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1 Introduction

The rise in the amount of data we aim to handle [45] and the fact that most of today’s fastest-growing
data is highly repetitive, has triggered recent research on exploiting repetitiveness to enable space reduc-
tions of orders of magnitude [21]. Being able to manipulate the text within compressed space, with a
compression related to its repetitiveness has a critical importance in many areas of study such as Bioin-
formatics, Information Retrieval, Data Mining, among others. Typical definitions of repetitiveness either
look at the string’s composition in terms of distinct k-mers or rely on the output of compressors [47, 48].

One effective compression strategy is to build a context-free grammar that generates only the string.
Another strategy is that of replacing repetitions, which point to other locations in the string. The most
powerful and general scheme falling into this category is called Pointer Macro Scheme [46]. Other ef-
fective techniques to compress repetitive strings include the run-length Burrows-Wheeler transform [7]
(RLBWT) and the Compact Directed acyclic Word Graph [6, 16] (CDAWG).

Manipulating the text data in compressed form requires not only compression, but also the ability to
access the text directly in compressed form and of performing searches on the compressed text. A self-
index on a string S is a data structure that offers direct access to any substring of S, and at the same time
supports indexed queries such as counting and locating pattern occurrences in S. Unfortunately, classic
self-indexes that work extremely well on standard data sets fail on repetitive collections in the sense
that their compression rate does not reflect the input’s information content. This phenomenon can be
explained in theory with the fact that entropy compression is not able to take advantage of repetitions
longer than the logarithm of the input’s length [18, 28, 34].

For that reason, recent studies focus on self-indexing based on dictionary compressors such as the
Lempel-Ziv factorization (LZ77) [29], the run-length encoded Burrows-Wheeler Transform (RLBWT)
[7] and context-free grammars (CFGs) [26], just to name the most popular ones. These schemes allow
taking full advantage of long repetitions. As a result, dictionary-compressed self-indexes can be orders
of magnitude more space-efficient than entropy-compressed ones on highly repetitive data sets.

Kempa and Prezza [25] show that the above compressibility measures are dominated by a new lower
bound called string attractor. An attractor Γ is a set of positions in S such that any substring of S has an
occurrence covering a position in Γ. The size γ of the smallest attractor asymptotically lower bounds all
the repetitiveness measures of the techniques described above.



Navarro and Prezza [38] proposed the first index based on string attractors, which is called ”univer-
sal” because it builds on this stronger compressibility measure and thus lower-bounds the space of most
other indexes. It was not implemented, and left open the important challenge that finding the smallest
attractor is NP-complete [25].

This proposal focuses on building a practical universal self-index for highly repetitive texts. It builds on
the work of Navarro and Prezza, whose data structure is a variant of Block Trees [27]. Instead of building
on attractors, however, we will modify the original Block Tree structure so that its size is bounded by
an even stricter measure, δ ≤ γ [11], which can be computed in linear time and enables smaller Block
Trees, as demonstrated in the theoretical work of Kociumaka et al. [27]. The thesis must afford various
challenges towards obtaining a practical implementation of the idea, which will then be compared with
other state-of-the-art indexes. The rest of the document presents in more detail the central concepts to
understand the problem.

2 Related Work

Let T [1..n] be a text and let us define some measures of repetitiveness that we use for the rest of the
document. Lempel and Ziv [29] proposed a method that parses the text T into phrases and we define
the Lempel-Ziv measure of T as the number z of phrases into which T is parsed. Kieffer and Yang
[26] introduced a compression technique based on context-free grammars where we find a grammar that
generates only the text T, then our measure of repetitiveness is the size g of the smallest grammar that
generates only T. Burrows and Wheeler [7] designed a reversible transformation to make strings easier
to compress, they obtain a permutation T bwt of T, and we define r as the number of equal-symbol runs in
T bwt . A Compact Directed Acyclic Word Graph (CDAWG) [6] is obtained by collapsing all the leaves of
a suffix tree and minimizing it as an automaton, then the size e of the CDAWG of T mesured in terms of
nodes plus edges is a repetitiveness measure. Experimental results [31, 28, 2, 12] suggest that in typical
repetitive texts it holds z < r ≈ g� e.

For highly repetitive texts, one hopes to have a compressed index, which replaces the text T with a
compressed version that nonetheless can efficiently extract any substring T [i.. j] without having to fully
decompress it. Indexes that, implicitly contain a replacement of T, are called self-indexes, and those
with O(z) space require up to O(z) time per extracted character [28]. Good extraction times, typically
O(logn), are instead obtained with O(g) [13, 14, 36, 19],O(z log n

z ) [42, 9, 43] or O(e) [1, 2, 4] space.
A lower bound for grammar-based representations [50] shows that Ω((logn)1−ε/ logg) time, for any
constant ε > 0, is needed to access one random position within O(poly(g)) space.

