P

Universidade da Coruna

Departamento de Computacion

New Compression Codes for Text Databases

Tese Doutoral

Doctorando: Antonio Farina Martinez

Directores: Nieves R. Brisaboa e Gonzalo Navarro

A Coruna, Outubro de 2004

1

Ph. D. Thesis supervised by
Tese doutoral dirixida por

Nieves Rodriguez Brisaboa
Departamento de Computacién
Facultade de Informatica
Universidade da Coruna

15071 A Coruna (Espafia)

Tel: +34 981 167000 ext. 1243
Fax: 434 981 167160

brisaboa@udc.es

Gonzalo Navarro

Centro de Investigacién de la Web
Departamento de Ciencias de la Computacion
Universidad de Chile

Blanco Encalada 2120 Santiago (Chile)

Tel: +56-2-6892736

Fax: +56-2-6895531

gnavarro@dcc.uchile.cl

w

Abstract

This page will contain a small Abstract of the contents of the thesis

Resumo

Neste péxina vai ir un pequeno resumo dos contidos da tese en galego.

vl

Acknowledgements

I owe a great part of this thesis to my directors for their tireless support and
their help during the whole work. They always told me the way to follow.

This thesis is dedicated to my family, who was always there whenever
I need them. Above all, I want to dedicate it to the most combative and
strong people I have ever met. Thank you mum and dad.

Do neither I want myself to forget my brother and sisters: Arosa, Manu
and 'Maria’, nor the latest ones: Marina e Lexo.

CAMBIAR !!! CAMBIAR !!! T cannot omit my LBD colleague (so, I am
not going to give names). They did easy the difficult moments and brought
the light of our friendship.

Thanks also for you, Luisa, for the last months we share and the following
that I hope will come.

And all the others I did not name, but you know you have your part in
this work.

This is all for you.

vl

Agradecementos

Grande parte desta tese débollela aos meus directores de tese polo seu
apoio incansable, e porque sempre me serviron de apoio e me marcaron o
camino que debia de seguir.

A tese vai adicada & mifna familia, que sempre estivo ali cando eu os
necesitaba, pero sobre todo quérollela adicar s dias persoas mais loitadoras
e fortes que comniezo desde hai tanto tempo. Gracias mamé e papa.

Tampouco me quero olvidar dos meus irmans de toda a vida: Arosa,
Manu e ’Maria’, nin dos méis novos: Marina e Lexo.

CAMBIAR ! CAMBIAR !!! Non me quero olvidar de ningtin dos meus
companeiros do LBD (asi que non vou dar nomes). Eles fixeron mais doados
os momentos dificiles e deron luz propia & nosa amizade.

Gracias tamén a ti, Luisa, polos iltimos meses que compartimos, e polos

que espero viran.

E a tédolos demais que non citei, pero sabedes que tamén tedes a vosa
parte neste traballo.

Vai por vos.

VUL

Aos meus pais e irmans
Aos meus sobrinos: Maria, Lexo e Paula

4

Contents

Contents

1 Introduction 1
1.1 Text Compression v i 1
1.1.1 Compression to space saving 1

1.1.2 Compression to file transmission 4

1.2 Objectives and contributions of the thesis 6
1.3 Outline 7

2 Basic concepts 9
2.1 Chapter overview 9
2.2 Concepts on Information Theory 9
2.2.1 The Kraft Inequality 11

2.3 Redundancy and compression 12
2.4 Entrophy in Context dependent messages 13
2.5 Classification of Text Compression Techniques. 14
2.6 Measuring the efficiency of compression techniques 18

xi

Contents

I

3

Semi-static Compression

Compressed Text Databases

3.1 Chapter overview L o

3.2 Motivation L oo

3.3 Imverted indexes

3.4 Compression schemes for Text Databases
3.4.1 Directaccess o
3.4.2 Directsearch L.

3.5 String matching
3.5.1 Boyer-Moore algorithm
3.5.2 Shift-Or algorithm

3.6 Summary

Semi-static text compression techniques

4.1 Chapter overviewo

4.2 Classic Huffman Code
4.2.1 Building a Huffman Tree
4.2.2 Canonical Huffman tree

4.3 Word-Based Huffman Compression
4.3.1 Plain Huffman and Tagged Huffman Codes

4.4 Searching Huffman Compressed Text
4.4.1 Searching Plain Huffman Code

4.4.2 Searching Tagged Huffman Code

21

23

23

23

24

26

26

27

27

28

30

32

35

il

Contents

4.5 Other techniqueso, 49
4.5.1 Byte Pair Encoding 49
4.5.2 Burrows-Wheeler Transform 51

4.6 Summary . . o.o. .o 55

End-Tagged Dense Code 57

5.1 Chapter overview 57

5.2 Introduction 57

5.3 End-Tagged Dense Code 58

5.4 Encoding and Decoding algorithms 61
5.4.1 Encoding algorithm 61
5.4.2 Decoding algorithm 63

5.5 Using ETDC to bound Plain Huffman 64

5.6 Empirical Results 65

5.7 Conclusions 66

The new technique: (s,c)-Dense Code 69

6.1 Chapter overview 69

6.2 Introduction L 69

6.3 (s,c)-Dense Code 72

6.4 Optimal sand cvalues 76
6.4.1 Algorithm to get the optimal s and ¢ values 79

6.5 Encoding and Decoding algorithms 83
6.5.1 Encoding algorithm 83

Contents

6.5.2 Decoding algorithm 84

6.6 Empirical Results 85
6.6.1 Compression Ratio 85

6.6.2 Encoding Time 86

6.6.3 Decompression Time 89

6.7 Searching (s,c)-Dense Code 90
6.8 Bounding Plain Huffman with (s,c)-Dense Code 91
6.9 Conclusions 91

II Adaptive Compression 93
7 Dynamic Text Compression Techniques 95
7.1 Overview 95
7.2 Introduction 95
7.3 Statistical Dynamic Codes 97
7.3.1 Dynamic Huffman Codes 98

7.3.2 Arithmetic Codes 100

7.4 Prediction by Partial Matching 103
7.5 Dictionary techniques 106
751 LZTT . . . 106

7.5.2 LZT8 108

7.6 Summary 111

8 Dynamic Byte-oriented word-based Huffman code 113

T

Contents

8.1 Chapter overview o 113
8.2 Introductiono 114
8.3 Word-based Dynamic Huffman Codes 114
8.4 Method Overview 116
8.5 Data Structures 119

8.5.1 Definition of the tree data structures 119

85.2 Listofblocks 122
8.6 Huffman tree update algorithm 125

8.7 Empirical Results: Character- versus word-oriented Huffman 130

8.8 Conclusions 130

9 Dynamic End-Tagged Dense Code 133
9.1 Chapter overviewo 133
9.2 Introduction 133
9.3 Method overview L Lo 134
9.4 Implementation Data structures 137
9.4.1 Sender’s Data Structures 137

