequence, B, ,[1, 7], and is defined as follows: if S[i] < (a + b)/2 then
B,,..,[7] is marked with a ‘0’, and if S[i] > (a + b)/2 then B, _,[i] is marked with a ‘1’. We
define Sjefi[1, nieyi] as the subsequence of symbols from S[1,7n| that were marked with a ‘0’
in B,,,,,, that is, all symbols ¢ in S[1,n] such that ¢ < (a + b)/2. Let Syigne[1, nrignt] be the
sequence of symbols that were marked with a ‘1’ in B,, ,,, that is, all symbols ¢ such that
¢ > (a+0b)/2. The left child of v, is going to be a wavelet tree of a sequence Spesi[1, Nyest
over an alphabet [a..[(a + )/2]] and the right child of v,,, is a wavelet tree of the sequence
Sright|1, Nyignt) over an alphabet [1 4 |(a + b)/2]..b]. This decomposition is done recursively
until the alphabet of the subsequence is a single symbol. The tree has o leaves and each level
of the tree requires n bits. The height of the tree is [logo], thus we need n[logo] bits to
represent the tree.

Each bit sequence at every level must be capable of answering ACCESS, RANK and SELECT
queries, thus we can use the RG or RRR representation to represent the bit sequences. If RG is
employed, the wavelet tree requires nlog o+ o(nlog o) bits. On the other hand, if we use RRR
to represent the bit sequences at each level, the wavelet tree uses nHy(S) + o(nlog o) bits of
space. If we want to compress the data structure even more, we can change the shape of the
tree to the shape of the Huffman tree of the symbols frequencies appearing in S. Figure
shows an example of a regular wavelet tree and a Huffman shaped wavelet tree is shown on
Figure [2.5]

2.7.2 Rank, Select and Access

The regular wavelet tree answers RANK, SELECT and ACCESS in O(logo) time, that is to
say, the execution time depends only on the size of the alphabet, not on the length of the
sequence. If a Huffman shaped wavelet tree is employed, the average time required of these
operations is O(1 4+ Hy(S)).

We define LABELS(v) as a method that returns the set of symbols that belong to the
subrange [a..b] C [1..0] from the sequence represented by node v and we will refer to v; or v,
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as the left or right child of node v respectively.

We will explain how to perform ACCESS operation through an example based on the
wavelet tree from Figure . Let us assume that we want to perform ACCESS(S,6), that
is, return the symbol located at position 6. We start at position 6 of the root bit sequence
(By,,..) and ask if the corresponding bit is marked as ‘1’ or ‘0’. If the bit is ‘0’, we go to the
left branch, if not, to the right. In this case B,,,,,[6] = 1, so we go to the right branch of the
tree. Now we have to map the original position (x = 6) to the corresponding position at the
right branch. In other words, we want to know how many 1’s were at the root bit sequence up
to position 6. We can easily do this in constant time by performing the operation supported
by RG and RRR bit sequences: RANK;(DB,,,,,,6), which returns the value 3. Using this value
we can now go to the right node of the root, v, and execute the same procedure. The value
at B,,,,,[3] is 0 so we know we have to go to the left and count how many values to the left
exist in B, by executing RANKy(B,,3) = 2. This process is done recursively until we reach
a leaf. Algorithm (1| shows this procedure as ACC(v,x). Note that we do not need to store
the label at the leaves; they are deduced as we successively restrict the subrange [a..b] as we
descend down the tree.

Algorithm 1: Basic wavelet tree algorithms: On the wavelet tree of sequence S,
ACC(Upoot, ) returns S|x]; RNK(Vpoot, j,b) Teturns RANKy(S, x); and SEL(Upoer, T, b) Te-
turns SELECT,(S, ).

ACC(v, x) RNK (v, z, b) SEL(v, z, b)
o1 if v is a leaf then if v is a leaf then if v is a leaf then
02 return LABELS(v) return x return x
03 if B,[x] =0 then if b € LABELS (v;) then if b € LABELS (v;) then
04 T < RANKq(v, ) T < RANK((B,, x) x < SEL(vy, x,b)
05 return ACC(v, x) return RNK(v;, z, b) return SELECT((B,, x)
o6 else else else
07 T+ RANK{ (v, 7) T < RANK{(B,, 1) x < SEL(v,, z,b)
08 return ACC(v,,x) return RNK(v,, z, b) return SELECT, (B, x)

A similar procedure is performed for RANK,(S,z). We start at the root of the tree and
check if the symbol b belongs to the left or right child of the root. If the symbol belongs to the
left subtree, we transform the position x to a position in the the left subtree by performing
r = RANKq (B,,,,,,*) or * = RANK; (B,,,,,, ) if the symbol belongs to the right subtree.
This is done recursively until we reach a leaf, where the final answer is . Algorithm (1| shows
this procedure as RNK(v, x, b).

The case of SELECT,(S, ) is different: instead of starting at the root, we start at position
x of the leaf that represents symbol b in the wavelet tree. If the leaf is the left child of a
node v, then the z-th occurrence of symbol b in v is at position z = SELECTy(B,, x), and
if the leaf is the right child of v the x-th occurrence of b in v is located at the position
xr = SELECT; (B,, x). We continue this procedure until we reach the root bit sequence of the
wavelet tree B and return position z. Algorithm (1| shows this procedure as SEL(v, z,b).

Vroot
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Figure 2.4: Wavelet tree of the sequence S = 1511863875743288. The bitmaps are represented
below the sequences in grey. For example, B,,,; represents the bitmap corresponding to the
root of the wavelet tree. Note that none of the values shown in the cells need to be stored.
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Figure 2.5: Huffman shaped wavelet tree of an example sequence S = 1511863875743288.

2.7.3 Wayvelet Trees and Grids

An n x m grid with n points, exactly one per column (i.e.,  values are unique), can be
represented using a wavelet tree [106]. In this case, this is a perfect balanced binary tree of
height [logm| where each node corresponds to a contiguous range of values y € [1,m] and
represents the points falling in that y-range, sorted by increasing x-coordinate. The root
represents [1,m] and the two children of each node split its y-range by half, until the leaves
represent a single y-coordinate. Each internal node stores a bitmap, which tells whether
each point corresponds to its left or right child. Adding RANK and SELECT support on the
bitmaps, the wavelet tree uses nlogm + o(nlogm) bits. Any point can be tracked up (to
find its z-coordinate) or down (to find its y-coordinate) in O(logm) time as well. This case
can be interpreted as representing the grid of a sequence S[1,n] and each two dimensional
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point (x,y) is regarded as (i, S[i]).

When the grids contain more than one point per column, an additional bitmap B is used
to map from the original domain to a new domain that satisfies this constraint. This bitmap
stores, for each column, a bit 1 followed by as many zeros as the number of points in such
a column. Then, a range of columns [cp, ¢.p| in the original domain can be mapped to a
new range [RANKq (B, SELECT; (B, ¢sp) + 1), RANK (B, SELECT; (B, ¢¢p + 1))]. If the grid is
very sparse and/or the distribution of the data points is very skewed, this bitmap can be
compressible using RRR (recall Section . Figure shows the wavelet tree and the grid
interpretation of an example sequence.

The idea of representing grids using a similar structure to the wavelet tree was originally
introduced by Chazzelle [42], where the wavelet tree can be seen as a slight generalization of
a rather old (1988) data structure that is heavily used in computational geometry. The use
of a wavelet tree to represent grids was later rediscovered and extended [106], 120, 117].

2.7.4 Two-Dimensional Range Queries

The wavelet tree can also report, in O(occlog(m/occ)) time, the oce points lying inside a
rectangle [z1,xs] X [y1,ys] as follows: Start at the root node v, with the interval [z, zs]
and project those values towards the left and right nodes (v; and v, respectively). The range
of the projection to the left is [RANKq (B, x1 — 1) + 1),RANK (DB, 22)], and similarly to the
right with RANK; and B,. This is continued until reaching at most y, — y; + 1 wavelet tree
nodes that cover [y, y2]. Note that, if at some point a range becomes empty we can discard
that projection and if we enter a node whose symbols are disjoint from the range [y, yo],
we can also discard that traversal. As soon as we reach a leaf we can report the symbol
(i.e y-coordinate) including the number of occurrences in the range, o — x; + 1. Algorithm
shows this procedure as RANGE _REPORT. Algorithm [2] can also be extended to support
multiple ranges at the same time. At the bottom of Figure [2.6] we show in grey the range
corresponding to [10, 14] x [3,7]. The wavelet tree shows, also in grey background, the values
that belong to this range. This operation takes O(log o +m log %ﬁl) time, where m is the
number of reported points.

The wavelet tree also supports other operations that are useful for information retrieval
scenarios [I17, [75 [74]. The most relevant ones related to this thesis are briefly described
below:

RANGE _QUANTILE(z1, 2, k): Returns the kth smallest value in S[zq, x2] in time O(logm).

RANGE NEXT _VALUE(x1, 22, k): Returns the smallest S[v] > k value such that x; < v < x5
in O(logm) time.

RANGE_COUNT(x1,Z2,Y1,Y2): Returns the number of points that lie in a query rectangle
[1, 22] X [y1,92] in O(logm) time.
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Figure 2.6: Top: The wavelet tree for the sequence & = 1511863875743288. Bottom: The
grid representation of the sequence. The z— and y—ranges are shown in light grey, while their
intersection is shown in darker grey. The highlighted values on the wavelet tree correspond
to the ones that belong to the range [10, 14] x [3,7].

2.8 Directly Addressable Codes

Directly Addressable Codes (DAC) [34] is a variable-length encoding that is inspired by
vByte. Given a chunk length b and a sequence of positive integers S[1,n| = x1, 29, ..., Ty,
DAC divides each integer x; into [|z;|/b] chunks. Similar to vByte, DAC employs a ‘con-
tinuation’ bit, but instead of concatenating the encoding of x;,, after that of x;, it builds a
multi-layer data structure. Let M be the maximum element in the sequence, a DAC encoding
will contain ¢ = [|log(M) |+ (1/b)] layers consisting of two parts: (1) the lowest b bits of each
chunk, which are stored contiguously in an array A; with 1 < k£ < ¢, using b bits per element,
and (2) the ‘continuation’ bits, which are concatenated into a bitmap By. Any integer x; will
require exactly [(|x;])/b] layers. For example, say we want to encode the integer = 5 and
we set the chunk length b = 2. The lowest b bits of 5 are 01 and we append them to the first
layer of array A;. Since we still require more bits to represent the number, we need to set
the continuation bit to 1, and this is appended to the bit sequence B, again, at first layer.
The next b lowest bits for representing x are now located in the next layer Ay, and since we
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Algorithm 2: Method RANGE REPORT(DB,, Zstart, Tend, Y1, Y2). Reports all the symbols
that are located in the range [Tgare, Tend) X [U1,y2] and the frequency of occurrences
within the range using a wavelet tree.

RANGE _REPORT(U, Zstart; Lends Y1, Y2)

01 if 500t > Tena V LABELS (v) N [y1, y2] = 0 then
02 return

03 else if v is a leaf then

04 report (LABELS (V) , Teng — Tstart + 1)

05 else

06 xstart_left — RANKO(BM Tstart — 1) + 1

07 Tend left < RANKo(By, Teng)

09 Tstart _right < Tstart — Lstart_left

10 Tend_ right < Tend — Lend_left

1 RANGE _ REPORT (U, Tstart_left, Tend left, Y1, Y2)
12 RANGE_REPORT(UM xstart_righta Iend_’righta Y1, y2)

do not require more bits to represent x we set the continuation bit to 0. Figure shows
this example in S[1]. DAC codes allows direct access to the sequence in time O(¢/b) and
the space overhead for storing a number of ¢ bits is [£/b] + b bits. A further improvement
of DAC encoding is to choose different chunk lengths for each layer. The authors [34] have
presented a dynamic programming algorithm that computes the optimal chunk length and

the optimal number of layers to achieve the most compact representation of the sequence S
using DAC.

We show an example of the encoding of integers using DAC in Figure To retrieve the
number located at a position ¢ in S we start by reading A, [i] and By [i]. If B;[i] = 0, then we
are done with the decoding and the number S[i] corresponds to A;[i]. On the other hand,
if By[i] # 0 it means that S[i] continues in the next layer. To compute the corresponding
position in the next layer we perform ¢/ = RANK; (B, ) and concatenate the value of As[i']
with A;[i]. Again, we need to check if By[i'] is marked or not, and continue if necessary. We
show an example of this procedure in Figure 2.7 The highlighted parts correspond to the
traversal when obtaining the value located at S[4]. The final result is the concatenation of
these segments: S[4] = A3[1]As[3]A1[4] = 010110 = 22.

2.9 K3-tree

The K2-tree [35] is a data structure to compactly represent sparse binary matrices (which
can also be regarded as point grids). The K2-tree subdivides the matrix into K2 submatrices
of equal size. The submatrices are considered in row major order, top to bottom. Each
one is represented with a bit, set to 1 if the submatrix contains at least one non-zero cell.
Each node whose bit is marked is recursively decomposed, subdividing its submatrix into K2
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Figure 2.7: Example of a DAC structure for the sequence S = 5,3,9,22,11,6,2,1,17 and
b = 2. The highlighted segments represent the DAC representation for S[4] = 22.

children, and so on. The subdivision ends when a fully-zero submatrix is found or when we
reach the individual cells. The K2-tree is represented with two bitmaps: one that describes
the topology of the tree (bitmap T') and is built by traversing the matrix tree level-wise,
appending the K? bits of each node, excluding the parents of leaves. The other bitmap, L,
that represents the the leaves of tree, stores all the cell values. In practice, this compact
data structure has shown to be efficient at representing web graphs and grids and is able to
answer range queries efficiently. It has no good worst-case time guarantees, yet in practice
query times are competitive. In a worst-case scenario, if a n X n matrix contains ¢ points,
the K’-tree needs K2 tloggs (1 4 o(1)) bits. This can be reduced to tlog 252 (1 + o(1))
bits if the bitmaps are compressed. This is similar to the wavelet tree space, but in practice
K?-trees use much less space when the points are clustered [35]. Figure shows an example
of a K2-tree.

1{olo|ofolo]ofo
1{olo|ofolo]ofo %N
olofolo]ofo]o]o i 0 Y 1
ol1]olofolololo TN P N A
olo 1lol1lolo 1 0 1 0 1 1 1 0 1 0 0 0
ToliloloTo ZANEZAN ANZANZANEZAN
1010 0001 001011100011 0100

olofo|o]olo
1{1]o]o]o]o

T=1011101011101000

L=101000010010111000110100

Figure 2.8: On the left, a sparse binary matrix. On the right, its corresponding K*-tree with
K = 2. The topology bitmap (7T") and leaves bitmap (L) are shown below the tree.

The procedure to traverse the tree is the following: any 1 located at position p in T
represents an internal node in the tree, and its K? children start right after position sp =
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RANK; (T, p) - K? as all internal nodes are marked with a 1 in 7" and they have exactly K?
children. If the starting position of the children of a node is greater than the length of bitmap
T, then its children are leaves, and their positions have to be mapped to the bitmap L as
sp — |T|.

The K2-tree can also answer range queries with multi-branch top-down traversal of the
tree, following only the branches that overlap the query range. This is illustrated in Algorithm
(adapted from Algorithm 1 in [35]), which, to solve the query @ = [x1,x2] X [y1,¥2], is
invoked as RANGE(n, 21, 2, y1,Y2,0,0,—1). While this algorithm has no good worst-case
time guarantees, in practice times are competitive.

Algorithm 3: K? RANGE(n, z1,Zs, Y1, Yo, dp, dy, p) reports all points in the area
[21, 23] X [y1,92] using a K>2-tree.

K? RANGE(n, z1, %2, Y1, Y2, dp, dg, D)
01 ifp Z |T| then

02 if L[p — |T'|]] = 1 then

03 report (d,,d,)

04 else

05 if p=—1or T[p] =1 then

06 y < RANK; (T,p) - K?

07 for each i € [|z1/(n/k)]..|x2/(n/k)]] do
08 ifi = |21/(n/k)| then

09 x) < x1 mod (n/k)

10 else

11 ) <0

12 if i = |x2/(n/k)| then

13 xh « x93 mod (n/k)

14 else

15 xh <+ (n/k)—1

16 for each j € [|y1/(n/k)]|..|y2/(n/k)] do
17 if j = |y1/(n/k)]| then

18 Y} < y1 mod (n/k)

19 else

20 yp <0

21 if 7 = |y2/(n/k)]| then

22 Y| < yo mod (n/k)

23 else

24 yh < (n/k) —1

25 K? RANGE(n/k, 2y, 2b, vy, 4, dp + (n/k) - i,dy + (n/k) - 4,y + k- i+ j)
26 end for

27 end for
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2.10 Compact Trees

There are ©(4"/n®?) general trees of n nodes [114], and thus one needs log(4"/n%?) =
2n — ©(logn) bits to represent any such tree. There are various compact tree representations
using 2n + o(n) bits that can in addition carry out many tree operations efficiently, includ-
ing retrieving the first child, next sibling, computing postorder of a node, lowest common
ancestor, and so on. We describe three compact tree representations: Balanced Parenthesis
(BP), Level-Ordered Unary Degree Sequence (LOUDS) and Depth-First Unary Degree Sequence
(DFUDS):

BP. Balanced Parentheses were introduced by Jacobson [93] and later improved to allow
constant time operations [114]. They represent a compact tree built from a depth-first pre-
order traversal of the tree. The idea is to write an opening parenthesis when arriving at a
node for the first time and a closing parenthesis after traversing the subtree of the node,
therefore each node will generate two parentheses. The parentheses sequence is represented
using a bitmap by assigning a ‘1’ to the opening parenthesis and a ‘0’ to the closing one. The
topology of the tree requires 2n bits. Table lists the main operations that BP is capable of
solving in constant time when it is augmented with extra data structures [141]. In practice
[14], this representation requires 2.37n bits since the bitmap needs to be pre-processed with
rank/select operations and additional data structures are required. We refer the reader to
the work of Arroyuelo et al. [14] for implementation details.

LOUDS. Level Ordered Unary Degree Sequence [93] compact tree representation is a sim-
pler, yet efficient mechanism to represent ordinal trees. We start with an empty bitmap T’
and traverse the tree in a level-order fashion starting from the root. As we visit a node
v with d > 0 children we append 190 to 7. We need to augment 7' with RANK and SE-
LECT operations to support some key operations such as PARENT and CHILD in O(1) time.
However, LOUDS constant-time operations are more limited than the ones supported by BP.
This representation does not support complex operations such as SUBTREE SIZE or LOW-
EST COMMON ANCESTOR. In practice, we can use a bitmap with rank /select support using
5% of extra space such as RG, requiring 2.10n bits. In Table 2.3 we mark the operations that
are supported in constant time by the LOUDS representation.

DFUDS. Depth-First Unary Degree Sequence 23] is built over the same traversal as bal-
anced parentheses, but when arriving at a node v, it appends d ‘1’s and one ‘0’, being d the
number of children of v. This representation allows us to perform almost the same operations
as BP, except for retrieving the distance from a node to the root. An advantage is that the
implementation of the operation to retrieve the i-th child is simpler than in BP.

We show an example of these schemes in Figure 2.9) The left part shows an example tree
with labeled nodes. The right part shows the corresponding compact representations of the
topology and where each node is located.
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Figure 2.9: Example of compact representation of a tree using BP, LOUDS and DFUDS

Operation Description BP | LOUDS | DFUDS
ROOT() root of the tree v v v’
FIRST_ _CHILD(v) first child of node v v v v
LAST _CHILD(v) last child of node v vV v’
CHILD(v, 1) ith child of node v v v v’
CHILDREN (v) number of children of node v v Vv v’
NEXT_ SIBLING(v) next sibling of node v v v v’
PARENT(v) ith child of node v v v v’
IS_LEAF(v) whether v is a leaf vV v
DEPTH(v) depth of node v v’ X X
HEIGHT(v) distance from root v X X
LCA(u,v) lowest common ancestor of v and v | v/ X v’
PREORDER _RANK(v) | pre order rank of node v N X v’
PREORDER__SELECT(v) | pre order select of node v v X v’
SUBTREE _ SIZE(v) number of nodes in subtree node v | v/ X v’

Table 2.3: List of compact tree operations for different representations. The X mark shows the
operations are not solved in constant time. Note that for implementing these operations in
constant time we also require constant time implementations of RANK and SELECT operations.

2.11 Differentially Encoded Search Trees

Differentially Encoded Search Trees (DEST) were introduced by Claude el al. [47]. They
provide a compact representation of a an integer-valued binary search trees. Every node
stores the difference with its parent and, by knowing if the node is a left or right child, one
can determine whether the difference is positive or negative. The difference values can be
afterwards encoded using any integer encoding mechanism such as 0,7, Rice, (see Section
2.5) or DAC (see Section [2.8)), leading to a smaller representation. DEST allows access to
any position 7 in a sorted sequence in O(h) time, where h is the tree height. Figure
shows an example of a DEST tree for the sorted sequence S = 11,13, 14,15, 16, 19, 20.
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e

Figure 2.10: Left: the original binary search tree. Right: the differentially encoded search
tree.

2.12 Range Maximum Queries

A Range Mazimum Query (RMQ) over a sequence of integers S is defined as RMQg(i, j) =
argmax; ,.<;S[k]. In other words, RMQg(i, j) retrieves the position within the range [i, j] in
S where the maximum element is located. Fischer et al. [69] showed that this operation can
be solved in constant time and using 2n + o(n) bits of space without accessing the sequence
S. This data structure can be configured to answer range minimum queries as well.

The main idea is to construct a Cartesian tree over the sequence of values S and then
perform a tree isomorphism. A Cartesian tree is a binary tree defined as follows: the root
of the tree is the leftmost maximum position p in S[1,n], the left child of the root is the
Cartesian tree constructed over S[1,p — 1], and its right child is the Cartesian tree over
S[p+ 1,n]. This recursion is done until the range of the sequence becomes empty. Note that
the Cartesian tree of S[p,p| is a single node. We show an example of the Cartesian tree in

Figure [2.11}

The most important property for solving RMQg(4, j) is that the position of the maximum
element in S[i, j] is the inorder position of lowest common ancestor of v; and v; where v; and
v; are the Cartesian tree nodes with inorder positions ¢ and j respectively. Thus, the formula
to compute RMQg(1, 7) is:

RMQgs(i,j) = INORDER_ RANK(LCA(INORDER_SELECT(i), INORDER_SELECT(j)). (2.3)

We show an example of a Cartesian tree and this procedure in Figure Nodes v; and v;
are marked in white background, while the LCA(v;,v;) is marked in black.

Since the operations INORDER _RANK and INORDER _SELECT are not simple to implement
it is preferable to use the methods PREORDER RANK and PREORDER _SELECT over a general
tree that is isomorphic to the binary tree [65]. This general tree is constructed as follows: a
new root node is added and its children are all the nodes in the rightmost path of the binary
tree. This procedure is done recursively considering all these nodes as new roots of the same
transformation of their left child’s subtree. Using the general tree, the inorder index of a
node can be easily mapped to a preorder index using constant time operations implemented
using BP. In practice, the tree using the BP compact representation requires 2.3n bits.
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Figure 2.11: A Cartesian tree built over the sequence S. The values in the range [7,13] are
highlighted in grey background. The nodes in the Cartesian tree, corresponding to the start
position and end position are marked with white background. The lowest common ancestor
(LCA) of those nodes points to the maximum value on that range and is highlighted in black.

2.13 Treaps and Priority Search Trees

A treap [148] is a binary search tree with nodes having two attributes: key and priority.
The treap maintains the binary search tree invariants for the keys and the heap invariants
for the priorities, that is, the key of a node is larger than those in its left subtree and
smaller than those in its right subtree, whereas its priority is not smaller than those in its
subtree. The treap does not guarantee logarithmic height, except on expectation if priorities
are independent of keys [108]. By assigning a random priority to each element to be inserted
into a binary search tree, it is possible to use treaps to create randomly-built binary search
trees, which tend to be balanced. This is the most common use of treaps in the literature.
Nevertheless, a treap can also be regarded as the Cartesian tree [162] of the sequence of
priorities once the values are sorted by keys.

The priority search tree [109] is somewhat similar, but it is balanced. In this case, the
root is not the node with highest priority in its subtree, but that element is stored in addition
to the root element at the node. The element stored separately is also removed from the
subtree. Priority search trees can be used to solve 3-sided range queries on t-point grids,
returning k points in time O(k 4 logt). This has been used to add rank query capabilities
to several index data structures such as suffix trees and range trees [91].

2.14 Text Indexes

The main text indexes employed in this thesis can be divided into two types: the first type
corresponds to the indexes that are designed for the scenarios where any substring is a
possible query. In this family of indexes we have the generalized suffix tree, suffix array and
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Figure 2.12: Example of a treap over the sequence of keys and priorities (shown at the top of
the figure). The numbers inside the nodes correspond to the keys and the numbers outside
the nodes represent the priority.

the compressed versions of them, which are regarded as self-indexes. The second type is the
inverted index, which is usually employed when the queries are formed by words or terms.
In this section, we describe the main properties and operations of these indexes.

2.14.1 Generalized Suffix Tree and Suffix Array

Let C = dydads . .. dp$ be the text obtained by concatenating all the documents in D (recall
Section [2.2)). Each substring Cli,n], with i € [1,n], is called a suffiz of C. The generalized
suffiz tree (GST) of C is a path-compressed trie (i.e., unary paths are collapsed) in which
all the suffixes of C are inserted. Internal nodes correspond to repeated strings of C and the
leaves correspond to suffixes. For internal nodes v, path(v) is the concatenation of the edge
labels from the root to v. The suffix tree can list the occ occurrences of a pattern P of length
m in optimal O(m + occ) in time, by traversing from the root to the locus of P, i.e., the
highest node v such that P is a prefix of path(v). Then all the occurrences of P correspond
to the leaves of the subtree rooted at v. We will call sp and ep the left-most leaf of node
v and ep the right-most. Thus, v is the lowest common ancestor of the sp-th and the ep-th
leaves. The suffix tree has O(n) nodes and it uses O(n) words of space. Figure shows an
example of a generalized suffix tree built over the collection of Figure We define tf, ; as
the number of leaves associated with document d that descend from suffix tree node v (i.e.,
the number of times the string label of v appears in document d). In practice, a pointer based
implementation of a suffix tree can take up to 20 times the size of the collection, making this
indexing data structure impractical for scenarios where large collections need to be handled.

The suffiz array [107] is a common full-text index that allows us to efficiently retrieve, for
an arbitrary pattern, the number of its occurrences and their positions in a given text. The
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Figure 2.13: Generalized suffix tree for the example sequence C = ATA#TAAA#TATA#S.
The number inside the leaves points to the positions in C where the suffix represented by
that leaf appears. The document numbers are written below the leaves.

suffix array SA[1, n] contains pointers to every suffix of a sequence C, lexicographically sorted.
For a position i € [1,n], SA[i] points to the suffix C[SA[i], n] = tsafjtsafi+1 - - - tn, Where t; is
the symbol located at position j, and it holds that the suffix C[SA[i], n] is lexicographically
smaller than C[SA[i + 1], n].

To find the occurrences of an arbitrary pattern P of length m, two binary searches are
performed to find the maximal interval [sp, ep] such that for every position in SA[sp < i < ep]
the pattern P is a prefix of C[SA[i],n], that is, P occurs at the positions SA[i] in C. It takes
O(mlogn) time to find the interval. Figure shows an example of a suffix array. In
practice, a simple implementation of the suffix array requires 4 to 8 times the size of the
collection. This reduces the size of the suffix tree, yet it is still prohibitive for handling very
large collections.

1 = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C = AT A # T A A A # T AT A # 8§
3 3 o

\\\\‘ \\\\‘\ \\\\‘~-\‘r _____ i

Figure 2.14: Suffix array (SA) for the example sequence C = ATA#TAAA#TATA+#$. The
positions SA[12,15] = (12,2, 5, 10) are those where the string “TA” appears.
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2.14.2 Self Indexes

The Compressed Suffiz Array (CSA) [118] can represent the text C and its suffix array
SA within essentially nH(C) < nlogo bits. This representation allows us to perform the
following operations:

e SEARCH(P): determine the interval [sp, ep] corresponding to a pattern P.
e COUNT(P): return the number of occurrences of P (i.e., ep — sp + 1).

e LOCATE(7): compute SA[i] for any i.

e EXTRACT(l,r): rebuild any C[l,r] of the original text.

Since the CSA is able to extract the original text from the index, it is considered as a
replacement of the original text, and thus called a self-index. A class of CSAs [81], 139, 82],
can compute SA[i] in O(log® n) for any constant € > 0 and is able to search for the pattern and
count its occurrences in time O(mlogn). Another class, called FM-Index [67, [68] computes
SAJi] in O(log'*“n) time (in practice O(logn)), and searches for P in time O(mblgol%) (in
practice, O(mlogo)). We refer the reader to the survey of Navarro et al. [I18] and Ferragina
et al. [66] for a deeper analysis and evaluation of these families of solutions.

We proceed to briefly explain how the FM-Index family of indexes works, and we will refer
to them as Succinct Suffix Arrays (SSA). The SSA [118] is a compressed index that builds
on the Burrows- Wheeler transform (BWT) of a text [38]. The main idea is to represent the
BWT of a collection of texts in compressed space and use it to support pattern matching
operations. We start by describing the BWT and the LF operation, one of the main blocks
for the operations supported by the index. Then we describe how to solve the three main
operations: count, locate and extract.

Given a text C, the BWT is a permutation of the symbols in C that is reversible. A simple
way to describe the transformation is to imagine the n x n matrix of the n cyclic rotations
of the text C, sort the rows lexicographically, and then keep the last column of the matrix.

An example of this is shown in Figure[2.15] We refer to the first column as F' and the last
one as L or BWT(T).

Local compressors tend to handle the BWT of a text much better than the text itself,
since the transformation tends to cluster together occurrences of the same symbol. This is
not surprising, since the symbols are actually arranged according to their context (symbols
appearing after it). This way, the BWT is able to represent the text achieving kth order
entropy (recall Section . An interesting operation that allows us to support the ones we
are interested in is known as LF-mapping. LF(¢) retrieves the symbol before L[i] in C by
retrieving the position where L[i] occurs in F' (hence the name LF). The LF operation can be
computed as LF (i) = RANK.(L, i) + occ[c], where occ[c] is a fixed array storing the number of
occurrences in T of symbols lexicographically smaller than the symbol c¢. By representing L
with a wavelet tree, the LF' operation takes O(log o) time, the same as accessing any position
in L.

The backward search operation returns the range [sp, ep] where all occurrences of a given
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Figure 2.15: Matrix of all the cyclic rotations of “ATA#TAAA#TATA+#$". The last column
corresponds to the BWT (also called L or BWT(T)). We call the first column F.

pattern P of length m are located within the text in O(mlogo) time. It is called backward
search since its procedure seeks the pattern in reverse order. Backward search can also
compute COUNT(P) by just performing ep—sp+1. In order to retrieve the original text from
a range [sp, ep] we must perform an EXTRACT operation, which takes (s, +ep—sp+1)(logo)
time, where s, is the sampling factor of the SSA index, which is a parameter that produces
different time/space trade offs. The space of the SSA grows depending on this sampling factor,
so the extra space is O(nlogn/s,) bits. This index is able to perform these operations and
replace the collection, requiring nHy(C) + o(nlogo) bits of space, by choosing a sampling

1+e€
factor of s, = loig—”.
ogo

To illustrate this process we first show how to find the range [sp, ep] in the SA array for
a two-letter pattern “TA” using the example collection shown in Figure 2.15] To find “TA”
we start with the last symbol ‘A’. Every occurrence of ‘A’ in L is a potential candidate, and
we want to find those whose LF lead to a “T’, since those will correspond to occurrences
of “TA”. The process starts by considering all elements as candidates, and moving to a
range where we know that all the symbols are followed by ‘A’. This range corresponds to
[sp = occ['A’] = 5,ep = occ['A’+1], marked in Figure Within this range we want to
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retrieve the elements whose value is “T” and move to their corresponding place in F'. We can
compute this range as [occ['T’][+RANKT(L, sp = 5), occ['T"|+RANK (L, ep = 11)], obtaining
the ‘T’ in position 12 in F, where we can see the pattern “TA” at the beginning of that cyclic
rotation. The complete procedure is described in Algorithm 4]

Algorithm 4: Method BACKWARD SEARCH(P, m, occ,n). Returns the range [sp, ep] in
SA where pattern P of length m occurs.

BACKWARD _SEARCH(P, m, occ,n)

01 sp1l,ep+n

02 for i < mto 1 do

03 c « PJi]

04 sp < occlc]+RANK (L, sp — 1) + 1
05 ep < occlc|+RANK.(L, ep)

06 14—1—1

07 if ep < sp then

09 return ()

08 end for

09 return [sp, ep|

Algorithm 5: Method LOCATE(4) on the SSA, returns SA[i].

LOCATE(%)
01 i, 1«0
02 while SA[i'] is not explicitly stored do
03 i' < LF{
04 t«—t+1
05 end while

05 return SA[/']| + ¢

In order to retrieve a certain position in the suffix array SA[i] using the SSA, we need to
store absolute samples (s,) at regular intervals to permit the efficient decoding of any (7).
The idea is to perform the LF-mapping operation until we find a sampled value of SA[i'], and
then report SA[i'| +¢ where ¢ is the number of backward steps used to find such . Algorithm
shows this procedure.

To perform the EXTRACT(I,r) operation, we use the same sampling mechanism used for
LOCATE. In this case we store the positions i such that SA[i] is a multiple of s,, now in
the text order. The idea is to find the first sample that follows the area of interest, that is
[(r+1)/s,]. From here we get the desired text backwards following the same procedure as
described before. EXTRACT requires at most s, + 7 — [ + 1 applications of the LF-mapping.
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2.14.3 Inverted Indexes

The inverted index is an old and simple, yet efficient, data structure that is at the heart
of every modern information retrieval system, and plays a central role in any book on the
topic [166, 40, 17, 50]. Given a collection of text containing a set of D documents D =
{di,ds,...,dp}. A document d; can be regarded as a sequence of terms or words and the
number of words in the document is denoted by |d;|. The total length of the collection is
then 3°2 |d;| = n. Each document has a unique document identifier (docid) € [1, D]. The
set of distinct terms in the collection is called the vocabulary, which is comparatively small
in most cases [84], more precisely of size O(n?), for some constant 0 < 3 < 1 that depends
on the text type. The inverted index can be seen as an array of lists or postings, where each
entry of the array corresponds to a different term or word in the vocabulary of the collection,
and the lists contain one element per distinct document where the term appears. For each
term, the index stores in the list the document identifier (docid), the weight of the term in
the document and, if needed, the positions where the term occurs in the document. The
weight of the term in the document is a utility function that represents the importance of
that word inside the document. The main components of the inverted index are then defined
as the vocabulary and the inverted lists:

e The Vocabulary. The vocabulary stores all distinct terms contained in the collection
of documents D. This is commonly implemented with a dictionary data structure such
as hash tables or tries. In practice, the vocabulary stores two elements associated with
each term: an integer value df;, that is, the amount of documents that contain the term
t, and a pointer to the start of its corresponding inverted list.

e Inverted Lists. A non-positional inverted list stores a list of elements containing
pairs (d, w(t,d)), where d is the document identifier (docid) and w(t,d) is a relevance
measure of the term ¢ in document d. A positional inverted list contains a list of triples
(d,w(t,d), {p1,p2, - ,pr)), where the third component is a vector of positions where
the occurrences term ¢ are located in the document d. An inverted index that makes
use of positional inverted lists is also commonly referred to as full-text inverted index.

