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Nowadays, the magnitude of the size of the data to be handled has grown widely. In many areas, it is necessary
to work with data sets that are too big to fit in main memory. This situation has led to an increasing interest
in efficiently compressing the data. In many situations, just compressing is not enough. It is also necessary to
represent data in a way that can be queried without needing to decompress it. Among others, a compression
method that permits working in compressed form is grammar compression. By using grammar compression,
exponential compression rates can be achieved. On the other hand, direct access can take logarithmic time. Un-
like other compression methods, grammar compression can achieve larger space reductions in either, repetitive
and non-repetitive data. Recently published papers have shown that grammar compression can be achieved
efficiently through a locally consistent parsing, which refers to a parsing where identical elements are parsed
identically, with the possible exception of their extremes.

In this research, we propose to improve the knowledge and applications of grammar-based compression. We
will study an efficient method of grammar compression constructed through locally consistent parsing. Addi-
tionally, the research will focus on improving queries over repetitive data while representing it by a grammar.
Finally, we will research a grammar-based compression method to improve algorithmic efficiency on abstract
data types.

Additional Key Words and Phrases: Compressed Data; Grammar compression; Repetitive sequences; Locally
Consistent Parsing

1 INTRODUCTION
Over recent years, a large increase in the size of the data with which to work has been observed
[24]. Many areas where the amount of data has grown faster are considered of vital importance for
the modern society: astronomical data, genome collections, versioned document collection, software
repositories, and other sources of data consisting of sequences of larger size than what could have seen
a couple years ago [27]. Due to this accelerate growth, the interest for compressed representation of
data has increased considerably. But just representing data in compressed form is not enough. We need
compressed representations of data that permit working without needing to decompress it anymore
[34]. Representations satisfying these constraints are said to be compact representations [24]. In that
scenario, the problem has two dimensions: compressing efficiently and working over compressed form
[21].
Interestingly, a significant fraction of growing-faster data is often highly repetitive, such as genome

collections or astronomical data. To compress efficiently, we usually resort to statistical compression.
However, statistical compression is not able to capture repetitiveness as a compression factor [17]. To
achieve space reductions on repetitive data, other kinds of compressors are often used, such as Lempel-
Ziv [18] or the run-length-compressed Burrows-Wheeler [23].
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A question that still has no answer is how to lower bound compressibility on repetitive sequences.
For statistical compression the answer is clear: the tightest lower bound is the statistical entropy [33].
Unfortunately, it has not been possible to find similar measures capturing repetitiveness. Instead, repet-
itiveness is measured in ad-hoc terms, as a result of how much each compressor can capture it. For
a given length-n string S , some of those measures are: the number z of phrases produced by Lempel-
Ziv compressor [18], the number b ≤ z = O(b log n

b ) of phrases of the smallest parsing produced by
bidirectional macro schemes [34], the size д = O(z log n

z ) of the smallest context-free grammar that
generates only S [13], the size дr l ≤ д of the smallest run-length grammar that generates only S [28],
the number r = O(b log2 n) of the runs in the Burrows-Wheeler transform [3], and the size γ = O(b)
of the smallest attractor [12], where γ asymptotically lower bounds all the others measures [12].
Although many of those measures are promising for lower bounding compressibility on repetitive

sequences, most of them are NP-hard to compute, are non monotonic upon symbols append, or are
sensitive to simple string transformations [4, 12, 24, 34]. Recently, the measure δ was proposed for this
task, which better captures the concept of compressibility in repetitive strings and is more manageable
to deal with: it can be computed in linear time, is monotone when the string changes in the extremes,
and is insensitive to string reversals or to alphabet permutations [4]. Since δ ≤ γ [14], δ lower bounds
all measures showed above [15].
In the last years, research on representing the data in compressed form through straight-line pro-