9.4.2 Receiver’s Data Structures 138

9.5 Sender’s and Receiver’s pseudocode 139
9.6 Empirical Results 143
9.7 Conclusionso 144
10 Dynamic (s, c)-Dense Code SIN TERMINAR !! 145
10.1 Chapter overview o i 146

TU

Contents

10.2 Introduction L L oo 146
10.3 Dynamic (s,c)-Dense Codes 147

10.3.1 Maintaining the s and ¢ parameters optimal 147
10.4 Pseudocode for parameters check and change 149
10.5 Empirical Results 149

10.5.1 Semi-static Vs dynamic approach: Compression ratio 151

10.5.2 Comparative of Dynamic PH, Dynamic ETDC and
Dynamic SCDC: compression speed and compression
ratio L 152

10.5.3 Comparative against gzip, bzip2 and arithmetic

COMPIESSOTS © © v v v v v v e e e e e e e e e e e e 153
10.6 Conclusions L 156
11 Conclusions and Future Work 157

A Publications and Other Research Results Related to the

Thesis 159
A1 MFALTA N oo 159
A2 Publications 159
A.2.1 International Conferences 159

A.2.2 National Conferences 159

A.2.3 Journals and Book Chapters 159

A.3 Research Stays 159

B Descripcion del Trabajo Realizado 161
B.1 MFALTA N oo 161

TV

Contents

B.2 Introduccién. 161
B.3 Metodologia Utilizada 161
B.4 Conclusiones y Trabajo Futuro 161

162

Bibliography

TV

Contents

TV

List of Tables

List of Tables

4.1

4.2

4.3

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

6.5

7.1

Codewords assigned to each symbol in Example 4.2.1 38
Codes for an uniform distribution. 45
Codes for an exponential distribution. 45
Format of codeword in both Tagged Huffman and End-Tagged

Dense Code L 59
Code assignment in End-Tagged Dense Code 60
Codes for an uniform distribution. 62
Codes for an exponential distribution. 62
Comparison of compression ratios. 66
Code assignment in (s,c)-Dense Code 74
Comparative example among compression methods, for b=3 . 76
Comparison of compression ratios. 86
Code generation time comparison 88
Decompression speed comparison 90

Compression of “abbabcabbbbc”, (F={a, b, c}), using LZW 110

Xix

List of Tables

8.1

9.1

10.1

10.2

10.3

10.4

10.5

Comparison of word-based and character-based dynamic
approaches e

Compression ratios of dynamic versus semi-static techniques .

Compression ratio of dynamic versus semi-static techniques

Comparison of dynamic ETDC, dynamic SCDC and dynamic
PH . .

Comparison of compression ratio against gzip, bzip2 and
arithmetic compression

Comparison of compression speed against g¢zip, bzip2 and
arithmetic compression oL

Comparison of decompression time against gzip, bzip2 and
arithmetic technique

Tr

List of Figures

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Definitions of distinct types of codes 11
JPEG as an example of a lossy compressor 15
Structure of an inverted index L. 25
Boyer-Moore elements description. 28
Example of Boyer-Moore searching 29
Example of Shift-Or searching 32
Building a classic Huffman tree 38
Example of canonical Huffman tree 40
Example of False Matchings in Plain Huffman 43
Plain and Tagged Huffman trees for an uniform distribution 44

Plain and Tagged Huffman trees for an exponential
distribution 44

Searching Plain Huffman compressed text for pattern "red

hot" . . . e 47
Compression process in Byte Pair Encoding 50
Direct Burrows-Wheeler Transform 52

xx1

List of Figures

4.9

5.1

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

8.1

8.2

8.3

8.4

9.1

9.2

Whole compression using BWT, MTF and RLE-O 55

Comparison of Tagged Huffman and End-Tagged Dense Code 65

128 versus 230 stoppers with a vocabulary of 5,000 words . . 71

Compressed text sizes and compression ratios for different s

values. Lo 7
Size of the compressed text for different s values 78
Vocabulary extraction and encoding phases 87
Searching (5,3)-Dense Code 91

Compression ratio, compression speed and search speed
COMPATISON v v v vttt e e e e e 91

Sender and receiver processes in statistical dynamic text

COMPTESSION. . v v v v v vttt e e e e e e 99
Operation of an arithmetic compressor 102
Compression using LZ77 oL 107
Compression of the text “abbabcabbbbc” using LZ78 109

Dynamic process to maintain a well-formed 4-ary Huffman tree118

Use of the data structure to represent a Huffman tree 122
Increasing of frequency of worde 123
Distinct situations of increasing the frequency of a node . . . 124

Transmission of message "the rose rose is beautiful
beautiful"o 135

Transmission of words C, C, D and D having transmitted
ABABBearlier. 139

TX0

List of Figures

9.3

9.4

9.5

10.1

Reception of c¢3, ¢3, c4D# and ¢4 having received

c1AFtcoBH#cicacocsCH# previously.o L. 140
Dynamic ETDC sender pseudocode 141
Dynamic ETDC sender pseudocode 142
Algorithm to change s and ¢ parameters if needed 150

List of Figures

TV

Introduction

1.1 Text Compression

Text compression techniques exploit redundancies in the text to represent
it using less space [9]. The amount of text collections has grown rapidly
in the last years, mainly due to the widespread use of digital libraries,
documental databases, office automation systems and the Web. Current
text databases contain hundreds of gigabytes and the Web is measured in
terabytes. Although the capacity of new devices to store data grows fast and
the associated costs decrease, the size of text collections increases faster.
Moreover, CPU speed grows much faster than that of secondary memory
devices and networks, so storing data in compressed form reduces 1/0 time,
which is more and more convenient, even at the expense of some extra CPU
time.

For these reasons, compression techniques have become attractive
methods to save both space and transmission time. This two purposes of
compression techniques correspond to two distinct compression scenarios
that are described next.

1.1.1 Compression to space saving

Decreasing the space needed to store data is important. However, if the
compression scheme does not allow us to search directly the compressed

1. Introduction

text, text retrieval over documents will be less efficient due to the need of
decompression before the search. Even if the search is done via an index,
especially in compressed indexes, some text scanning is needed in the search
process [31, 40]. Basically, compression techniques will be well-suited for
Text Retrieval systems if they achieve good compression ratios and if they
also maintain good search capabilities.

Classic compression techniques, like the well-known algorithms of Ziv
and Lempel [60, 61] or classic Huffman [27], permit searching for words
directly on the compressed text [41, 32] and empirical results showed that
searching those texts can take half the time of decompressing that text
and then searching it. However, the compressed search is twice as slow
as just searching the uncompressed version of the text. Moreover, classic
Huffman yields poor compression ratio (over 60%). Other techniques such as
Byte-Pair Encoding compression [21] obtain competitive search performance
[51, 46] but still poor compression on natural language texts.

Classic Huffman techniques are character-based statistical two-pass
techniques. They use a semi-static model. A first pass over the text to
compress gathers symbols and their frequencies, which are used to compress
the text in a second pass. Then the compressed text is stored along with a
header where the correspondence between the source symbols and codewords
is represented. This header will be needed at decompression time.