Figure [2.16| shows a example of a positional inverted index for a collection consisting of
three documents. The inverted index from the example shows a docid-sorted organization,
where each posting list is in increasing docid order. The posting lists could also follow a
weight-sorted organization

2.15 Muthukrishnan’s Algorithm

The inverted index is not suitable for the case where the query is any possible text substring
and we want to retrieve the document identifiers that contain a string pattern P. This is
a common scenario for text collections written in East Asian languages such as Chinese or
Korean, where words are difficult to segment, or in agglutinating languages such as Finnish
and German, where one needs to search for particles inside words.

Muthukrishnan [I15] introduced the first solution for retrieving the documents containing
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1 2 3 4 5 6 7 8 9 10

d, = a long time ago in a galaxy far far away
d, = try not do or do not there is no try
dy = that is not true

Vocabulary Inverted Lists (d,w(t,d),{p,,..., Py »

dft Term ¢

1 |a —_— (1,241,6)»

1 |ago > (1,1,4»

1 |away +—— > <1,110)»

1 |do — (2,243,5))

1 |far > (1,248,9))

1 | galaxy —— (1, 1(7)

1 |in > (1,150

2 |is > (2,1 ,8)),(3,1,42))

1 [long +—— (1,12»

1 |no — (2,149

2 | not > (2,142,6)),<3,143)

1 |or — (2,1,4)»

1 |[that ——— (3,11»

1 |there — - (2,17)

1 |time —— > <1,143)

2 |true F———» (2,1,10)),(3,1,<4))

1 |try —_— (2,241,10))

Figure 2.16: An example positional inverted index built over the collection of documents at
the top. The vocabulary and the posting lists built over the collection are shown on the
bottom part.

a pattern P in a collection of documents, in optimal time and linear space. The idea is
based on suffix arrays and introduces a new data structure called document array DA[1,n].
The algorithm starts by constructing the suffix array SA[1,n| from the concatenation C of
a collection of documents D, and for every position pointed from SA[i] it stores in DAJi]
the docid where the suffix came from. The document array requires nlog D bits. In order
to list all the distinct documents from the range SA[sp, ep| of the occurrences of P (recall
Section , Muthukrishnan lists all the distinct docid values in DA[sp, ep]. The idea is
to use another array CA[l,n| where CA[i] = max{j < i, DA[j] = DA[:]} U {0}, which is
preprocessed for range minimum queries (recall Section [2.12]). Each value CA[m] < sp for
sp < m < ep is a distinct value DA[m] in DA[sp, ep]. A range minimum query in CA[sp, ep|
gives one such value m, and we continue recursively on DA [sp, m — 1] and DA[m + 1, ep| until
the minimum is > sp. Figure m shows the corresponding document array (DA) and array
CA for the example collection C. Algorithm [6] shows the procedure to list all the distinct
elements of DA[sp, ep.
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Figure 2.17: Document array (DA) and array CA example for the sequence shown in Fig-
ure 2.1} The positions SA[12,15] = (12,2,5,10) are those where the string “TA” appears.
The dotted arrows represent a list of pointers to the next smaller position in CA where d3
occurs.

Algorithm 6: Algorithm for retrieving distinct documents from DA. Receives as pa-
rameter the start position sp, end position ep, and a copy of the original starting position
gsp. Returns a set containing the distinct documents in the range of DA[sp, ep].

DOCUMENT _ LISTING(sp, ep, gsp)
01 if ep < sp then
02 return ()
03 p < RMQ(sp, ep)
04 if CA[p] < gsp then

05 doc = DA[p]

07 return {doc} U DOCUMENT _LISTING(sp,p — 1, gsp)
08 U DOCUMENT _LISTING(p + 1, ep, gsp)
09 return ()

2.16 Information Retrieval Concepts

In this section we describe three main concepts related to IR that are of interest for this
thesis.

2.16.1 Scoring

The popular document vector model is considered, in the IR domain [I7, 40l 50], as a prag-
matic tool for document retrieval. In this model, each document in a corpus is represented by
a vector, where components are associated with specific dimensions representing a property
or attribute. Usually, a numeric value is assigned to the attribute, for instance, when the
attribute indicates the number of times a word appears in the document. In other cases, a
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vector entry may be a bit value where the value 1 indicates that a property is present in the
document, or 0 otherwise. A document vector model represents any document d; as a vector
d; = (w(ty, dy), ..., w(ty, d;)) where t; is a term (usually a word) and the function w(t;, d;) is
the weight of the term ¢; in the document d;. The weight of the term is a utility function
that represents the importance of that word inside the document. Another model is the
bag-of-words. In this model, a collection of documents is represented as a set (bag) of the
words contained in the collection, not taking into consideration the word ordering, grammar
or other properties from the text.

Most IR systems that are based on these models define the score of a document d for a
query @) as
score(Q,d) = Zw(t, d), (2.4)
teQ

where the query @) is a set of terms and thus considered as a “bag of words”.

For example, in the well-known tf-idf scoring scheme, the weight is computed as w(t,d) =
tf q4-1df;. Here, tf, ; is the term frequency of ¢ in d, that is, the number of times ¢ occurs in d.
The second term is idf; = log d%, where df; is the document frequency, that is, the number of
documents where the term ¢ appears, and D is the total number of documents. Since idf; (or
df;) depends only on ¢, an efficient way to store w(t,d) in an inverted index is to store idf; or
dfs together with each distinct vocabulary term, and store the values tf, ; in the posting list
of term t, together with each docid d. Recent state- of-the-art information retrieval systems
employ more complex ranking formulas such as the Okapi BM25 [95]:

tf 1 (kl + 1) .
d) = : -1d 2.5
score(Q,d) g tfog+ki-(1—=b+0-|dl/avg_dlength) idft. (25)

where k; and b are tuning parameters and avg _dlength is the average document length in
the collection D.

Computing the ranking score can be a major bottleneck of the system’s query processing
routines. One idea to improve speed is to pre-compute the scores and store them as floating-
point numbers in 24 to 32 bits. This alternative is usually not possible, since it increases the
size of the index significantly. If we want to speed up the score calculation process and also
maintain a reasonable size of the index we can discretize the range of possible scores into a
predefined set of buckets. Anh et al. [12] proposed a uniform quantization method that is
an index-wide linear scaling of the term weights, in other words, the idea is to precompute
and store the impact score for the term weight as I(d, t) using the following formula:

B w(t,d) — min(w(t,d)) b
It d) = {max(w(t,d)) = min(w(t,d)) QJ ! (26)

where b is the number of bits that we are willing to reserve for each score contribution. Anh
et al. [9] showed that by setting b = 8, quantization methods achieves effectiveness that is

indistinguishable from using exact term weights, this has been also been further explored in
the work of Anh and Moffat [10, 12].
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2.16.2 Top-k Query Processing and Two-stage Ranking Process

In the case of natural language collections, we define a query () as a set of ¢ words or terms
t € . In the case of general sequences, we define the query as a pattern P, which is a
sequence of symbols from an alphabet X of size o and its length is |P| = m.

The problem with retrieving a fixed amount of k£ documents with the highest “score” to a
query Q) (natural language case) or a pattern P (general sequence case) for some definition
of score, is known as the top-k document retrieval problem. This problem is of interest for
the two-stage ranking process that is performed in modern Web search engines and other IR
systems. The two-stage ranking process is a technique that copes with the huge amounts of
data and enables IR systems to deliver precise results in response to the user queries [163, [40].
In the first stage, a fast and simple filtration procedure extracts a subset of a few hundred or
thousand of candidates from the possibly billions of documents forming the collection. In the
second stage, more complex learned ranking algorithms are applied to the reduced candidate
set in order to obtain a handful of high-quality results. In general, improving the efficiency
of the first stage frees more resources for the second stage, and this way increases the overall
performance. In contexts where traditional ranking methods are sufficient, the goal of the
first stage is to directly convey a few top-quality results to the final user.

In distributed main-memory systems, documents are usually distributed across indexes,
and each index contributes with a few results to the final top-£ list. Therefore, it is most
interesting that individual indexes solve top-k queries efficiently for k values in the range
10-100 [40].
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Part 11

Inverted Indexes
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Chapter 3

Query Processing and Compression of
Posting Lists

In this chapter we survey the main techniques to perform top-k£ query processing on inverted
indexes. As previously discussed in Section 2.16.2] complex IR systems requirements are
handled via a two-stage ranking process [163, 40]. The first stage aims to return a set of
the highest ranked documents containing either all the query terms (a ranked intersection) or
some of the most important query terms (a ranked union). In most cases, ranked intersections
are solved via a Boolean intersection followed by the computation of scores for the resulting
documents. Ranked unions are generally solved only in approximate form, avoiding a costly
Boolean union. In order to avoid a complete traversal of all lists, there are query processing
techniques that make use of early termination mechanisms. Different organizations of the
posting lists have been proposed and it has been shown that they can assist early termination
mechanisms. Moreover, there are different ways to traverse the posting lists to improve query
processing. We cover these concepts in this chapter.

Another important issue is compression. The inverted index can be stored on disk or in
main memory, and in both cases reducing its size is crucial. On disk, it reduces transfer
time when reading the lists of the query terms. In main memory, it increases the size of
the collections that can be managed within a given RAM budget, or alternatively reduces
the number of servers that must be allocated in a cluster to hold the index, the energy they
consume, and the amount of communication. In this chapter, we also cover compression
techniques that are typically employed to reduce the size of the index

3.1 Query Processing

Query processing involves a number of phases such as query parsing, query rewriting and
the computation of complex machine-learned ranking functions that may include hundreds of
features from the documents. At the same time, IR systems need to serve as many queries as
possible, needing to execute huge amounts of queries per second. To do this efficiently, search
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engines commonly separate the ranking process into two or more phases. In the first phase, a
simple and fast ranking function such as BM25 is used to get the top 100 or 1000 documents.
Then in the second and following phases, increasingly more complicated ranking functions
with more features are applied to documents that pass through the earlier phases. Thus, the
later phases only examine a fairly small number of candidates, therefore a significant amount
of computation is spent in the first phase.

3.1.1 Early Termination

When processing simple ranked queries on large document collections, the main performance
challenge is caused by the lengths of the inverted lists and the large number of candidates that
pass the Boolean filter. Early termination is a set of techniques that address this problem.
We say that a query processing algorithm is exhaustive if it fully evaluates all the documents
that satisfy the Boolean filter condition. Any other algorithm uses early termination (ET).
In general, early termination techniques can be categorized by the use of one or more of the
following approaches:

1. Stopping early. Each inverted list is arranged from the most to the least promising
posting and traversal is stopped once enough good results are found.

2. Skipping. Inverted lists are sorted by docids, so promising documents are spread out
over the lists. The idea is to skip over uninteresting parts of a list using additional
information.

3. Partial scoring. Documents are partially or approximately scored.

3.1.2 Index Organization

Early termination techniques may require inverted index structures to be arranged in specific
ways. In particular, some techniques assume a specific organization such that the most
promising documents appear early in the inverted lists, which can be done by either reordering
the postings in a list, or partitioning the index into several layers. In general, most query
processing techniques use one of the following index organizations [59):

e Document-Sorted Indexes: The standard approach for exhaustive query processing,
where postings in each inverted list are sorted by docid.

e Frequency-Sorted Indexes: Postings in each list are sorted by their frequency.

e Impact-Sorted Indexes: Postings in each list are sorted by decreasing impact (or
term score), that is, their contribution to the document score.

3.1.3 Query Processing Strategies

There are different query evaluation strategies that exhibit affinities to different index or-
ganizations. They are classified in three different categories: Document-at-a-time (DAAT),
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Term-at-a-time (TAAT) and Score-at-a-time (SAAT) [159].

Document-at-a-time. DAAT processing is more popular for Boolean intersections and
unions. Given a query containing ¢ terms, all lists are processed in parallel, looking for the
same document in all of them. Posting lists must be sorted by increasing docid, and we keep
a pointer to the current position in each of the ¢ lists. Once a document is processed, the
pointers move forward. Much research has been carried out on Boolean intersections [57,
18], 145], 51, 20]. While DAAT processing is always used to intersect two lists, experimental
results suggest that the most efficient way to handle more lists is to intersect the two shortest
ones, then the result with the third list, and so on [20)].

Term-at-a-time. TAAT processes one posting list after the other. The lists are considered
from shortest to longest, starting with the first one as a candidate answer set, and refining it
as we consider the next lists. TAAT is especially popular for processing ranked unions [131],
12), 152], T11], as the successive lists have decreasing idf; value and thus a decreasing impact
on the result, not only for the tf-idf scoring, but also for BM25 and other scorings. Thus,
heuristic thresholds can be used to obtain an approximate ranked union efficiently by pruning
the processing of lists earlier, or avoiding complete posting lists, as we reach less relevant
documents and our candidate set becomes stronger [131], [12]. A more sophisticated approach
based on similar ideas can be used to guarantee that the answer is exact [I52]. TAAT
approaches usually make use of an accumulator data structure that holds the intermediate
scores for candidate documents.

Score-at-a-time. SAAT mechanism can be seen as a hybrid between DAAT and TAAT in
which multiple index lists are open. This strategy opens all index pointers simultaneously,
and start reading from the posting list that has the score with the largest impact [12]. In
Impact-ordered indexes the actual score contributions of each term are precomputed and
quantized into what are known as impact scores |9, [10, 12]. The idea is that a complete im-
pact block is processed at each step, and the results are obtained using a set of accumulator
variables.

3.2 Algorithms for Top-k£ Ranked Retrieval

Boolean query processing is probably the simplest form of resolving queries. A query with
the form “force AND awakens” is dubbed intersection or conjunctive query, while the query
“episode OR wizi” is referred to as union or disjunctive query. In its basic form, union queries
are solved by linearly traversing all posting lists from all terms involved in the corresponding
query and marking all documents that have those terms. On the other hand, intersection
queries have been a field of study for decades [20, 52, 06]. It can be proved that the optimal
intersection algorithm for two sets of length m and n with m < n is O(mlog ). The most
popular alexgorithm for solving intersections is dubbed Set Versus Set, or also Small Versus

41



Small, which is shown on algorithm [7| (adapted from Barbay et al. [20]). The operation of
searching for a candidate element e in a range (line 8, in the Algorithm) is commonly solved
by a combination of regular sampling and linear, exponential, or binary search. We refer
the reader to the work of Barbay et al. [20], Culpepper et al.[52] and Kane et al.[96] for an
experimental comparison of intersection algorithms.

Algorithm 7: svs(set, q). Receives ¢ sets of integers and returns the intersection.

svs(set, q)
o1 sort the sets by size (|set[l]| < [set[2]| < ... |set[q]])
02 the smallest set (set[1]) is the candidate answer
03 for each s € set do
03 R[s] <0
04 end for
05 for each s € set[2..q] do
06 for each e € set[1] do
07 search e in set s in the range R][s] to |s]
08 if e not found then
09 remove e from set|[1]
10 end if
10 update R[s| to the rank of e in s
13 end for
13 end for
13 return set[1]

Many ranked intersection strategies employ a full Boolean intersection followed by a post
processing step for ranking. However, recent work has shown that it is possible to do better
[59]. The advantage of DAAT processing is that once we have processed a document, we
have complete information about its score, and thus we can maintain a current set of top-k
candidates whose final scores are known. This set can be used to establish a threshold on
the scores other documents need to surpass to become relevant for the current query. Thus
the emphasis on ranked DAAT is not on terminating early but on skipping documents. This
same idea has been successfully used to solve exact (not approximate) ranked unions before.

36, 9].

The following two approaches have recently displayed the best performance for exact
ranked intersections and unions.

3.2.1 Weak-And (WAND)

WAND stands for Weak And or Weighted AND, which is a Boolean predicate that was intro-
duced by Broder et al. [36]. WAND takes as arguments a list of boolean variables 1, z, . .., 2y
a list of positive weights associated with each boolean variable wy, ws, ..., w; and a threshold
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parameter 6. Based on their definition [36] WAND(z1, wy, ..., xk, wg, ) is true if and only if:

1<i<k

where z; is a boolean variable containing a 1 or 0. Depending on the value of the parameter
6 WAND can be used to implement boolean conjunctive (AND) operator and disjunctive (OR)
operator. For example, the conjunctive case is the following:

AND(xy, o, ..., o) = WAND(x1, 1,29, 1,..., 2%, 1, k), (3.2)
while the disjunctive case is:
OR(Z1,Tg,...,2k) = WAND(z1, 1, 29,1,... 2%, 1,1). (3.3)

Note that these cases are for strict boolean operations, since the weight of each boolean
variable is always 1. If we want to extend the WAND operator to solve ranked queries, we
can do so by assigning a weight associated to each boolean variable.

Any term ¢ in an inverted index is associated to an upper bound U, as its maximal con-
tribution to any document. We denote this upper bound as U; = max(w(t,dy), ..., w(dyq)).
The idea is now to evaluate each document d with the WAND operator as

WAND(21, Uy, 29, Us, . .., 24, Uy, 0),

where x; indicates if the query term ¢ is contained in document d and the threshold # is the
minimum score among the top-k results found so far.

Using this setup, we can employ WAND query processing algorithm to perform ranked
intersections and unions following a DAAT strategy. The algorithm consists in three phases:
pivot selection, alignment check, and evaluation. Each list contains a pointer to the current
docid, starting from the smallest one. The lists are sorted by smallest docid of these pointers
and each list is augment by storing the highest score of the list (U;). The procedure starts
by selecting a pivot term. This is done by summing the maximum score of the participating
lists of the query until the the sum is larger or equal than a threshold #. The term where
this happens is selected as the pivot. The key observation is that there is no list pointer to a
docid smaller than the pivot’s current docid that could make it into the top-k results, unless
it was already considered earlier. Next, WAND will try to align all posting lists to the pivot’s
current docid by moving the pointers in these lists forward. If this step succeeds (the docid
was found in the other lists), then this docid is evaluated and possibly inserted in the top-k
heap. For solving conjunctive queries, all terms should contain the corresponding docid, if
not, we proceed by moving the pointer in the pivot list forward and start a new iteration.
In the case of disjunctive queries, we do not need all terms to contain the current pivot’s
docid. This procedure is shown in Algorithm |8 (adapted from the work of Petri et al. [132]).
The first phase of the algorithm, pivot selection, is shown in lines 7-19. The alignment check
phase is shown in Algorithm [J in lines 11-13. The evaluation phase is shown in lines 4-9
in Algorithm [0 Algorithm shows the procedure to insert evaluated documents into a
min-priority queue. A posting list of a term ¢ is represented in the following algorithms as py.
In the case of WAND, p; has the following operations or attributes: max score is an attribute
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that stores the maximum score in the list, method BEGIN() obtains the first posting for term
t, method SEEK DOCUMENT(DOC) moves the pointer of the current (docid, weight) to the
first value in p; that is equal or greater than doc. Finally, method NEXT() moves the pointer
of posting list p; to the next (docid, weight).

Algorithm 8: WAND(q, k,p). Receives a query containing ¢ posting lists, the number
of documents to be returned k and the posting lists p.

WAND(q, k, p)
o1 ¢ < set of struct (docid, weight)
02 fortel...qdo
03 Ult] < pr.max_score /) max_score of posting list of term ¢
03 c[t] < p;.BEGIN() // first posting in posting list of term ¢
04 end for
05 0 < —oo // current threshold
06 result <— () // min priority queue of pairs (docid, weight) sorted by weight
07 while set of candidates ¢ has valid postings do
08 sort candidates so that c[1].docid < ¢[2].docid < ... c[q].docid.
09 re-arrange U according to c.
10 score <— 0
11 pivot < 1
12 while pivot < ¢ do
13 tmp__score < score + Ulpivot]
14 if tmp_score > 0 then // we found a candidate pivot
15 EVALUATE(c, pivot, result, p)
16 break
17 end if
18 score < tmp__score
19 pivot < pivot + 1
20 end while
21 EVALUATE(c, pivot, result, p)
22 end while
23 return result
3.2.2 Block-Max WAND

BLOCK-MAX-WAND [59] is an improvement of the WAND query processing mechanism. It
follows a similar procedure, but instead of using the maximum lists weights, it also cuts the
lists into blocks and stores the maximum weight for each block. We describe this procedure
in Algorithm[11} The idea of cutting the lists into blocks is to enable skipping of whole blocks
whose maximum possible contribution is very low, by comparing its maximum weight with
the threshold 6 given by the current candidate set.
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Algorithm 9: EVALUATE(c, pivot, result, p). Receives the candidate set ¢, the pivot
number that corresponds to the position of the pivot posting list in ¢, a result set
containing pairs (docid, weight) and the postings lists p.

01
02
03
04
05
06
07
08
09
10
11
12
13
14

EVALUATE(c, pivot, result, p)

if ¢[0] = ¢[pivot] then
score < 0
t+1
while t < ¢ A c[t].docid = c[pivot].docid do
score < score + c|t].weight
c[t] < p.NEXT() // move pointer of posting p; to the next (docid, weight)
tt+1
end while
TRY REPORT(result, score, c[pivot].docid, 0)
else
fort € 1...pivot do
c[t] < pt.SEEK__DOCUMENT(c[pivot].docid)
end for
end if

Algorithm 10: TRY REPORT(result, score,docid, ). Receives a result min-priority
queue of size k that contains element of pairs (docid, weight), the score that we try to
add to result, the document docid and the threshold 6.

01
02
03
04
05
06
07

TRY REPORT(result, score, docid, )

if score > 0 then
PUSH(result, (docid, score))
if |result| > k then
POP(result)
0 < TOP(result).score
end if
end if

The basic concept is as follows: Suppose the next document of interest, d, belongs to blocks
., by in the ¢ lists. Compute an upper bound to score(Q, d) (lines 13-27 of Algorithm 11])
using the block maxima instead of the weights w(¢, d). If this upper bound does not surpass
the kth best score known up to now, no document inside the current blocks can make it to
the top-k list. So we can safely skip some blocks (lines 29-32). BLOCK-MAX-WAND obtains
considerable performance gains over the previous techniques for exact ranked unions |36, [152].
Just as WAND, BLOCK-MAX-WAND can be used for ranked intersections too: once we know a
block contain a candidate document d, we check for that document in all posting lists from
the query; if the document is contained in all posting lists, we evaluate it and insert it into
the top-k results if possible. Recently, Petri et al. [132] presented a complete evaluation of

by, ..
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WAND and BLOCK-MAX-WAND methods, supporting other more complex scoring formulas.

For implementing BLOCK-MAX-WAND, the posting lists p; requires extra methods and
attributes in addition to the ones required by WAND: method SEEK BLOCK(DOC) re-
turns a pointer to the block whose smallest docid is greater or equal to doc, the attribute
cur__block.mac_weight contains the maximum weight of the current block being examined
and cur block.maxdoc is an attribute that contains the maximum docid that lies in the
current block.

3.2.3 Persin et al.’s Algorithm

Persin et al.’s algorithm [I31] is one of the most famous TAAT query processing algorithms.
The idea is to solve bag-of-word queries without scanning all of the lists. The algorithm
requires the lists of each term to be sorted by decreasing weight. While the algorithm is
described for the tf-idf model, it can be easily adapted to many variants, with lists sorted by
impact [12].

The first step of the algorithm creates an accumulator accy for each document d in the
dataset (in practice, one can dynamically add a new accumulator when a candidate document
is found). The second step will store into the corresponding accumulators accy the weights
of the documents of the shortest among the lists of the query terms, that is, the one with
the highest idf;. The third step processes the rest of the lists in increasing length order,
where the weight of each document is accumulated in its corresponding accy. In order to
avoid processing the complete lists, they enforce a minimum threshold such that if the w(¢, d)
values fall below it, the list is abandoned. Since the longer lists have a lower idf; multiplying
the term frequencies, it turns out that a lower proportion of the longer lists is traversed. They
also apply a stricter threshold that limits the insertion of new documents as candidates. These
thresholds provide a time/quality tradeoft.

3.2.4 Other Approaches

Buckley and Lewit [37] introduced one of the earliest query optimization techniques. The
idea follows a TAAT strategy, from the least frequent term to the most frequent one. During
the query evaluation, it is possible to show that is not necessary to evaluate any more terms,
since it is impossible for the document at rank k + 1 to surpass the score of the document at
rank k. This technique has the advantage that it is not required to load from disk to main
memory some of the posting lists involved in the query.

Moffat and Zobel [I11I] proposed another technique that also follows a TAAT traversal,
and introduced two heuristics: Quit and Continue. The idea behind the Quit heuristic
is to dynamically add accumulators for the documents until the amount of them meets
some fixed value. The documents are ranked by the partial scores from the accumulators
and are reported to the user. On the other hand, the Continue heuristic follows a similar
procedure. It also uses a fixed number of accumulators, however, when the threshold is
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Algorithm 11: BLOCK-MAX-WAND(Q, k,p). Receives a query containing ¢ postings
lists, the number of documents to be returned k£ and the posting lists p.

BLOCK-MAX-WAND(Q, k, p)
01 compute candidate set ¢ as described in lines 1 — 4 in Algorithm .
02 compute pivot as described in lines 7 — 19 in Algorithm .

03 score_limit <— 0

04 0 < —oo // current threshold

05 result < () // min priority queue of pairs (docid, weight) sorted by weight
06 while set of candidates ¢ has valid postings do

07 fort € 1...pivot do

08 c[t] < pi-SEEK _BLOCK(c[pivot].docid)

09 score_limit <— score_limit + py.cur _block.mazx _weight
10 t+t+1

11 end for

12 t < pivot + 1

13 while ¢ < ¢ A ¢[t].docid = c[pivot].docid do

14 score_limit <— score_limit + py.cur _block.mazx _weight
15 t+t+1

16 end while

17 pivot <t — 1

18 if score_limit > 6 then

19 docid = c[pivot].docid

20 forte1...pivot do

21 c[t] - p:+.SEEK_DOCUMENT(c[pivot].docid)

22 if c[t] = c[pivot] then

23 score < score + c[t].weight

24 ct] < pt.NEXT()

25 end if

26 end for

27 TRY _REPORT(result, score, docid, 0)

28 else

29 min_next doc < 1+ min{p;.cur _block.mazxdoc | 1 <t < pivot}
30 fortel... pivot do

31 c[t] < p;-SEEK _DOCUMENT(min_next doc)

32 end for

33 end if

34 compute pivot as described in lines 7 — 19 in Algorithm

35 end while

36 return result

reached it continues the evaluation, but only considering the documents that are already
represented by the accumulators.

Strohman and Croft [I52] use an impact-sorted index with a specific ranking function
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proposed by Anh and Moffat [12], yet it can be extended to a ranking function such as
BM25. This approach uses a variation of TAAT query processing where it first accesses the
higher layers of the lists, named segments, and then moves to the lower layers with smaller
impact scores. The algorithm stops when it is guaranteed to have a set containing the top-k
results. More recently Lin and Trotman [104] introduced an anytime ranking index that is
based on impact-sorted organization of the posting lists and SAAT traversal.

See the work of Fontoura et al. [70] for a comprehensive evaluation and comparison of
these techniques.

3.3 Dual-Sorted Inverted Lists

Navarro and Puglisi [122] presented a data structure based on wavelet trees (recall Section
to represent the posting lists of an inverted index. The index is dubbed Dual-Sorted,
since it is possible to traverse the posting lists as if they were sorted by docid or by weight.

For each term ¢ € V they sort the posting list of each term in descending weight order,
and they store the document ids in a list L[1,df;]. Let N = ), df, they propose to
concatenate all lists L; into a unique List L[1, N] and store for each term ¢ the starting
position, sp;, of a list L; within L in an array ptrs[l,V]. The sequence L is then represented
using a wavelet tree.

The weights W1, N| are stored in a differential and run-length compressed form in a
separate sequence W’. In their original work, they represent the weights as the frequency t f; 4,
by marking the different v; values of each weight list W, in a bit sequence T3[1, m;|, where m; =
mazqt ft 4, and the points in L;[1, df;] where the value tf; 4 changes in a bit sequence R;[1, dfy].
They preprocess T; and R; to answer RANK and SELECT queries, so that obtaining any value
W4[i] is possible by performing W;[i] = SELECT; (T}, vy — RANK; (R, i) + 1). Navarro and
Puglisi represent the ptrs[1, V] array as a bit sequence V P[1, N| also preprocessed for RANK
and SELECT operations. This way, the starting point of any list L; in L can be obtained by
performing SELECT; (V P,t), and RANK; (V P,i) can be used to know to which posting list
position ¢ belongs to in L.

The space required to represent L[1, N] using a wavelet tree is N Hy(L) + o(N log D) bits
using RRR (see Section [2.6.1]) as the implementation for the bit sequences.

Figure [3.1 shows a simplified version of the data structure representing three posting lists.
In this example we show the explicit values of W1, N].

3.3.1 Basic operations

As previously mentioned, each list L;[1, df;] contains the document ids sorted by decreasing
weight. We denote P;[1, df;] the list sorted by document ids. We will describe in the following
sections how to carry out different operations on P;, using the wavelet tree representation L,
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Figure 3.1: Example of Dual-Sorted inverted list for three posting lists. The top part of
the figure shows the posting lists values as pairs (docid, weight) for three terms. Array Ptrs
shows where each posting list is represented at the root of the wavelet tree. Sequence W stores
the concatenation of the weights in descending order, and sequence L is the concatenation
of the docids. The positions with grey background represent the intersection traversal of the
lists Lypg and Lginisn. At the leaves, we show in black background the final intersection.

thus we do not require P; to be represented separately.

Direct Retrieval

In order to obtain any value P,[i] (that is, as if the lists were sorted by document id) we can
use the RANGE_ QUANTILE operation from the wavelet tree (see Section [2.7). The idea is to
find the i-th smallest value in L[sp;, sp;+1 — 1]. The algorithm for a general range L[l, r], is as
follows [122]: Starting from the root v of the wavelet tree, we count the numbers of ones in the
bit sequence B, as n; = RANK; (B,, ) — RANK; (B,,l — 1) and count the number of zeros as
ng = (r—1+1) —ny. The main idea is to know how many values belong to the smaller half of
the document identifiers in L[l, r]. With ng we know that if i < ng there are at least i values
that belong to the smaller half of docids, thus we continue recursively on the left child of v
setting [I,7] to [l = RANKq (By,l — 1) + 1,7 = RANK( (B,,7)]. In the other case, i > ng, we
proceed to the right child of v with the range [[ = RANK; (B,,l — 1) 4+ 1,7 = RANK; (B,, )]
and set i = ¢ — ng. The symbol located at the leaf is the answer.

49



Retrieving a Range

It is also possible to extract a range P;[i, '], in docid order, in time O((i'—i+1)(1+log ﬁ))
The procedure is similar to the one previously described: we go to the same branch when
both i and ¢’ tell us to do it, and we split the interval into two separate ranges when they do
not. The worst case is when we arrive at i — ¢ + 1 leaves of the wavelet tree, but part of the
work of arriving at these leave is shared.

3.3.2 Complex Operations
Intersection

Given a candidate document d, an important operation for intersecting posting lists is to
find the first position j such that P,[j] > d. This is commonly solved with a combination of
regular samplings and linear, binary or exponential search (recall Section . In order to
solve this operation using the wavelet tree, we start at the root node v, the root bit sequence
B, and the interval L[l, ] that represents the docids of term ¢, with [ = st; and r = sty — 1.
In the case that the number d belongs to the first half, we descend to the left, otherwise we
descend to the right. In both cases we need to update the corresponding ranges [ and r as
in the procedure to obtain any value P,[i]. If the interval [I, ] becomes empty, this means
that there is no value d in the subtree and we return without a value. On the other hand,
if we arrive at a leaf with [ = r, the leaf represents the document that we are searching for
and we return this value. If at some point during the recursion, we return no result, we have
to look for the first result to the right, searching for the smallest document d' > d. If the
recursion was to the right child, or the left but there was no 1 marked in B,[l, 7], we know
that there is no document d’ bigger than d. Otherwise, we enter to the right child looking
for the smallest value. From there we follow the leftmost path if there is some 0 in B,[l, 7],
otherwise we descend to the right. This way, in at most two root-to-leaf traversals we find
the first d > d value in P,. To obtain j, the position of d’ in P,, we must perform the sum
of all ng values from all the nodes that were traversed to reach d’ where we have gone to the
right. This operation can be carried out in O(log D) time, which is not far from the time
required to perform a binary search on P;. In the case that P;[j] = d, we must look for the
first value P,[j’] > d’, that can be done in amortized time proportional to O(log(d’' — d + 1).

The wavelet tree is capable of performing the Boolean intersection of multiple lists effi-
ciently by traversing all list at the same time. We refer to this procedure as RANGE _INTERSECTION
and is described in Algorithm Given a set of k x-ranges [x§, 2], [3, 25]...[z}, %], this op-
eration returns the y-coordinates that are common to all the z-ranges. The idea is to start
from the k ranges at the root of the wavelet tree, and as before, project those ranges to the
leaves. We map the ranges to the left child and right child of the root using RANK, and
RANK;. We continue recursively on the branches where all of the k£ sub-intervals are not
empty. If we are able to reach a leaf, then its corresponding symbol is in the intersection.
In the worst-case, this operation takes O(Zle xf — xf + 1), however there are more detailed
time complexity measures for this operation, see for example the work of Gagie et al. [74]
Theorem 8| for a more detailed analysis.
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Using this operation, this data structure also allows us to carry out another intersection
algorithm: Let us say that we want to intersect all values that are shared by P, and P/,
we know that the ranges in the wavelet tree for these postings lists are [st, st;;1 — 1] and
sty stys1 — 1]. Now we can apply Algorithm [12] Recall that this algorithm allows us to
intersect k ranges, so we can perform the intersection of k£ posting lists at the same time.

Algorithm 12: Method RANGE INTERSECT(v, [z, ..., 2], [z],...,2%]). Reports all
the symbols that are common in the k z-ranges [z3, 2], [x5, z5]...[z}, x¢]. We denote x}
the starting position of the i-th (1 <i < k) range and z¢ its ending position.