grams (SLP) has increased heavily, given that this kind of compression method can achieve exponential
size reduction, works well with repetitive and no repetitive data, and can be constructed in linear time
[13, 14]. Additionally, direct access to any element takes logarithmic time [24]. An SLP is a context-free
grammar that generates only one string [21]. The size д of the smallest such grammar is NP-HARD to
compute, but there are certain schemes to approximate quite closely the smallest grammar, such as
grammar constructions showed by Rytter [30] and Jeż [10, 11]. Although these schemes have good
theoretical bounds, in practice, RePair algorithm gets better performance constructing a grammar rep-
resenting a given string [32], but its approximation ratio from д is not known.
If in an SLP we allow rules of the form A → Bn , with n ≥ 2, the resulting grammar is called run-

length straight-line program (RLSLP) [28]. These grammars encompass regular context-free grammars
but are more powerful, given that an SLP is a particular case of an RLSLP [4]. There exist string families
where the smallest SLP for representing them has sizeO(logn), while the smallest RLSLP has sizeO(1)
[15]. The size дr l of the smallest RLSLP is also NP-HARD to compute [28].

1.1 The measure δ .
The measure δ was originally introduced by Raskhodnikova et al. [29] in a stringology context, but
it was formally defined recently by Christiansen et al. [4] as a way to construct a grammar of size
O(γ log n

γ ) without knowing the size of the smallest string attractor γ , which is NP-HARD to compute
[12].
For a given length-n string S , let dk (S) the number of distinct length-k substrings in S , where the set

of {dk (S) : k ∈ [1..n]} is known as the substring complexity of S . Then, δ is defined [4] as:

δ = max{dk (S)/k : k ∈ [1..n]}.
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Although is not possible to represent any length-n string inO(δ ) space (i.e., it is not reachable space)
[14], Kociumaka et al. [15] proved that O(δ log n

δ ) is worst-case optimal space.

1.2 Grammar compression and Locally Consistent Parsing
Locally consistent parsing (LCP) is a way of partitioning a string into non-overlapping blocks [2]. Con-
sistency means that identical substrings are partitioned identically with the possible exception of their
extremes [1].
Recently published papers have shown a relationship between better performance of RLSLPs and

their construction through an LCP, while building a data structure for matching a pattern over a given
string [4, 11, 14–16, 29]. The data structures offering no(1)-time string matching over a collection of
strings are known by the name of indexes. Grammar-based indexes have been very successful for get-
ting good bounds for time construction, query time, and space.
Christiansen et al. [4] built a grammar-based index of size O(γ log n

γ ) that counts the occurrences
occ of P in S inO(m+ log2+ϵ n) time, and locates them inO(m+ (occ+1) logϵ n) time, where ϵ is a small
constant fixed at construction time. Even by increasing the space toO(γ log(n/γ ) logϵ n), they reduced
the locating time to the optimalO(m+occ), and within spaceO(γ log(n/γ ) logn) they reduced counting
time to the optimalO(m). Their indexes can be constructed inO(n) space andO(n logn) expected time
through consecutive applications of LCP. Those times for finding and locating are the best known to
date.
Kociumaka et al. [15] built a grammar-based index of size O(δ log n

δ ) that counts the occurrences
of P in S in O(m log2+ϵ n) time and locates them in O(m logn + occ logϵ n) time. The space O(δ log n

δ )
is worst-case optimal in terms of δ [14] and, since δ ≤ γ , this space improves the previous one. They
construct their grammar through consecutive applications of LCP.

1.3 Algorithmics on RLSLP – Compressed Sequences
Algorithmics on compressed strings (ACS) has been studied mainly for three scenarios. One of them
refer to a large data that have to be not just stored in compressed form, but the original data has to be
queried in that representation, given that it is not feasible to decompress it to analyze its contents, for
example, large genome collections [7].
Another relevant case of ACS appears when large strings (generally highly compressible) are pro-

duced by an algorithm as an intermediary representation. Compressing it may lead to improved effi-
ciency of the algorithm, for example, problems related to combinatorial group theory [9].
Finally, ACS has been relevant for making explicit regularity in a given string. One of the most re-

markable examples of this situation can be seen in highly repetitive data [23].
For all situations above, there are experiences compressing data through regular context-free gram-

mars [4, 10, 13, 20]. However, it has not been studied deeply for run-length grammar compression.