An excellent idea to compress text is given by Moffat in [34], where it is
suggested that words, rather than characters, should be the source symbols
to compress. The compression scheme using a semi-static word-based model
and Huffman coding achieves very good compression (compression ratio
is about 25-30%). This improvement in compression ratio is due to the
more biased distribution of the frequencies of words with respect to the
distribution of characters. Moreover, since in Information Retrieval (IR)
words are the atoms of the search, these compression schemes are particularly
suitable for IR.

In [49], Moura et al presented Plain Huffman Code a word-based byte-
oriented optimal prefix code. They also showed how to search, for either
a word or phrase, into a text compressed with a word-based Huffman code
without decompressing it, in such a way that the search can be up to eight

1.1. Text Compression

times faster than searching the plain uncompressed text. One of the keys of
the efficiency is that the codes are sequences of bytes rather than bits.

The fastest and simplest search algorithms presented in [49] work over a
coding variant called Tagged Huffman Code, where a bit of each byte is used
to signal the beginning of a codeword. Hence, only 7 bits of each byte are
used for the Huffman code. Note that the use of a Huffman code over the
remaining 7 bits is mandatory, as the flag is not useful by itself to make the
code a prefix code.

Over Tagged Huffman, direct searching [49] is possible, that is, the
pattern can be compressed and searched using any classical string matching
algorithm. In Plain Huffman this is not possible, as the pattern could occur
in the text and yet not correspond to our codeword. The problem is that the
concatenation of two codewords may contain the codeword of another source
symbol. This cannot happen in Tagged Huffman Code because of the bit
that distinguishes the first byte of each codeword. For this reason, searching
with Plain Huffman requires inspecting all the bytes of the compressed text,
while Boyer-Moore type searching [12] (that is, skipping bytes) is possible
over Tagged Huffman Code.

Tagged Huffman Code has a price in terms of compression performance:
The compressed file grows approximately by 11%. Although Huffman is
the optimal prefix code, Tagged Huffman Code largely underutilizes the
representation. In [13] it is shown that, by signaling the last byte instead
of the first, the rest of the bits can be used in all their 128 combinations
and the code is still a prefix code. Hence there are 128 codewords of
length . The resulting code, called End-Tagged Dense Code, becomes closer
to the compression ratio obtained by Plain Huffman Code (1 percentage
point overhead). This code not only retains the ability of being searchable
with any string matching algorithm, but it is also extremely simple to
build (using a sequential assignment of codewords) and permits a more
compact representation of the vocabulary (there is no need to store anything
except vocabulary words ordered by frequency). Thus, the advantages over
Tagged Huffman Code are (i) better compression ratios, (ii) same searching
possibilities, (iii) simpler and faster coding and (iv) simpler and smaller
vocabulary representation.

1. Introduction

However, it is even possible to improve End-Tagged Dense Code
compression ratio while maintaining all its good searchable features. In
this work, (s,c)-Dense Code, a generalization of End-Tagged Dense Code
compression ratio is presented. It overtakes its compression ratio by adapting
the number of terminal and non terminal symbols to the distribution of
frequencies of the words in the corpus to be compressed. As a result, (s, ¢)-
Dense Coding compresses strictly better than End-Tagged Dense Code and
Tagged Huffman Code, reaching compression ratios directly comparable with
Plain Huffman Code (only 0.3 percentage points worse). At the same time,
(s,c)-Dense Codes retain all the simplicity and direct search capabilities of
FEnd-Tagged Dense Codes and Tagged Huffman Codes.

1.1.2 Compression to file transmission

File transmission is another interesting scenario where compression
techniques are very suitable.

In general, transmission of compressed data is usually composed of four
processes: compression, transmission, reception, and decompression. The
first two are carried out by a sender process and the last two by a receiver.

There are several interesting real-time transmission scenarios, however,
where compression and transmission, as well as reception and decompression
processes should take place concurrently. That is, the sender should be able
to start the transmission of compressed data without preprocessing the whole
text, and simultaneously the receiver should start reception and decompress
the text as it arrives.

Real-time transmission is handled with so-called dynamic or adaptive
compression techniques. Such techniques perform a single pass over the text
(so they are also called one-pass) and begin compression and transmission
as they read the data. Note that this is not possible in two-pass techniques
since compression cannot start until the first pass over the whole text has
been completed. Unfortunately, this reason makes two-pass codes unsuitable
for real-time transmission.

In the case of dynamic codes, searching capabilities are not crucial

1.1. Text Compression

as happened in the semi-static methods used in IR systems. Instead of
that, dynamic techniques should achieve good compression ratios and good
compression/decompression time.

The first interesting adaptive techniques were presented by Faller and
Gallager in [19, 22]. Such techniques consisted of dynamic Huffman codes.
Those methods were later improved in [29, 52]. Since they are one-
pass techniques, the frequency of symbols and the codeword assignment is
computed and updated on-the-fly both by sender and receiver, during the
whole transmission process. However, those methods were character- rather
than word-oriented, and thus their compression ratios on natural language
were poor (around 60%).

Currently, the most widely used adaptive compression techniques belong
to the Ziv-Lempel family [9]. They are fast compression and decompression
techniques, however, when applied to natural language text, the compression
ratios achieved by Ziv-Lempel are not that good (around 40%).

Developing an adaptive compression technique with good compression
ratio for natural language texts is a relevant problem. This work presents
how to extend both End-Tagged Dense Code and (s, ¢)-Dense Code to build
two new adaptive techniques. Moreover, their compression efficiency and
processing cost is also evaluated. It is shown that the loss of compression is
negligible with respect to the semi-static version (compression ratio is about
30-34%) and that compression speed is good. This makes up an excellent
alternative for adaptive natural language text compression. A dynamic
word-based Huffman method was also build to compare it against both
Dynamic End-Tagged Dense code and Dynamic (s, c)-Dense Code. This
Dynamic word-based Huffman technique is also described in detail because
it resulted to be an interesting contribution. Since it is a Huffman method,
it gets a slightly better compression than Dynamic (s, ¢)-Dense Code (0.3%
off) and Dynamic End-Tagged Dense Code (1.0% off), but is is much slower.
Dynamic word-based Huffman is about 20% slower in compression and more
than 35% slower in decompression.

1. Introduction

1.2 Objectives and contributions of the thesis

The first objective of this work was to improve the End-Tagged Dense Code
taking advantage of the distribution of frequencies of the text words. This
objective was accomplished by developing the (s, ¢)-Dense Code.