RANGE _INTERSECT(v, [z, ..., z7], [z, ..., z¢])
01 if 2{ > 2 V...z{ > zf then
02 return
03 if v is a leaf then
04 report LABELS (v)
05 return
06 T'start_left) Tend_lefts Tstart _rights Tend _left — (Z)
07 for each xgu € [25,. .., 2], Tena € [25,. .., 2] do
08 rstartileft — Tstartileft U {RANK()(B'lM Lstart — 1) + 1)}
09 rendileft — Tendileft U {RANKO(BM xend)}
10 Tstart _right — Tstart _right U {zstart - Istart_left}
1 Tend_right «— Tend_right U {xend - zend_left}
12 end for
13 RANGE__ INTERSECT (U, Tstart _left Tend left)
14 RANGE _ INTERSECT (Vy, Tstart _rights Tend_right)

Union

We can use a similar procedure as the one described in Algorithm [I2] for the union. Recall
from the algorithm that, for reporting a document, all ranges have to reach a leaf. In the case
of the Boolean union, we can relax this condition and allow that some ranges could become
empty, and we only report the ones that reached the leaves. The cost of this procedure is
O(M(1 +log £2)) , where m is the size of the output and M is the sum, over the returned
documents, of the number of intervals where they appeared.

Ranked Unions

It is possible to support ranked union operations on this data structure by implementing
Persin et al.’s algorithm [I3T]. We use the operation described to extract a range L[i, j] in
order to obtain the whole shortest list, and to extract a prefix of the next lists. The extension
of the prefix to be extracted (according to the threshold on w(t, d) given by the algorithm)
is computed by an exponential search on W. Note that the range operation obtains the
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documents of the lists sorted by docid, which makes it convenient to merge into our set of
accumulators accy if they are also sorted by docid. Note that W stores tf values; these are
multiplied by idf; before accumulating them.

Ranked Intersections

Ranked intersections can be handled by first performing the complete Boolean intersection
and then proceeding to score documents. First, we find the ¢ intervals [s;, e;] of the query
words using the pointers from the vocabulary to the inverted lists L;, and sort them by
increasing lengths. Then we use Algorithm for tracking the ranges within the wavelet
tree. We track all the ¢ ranges simultaneously, stopping as soon as any of those becomes
empty. Every time we reach a leaf, it corresponds to a document d that participates in
the intersection. Their term frequencies are available by first obtaining the original position
in sequence L. This can be done by performing SELECT operation using the docid as the
symbol and the leaf position as the number of occurrences. This way we can compute the
document score, by traversing the tree upwards and obtaining the weight using sequence W'.
As we obtain each document that belongs to the intersection, we retain the k highest scored
documents in a min priority queue containing pairs (docid, weight) prioritized by weight.

3.4 Compression of Posting Lists

Compression of the postings lists is essential for efficient retrieval, on disk and in main
memory [166]. The main idea to achieve compression is to differentially encode the docids,
whereas the weights are harder to compress. A list of docids (dy, ds, ds, . . . d,) is represented
as a sequence of d-gaps (dy,ds — dy,d3 — da, ...,d, — d,_1), and variable-length encoding is
used to encode the differences (see Section Extracting a single list or merging lists is done
optimally by traversing lists from the beginning, but query processing schemes can be done
much faster if random access to the sequences is possible. This can be obtained by cutting
the lists into blocks that are differentially encoded, while storing in a separate sequence the
absolute values of the block headers and pointers to the encoded blocks [511, [145].The result
is a two-level structure: the first contains the sampled values and the second stores the
encoded sequence itself. For example, Culpepper and Moffat [51] extract a sample every
P = plogn values from the compressed list, where p is a space/time tradeoff parameter.
Direct access requires a binary search on the samples list plus the decompression of a within-
samples block. Sanders and Transier [145], instead, sample regularly the domain values: all
the values differing only in their p = log(B/n) lowest bits (for a parameter B, typically 8),
form a block. The advantages are that binary searches on the top structure, and storing
absolute values in it, are not necessary. A disadvantage is that the blocks are of varying
length and more values might have to be scanned on average for a given number of samples.

Since bit-aligned codes can be inefficient at decoding as they require several bitwise oper-
ations, byte-aligned [147| or word-aligned codes [168], [IT] are preferred when the speed is the
main concern. Examples of this family of techniques are Variable Byte (VByte), Simple9 and
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Simplel6 (recall Section [2.5). Another approach is to encode blocks of integers at the same
time, this way trying to improve both compression and decoding speed. The most popular
block-based encoding mechanism is known as PForDelta. Any other integer compression
mechanism can be employed to compress the posting lists, providing different space/time
tradeoffs. See the work of Trotman [I57] for a comprehensive study and comparison of these
techniques.

Vigna [I61] explored an Elias-Fano representation of monotone sequences to represent
the docids of the posting lists. Different from the traditional approach, it is not necessary
to represent the list as a sequence of d-gaps. Vigna showed how to perform random access
directly over the compressed sequence and implement efficient operators that are useful for
skipping when performing intersections. The usage of this compression scheme showed that it
is possible to achieve competitive space and time when compared to state-of-the-art methods
such as y-d-Rice and even PForDelta. Ottaviano and Venturini [127] extended this idea by
performing an (1 + €)-optimal partitioning of the list into chunks, for any € > 0, and then
encoding both the chunks and their endpoints with Elias-Fano. Their results show that the
partitioned approach offers significantly better compression and similar performance in terms
of query time efficiency.

When the lists are sorted by decreasing weight (for approximate ranked unions), the
differential compression of docids is not possible, in principle. Instead, term weights can be
stored differentially. When storing tf values, one can take advantage of the fact that long
runs of equal tf values (typically low ones) are frequent, and thus not only perform run-length
encoding of them, but also sort the corresponding docids increasingly, so as to encode them
differentially [16, [17T].
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Chapter 4

Inverted Treaps

In this chapter we introduce a new compressed representation for the lists of the inverted
index, which performs ranked intersections and (exact) ranked unions directly. Our repre-
sentation is based on the treap data structure (See Section , a binary tree that simul-
taneously represents a left-to-right and a top-to-bottom ordering. We use the left-to-right
ordering for document identifiers (which supports fast Boolean operations) and the top-to-
bottom ordering for term weights (which supports the thresholding of results simultaneously
with the intersection process). Using this data structure, we can obtain the top-k results for
a ranked intersection/union without having to produce the full Boolean result first.

We explore different alternatives to engineer the new list representation using state-of-
the-art compact data structures to represent the treap topology. The classical differential
representation of docids becomes less efficient in the treap, but in exchange the treap repre-
sentation allows us to differentially encode both docids and weights, which compensates for
loss. We also present novel algorithms for processing the queries on the treap structure, and
compare their performance against well-known approaches such as WAND [36], Block-Max
[59], and Dual-Sorted [99]. Our experiments under the classical tf-idf scoring scheme show
that the space usage of our treap-based inverted index representation is competitive with
the state-of-the-art compressed representations: our faster variant is around 25% larger than
WAND, as large as Block-Max, and 15% smaller than Dual-Sorted. In terms of time, the
fastest inverted treap variant outperforms previous techniques in many cases: on ranked one-
word queries it is 20 times faster than Dual-Sorted and 25-200 times faster than Block-Max;
WAND is even slower. On ranked unions it is from 10 times (for £ = 10) to 3 times (for
k = 1000) faster than Block-Max, and similarly from 45-50 times to 6-7 times faster than
WAND and Dual-Sorted. It is always the fastest index for one-word and two-word queries,
which are the most popular. On ranked intersections, our fastest treap alternative is twice as
fast as Block-Max for & = 10, converging to similar times for £ = 1000. In the same range of
k, it goes from twice as fast to 40% faster than WAND, and from 80% faster to 10% slower
than Dual-Sorted. Our inverted treap is always the fastest index up to £ = 100. We also
experimented under a quantized BM25 scoring scheme, where the fastest inverted treap uses
35%-40% more space than Block-Max or Dual-Sorted. It is still slightly better than all the
alternatives on ranked unions. For ranked intersections, it is from twice as fast (for & = 10)
to 15% slower (for & = 1000) on ranked intersections, still being the fastest for £ = 100. On
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one-word queries, the inverted treap is 20 times faster than Dual-Sorted and 40-300 times
faster than Block-Max.

Those ranges of k values make this result very relevant both for a first stage retrieving
a few hundreds or thousands of documents, or for directly conveying a handful of final re-
sults to the user. We also show how to support incremental updates on the treap, making
this representation a useful alternative for scenarios where new documents must be avail-
able immediately. The overhead of allowing for incremental updates compared to our static
alternatives, in terms of space, construction and query times, ranges from 50% to 100%.

The first version of this work appeared in the proceedings of the 36th ACM Special Interest
Group in Information Retrieval (SIGIR) Conference held in Dublin, Ireland on August 2013.
An extended version has been submitted for revision to the ACM Transactions on Information
Systems in March 2016. This work has been developed in collaboration with Charles L.A
Clarke and Alejandro Lopez-Ortiz from the University of Waterloo, Canada.

4.1 Inverted Index Representation

We consider the posting list of each term as a sequence sorted by docids (which act as keys),
each with its own term frequency (which act as priorities). Term impacts, or any other
term weights, may also be used as priorities. We then use a treap to represent this sequence.
Therefore the treap will be binary searchable by docid, whereas it will satisfy a heap ordering
on the frequencies. This means, in particular, that if a given treap node has a frequency below
a desired threshold, then all the docids below it in the treap can be discarded as well.

Figure illustrates a treap representation of a posting list. This treap will be used as a
running example. Ignore for now the differential arrays on the bottom.

4.1.1 Construction

A treap on a list ((dy,w), ..., (dn, wy,)) of documents and weights can be built in O(n) time
in a left-to-right traversal [27, 22], [69]. Initially, the treap is just a root node (dy,w;). Now,
assume we have processed (dy,w1), ..., (d;—1,w;—1) and the rightmost path of the treap, root
to leaf, is vy,..., v}, each v} representing the posting (dj,w}). Then we traverse the path
from vy to vy, until finding the first node v} with w} > w; (assume the treap is the right child
of a fake root with weight w{, = +00, to avoid special cases). Then, (d;, w;) is set as the right
child of v} and the former right child of v’ becomes the left child of (d;,w;), which becomes

the lowest node in the rightmost path.

Since for every step in this traversal the rightmost path decreases in length, and it cannot
increase in length by more than 1 per posting, the total number of steps is O(n). Under
reasonable assumptions (i.e., the weight and the docid are statistically independent and the
input list is already sorted by docid) the height of a treap is O(logn) [108], and so is the
length of its rightmost path. Therefore, the maximum time per insertion is O(logn) expected

95



docids :| 4 | 9 |12|14|15|16|22|27|30|32|35|37|39|42|44|

fregs :|6|2|14|1|1|1|2|1|24|4|6|1|2|1|3|
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Figure 4.1: An example posting list with docids and frequencies and the corresponding treap
representation in our scheme. Note that docids (inside the nodes) are sorted inorder and
frequencies (outside the nodes) are sorted top to bottom. The differentially encoded docids
and frequencies are shown below the tree.

(but O(1) worst-case when amortized over all the insertions on the treap).

4.1.2 Compact Treap Representation

To represent this treap compactly we must encode the tree topology, the docids, and the
term frequencies. We discuss only the docids and frequencies in this subsection. Our plan is
not to access the posting lists in sequential form as in classical schemes, thus a differential
encoding for each docid with respect to the previous one is not directly applicable. Instead,
we make use of the invariants of the treap data structure.

Let id(v) be the docid of a treap node v, and f(v) its frequency. We represent id(v)
and f(v) for the root in plain form, and then represent those of its left and right children
recursively. For each node v that is the left child of its parent u, we represent id(u) — id(v)
instead of id(v). If, on the other hand, v is the right child of its parent u, we represent
id(v) — id(u) [47]. In both cases, we represent f(u) — f(v) instead of f(v). Those numbers

get smaller as we move downwards in the treap.

The sequence of differentially encoded id(v) and f(v) values is represented according to
an inorder traversal of the treap, as show on the bottom of Figure [{.1l As we move down
the treap, we can easily maintain the correct id(v) and f(v) values for any node arrived at,
and use it to compute the values of the children as we descend.
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To do this we need to randomly access a differential value in the sequence, given a node.
We store those values in an array indexed by node inorders and use the Direct Addressable
Codes (DACs) described in Section to directly access the values while taking advantage
of their small size.

4.1.3 Representing the Treap Topology

We have shown that if we use a treap to represent posting lists we can differentially encode
both docids and frequencies, however, we still need to represent the topology. A pointer-based
representation of a treap topology of n nodes requires O(n logn) bits, which is impractical for
large-scale data. Still, space is not the only concern: we need a compact topology represen-
tation that supports fast navigation in order to implement the complex algorithms deriving
from ranked intersections and unions. In this subsection we introduce three representations
designed to be space-efficient and to provide fast navigation over the topology.

Compact Treap using BP

This representation uses the balanced parentheses (BP) described in Section However,
this representation is designed for general ordinal trees, not for binary trees. For example, if
a node has only one child, general trees cannot distinguish between it being the “left” or the
“right” child.

A well-known isomorphism [I14] allows us represent a binary tree of n nodes using a
general tree of n + 1 nodes: First, a fake root node v,,,; for the general tree is created. The
children of v,,,; are the nodes in the rightmost path of the treap, from the root to the leaf.
Then each of those nodes is converted recursively. The general tree is then represented as
a BP sequence Sgp[l,2n + 2]. With this transformation, the original treap root is the first
child of v,40¢. The left child of a treap node v is its first child in the general tree and the right
child of v is its next sibling in the general tree. Moreover, the inorder in the original treap,
which we use to access docids and frequencies, corresponds to the preorder in the general
tree, which is easy to compute with parentheses. Figure shows the transformed treap for
our running example.

Each treap node ¢ is identified with its corresponding opening parenthesis. Thus the root
of the treap is node 2. The inorder of a node i is simply RANK; (Sgp,4) — 1, the number of
opening parentheses up to ¢ excluding the fake root. The left child of 7 in the treap, or its
first child in the general tree, is simply FIRST CHILD(7) = i + 1. If, however, Sgp[i + 1] = 0,
this means that ¢ has no first child. For the right child of node 7 in the treap, or its next
sibling in the general tree, we use NEXT _SIBLING (i) =CLOSE(%)+ 1, where CLOSE returns the
closing parenthesis that matches a given opening parenthesis. If Sgp has a 0 in the resulting
position, this means that ¢ has no right child.

Therefore, in addition to RANK, we need to implement operation CLOSE in constant time.
This is achieved with a few additional data structures of size o(n), as described in Section[2.10]
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Figure 4.2: The original binary tree edges (dashed) are replaced by a general tree, whose
topology is represented with parentheses. The opening and closing parentheses of nodes vy,
vy and v3 in Sgp are shown on the bottom part.

As an example, we demonstrate this procedure using the treap from Figure We see
that v; (the treap’s original root) starts at position ¢ = 2 in Sgp. If we want to retrieve
the index of its left child, which is node vy, we perform FIRST CHILD(2). The procedure
checks that Sgp[3] is an opening parenthesis, so we can return 3 as the answer for the starting
position of the left node of v;. On the other hand, if want to obtain the position where the
right child of v; begins, which is v, we perform CLOSE(2) 4 1 and obtain position 20, which
contains a 1 and thus corresponds to the starting position of v3.

Compact treap using LOUDS

The LOUDS representation (recall Section can be adapted to support binary trees
efficiently: for every node in a level-order traversal we append two bits to the bit sequence,
setting the first bit to ‘1’ iff the node contains a left child and setting the second to ‘17 iff
the node contains a right child. For example, a leaf node will be represented as 00, while a
binary tree node containing both children is represented as 11. The concatenation of these
bits builds a bit sequence Spoups[l,2n]|. Since every node adds two bits to this sequence,
we can use the levelwise order i of a node as its identifier, knowing that its two bits are at

Sroups(2i — 1, 2i].

The LOUDS representation is simpler than BP, as it can be navigated downwards using
only RANK operations. In addition, it does not require the tree isomorphism. Given the
sequence Spoups representing the treap topology as a binary tree and a node i, we navigate

o8



6
=
6 4@ 0 @3
Q 2 7}6 2 177
7’5 ﬂ
1 1

13 Y14 Y15

H

112(3(4|5|6|7|8|9(10[1112(13|14|15|16|17|18|19|20|21 |22|23|24(25|26|27|28|29|30

00]10]00(1/1|00|1/1[0/0]00]00[00
% 1% %% Y% | Y7 % Y% [Y10]Y1Y2[Y13 Y14 15

LOUDS Topology (S;oups) =
Node =

<=
[
[y
[
'_\
o
[y
—

Figure 4.3: The LOUDS representation of an example treap. Spoups denotes the bit sequence
that describes the topology.

the tree as follows: if ¢ has a left child (i.e., if Spoups[2¢ — 1] = 1) then the child is the
node (with levelwise order) RANK; (Spoups, 2¢ — 1) + 1. Analogously, the right child exists if
SLoups [22] =1, and it is RANK; (SLOUDS; Qi) + 1.

Figure shows an example of a binary tree using a LOUDS representation. We demon-
strate how to navigate the tree with an example: say that we are at node vy (meaning
its LOUDS identifier is 4), which is represented by the bits located at positions 7 and 8.
We know that v, has no left child because the first bit is 0, but it has a right child since
the second bit is a 1. The right child of v, is the node with identifier (or levelwise order)
RANK; (Sroups, 2 - 4) +1 = 8, which we draw as vs. The two bits of this node are at positions
15 and 16. Since both bits are set to 0, this node is a leaf.

Compared to the BP representation, the LOUDS-based solution requires less space in
practice (2.10 bits per node instead of 2.37) and simpler operations. On the other hand, the
BP representation has more locality of reference when traversing subtrees.

For this representation, we store the sequences of differentially encoded docids and frequen-
cies (sequences “diff docids’ and “diff freqs” of Figure following the level-order traversal
of the binary tree. This ordering is shown as “Node” at the bottom part of Figure

Compact treap using Heaps

Even if the topology representations using LOUDS or BP support constant-time tree navi-
gation, in practice they are 10 to 100 times slower than a direct access to a memory address
(i.e., accessing any position in an array), as shown in the preliminary version of this work
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[10T]. In order to avoid these costly operations, we designed a new compact binary tree rep-
resentation that is inspired by binary heaps. The main idea is to take advantage of the fact
that a complete binary tree of n nodes does not require any extra information to represent
its topology, since the values can be represented using just an array of size n. In order to
navigate the tree, we can use traditional binary heap operations: the left child of node i is
located at position 2¢ and the right child at position 2: + 1. However, a treap posting list
representation will rarely be a complete binary tree. Therefore, we take the maximal top
part of the tree that is complete and represent it as a heap. We then recursively represent
the subtrees that sprout from the bottom of the complete part. The motivation is to avoid
the use of RANK or more complex operations every time we need to navigate down the tree.

We start at the root of the treap and traverse it in levelwise order, looking for the first
node that does not contain a left or a right child. Say that this happens at level ¢ of the tree,
so we know that all the nodes up to level ¢ have both left and right children. In other words,
the subtree formed by all the nodes starting from the root up to level ¢ forms a complete
tree 77 that contains 2 — 1 nodes. Figure shows an example, where the first node that
does not have a left or right child (vy) is located at level £ = 3, therefore |T{| =23 — 1 =T.
We then append the differential values of the nodes (docid and frequency) of the complete
subtree to the sequences “diff docids’” and “diff freqs’ (see Figure , in levelwise order.

For each of the 2/~! leaves of 7; we write in a bit sequence Sypap two bits, indicating if
the corresponding leaf contains a left or a right child, similarly to LOUDS.

We continue this procedure by considering each node located at level £+ 1 as a new root,
for further trees 7;. The trees yet to process are appended to a queue, so the trees 7T; are
also deployed levelwise. Note that any of these new roots (including the original root) could
lack a left or a right node, in which case we will have a complete subtree of only one node.

We also need a sequence P where P[j] is the starting point of 7; in the sequences of docids
and frequencies. This also serves to compute |7;| = P[j + 1] — P[j]. Since there may be a
considerable number of small complete trees, P may require up to nlogn bits. To reduce its
size, and considering that P[j+ 1] — P[j] is of the form 2° — 1, we store another array instead,
P’ that stores the number of levels in the corresponding complete binary tree, P'[0] = 0 and
P'lj+1] = ¢ —1 = logy(|7;| + 1) — 1. This reduces the space to at most nloglogn bits,
and the starting position of the sequences of 7; can be obtained as P[j] = Y27 (2P 1141 —1).
To compute this sum faster, we divide P’ into blocks of fixed size b and store in a separate
sequence the sums up to the beginning of each block. This way, we limit to b the number of
elements that are summed up. A similar trick, computing —1 + 770 276+ = P[j] +j — 1,
gives the starting position of 7; in the bitvector Sygpap.

Figure [£.4 shows our representation. The grey triangles represent the complete trees 7Tq
to T5. On the bottom of the figure we show the extra structures discussed.

In order to navigate the tree we proceed as follows: we represent a node v as a pair (j, pos),
so that v is the node at levelwise-order position pos inside the subtree 7;. To move to the
left child, we just set pos’ = 2- pos, and to move to the right child we set pos’ = 2-pos+1. If
pos’ < |T;| we are within the same complete subtree 7T;, so we are done. On the other hand,
if pos’ > |T;|, we know two things: first, node v is a leaf within its complete subtree 7;, and
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second, we need to move to another complete subtree. Before moving to another subtree we
first need to check if the leaf node has the desired (left or right) child. Thus we map the
position of the leaf within its subtree, pos, to the sequence Sygap. This can be done with
pos_map = Pljl+j—1+2-(pos—1—[|T;|/2]) = P[j] +j — 2+ 2 pos — |T;|, adding 1 if
we descend to the right child. Now, we check in Sygap[pos map] if the corresponding bit is
set. In the case the leaf node in the subtree 7; has the desired left or right child, we calculate
the new node subtree index with j' = RANK; (Sggap, pos_norm) + 1, and set pos’ = 1.

We demonstrate this process with an example based on Figure [4.4} Let us begin at node
vz, which is represented by the pair (1,7) and let us say that we want to move to the left.
We set pos’ = 2-pos = 14. Since |T;| = 7 < 14, we realize that we are located at a leaf node.
Thus we map pos to the sequence Sygap with pos map=1+1—-2+42-7—7 = 7. Note
that the 7-th bit in Sygap tells if v7 has a left child or not. Since Sypap[7] = 1 we proceed to
figure out which tree we must go to. This is computed with RANK; (Sggap,7) +1 = 5. Our
new node is then represented as the pair (5, 1).

For this representation, we maintain the sequences of docids and frequencies following the
level-order traversal of the nodes within each complete subtree. This traversal is denoted
“Node” in the bottom part of Figure [4.4)).

The idea of separating the treap into complete trees is inspired by the level-compressed
tries of [§]. Under reasonable models for tries they show that the expected number of complete
subtrees traversed in a root-to-leaf traversal is O(loglogn) and even O(log" n). While we are
not aware of an analogous result for random binary trees, it is reasonable to expect that
similar results hold. Note that this is the number of RANK operations needed in a traversal,
instead of the O(logn) that we can expect using BP or LOUDS.

4.1.4 Practical Improvements

The scheme detailed above would not be so successful without three important improvements.
First, because many posting lists are very short, it turns out to be more efficient to store two
single DAC sequences, with all the differential docids and all the differential frequencies for
all the lists together, even if using individual DACs would have allowed us to optimize their
space for each sequence separately. The overhead of storing the chunk lengths and other
administrative data outweighs the benefits for short sequences.

A second improvement is to break ties in frequencies so as to make the treap as balanced
as possible, by choosing the root as the maximum that is closest to the center of each interval
(in every subtree). This improves the binary searches for docids and the tree traversal for
the HEAP representation. While it is still possible to build the treap in linear time with this
restriction, a simple brute-force approach to find the centered maximum performs better in
most practical cases.

The third, and more important, improvement is to omit from the treap representation all
the elements of the lists where the frequency is below some threshold f,. According to Zipf’s
law [169, [50} 40}, 17], a large number of elements will have low frequencies, and thus using a
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Figure 4.4: An example HEAP treap topology representation. At the top, we draw each
complete tree with a grey background. The levels of the tree are shown on the right. At
the bottom, we show the resulting Sypap sequence (the holes are not represented) and mark
the area of each complete treap 7;. The starting positions of these areas correspond to the
sequences of docids and frequencies, as they consider the holes and thus account for the
internal nodes as well (see array Node). Those starting positions are written below, in array
P. Note that the corresponding starting position in Sygap is simply P[j] + j — 1. Instead of
P, we store the logarithms of the sizes, in P’

separate posting list for each frequency below fy will save us from storing those frequencies
wherever those elements would have appeared in the treap. Further, the docids of each list
can be differentially encoded in classical sequential form, which is more efficient than in treap
order.

It turns out that many terms do not have to store a treap at all, as they never occur more
than fj times in any document. We represent the gap-encoded lists using PforDelta and take
an absolute sample every 128 values (which form a block). Samples are stored separately
and explicitly in an array, with pointers to the block [51]. Searches in these lists will ask for
consecutively larger values, so we remember the last element found and exponentially search
for the next query starting from there. Figure [4.5|illustrates the separation of low-frequency
elements from our example treap.

A neat feature of these lists is that often we will not need to access them at all during
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Figure 4.5: Separating frequencies below fy = 2 in our example treap. The nodes that are
removed from the treap are on white background. For the documents with frequencies 1 and
2, we show the absolute docids on the left and their differential version on the right.

queries, since ranked queries aim at the highest frequencies.

4.2 Query Processing

In this section we describe the procedure to perform efficient top-k query processing using
the inverted treaps.

4.2.1 General Procedure

Let @@ be a query composed of ¢ terms t € (). To obtain the top-k documents from the
intersection or union of ¢ posting lists we proceed in DAAT fashion: We traverse the ¢ posting
lists in synchronization, identifying the documents that appear in all or some of them, and
accumulating their weights w(t, d) into a final score(Q, d) = >, w(t,d) = >, tf, ;-idf;. Those
documents are inserted in a min-priority queue limited to k£ elements, where the priority is
the score. Each time we insert a new element and the queue size reaches k£ + 1, we remove
the minimum. At the end of the process, the priority queue contains the top-k results.
Furthermore, at any stage of the process, if the queue has reached size k, then its minimum
score L is a lower bound to the scores we are interested in for the rest of the documents.
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4.2.2 Intersections

Let d be the smallest docid not yet considered (initially d = 1). Every treap ¢ involved in the
query () maintains a stack of nodes (initially holding just a sentinel value element wu; with
id(uy) = 400 and f(u;) = +00), and a cursor v, (initially the treap root). The stack will
contain the nodes in the path from the root to v; where we descend by the left child. We will
always call u; the top of the stack, thus w; is an ancestor of v; and it holds id(u;) > id(v;).

We advance in all the treaps simultaneously towards a node v with docid id(v) = d, while
skipping nodes using the current lower bound L. In all the treaps ¢ we maintain the invariant

that, if v is in the treap, it must appear in the subtree rooted at v;. In particular, this implies

Because of the decreasing frequency property of treaps, if d is in a node v within the
subtree rooted at vy, then f(v) < f(v;). Therefore, we can compute an upper bound U to the
score of document d by using values f(v;) instead of f(v), for example U =}, o f(v;) - idf;
for a tf-idf scoringﬂ. If this upper bound is U < L, then there is a valid top-k answer where
d does not participate, so we can discard d. Further, no node that is below all the current
vy nodes can qualify. Therefore, we can safely compute a new target d <— ming(id(u;)). Each
time the value of d changes (it always increases), we must update the stack of all the treaps ¢
to restore the invariants: While id(u;) < d, we assign v; <— u; and remove u; from the stack.
We then resume the global intersection process with this new target d. The upper bound U
is recomputed incrementally each time any v, value changes (U may increase or decrease).

When U > L, it is still feasible to find d with sufficiently high score. In this case we have
to advance towards the node containing d in some treap. We obtained the best results by
choosing the treap ¢ of the shortest list. We must choose a treap where we have not yet
reached d; if we have reached d in all the treaps then we can output d as an element of the
intersection, with a known score (the current U value is the actual score of d), insert it in
the priority queue of top-k results as explained (which may increase the lower bound L),
and resume the global intersection process with d < d + 1 (we must update stacks, as d has
changed).

In order to move towards d # id(v;) in a treap t, we proceed as follows. If d < id(v;), we
move to the left child of v;, l;, push v; in the stack, and make v; < [;. Instead, if d > id(v;),
we move to the right child of v;, r;, and make v; < ;. We then recompute U with the new
vy value.

If we have to move to the left and there is no left child of v;, then d does not belong to
the intersection. We stay at node v; and redefine a new target d < id(v;). If we have to
move to the right and there is no right child of v;, then again d is not in the intersection. We
make vy < u;, remove wu; from the stack, and redefine d < id(u;). In both cases we adjust
the stacks of the other treaps to the new value of d, as before, and resume the intersection
process.

'Replacing f(v) by f(v¢) will yield an upper bound whenever the scoring function is monotonic with the
frequencies. This is a reasonable assumption and holds for most weighting formulas, including tf-idf and
BM25.
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Algorithm gives pseudocode for the intersection. The auxiliary methods REPORT,
CHANGEV and CHANGED are shown in Algorithms and [16| respectively.

Algorithm 13: Method TREAP INTERSECT(Q, k). Performs a ranked intersection from
query terms () and returns the top-k documents and scores.

TREAP _INTERSECT(Q, k)
01 results < () // priority queue of pairs (key, priority)
02 fort € Q) do

03 stacky <— (L) // stack of treap t, id(L) = f(L) = o0
04 v < root of treap t

05 end for

06 d<1,L + —

07 while d < +o0 do

08 while U < L do

09 CHANGED(mineq id(TOP(stacky)), stack, U, d)
10 end while

11 ifVt € Q, d=1id(v)

12 REPORT(d, U, k, results)

13 CHANGED(d + 1, stack, U, d)

14 else

15 t < treap of shortest list such that d # id(v;)
16 if d < id(v;) then

17 l; < left child of v,

18 if [; is not null then

19 PUSH(stacky,v;), CHANGEV (t, [, U)
20 else

21 CHANGED(id(v;), stack, U, d)

22 end if

23 else

24 ry <— right child of v,

25 if r; is not null

26 CHANGEV(t, 7, U)

27 else

28 CHANGEV(t,POP(stacky),U)

29 CHANGED(id(v,), stack, U, d)

30 end if

31 end if

32 end if

33 end while

34 return results
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Algorithm 14: Method REPORT(d, s, k, results). Maintains the top-k candidates in the
min-priority queue results, d is the document to be inserted, s is the corresponding
score, k is the top-k variable, and results is the min priority queue.

REPORT(d, s, k, results)

o1 results < results U (d, s)

02 if |results| > k do

03 remove minimum from results, L < minimum priority in results
04 end if

Algorithm 15: Method CHANGEV(t,v,U). Changes the contribution in U according to
the current node in v in .

CHANGEV(t,v)
o1 remove contribution of f(v;) from U, e.g. U — f(v;) - idf;
02 U 4= v
03 add contribution of f(v;) to U, e.g. U + f(v) - idf;

Algorithm 16: Method CHANGED(newd, stack,U). Changes the current document
candidate to be evaluated.

CHANGED (newd, stack, d)

01 d < newd

02 for t € @) do

03 v vy

04 while d > id(TOP(stack;)) do
05 v «TOP(stacky)

06 POP(stacky)

07 end while

08 CHANGEV(t,v,U)

09 end for

Handling low-frequency lists

We have not yet considered the lists of documents with frequencies up to fy, which are
stored separately, one per frequency, outside the treap. While a general solution is feasible
(but complicated), we describe a simple strategy for the case fy = 1, which is the case we

implemented.

Recall that we store the posting lists in gap-encoded blocks. Together with the treap
cursor, we will maintain a list cursor, which points inside some block that has been previously
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decompressed. Each time there is no left or right child in the treap, we must search the list
for potential elements omitted in the treap. More precisely, we look for elements in the range
[d,id(v;) — 1] if we cannot go left, or in the range [d, id(u;) — 1] if we cannot go right. Those
elements must be processed as if they belonged to the treap before proceeding in the actual
treap. Finding this new range [l, 7] in the list may imply seeking and decompressing a new

block.

The cleanest way to process range [[,7] is to search as if it formed a subtree fully skewed
to the right, descending from v;. If we descended to the left of v; towards the range, we push
vy into the stack. Since all the elements in the list have the same frequency, when we are
required to advance towards (a new) d we simply scan the interval until reaching or exceeding
d, and the docid found acts as our new id(v;) value. When the interval [[, 7] is exhausted, we
return to the treap. Note that the interval [/, 7] may span several physical list blocks, which
may be subsequently decompressed.

4.2.3 Unions

The algorithm for ranked unions requires a few changes on the algorithm for intersections.
First, in the two lines that call CHANGED(id(v;)), we do not change the d for all the treaps
when the current treap does not find it. Rather, we keep values nextd; where each treap stores
the minimum d’ > d it contains, thus those lines are changed by nextd; < id(v;). Second, we
will choose the treap ¢ to advance only among those where id(v;) # d and nextd, = d, as if
nextd, > d we cannot find d in treap ¢. Third, when all the treaps t where id(v;) # d satisfy
nextd; > d, we have found exactly the treaps where d appears. We add up score(Q, d) over
those treaps where id(v;) = d, report d, and advance to d + 1. If, however, this happens but
no treap t satisfies id(v;) = d, we know that d is not in the union and we can advance d
with CHANGED (minseq nextd,). Finally, CHANGED(newd) should not only update d but also
update, for all the treaps ¢, nextd; to max(nextd;, newd).

Algorithm [17] gives the detailed pseudocode. A special case for the method CHANGED has
to be implemented for this case, which is depicted in Algorithm [I§]

4.2.4 Supporting Different Score Schemes

Arguably the simplest scoring scheme is to use the sum of term frequencies ¢ f; 4 of the words
involved in a bag-of-words union or intersection query. This case is easy to implement using
inverted treaps, since the topology is constructed employing the term frequency as the priority
and the term frequencies are represented differentially. A trivial extension is tf-idf scoring:
every time we need to calculate U, we multiply the term frequency by the corresponding idf;,
as shown in Algorithm [13] and Algorithm [I7] However, in order to support more complex
scoring schemes, such as BM25, additional information is required (i.e., document length) and
the resulting relative order of documents inside a list may be different from ¢ f. In these cases,
creating the treap topology based on the the term frequency tf; 4 is not useful. Moreover,
if we actually use the exact score, we would require float or double precision numbers, thus
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Algorithm 17: Method TREAP UNION(Q, k). Performs a ranked intersection from
query terms () and returns the top-k documents and scores.

TREAP _UNION(Q, k)
01 results < () // priority queue of pairs (key, priority)
02 for t € Q do

03 stack, < (L) // stack of treap t, id(L) = f(L) = 400
04 v < root of treap t

05 nextd;, < 1 // next possible value in treap ¢

06 end for

06 d<1,L <+ —

07 while d < +00 do

08 while U < L do

09 CHANGED _ UNION(mine( id(TOP(stacky)), stack, U, d)
10 end while

11 if Vt € Q, d =1id(v) V nextd, > d then

12 if 3t € Q, d = id(v;) then

12 REPORT(d, U, k, results)

13 CHANGED _UNION(d + 1, stack, U, d)

14 else

16 CHANGED _ UNION(minegnextd,, stack, U, d)
17 end if

18 else

19 t < treap of shortest list such that d # id(v;)
16 if d < id(v;) then

17 l; < left child of v,

18 if [; is not null then

19 PUSH(stacky,v;), CHANGEV (t, [, U)

20 else

21 nextd; < id(v;)

22 end if

23 else

24 ry <— right child of v,

25 if 7, is not null

26 CHANGEV(t, 1), U

27 else

28 CHANGEV(t,POP(stacky),U)

29 nextd; < id(vy)

30 end if

31 end if

32 end if

33 end while

34 return results
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Algorithm 18: Method CHANGED _UNION(newd, stack,U). Changes the current doc-
ument candidate to be evaluated in the case of top-k unions using treaps.