2 RESEARCH GOALS
2.1 General goal
The main goal of this proposal is to develop new grammar-based compressed representation of data,
using LCP as a construction tool, which improves current solutions. In that way that they are faster
and support more elaborate queries than actual ones.
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2.2 Specific goals
In the search for improving knowledge about grammar compression and its applications for working
over compressed data, the following objectives will be considered:

• Improving index query-time efficiency by constructing it through LCP [1].
• Giving new functionalities to indexes, as can be seen in other data structures:
– Functionalities more similar to those that can be seen in a suffix tree [6, 8, 31].
– Document retrieval [25].
– Queries specifically though over repetitive sequences [26].
– Efficient counting of occurrences of a given pattern [4].

• Improving the understanding about grammar compressors with better performance: searching
for an approximation ratio from д of RePair [10, 11, 30, 32].

• Designing grammar-based compression for other kind of data:
– Tree compression [22].
– Graph compression [35].
– Sparse matrix compression [5].

• Designing algorithms to speed-up solutions of abstract algebra problems using grammar-based
compression:
– Sparse matrix multiplication [5].
– Word problem for automorphism group and subgroups [20].
– Word problem for graph product of groups [19].

3 RESEARCH HYPOTHESIS
Based on previous work about compression through RLSLP representation of data and based on the
objectives fixed for this research, the following hypothesis are formulated:

• A linearly-constructed RLSLP-based index of size δ log n
δ can solve count and locate in optimal

time [4, 14, 15].
• An index constructed through an RLSLP can search for a regular expression in expected sublinear
time [6, 8, 31].

• Word problem for automorphism group and subgroups [9] can be solved in polynomial time by
representing group generators set in compressed form through an RLSLP [19–21].

• Multiplication of sparse squared matrix of n rows with a length-n vector can be done in o(n2) by
representing the matrix through an RLSLP [5].

• There exists a measure describing a (logn)-approximation ratio of RePair from д [10, 11, 30, 32].

4 METHODOLOGY AND WORK PLAN
4.1 Methodology
The general methodology consists of studying the theoretical notions of the problemwith formal space
and time bounds guarantees.

4.2 Work Plan
According to research goals and hypothesis, the following work plan will be considered:
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• Second semester of 2021.
– Improving grammar-based index efficiency: we will study a grammar-based index of size
O(δ log n

δ ), constructed in worst-case linear-time, which solves counting and locating in opti-
mal time [24]. Research will focus on using ideas by Kociumaka et al. [15] and Christiansen
et al. [4] for constructing such an index.

• First semester of 2022.
– Improving the understanding about grammar compressors with better performance:
we will study a measure that can describe how close the size of resulting grammar is given by
RePair algorithm from the smallest size д [10, 11, 13, 30, 32].

– Giving new functionalities to indexes, as can be seen in other data structures: we will
study a mechanism for providing to indexes the ability of answer queries which are usually
made in a suffix tree [6, 8, 31]. In addition, we will research a way of improving functionality of
document retrieval in indexes; in particular, we will focus on using ideas by Navarro [25], but
constructing the index through LCP. Finally, we will research a method that can allow indexes
to count on the skill of answer queries specifically though over repetitive sequences [26] and
efficient counting [4].

• Second semester of 2022.
– Designing grammar-based compression for other kind of data: based on previous work,
we will study grammar-based compression on trees [22], on graphs [35], and matrix [5]; and
its applications for querying and operating over compressed form.

– Designing algorithms to speed-up solutions of abstract algebra problems using gram-
mar - based compression: we will study a grammar-based compression method to improve
previous results for the word problem for automorphism groups [20] and the multiplication of
sparse matrix with vectors [5].
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