The second objective was to adapt End-Tagged Dense Code, as well
as our improvement of it, the (s, c)-Dense Code, to real-time transmission
scenarios. Therefore the contributions of this work are:

e The development of the (s,c)-Dense Code, a powerful generalization
of End-Tagged Dense Code. It reduces the compressed text size in
2 percentage points with respect to End-Tagged Dense Code, while
maintaining its good features: i) easy and fast decompression of any
portion of compressed text, ii) direct searching in the compressed text
for any kind of pattern with a Boyer-Moore approach. Empirical
results comparing (s, c)-Dense Code with another well-known and
powerful codes such as Tagged Huffman and Plain Huffman are also
presented.

e The adaptation of End-Tagged Dense Code to real-time transmission
by developing the Dynamic End-Tagged Dense Code. It has only a
0.1% compression ratio overhead with respect to the semi-static End-
Tagged Dense Code.

e The adaptation of (s,c)-Dense Code to real-time transmission by
developing the Dynamic (s, c)-Dense Code. It has at most a 0.04%
overhead in compression ratio with respect the semi-static version of
(s,c)-Dense Code.

e The empirical prove of the efficiency of all these methods comparing
them against well-known compression techniques such as gzip and
bzip2. Specifically, to have a good dynamic statistical method to
compare with, we developed a word-based byte-oriented Dynamic
Huffman method, which had never been implemented before (in the
better of our knowledge). It is also a powerful and fast dynamic
compression alternative, therefore it is a minor contribution of our
work.

1.3. Outline

1.3 Outline

First, in Chapter 2, some basic concepts about compression, as well as a
taxonomy of compression techniques are presented. After that, following
the classification of compression techniques into both well-suited to Text
Retrieval and well-suited to transmission, the remainder of this thesis is
organized into two parts.

Part one is focused in semi-static or two-pass compression techniques.
In Chapter 3, Compressed Text Databases, as well as the Text Retrieval
systems that allow recovering documents from a Text Database are
presented. We also present how compression can be integrated into those
Systems.

In Chapter 4, a review of some classical text compression techniques
is presented. In particular, classic Huffman code [27] operation is shown.
Then Plain Huffman and Tagged Huffman codes [49] are focused, since this
codes are the main competitors of End-Tagged Dense Code and also of (s, ¢)-
Dense Code. Next the way Huffman compressed text can be searched for
is described. Finally, other techniques such as Byte Pair Encoding and the
Burrows-Wheeler Transform are shown.

In Chapter 5, End-Tagged Dense Code [13], the basis of the (s, c)-Dense
Code is fully described. Chapter 6 presents (s,c)-Dense Code, the main
contribution of this thesis. Empirical results regarding to compression ratio
and also to encoding and decompression time are presented. (s,c)-Dense
Code is compared with both End-Tagged Dense Code and Huffman based
techniques.

Part two, once the word-based semi-static techniques have been
explained, considers dynamic compression codes. An introduction of classic
dynamic techniques, paying special attention to dynamic Huffman codes, is
addressed in Chapter 7. That Chapter also includes a review of arithmetic
codes, Dictionary based techniques and a predictive approach such as PPM.

Chapter 8 describes dynamic word-based byte-oriented Huffman code.
Empirical results comparing this code with a character-based dynamic

7

1. Introduction

Huffman code are also shown.

In Chapter 9, the dynamic version of End-Tagged Dense Code is
considered. Its compression/decompression processes are described and
compared with the Huffman based ones.

Chapter 10 consider dynamic (s, c)-Dense Code. The operation of this
new method, and the way parameters s and c are adapted, are described.
Empirical results of systematic experiments over real corpora, comparing all
the presented techniques against well-known and used compression methods
such as gzip, bzip2 and an arithmetic compressor are presented.

Finally, Chapter 11 presenting the conclusions and future lines of work,
complete this thesis.

Basic concepts

2.1 Chapter overview

This Chapter presents some basic concepts that are needed for a better
understanding of this thesis. A brief description about several concepts
related to Information Theory are shown first. Then a taxonomy of
compression techniques is provided in Section 2.5. Finally, some measure
units that can be used to compare compression techniques are presented in
Section 2.6.

2.2 Concepts on Information Theory

Text compression techniques divide the source text into small portions that
are then represented using less space. It is called source symbols to the basic
units into which the text to be compressed can be partitioned, and it is
called vocabulary to the set of all the distinct source symbols that appear in
the text. We also consider that the size of the vocabulary is denoted by n.

A encoding scheme defines how a source symbol is encoded. That is,
how it is mapped to a codeword. This codeword is composed by one or more
target symbols from a target alphabet 8. The number of elements of the target

9

2. Basic concepts

alphabet is commonly b = 2 (binary code, = {0,1}). Compression consists
of substituting all the source symbols that appear in the input text by the
codeword associated by the encoding scheme. The process of recovering the
source symbol that corresponds to a given codeword is called decoding.

Compression techniques can be classified depending on the size of the
codewords that are generated into two big groups: Fixed length and variable
length methods. The most common variable length codes are the statistical
compression techniques, which assign shorter codes to the most frequent
source symbols (ie. Huffman [27] and arithmetic codes [1, 57]). Dictionary
techniques, however usually generate fixed length codewords [60, 61, 54].

A code is a distinct code if each codeword is distinguishable from every
other. A codification is said to be uniquely decodable if every codeword is
identifiable when immersed in a sequence of codewords. Let consider that a
vocabulary of three symbols A, B, C is used, and that the encoding scheme
maps: A — 0, B — 1, C +— 11. Then it is a distinct code since the
mapping from source messages to codewords is one to one, but it is not
uniquely decodable because the sequence 11 can be decoded as BB or as C.
For example, the mapping A — 1, B — 10, C' +— 100 is uniquely decodable.
However, a lookahead is needed during decoding. A bit 1 is decoded as A if
it is followed by another 1. The sequence 10 is decoded as B, if it is followed
by another 1. Finally the sequence 100 is always decoded as C.

A uniquely decodable code is called prefiz code (or prefix-free code) if not
codeword is a proper prefix of any other codeword. Given a vocabulary with
source symbols A, B, C, the mapping: A +— 0, B — 10, C +— 110 produces
a prefix code.

Prefix codes are instantaneously decodable. That is, a encoded message
can be partitioned in codewords without the need of using a lookahead.
This property is really important, since it permits to decode a codeword
without having to inspect the following codewords in the encoded message.
Therefore, it improves decompression speed. For example, the encoded
message 010110010010 is decoded univocally as ABCABAB.

A prefix code is said to be a minimal prefiz code if being x a proper
prefix of some codeword, then xa is either a codeword or a proper prefix

10

2.2. Concepts on Information Theory

Distinct code Uniquely decodable code Prefix code Minimal prefix code

Figure 2.1: Definitions of distinct types of codes

of a codeword for each target symbol « in the target alphabet beta. For
example, the code that maps: A — 0, B — 10 and C +— 110 is not a
minimal prefix code because 1 is a proper prefix of 10, but neither codeword
11 nor both the codewords 110 and 111 occur. If the map C' — 110 is
replaced by C' — 11 then the code becomes a minimal prefiz code. The
minimality property avoids the use of codewords longer than needed.

In Figure 2.1 the distinct codes just described are shown.

2.2.1 The Kraft Inequality

When one tries to find an optimal prefix code, it is important to know in
which situations it is possible to find such a code. Kraft’s theorem [30]
presented in 1949, gives some information about that possibility.