CHANGED (newd, stack, d)

01 d < newd

02 fort € Q do

03 nextd; < max(nextd;, newd)

04 Vv

05 while d > id(TOP(stack;)) do
06 v <—TOP(stacky)

07 POP(stacky)

08 end while

09 CHANGEV(t,v,U)

10 end for

increasing the size of the index.

An alternative to cope with BM25 is to compute each score at construction time, and build
the topology according to the computed score, but still store the term frequency at each node.
The query processing algorithm is still valid since we are able to compute the complete score
at query time. However, the treap cannot encode term frequencies differentially anymore,
since it is possible that a term frequency stored in a node’s child is greater than the one of the
node itself. If we represent the absolute frequencies, the resulting inverted treap approach is
not competitive in terms of space.

In this work we use another approach to this problem. We employ impact-scoring (Section
instead of term frequencies. This enables the inverted treaps to support any type of
scoring scheme. The procedure is to construct the treap topology using the pre-calculated
impacts, and store them as if they were the term frequencies in the nodes. This allows for
differential encoding of impacts, and we can use the same query algorithms without any
change.

4.3 Incremental Treaps

So far, we described a static representation of posting list using treaps. In this section we
show how to extend the inverted treap representation to support incremental updates, that
is, to allow the addition of new documents to the collection while the index is loaded in
memory.

Incremental in-memory inverted indexes have been developed to cope with the efficiency
challenges in Twitter [39] and for indexing microblogs [167]. In these two cases, the more
recent posts are generally more relevant, thus appending them at the end of the inverted lists,
just as in the indexes designed for Boolean intersections, allows for efficient query processing.
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In main memory, the problem of maintaining such an inverted index up to date is simpler,
because the price for non-contiguous storage of the inverted lists is not so high. In a thorough
recent study, Asadi and Lin [I5] show that the difference in query performance between lists
cut into many short isolated blocks versus fully contiguous lists is only 10%—20% for Boolean
intersections and 3%—6% for ranked intersections.

However, there are cases where we require immediate updating of the index but have no
preference for the most recent posts. Obvious examples are online stores like Ebay or Amazon,
where new products must be immediately available but they are not necessarily better than
previous ones. In those cases, we are interested in ranked retrieval using traditional relevance
measures, which are mostly independent of the insertion time.

While this form of dynamization is simple for the WAND and Block-Max formats [15],
it is much more challenging for the treaps, because postings are not physically stored in
increasing document identifier order, and therefore one cannot simply append the inserted
postings at the end of the inverted lists.

4.3.1 Supporting Insertions

Our solution is inspired by the linear-time algorithms for building treaps offline (recall Section
[.1.1). We maintain the rightmost path of the tree in uncompressed form, and their left
subtrees are organized into progressively larger compressed structures. This allows for smooth
insertion times without large sudden reconstructions, reasonable compression performance
and search times.

The main idea is to maintain a treap for each inverted list, as in the static case. How-
ever, this treap is only gradually converted into a compressed static structure, and never
completely. Some nodes are represented with classical pointers (we call those free nodes),
whereas some subtrees are represented in the form of static treaps.

The rightmost path is always composed of free nodes. Some nodes descending from the
left children of those nodes may also be free, but not many. Each free node v stores the
number F(v) of free nodes in its subtree; these always form a connected subtree rooted at
the node. We use a blocking parameter b, so that when a left child v of a rightmost path
node has b free nodes or more, all those free nodes are converted into a static treap.

Precisely, when a rightmost node v} is converted into the left child of a new incoming node
v;, we check if F(v}) > b (since v} belonged to the rightmost path, the limit to free nodes
did not apply to it, so if v} has £ rightmost descendants, it could have up to f(v}) = bl free
nodes descending from it). If F(v}) > b, all those F(v}) free nodes are converted into a static
treap and we set F(v;) < 1 for the new node. Otherwise, we set F(v;) <= F(v)) + 1.

Hence, the maximum time per insertion is O(bf), which is O(blogn) in expectation. This,
however, does not add up to more than O(n), since static treaps are built in linear time and
each node becomes part of a static tree only once.
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The static treaps we create are not completely identical to the static ones of Section [4.1]
In this case, some free nodes may be parents of static treaps. Therefore, the process results in
a tree of static treaps (with some free nodes in the top part). To accommodate this extension,
the static structure is expanded with a bitvector B that has one bit per leaf of the static
treap, indicating whether the leaf is actually a leaf or it contains a pointer to another static
treap. Those pointers are packed in an array inside the structure, so that the ¢th 1 in B
corresponds to the ith pointer in the array. Its position is computed with RANK; (B, 1).

4.3.2 Gradual Growth

Note that there will be O(blogn) free nodes per inverted list in expectation. Therefore, b
must be reasonably small to avoid their pointers blow up the space (in practice, b should
not exceed a few thousands). On the other hand, a small b implies that the static treaps
may contain as little as b nodes. Thus b should be large enough for the static structures to
use little space (otherwise, the constant number of integers and pointers they use may be
significant). It may be impossible to satisfy both requirements simultaneously.

To cope with this problem, we enforce a gradual increase of the treap sizes. Static treaps
will be classified in generations. A static treap T is of generation ¢g(T') = 1 when it is first
created. No treap can have descendants of lower generations. Each static treap T stores its
generation number g(7") and the number d(7") of descendant treaps of its same generation,
including itself. It is easy to compute d(T') = 14 7y y(ry d(1") for a newly created static
treap T that points to several other existing treaps 7”. Given a parameter ¢, we establish
that, when a new static treap T is created and d(T') > ¢, that is, its subtree has ¢ or more
treaps of its generation, then all those are collected and recompressed into a larger static
treap S, which now belongs to generation g(S) = g(T") + 1. The same formula above is used
to compute d(S) for the new treap.

This technique creates larger and larger static treaps towards the bottom and left part
of the tree. Now a node can be reprocessed log.(n/b) times along its life, to make it part
of larger and larger static treaps; therefore the total construction time becomes O(nlogn)
(albeit with a very low constant). Parameter ¢ should be a small constant.

Figure [4.6)shows a normal left-to-right construction process (as described in Section [4.1.1)),
but it also illustrates how the incremental version is built. We have enclosed in gray sets the
nodes that are grouped into static treaps, for b = ¢ = 2. In particular, observe the situation
in the rightmost cell of the second row. A static treap of generation 1 is created for the nodes
with docid 13, 22, and 27. But now this node is of generation 1 and its subtree has d =3 > ¢
treaps of its same generation. Thus, a new static treap, of generation 2, is created with all
those generation-1 descendants. This is shown in the leftmost cell of the third row.
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Figure 4.6: The left-to-right construction of an example treap. We show in bold the rightmost
path and shade the node that is added in each iteration. Sets of nodes with gray borders
indicate static treaps that are built.
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Chapter 5

Experimental Evaluation

In this chapter we describe the experimental setup, in terms of the collections used and the
environment employed for the experiments. We also explain the engineering details required
to implement the indexes and the baselines, and discuss the space/time results obtained.

5.1 Datasets and Test Environment

We use the TREC GOV2 collection, parsed using the Indri search engindl, and Porter’s
stemming algorithm. The collection contains about 25.2 million documents and about 39.8
million terms in the vocabulary. The inverted lists contain about 4.9 billion postings in total.
After pre-processing and filtering, a plain representation of the GOV2 collection requires
about 72GB. The average posting list length is 76 and the average document contains 932
words.

We also performed experiments using other collections, such as the English Wikipedia
dump, containing about 5 million documents and 6 million terms. An average Wikipedia
article contains 352 words and the average number of elements in a posting list is 132. We also
performed experiments on the Weblogs collectionE], containing about 50 million documents
and requiring 120GB of space. For queries, we used the 50,000 TREC2005 and TREC2006
Efficiency Queries dataset with distinct numbers of terms, from ¢ = 2 to 5. We omitted those
not appearing in our collection, thus we actually have 48,583 queries.

In this work we only show the results obtained using the TREC GOV2 collection, since
the results over the others do not change significantly.

"http://www.lemurproject.org/indri/
2http://www.icwsm.org/data/
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5.1.1 Baselines and Setup

We compare our results with five baselines: (1) Elias Fano WAND implementation [127],
(2) Block-compressed WAND Implementation [36], (3) Block-Max [59], (4) Dual-Sorted [100]
and (5) ATIRE [158].

For Elias Fano WAND, we use the implementation ﬁ provided by the authors [127]; we de-
note this implementation EF in the charts. For PforDelta WAND), we use the implementation
obtained from the SURF frameworl{’, we denote this implementation WAND in the charts.
For Block-Max, we adapted the implementation of [132] by extending it to support ranked
intersections and including it into the SURF framework. For both WAND and Block-Max we
use the optimal PForDelta encoding for the docids and Simple9 encoding for the frequencies,
as these gave the smallest indexes. The encoding implementations were obtained from the
FastPFor libraryf’l In both cases the posting lists were encoded using blocks of 128 values.
In the case of Block-Max, we also store the maximum value for every block. We denote
Block-Max as BMAX in the charts.

We use ATIRE | as our baseline for impact-sorted indexes. ATIRE is an open-source
search engine that supports different early termination algorithms based on impact or fre-
quency sorted posting lists. We constructed both, frequency-sorted and quantized BM25
(¢ = 8) impact-sorted indexes for our experiments. All baselines were modified when needed,
to support both quantized impact BM25 scores (Section and tf-idf scoring. Our exper-
iments were run on a dedicated server with 16 processors Intel Xeon E5-2609 at 2.4GHz, with
256 GB of RAM and 10 MB of cache. The operating system is Linux with kernel 3.11.0-15
64 bits. We used GNU g++ compiler version 4.8.1 with full optimizations (-03) flags.

5.1.2 Dual-Sorted Implementation

In the case of Dual-Sorted (see Section , we make the following practical considerations
to implement this data structure. The wavelet tree is represented using a pointerless version
[46] because D is considerably large compared to n. We use the RRR (recall Section bit
sequence representation for the wavelet tree, in order to save space.

We do not use the complex mapping of the bit sequence s;; this is replaced by an array
using V' log N bits, we call it Ptrs (see Figure from the terms ¢ to the starting positions
of the lists L; in L. The weights within the range of each list L;, which are decreasing, are
represented in differential form using Rice codes (recall Section . Absolute values are
sampled every K positions, where K is a space/time tradeoff parameter. In fact, as there are
many runs of equal weights, we store only the nonzero differences, and store a bitmap W’[1, n]
indicating which differences are nonzero. So we actually access position W [RANK; (W, 1)]
instead of Wi]. We use the RG representation that uses 5% extra space on top of the bit

3http://github.com/ot/partitioned_elias_fano
“http://github.com/simongog/surf
Shttps://github.com/lemire/FastPFor
Shttp://atire.org/index.php?title=Main_Page

74


http://github.com/ot/partitioned_elias_fano
http://github.com/simongog/surf
https://github.com/lemire/FastPFor
http://atire.org/index.php?title=Main_Page

sequence W’ to support RANK (recall Section [2.6]).

All data structure employed in the implementation of this data structure were obtained
from the LIBCDS library.

5.1.3 Inverted Treaps Implementation

We implemented our indexes based on the sdsl-lite library [77]. The document ids are
stored in a dac_vector of fixed width 6, which gave the best results at parameter tuning
time. The weights are stored in a dac_vector of fixed width 2.

The fy list are represented using PForDelta using a similar implementation to the ones
used in WAND and Block-Max. We do not use inverted treaps to represent every posting list,
but only those containing at least 1024 elements. The other posting lists are represented using
WAND. At query time, if necessary, they are fully decompressed and handled by maintaining
a pointer to the current docid being evaluated.

The BP topology is implemented using the bp_tree class, while the LOUDS topology
is implemented using the bit_vector class enhanced with rank operations, for which we
use the alternative dubbed rank_support_v5, which requires 5% extra space. The HEAP
implementation uses an integer vector int_vector requiring [log(X + 1)] bits, where X
is the maximum element in the array P’. The implementation of the bit sequence for the
topology is the same one as the one employed in LOUDS.

We perform all the experiments for tf-idf score and for quantized BM25 impact scoring,
as described in Section [4.2.4] using 8 bits for each impact.

5.2 Results

5.2.1 Index Size

We start by showing the size required of each index in Figure [5.1], separated by the scoring
scheme used. The left part of the figure shows the case of tf-idf scoring, where EF is clearly
the smallest alternative. The second alternative, WAND is about 10% bigger than the EF
index.

On the other hand, Block-Max requires more space than any of the treap alternatives,
LOUDS being about 10% smaller than Block-Max and HEAP almost equal. Dual-Sorted,
on the other hand, is the most space-consuming alternative. On the right side, which shows
BM25 scoring, all the inverted treap alternatives require more space than the baselines,
climbing from about 13% of the text space under tf-idf scoring to up to 18%. This is mainly
because, when using the quantized BM25 score, the number of posting lists elements having

"http://www.github.com/fclaude/libcds/
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Figure 5.1: Total sizes of the indexes depending on the scoring scheme.
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Figure 5.2: Total sizes of the indexes depending on the scoring scheme.

score 1, which is efficiently represented using the f; lists, is considerably reduced: for the
tf-idf score scheme there are about 3 billion posting list elements with frequency 1, but this
decreases to 400 million under BM25.

Figure shows the space breakdown of the inverted treap components, using tf-idf
scoring on the left and BM25 on the right. This figure is based on our smallest case, which is
the LOUDS alternative. The component Small Lists represents all the posting lists that have
less than 1024 elements and are represented using WAND. For the tf-idf case, we see that
the topology requires 7% of the total index size, and the biggest component is the fy lists.
However, in the BM25 case, the fj lists use a negligible amount of space, and the document
ids is the heaviest component.

The only component that changes between our three alternatives is how we represent the
treap topology. Figure [5.3| shows the difference in space requirements, depending on the
scoring scheme. We see that LOUDS is always the smallest alternative, and HEAP is the
biggest, requiring about twice the size of LOUDS.
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Figure 5.4: Construction time of the indexes depending on the scoring scheme, in minutes.

5.2.2 Construction Time

Figure [5.4] shows the time required to build each index. We see that the construction times
of the inverted treap alternatives are not so distant from those of the baseline inverted index
representations. This holds except for the HEAP alternative, which is about twice as slow to
build than the fastest baseline. It is interesting to note that the Elias-Fano WAND approach
is 1.4 to 1.8 times slower than the block-compressed WAND implementation. ATIRE was
the slowest alternative in both cases. We do not include the time required to build the
Dual-Sorted index, since the construction is not optimized and was above 200 minutes.
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5.2.3 Ranked Union Query Processing

We describe the time results for the processing of ranked union queries. We first discuss the
results globally and then consider how they evolve as a function of k£ or the number of words
in the query.

Global analysis Figure (left) shows the average time per query, for distinct values of
k, using the tf-idf scoring scheme. These times average all the queries of all the lengths (2
to 5 terms) together.

The results show that EF, WAND and Dual-Sorted are not competitive for these queries,
as they are sharply outperformed by Block-Max. In turn, all our inverted treap alternatives
outperform Block-Max by a wide margin. The differences become less drastic as we increase
k., but still for £ = 1000 the HEAP alternative is more than 3 times faster than Block-Max.
Our LOUDS alternative is always slower than HEAPS, and BP is slower than LOUDS. Still,
BP is almost twice as fast as Block-Max even for £ = 1000. We discarded results from ATIRE
in most of the following figures since it required more than 500 milliseconds on average.

Figure (right) shows the distribution of the results using the BM25 quantized score
scheme. The differences are much smaller in this case, and in particular our LOUDS and BP
variant are the slowest. Our HEAP alternative, instead, is still the fastest or on par with the
fastest.

The worse performance of our variants under BM25 owes to the fact that most of the
lists are stored as treaps, whereas under tf-idf many of them are stored as fy lists. The
union algorithm performs a significant amount of sequential traversal, and the simple f; lists
are faster at this than the treaps. Instead, the considerable improvement obtained by EF
and WAND owes to the narrower universe of impacts, which increases the chances that the
lower bound @ is not reached along the process and enables more frequent skipping (recall
Section . Up to a lesser, extent, Block-Max also improves thanks to more frequent
skipping, as on a narrower universe it is also less likely to outperform the current kth highest
score. Finally, the significant improvement of Dual-Sorted owes to the fact that it implements
the method of [I3T] (which does not give exact results, so the comparison is not totally
fair) and this method is also favoured by the BM25 quantized scores: it reaches sooner
a stable situation where the upcoming scores are no better than those already obtained.
The optimal-partitioned Elias-Fano implementation was consistently slightly slower than the
block-compressed WAND implementation, so we will only consider the latter alternative for
the rest of comparisons in this work.

We show more detailed results grouped by percentiles in Table [5.2.3] In the case of tf-
idf, the best alternative by far is the LOUDS treap for all percentiles. For the quantized
BM25 case, BMAX, BP, LOUDS and HEAP have very similar results, HEAP being the best
alternative. In general terms, the table shows that our improved time results are consistently
better, and are not blurred by a high variance.
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Figure 5.5: Ranked union times for distinct £ values, in milliseconds. We show the case of
tf-idf scoring on the left and quantized BM25 on the right.

Analysis as a function of £ and separated by query length Figure [5.6| separates the
times according to the number of words in the query, and shows how times evolve with k,
using tf-idf scoring. Note that the times are independent of k£ for some techniques, or grow
very slowly with &k in the others.

For 2 query terms, all the inverted treap alternatives are an order of magnitude faster
than WAND and Dual-Sorted. For small k& values, Block-Max is about twice as slow as the
fastest treap alternative, HEAP. For large k values, instead, HEAP is about 5 times faster
than Block-Max. The LOUDS and BP alternatives are also faster or on par with Block-Max.
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Union TFIDF Union BM25
Index/Percentile | 50% | 80% | 90% | 95% | 99% | 50% | 80% | 90% | 95% | 99%
WAND 177 | 462 | 701 | 787 | 918 | 30 7 116 | 141 168
BMAX 28 139 | 195 | 246 | 332 | 20 74 122 | 169 | 222
BP 10 27 47 73 94 60 80 156 | 229 | 294
LOUDS 7 21 39 61 80 40 62 103 | 123 | 231
HEAP 40 177 | 289 | 457 | 617 | 20 49 76 96 156
DualSorted 151 416 | 736 | 866 1101 | 25 70 121 155 | 202

Table 5.1: Ranked union results grouped by percentiles. The numbers indicate the maximum
time reached by X% of the queries.

As the number of query terms increases, however, Block-Max starts to outperform the slower
inverted treap alternatives. Still, HEAP is always faster than Block-Max and 3—4 times faster
than WAND and Dual-Sorted.

Figure[5.7shows the same experiment on the quantized BM25 scoring scheme. In this case,
the treap alternatives are competitive only on queries of 2 and 3 words. In particular, our
fastest approach, HEAP, is twice as fast as Block-Max for 2 words, but up to 50% slower on
the longest queries. Still, we note that most real queries are short. For example, the average
query length has been measured in 2.4 words [I50], and in our dataset of real queries, 44%
of the multi-word queries have indeed 2 words.

Analysis as a function of query length and separated by k£ value Figure shows
the ranked union times as a function of the query length, for distinct k& values. As mentioned
before, in the case of tf-idf (left side of the figure), our fastest approach HEAP is consistently
faster than all the other alternatives, for all query lengths and up to £ = 1000. In the case
of BM25 (right side of the figure), our HEAP alternative is competitive when 2 or 3 query
terms are involved. In general, the costs grow linearly with the number of query terms, but
the growth rate of WAND and Dual-Sorted is higher on tf-idf and lower on BM25.

5.2.4 Ranked Intersection Query Processing

We proceed to describe the time results for processing ranked intersection queries. As before,
we first discuss the results globally and then consider how they evolve as a function of k or
the number of words in the query. We do not include the results from ATIRE since it does
not support a native mechanism to perform top-k ranked intersection.

Global analysis Figure (left) shows the average time per query, for distinct values of
k, using the tf-idf scoring scheme. These times average all the queries of all the lengths (2
to 5 terms) together.

As expected, Block-Max always outperforms WAND by a significant margin. Among our
alternatives, as before, HEAP is always faster than LOUDS and this is faster than BP. Our
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Figure 5.6: Ranked union times as a function of k, grouped by number of terms per query,
using tf-idf.
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Figure 5.8: Ranked union times for distinct k& values as a function of the query query length.
We show the case of tf-idf scoring on the left and quantized BM25 on the right.

results are better for small k£, where HEAP outperforms all the other indexes by a factor
of 2 or more. The difference narrows down for larger k, but still for £ = 1000 we have
that HEAP is faster than Block-Max. Dual-Sorted performs a Boolean intersection and then
computes the score of all the qualifying documents. The experiment shows that, for & = 1000,
this becomes (slightly) better than the more sophisticated alternatives that try to filter the
documents on the fly. The optimal-partitioned Elias-Fano implementation was consistently
slightly slower than the block-compressed WAND implementation.
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Figure 5.9: Ranked intersection times for distinct £ values, in milliseconds. We show the
case of tf-idf scoring on the left and quantized BM25 on the right.

Figure (right) shows the distribution of the results using the BM25 quantized score
scheme. Unlike in the case of unions, the powerful filtration enabled by the treaps outweighs
its slowness compared to traversing an fy list. As a result, the inverted treaps are faster on
BM25 than on tf-idf scores. The methods WAND and Block-Max also improve thanks to the
quantized scores. Dual-Sorted also improves: even if it always performs the same Boolean
intersection and then computes the scores of the surviving candidates, this computation
is faster because it uses the stored quantized scores, whereas for tf-idf it must multiply
each stored tf by the idf associated with the query term. The comparisons between all the
alternatives stay, overall, similar as in the case of tf-idf scoring.
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Intersection TFIDF Intersection BM25

Index/Percentile | 50% | 80% | 90% | 95% | 99% | 50% | 80% | 90% | 95% | 99%
WAND 4 43 93 178 | 451 |9 35 89 128 | 223
BMAX 29 146 | 209 | 260 |321 |3 29 62 93 156
BP 17 42 58 68 7 18 43 67 85 101
LOUDS 13 22 34 47 60 12 29 44 56 67
HEAP 3 12 18 23 34 9 21 32 42 51
DualSorted 24 132 [ 230 | 287 |38 |9 33 84 122 | 212

Table 5.2: Ranked intersection results grouped by percentiles. The numbers indicate the
maximum time reached by X% of the queries.

We show detailed results grouped by percentiles in Table 5.2 for all alternatives that were
considered. In both cases, tf-idf and BM25, the best alternative is the treap using the HEAP
topology. In general terms, the table shows that our improved time results are consistently
better, and are not blurred by a high variance.

Analysis as a function of k£ and separated by query length Figure |5.10| shows how
times evolve with k, using tf-idf scoring. As in the ranked unions, some techniques are
independent of k£ and others (in this case, the inverted treaps with 2 or 3 words) grow slowly
with k.

For 2 query terms, the HEAP alternative is the fastest up to k& = 300, from where Block-
Max takes over. For 3 and 4 words, HEAP is either the fastest choice or very close to it,
and for 5-word queries it takes over again. As mentioned by [59], the performance of Block-
Max is considerably affected by the number of terms participating in the query. For 4 query
terms, it is one of the slowest alternatives, together with the BP inverted treap variant. For
5 query terms, it is definitely the slowest. This explains the poor performance of Block-Max
compared to WAND when considering all the queries together.

Figure [5.11] shows the results for ranked intersections on the quantized BM25 scoring
scheme. While the general picture is similar to the case of tf-idf, HEAP is overcomed more
frequently. For few-word queries it is outperformed sooner by Block-Max, for £ = 200 on 2
words and for £ = 80 on 3 words. On 4-word queries, it is almost always outperformed by
a small margin. It is again the fastest alternative on 5 words, but by a smaller margin than
for tf-idf. Block-Max is also heavily affected as the number of words increases.

Analysis as a function of query length and separated by k value Figure shows
the ranked intersection times as a function of the query length, for distinct £ values. On
the left side of the figure we show the results of the tf-idf scoring scheme. We can see more
clearly how Block-Max is heavily affected by the query length. The others stay unaltered or
fluctuate as a function of the number of words. This is because, as this number increases,
more lists have to be handled, but it is also more likely to filter out portions of the lists. The
interaction of the two effects produces increments and decrements in the query times. Recall
that WAND and Dual-Sorted perform a Boolean intersection followed by the evaluation of
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query, using tf-idf.
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all the resulting scores, so their behaviour is very similar. Note that our HEAP alternative
is generally the best on tf-idf, whereas on BM25 it is the best for £ = 10 and in some cases
for larger k.
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Figure 5.12: Ranked intersection times for distinct & values as a function of the query length.
We show the case of tf-idf scoring on the left and quantized BM25 on the right.




5.2.5 One-word Queries

We have not yet considered the simplest one-word queries, which account for a significant
percentage of typical queries (almost 24% in our query set). For these queries, we must
obtain the k highest-ranked documents from a single inverted list. In the case of WAND,
this requires traversing the whole list and retaining the & highest scores. Block-Max speeds
this up by skipping blocks where the maximum score is not higher than the kth score we
already know. Dual-Sorted, instead, simply requires to extract the first &£ elements from the
list of the query term, as its lists are sorted by decreasing frequency. Therefore the Dual-
Sorted time is bounded by O(klog D), as it is implemented on a wavelet tree. This is the
best scenario for ATIRE, since the posting lists are sorted by either frequencies or quantized
scores, so returning the k best documents is done simply by traversing the first k£ postings.

For our inverted treaps, we use a simplification of the procedures for ranked unions and
intersections. We insert the root of the treap in a heap that sorts by decreasing score.
We then iteratively extract the top of the heap, report its document, and insert its two
children. Therefore we require O(k) operations on the treap and the heap, leading to total
time O(klogk).

Figure [5.13] shows the time performance. The time differences are so significant that we
have used logarithmic scale. Our fastest variant, HEAP, requires from 5-10 microseconds
per query with k£ = 10 to 100-200 with k£ = 1000, whereas our slower variant, BP, requires
10-20 to 200-500 microseconds. Dual-Sorted, instead, goes from 100-200 to 2000-5000 mi-
croseconds, that is, around 20 times slower than HEAP. The slowest technique in the plots
is Block-Max, which requires 1-5 milliseconds per query, that is, 25200 times slower than
HEAPS. This is because its time is not bounded in terms of k. Still, the time of Block-Max
increases with k because its ability to filter blocks decreases as k grows. On the other hand,
the times of the other indexes grows more or less linearly with £k after a query initialization
time: A rough fitting gives, for HEAP, 0.15k + 6.5 microseconds on tf-idf and 0.10k 4+ 5 on
BM25; for BP it gives 0.5k + 10 on tf-idf and 0.3k 4+ 5 on BM25; and for DualSorted it climbs
to 4k + 100 on tf-idf and 2k 4 80 on BM25. ATIRE is clearly the fastest alternative for single
term queries, as it takes 0.5k microseconds on both cases. We have not included the times of
WAND as they are much higher, 15000 microseconds almost independently of k (note that
WAND needs to decompress the whole list, independently of k, and then find the k largest
scores).

5.2.6 Incremental Treaps

Figure shows the time required to insert increasing prefixes of the GOV2 collection on
our incremental inverted treaps. For these experiments, we use the block parameter b = 1024
and recompress any subtree that has generation ¢ = 16 into a new larger static treap (recall
Section . These values were chosen by parameter tuning experiments. As a baseline,
we consider the static inverted treap construction, for LOUDS and HEAP, on the same
prefixes. The figure shows that the time for incremental treap construction grows slightly
superlinearly, as expected from its O(nlogn) time complexity. The static construction,
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Figure 5.13: One-word query times as a function of k, using tf-idf (top) and BM25 (bottom)
scoring schemes. Note the logscale.

instead, displays linear-time performance. Still, after inserting 24 million documents, the
incremental construction is only twice as slow as the fastest static construction (LOUDS)
and 40%—60% slower than the static construction giving the best query times (HEAPS).

In terms of memory usage the incremental treap requires an additional bitvector, causing
an increase in the overall size of about 7%. However, the size occupied by the free nodes
is considerably larger, using about 40% more space. This is because the free nodes are not
compressed in any way, that is, we are using 64-bit pointers, and 32-bit integers for the the
docid and the weight. In addition, we need to keep track of counters for the block parameter
b and the generations for parameter c. For these variables we use integers of 16 and 8 bits,
respectively. In total, the incremental variant is about 50% larger than the static LOUDS
variant.

The incremental treap is also about 45% slower than the LOUDS implementation in all
cases of ranked unions and intersections, and more than twice as slow as HEAPS. We included
the times of BP, which show that the incremental treap is still slightly slower than it. There
are two main reasons for such a degradation in the performance: First, the free nodes are
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Figure 5.14: Incremental versus static construction of the inverted treaps, for tf-idf (left) and
BM25 (right) scoring schemes.

not located in contiguous memory, leading to cache misses. Cache misses are also caused
because each static tree has its own dac_vector and topology bitmap, isolated from those
of other static treaps. Second, the incremental treap requires an additional RANK; operation
each time we move from a free node to a static tree, or from a static tree to another static
tree.

Overall, compared with LOUDS, dynamism costs us about 50% overhead in both space
and query time performance, and building from scratch by successive insertions requires twice
the time of a static construction. Compared with HEAPS, dynamism poses a 50% overhead
in both space and construction time, and it requires twice the time at queries. Of course,
reconstruction from scratch is not an alternative when insertions are mixed with queries.

5.3 Discussion

We have introduced a new inverted index representation based on the treap data structure.
Treaps turn out to be an elegant and flexible tool to represent simultaneously the docid
and the weight ordering of a posting list. We use them to design efficient ranked union and
intersection algorithms that simultaneously filter out documents by docid and frequency. The
treap also allows us to represent both docids and frequencies in differential form, to improve
the compression of the posting lists. Our experiments under the tf-idf scoring scheme show
that inverted treaps use about the same space as competing alternatives like Block-Max
and Dual-Sorted, but they are significantly faster: from 20 times faster on one-word queries
to 3-10 times faster on ranked unions and 1-2 times faster on ranked intersections. On a
quantized BM25 score, inverted treaps use about 40% more space than the best alternatives,
but they are still 20 times faster on one-word queries, slightly faster on unions, and up to 2
times faster on intersections. Inverted treaps are generally the fastest alternative for £ < 100,
and on one- and two-word queries, which are the most popular ones. In addition, we have
shown that treaps can handle insertions of new documents, with a 50%-100% degradation
in space, construction and query time performance.
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A future research line is to study the effect of reassigning docids. Some results [59] show
that reassignment can significantly improve both space and processing time. How much
would treaps improve with such schemes? Can we optimize the reassignment for a treap
layout?

An important part of our gain owed to separating lists with frequency fo = 1 (this is the
main explanation why our scheme performs better on tf-idf than on quantized BM25). How
to efficiently separate lists with higher frequencies or impacts is a challenge, and it can lead
to important gains. It is also interesting to explore how this idea could impact on schemes
like Block-Max and Dual-Sorted.

Finally, we have used DAAT processing on our inverted treaps. Such an approach penalizes
long queries, as already noted before in Block-Max [59]. We believe the time would become
almost nonincreasing with the query length if we used treaps under a TAAT scheme, where
the longer lists were processed after determining good lower bounds with the shorter lists.
This constitutes another interesting line of future work.
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Part 111

Practical Top-k£ on General Sequences
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Chapter 6

Top-k Document Retrieval on (General
Sequences

In this chapter we focus on indexing a collection of generic strings to support top-k queries
on it. The top-k document retrieval problem can then be defined as follows: a collection
D of D documents, consisting of sequences of total length n over an alphabet of size o, is
preprocessed so that given a query string P of length m, the system retrieves k documents
with the highest “score” to P, for some definition of score.

The basic solutions to this general problem build a suffiz tree [164] or a suffiz array [107],
which are indexes that can count and list all the individual occurrences of P in the collection,
in optimal or near-optimal time. Still this functionality is not sufficient to solve top-k docu-
ment retrieval efficiently. The problem of finding top-k documents containing the pattern as
a substring, even with a simple relevance measure like term frequency, is challenging. Hon
et al. [87] presented the first efficient solution, achieving O(m + lognloglogn + k) time, yet
with super-linear space usage, O(n log®n) bits. Then Hon et al. [88] improved the solution to
O(m+klog k) time and linear space, O(nlogn) bits. The problem was then essentially closed
by Navarro and Nekrich [I19], who achieved optimal O(m+ k) time using O(n(log o +log D))
bits.

In practice, however, those solutions are far from satisfactory. Implemented directly from
the theory, the constants involved in the optimal (and previous) solutions are not small,
especially in space: The index can be as large as 80 times the size of the collection, making it
unfeasible in practice. Just a part of the solution, the suffix tree, can be 20 times larger than
the text, and the suffix array, 4 times. There has also been a line of research aiming at optimal
space [116]. While they achieved important theoretical results, a verbatim implementation
is likely to be equally unsatisfactory.

The most practical implementations [53], [124], [77] have followed an intermediate path in
terms of space, using 2-5 times the text size and answering queries within milliseconds.
Still, they are toy implementations, limited to relatively small collections of a few hundred
megabytes. They are also restricted to sequences with over small alphabets (usually o = 255
distinct symbols), which prevents using them on sequences of words, for example.
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In this work, we show that a carefully engineered implementation of the optimal-time
proposal [I19] is competitive in space with current implementations and performs orders
of magnitude faster. Our new top-k index implementation uses 2.5-3.0 times the text size
and answers queries within microseconds, in collections of hundreds of gigabytes and over
alphabets of up to millions of symbols. Our experimental comparison shows that our index is
orders of magnitude faster than previous heuristics [53], naive solutions [77], and compressed
solutions [124], whereas only the latter uses less space than ours. We also present results on
collections of 500 GB, where the previous structures cannot be built.

Our ability to handle large alphabets allows us apply our index on collections of natural
language text, which are regarded as sequences of words (not characters), so that our index
offers a functionality similar to an inverted index. In this case our index takes up about
the same space of the tokenized collection (i.e., one integer per word, and still including the
storage of the collection itself).

An initial version of this work was published in the Data Compression Conference (DCC),
2013, held in Salt Lake City, USA. An extended version of this work was submitted for
revision to the ACM Journal on Ezxperimental Algorithms (JEA) on January 2016. The
extended version was developed in collaboration with Simon Gog from Karlsruhe Institute
of Technology (KIT), Germany. Simon Gog provided a faster and smaller re-implementation
of the work published in DCC and included the implementation from ALENEX'15 [7§|. He
also implemented part of the new indexes presented here.