The first research on indexing and searching repetitive collections were made by different authors [30,
44, 31, 32]. Their index, Run-Length FM-Index (RLFM-index) uses O(r) words, and can count the
number of occurrences of a pattern P[1..m] in time O(m logn) and even less. However, they are unable
to locate where those positions are in T unless they add a set of samples that require Θ(n/s) words to
offer O(s logn) time to locate each occurrence, where s is a space/time trade-off parameter. Kreft and
Navarro [28] introduced a self-index based on LZ77 compression, extremely space-efficient on highly
repetitive text collections [12]. It uses O(z) space and finds all the occ occurrences of a pattern in time
O((m2h+(m+occ) logz) log(n/z)), where h≤ z is the maximum number of times a symbol is copied.
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Based on a representation of a context -free grammar [15] with g symbols, size G and height h, all
the occurrences occ of a pattern of length m are found in time O((m2/ε) log logn+(m+ occ)(1/ε +
logg/ log logg)) using a structure built in O(n+G logG) time and O(n logn) bits of space, for any con-
stant ε > 0. Some of the fastest indexes known are based on the Run-Length BWT and on the Compact
Directed Acyclic Word Graph [6, 16].

Various indexes based on combinations of LZ77, CFGs, and Run-Length BWTs have also been pro-
posed [19, 20, 2, 39, 5, 10]. Some of their best results are O(z log n

z + z log logz) space with O(m+
occ(log logn+ logε z)) query time [10], and O(z log n

z ) space with either O(m logm+ occ log logn) [20]
or O(m+ logε z+ occ(log logn+ logε z)) [10] query time where occ is the number of occurrences of a
pattern of length m and for any constant ε > 0. Many of the above indexes do not have a known imple-
mentation, though Claude et al. [15] compare different state-of-the-art indexes on repetitive collections
and a grammar-based self-index.

Kempa and Prezza [25] proposed a direct measure of repetitiveness on the text T instead of the result of
a specific compression method. They unified the existing measures into a more abstract characterization
of the string. An attractor of T is a set Γ of positions in T such that any substring T [i.. j] must have a
copy including an elemento of Γ. The substrings of a repetitive string should be covered with smaller
attractors. The measure is then γ , the smallest size of an attractor Γ of T. In general, it is NP-complete to
find the smallest attractor size for T [25], but in exchange they show that γ = O(min(z,r,g)).

Our last measure of repetitiveness for a text T, δ , is built on top of the concept of string complex-
ity, that is, the number T (k) of distinct substrings of length k. Raskhodnikova et al. [41] defines
δ = max{T (k)/k : k ∈ [1..n]}. It is not hard to see that δ ≤ γ for every text T [11]: Since every substring
of length k in T has no copy including some of its γ attractor elements, there can be only kγ distinct
substrings, that is, T (k) ≤ kγ for all k. Christiansen et al. [11] also show how δ can be computed in
linear time but it needs a suffix tree [51, 33, 49].

Block Trees [3] are in principle built knowing the size z of the text T [1..n]. Built with a parame-
ter τ = O(1), they provide a way to access any T [i] in time O(log(n/z)) with a data structure of size
O(z log(n/z)), which is also the best asymptotic space obtained with grammar compressors [9, 43, 23,
24, 42] but they can be asymptotically faster.

The block tree is of height logτ (n/z). The root has z children, u1, ...,uz, which divide T into blocks
of length n/z, T = Tu1 ...Tuz . Each such node v = u j has τ children, v1, ...,vτ , which divide its block Tv

into equal parts, Tv = Tv1 ...Tvτ
. The nodes vi have, in turn, τ children that subdivide their block, and so

on. After slightly less than logτ (n/z) levels, the blocks are of length logσ n where σ is the size of the
alphabet of T , and can be stored explicitly using logn bits, that is, in constant space.

Some of the nodes v can be removed because their block Tv appears earlier in T . Every consecutive
pair of nodes v1,v2 where the concatenation Tv1Tv2 does not appear earlier is marked. After this, every
unmarked node v has an earlier occurrence, so instead of creating its τ children, we replace v by a left-
ward pointer to the first occurrence of Tv in T . This first occurrence spans in general two consecutive
nodes v1,v2 at the same level of v, and these exist and are marked by construction. We then make v a leaf
pointing to v1,v2, also recording the offset where Tv occurs inside Tv1Tv2 .
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Kempa and Prezza [25] build a similar structure on top of an attractor Γ of T, of minimal size γ ≤ z. Their
structure uses O(γ log(n/γ)) space and extracts any T [i.. j] in time O((1+ ( j− i)/ logσ n) log(n/γ)).
Navarro and Prezza [38] describe the so-called Γ-tree, which is more similar to a block tree and more
suitable for indexing. This Γ-tree takes O(γ log(n/γ)) words of spaces, supports locating the occ occur-
rences of any pattern of length m in O(m logn+occ logε n) time, for any constant ε > 0, and can retrieve
any T [i] in time O(log(n/γ)). So it matches the substring extraction time of Kempa and Prezza [25].