Theorem 2.2.1 There exists a prefix binary code with codewords
{c1,¢2,...;en} and with corresponding codeword lengths {l1,la,...,ln} iff
Y27 <L

That is, Kraft’s theorem guarantees that given a set of codewords, it is
possible to find a prefix code without modifying their lengths. However, if
the inequality does not hold, it is not possible to find a prefix code with the
current codeword lengths, so it will be necessary to increase some of them
until the inequality is verified.

11

2. Basic concepts

Note that when the inequality turns a equality it occurs that the
codeword length is minimal, therefore a minimal prefix code can be obtained.

Kraft’s theorem says that for some given codeword lengths, a prefix code
can be obtained. However, note that it is also possible that a non-prefix
code can also be obtained with those codeword lengths. Therefore, even if a
code satisfies Kraft’s inequality, it does not imply that the code has to be a
prefix code.

2.3 Redundancy and compression

Compression techniques are based on reducing the redundancy in the source
messages, while maintaining the source information. In [2] a measure for
the information content in a message z; was defined as I(x;) = —logyp(x;),
where b is the number of symbols of the target alphabet (b = 2 if a bit-
oriented technique is used). This definition suppose that the probability of
occurrence of a message z; does not depend on the messages that appeared
previously. From the definition of I(x;), it can be seen that:

e If p(x;) is high (p(x;) — 1) then the information content of z; is almost
zero since the occurrence of x; give very little information.

o If p(x;) is low (p(x;) — 0) then z; is a source message which does
not usually appear. In this situation the occurrence of x; makes

information content maximal.

In association with the information content of a symbol x;, the average
information content of the source vocabulary can be computed by weighting
the information content of each source message x; by its probability of
occurrence p(x;). Next expression yields " ; —p(x;) logs p(x;). This
expression is referred to as the entrophy of the source [45] and is denoted by
H. That is,

H= Y, —p(z;) logs p(;)

Since the length of the codeword associated to the message x; has to be
enough to represent I(z;), entrophy gives a lower bound to the number of

12

2.4. Entrophy in Context dependent messages

bits that will be required to encode the whole source text.

As shown, compression techniques try to reduce the redundancy of the
source messages. Having [(z;) as the length of the codeword assigned to
symbol z; during the encoding phase, redundancy can be defined as follows:

R= 70 plo)l(z;) — H =377 p(x:)l(2:) — 320, —p(x:) logy p(x:)

Therefore, redundancy is a measure of the difference between the average
codeword length and the entrophy. Since entrophy takes a fixed value for
a given distribution of probabilities, a good code has to reduce the average
codeword length. A code is said to be a minimum redundancy code if it has
minimum codeword length.

2.4 Entrophy in Context dependent messages

Definitions in previous section treat source messages assuming independency
in their occurrences. However it is usually possible to model the probability
of the next source symbol z; in a more precise way, by using those source
symbols that have appeared before x;.

The context of a source symbol x; is defined as a fixed length sequence
of source symbols that precede x;.

Depending on the length of the context used, different models of the
source text can be made. When that context is formed by m symbols, it is
said that a m-order model is used.

In general, the probability of a source symbol z; is obtained from its
number of occurrences (assuming a first-order model). However when a m-
order model is used to obtain that probability, the obtained probability is
better than when a low-order model is used.

Several distinct k-order models can be combined to estimate the
probability of the next input symbol. In this situation, it is mandatory
to chose a method which describe how the frequencies estimation is done.
In [18, 33, 9], it is shown a technique, called Prediction by Pattern Matching

13

2. Basic concepts

(PPM), which combines several finite-context models of order k, such as k
takes the values from 0 to m (m is the maximum context length). For each
model, it takes account of all k — length sequences S; that have appeared
previously. For a complete description of PPM see Section 7.4.

Depending on the order of the model, the entrophy expression varies:

e base-order models. In this case, it is considered that all the source
symbols are independent and their frequency is uniform. Then H =
loga n.

e Zero-order models. In this case, all the source symbols are independent
and their frequency consist of their number of occurrences. Therefore,

H = -3 p(xi)logs (x;).

o First-order models. The probability of occurrence of the symbol z;
conditioned by the occurrence of the symbol z; is denoted by P, |;, and
the entrophy is computed as: H = — > 1) p(:) D27y P (2,092 P jja,-

e Second-order models. The probability of occurrence of the symbol
xj, conditioned by the occurrence of the sequence x;x; is denoted by
Py |z, 2, and the entrophy is computed as:

H = - Z?:l p(ml) Z?:l P$J‘$Z ZZ:l kall’j,l‘ilog2 ka|1‘j,l‘i‘

e higher-order models follow the same idea.

H
loga n°

Given H, the redundancy can be calculated as R =1 —

2.5 Classification of Text Compression Techniques

Text compression is based on processing the source data to represent it
in such a way that space requirements decrease. As result, the source
information is maintained, but its redundancy is reduced. Decompressors
act over the compressed data and permit to recover the original version of
the data.

14

2.5. Classification of Text Compression Techniques

Original image JPEG compression JPEG compression JPEG compression
7,100 bytes quality 25 % quality 8 % quality 4 %
1,340 bytes 1,028 bytes 841 bytes

Comp. Ratio 18.8% Comp. Ratio 14.4% Comp. Ratio 11.8%

Figure 2.2: JPEG as an example of a lossy compressor

In some scenarios, some loss of source information can be allowed during
compression. Depending on the possibility of recovering the whole source
information during the decompression process, compression techniques can
be classified into two large groups:

o Lossy compressors: In general, they are used to represent analogical
data in a digital format. Compression of images (jpeg, mpeg) or sound
(mp3) are typical scenarios. In this situations, some loss of the original
analogical data can be permitted because human ocular/auditive
sensibility cannot detect big differences between both the original and
the decompressed data. In Figure 2.2 it is shown how jpeg image
format can be used as a lossy compressor. Compression ratio can be
reduced up to 14.4% (third image from the left) with not much loss of
information.

Since they have not to permit to recover the original data, but another
with negligible differences, the compression ratios obtained are clearly
better than in the following group of compressors.

e Lossless methods: In this kind of techniques it is mandatory to recover
the same original data after decompression. Examples of typical
scenarios where lossless compression techniques are required are text
compression, filesystem compression, database records, etc.

Compression techniques model the source data to obtain an internal
representation of the input symbols (which is used, for example, to obtain
the probability of any source symbol) and then apply a compression scheme

15

2. Basic concepts

that permits encoding those symbols. The correspondence between symbols

and codewords has to be known by the decompressor, in order it to be

able of recovering the original source data. Depending on the model used,

compression techniques can be classified as using:

e Static or non adaptive models. The assignment of frequencies to

each source symbol is fixed. They have probability tables previously
computed (usually based on experience) that are used during the
encoding process. Being fixed, provokes that those probabilities can
match badly with source data in general, so these techniques are
usually suitable only in specific scenarios. An example of application
is JPEG image standard or the Morse code.