The first version of this work, published in the DCC conference had an error in the
measurements of the size of the index [

6.1 Linear Space Solutions

This section describes in detail the top-k framework of Hon et al. [88] and the subsequent
optimal-time solution of Navarro and Nekrich [119], which is the one we implement in this
work.

6.1.1 Hon et al. solution

Let T be the suffix tree of the concatenation C of a collection of documents dy,dy, ..., dp.
This tree contains the nodes corresponding to all the suffix trees 7; of the documents d;: for
each node u € T;, there is a node v € T such that path(v) = path(u). We will say that
v = map(u,i). Also, let parent(u) be the parent of u and depth(u) be its depth. The idea
of Hon et al. [88] is to store 7 with additional information about the trees 7;. For each
v = map(u,i), they store a pointer ptr(v,i) = v = map(parent(u),i), noting where the
parent of u maps in 7. These pointers are stored at the target nodes v’ in a so-called F-list.
Together with the pointers ptr(v,i) they also store a weight w(v, ), which is the relevance of

Ihttp://dcc.uchile.cl/~gnavarro/fixes/dcc13.1.html
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path(u) in d;. This relevance can be any function that depends on the set of starting positions
of path(u) in d;. In this Part of the thesis, we will focus on a simple one: the number of
leaves of w in 7;, that is, tf(P,d). Let v be the locus in T of a pattern P. They proved that,
for each distinct document d; where P appears, there is exactly one pointer ptr(v”,i) = v/
going from a descendant v” of v (v itself included) to a (strict) ancestor v of v, and w(v”, 1)
is the relevance of P in d;. Obtaining the top-k documents using this structure boils down
to identifying all the pointers in the F-lists of the ancestors of v that come from the subtree
of v, and then selecting k corresponding documents with the highest scores. This task can
be carried out in O(m + klog k) time and the index requires linear space.

Figure [6.1] shows this structure on our example collection C. The top left part of the
figure shows the the suffix tree 73 corresponding to document d3. The bottom part shows
the generalized suffix tree T of the collection C. The numbers inside the nodes correspond to
the preorder number and the dark nodes are those mapped from 73 to 7. The dotted lines
correspond to the pointers ptr(v,i) = map(parent(u),1).

We store the documents and weights as pairs (d;, w(v,7)) and append them to the F-lists,
which are associated with the node where the pointer arrives. These lists are shown on the
top right part of the figure.

6.1.2 Optimal solution

Navarro and Nekrich [119] presented an optimal O(m + k) time solution that requires linear
space, O(nlogn) bits, for solving the top-k document retrieval problem. They represent the
structure of Hon et al. [88] as a grid of size O(n) x O(n) with labeled weighted points.
Each pointer v' = ptr(v,i) is represented as a point in the grid, whose z-coordinate is the
preorder number of the source v, and whose y-coordinate is the depth of the target v'. Then,
the pointers going from the subtree of v to an ancestor of v correspond to the points whose
x-coordinate is the preorder range of the subtree of v, and whose y-coordinates are smaller
than the depth of v. By giving weights w(v,7) to the points, the problem boils down to
retrieving the k heaviest points in that 3-sided query range.

The construction procedure is the following: they traverse T in preorder, where they add
for each node v € T and pointer ptr(v,i) = v', a new rightmost z-coordinate with only one
point, with a y-coordinate value set to depth(v'), weight equal to w(v,i) and label equal
to i. To solve a query, they find the locus v of P, determine the range [z1,x2] of all the z-
coordinates filled by v or its descendants, find the k heaviest points in [z, 22| x[0, depth(v)—1],
and report their labels. A linear-space representation allows them to carry out this task in
optimal time. Figure [6.2] shows an example of this procedure: the top part

shows the generalized suffix tree 7. The grey area corresponds to the locus of the pattern
“TA” and the corresponding subtree. The bottom part of the figure shows a two-dimensional
grid that maps the content of the F-lists. The grey area shows the mapping from the query
pattern to a range [z, z5] in this grid corresponding to the subtree of the locus. The dark
grey area is the final range [z1, x2] X [0, depth(v) — 1] from where the procedure finally selects
the top-k highest-weighted points.
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Suffix tree 75

Node | F-Lists (d,w)

Figure 6.1: Top left: The suffix tree 73 of document ds. Bottom: The generalized suffix
tree of T with preorder naming of the inner nodes and the corresponding document numbers
below the leaves. The dark nodes represent the nodes mapped from 73 to 7. The dotted
lines corresponds to the pointers ptr(v,i) = map(parent(u),i). Top right: the nonempty
F-lists generated containing elements as pairs (d;, w(v,1)).

6.2 Practical Implementations

The practical solutions build on the CSA of C and its document array DA. Once we establish
that the interval of P is SA[sp, ep], the query is solved by finding the k values that appear
most often in DA[sp, ep]. We describe here the most relevant practical implementations for
top-k document retrieval.

6.2.1 Hon et al.

Apart from their linear-space index, Hon et al. [88] proposed a succinct index based on
sampling suffix tree nodes and storing top-k answers on those. The idea is to store the top-k
answers for the lowest suffix tree nodes whose leaves contain any range SAli - g,7 - g] for a
sampling parameter value g. This can be done by marking every gth leaf in the suffix tree
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Figure 6.2: Top: Suffix tree of C with preorder naming of the inner nodes. The subtree
of vg, the locus of pattern “TA”, is highlighted in grey. Bottom: Navarro and Nekrich [119]
geometric representation of the F-lists of [88]. Each cell contains a pair (d;, w(v,)). The grey
area in the grid represents all the pairs that are generated from pointers that belong to the
tree rooted at vg. The darkest grey area represents the final range [x1, 2] X [0, depth(v) — 1].

and then performing a lowest common ancestor query for every consecutive pair of marked
leaves. The tree of marked nodes is called 7 and has O(n/g) nodes. For every marked suffix
tree node v, they store the k pairs (d, tf, 4) with the highest ¢f, 4. This way, one can retrieve
the top-k documents by locating the interval SA[sp, ep| for the pattern P and then finding
the highest preprocessed suffix tree node whose interval SA[sp’, ep/] is contained in SA[sp, ep].
To correct the answer one has to add the extra occurrences that appear in SA[sp, sp’ — 1] and
SAlep’+1, ep]. For each such extra occurrence SA[i], one has to (1) obtain the corresponding
document number, (2) compute the number of occurrences of P within that document and
(3) include that result in the top-k calculation. It is guaranteed that sp’ — sp < ¢ and
ep — ep'g, so the cost of correcting the answer is bounded. Hon et al. [88] build this data
structure using a CSA for C and adds one CSA for each document d;, plus some additional
structures for handling the precomputed results.
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6.2.2 GREEDY

Culpepper et al. [53] studied various heuristics to solve top-k queries on top of a CSA and a
wavelet tree of the document array DA. They introduced two solutions: Quantile probing and
Greedy traversal, both of them based on properties obtained by representing the document
array using a wavelet tree.

e (Quantile probing is based on the observation that in a sorted array A, if there is an item
d with frequency larger than f, then there exists at least one j such that A[j - f] = d.
Culpepper et al. use range quantile queries on the wavelet tree (recall Section [2.7) to
retrieve the (j- f)th document in the sorted DA[sp, ep] without actually sorting it. The
algorithm makes successive passes using this observation, refining the results at each
step while storing the candidates in a min-heap of size k.

e Greedy traversal. This technique relies on the fact if P appears many times in a doc-
ument d, then the [sp,ep] interval on the path to that document leaf in the wavelet
tree should also be long. The wavelet tree is traversed the in a greedy fashion, that is,
selecting the longest [sp, ep| interval first. Then the algorithm will first reach the leaf
with the highest term frequency value. The next document reported will be the second-
highest score and so on. This procedure continues until £ documents are reported. We
show this procedure in Algorithm [19]

In practice, the greedy variant outperforms quantile probing.

Culpepper et al. [92] adapted the scheme to large natural language text collections (where
each word is taken as an atomic symbol), showing that it was competitive with inverted
indexes for some queries (see previous work on this line by Patil et al.[I29]). The solution,
however, resorts to approximations when handling ranked Boolean queries.

6.2.3 NPV

Apart from their linear-space index, Hon et al.[88] proposed a succinct index based on sam-
pling suffix tree nodes and storing top-k£ answers on those. When the locus of P reaches
a non-sampled node, they choose the highest sampled node below the locus and correct its
precomputed answer by considering the additional leaves of the locus. The sampling ensures
that this work is bounded.

Navarro et al. [124] implemented a practical version of the proposal of Hon et al. [8§]
and also combined it with the greedy algorithm (see Algorithm of Culpepper et al. [53]
to speed up the correction process. They also studied compressed representations of the
wavelet tree of DA, by using grammar compression [102] on its bitmaps. They carried out a
thorough experimental study of these approaches and previous ones, establishing one of the
first baselines for future comparisons of top-k indexes.
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Algorithm 19: WT GREEDY (v, Zgtart; Tend, k, result = () returns the top-k symbols in
result with the highest amount of occurrences.

WT _GREEDY (U, Zstart, Tend, k, result)
01 pq < 0 // priority queue of struct (length, v, Tsiart, Tenq) prioritized by length

02 PUSH(Z)C], <($end — Tstart + 1)7 U, Tstart, xend>)
03 while TOP(pq) # 0 do
04 t <TOP(pq)
05 if t.v is a leaf then
06 result U LABELS(t.v)
07 if |result| = k then
08 return result
09 Tstart < 2f-xstart
10 Tend < U-Tend
11 Tstart_left & RANKo(Byy, Totare — 1) + 1
12 xend_left — RANKO(Bt,Ua xend)
13 Tstart _right < Tstart — Tstart _left
14 Tend _right < Tend — Tend _left
15 if Tend left — Lstart_left 7é 0 then
16 PUSH(Pq, (Tend teft — Tstart_teft + 1,V Tstart tefts Tend left))
17 if Lend _right — Tstart _right 7é 0 then
18 PUSH(pq, <xend_right — Lstart _right + 17 Ury Tstart _right, xend_right))
19 end while
6.2.4 SORT

The first successful attempt to engineer an index handling hundred-gigabyte collections,
having millions of documents and containing large alphabets, was presented by Gog et al.
[77]. They build a framework for experimentation with succinct data structures, where they
reimplement the greedy approach of Culpepper et al. [53] in this scenario.

Gog et al. [77] also introduce a basic solution to the top-k problem, called SORT. This is
based on simply collecting all the values in DA[sp, ep], sorting them by document identifier,
computing term frequencies, and choosing the k largest ones. This is a good baseline to
evaluate if more sophisticated ideas are worthy.

6.2.5 Patil et al.

One of the first implementations of practical top-k document retrieval was introduced by
Patil et al. [129]. In their work, they store for some nodes the complete inverted lists
containing the document identifiers and the frequency of the string represented by the node.
These inverted lists are then sorted by pre-order rank of the strings in the G.ST and stored
contiguously in an array. For a given pattern P they find the locus in the GST' and then
map the preorder rank of the locus and its rightmost leaf. This creates a range in the array
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of inverted lists, which is found by performing a binary search and then they are able to find
the top-k£ documents, using RMQ queries over the frequencies of the inverted lists that lie
within that range. In practice, this solution requires 5 to 19 times the size of the collection,
thus making it unpractical for most scenarios. For this reason, we do not compare our work
to this solution.

6.2.6 Other aproaches

Belazzougui et al. [2I] presented a different approach based on monotone minimal perfect
hash functions (mmphf). Instead of using individual CSAs or the document array DA to
compute the frequencies, they use a weaker data structure that requires less space. The idea
is to enrich the 74 trees of Hon et al.[87], so that they have enough information to answer
the top-k queries with the help of mmphfs built on the occurrences of each value d in DA.

Ferrada et al. [64] introduced an index that solves approzimate top-k document retrieval
based on the LZ78 [170] compression technique. In practice, the approximation is orders
of magnitude faster and requires less space than previous approaches. They show that it is
possible to obtain good-quality results for moderately large text collections.

Navarro et al. [I123] carried out a thorough experimental study of the performance of most
of the existing solutions to top-k document retrieval and evaluate them in the scenario where
the collections are highly repetitive. They also designed new alternatives specifically tailored
for repetitive collections, which are very compactable. The technique is inspired in the GST
sampling technique [88] and factors out repetitions in the top-k lists. They show that use
grammar compression techniques such as Re-Pair [102] provide the best trade off in terms of
space and time for this scenario.

6.2.7 Summary

Current implementations need about 2-5 times the size of the collection and answer queries
in tens of milliseconds. The simple implementation of the solution of Hon et al. requires
2-5 times the size of the collection and answers queries in about 10-100 milliseconds. The
greedy approach introduced by Culpepper [53] improves the space to 2—4 times the size of the
collection and reduces the time to 1-20 milliseconds. The best results obtained by Navarro et
al. [124] use 2-3 times the size of the collection and answer queries in about 1-10 milliseconds.
These implementations are limited to relatively small collections of a few hundred megabytes.
Moreover, these are limited to sequences containing a small alphabet size (¢ < 255). Table
[6.1] shows a summary of these results, compared to our achievements in this work.
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Index Max. Max. [C| Size Time
o in MB  (times |C|) in ps
Hon et al. implementation [124] 2% —1 137 2-5 10* — 10°
GREEDY [53] 2% 1 100 2-4  10° - 10*
NPV [124] 28 —1 137 2-3 10° — 10*
Patil et al. [129] 28 —1 100 5—19 102 — 103
SORT [77] 260 1 72,000 2-3  10*—10°
Ours 204 1 72,000 2-3 10t — 103
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Chapter 7

Top-£ on Grids

Top-k queries on multidimensional weighted point sets ask for the k heaviest points in a
range. These type of queries arises most prominently in data mining and OLAP processing
(e.g., find the sellers with most sales in a time period) and in GIS applications (e.g., find the
cheapest hotels in a city area), but also in less obvious document retrieval applications [119).
In the example of sales, one coordinate is the seller id, which is arranged hierarchically to
allow queries for sellers, stores, areas, cities, states, etc., and the other is time (in periods of
hours, days, weeks, etc.). Weights are the number of sales made by a seller during a time
slice. Thus the query asks for the k heaviest points in some range Q) = [y, z3] X [y1, ys] of
the grid.

The optimal solution proposed by Navarro and Nekrich (recall Section considers the
problem of top-k document retrieval on general sequences as a geometrical problem: locate
the top-k heaviest points from a two-dimensional query on a grid. In order to develop practical
implementations of this theoretical work, we need to address the geometrical problem using
data structures that take into consideration both space and time constraints.

In this chapter we present two data structures to solve this geometrical problem, and they
are a fundamental component that is used for our practical solutions that are detailed in
this part. The first data structure is based on the work of Navarro et al. [120] and makes
use of wavelet trees and RMQ (Section and Section . The second data structure,
K?-treap, is a new data structure based on the K2-tree (see Section and the Treap (see
Section that was developed in collaboration with Nieves R. Brisaboa and Guillermo de
Bernardo [32].

7.1 Wayvelet Trees and RMQ

Recall from Section that the wavelet trees can be used to represent a two-dimensional
grid [1,n] x [1,m] and that it can be regarded as sequence S|[1,n] since it has only one point
per column. Now, let us enhance this grid by adding another dimension to each point: a
weight. Thus, the sequence now contains pairs as S[i] = (s;,w;). The operation that is of
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interest to the development of this thesis is to retrieve the top-k£ maximum points according
to their weights, that are located within a rectangle Q = [z, 23] X [y1, y2].

Navarro et al. [120] introduced a solution for two-dimensional range top-k queries based
on wavelet trees. The idea is to enhance the bitmaps of each node of the wavelet tree as
follows: Let py,...,p, be the points represented at a node v, and w(p) be the weight of point
p. Then a range maximum query (RMQ) data structure built on w(py), ..., w(p,) is stored
together with the bitmap. Recall from Section that such structure requires 2r +o(r) bits
and finds the maximum weight in any range [w(p;), ..., w(p;)] in constant time and without
accessing the weights themselves. Therefore, the total space becomes 3nlogm + o(nlogm)
bits.

To solve top-k queries on a grid range Q) = [x1, 23] X [y1,y2], we first traverse the wavelet
tree to identify the O(logm) bitmap intervals where the points in @ lie. The heaviest point
in () in each bitmap interval is obtained with an RMQ), but we need to obtain the actual
priorities in order to find the heaviest among the O(logm) candidates. The priorities are
stored sorted by the x- or y-coordinate, so we obtain each one in O(logm) time by tracking
the point with maximum weight at each interval. Thus a top-1 query is solved in O(log®m)
time. For a top-k query, we must maintain a priority queue of the candidate intervals and,
each time the next heaviest element is found, we remove it from its interval and reinsert it in
the queue with the two resulting subintervals. The total query time is O((k+logm)log(km)).

It is possible to reduce the time to O((k + logm)log®m) for any constant ¢ > 0 [I19], but
the space usage is much higher, even if linear. A better result, not using wavelet trees, was
introduced by Prosenjit et al. [112], who presented a succinct data structure matching the
optimal O(logn/loglogn) time using just n+ o(n) integers. This is for n points on an n x n
grid.

We demonstrate this procedure with an example in Figure [7.I] At the top of the tree, we
show the weights of each point in a sequence W[l,n|. At each level of the wavelet tree we
show how the weight sequence is permuted according to the values of the grid points; they
are displayed with grey borders and grey fonts. Let us say that we want to retrieve the top-1
value from the range [10,14] x [3,7]. We start at the root of the wavelet tree and project
the values to its left and right child. For all nodes, we do not store the permutation of the
weights, instead, we store a RMQ data structure of the permutations. Since the left node of
the root does not belong completely to the query range, we continue with the traversal until
we find a node that is fully contained. We perform an RMQ query over projected ranges of
the suitable nodes. For example, we perform a RMQ query over the range [2, 3] on the node
containing the values 343 on the left side of the tree, and obtain the first position of the range
that contains the maximum value, as shown on the Figure. On the other hand, we perform a
RMQ query over the range [6, 7] for the right child of the root, since it is fully contained in the
query range and obtain the second position, which corresponds to the maximum weight value
of the range. We show in black background, the RMQ query results over the ranges. Note
that, since we do not store explicitly the weights at these nodes, we need to traverse down the
tree until the last level where we actually store the permutation of W1, n] according to the
leaves in an explicit way. The final step is to obtain the corresponding weight and compare
it to the other branches that might have reached a leaf. In this case, the final result is the
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point located at (11,7) with weight 9.
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Figure 7.1: Wavelet tree and RMQ combination for top-£ two-dimensional queries. The
weights associated to each point are shown in sequence W. At each level of the wavelet tree,
we show the permutation of the weights with a grey border and grey font. Note that these
values are not stored, instead we store a RMQ data structure for those sequences. We show
in black background the maximum elements inserted in a priority queue for a top-1 traversal.
The final result is the point located at (11,7) with weight 9.

7.2 K°’-treap

Recall from Section that K2-trees can be used to perform range queries on grids. In
this section we present a new data structure inspired by the concept of treaps (see Section
. We propose a data structure that merges the concept of the K2-tree and the treap and
we name this data structure K2-treap. We further improve this technique to solve general
aggregated queries on two dimensional grids. We present these improvements in Chapter
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In this section we describe the particular case, that is, a data structure that obtains the
maximum points within a two-dimensional range. This work was done in collaboration with
Nieves Brisaboa and Guillermo de Bernardo from Univerisidad de A Coruna [32].

Consider a matrix M [n x n] where each cell can either be empty or contain a weight in the
range [0,d — 1]. We consider a quadtree-like recursive partition of M into K? submatrices,
the same performed in the K?-tree with binary matrices. We build a conceptual K?-ary tree
similar to the K?-tree, as follows: the root of the tree will store the coordinates of the cell with
the maximum weight of the matrix, and the corresponding weight. Then the cell just added
to the tree is marked as empty,deleting it from the matrix. If many cells share the maximum
weight, we pick anyone of them. Then, the matrix is conceptually decomposed into K? equal-
sized submatrices, and we add K? children nodes to the root of the tree, each representing
one of the submatrices. We repeat the assignment process recursively for each child, assigning
to each of them the coordinates and value of the heaviest cell in the corresponding submatrix
and removing the chosen points. The procedure continues recursively for each branch until
we find a completely empty submatrix (either because the matrix did not contain any weights
in the region or because the cells with weights have been “emptied” during the construction
process) or we reach the cells of the original matrix.

Figure. shows an example of K?-treap construction, for K = 2. On the top of the
image we show the state of the matrix at each level of decomposition. MO represents the
original matrix, where the maximum value is highlighted. The coordinates and value of this
cell are stored in the root of the tree. In the next level of decomposition (matrix M1) we find
the maximum values in each quadrant (notice that the cell assigned to the root has already
been removed from the matrix) and assign them to the children of the root node. The process
continues recursively, subdividing each matrix into K2 submatrices. The cells chosen as local
maxima are highlighted in the matrices corresponding to each level of decomposition, except
in the last level where all the cells are local maxima. Empty submatrices are marked in the
tree with the symbol “-".

7.2.1 Local Maximum Coordinates

The data structure is represented in three parts: The location of local maxima, the weights
of the local maxima, and the tree topology.

The conceptual K?2-treap is traversed level-wise, reading the sequence of cell coordinates
from left to right in each level. The sequence of coordinates at each level ¢ is stored in a
different sequence coord[f]. The coordinates at each level ¢ of the tree are transformed into
an offset in the corresponding submatrix, transforming each ¢; into ¢; mod (n/K*) using
[log(n) — ¢log K| bits. For example, in Figure. (top) the coordinates of node N1 have
been transformed from the global value (4,4) to a local offset (0,0). In the bottom of Fig.
we highlight the coordinates of nodes N0, N1 and N2 in the corresponding coord arrays.
In the last level all nodes represent single cells, so there is no coord array in this level.
With this representation, the worst-case space for storing ¢ points is Zzozgé@ ™ o 2t log 77 =
tlog ”72(1 + O(1/K?)), that is, the same as if we stored the points using the K?*-tree.
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Figure 7.2: Example of K?-treap construction from the matrix in Fig.
7.2.2 Local Maximum Values

The maximum value in each node is encoded differentially with respect to the maximum of
its parent node [48]. The result of the differential encoding is a new sequence of non-negative
values, smaller than the original. Now the K2-treap is traversed level-wise and the complete
sequence of values is stored in a single sequence named wvalues. To exploit the small values
while allowing efficient direct access to the array, we represent values with Direct Access
Codes [34]. Following the example in Fig. the value of node N1 has been transformed
from 7 to 8 — 7 = 1. In the bottom of the figure the complete sequence values is depicted.
We also store a small array first[0,logy. n] that stores the offset in values where each level
starts.

7.2.3 Tree Structure

We separate the structure of the tree from the values stored in the nodes. The tree structure
of the K2%-treap is stored in a K?-tree. Fig. shows the K2-tree representation of the
example tree, where only cells with value are labeled with a 1. We will consider a K?-tree
stored in a single bitmap T with rank support, that contains the sequence of bits from all the
levels of the tree. Our representation differs from a classic K2-tree (that uses two bitmaps
T and L and only adds rank support to 7) because we will need to perform rank operations
also in the last level of the tree. The other difference is that points stored separately are
removed from the grid, thus in a worst-case space analysis it turns out that the space used
to represent those explicit coordinates is subtracted from the space the K?-tree would use,
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Figure 7.3: Storage of the conceptual tree in our data structures

therefore storing those explicit coordinates is free in the worst case.

7.2.4 Top-k Query Processing

The process to answer top-k queries starts at the root of the tree. Given a range ) =
[z1, 2] X [y1,ye], the process initializes an empty max-priority queue and inserts the root of
the K2-tree. The priority queue stores, in general, K2-tree nodes sorted by their associated
maximum weight. Now, we iteratively extract the first priority queue element (the first time
this is the root). If the coordinates of its maximum element fall inside @), we output it as the
next answer. In either case, we insert all the children of the extracted node whose submatrix
intersects with (), and iterate. The process finishes when k results have been found or when
the priority queue becomes empty (in which case there are less than k elements in Q).

7.2.5 Other Supported Queries

The K>2-treap can also answer basic range queries (i.e., report all the points that fall in Q).
This is similar to the procedure on a KZ2-tree, where the submatrices that intersect Q are
explored in a depth-first manner. The only difference is that we must also check whether
the explicit points associated to the nodes fall within (), and in that case report those as
well. Finally, we can also answer interval queries, which ask for all the points in () whose
weight is in a range [wy, ws]. To do this, we traverse the tree as in a top-k range query, but
we only output weights whose value is in [wy, wy]. Moreover, we discard submatrices whose
maximum weight is below ws,.
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Chapter 8

Practical Implementations

In this chapter, we present our practical implementations of the solution proposed by Navarro
and Nekrich (recall Section for solving, in optimal time, top-k queries on general se-
quences. As discussed before, the main constraints of the implementation of this solution is
space, so we make use of the wavelet tree combined with RMQ solution (see Section and
the K2-treap (see Section . We show how we engineered different alternatives, in order
to obtain indexes that are practical in terms of size and faster than other solutions from the
state of the art.

8.1 A Basic Compact Implementation

In this section we describe a basic compact implementation of the optimal-time solution [119],

which will be labeled WRMQ.

8.1.1 Searching for Patterns

In order to search for patterns in the collection, we use a CSA, which computes the interval
[sp, ep] corresponding to P in time O(tseqrcn(m)). We also add a compact representation of
the topology of the suffix tree, seeing it as an ordinal tree. Note that this is just the topology,
not a full suffix tree, so we need to search using the CSA. We will use the suffix tree topology
to obtain the locus v of P from sp and ep, and then to map it to the grid.

8.1.2 Mapping to the Grid

The grid G is of width Y, |7;| < 2n, as we add one coordinate per node in the suffix tree of
each document. To save space, we will consider a virtual grid just as defined, but will store a
narrower physical grid. In the physical grid, the entries corresponding to leaves of 7 (which
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contain exactly one pointer ptr(v,7)) will not be represented. Thus the physical grid is of
width at most n. This frequency thresholding is a key idea, as it halves the space of most
structures in our index.

A bitmap B[1,2n]| will be used to map between the suffix tree and the grid. Bitmap B
will mark starting positions of nodes of 7 in the physical grid: along the grid construction
process, each time we arrive at an internal node v we add a 1 to B, and each time we add
a new z-coordinate to the grid (due to a pointer ptr(v,7)) we add a 0 to B. This structure

will be called MAP.

8.1.3 Finding Isolated Documents

Due to frequency thresholding, the information on the grid may be insufficient to answer
top-k queries when the result includes documents where P appears only once. For this
purpose, we store the RMQ structure on top of the array CA of Muthukrishnan [115] (recall
Section (the array itself is not stored). This structure, RMQC, allows us list & distinct
documents in any interval SA[sp, ep].

To determine the identity of a document found at position ¢ of CA, we will use the CSA
to compute p = SA[i] and then determine to which document position C[p] belongs. For this
sake we store a sparse bitmap DOCBITMAP, that marks beginnings of documents in C. The
document is then rank; (DOCBITMAP, p).

8.1.4 Representing the Grid

In the grid there is exactly one point per z-coordinate. We represent with a wavelet tree
[81] the sequence of corresponding y-coordinates. Each node v of the wavelet tree represents
a subsequence of the original sequence of y-coordinates. We consider the (virtual) sequence
of the weights associated to the points represented by v, W(v), and build an RMQ data
structure for each node W (v), as explained, to support top-k queries on the grid.

8.1.5 Representing Labels and Weights

The labels of the points, that is, the document identifiers, are represented directly as a
sequence of at most nlog D bits, aligned to the bottom of the wavelet tree. Given any point
to report, we descend to the leaf and retrieve the aligned document identifier.

The weights are stored similarly, but using direct access codes, to take advantage of the
fact that most weights (term frequencies) are small.
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8.1.6 Summing Up

The WRMQ index consists of eight components: the compressed suffix array (CSA), the suffix
tree topology (TREE), the suffix tree to grid mapping (MAP), the wavelet tree over the grid
G (WT) including the RMQ structures at each node, the document ids associated with the
grid elements (DOC), in the same order of leaves of the wavelet tree, the weights associated

to the documents (FREQ), the RMQ structure to retrieve documents occurring once over
the CA array (RMQC), and the bitmap marking document borders (DOCBITMAP).

If the height of the suffix tree is O(logn), as is the case in many reasonable distributions
[155], then WT requires 3nloglogn + O(n) bits. The other main components are |CSA| <
nlog o bits, the array DOC, which uses nlog D bits, and the array FREQ), which in the worst
case needs nlogn bits but uses much less in practice. The other elements add up to O(n)
bits, with a constant factor of about 8-10.

8.1.7 Answering Queries

The first step to answer a query is to use the CSA to determine the range [sp, ep]. To find the
locus v of P in the topology of the suffix tree, we compute [ and r, the spth and epth leaves
of the tree, respectively, using | = LEAF _SELECT(sp) and r = LEAF _SELECT(ep); then we
have v = LCA(L, 7).

To determine the horizontal extent [x1,xs] of the grid that corresponds to the locus node
v, we first compute p; = PREORDER(v) and p, = p;+SUBTREE _ SIZE(v). This gives the pre-
order range [p1, p2) including leaves. Now [y = LEAF _RANK(p;) and [, = LEAF_ RANK(py—1)
give the number of leaves up to those preorders. Then, since we have omitted the leaves in
the physical grid, we have x; = SELECT; (B, p1 — 1) — (p1 — l1) + 1 and x5 = SELECT; (B, p2 —
ls) — (p2 — lz). The limits in the y axis are just [0,DEPTH(v) — 1]. Thus the grid area to query
is determined with a constant amount of operations on bitmaps and trees.

Once the range [x1, 23] X [y1,92] to query is determined, we proceed to the grid. We
determine the wavelet tree nodes that cover the interval [y;, y2], and map the interval [z, 2]
to all of them.

We now use the top-k algorithm for wavelet trees we described. Let vi,vo, ..., v, be the
wavelet tree nodes that cover [y, y»] and let [z, 23] be the interval [z, zo] mapped to v;. For
each of them we compute RMQyy(,,) (21, x3) to find the position z; with the largest weight
among the points in v;, and find out that weight and the corresponding document, w; and
d;. We set up a max-priority queue that will hold at most k elements (elements smaller
than the kth are discarded by the queue). We initially insert the tuples (v, 2%, %, z;, w;, d;),
being w; the sort key. Now we iteratively extract the tuple with the largest weight, say
(v, x{, x%, zj,w;,d;). We report the document d; with weight w;, and create two new ranges
inv;: [2],2;—1] and [z;+ 1, 23]. We compute their RMQ, find the corresponding documents
and weights, and reinsert them in the queue. After k£ steps, we have reported the top-k
documents. We will refer to this procedure as TOPK GRID QUERY.

112



Algorithm 20: Top-k algorithm using WRMQ index
Input: Query pattern P, amount k of documents to retrieve
Output: top-k documents

00 TOPK(P, k)

01 result < ()

02 [sp, ep] <~ LOCATE(P)

03 | <~ LEAF_SELECT(sp)

04 T <= LEAF _SELECT(ep)

05 v« LCA(l,r)

06 p1 < PREORDER_RANK(v)

07 pa < p+SUBTREE _ SIZE(v)

08 [ < LEAF_RANK(p1)

09 ly <~ LEAF _RANK(ps — 1)

10 Ty ¢ SELECTy(B,p; — 1) +1

11 To < SELECTl(B,pQ — lg) — (pg — lQ)

12 depth <— DEPTH(v) — 1

13 result <~ TOPK _GRID QUERY (21, x9,0, depth, k)
14 if [result| < k then

15 result < DOCUMENT _ LISTING(sp, ep, result, k, sp)
16 return result

If we implement the bitmap, tree, and RMQ operations in constant time, and assuming
again that the suffix tree is of height O(logn), the total time of this process is O(tsearch(m) +
(k+loglogn)(loglogn+logk)). This is because there are O(loglog n) wavelet tree nodes cov-
ering [y1, yo], and for each of them we descend to the leaf to find the weight and the document
identifier (again in O(loglogn) time) and insert them in the priority queue (O(log k) time).
Then we repeat k£ times the process of extracting a result from the queue, and generating
two new weights to insert in it.

We remind that we have not stored the leaves in the grid. Therefore, if the procedure
above yields less than k results, we must complete it with documents where the pattern
appears only once. Here we use Algorithm [6] to complete our current result d to make it
of size k by adding new documents of DAlsp, ep]. Here we use RMQC and DOCBITMAP.
We might have to extract up to k distinct documents with this technique to complete the
answer (since we may obtain again those we already have from the grid). Each step requires
O(tiocate) time to obtain the document identifier, so this may add up to time O(k t;ocate) tO
the complexity.

Algorithm 20| shows the complete procedure.

113



8.2 An Improved Index

In this section we present the two main ideas that lead to a conceptually simpler and, as we
will see later, faster and smaller representation than the basic one (WRMQ).

8.2.1 Mapping the Suffix Tree to the Grid

We reorganize the grid so that a more space-efficient mapping from pattern P to a 3-sided
range query in the grid is possible. The basic solution uses 2t bits to represent the topology
of the suffix tree (of ¢ nodes, where n < ¢t < 2n), plus up to 2n bits for B, for a total of
up to 6n bits (plus the sublinear part). The improved representation will consist of a single
bitvector H, of length 2(n — D), and the mapping from the suffix tree to the grid will be
simpler.

We first explain how we list the parent pointers ptr(v, i) leaving the suffix tree nodes v in
the grid, and then show how we can efficiently map to the grid. We identify each internal
node with the position in SA of the rightmost leaf of its leftmost subtree. Fig. shows this
naming for the internal nodes: The root node is named v; because the position of its first
child (which is also a leaf) is at position 1, the rightmost leaf of the leftmost child of node v;
is at position 7, and so on. Note that the names are between 1 and n and they are unique
(although not all names must exist, e.g., there is no node v, in our suffix tree). The bitvector
H is generated by first writing n 1s and then inserting a 0 right before the j-th 1 per pointer
ptr(v;, i) leaving node v;.

The Os in H then correspond to the z-domain in the grid, thus we do not need to represent
it explicitly. On the other hand the y-coordinate (string depth of target node), weight and
document id of the pointers, are stored associated to the corresponding 0 in H (in arrays y,
FREQ, and DOC, respectively, see the right of Fig. . Now assume the CSA search yields
the leaf interval [sp, ep] for P. These are the positions of the leftmost and rightmost leaves
that descend from the locus node v of P (although we will not compute v). Then, we note
that a node v; lies in the subtree of v (including v) if and only if j € [sp,ep — 1].

Lemma 8.2.1 A node v;, if it exists, lies in the subtree of v (including v) if and only if
j € [spep —1].