Recently, Kociumaka et al. [27] showed that the original block tree is easily turned to use O(δ logn/δ )
space. The only change needed is to start with δ top-level blocks, it can be seen that there are only O(δ )
marked blocks per level. The tree height is O(log(n/δ )), higher than the block tree. However, they
obtain that log(n/δ ) = O(log(n/z)), and therefore the difference in query times is not asymptotically
relevant. Cáceres [8] developed an implementation of block trees. This structure promises to be faithful
to its theoretical description and slightly larger than grammar-based structures but outperforms them in
time. We will prove that this structure uses O(δ logn/δ ) space to implement a practical self-index on
top of it.

3 Problem Statement

There is a theoretical proposal of a universal compressed self-index [38], a modification of a block tree
structure [27], both of them with theoretically very low usage of space and fast query time, and also an
implementation of block trees [8] which we will prove that uses O(δ logn/δ ) space. So the main aim
of this work is to propose a practical implementation of the universal compressed self-index described
by Navarro and Prezza [38] using the block tree variation made by Kociumaka et al. [27] through the
implementation of [8].

4 Research Questions

Is it practical to implement the universal compressed self-index proposed by Navarro and Prezza [38]
using a block tree in δ -bounded space structure [27]? Is this implementation competitive in time locating
occurrences and extracting substrings compared to the state-of-the-art indexes? How big is the space used
by this index compared to those mentioned above? In which kind of repetitive text is competitive in terms
of time and space?

5 Hypothesis

A universal compressed self-index using a block tree in δ -bounded space structure will be faster in time
locating occurrences, extracting substrings, but will use less space in highly repetitive text collections
and more space in less repetitive text collections than all other state-of-the-art methods.
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6 Main Goal

6.1 General Objectives

The general objective of this thesis is to implement the universal self-index for highly repetitive text
collections described by Navarro and Prezza [38]. We will modify its structure, based on the ideas of
Kociumaka et al. [27], using a block tree variant implemented by Cáceres [8]. The proposed index will
be evaluated with different state-of-the-art indexes as done in previous works [15, 8] focusing on the
location of occurrences, substring extraction, and space used.

6.2 Specific Objectives

– Implement the universal compressed self-index for highly repetitive text collections described by
Navarro and Prezza [38], using the block tree in δ -bounded space described by Kociumaka et al.
[27]. This will based on the block tree implementation made by Cáceres [8].

– Compare the proposed self-index with state-of-the-art indexes in time of location of occurrences
and substring extraction.

– Analyze the space usage of the proposed index in relation to the state-of-the-art indexes.

7 Methodology

7.1 Research

The first step in the research is to do a short review of the state-of-the-art indexes for highly repetitive text
collections, an analysis of complexities, space used, and time of queries. This will additionally require
a deeper analysis of strings attractors, string complexity, and block trees. On top of that, to achieve a
block-tree-based representation of the universal compressed self-index and various of the components
of these kinds of indexes, algorithm engineering will be necessary for the implementation of the most
theoretical parts of the structures. Also, we will study if it is possible to optimize these structures for the
particular case of the Block Tree.

7.2 A universal self-index based on block trees library

It will be useful to implement a library of the universal compressed self-index based on block trees to
perform experiments, do benchmarking, and leave it public so it can be tested by anyone. It will be based
on the block tree construction implemented by Cáceres [8]. The proposed self-index will be developed
in C++ because of the maturity of the API, familiarity with the language, and because the said block tree
implementation is written in this language.

7.3 Experimentation

The experimental evaluation will be carried out using the environment provided by Ferragina and Navarro
[17] as exhibited in similar works [15, 8]. We will compare the proposed implementation with the avail-
able indexes used in the previously mentioned works, which are some of the state-of-the-art indexes.
These studies show six real repetitive collections that we use. Three of these collections contain DNA
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sequences extracted from different sources, a collection formed from all versions of the articles in En-
glish of Albert Einstein taken from Wikipedia. Finally, collections of kernels and coreutils formed by all
versions 5.x of the Coreutils package and all 1.0.x and 1.1.x versions of the Linux Kernel.

The experimentation will evaluate the space-time trade-offs obtained for locating patterns of different
lengths over the indexes on all collections described above. We will show how the location time evolves
with different pattern lengths and the time per extracted symbol of the different indexes and collections
when extracting different consecutive text symbols.

8 Expected results

• A new self-index that speeds up the extraction and search of occurrences of a pattern in highly
repetitive text collections.

• An open source library to facilitate the integration on top of other compressors.

• A significant speed up in performance that outperforms the state-of-the-art indexes in time.

• As suggested by other similar works [8], a slightly larger representation in space is expected for
this index.
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