Semi-static models. They are also commonly called probabilistic or two-
pass techniques. This methods perform a first pass over the source text
in order to obtain the probabilities of all the distinct source symbols
that compose the wvocabulary. Then those probabilities remain fixed
and are used during the second pass, where the source text is processed
again and each source symbol is assigned a code whose length depends
on its probability.

These techniques present two main disadvantages. The first one
is that the source text has to be processed twice, and therefore
encoding cannot start before the whole first pass has completed. This
makes it impossible to apply semi-static techniques to compress text
streams. The second problem relies on the necessity of providing
the probabilities obtained by the compressor during the first pass, to
the decompressor. Even when it is not a problem when large texts
are compressed (as Heaps’ Law [23] shows, in this case the size of
the vocabulary is negligible compared to the compressed text size),
it provokes an important loss of compression ratio when semi-static
techniques are applied to small texts.

Huffman based codes [27] are the main representatives of compressors

that use a two-pass model.

Dynamic model. They are also known as dynamic, one-pass or adaptive
techniques because they do not perform a initial pass to obtain the

16

2.5. Classification of Text Compression Techniques

probabilities of the source symbols. This techniques commonly start
with an initial empty vocabulary. Then the source text is read one
symbol at a time. FEach time a symbol is read, it is encoded using
the current frequencies and its number of occurrences is increased.
Moreover, each time a new symbol is input, it is also appended to the
vocabulary. Note that the compression process adapts the frequency
of each symbol as compression progresses.

Other advantages of one-pass techniques are their ability to compress
streams of text, and the fact that the decompressor adapts the mapping
between symbols and codewords in the same way the compressor does.
This adaptation can be done by just taking account of the sequence
of symbols that were already decoded. Therefore it is not needed to
explicitly include that mapping as a extra-part of the compressed data.

Techniques such as the Ziv-Lempel family [60, 61, 54], and arithmetic
encoding® [1, 57, 38] are well-known dynamic compression techniques.

Another classification of compression techniques can be done depending
on how the encoding process takes place. Two families are defined: statistical
and dictionary based techniques.

e Statistical methods assign to each source symbol a code whose length
depends on the probability of the source symbol. Shorter codes
are assigned to the more frequent symbols. Some typical statistical
techniques are the Huffman based codes and the arithmetic methods.

e Dictionary techniques build a dictionary during the compression, in
such a way that the last appeared phrases in the text are stored there.
Encoding is performed by substituting those phrases by small pointers
to their position in the dictionary. Compression methods from the
Ziv-Lempel family are the most commonly used dictionary techniques.

! Arithmetic encoding is typically used along with a dynamic model, even when static
and semi-static models are also applicable.

17

2. Basic concepts

2.6 Measuring the efficiency of compression
techniques

In order to measure the efficiency of a compression technique two basic
concerns have to be taken into account. The complexity (both temporal and
spatial) of the algorithms involved and the compression achieved.

The complexity gives an idea of how the technique will behave, but it is
also necessary to obtain empirical results that permit to directly compare
such technique against other methods in real scenarios.

Two common measures to compare the efficiency of some methods are:
compression and decompression speed, and compression and decompression
time.

o Compression and decompression time are usually measured in seconds
or milliseconds.

o Compression and decompression speed measure the throughput
achieved. Common speed units are: Kbytes per second and megaBytes

per second.

Assuming that the ¢ is the size of the compressed text, that the source
text occupies o bytes, and that b is the number of bits used to represent a
symbol in the source text, there are several ways to express the compression
achieved by a compression technique. The most usual measures are:

o (Compression ratio represents the percentage that the compressed text
occupies with respect to the original text size. It is computed as:

compression ratio = 2 x 100

o Compression rate. Indicates the decrease of space needed by the
compressed text with respect to the source text. It is computed as:

compression rate = 1 — compression ratio = % x 100

18

2.6. Measuring the efficiency of compression techniques

e Bits per symbol (bps). It compares the number of bits that are needed
to represent a source symbol against the number of bits used to
represent its codeword. It is computed as:

bps = 2 xs

o
(2
Where s is the number of bits needed to represent a symbol of
the source alphabet. Since the source alphabet contains typically

characters, it often holds s = 8.

19

2. Basic concepts

20

Part 1

Semi-static Compression

21

Compressed Text Databases

3.1 Chapter overview

This Chapter presents the existence and diffusion of large Text Databases,
and the importance of efficient Text Retrieval Systems in order to recover
relevant data stored inside them. The main advantages that compression
techniques provide to Text Retrieval Systems, as well as the way that
techniques can be integrated into those Systems and their usually used
inverted indexes, are also shown.

Finally, the problem of text searching is introduced, and some commonly
used pattern matching algorithms are reviewed.

3.2 Motivation

A Document Database can be seen as a very large collection of documents
and a set of tools that permit managing it and of course, searching inside it
efficiently.

Libraries can be used as an analogy of a Document Database. They store
lots of books, and a user can go there to find information relating to one
issue of interest. However, this user has not usually time enough to review

23

3. Compressed Text Databases

all books in the library in order to find that information. Therefore, it is
necessary to give him some kind of tool (i.e a catalog) which enables him to
find rapidly the most relevant books.

A Digital Library, the set of articles published by a digital newspaper, or
the Web in general, are examples of Document Databases. Since the number
of documents stored is really large, the amount of space needed to store them
is also enormous (and usually increases along time). The use of compression
techniques reduces the size of the documents, and consequently the amount
of space needed to store them in a storage device, at the expense of some
CPU time needed for both compression and specially decompression.

However, not only saving storage space is important. A Text Retrieval
System working against a Text Database has to provide efficient searches
and retrieval of documents. In this way, inderes are the more commonly

retrieval structures used.

3.3 Inverted indexes

An inverted index is a data structure that permits fast retrieval of all the
positions in a Text Database where a searched term appears.

Basically an inverted index maintains a terms vector or vocabulary in
which all terms (usually words) are stored. For each one of those terms t;,
a list of occurrences that keeps all the positions where t; appears, is also
stored.

Note that depending on the granularity used, the length of the list of
occurrences can vary. If the level of granularity used is high (a document)
then the list of occurrences is much smaller than when that level is low (a
document and an offset inside it). Note that a term can appear lots of times
in the same document, and that with low granularity, each occurrence has to
be stored into the inverted index. Therefore, using higher granularity reduces
the size of the whole index. This improves some searches and increases the
possibilities of maintaining the whole index completely in memory.

For example, in Figure 3.1 the list of occurrences store 4 pointers. Each

24

3.3. Inverted indexes

terms list

compression .

y :
ts / |

{ !
|

h
!

h

H

i \
H \
b \
h

!