Proor. If v; is in the subtree of v, then its range of descendant leaves is included in that
of v, [sp,ep]. Since there are no unary nodes, the rightmost child v, of v; has at least one
descendant leaf, and thus the leaves descending from the leftmost child v; of v; are within
[sp, ep—1]. In particular, the rightmost leaf descending from v;, j, also belongs to [sp, ep —1].
Conversely, if j € [sp,ep — 1] and v, exists, then v; is an ancestor of leaf j and so is v, thus
they are the same or one descends from the other. However, if v descended from v;, then
j could only be ep (if p was the leftmost child v; of v; or belonged to the rightmost path
descending from v;), or it would be outside [sp, ep]. O
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Figure 8.1: Top: Suffix tree of Hon et al.’s solution with a canonical naming of the inner
nodes. Each node v has attached its F-list, which excludes pointers from leaves. Bottom left:
Bitvector H is built by concatenating the unary encoding of the number of pointers in the
F-list of each node. Bottom right: Resulting grid.

Therefore, all the pointers leaving from nodes in the subtree of v are stored contiguously
in the grid, and can be obtained by finding the Os that are between the (sp — 1)th and the
(ep — 1)th 1 in H (as the Os are placed before their corresponding 1). Note that no LCA
operation on any suffix tree topology is necessary, only operation SELECT; (H, p).

Note that, since we do not represent the suffix tree topology, we cannot compute the
depth of the locus node v, depth(v). Instead of node depths, we will store the string depths
of the nodes, |path(v)|, as the y-coordinates. Thus the query can use simply |P| — 1 as the
y-coordinate limit of the 3-sided query. That is, after applying the mapping using H, we find
the k heaviest points in the range [sp/, ep/] x [0, |P| — 1] of G. The top-k algorithm using this
mapping is considerably simplified, as can be seen in Algorithm [21]

115



Algorithm 21: Top-k algorithm using H-mapping index
Input: Query pattern P, amount k of documents to be retrieved
Output: top-k documents

00 TOPK HMAP(P,k)

01 result < ()

02 [sp, ep] <~ LOCATE(P)

03 [sp/, ep'] < [1,0]

04 if sp > 1 then

05 sp «<—SELECTy(H,sp—1) — (sp— 1)

06 ifep>1

05 ep <—SELECT{(H,ep —1) —ep

06 result <~ TOPK GRID QUERY(sp/,ep’,0,|P| —1,k)
07 if |result| < k then

08 result < DOCUMENT _ LISTING(sp, ep, result, k, sp)
09 return result

8.2.2 Smaller Grid Representations

In the basic implementation (WRMQ), the grid G is represented with a combination of a
wavelet tree and range maximum query (RMQ) data structures, that ensure query time
O((k + loglogn)(loglogn + log k)) if the suffix tree is of height O(logn). The price of this
guaranteed worst-case time is a heavy representation of the grid, which triples the space of
the basic wavelet tree of the y-coordinates vector. In addition, it has to store the vector
FREQ in absolute form. We consider two ways of reducing this space.

K?Treap”” We can use for G a K2-treap, which as explained is a representation that
compresses the coordinates and FREQ. Even if the grid is not square as we described it, we
complete it to a square grid (the added areas having no points). The price of this compression
is that there are no good worst-case search time guarantees. However, the experiments will
show that this grid representation uses less space and yields a query time comparable with
that of the WRMQ implementation.

WI1RMQ We can use the wavelet tree but store only one RMQ structure in it, aligned
to the level of the leaves (that is, it is the RMQ of FREQ). Therefore, instead of tripling
the wavelet tree space, we only add 2n bits. The price is that, instead of solving the top-k
query on the O(logr) maximal nodes that cover [y, y2], we must project them to the leaves
before starting the process of filling the priority queue. Therefore, the logr factor in the
cost may rise to r. In exchange, since the nodes are already leaves, finding the document
identifiers and weights costs O(1). The oveall impact is not that high if the strings path(v)
are of length O(logn) as before, since then » = O(logn) and the cost of this part becomes
O((k +logn)logk).
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8.2.3 Efficient Construction for Large Collections

A bottleneck not addressed by the WRMQ implementation is the efficient construction of
the indeﬂ Both time-and space- efficiency have to be considered. We will concentrate here
on the construction of H, the grid G, and its K>-treap representation, suffix tree (CST) of
C and a wavelet tree over the document array, WTD, of nlog D bits. We perform a depth-
first-search traversal on the CST and calculate, for each node v;, the list of its document id
marks, by intersecting the document array ranges of v’s children. This can be done using
the intersection on wavelet trees [74]. Since we can calculate the nodes in the order of their
names, we can write H and the document ids (DOC) directly to disk. In a second traversal
we calculate the pointers. For each document ¢ we use a stack to maintain the string depth
of the last occurrence of 7 in the tree. For a node v marked with ¢ we push the string depth
of v at the first visit and pop it after all the subtree of v is traversed. Note that this time we
can read H and DOC from disk (in streamed mode) and avoid the intersection. In the same
traversal we can calculate the weight array FREQ by performing counting queries on WTD.
Again, arrays y and FREQ can be streamed to disk.

Finally, the K?-treap is constructed in-place by a top-down level by level process. Let
the input be stored as a sequence of triples (z,y,w) and let 1 be the root level and b be the
bottom level. First, we determine the heaviest element by a linear scan, stream its weight
out to disk and mark the element as deleted. We then partition the elements of the root
level into K? ranges, such that all elements in range r (0 < r < K?) have the property that
v/K**mod K = r mod K and y/K"“ mod K = r/K. For each non-empty (resp. empty)
range r we add a 1 (resp. 0) to the bitvector T, which is streamed to disk. On the next
level ¢ — 1 we can detect nodes by checking the partitioning condition of the last level, find
and mark the maximum weighted entry and apply the partitioning in the node. The time
complexity of the process is O(K?log, n) and does not use extra space.

8.2.4 Summing Up

We introduce new indexes, K?Treap”and W1RMQ¥, that simplify WRMQ by converting
its MAP and TREE components into a single bitmap H. In addition, they reduce the space
of the grid representation, by trading it for weaker time guarantees. The experiments will
show that this does not translate into markedly reduced performance.

!For example, the liner-time LCA-based index construction method takes 1.5 hours for an 80MB Wikipedia
collection, where their peak main memory usage is 12.25 GB.
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Chapter 9

Experimental Evaluation

In this chapter we describe the experimental setup in terms of the collections where the index
were evaluated, query generation and environment employed. We also explain the engineering
details required to implement the indexes.

9.1 Datasets and Test Environment

We will split the collections into two categories depending on the alphabet type: character
alphabet and word alphabet. For the character alphabet, we have four “small” collections,
that have been used as baselines in previous work [124], and a “big” collection containing
natural language text. We describe and label the collections as follows:

e KGS®. Consists of a collection of 18,839 sgf-formmated Go game records from year 2009
(http://www.u-go.net/gamerecords), containing 52,721,176 characters.

e PROTEINS®. A collection of 143,244 sequences of Human and Mouse proteins (http:
//www.ebi.ac.uk/swissport), containing 59,103,058 symbols.

e ENWIKI-SMLC. A sample of a Wikipedia dump, consisting of 4,390 English articles,
containing 68,210,334 symbols.

e DNA A sequence of 10,000 highly repetitive (0.05% difference between documents)
synthetic DNA sequences with 100,030,016 bases in total.

e ENWIKI-BIG®. A bigger sample of English Wikipedia articles, consisting of 8.5GB of
natural text and 3.8 million documents.

In the case of word alphabets we use three collections of documents containing natural
language. We preprocessed these collections using the Indri search engine (http://www.
lemurproject.org/indri/)) for generating a sequence of stemmed words and excluding all
html tags.

e ENWIKI-SMLY. A word parsing of ENWIKI-SML®, containing 281,577 distinct words.
e ENWIKI-BIG". A collection containing 8,289,354 words obtained from regarding the
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text as a sequence of words from ENWIKI-BIG.

e GOV2"¥. Probably the most frequently used natural text collection for comparing effi-
ciency of IR systems. The parsed collection consists of more than 72GB of data, around
40 million terms and more than 25 million documents.

Table 9.1 summarizes properties of the collections that are used. For queries, we selected
40,000 random substrings of length m obtained from the top-k£ documents for m = 5. We
increase k exponentially from 1 to 256.

For all experimental comparisons, the relevance measure used is the term frequency and
the query is a single pattern string. All experiments were run on a server equipped with an
Intel(R) Xeon(R) E5-4640 CPU clocking at 2.40GHz. All experiments use a single core and at
most 150GB of the installed 512GB of RAM. All programs were compiled with optimizations
using g+ version 4.9.0.

9.2 Implementations

In this section we describe the implementation details for each engineered index. Our im-
plementation and benchmarks are publicly available at https://github. com/rkonow/surf/
tree/wt_topk.

9.2.1 Baselines

As baselines we use the GREEDY solution [53] and the SORT approach [77], which is in-
cluded in the Succinct Data Structure Library (SDSL, https://github.com/simongog/sdsl-
lite). Baseline SORT uses the CSA and document array DA. It first gets the range [sp, ep] of
all occurrences of P from the CSA. Then it copies all documents from DA[sp, ep| and extracts
the top-k£ most relevant documents by sorting and accumulating the occurrences. Baseline
GREEDY also gets the range [sp, ep] from the CSA, but then does a greedy traversal of the
wavelet tree over DA to get the top-k documents. As an additional baseline we also ran the
experiments using the original source code of Navarro et al. [124] (NPV). This implemen-
tation consists of more than 24 alternative configurations, including grammar compressed
wavelet trees using different bitmap representations and improvements to the GREEDY al-
gorithm. For the experimental time-related results, we will always show the points that
correspond to the pareto-optimal border in terms of space and time considering all possible
configurations. We refer to this index as as NPV, We will not compare to the work of Patil
et al. [129] since the space requirements of this solution is considerably bigger (see Table
than the ones that are being evaluated in this work.
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Collection n D n/D o |C|in MB

character alphabet

KGS® 52,721,176 18,839 2798 75 51
PROTEINS® 57,144,040 143,244 412 40 56
ENWIKI-SML® 68,210,334 4,390 15,538 206 65
DNA® 100,020,016 10,000 1002 4 97
ENWIKI-BIG¢ 8,945,231,276 3,903,703 2,291 211 8,535
word alphabet
ENWIKI-SML" 12,741,343 4,390 2,902 281,577 29
ENWIKI-BIGY 1,690,724,944 3,903,703 433 8,289,354 4,646
Gov2Y 23,468,782,575 25,205,179 931 39,177,922 72,740

Table 9.1: Collection statistics: m is the number of characters or words, D the number of
documents, n/D the average document length, o the alphabet size, C and total size in MB
assuming that the character based collections use one byte per symbol and the word based
ones use [log o] bits per symbol.

9.2.2 Implementation of WRMQ

The implementation of WRMQ requires the assembly of a complex set of compact data
structures: CSA, wavelet tree (WT), RMQ, rank/select-capable bitmaps, direct access codes,
compact tree topologies and an efficient integer array representation. In practice, for the CSA,
we use an off-the-shelf SSA from PizzaChili site, (http://pizzachili.dcc.uchile.cl),
and add a rank/select capable bitmap, BitSequenceRG, implemented in the LIBCDS li-
brary (https://github.com/fclaude/libcds), that requires 5% of extra space. Bitmap
DOCBITMAP is used to mark where each distinct document starts in C. This way, the
document corresponding to SA[i] is obtained by performing RANK;(DOCBITMAP, SA[i]).
We also use the 5% space overhead bitmaps for the MAP bitmap Bl[1,2n]. We use the fully-
functional compact tree representation [14] requiring 2.3 bits per element to perform LCA
and PREORDER _SELECT over the suffix tree topology. For LEAF RANK and LEAF SELECT
we use another bitmap L[1, 2n| where the leaves are marked, and we use 5% space overhead
to implement rank; and select; (this could be slightly improved but makes little differ-
ence). We employ the original optimal implementation of direct access codes for repre-
senting the weights. For the wavelet tree, we use the no-pointers version from LIBCDS
(WaveletTreeNoPtrs) using BitSequenceRG to represent the bitmaps. Recall that the
wavelet tree has to be enhanced to support range maximum queries (RMQ) at each of
the weight sequences W (v;). We implemented the RMQ structure that requires 2.3 bits per
element [69]. For the document identifiers we use an integer array that requires [log(D +1)]
bits per element and access any position directly. All of these implementations and data
structures were limited to handle 232 — 1 memory addresses, thus this index is not capable
of handling big datasets such as ENWIKI-BIG®.
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9.2.3 Implementation of K?Treap”

The set of data structures required for implementing K?Treap? is smaller: We need a CSA,
RMQ, rank/select capable bitmaps, direct access codes, a K>-treap, and an efficient inte-
ger array representation. We based our implementation on structures from SDSL and will
use the SDSL class names in the following. For character based indexes, we use a CSA
based on a wavelet tree (csa_wt) which is parametrized by a Huffman-shaped wavelet tree
(wt_huff) which uses a compressed bitmap (rrr_vector). For word based indexes, we
opted for a CSA based on the ¥ function (csa_sada) which is compressed with Elias-6
codes (coder::elias_delta). The latter provided a better time-space trade-off for large
alphabet pattern matching. For the mapping we store the bitmap H using a compressed
bitmap rrr_vector. The select; performance of rrr_vector is slow compared to a plain
bitmap representation but negligible in our case, where only two select; queries are done
per top-k query (recall Algorithm . The RMQC structure is realized by a MinMax-tree
implementation rmq_succinct_sct which uses about 2.3 bits per element. The document
ids, DOC, are stored in an integer vector (int_vector) using [log(D + 1)] bits per element.
For this work we have implemented the K2-treap structure and added it to SDSL (available
now as k2_treap). The K2-treap implementation is generic (the value K, the bitmap rep-
resentation of the K2-ary tree, and the representation of the vector of relative weights, can
be parametrized) and complements the description of Brisaboa et al.[32] with an efficient
in-place construction described in Section [8.2.3] For the relative weights we use direct access
codes (dac_vector) with a fixed width of 4.

9.2.4 Implementation of W1RMQ¥

The only difference between K2Treap” and WIRMQ is the grid implementation. The
WIRMQ solution uses a wavelet tree and an RMQ data structure to represent the grid. We
opted for a wt_int parametrized with rrr_vector. The compressed bitvector decreased the
size considerably since the grid contains many small y-values. The absolute weights are stored
in a dac_vector of fixed width 4, which gave the most practical result when performing pa-
rameter tuning experiments. The RMQ structure was again realized by rmq_succinct_sct
using 2.3 bits per element.

9.3 Results

In this section we study the practical properties of the different index implementations. We
first analyze the space consumption of the structures; both total space and the space of
substructures — like the grid — are considered. Then the query time is analyzed. Again,
we consider total query time and also study the time for the different phases of the query
process. To get a precise picture about the performance we vary various parameters: the
number of results k, the pattern length m, and collections. The latter are from different
application domains, cover different scales of magnitude — from 50 MB to 72 GB —, and vary
in alphabets size from 4 to almost 40 million. Note that some non-SDSL based baselines did
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not support alphabets larger than 256 and collection sizes above 2 GB and were therefore
only evaluated in some setups.

9.3.1 Space

We start by decomposing the space required of our first index, WRMQ. Fig. [0.1] shows
the space required for each of its components in terms of fraction of the input. For most
collections the space requirements are quite similar, except for the KGSs® collection. In general,
WRMQ requires 2—4 times the size of the input. If we analyze the space of the components,
the most resource-consuming piece is the wavelet tree with multiple RMQ structures, which
requires up to the size of the collection. The CSA requires 0.6-0.7 times the collection size.
Recall that for this implementation we need to store the topology of the suffix tree (TREE)
plus two bitmaps to perform the mapping of the suffix tree nodes to the grid (MAP). These
data structures add up to 0.6 times the size of the input. Storing the frequencies (FREQ)
using direct access codes use 0.2-0.3 times the size of the input, which is about the same size
of the tree topology. The space requirements to represent WRMQ) is probably unpractical for
real scenarios. Furthermore, the implementation of this index is not able to handle collections
that are bigger than 200MB nor collections that are parsed as words.

4.0

23.5 —

23.0 m WT
5 m TREE
2.5 - m MAP
=90 — @m CSA
S @ FREQ
§1-5 — o DOC
E1.0 - 0O RMQC
Q

$0.0 -

ENWIKI-SML® DNA® KGS® PROTEINS®

Figure 9.1: Space usage decomposition as fraction of the input, for each structure employed
in WRMQ.

Fig. shows the decomposition of the index K?Treap’, which employs the H bitmap to
map the suffix tree nodes to the grid. In addition, this index uses the K2-treap to represent
the grid G. The efficient representation of G is about 30% smaller than WRMQ. We exemplify
the space reduction of K?Treap” compared to WRMQ in the case of ENWIKI-SMLC. While
the grid mapping takes 46.5 MB (8.6412.8425.1 for bitvector B, L, and the tree topology) in
WRMQ, K?Treap just takes 6.8 MB for bitvector H (13.0 MB in uncompressed form). The
grid representation as K?2-treap takes 57.7 MB (21.7 + 24.5 + 11.5 for weights, y-values, and
topology) compared to 77.7 MB (23.3 MB for weights and 55.4 MB for the RMQ-enhanced
wavelet tree) in WRMQ. These space savings result in index sizes between 1.5-3.0 times the
original collection size for character alphabet collections, see Fig. [9.2] top. For word-parsed
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collections, IDX GN takes space close to the original input, for example, for the 71.0 GB
word parsing of GOV2%, the index size is 64.6 GB. Recall that this space includes the CSA
component, which can recover any portion of the text collection, and thus the collection does
not need to be separately stored.
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Z
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ENWIKI-SMLY ENWIKI-BIGY GOov2Y

Figure 9.2: Space usage decomposition as fraction of the input, for each structure employed
in K2Treap™. Top: results for character alphabet collections. Bottom: results for word
alphabet collections.

The difference between K2Treap and WIRMQ¥ is the grid representation, so we compare
the space required by the bit-compressed wavelet tree with a single RMQ structure to the
space required of the K2-treap (see Fig. . In this case, the y-axis represents the fraction
of the space required for the wavelet tree-based grid to the space required to represent the
grid using the K2-treap. We observe that, in most of the character based collections, except
for the case of DNA®, the space savings of the wavelet tree are 30% to 40%. A similar result
can be seen in the case of word collections.

Fig. shows the space comparison in terms of fraction of the input of all of the in-
troduced indexes and the baselines for the character alphabet collections. ENWIKI-BIG® is
not shown due to the implementations constraints of some of the indexes. As previously
mentioned, NPV chooses the best possible result obtained from all the alternative config-
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Figure 9.3: Comparison of the space required to represent the grid G using a wavelet tree
plus a single level of RMQ (W1RMQH) in terms of the space required if the K2-treap is used.

urations of the implementations presented by Navarro et al. [124]. In this case, we show the
variants that yield the best compression for each collection (NPV™") and the ones yielding
the highest space usage (NPV™). We also show the space requirements of the other base-
lines, GREEDY and SORT. For almost all cases WRMQ is the most space-demanding index,
even when compared to the uncompressed version NPV™%*. Only for the KGS® collection is
WRMQ smaller than NPV™®  WI1RMQ? and K?Treap” require about 20% more space
than other variants for ENWIKI-SML® and DNA®. However, the space of these indexes for
KGS® is about half of GREEDY and SORT, and they are smaller than the most compressed
solution, NPVPt,

9.3.2 Retrieval Speed Varying k

The time of a top-k query consists of the time to match the pattern in the CSA, the time to
map [sp, ep] to the grid, the time to report the top-k documents using the K2-treap or wavelet
tree and, if less than k documents are found, the time to report frequency-one documents
(which are not stored in the grid) using RMQC and, again, the CSA. The top-k retrieval
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time for a pattern P depends on multiple factors: First, the length m of P. For an FM-index
based CSA (resp. W-function based) it takes O(mlogo) (resp. O(nlogn)) steps. Second,
the time for the mapping from the lexicographic range into the grid’s x-range. This method,
described in Algorithm [21] requires two select; operations, whose time is negligible compared
to the first step. The last steps depend on the output size of the query, k, compared to the
number of occurrences of the pattern. Documents in which the pattern occurs more than
once are calculated via the corresponding top-k grid query (either K?-treap for K?Treap’! or
wavelet tree for WRMQ and W1RMQ), while documents in which the pattern just occurs
once are retrieved via the document listing algorithm that uses the RMQC structure on CA,
a locate operation on the CSA, and a rank; on DOCBITMAP. We examine the cost of the
different phases in Fig for K?Treap’.

As expected, the pattern matching with the CSA is independent of k and takes about
5-10us. The time to retrieve the first document out of the K?-treap is relatively expensive.
For most of the collections it is about 40-70us and is dominated by the cost of the priority-
queue based search down the K?2-treap until a first (heaviest) element within the query range
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Figure 9.5: Detailed breakdown of average query time for index K?Treap” which uses a
CSA pattern search, a K2-treap for the top-k grid query, and the document listing algorithm
that requires RM(Q queries plus CSA accesses (time fractions plotted from bottom to top in
log-scale). We use m = 5.

is found.

The subsequent documents are cheaper to report. The time spent in the K?-treap to
report 16 documents is about twice the time to report a single document except for the
case of PROTEINS®. The average time per document retrieved via the K2-treap is typically
about 3-5us for £ > 64. Essentially, for each such document, a constant number of RMQ
and extraction of a suffix array cell from the CSA are performed. The cost of an RMQ
is typically below 2us [76, Sec. 6.2], while the CSA access accounts for the remaining 100
300us. The CSA access time is linearly dependent on a space/time tradeoff parameter s,
which is set to s = 32. Note that top-k£ queries are meaningful when documents have
different weights, and thus large k values that retrieve many documents with frequency 1 are
not really interesting. An interesting case arises for the DNA® collection, where the amount
of time spent to retrieve documents with frequency 1 is negligible. Recall that DNA® contains
synthetic highly repetitive sequences, and a limited alphabet size o = 4, therefore it is quite
improbable to generate a query-string of length m = 5 that has a single occurrence.
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Fig. shows the results for our biggest character alphabet dataset, ENWIKI-BIG®. On
the left part of the figure we show the time required to perform each part of the query
process as in Fig. 0.5l On the right, we show average time per document retrieved and
perform a breakdown depending on the mechanism that was employed. For values of k£ < 8,
the weighted average amount of time spent to retrieve each document is always greater than
10us. As the value of k increases, the average time to report a document decreases. For
k = 256 the average time required is less than 5us. Note that for all k& values (for k > 4,
since for smaller k values, it was not necessary to execute the single-occurrence procedure)
the time for the RMQC-+CSA accesses to report a document is about 60-90us.
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Figure 9.6: Query times for IDX GN on ENWIKI-BIG®, with m = 5. Left: Query time
depending on k with a detailed breakdown of the three query phases. Right: Average time per
document (mixed), per K?-treap retrieved document and RMQC+CSA retrieved document.
CSA matching time is included in all cases.

We now examine the performance of the K?-treap grid representation compared to the use
of the wavelet tree alternative. We use the implementation of W1IRMQ! using compressed
bitmap representations and only one RMQ level, since the results obtained with WRMQ
were almost identical, except for PROTEINS® where WRMQ is 3 times slower due to the many
RMQs performed. Fig. 0.7 shows the comparison of the average time required to complete
a top-k query, for varying k, using the K?-treap or the wavelet tree. For most cases, the
wavelet tree-based approach is faster than the K2-treap, except in the DNA€ collection, where
for k > 8 the K2-treap is faster. The most significant difference can be seen on ENWIKI-SML®,
where on average the wavelet tree is two times faster. Fig. shows the times on our biggest
character alphabet collection (ENWIKI-BIG®): the wavelet tree is about 50% slower for & < 64.
This difference gets smaller for larger k values, and for k = 256 the wavelet tree is already
10% faster than the K?2-treap. This is quite different from the results obtained on the small
collection of the same type (ENWIKI-SML®), where the wavelet tree was up to 5 times faster
for k = 256 and dominated the average time per query for all the k£ values.

We compare the overall performance of our indexes against the baselines in Fig. [9.9
Recall that index NPV represents the best achieved result from all alternatives in terms
of space/time. We show the results using the smaller character alphabet collection since
there are implementation constraints for NPV’ and WRMQ. Except for the PROTEINS®
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Figure 9.7: Comparison of the average time per query required to retrieve the top-£ results
using a K2-treap or the wavelet tree for representing G.

collection, all of our our indexes require less than 200us for £ < 16. We start by analyzing
the performance for the English Wikipedia collection (ENWIKI-SML®). Our indexes are faster
than all other approaches for k < 32. For larger k values, the best combination of NPV is
faster than our approaches by up to a factor of 3 (k = 256). In the case of the DNA® collection,
all of our indexes are up to 12 times faster than the fastest alternative (NPV"). As mentioned
before, the performance of WRMQ is similar to that of WIRMQ and K?Treap”. The extra
RMQ operations performed at each wavelet tree level adds a constant time factor to the query
time, as can be clearly observed from the results on DNA¢ and PROTEINS®. In the case of
KGS®, the difference between our indexes and the other approaches is considerably bigger:
our approaches are 21 times faster than the closest alternative (NPV*) for k = 2, and even
for larger k£ values all of our approaches are up to 3 times faster than the fastest baseline.
Finally, in the case of PROTEINS®, our results show that there is no alternative that is faster
than the most basic approach, which is sorting (SORT). In this case, our indexes are slower
than SORT for all k values, and also than NPV for k > 4. The constant factor added to
the query times for the extra RMQ operations of WRMQ) is more evident for this collection,
making this alternative up to 10 times slower than WIRMQ? and K?Treap’. Note that in
this collection most patterns occur once in each document, thus top-k queries are equivalent
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Comparison of the average time per query required to retrieve the top-k results using a
K2-treap or the wavelet tree for representing G for ENWIKI-BIG®.

to plain document listing queries.

Fig. shows the results for the bigger character based collection (ENWIKI-BIG®). Note
that for this experiment we are not able to construct the index using NPV°" and WRMQ
since their implementations are not able to handle more than 232 — 1 memory addresses. For
all distinct &k values, we are up to 100 times faster than the fastest baseline (GREEDY) and
even 1,000 times faster than the simple SORT method. The reason for this is that GREEDY,
as well as SORT, have to handle larger [sp, ep]-intervals for this bigger collection, while our
index is less dependent on this factor. As mentioned before, it turns out that for the case
of the collection ENWIKI-BIG® WI1RMQ¥ is slower than K?Treap! for values of k < 128.
Therefore, the difference between heuristics and indexes with stronger guarantees shows up
as the data sizes increase.

9.3.3 Varying Pattern Length

We proceed to analyze the effect of changing the query pattern length m. As before, we
selected 40,000 random substrings of lengths m ranging from 3 to 10 and obtained the top-k
documents for fixed £ = 10. Fig. [9.11] shows the results, in terms of average time per query
for different query pattern lengths. For the collection ENWIKI-SML®, our index query time
ranges in 80-110us. Note that for query patterns longer than 8 symbols, SORT is the fastest
index. Since the ranges in the wavelet tree for longer patterns are smaller, GREEDY starts
to be competitive for m > 7. In general, the query times are quite similar for all of our
indexes on this collection. A similar scenario arises on the DNA€ collection: our indexes range
in 80-180us, and for longer patterns SORT is the best alternative. Note that NPV is 10
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Figure 9.9: Average time per query, in microseconds, for different k values and fixed pattern
length m = 5, evaluated on small character alphabet collections.

times slower for most m values. In the case of KGS® collection, our indexes are the best for the
whole range of pattern lengths and we still are one order of magnitude faster than GREEDY
and NPV A special case arises for the PROTEINS® collection. Our indexes are generally
slower than the baselines, especially WRMQ), which is up to 5 times slower than W1RMQH
and K2?Treap®. Still, they are faster than NPV In this case, the best alternative is the
simplest solution: the index SORT, for patterns having more than 4 symbols.

We show the results of our biggest character alphabet dataset, ENWIKI-BIG® in Fig. [9.12]
Recall that for this case, we are not able to compare with WRMQ and NPV due to the
implementation constraints already described before. Compared to SORT and GREEDY
our indexes are up to 100 times faster for small pattern lengths and up to 8 times faster for
the longest case (m = 10).
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Figure 9.10: Average time per query in microseconds for varying k values and fixed pattern
length m = 5 using big character alphabet collections.

9.3.4 Word Alphabet Collections

One of the most important feature of our best implementations (K?Treap” and WIRMQH)
is that they are able to index collections with large alphabets, thus allowing the mapping of
words to integer symbols. We measured the performance of our indexes and other baseline im-
plementations on the word alphabet collections (ENWIKI-SMLY, ENWIKI-BIG", and GOV2Y).
We used the same experimental setup, generating 40,000 single-word (m = 1) queries chosen
at random from each collection C and increasing k exponentially from 1 to 256.

We start by analyzing the results with the same breakdown of the top-k procedure as
done before for the character alphabet case. We show the details of the average query
time required for the index K?Treap” on word alphabet collections in Fig.m. The pattern
matching using the CSA takes less than 5us for all cases. These results are considerably faster
than those obtained on character alphabet collections. The main reason for this difference
is that the CSA searches for a shorter pattern (m = 1 words), even if on a larger alphabet.
In general the top-k grid query takes a great portion of the total time, of about 20-30us for
retrieving a single document. Interestingly, for ENWIKI-SML", the portion of total time spent
performing the single-occurrence procedure (RMQC + CSA accesses) is much bigger than
for the larger collections. This is expected, since ENWIKI-SML" contains a small amount of
document (4,390) when compared to ENWIKI-BIGY (3,903,703) and Gov2¥ (25,205,179), and
thus in the latter it is more likely to find & documents where P appears more than once. In
general, K?Treap is up to three times faster in these types of collections than in the smaller,
character alphabet ones.

We show the average time required to retrieve a document depending on whether it was
retrieved using the K2-treap or the single-occurrence procedure. We show the results obtained
for the GOv2" collection in Fig. As before, retrieving a single document using either
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Figure 9.11: Average time per query in microseconds for different pattern lengths and fixed
k = 10 value.

approach is costly: about 20us with the K2-treap and 100us with RMQC + CSA accesses.
The time per document decreases significantly as k increases. For k = 256, the average time
to retrieve a single document is below 2us for the K2-treap and 31us for the single-occurrence
procedure. As before, this is because the K?-treap spends some time until extracting the
first result, and the next ones come faster. Instead, the document listing method has a more
constant-time behaviour: After k& > 4, the RMQC + CSA retrieval time does not decrease
when more documents are requested.

Fig. compares the two grid representations: the K?-treap and the wavelet tree. Inter-
estingly, for the small collection (ENWIKI-SMLY) the K?-treap is slower than the wavelet tree,
but it is considerably faster for larger collections (ENWIKI-BIGY and GOV2"). In detail, for
the small collection, the wavelet tree is up to twice as fast as the K2-treap, and for the larger
ones, the wavelet tree is up to twice as slow. This result is also different when compared to
the character alphabet collections, where in most cases the wavelet tree is faster than the
K?2-treap. This is due to the z-range of the query: since the pattern length is m = 1, the
x-ranges in the queries bigger for the large collections. This affects negatively the wavelet
tree, because the two rank, operations used to map the interval [xy, z5] are far apart and re-
quire separate cache misses. Instead, the K2-treap has a higher chance of having the heaviest
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Figure 9.12: Average time per query in microseconds for different pattern lengths and fixed
k = 10 value for ENWIKI-BIG®.

point of each subgrid inside the bigger query area, and thus it might find results sooner.

Fig. [9.16] shows the comparison between our indexes and the baselines (GREEDY and
SORT). For the small Wikipedia collection our indexes are one order of magnitude faster
than GREEDY for all values up to k£ < 64, taking less than 100us on average. On the other
hand, the naive SORT is up to 1,000 times slower than our indexes for small £ < 8 values,
and 10 times slower for £ = 256. For the bigger texts, SORT is not considered since it
required more than 5 seconds to execute. In these cases, our indexes are undisputedly the
fastest alternative, being about 1,000 times faster for £ = 10 and almost 100 times faster for
the largest k value. Note that from the two alternatives, K2Treap” is faster than W1RMQ!
as the grid search is considerably faster when performed on the K2-treap than on the wavelet
tree.

9.4 Discussion

In this part we have proposed a more efficient and conceptually simpler implementation of the
optimal solution of Navarro and Nekrich [I19]. We have sharply engineered and compressed
the optimal solution, while retaining the best ideas that led to its optimal time. Our first
index, WRMQ), presents a first naive approach of the optimal implementation, while the
indexes K?Treap” and W1RMQ"shows remarkable improvement over this naive approach,
in terms of space and time. We also present an efficient construction method, which we
carefully engineered so that that it is possible to handle large IR collections. We also make
use of state-of-the-art compact data structures implementations, so that our indexes are able
to support large alphabets.
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A relevant open problem is to reduce the space further while retaining competitive query
times; as shown in this work, current existing approaches that uses less space are hundreds of
times slower. Another interesting direction is to compete with inverted indexes in weighted
Boolean queries, which are considerably harder than phrase queries for our indexes. Finally,
we plan to adapt our indexes and extend them to support more complex relevance measures,
such as BM25.
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ment (mixed), per K2-treap retrieved document and RMQC+CSA retrieved document. CSA
matching time is included in all cases.
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length m = 1 on word alphabet collections. Results that required more than 5 seconds for
SORT are not shown.
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Figure 9.17: Average time per query in microseconds for different pattern lengths. Results
that required more than 5 seconds for SORT are not shown.
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Chapter 10

Aggregated 2D Queries on Clustered
Points

In this chapter we present a generalization of the technique that was used in the design
of the K?-treap data structure (see Section to support other types of two-dimensional
aggregated queries. We show how to extend the K2-tree to solve the problem of efficiently
retrieving the number of points that lie in a two-dimensional range [z1,xs] X [y1,ys]. Our
experimental evaluation shows that by using little space overhead (less than a 30%) on top
of the K2-tree, the modified version of the data structure performs queries several orders of
magnitude faster than the original K2-tree, especially when the query ranges are large.

The K?-treap data structure appears in the proceedings of the 21st String Processing
and Information Retrieval conference (SPIRE), 2014, held in Ouro Preto, Brazil. The gen-
eralization of the K2-treap as a technique that employs the K?2-tree to perform aggregated
two-dimensional queries over clustered set of points has been published in the journal Infor-
mation Systems, in March of 2016. This work was developed in collaboration with Nieves R.
Brisaboa, Guillermo de Bernardo from University of A. Coruna, Spain and Diego Seco, from
University of Concepcion.

10.1 Motivation

Many problems in different domains can be interpreted geometrically by modeling data
records as multidimensional points and transforming queries about the original records into
queries on the point sets [20, Chapter 5|. In 2D, for example, orthogonal range queries on
a grid can be used to solve queries of the form “report all employees born between yo and
y1 who earn between s and sy dollars”, which are very common in databases. By the same
token, other range aggregated queries (e.g., top-k, counting, quantile, majority, etc.) have
proven to be useful for analyses about the data in various domains, such as OLAP databases,
Geographic Information Systems, Information Retrieval, Data Mining, among others [120].
For example, top-k queries on a OLAP database of sales can be used to find the sellers with
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Figure 10.1: Weighted ma- Figure 10.2: Binary matrix. Figure 10.3: Range query.
trix.

most sales in a time period. In this example, the two dimensions of the grid are sellers ids
(arranged hierarchically in order to allow queries for sellers, stores, areas, etc.) and time (in
periods of hours, days, weeks, etc.), and the weights associated to the data points are the
number of sales made by a seller during a time slice. Thus, the query asks for the k£ heaviest
points in some range Q) = [iq,is] X [t1, 2] of the grid.