'

\ | The second edition)
\‘\ Managing Glgab.y(ez \ \

ta

(s.c}-Dense Colfe is Arithmetic ™,
ts and Indexing piefix code that compression vs ™\ Adding
Documents and | maitains the mist| Huffman N B
Images by lan H. | interesting features s o mpression » compression to
Witten, Alistair Taggad Huffman “—p—enab‘es characters |1 Block Addressing
Moffat, and Timothy Code wwh\respecn to be represented bit Inverted Indexes.
C.Bell,isnow | direct searsh on the pbrel Gonzalo Navarro,
available (May 1999 compresseb*:eg& oths | Edleno de Moura,
> compression is Marden Neubert,
achieved by .. Nivio Ziviani and
t7 H ‘ Doc 1 Y Ricardo Baeza
Doc 2
Doc3.......
“*Docn

Figure 3.1: Structure of an inverted index

pointer references to the exact location (document and offset inside it) of
term 'compression’. If the level of granularity used for the list of occurrences
had been the document, only 3 pointers would be needed, since ’compression’
appears only inside three documents.

Searches in the inverted index starts finding in the vocabulary the
searched term. If the list of terms is maintained ordered, this process takes
O(log n) time since a binary search is possible. Then the list of occurrences
is used to access documents.

The list of occurrences is used in a distinct way depending on the
granularity of the index:

1. level of word (word addressing index): In this case, all terms that match
the searched pattern are located in the vocabulary. Then the lists of
occurrences indicates not only the documents, but also the offset inside
documents where those terms appear.

2. level of document (document index): The list of occurrences points
directly to documents. However, to find the exact position where a
term appear in a document it is necessary to sequentially search for it
in all the pointed documents.

3. level of block (block addressing indexes) [31, 40]. In this case the list of

25

3. Compressed Text Databases

occurrences points to blocks, and a block can hold several documents.
Hence all searches require inspecting all the bytes in those pointed
blocks, in order to know in which documents the searched pattern
appears.

Block addressing indexes take special advantage of compression. Since
a compressed document requires less space, more documents can be
hold in a same block. This reduces considerably the size of the inverted
index.

In the case of block addressing indexes (and also sometimes in document
addressing indexes) a sequential pattern matching algorithm has to be used
in order to sequentially search for a term through all documents in a block (or
document). In Section 3.5 several string matching techniques are explained.

Compression has been used along with inverted indexes with good results
[40, 63]. Text compression techniques have to poses some characteristics in
order this symbiosis to be productive. This characteristics are shown in
Section 3.4.

3.4 Compression schemes for Text Databases

Not all compression techniques are suitable for its use along with inverted
indexes. Compression schemes have to permit two main operations: Direct
access and direct search into the compressed text.

3.4.1 Direct access

The direct access property deals with the possibility of decompressing a
random snippet of a compressed text without having to process it from the
beginning.

In some situations we are interested in retrieving only a small context
of the searched term, not the whole document. For example, a web search
engine presents to the user a list of relevant links and a small snippet of the
document as the context where the searched term appear.

26

3.5. String matching

If the compression scheme does not permit direct access, once a document
has been located via the index, it is necessary to start decompressing the
document from the beginning, and proceed until the searched term is found.
Finally a small part (snippet) of the document is retrieved around the
searched term.

However if the compression scheme permits direct access it is possible to
have an index over the compressed text. In such case, the index returns the
position inside the compressed document, and only a small portion of the
compressed text, around the searched term need to be decompressed.

3.4.2 Direct search

It is clear that, it is not interesting to have to decompress the text before
searching on it.

When a compression scheme supports direct search, given a pattern, it is
possible to compress it and then to search for the compressed pattern directly
into the compressed text with any sequential string matching algorithm
[12, 28, 50]. Direct search, as it was proven by Navarro et al. [48, 49], clearly
improves searching performance. It is up to 8 times faster for approximate
searches than the search on uncompressed text.

The use of a compression scheme allowing direct search, permits adding
compression to block addressing indezes, as it is shown in [40].

Therefore, using compression techniques which permit direct search and
direct access results very useful. It enables maintaining the text in a
compressed form all the time (what saves space), but it also improves the
efficiency of Text Retrieval techniques.

3.5 String matching

The string matching problem consists basically on finding all the occurrences
of a given pattern p in a larger text ¢ [12, 28, 50].

27

3. Compressed Text Databases

Text (t) | | (6] | H |

Pattern (p) | la] n Shif.t

Figure 3.2: Boyer-Moore elements description

Patterns can be classified as follows: i) words (car, dog), i) prefives
and suffizes (under-, -ation), 4ii) substrings (-ompressi-), iv) alphabetical
ranges ([a, b) returns words starting with an ’a’), v) allowing errors
(color ”-distance=1”, returns words with a edition distance less or equal
to ’1’ with respect to color, i.e. color), and wvi) regular expressions (
(car|bike)(0|1)* returns several terms, i.e.: car, car0, carl, car0l,bike,...).

In this Section some commonly used pattern matching techniques are
presented. For more information about other pattern matching techniques
and about how to search for several patterns (multiple string matching) see
[42], where a good survey is presented.

3.5.1 Boyer-Moore algorithm

This algorithm uses a search window that corresponds to the searched
pattern and is moved along the text. The algorithm starts aligning the
pattern p (we define m = size of p) with the leftmost part of the text ¢, and
then it searches for suffixes, right-to-left, of the pattern in the text until the
pattern matches the whole search window. In each step, the longest possible
safe-shift to the right of the pattern is performed.

Let suppose a suffix p of the search window which is also a suffix of
the pattern, and that the character ¢ from the text does not match with
character « in the pattern. Figure 3.2 shows those elements. Then three

shift functions are computed:

01 : If the suffix ;1 appears in another position in p, then §; is associated
the distance from « to the next occurrence of p which is not preceded
by a backwards in the pattern.

09 : If the suffix u does not appear in any text position, then suffixes v

28

3.5. String matching

pattern EXAMPLE
text |HERE IS A SIMPLE EXAMPLE

EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE

AWINIO

Figure 3.3: Example of Boyer-Moore searching

of p are taken into account, since they could also be a prefix of the
pattern in next step. In such case Jo is assigned the length of the
longest prefix v of p that is also a suffix of pu.

03 : It is associated to the distance from the rightmost occurrence of ¢ in
the pattern. If o does not appear in p then d3 = m.

Having computed 0; the algorithm computes two
values: M = max(d1, 63) and min(M, m — d2). The last value is used to
slide the search window before next iteration. However, note that when a
full match of the pattern is found inside the text, only the d» function is
used.

An example of the way Boyer-Moore type searching works, is shown in
Example 3.5.1 and can also be followed in Figure 3.3.

Example 3.5.1 Lets search for pattern ‘EXAMPLE’ inside the text
‘THIS IS A SIMPLE EXAMPLE’. In step 0, the search window contains
‘HERE IS’. Since ‘E’#°S’ then o0 =‘S’, a =‘E’ and u = (). We achieve
01 = 62 = 0 and d3 = m = 7, hence the pattern is shifted 7 positions to the
right.

In step 1, the search window contains ¢ A SIMP’. Since ‘E’# ‘P’ then
o =P, a« =‘E” and p = (). We achieve 1 = d, = 0 and d5 = 2 (‘P’
appears 2 positions backwards in the pattern), hence the pattern is shifted
2 positions to the right.