This approach of modeling problems using a geometrical formulation is well-known and
there are many classical representations that support the queries required by the model and
solve them efficiently. Range trees [25] and kd-trees [24] are two paradigmatic examples. Some
of these classical data structures are even optimal both in query time and space. However,
such classical representations usually do not take advantage of the distribution of the data
in order to reduce the space requirements. When dealing with massive data, which is the
case of some of the aforementioned data mining applications, the use of space-efficient data
structures can make the difference between maintaining the data in main memory or having
to resort to (orders-of-magnitude-slower) external memory.

In this work we consider the case where we have clustered points in a 2D grid, which is
a common scenario in domains such as Geographic Information Systems, Web graphs, social
networks, etc. There are some well-known principles such as Tobler’s first law of geography
[156], which states that near things are more related than distant things, or the locality of
reference in the temporal dimension, that induce clusters in datasets where such dimensions
are considered (either explicitly or implicitly). This is also the case in other not so well-known
domains; for example, in the Web graph [30] these clusters appear when the Web pages are
sorted by URL. Hence, we take advantage of these clusters in order to reduce the space of
the data structures for aggregated 2D queries.

The K?-tree (see Section is a good data structure to solve range queries on clustered
points and it has been extensively evaluated in different domains [144] 54] 41]. We extend
this data structure in order to answer aggregated range queries, using a general technique,
and we show how to adapt this general technique to support range counting queries within
a 2D range, and evaluate its performance for a variety of domains.

We consider two dimensional grids with n columns and m rows, where each cell a;; can
either be empty or contain a weight in the range [0,d — 1] (see Figure. [10.I). For some
problems, we will omit the weights and just consider the non-empty cells, which can be
represented as a binary matrix (Figure. in which each cell contains a 1 (if there is a
weighted point in the original matrix) or a 0 (in other case).
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Let ¢ be the number of 1s in the binary matrix (i.e., the number of weighted points). If
we can partition the ¢ points into ¢ clusters, not necessarily disjoint and ¢ << t, we will say
the points are clustered. This definition is used in Gagie et al. [73] to show that a quadtree
in such case has O(clogu + ), t;logl;), where u = maz(n,m), and ¢; and [; are the number
of points and the diameter of cluster i, respectively.

A range query Q = [, x2] X [y1, y2] defines a query rectangle with all the columns in the
range |21, z] and the rows in [y;, ys] (see Fig. [10.3). An aggregated range query defines, in
addition to the range, an aggregate function that must be applied to the data points in the
range query. Examples of aggregated queries are COUNT((Q), which counts the number of data
points in the range query, MAX /MIN(Q), which computes the maximum (alt. minimum) value
in the query range, and its generalization top-k, which retrieves the k lightest (alt. heaviest)
points in the query range. These top-k queries are also referred in the literature as ranked
range queries. For the range query ¢ in Fig. the result of COUNT(q) is 6, MAX(q) returns
7, MIN(q) returns 1, and the top-3 heaviest elements are 7, 4 and 3.

There are other interesting data-analysis queries on two-dimensional grids. For example,
QUANTILE(Q, k), which returns the k-th smallest value in @, or MAJORITY(Q, ), which
retrieves those values in () that appear with relative frequency larger than «. These and
more have been studied in [120], where the authors propose space-efficient data structures
with good time performance. We restrict ourselves to an emblematic subset of these queries,
and propose data structures that are even more space-efficient when the points in the set are
clustered.

10.2 Augmenting the K?-tree

Let M|[n x n] be a matrix in which cells can be empty or contain weight in the range [0, d — 1]
and let BM[n x n| be a binary matrix in which each cell contains a zero or a one. We say
that BM™ represents the topology of M if BM™][i][j] = 1 when M][i][;j] is not empty, and
BM™M]i][j] = 0, otherwise.

On the one hand, we store the topology of the data. On the other hand, we store the
weights associated with each non-empty cell. For the topology, which can be regarded as a
binary matrix, we use a K>2-tree. Recall from Section that this data structure requires
little space when the data points are clustered. The K?2-tree performs a recursive division
of the space into K? submatrices until it reaches an individual cell or a completely empty
submatrix, and each of these submatrices is represented in the data-structure with a bit.
Therefore, each bit in the K2-tree represents a submatrix of the original matrix which size
depends on its depth on the recursive division.

A level-wise traversal of the K2-tree can be used to map each node to an aggregated
value that summarizes the weights in the corresponding submatrix. The specific value of this
summary depends on the operation. For example, for ranked range queries (see Section
the summary represents the maximum weight in the corresponding submatrix, whereas for
counting queries, it represents the number of non-empty cells in the submatrix. However, a
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common property is that the value associated with a node aggregates information about its
K? children. Therefore, we use a sort of differential encoding [48] to encode the values of each
node with respect to the value of its parent. In other words, the information of a node (such
as its summary and number of children) is used to represent the information of its children
in a more compact way. In order to access the original (non-compressed) information of a
node we need to access its parent first (i.e., the operations in this technique are restricted to
root-to-leaves traversals).

To summarize, we use a K>2-tree to represent the topology of the data and augment each
node of such a tree with additional values that represents the aggregate information related
with the operation to be supported. These aggregated values are differentially encoded with
respect to information of the parent node in order to reduce the space necessary to store
them. In the following two sections we show how both the K?-tree and the differential
encoded values can be tuned to efficiently solve two types of aggregated queries.

Finally, note that we present our results for matrices of size n x n. This is not a loss
of generality, as we can extend a matrix M’[n x m| with zeros to complete a square matrix
Mn x n| (w.l.o.g. we assume m < n). As the topology of the matrix is represented with a
K?2-tree, this does not cause a significant overhead because the K2-tree is efficient to handle
large areas of zeros. Actually, we round n up to the next power of K [35].

10.2.1 Supporting Counting Queries

In addition to the K2-tree, the augmented data structure stores additional information to
support range counting queries efficiently. In Figure we show a conceptual K?2-tree
in which each node has been annotated with the number of elements in its corresponding
submatrix. Note that this is the same example of Figure considering as non-empty cells
those with weight larger than 0.

This conceptual tree is traversed level-wise, reading the sequence of counts from left to
right in each level. All these counts are stored in a sequence counts using a variant of
the differential encoding technique presented in Section [10.2l Let v be a node of the K-

tree, children(v) the number of children of v, and count(v) the number of elements in the
count(v)

children(v)

elements in the submatrix associated with each child v" of v, assuming an uniform distribution.

Thus, the count of each node v’ is stored as the difference of the actual count and its expected
value. In the running example, the root has three children and there are 22 elements in the
matrix. Each of the corresponding submatrices is expected to contain |22/3] = 7 elements
whereas they actually contain 10, 7 and 5 elements, respectively. Hence, the differential
enconding stores 10 —7=3,7—7=0,and 5 — 7= —2.

submatrix represented by v. Then, count(v') = represents the expected number of

The result of this differential encoding is a new sequence of values smaller than the original,
but which may contain negative values. In order to map this sequence, in a unique and
reversible way, to a sequence of non-negative values we use the folklore overlap and interleave
scheme, which maps a negative number —i to the i"-odd number (2i — 1) and a positive
number j to the j* even number (2j). Finally, to exploit the small values while allowing

143



22 NO

o TS

/w\ /\7\ | 1/.T\4N1 N2
/m /m m m /N/“N AN AN

/‘\ T |1101 --1111 1100 1001-- 1010 0110 0111 1101 1011 1111 1000 1111
/\ /N /N counts|22 -—@0 2-000 @—1 0 —1@

1001

/]\\ //\\ /]\\ //\\ A\\//\\ /A\ A\\ 10-22/3 310/4 4512

1010 0110 0111 1101 1011 1111 1000 1111

Figure 10.4: Storage of the conceptual tree in our data structures.

efficient direct access to the sequence, we represent counts with Direct Access Codes [34].

As counts corresponds with a level-wise traversal of the K?-tree, it is not necessary to
store this additional information for all the levels of the tree. In this way, we provide a
parametrized implementation that sets the space overhead by defining the number of levels
for which counting information is stored. This provides a space-time trade-off and, in the
Experimental Evaluation, we study the influence of this parameter.

Range Counting Queries

The base of the range counting algorithm is the range reporting algorithm of the K?-tree
shown in Algorithm [3] We modify this divide-and-conquer algorithm in order to navigate
both the K?-tree and counts at the same time. Given a query range Q = [x1, 2] X [y1, ¥2),
we start accessing the K?-tree root, and set ¢y = counts[0] and result = 0. Then, the
algorithm explores all the children of the root that intersect () and decodes the counting
value of the node from the counts array and the absolute counting value of the root. The
process continues recursively for each children until it finds a completely empty submatrix, in
which case we do not increment result, or a matrix completely contained inside @), in which
case we increment result with the counting value of such matrix.

To clarify the procedure, let us introduce some notation and basic functions. We name
the nodes with the position of their first bit in the bitmap 7' that represents the K>2-tree.
Then, v = 0 is the root, v = K? is its first non-empty child, and so on. Recall that
(rank; (T,v—1)+1)-K? gives the position in T where the children of v start and each of them is
represented with K2 bits. We can obtain the number of children of v as NumChildren(v) =
rank,(T,v + K?) — rank,(T,v — 1). Non-empty nodes store their differential encoding in
counts in level order, so we must be able to compute the level order of a node in constant
time. Node v stores K? bits that indicate which children of v are non-empty. If the i'* bit is
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set to 1, then the level order of that child node is rank, (T, v + 1), with ¢ € [0, K* — 1].

Given a node v with absolute counting value ¢, and NumChildren(v) children, we expect
each child v' to represent count(v') = WM elements. Let p be the level order
number of child v’. Then, the absolute counting value of v" can be computed as ¢, =
counts[p| 4+ count(v'). Note that counts is stored using DACs, which support efficient direct

access. By updating ¢, before visiting each node v, we can complete the recursive procedure.

Let us consider a query example ¢ = [0,1] x [0,2]. We start at the root with ¢y = 22
and result = 0. The root has three children, but only the first one, stored at position
4 in T, intersects q. Each child is expected to represent [22/3] = 7 elements, so we set
¢4 = countslrank;(T,0+ 0)] +7 = 34 7 = 10. Similarly, we recurse on the first and third
children of this node. On the first branch of the recursion, we process node 16 and set
c16 = counts[ranky (T, 4+ 0)] + [10/4] = counts[4] + 2 = 2. As the submatrix corresponding
with this node is contained inside ¢, we add 2 to the result and stop the recursion on this
branch. On the other one, we have to recurse until the leaves to sum the other element to
the result, and obtain the final count of three.

Other Supported Queries

This data structure obviously supports all the queries that can be implemented on a K?-tree,
such as range reporting or emptiness queries. More interesting is that it can also support
other types of queries with minor modifications. A natural generalization of range counting
queries are aggregated sum queries. In this case, we consider a matrix M[n X n] where each
cell can either be empty or contain a weight in the range [0, d —1]. We perform the same data
partitioning on the conceptual binary matrix that represents the non-empty cells. In other
words, we use a K 2-tree to represent the topology of the matrix. Then, instead of augmenting
the nodes with the count of the non-empty cells in the corresponding submatrix, we store
the sum of the weights contained in such submatrix. The same differential encoding used for
range counting can be used to store these sums. In this case, however, the space-efficiency
achieved by the data structure depends not only on the clustering of the data, but also on
the distribution of the weights. The encoding achieves its best performance when the sums
of the weights of all the children of a node are similar.

10.3 Experiments and Results

In this section we present the conducted empirical evaluation of range counting queries. We
first present the experiment setup (baselines and datasets), then an evaluation in terms of
the space required by the different solutions, and finally a comparison of the running times
of such solutions.

We ran all our experiments on a dedicated server with 4 Intel(R) Xeon(R) E5520 CPU
cores at 2.27GHz 8MB cache and 72GB of RAM memory. The machine runs Ubuntu
GNU/Linux version 9.10 with kernel 2.6.31-19-server (64 bits) and gce 4.4.1. All the data
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structures were implemented in C/C++ and compiled with full optimizations.

All bitmaps that are employed use a bitmap representation that supports RANK and SE-
LECT using 5% of extra space. The wavelet tree that was employed to implement the solution
of [120] is a pointer less version obtained from LIBCDS'| This wavelet tree is augmented with
a RMQ data structure (recall Section at each level.

10.3.1 Experiment Setup

We use grid datasets coming from three different real domains: Geographic Information
Systems (GIS), Social Networks (SN) and Web Graphs (WEB). For GIS data we use the
Geonames dataselﬂ which contains the geographic coordinates (latitude and longitude) of
more than 6 million populated places, and converted it into three grids with different res-
olutions: Geo-sparse, Geo-med, and Geo-dense. The higher the resolution, the sparser the
matrix. These datasets allow for evaluating the influence of data sparsity in the different
proposals. For SN we use three social networks (dblp-2011, enwiki-2013 and ljournal-2008)
obtained from the Laboratory for Web Algorithmicsff] [31L 28]. Finally, in the WEB domain
we consider the grid associated with the adjacency matrix of three Web graphs (indochina-
2004, uk-2002 and uk-2007-5) obtained from the same Web site. The existence of clusters
in these datasets is very dissimilar. In general, GIS datasets do not preset many clusters
whereas data points in the WEB datasets are very clustered. SN represent an intermediate
collection in terms of clustering.

In this experiment, we compare our proposal to speed up range counting queries on a
K2-tree, named rck2tree, with the original K2-tree. In this evaluation we show the space-
time trade-off offered by the rck2tree structure, which is parametrized by the number of
levels of the original K2-tree augmented with counting information. As a baseline from the
succinct data structures area, we include a representation of grids based on wavelet trees
(recall Section [7.1)), named wtgrid in the following discussion. As explained in Section [2.7.4]
this representation requires a bitmap to map from a general grid to a grid with at most one
point per column. In our experiments we store this bitmap with either plain bitmaps or RRR,
the one that requires less space. As for the wavelet tree itself, we use a balanced tree with
just one pointer per level and the bitmaps of each level are compressed with RRR. In other
words, we use a configuration of this representation that aims to reduce the space. Note,
however, that we use the implementation available in LIBCDS [46], which uses O(o) counters
to speed up queries. As we will show in the experiments, this data structure, even with the
compression of the bitmaps that represent the nodes of the wavelet tree, does not take full
advantage of the existence of clusters in the data points.

Table shows the main characteristics of the datasets used: name of the dataset, size of
the grid (u)lz_rl, number of points it contains (n) and the space achieved by the baseline wtgrid,

thttp://www.github.com /fclaude/libeds/

2http://www.geonames.org/

3http://law.di.unimi.it

4Note that, unlike the grids used in the previous scenario, these are square grids, and thus u represents
both the number of rows and columns.
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Table 10.1: Real datasets used, and space required to represent them.

Dataset Type Grid (u) Points (n) | wtgrid | K*-tree | rck2tree* | rck2tree® | rck2tree!'®
(bpp) | (bpp) (brp) (bpp) (brp)

Geo-dense GIS 524,288 6,049,875 | 17.736 | 14.084 14.085 14.356 18.138
Geo-med GIS 4,194,304 6,080,640 | 26.588 | 26.545 26.564 29.276 36.875
Geo-sparse GIS 67,108,864 6,081,520 | 44.019 | 41.619 41.997 48.802 56.979
dblp-2011 SN 986,324 6,707,236 | 19.797 9.839 9.844 10.935 13.124
enwiki-2013 SN 4,206,785 101,355,853 | 19.031 | 14.664 14.673 16.016 19.818
ljournal-2008 | SN 9,363,260 79,023,142 | 20.126 | 13.658 13.673 15.011 18.076
indochina-2004 | WEB 7,414,866 194,109,311 | 14.747 1.725 1.729 1.770 2.13
uk-2002 WEB | 18,520,486 298,113,762 | 16.447 2.779 2.797 2.888 3.451
uk-2007-5 WEB | 105,896,555 | 3,738,733,648 | 16.005 1.483 1.488 1.547 1.919

by the original K2-tree and by different configurations of our rck2tree proposal. Unlike the
previous scenario, the space is measured in bits per point because these matrices are very
sparse, which results in very low values of bits per cell.

10.3.2 Space Comparison

As expected, the representation based on wavelet trees, wtgrid, is not competitive in terms
of space, specially when the points in the grid are clustered. Even though the nodes of
the wavelet tree are compressed with RRR, this representation is not able to capture the
regularities induced by the clusters. In the WEB domain, where the points are very clustered,
the wtgrid representation requires up to 10 times the space of the K?-tree. Therefore, the
latter allows for the processing in main memory of much larger datasets. In domains where
the data points are not that clustered, space-savings are still significant but not as outstanding
as in the previous case.

Second, we analyze the space overhead offered by the rck2tree in comparison with the
original K2-tree. As mentioned above, this overhead depends on the number of levels of
the K2-tree that are augmented with additional range counting information. In these experi-
ments, we show the results of three configurations in which 4, 8 and 16 levels were augmented,
respectively. As Table shows, the space overhead is almost negligible for the rck2tree?
and it ranges between 25% and 40% for rck2tree®. In the next section we will show the
influence of this extra space in the performance of the data structure to solve range counting
queries.

It is interesting to notice that the space overhead is lower in the domains in which the
K2-performs the best. The K?-tree performs better in sparse domains where data points are
clustered [35], for example, in the Web graph. In the largest WEB dataset, uk-2007-5, the
K?-tree requires about 1.5 bits per point, and we can augment the whole tree with range
counting information using less than 0.5 extra bits per point (this is an overhead of less than
30%). Sparse and clustered matrices result in less values being stored in the augmented data
structure (as in the original K?-tree, we do not need to store information for submatrices full
of zeros). In Figure we show the space overhead in two of our dataset collections, GIS
and WEB.
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Figure 10.5: Space overhead in GIS and WEB datasets.

Note also that, unlike the K?2-tree, the space overhead is not drastically increased in
sparse, but not clustered, datasets (for example, Geo-sparse). Isolated points are represented
in the original K2-tree with K2 bits per level, which results in a strong degradation of such
representation. The K2-tree uses more than 40 bits per point in the Geo-sparse dataset,
which is a lot more than the about 2 bits per point in the, also sparse, WEB datasets.
However, the space overhead of the rck2tree'® (with respect to the K2-tree) is about 40% in
Geo-sparse and 30% in uk-2007-5 (i.e., a difference of 10 percentage points). Isolated points
are represented with approximately two bits per level in the range counting data structure,
as it represents the difference between the expected number of elements in the submatrix,
one, and the actual number, which is also oneE]. If we consider the other configurations that
store range counting values for less levels of the K2-tree the difference is even smaller. This
is expected because there are less isolated points in higher levels of the K?-tree.

10.3.3 Query Processing

In this section we analyze the efficiency of range counting queries, comparing our augmented
K?2-tree with the original data structure and with the wtgrid. For each dataset, we build
multiple sets of queries with different query selectivities (i.e., size of spatial ranges). All the
query sets were generated for fixed query selectivity. A query selectivity of X % means that
each query in the set covers X% of the cells in the dataset. Each query set contains 1,000
queries where the spatial window is placed at a random position within the matrix.

As in the space comparison, we show the results of three different configurations of our
augmented data structure, in which 4, 8 and 16 levels were augmented with range counting
data. Fig. shows the time required to perform range counting queries in some of our real
datasets, for different values of query selectivity. For each domain (GIS, SN and WEB), we
only show the results of the two most different datasets, as the other datasets do not change
the conclusions of this comparison.

SRecall that these data are represented using DACs, which require at least two bits, one two encode the
difference and one two indicate that such value is encoded using just one block.
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Figure 10.6: Query times of range counting queries in real datasets.

The augmented data structure consistently outperforms the original K2-tree for all do-
mains and query selectivities. The only exception is the rck2tree* in the two SN datasets and
Geo-dense for very selective queries (i.e., for the smallest sets of queries). The influence of
the query selectivity in the results is evident. The larger the query, the higher the impact of
the additional range counting data in the performance of the data structure. Larger queries
are expected to stop the recursion of the range counting algorithm in higher levels of the
K2-tree because those queries are more likely to contain the whole area covered by nodes of
the K?-tree. Recall that a node of the K>-tree at level i represents u?/(K?)* cells. In our
experiments we use a configuration of the K?-tree in which the first six levels use a value
of K1 = 4 (thus, partitioning the space in K? = 16 regions) and the remaining levels use
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a value of Ky = 2. Therefore, for the rck2tree* to improve the performance of the range
counting queries, those queries must contain at least u?/(4%)* = u? /216 cells. In the rck2tree®
and rck2tree!®, which contain range counting data for more levels of the K2-tree, this value
is much lower and thus, even small queries are likely to stop the recursion of the query al-
gorithm. For larger queries, the improvement in the performance reaches several orders of
magnitude in some datasets (note the logarithmic scale).

In most datasets, the performance of rck2tree® and rck2tree!® is very similar, therefore
the former is preferable as it requires less extra space. Hence, in general, we can recommend
the use of the rck2tree® configuration to speed up range counting queries. If the queries are
not very selective, and there are strong memory consumption constraints, the rck2tree* can
be an alternative as it requires almost the same space of the original K>2-tree.

The wtgrid is consistently not only faster than the data structures based on the K2-tree,
but also less sensitive to the size of the query. However, as we showed above, it also requires
more space. To reinforce these conclusions, Figure shows the space-time trade-offs of
the different configurations. We selected two representative datasets that were not used in
the previous experiment, enwiki-2013 (SN) and uk-2002 (WEB), and two query selectivities
for each of them, 0.001% and 0.1%. Each point in the lines named rck2tree represents a
different configuration with 4, 8 and 16 levels augmented with range counting information,
respectively from left to right.
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Figure 10.7: Space-time trade-offs of the compared range counting variants.

These graphs show that the rck2tree® configuration offers the most interesting trade-off
as it requires just a bit more space than the original K?-tree and it speeds up range counting
queries significantly. This effect is more evident for larger queries, but even for very selective
queries the improvement is significant. The wtgrid competes in a completely different area
of the trade-off, being the fastest data structure, but also the one that requires more space.

10.4 Discussion

We have introduced a technique to solve aggregated 2D range queries on grids, which requires
little space when the data points in the grid are clustered. We use a K>2-tree to represent the
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topology of the data (i.e., the positions of the data points) and augment each node of the
tree with additional aggregated information that depends on the operation to be supported.
The aggregated information in each node is differentially encoded with respect to its parent
in order to reduce the space overhead.

Our experimental evaluation shows that with a little space overhead (less than a 30%) on
top of the K2-tree, this data structure performs queries several orders of magnitude faster
than the original K?2-tree, specially when the query ranges are large. These results are
consistent in the different databases tested, which included domains with different levels of
clustering in the data points. For example, in Web graphs the data points are very clustered,
which is not the case in GIS applications. We also compared our proposal with a wavelet
tree-based solution and the experiments show that, although the wavelet tree is faster, our
proposal requires less space (up to 10 times less space when the points are clustered). Thus,
we provide a new point in the space-time trade-off which allows for the processing of much
larger datasets.

Although we have presented the two types of queries separately, this does not mean that
an independent data structure would be required for each type of aggregated query. The
topology of the data can be represented by a unique K2-tree and each type of aggregated
query just adds additional aggregated and differentially encoded information. However, some
specific optimizations on the K2-tree, such as the one presented for ranked range queries,
may not be possible for all types of queries.

The technique can be generalized to represent grids in higher dimensions, by replacing
our underlying K2-tree with its generalization to d dimensions, the K%tree [55] (not to be
confused with kd-trees [24]). The algorithms stay identical, but an empirical evaluation is
left for future work. In the worst case, a grid of ¢ points on [n]? will require O(t log ”Td) bits,
which is of the same order of the data, and much less space will be used on clustered data.
Instead, an extension of the wavelet tree will require O(n log® n) bits, which quickly becomes
impractical. Indeed, any structure able to report the points in a range in polylogarithmic
time requires 2(n(logn/ loglogn)?~1) words of space [43], and with polylogarithmic space one
needs time at least Q(log n(logn/loglogn)l¥2=2) [7]. As with top-k queries one can report
all the points in a range, there is no hope to obtain good worst-case time and space bounds
in high dimensions, and thus heuristics like K?treaps are the only practical approaches (kd-
trees do offer linear space, but their time guarantee is rather loose, O(n'~'/4) for n points on

[]).
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Chapter 11

Web Access Logs

This chapter describes how to extend the ideas from top-k query processing (see Part
to other scenarios that are of interest for IR. In this case, we explore the idea of using a
compressed text representation (SSA) to represent the server logs that are formed when any
user visits a website. In order to support IR operations, while being space-efficient, we design
an index that makes use different compact data structures and document retrieval algorithms,
and we adapt them to this particular scenario. The result is a space-efficient data structure
that is able to process a set of operations that are of interest to web usage mining processes.

This work appears in the proceedings of 21st String Processing and Information Retrieval
conference (SPIRE), held in Ouro Preto, Brazil, and was developed in collaboration with
Francisco Claude from Universidad Diego Portales, Chile.

11.1 Motivation

Web Usage Mining (WUM) [90] is the process of extracting useful= information from web
server access logs, which allows web site administrators, designers and engineers to under-
stand the users’ interaction with their web site. This process is used to improve the layout
of the web site to better suit their users, or to analyze the performance of their systems in
order to apply smart prefetching techniques for faster response, among other applications.

One particular WUM task is to predict the path of web pages that the user is going to
traverse within a website. Accurately predicting the web user access behavior can minimize
the user perception of latency, which is an important measure of the website quality of service
[153] [61), 60]. This is achieved by fetching the web page before the user requests it. Another
application is as a recommendation technique [I54] [146]: the prediction can be displayed to
the user, giving insight as to what the user might be looking for, therefore improving the
user’s experience. Other relevant mining operations include determining how frequently the
path has been followed, which users have followed the path, and so on.

The prediction problem can be formalized as follows. Access logs obtained from web
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servers are used to extract the user’s website visit path as an ordered sequence of web pages
Sy = (v1, V9,03, ...,0y,) (several sessions of the same user v might be concatenated into .S,,).
Therefore the system records the set S = {51, 5s,...,5,} of the accesses of each user. Given
a new visit sequence (or path) P that is currently being performed by a user, the predicting
task has to predict which page will be visited next. One néive approach to this problem is to
first return the & web pages that have been visited most commonly by users after following
the same path P, that is, we consider each time P appears as a substring of some S,, and
pick the most common symbols following those occurrences of P. After this process is done,
more complex recommendation or machine learning algorithms [110] can be employed to
accurately predict the next web page that is going to be visited. One particular challenge
is that this operation needs to be done in an on-line manner, that is, we have to efficiently
update our results as new requests are appended at the end of P. The system will eventually
add those requests S’ to the corresponding S, sequences in S, via periodic updates. At query
time, the set S can be taken as static. The other mining operations are defined analogously.

Another interesting operation coming from WUM and general data mining is to retrieve
the top-k most frequent sequences [83, [130] of a certain length. These are commonly used in
retailing, add-on sales, customer satisfaction and in many other fields. On the other hand,
least frequent sequences can be used to identify outliers or sets of suspicious activities on a
site.

We present a space-efficient data structure for representing web access logs, based on the
Burrows-Wheeler Transform (BWT) [38] (see Section 2.14.1)). Our index is able to efficiently
process various queries of interest, while representing the data in compressed form. In this
work we focus on the following key operations; others are described in the Conclusions.

e ACCESS(u,i) : Access the i-th web page visited by user u.

e USERPATH(u) : Return the complete path done by user w.

e COUNT(P) : Count the number of times that path P has been done by any user.

e MOST_COMMON(P, k) : Return the £ most common web pages visited after a path P.
e LIST USERS(P, k) : Return k distinct users that have followed path P.

e MOST FREQUENT(k,q) : Return the k£ most frequent paths of length ¢ done by the
users.

Our experimental results show that our index is able to represent the web access logs using
0.85-1.03 the size of their plain representations, thereby replacing them by a representation
that uses about the same space but efficiently answers various queries, within microseconds
in most cases. Our index can be easily deployed in other types of applications that handle
ordered sequences, such as GPS trajectories, stock price series, customer buying history, and
SO on.

To our knowledge, this is the first compressed representation of logs that answers queries
specific of WUM applications.
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11.2 Owur Index

In this section, we describe the main components of our index and how they are employed
to solve the queries previously defined.

11.2.1 Construction

We start by concatenating all ordered web access sequences S = {S,5s,...,5,} from all
users into a sequence T(S) of size > | |S;| = N over an alphabet of size o, where o is
the amount of distinct web pages visited by any user in the log file. Instead of building the
BWT to index T(S), we construct the index over 7(S)%, that is, 7(S) has each S; reversed.
This simple trick allows us to maintain a range of elements that match the sequence of
requests so far, while performing backward search (see Algorithm [4]) , and thus allowing us
to add new arriving requests by just performing one more step. We employ the SSA index to
represent and replace 7 (S)®, however, having the SSA of T(S)# is not enough to reconstruct
the information from the log. We also need to store the user identifier associated with each
position in the sequence. To do so without spending N logn bits to associate a user id to
each position in the BWT of T(S)%, we construct a bitmap B of length N and mark with a
1 the positions where each S; ends in T(S)f. We later index B to solve RANK and SELECT
queries in constant time using compressed space [136]. This is enough to obtain the user
associated to a location in the BWT of the sequence, by locating its original position p in
the sequence and then performing RANK; (B, p).

For listing the distinct users (strings) where path P occurs, we implement Muthukrishnan’s
document listing algorithm (see Section and Algorithm [f)). We construct a temporary
array Uli] = RANK; (B,i), for 1 < i < N, that stores the user ids and then permute the
values so that the ids are aligned to the BWT (T (S)f) sequence. Another integer array C
is constructed by setting Cli] = SELECTyy (U, RANKy (U, 1) — 1) for all 0 < i < N, and
then build a RMQ data structure on C. We keep this structure and discard C' and U.

The RMQ data structure requires 2N + o(N) bits. The SSA index requires N Hy(7(S)) +
o(N log o) bits. The representation of bitmap B takes Ho(B) 4 o(N) < N + o(N) bits. Note
that we do not store the users, nor the frequencies in an explicit way.

We show in Figure the main components of the index built over a set of example
sequences S; = dacbaaa, Sy = adcba, S3 = adcbaaa and Sy = aaa. The dollar ($) symbol is
used to represent the end of each sequence and the zero symbol is used to mark the end of the
concatenation of the sequences T (S)®.At the bottom we show the topology of the Cartesian
tree built over the C' array representing the RMQ data structure. Recall that arrays U and
C are not represented and are only shown for guidance.

'To avoid corner cases, we define SELECTy ;) (U,0) = —1
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Figure 11.1: Layout of our index organization for representing Web Access Logs over an
example set of sequences.

11.2.2 Queries

ACCESS(u, ). To obtain the i-th web page visited by user v within the sequence, we need to
locate the position in the original sequence T (S)® where the user’s session begins. We
can do this by computing p = select;(B,u+ 1) — 1 — i and then applying EXTRACT as
T(S)E[p, p] on the SSA index, in O(s,logo) time.

USERPATH(u). To obtain the path done by user u, we compute p; = SELECT; (B,u) and
p2 = SELECT; (B,u + 1) — 1 and then EXTRACT on T (S)%[py, po] using the SSA index.
This takes O((¢ + s,) log o) time, where ¢ = py — p; is the length of the extracted path.

COUNT(P). Given a path P of length m we can count its occurrences, by just performing
COUNT (P) on the SSA index in O(mlogo) time.

MOST _COMMON(P, k). We describe this operation incrementally. Assume we have already
processed the sequence of requests P = ry,79,...,r,_1. Our invariant is that we know
the interval [sp,ep| corresponding to path P, and this is sufficient to answer query
MOST _COMMONP, k. Now a new request r,, arrives at the end of P. Then we proceed
as follows:

1. Update the range [sp,ep] in BWT(T(S)) using rp,, in O(log o) time [67].
2. Retrieve the k most frequent symbols in BWT[sp, ep], which are precisely those
preceding the occurrences of P in T(S)%, or following P in T(S).

The second step is done with the heuristic proposed by Culpepper et al. [53] to retrieve
the £ most frequent symbols in a range of a sequence represented with a wavelet tree.
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It is a greedy algorithm that starts at the wavelet tree root and maps the range (in
constant time, using RANK on the bitmap of the wavelet tree node) to its children, until
reaching the leaves. The traversal is prioritized by visiting the longest ranges first, and
reporting the symbols corresponding to the first k leaves found in the process. The
worst-case performance of this algorithm is bounded by the number of different symbols
present in the string range. This is smaller than both ¢ and the size of the range. By
using more sophisticated data structures (that nevertheless do not add much space)
[88, 125], a worst case of O(k + polylogn) time can be guaranteed. Note that, if we
want to list all the request that have followed P, we can use an optimal algorithm based
on depth-first traversal of the wavelet tree [74]. We show the details of this procedure
in Algorithm [I9

LIST _USERS(P). To list k (or all) distinct users that have followed path P we first locate the
starting and ending points [sp, ep] for the given path, using the SSA index in O(m log o)
time (we can also proceed incrementally as in operation MOST COMMON. Then we
apply the optimal document listing algorihtm [IT5], 140]. Each value Clp] < sp, for
sp < p < ep, signals a distinct value of U[p| in Ul[sp, ep]. Recall that we do not have
C or U anymore, but the procedure for extracting the list of users can be emulated
with the RMQ data structure over array C' and the bitmap B. Listing k distinct users
for path P takes O((k - s, + p)logo) time, since for each user u we need to take a
position in the BWT and map it to the corresponding position in the original 7(S)%,
in O(s,logo) time. Figure shows an example of listing users. The framed region
represents the range sp, ep. Red nodes in the RMQ tree represent the position of the
retrieved users, while the blue node represents the last visited node before returning.

MOST _FREQUENT(k,n). We want to retrieve the k most frequent paths of a certain length
q done by the users in the system. We start by pushing into a priority queue all ranges
obtained by performing a backward-search of paths of length 1 for each possible symbol
(o at most). Now, we extract the biggest range from the priority queue as well as the
path that created that range. We execute the same procedure again, creating new
paths by appending to the extracted path one further symbol (trying the o possible
ones in the worst case) and we push the ranges obtained by performing the backward
search on these new paths into the priority queue. When we extract a path of length ¢,
we report it and remove it from the priority queue. The procedure ends when k paths
are reported or when the priority queue is empty. In the worst case, this operation can
take O(0?).

This method may perform poorly when the alphabet ¢ is large. An optimization is to
avoid trying out all the o characters to extend the current path, but just those symbols
that do appear in the current range. Those are found by traversing the wavelet tree
from the root towards all the leaves that contain some symbol in the current range [74].
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Data Structure | Msnbc Kosarak Spanish

SSA 3,175,504 | 12,500,964 | 75,667,016
RMQ 1,770,690 | 2,807,570 39,538,238
Users Bitmap 608,044 777,804 9,413,732
Total 5,554,246 | 16,086,346 | 124,618,994
Plain 5,782,495 | 18,884,286 | 120,613,202
Ratio 0,96 0,85 1,03

Table 11.1: Space usage, in bytes, of the data structures used in our index. Plain corresponds
to the sum of the space usage of plain representations of the sequence and users. Ratio
corresponds to the total index size divided by the plain representation size.

11.3 Experiments and Results

11.3.1 Setup and Implementations

We used dedicated server with 16 processors Intel Xeon E5-2609 at 2.4GHz, with 256 GB of
RAM and 10 MB of cache. The operating system is Linux with kernel 3.11.0-15 64 bits. We
used g++ compiler version 4.8.1 with full optimizations (-O3) flags.

We implemented the SSA index using the public available wavelet tree implementation
obtained from LIBCDS and developed the heuristic proposed by Culpepper et al. [53] on
top of that implementation. The wavelet tree needed for the SSA index uses a RRR (see
Section compressed bitmap representation. The bitmap B needed to retrieve the users
is used in plain form (RG). We implemented the RMQ data structure based on compact tree
representations [14], which in practice requires 2.38n bits. Our implementation is available
at https://gitlab.com/fclaude/wum-index/.

11.3.2 Experimental Data

We used web access sequences from the public available Msnbc, Kosarak, and Spanish
datasets. The Msnbc dataset comes from Internet Information Services log files of msnbc.com
for a complete day of September, 28 of 1999. It contains web access sequences from 989, 818
users with an average of 5.7 web page categories visits per sequence, the alphabet size of
this dataset is ¢ = 17. The Kosarak dataset contains the click-stream data obtained from
a Hungarian on-line news portal. It contains sequences of 990,000 users with an average
of 8.1 web page visits per sequence and an alphabet size ¢ = 41,270. Finally, the Spanish
dataset contains the visitors’ click-stream obtained from a Spanish on-line news portal dur-
ing September 2012. This dataset consists of 9,606,228 sequences of news-categories that
were visited, with an average of 12.3 categories visited per sequence and an alphabet size of
o =42.
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11.3.3 Space Usage

Table shows the space usage of each data structure for each dataset. Row “Plain” shows
the space required to represent the original sequence 7 (S)® using an array of N logo bits
plus an array to represent the users using nlog N bits. The table shows that our index is
able to compress the sequence by up to 15%, on the Kosarak dataset, while requiring only
3% extra space at most, on the Spanish dataset. Within this space, we are able to support
the aforementioned operations, while at the same time can reconstruct the original sequence
and the users information.

We evaluated alternatives to the SSA, such as the Compressed Suffix Array (CSA) [139] and
the Compressed Suffiz Tree (CST) [142] (recall Section[2.14.1]), using the ones provided by the
SDSL-LITE. Table [I1.2] compares their space usage to our SSA at representing the sequence.
The SSA is a better choice in this case, using up to 33% less space than the others. The CST
could be used to compute some of the operations, since it is naturally a faster alternative.
In fact, we evaluated this alternative for counting the occurrences of a sequence, and it is in
practice four to twenty times faster than the SSA. We discarded it since the space requirement
makes it unpractical for massive datasets. In fact, the CST needs to be augmented in order
to support all the operations presented in this work, which would increase its memory usage.

11.3.4 Time Performance

To evaluate the main operations using our proposed data structure, we generate query paths
by choosing uniformly at random a position in the original sequences, and then extracting a
path of the desired length.

Figure (left) shows the time to access positions chosen uniformly at random from
users whose traversal log has length 1 to 100. The time does not depend on the length, but
directly on s,logo. Fig. (right) shows the time per symbol extracted, when we access
the whole sequence associated with a user. We can see that for users with short interactions
the SSA sampling has a greater effect, and this is amortized when accessing longer sequences,
that is, the term O(s, log o) is spread among more extracted symbols and the time converges
to logo.

We then measured the time to count the number of times a certain path appears in the
access sequence. Figure m (left) shows the time per query. As expected, it grows linearly
with the length of the path being counted, and the log o term determines the slope of the

Data Structure | Msnbc | Kosarak | Spanish
SSA 1,08 0,77 0,85
CsSA 1,61 0,87 1,13
CST 3,82 1,43 2,96

Table 11.2: Comparison of the space consumption of the SSA, CSA, and CST for representing
sequence T (S)f. We show the ratio of each index space over the plain representation of the
sequence without the user’s information by using N log o bits.
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Figure 11.2: On the left, average microseconds to perform ACCESS (u, 7); on the right, average
microseconds per extracted symbol for the operation USER_ PATH (u).
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Figure 11.3: On the left, average microseconds to perform COUNT (P) on the right, average
microseconds for the MOST FREQUENT operation with varying k£ using patterns of fixed
length p = 5.

line. On Figure [11.3] (right) we show the results for the MOST__COMMON operation. The
r-axis and y-axis are in log scale. For datasets containing small alphabets such as Msnbc
(0 = 17) and Spanish (¢ = 42) this operation is performed in under 30 microseconds for all
possible values of k (note it is impossible to obtain more than ¢ distinct symbols), and shows
a logarithmic behavior. We also note that the slope of the logarithm depends on the value of
o, as shown in the Kosarak dataset. The operation, however, is still reasonably fast, taking
less than 1 millisecond for k£ = 1024.

Figure (left) shows the time for retrieving the set of users that followed a given
access pattern in the system. For shorter sequences, the index has to retrieve a bigger set
of users, as these sequences are more likely to appear. As the sequences grow in length, the
time decreases, since the resulting set is also smaller. The behaviour for Kosarak, which
after a certain point starts increasing in time per query, can be explained by the fact that
determining the range [sp, ep] grows linearly with the length of the pattern, and at some
point it dominates the query time. This is also expected, at a later point, for Msnbc and
Spanish.

Finally, Figure [11.4] (right) shows the query time for operation
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Figure 11.4: On the left, average microseconds to list distinct users that traversed paths
with varying lengths. On the right, the time required to perform top-10 most common path
operation for varying pattern lengths.

MOST _FREQUENT (k, ¢). Our first implementation tried following all symbols at every step
of the algorithm. This worked quite well for small alphabets but had a very bad performance
on the Kosarak dataset. This plot shows the implementation traversing the wavelet tree at
each step to only follow symbols that do appear in the range. This gives a slightly worse
performance for small alphabets, but a considerable speedup (1-2 orders of magnitude) for
larger ones.

11.4 Discussion

We introduced a new data structure for handling web access sequences in compressed form
that fully replaces the original dataset and also supports useful operations for typical WUM
processes. Our experiments show that our index uses about the same size of the plain
representation of the data, and within this space supports various relevant operations within
tens of microseconds. This is competitive; consider that in most common scenarios the
systems have to reply over a network, which have considerable latency and transfer time.
Ours is the first compressed representation tailored for this scenario.

We have not yet fully explored other possible operations of interest in log mining that
can be supported with our arrangements. For example, we can count the number of users
that followed some path in constant time using 2n+o(n) bits using document counting [140],
compute the k users that have followed a path most frequently using top-k£ document retrieval
[88], and others.

Our index can be easily adapted to custom scenarios by adding satellite information, such
as duration of the visit, actions (buy, login/logout, comment, etc.), browser information,
location, and others, to each event in the log and include the information by mapping it
to the BWT transform for later processing. This enables our index to be applied in other
scenarios involving ordered sequences, such as GPS trajectories, stock price series, customer
buying history, and so on.
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Chapter 12

PcapWT: Indexing Network Packet
Traces

In this chapter we present a solution that is inspired by the dual sorted inverted index data
structure introduced in Section [3.3] We explore the idea of indexing large network packet
traces using wavelet trees, and we show that our index is competitive in terms of space and
time to the state of the art tools that network administrators use regularly.

The results of this work appear in the IEEE Journal on Computer Networks, 2015 and
was done in collaboration with Young-Hwan Kim from INRIA, France, Diego Dujovne from
Universidad Diego Portales, Chile, Thierry Turletti and Walid Dabbous from INRIA, France.

12.1 Motivation

The volume of network packet traces becomes larger and larger, and much more complex
than before. The reason is that the speed and size of networks have increasingly expanded.
Thus, much more H/W resources (e.g., massive storage space, stronger computing power, and
so on) are necessary to deal with big traces including numerous packets and complex traffic
patterns. Furthermore, efficient tools are required to analyze the data effectively. However,
traditional tools such as tepdump [94], tepflow [62], or tepstat [85] are inefficient at handling
very large packet traces.

In order to enhance packet trace analysis, a number of contributions have been published,
such as fast packet filtering [58], packet trace compression [86, [133], and network statistics
information extraction [63]. Moreover, a few practical tools have also been recently pro-
posed, such as PCAP-Index |4], Compressed Pcap Packet Indexing Program (CPPIP) [I],
and pcapIndex |71, [5]. Overall, they use extra data sets for fast search, which are extracted
from the original trace.

However, these tools result in poor performance, as we show in Section [12.4.2l PCAP-
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Index running on top of a database requires too much space for handling the index data,
and also its packet extraction procedure is considerably slow. CPPIP can save storage space
by compressing original traces, but it can only support a few simple queries. PcapIndex is
much faster than these tools, and is able to retrieve and extract matched packets from large
size trace files (up to 4.2 GB). However, the index data size built by pcapIndez is abnormally
increased when the number of packets is in the millions. Thus, there is a trade-off between
the index data size and the packet extraction performance when processing a large packet
trace.

12.2 Related Work

Today most network trace analysis tools, such as tepdump [94] and wireshark [49)], run on
a single thread, and their complexity increases linearly with the volume of original trace
files. Possible solutions to improve their performance include using a higher processor clock
speed, replacing the SSD by a Hard Disk Drive (HDD), or splitting the large packet trace
into multiple pieces. For that reason, several tools have been recently published to enhance
performance of packet extraction on large traces, such as CPPIP [I]|, PCAP-INDEX [4], and
pcapIndex [7]1].

CPPIP uses bgzip [103] (i.e., a block compression/decompression software) to reduce the
volume of original packet trace files. This tool extracts an index data from the compressed
trace file, and filters out matched packets directly from the compressed file. Although this
tool is able to reduce the storage space for the original trace files, it can only support sim-
ple queries, such as packet number and received timestamp. In addition, CPPIP needs a
significant amount of space (about 7% of the original trace file) to store the index data.

PCAP-INDEX uses a database (SQLite Ver. 3) to build the index data and to perform
packet lookup. Thus, this tool is more flexible than other command-line based tools to
express queries. However, as discussed in Section [12.4.2] the performance obtained is poor
in terms of time needed to build index data, packet lookup time and index data size.

PCAPIINDEX, having a similar name as PCAP-INDEX, is currently part of a commercial
network monitoring solution [5]. In order to reduce both index data size and packet lookup
time, this tool adopts an encoding method using a bitmap compression technique based on
a pre-defined codebook, named COMPressed Adaptive index [72]. Thus, it obtains better
performance than CPPIP and PCAP-INDEX, in terms of index data size and packet extraction
time. In comparison with tcpdump, this tool can reduce packet extraction time up to 1,100
times. Moreover, its index data size only takes about 7 MB per GB of the original trace
file. However, as discussed in Section [12.4.2] PCAP-INDEX is not as fast compared to what is
mentioned in the work of Fusco et al. [71], when it extracts a large amount of packets from a
big trace file. In particular, the index data size rapidly increases when the volume of original
trace file is greater than 4.2 GB.
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12.3 The Design of pcapWT

In this section, we describe how to build the index data, and explain the process for lookup
querying and for extracting packets. The overall processes consist of six steps, as shown in

Figures through

12.3.1 Building Index Data

The first step is to extract index data from a packet trace file, such as packet offset, Ethernet
source (Src) / destination (Dst) addresses, IPv4 Src/Dst addresses, Src/Dst port numbers,
and Layer 4 (L4) protocol type. Here, the packet offset stands for the distance in bytes
between two consecutive packets, which corresponds to the packet size in bytes. The reason
why the offset is replaced by the packet size is that sequentially accumulated values consume
a lot of memory. In addition, such large numbers are inefficient for the WT compression,
since they increase the required number of bits to represent them. As shown in Figure [12.1}
all index data are stored into each array, and they include the same number of elements with
the number of total packets in the source trace file.

However, as mentioned in Section the size of the wavelet tree compressed data is
highly affected by the number of bits per element and the number of elements. For in-
stance, when an element set (e.g., packet sizes referring packet offsets) of index data is
S = {100,200, 200, 300...,n}, the required number of bits per element is ([logo]), where
o is the maximum value among these input elements. Thus, for enhancing the compres-
sion performance, the elements have to be converted into sequential positive integer numbers
(X ={1,2,...,0}), and long arrays must be divided into multiple pieces (S = {51, Sa, ..., SN }).
For example, as shown in Figure [12.2] IPv4 addresses are mapped into positive integer num-
bers in consecutive order. In addition, to increase efficiency, we use a balanced tree (B-tree)
to map the addresses with a positive integer. Consequently, a trace file accompanies a number
of mapping tables, and the tables are provided as part of the index data.

In the last step for building index data, as shown in Figure [12.3] we create a wavelet tree
on chunks of data every one million elements, and each chunk is stored in an independent
file. This value has been empirically set to minimize the compressed index data size.

Meanwhile, the packet offset is not compressed by wavelet tree, because the large value of
o causes significant degradation of the compression performance. As an alternative, we use
an efficient array provided by the LIBCDS package which removes redundant bits.

12.3.2 Packet Lookup and Extraction

The query syntax to perform the lookup and extraction is as follows,
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source Eth IPv4 Src Port L4 Proto
Pkt Size trace file Src Addr Dst Addr Num Type
0

Packet offset

3000
300 | 1000 ¢..]
301 | 500 ..

. 4000

302

packet number

303 )

6000

Figure 12.1: Extracting index data from a source packet trace file, such as packet size,
Ethernet Src/Dst address, IPv4 Src/Dst address, Src/Dst port number, and Layer 4 protocol

type.

source IPv4

trace file Src Addr

. mapping IPv4 Addr - * 1

T ) (using B-Tree) P | 1

"—""“’":--::.~_~_~_1 YRR e It
11.1.1.2 2
A 20221 3 -
_________________________ y 10
~~~~~~~~~~~~~~~~~~~~ 4| 10.1.2.1 10 -- "'_—”'--'——-" A 3

Figure 12.2: Mapping between the extracted index data and positive integers in consecutive
order for reducing the index data size and packet lookup time.

Q = Qtype Qoperand
= Q1 and/or Qs

A basic query consists of a query type (Qup.) and a query operand (Qoperand). The query
type defines the kind of index data extracted from the traces, and pcapWT supports pkt_num,
eth_src, eth dst, ipv4_ src, ipv4_dst, port _src, port_dst, and 4 proto. The query operand
is the value that needs to be found on a data set of index data which is indicated by the
query type. For example, the Qe is tpv4_ src and the valid Qoperang is 10.1.1.1. The query
syntax also allows to perform intersection (and) or union (or) of different queries, thus we
can construct more complex queries, such as Q1 and Q)2 and ... or Q.
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Figure 12.3: Building wavelet tree chunks from the mapped index data once every one million
packets. This partitioning can reduce the size of index data.

Recall the basic functions described in Section 2.7, The main idea is that we can get
the number of matched packets (m) containing the query operand by performing RANK of
the wavelet tree. Next, we can figure out indexing numbers of matched packets by iterative
executing of SELECT.

First, the procedure to perform the lookup has to reconstruct the packet offset by accumu-
lating the packet sizes. For example, if the packet sizes are P = {100, 200, 200, 300, ..., p, },
their offsets are O = {0, 100, 300, 500, 800, ..., 0, }. Then, it loads an index data related to the
query. At this step, the index data is located in main memory, however it does not need to
be decompressed to execute a lookup.

The matched packets are marked on a matching table, which is composed of a Boolean
array with the same number of entries as the number of packets included in the source pcap
file. If there are multiple queries concatenated by and/or operators, those steps are repeated
-from loading related index data- through updating the matching table. As shown in Figure
the matching table assigns 1 to its entries for the matched packets which are found by
the first query or queries located after the or operator. On the other hand, if the packets
are found by queries located after the and operator, the table assigns 1 only to entries kept
1, otherwise 0. Once the lookup procedure is completed, two lists are created where offsets
and packet sizes for the final matched packets are marked 1 on the matching table.

The performance of packet extraction highly depends on the capability of storage devices.
In particular, this function performs random read and sequential write from/to files. The
random access performance is significantly degraded in comparison with sequential access, in
terms of read and write throughput. Therefore, we need an efficient way to compensate the
performance degradation. SSDs have a very short access delay (e.g., below 1 millisecond)
compared to HDDs, thus we can reduce the idle time by distributing the 1/O requests into
multiple processes, without significant delay overhead. Consequently, the proposed design
uses multiple threads to handle multiple requests simultaneously, which are performed by
OpenMP provided by gee [3].

As shown in Figure a number of threads are used to balance the overall workload
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for the packet lookup and extraction tasks. For example, if the number of matched packets
is m and the number of threads is w, each thread will retrieve m/w packets to an output file
simultaneously.

packet number
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Figure 12.4: Listing up the final matched packets marked by ‘1’ at the matching point table.
Then the offset position and the size of selected packet are written into the offset list and
the size list, respectively.

12.4 Performance Evaluation

pcapWT has been developed using gcc and LIBCDS on the Linux platform. In particular,
pcapWT and LIBCDS have been compiled with g+-+ (Ver. 4.4.7) with the highest optimization
flag (-03). In addition, we set the -fopenmp option of g++ for enabling OpenMP. The
machine used for benchmarking consists of CentOS 6.4 (kernel Ver. 2.6.32 for 64 bits x86
system), Intel i7-2600k processor including 8 threads (4 cores), 4 GB of main memory, a 60
GB SSD (OCZ Agility 3, low-grade product), and a 500 GB HDD (Toshiba HDD2F22).

12.4.1 Packet Traces Datasets

pcapWT supports pcap [94], one of the most popular packet trace formats. Table shows
four sample pcap files used in the performance evaluation, such as simulated traffic (ST)
and real traffic 1/2/3 (RT-1/2/3). ST was generated by the ns-3 network simulator 2], and
contains 15 million packets in a 4.2 GB pcap file. RT-1 was generated by capturing packets
in our local network, and also contains 15 million packets in a 3.6 GB pcap file. ST consists
of 8 endpoints at the transport layer, whereas RT-1 has 2416 endpoints. Meanwhile, those
two samples are smaller than 4.2 GB because pcapIndex cannot support larger pcap files
than the volume.
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Figure 12.5: Retrieving the packets using multi-threaded file I/O. Multiple threads (m) evenly
divide the number of the final matched packets (n), and each thread (11,75, ...,7,,) copies
the assigned packets from the source to output pcap file, simultaneously.

RT-2 and RT-3 are used to evaluate larger source trace files than 4.2 GB. Those two
samples are generated by adding virtual packets to RT-1 in order to compare the results with
RT-1 directly. Thus, RT-2 contains 115 million packets in a 13.4 GB pcap file, and the latter
contains 200 million packets in a 21.6 GB pcap file.

As mentioned above, the packet extraction performance depends on the random read and
write capabilities. Thus, we have manipulated those two samples in order to contain a larger
amount of packets than ST and RT-1, instead of reducing their average packet sizes.

ST  RT-1 RT-2

RT-3

Number of packets [million|
File size |GB]

User data size |GB]
Average packet size [Byte|
Number of end-points

15 15 115
4.2 3.6 134
3.9 3.4 11.5

261.7 2241 100.1
8 2416 2417

200
21.6
18.4
92.2

2417

Table 12.1: Description of four sample pcap files: simulated traffic (ST) and real traffic

1/2/3/ (RT-1/2/3).
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12.4.2 Baselines

We analyze the performances of other tools based on packet indexing, such as Compressed
Pcap Packet Indexing Program (CPPIP) [I], PCAP-INDEX [4], and pcapIndex [5].

In order to build the index data from RT-1, pcapIndex and CPPIP need 27 MB (0.8%
[) and 289 MB (8.0%) of storage, respectively. However, PCAP-INDEX needs around 2.6
GB (72%), even though PCAP-INDEX deals with a few simple fields (e.g., addresses, port
numbers, protocol types, and so on). This is due to the database, which is not configured to
use data compression. Moreover, PCAP-INDEX needs around 265 seconds to complete, whereas
pcapIndex and CPPIP take only around 25 and 40 seconds, respectively. The reason is that
PCAP-INDEX requires a lot of time to inject the index data into the database.

CPPIP and pcapIndex take around 20 and 30 seconds to extract the largest traffic cor-
responding to 48% of the volume and 36% of the total number of the packets of RT-1,
respectively. However, the available operations are not the same ones used as in the prior
case, since this tool supports only simple filtering queries using a range of packet timestamps
and striding (e.g., selecting every n-th packets). Moreover, PCAP-INDEX takes about 80 sec-
onds (packet lookup time from the database about 30 seconds and file writing time about 50
seconds), which is significantly slower compared to the other tools. Even tcpdump takes less
than 32 seconds in the same use case.

CPPIP affords the advantage of being able to extract packets directly from a compressed
trace file. However, some efforts are needed to support more complex filtering queries and to
reduce the index data size as much as that of pcapIndex. PCAP-INDEX is not satisfactory from
many points of views, even though it uses a database. In contrast, pcapIndex is the only
reliable one among those tools, since it provides not only comprehensive query operations,
as well as remarkable performances in terms of index data size and packet extraction time.
Therefore, we select pcapIndex to compare performance with pcapWT in the following.

12.4.3 Space

pcapWT aims to minimize the index data size, for example to compress it below 1% of the
volume of original trace files. As shown in Table pcapWT is successful for all sample
files.

More precisely, as mentioned in Section wavelet trees supports different bitmap rep-
resentation methods (i.e., RG and RRR) and its encoding unit size that can be set by the user.
Figure [12.6] shows that RRR is slightly better at reducing index data size than RG. On the
other hand, according to Figures and [12.8] RG is more efficient than RRR, in terms of
index data building time and the packet lookup time. Especially, as shown in Figure[12.6) RG
using a wide sampling provides mostly complementary performance between those features.
Thus, we decided to use RG(50) as the default configuration.

la percentage of the volume of original trace file.
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In addition, for improving compression efficiency and reducing search time at the same
time, we use Huffman shaped wavelet tree which combines multi-layered wavelet trees and
entropy compression of the bitmap sequences. Moreover, we minimize redundant bits (e.g.,
consecutive 0 bits) that can be generated in between multi-layered wavelet trees, using Huff-
man compression.

In contrast, pcapIndex obtains an abnormally large index data size and causes a segmen-
tation fault when building the index data for trace files larger than 4.2 GB. In the case of
RT-2, the index data size corresponds to 6.86% of the volume of the original trace file, and
around 3.0 GB of main memory is required. Furthermore, this tool fails to build the index
data for RT-3 because of lack of memory. Note that RT-2 and RT-3 have been generated
by adding virtual packets to RT-1, in order to provide a direct comparison with the index
data size and packet extraction performance of RT-1. More precisely, the virtual packets are
equal except for the timestamp field. Thus, the index data from those samples has to be
minimized regardless of the number of packets. Nevertheless, the index data size produced
by pcapIndex exponentially increases with the number of packets.

pcaplndex pcapWT

[%] [%]

ST 0.45 0.30
RT-1 0.78 0.86
RT-2 6.86 0.93
RT-3 Error 0.96

Table 12.2: A comparison of the index data size produced by pcapIndexr and pcapWT with
RG(50). The percentage indicates the ratio between the index data size and the volume of
the original trace file.

12.4.4 Multi-threaded File I/0

As we can observe in Figure [12.9] pcapIndex and pcapWT have almost the same packet ex-
traction performance on both the SSD and the HDD when using a single thread. Meanwhile,
when pcapWT extracts a large portion (88% of the total packets) from ST on the SSD, 32
threads can reduce the time down to 26%, compared to when using a single thread. However,
multi-threading on HDD does not provide any gain. Even worse, the time is increased to
24% when using 32 threads. In this case, multi-threading generates frequent random accesses
which increase delay and degrade performance on HDD.

12.4.5 Packet Extraction

To analyze the performance of packet retrieval, we use various queries, and extract a large
amount of packets. As shown in Table , simple queries (from A through E) extract
packets specified by a pair of the query type and its operand, and complex queries (from
F through J) indicate combining simple queries by using the union operator. For example,
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Figure 12.6: A comparison of the index data size by by bit sequence representations (RG and
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Figure 12.7: A comparison of the building time of index data by bit sequence representations
(RG and RRR) and block size parameters (5, 20, 35, 50).

query A extracts 4,030 packets from RT-1/2/3, corresponding to 0.03%, 0.003%, and 0.002%
in comparison with the total numbers of packets, respectively.
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Figure 12.8: A comparison of the packet lookup time for different sampling sizes. In case of
ST, the number of the retrieval targets is 9.6 million packets (i.e., 63.8% in comparison to
the total number of packets included in this sample.), and the volume of the target packets
corresponds to 1.82 GB (i.e., 43.7% in comparison with the original volume). In case of
RT-1/2/3, the number of target packets are all same at 5.6 million packets and 0.97 GB,
whereas the percentages of the number of the target packets are 37.5%, 3.8%, and 2.8%, and
the percentages of the volumes of them correspond to 23.3%, 7.3%, and 4.5%, respectively.

In experiments using RT-1, pcapIndex and pcapWT are faster than TCPDUMP in retrieving
small amounts of packets, such as queries A, B, C, F, G, and J. On the contrary, the gap of
packet extraction performance becomes smaller between TCPDUMP and those two tools using
the packet indexing scheme. The reason is that the performance depends highly on the
number of packets extracted. Nevertheless, pcapWT (using 32 threads) is faster than TCPDUMP
in experiments performing complex queries.

In experiments using larger samples (i.e., RT-2/3), we evaluate the performance of pcapWT
and compare it with TCPDUMP, since pcapIndex cannot support such large traces. In these
experiments, pcapWT uses a prompt mode which supports iterative operations once the index
data is loaded. Thus, this mode can avoid unnecessary time loading the same index data
repetitively. The results are shown in Figure [12.10)

12.5 Discussion

In network analysis, packet traces have always been important to analyze, since they record
the complete information exchanged through networks. However, as network links, traffic
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Figure 12.9: A performance comparison of packet extraction with various number of threads
for parallel file I/O. In this test, pcapWT (shown as pcap-cds-index extracts two different
size of traffics from ST: one small traffic containing 1.8 million packets (12.2%) corresponding
to 146 MB and one large traffic containing 13.2 million packets (88.0%) corresponding to 3.0
GB. Note, the percentages indicate the ratio of the extracted packets compared to the total

number of packets included in the sample.

Matched packets

Total packet size

Query
% (1) % (2)

P ada)  paotl o T B o P
A 4 0.03 0.00 0.00 0.3 0.01 0.00 0.00
B H21 3.5 0.35 0.26 754  20.94 5.65 3.48
C 1,161 70 077 0.58 298 8.28 2.23 1.38
D 5,631 375 3.75 282 971 26.96 7.27 4.49
E 5,428 36.2 3.62 2.71 1731 48.07 12.97 8.00
F = {A U B} 524 3.5 0.35 0.26 755  20.97 5.66 3.49
G = {F U C'} 1,686 11.2 1.12 0.84 1053 29.24 7.89 4.87
H= {G U D} 7,317 48.8 4.88 3.66 2024 56.21 15.16 9.35
I = {H U E} 12,225 81.5 8.15 6.11 3000 8&3.31 2247 13.86
J = {B N E'} 521 3.5 0.35 0.26 754  20.94 5.65 3.48

Table 12.3: Packet filtering queries and specifications of RT-1/2/3. The percentage values
indicate (1) the ratio of the number of matched packets and (2) the ratio of the size of
matched packets compared to the packet number and the volume of the original trace file,

respectively. Note that all numbers are rounded up.
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Figure 12.10: A performance comparison of packet extraction using RT-2/3.

complexity, and applications throughput have significantly increased, the analysis of huge
amounts of those traces is becoming a challenging task, and traditional analysis tools are not
efficient at dealing with such traces. Even though a few tools have been recently published
for fast packet extraction, their performance is still not satisfactory in terms of index data
size, and packet extraction delay.

In this work, we propose a new tool designed to process efficiently very large network
traces, which allows not only enhancing packet extraction performance on large traces, but
also reducing storage requirements. pcapWT uses a wavelet tree data structure and a multi-
threading scheme for parallel file I/O. Our benchmarks including SSD show that pcapWT is
about 10 to 20% faster than pcapIndex in the worst case scenario and about 200% in the
best cases. Moreover, this tool allows reducing the storage space required to store the index
data by about 10 to 35% compared to pcapIndex.
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Part V

And Finally...
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Chapter 13

Conclusions and Future Work

13.1 Summary of Contributions

In this thesis we have addressed the problem of speeding up queries at the first stage of query
processing in Information Retrieval systems: given a user’s query, retrieve as fast as possible
the top-k most relevant candidate documents using a fast and simple ranking scheme. We
have designed, implemented and evaluated new compact data structures and algorithms,
and showed how to assemble them to create space-efficient indexes for information retrieval
on natural language. We experimentally showed that these new indexes obtain interesting
space/time tradeoffs when compared to the current state-of-the-art.

This section summarizes the main contributions of this thesis:

e We have presented a new representation of inverted indexes, dubbed Inverted Treaps.
Inverted Treaps are able to simultaneously represent the docid and the weight ordering
of a posting list. We use them to design efficient ranked union and intersection algo-
rithms that simultaneously filter out documents by docid and frequency. The treap
also allows us to represent both docids and frequencies in differential form, to improve
the compression of the posting lists.

We have also presented an engineered version of the theoretical index dubbed Dual-
Sorted [122], and compared it against inverted index alternatives, including the inverted
treaps.

Experimental results show that under the tf-idf scoring scheme, inverted treaps use
about the same space as competing alternatives like Block-Max and Dual-Sorted, but
they are significantly faster: from 20 times faster on one-word queries to 3-10 times
faster on ranked unions and 1-2 times faster on ranked intersections. Inverted treaps
are generally the fastest alternative for £ < 100, and on one-word and two-word queries,
which are the most popular ones. In addition, we have shown that treaps can handle
insertions of new documents, with a 50%-100% degradation in space, construction and
query time performance.

e We proposed a more efficient and conceptually simpler implementation of the optimal
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solution introduced by Navarro and Nekrich [119] for the top-k document retrieval prob-
lem. We presented three new indexes: WRMQ is a first naive approach to the optimal
implementation, our second index, K?Treap?, is a remarkable improvement over the
first approach thanks to the use of a new compact data structure, the K2-treap, and by
simplifying components of the optimal solution. Finally, our third index, WIRMQ,
can be regarded as merged version of the first and second alternatives, which provides
similar space/time tradeoffs. Although top-k document retrieval indexes traditionally
consider the collection as general sequences, we show how these indexes can be used
in natural language collections, in which case the index is much more powerful than
inverted indexes at handling phrase queries. We also present an efficient construction
method so that it is possible to handle large IR collections. Our experimental results
showed that these indexes are orders of magnitude faster than the current state-of-the-
art for most types of collections. Remarkably, our indexes are within the same space
requirements as the best alternatives.

e We have extended the main ideas previously developed in this thesis, and make exten-
sive use of compact data structure for tackling other scenarios that are important for
IR.

We presented a generalization of the technique used in the design of the K?-treap data
structure (based on the treap data structure introduced in Part II) to support other
types of two-dimensional aggregated queries. We showed a particular case that solves
the problem of counting the points that lie in a two-dimensional range [z1, 2] X [y1, ya].
Our experimental evaluation showed that using little space overhead (less than a 30%)
on top of the K2-tree, this data structure performs queries several orders of magnitude
faster than the original K2-tree, especially when the query ranges are large.

Based on the work developed for top-k document retrieval on general sequences, we
presented an index for handling web access sequences in compressed form that fully
replaces the original dataset and also supports useful operations for typical web usage
mining. Our experiments showed that our index uses about the same size of the plain
representation of the data, and within this space supports various relevant operations
within tens of microseconds.

Finally, we proposed a new tool to efficiently process very large network traces, which
allows enhancing packet extraction performance on large traces while reducing the stor-
age requirements. This tool is based on the idea of the Dual-Sorted index, introduced
in Part II. Our index, dubbed pcapWT, uses a wavelet tree data structure and a multi-
threading scheme for parallel file I/O. Our experimental evaluation showed that pcapWT
is 10% to 20% faster than existing networking tools in the worst case and about 200%
in the best scenarios. Finally, our index reduces the space required to store the indexed
data by about 10% to 35% when compared to the space required by other typical tools.

13.2 Future Work

In this section we detail some future plans after this thesis. We describe the most interesting
ones for each contribution.
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e A future research line for experimenting with the inverted treap representation of in-
verted indexes is to study the effect of reassigning docids. Some results [59] show that
reassignment can significantly improve both space and processing time. Another line of
research is to introduce a mechanism to efficiently separate lists with higher frequencies
or impacts. We believe that, since an important part of our gain owes to the separation
of lists with frequency fy = 1, this can lead to important gains. It is also interesting
to explore how this idea could impact on schemes like Block-Max and Dual-Sorted.

e An interesting direction to investigate is to evaluate if our efficient top-k document
retrieval indexes for general string collections are able to compete with inverted in-
dexes for weighted Boolean queries, which are considerably harder than phrase queries
for our indexes. In addition, our current implementation supports term frequency as
the relevance score. A possible next step is to support more complex relevance mea-
sures, such as BM25. Finally, A relevant open problem is to reduce the space further
while retaining competitive query times; as shown in our experiments, current existing
approaches that use less space are hundreds of times slower.

e The generalized technique to support aggregated queries presented in Chapter 10| can
be generalized to represent grids in higher dimensions, by replacing our underlying K-
tree with its generalization to d dimensions, the K%tree [55] (not to be confused with
kd-trees [24]). The algorithms remain identical, but an empirical evaluation is left for
future work.

e Our space-efficient web access logs index, can be further extended to support more
complex scenarios by adding satellite information, such as duration of the visit, actions,
browser information, location, and others, to each event in the log. How our index
performs in practice for these extended scenarios remains uncertain.

e Compact data structures is an active field of research, yet, many computer science
research areas have not taken advantage of the new developments coming from this
area. We have shown that wavelet trees (Chapter or top-k document retrieval
indexes (Chapter can be employed to assemble new indexes that offer interesting
space/time tradeoffs in other scenarios of interest for IR. We believe that there are even
more IR-related problems that will benefit from the use of compact data structures.
An example is the representation of the item/user matrix employed in traditional col-
laborative filtering performed in recommender systems. The use of wavelet-trees or
K2-trees arises as natural, space-efficient alternatives to current space-demanding rep-
resentations. Another case is the use of compact top-k£ document retrieval indexes
(Part to efficiently represent large language models while providing fast access and
operations on them. As an example of this line of research, Shareghi et al. [I49] have
recently showed that it is possible to use compressed suffix trees to represent language
models that supports fast operations.
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