29

3. Compressed Text Databases

In step 2, the search window contains ¢ SIMPLE’. Then ¢ =‘I’, o =‘A’
and p =‘MPLE’. We achieve 6; = 0 d2 = 1 (since the longest prefix of the
pattern that is a suffix in p is ‘E’) and d3 = 0. Therefore the pattern is
shifted min(0,7 — 1) = 6 positions to the right.

In step 3, the search window contains ‘E EXAMP’. Since ‘E’# ‘P’ then
o =P, « =‘E” and p = (). We achieve §; = d, = 0 and d5 = 2 (‘P’
appears 2 positions backwards in the pattern), hence the pattern is shifted
2 positions to the right.

Finally, the pattern and the search window match in step 4. Then the
pattern is shifted m = 7 positions to the right and the process ends. a

The Boyer-Moore search is O(mn) in the worst case. In average, its
complexity is sublinear.

Variations of the initial Boyer-Moore algorithm as the Horspool algorithm
and the Sunday variation are described in [25, 50, 42].

3.5.2 Shift-Or algorithm

The Shift-Or algorithm [58, 4] uses bitwise techniques. The algorithm acts
as a nondeterministic automaton that searches for the pattern in the text.
Its key idea is to maintain a set with all prefixes of the pattern p that match
a suffix of the read text. This set is represented via a bit mask D, such as
D = dy,dp-1,...,d; (note that d; represents the ith less significative bit
in D). If the searched pattern is not larger than the word size of the used
computer w (current architectures have 32 or 64 bits), then the bit mask fits
completely in a CPU register and Shift-Or algorithm becomes really efficient.

Being m the size of the pattern and n the number of characters in the
used alphabet (X)), the algorithm starts building a table B of size (n x m),
as follows: Columns are labelled from right to left with the letters of the
pattern. Rows are labelled with all symbols in P Then, each table entry is
filled in as follows:

Bli, j] = 0 if columnLabel[j] = rowLabelli]
TN 1 otherwise

30

3.5. String matching

Example 3.5.2 Filling the B table, when the pattern ’bcab’ is being
searched into the text ’abcabx’.

pattern
bla|c|b
alllj0|1]1
|b|O0[1|1]0
c| 11|01
x|I1]1 111

To fill in the table B, it is needed to look at the pattern.

Zeros are set in those positions where the row and the column are labelled
with the same letter.

For example the letter ’a’ appears in position 3 (starting numbering
from right to left) in the pattern, so the element B(’a’,3) will have a 0 as
its entry. After filling in the whole table with zeros in the appropriate rows
and columns, the remainder entries of the table B are set with ones. O

Once the B table has been filled, the searching algorithm proceeds. A
match register D of size m is initialized with ones. And a match of the
current character input, with the pattern, will be represented with a zero.
Next, letters from the text are input. Each time a letter from the text is
read, D is updated as follows: D «— (D << 1) | B[t], where ’|" indicates
a bitwise OR. A match is detected when D[0] = 0. See the example in
Figure 3.4 for a better understanding of the whole process.

Note that, if a letter ¢, which does not belong to the pattern, is input,
then the row B[t] has only ones, so D <’ 111..1". Hence the algorithm goes
again to the initial state.

Figure 3.4 shows how Shift-Or algorithm searches for the pattern
‘example’ inside the text 'this-is-an-example’.

31

3. Compressed Text Databases

pattern EXAMPLE
A 1/1(1
il text THIS-IS-AN-EXAMPLE
0
[IATIII0]
8 G roai- 3B 1, ream O
D % SRR
: [II10]0] [B<<1]
- EHH) g e
B "D o’ D [L[Ll1]oM] Sk
T [L[L07[0]
D 7 reads [B(ST1) 44 readn m
: OR D [I[LI[100] OR
0]
oy [E-11) 45
OR
[BIALL) 4
OR
BT])
OR
BL-11) qg readE)
OR D [OR

Match found

Figure 3.4: Example of Shift-Or searching

Assuming that the pattern length is no longer than the memory-word size
of the machine, the space and time complexity of the preprocessing phase
(building B table) is O(m + o).

The time complexity of the searching phase is O(n), Therefore, it is
independent from the alphabet size and the pattern length.

3.6 Summary

In this Chapter the necessity of maintaining Text Retrieval Systems which
permit efficient access to words inside documents in a Text Database was
shown. Some advantages that compression techniques offer to those systems,
as well as the characteristics that they have to poses in order to be really
suitable for those Text Retrieval Systems, were also presented.

Since the use of compression usually requires searching the compressed

32

3.6. Summary

text, we also presented the string matching problem. Finally Boyer-Moore
and Shift-Or algorithms, two commonly used and fast pattern matching
techniques, were also described.

38

3. Compressed Text Databases

34

Semi-static text compression
techniques

4.1 Chapter overview

This Chapter presents a classic compression technique such as the character
oriented Huffman [27], and the variations of it that appeared in the last
years.

The Chapter starts presenting the classic Huffman algorithm, the basis
of a new word-based generation of codes that appeared in the nineties. In
Section 4.3, it is presented a brief description of some of the most interesting
natural language text compression codes that are used nowadays. Special
attention is paid to describe the techniques called Plain Huffman and Tagged
Huffman. In Section 4.4, it is shown how searches can be performed directly
into the compressed text when text is compressed via Plain Huffman or
Tagged Huffman code. Finally, the Chapter ends with the description of
two techniques such as the Byte Pair Encoding (BPE) and the Burrows-
Wheeler Transform (BWT). BPE is a compression technique that enables
efficient searches and decoding. BWT is an algorithm which transforms one
text to another more compressible and can be used along with a Huffman
based or an arithmetic encoder [57], improving their compression ratio.

35

4. Semi-static text compression techniques

4.2 Classic Huffman Code

The definition of the Classic Huffman code appeared in 1952 [27]. It is
a character-based bit-oriented statistical semi-static technique. The codes
that it generates are prefiz codes. This method originated an important
break-point in the field of the compression techniques. Several compression
Huffman-based techniques where developed since that date [22, 29, 52, 48].

As a semi-static technique, two passes over the input text are performed:
In the first, the number of occurrences of the distinct symbols are computed.
Once the frequencies of all input symbols are known, Huffman algorithm
builds a tree, that is used in the encoding process, as it is explained next.
This tree is the basis of the encoding schema. In the second pass, each input
symbol is encoded and output. Using the Huffman tree, shorter codes are
assigned to the more frequent input symbols.

4.2.1 Building a Huffman Tree

A classic Huffman tree is a binary tree built as follows: Symbols are assigned
to the leaf nodes of the tree, and their position in the tree (level) depends
on the probability of each symbol. Moreover one condition has always to be
keep: the number of occurrences of a node in a higher level can never be
smaller than the number of occurrences of a node placed in a lower level.

A Huffman tree is built through the following process:

1. A list of leaf nodes is created, one node for each distinct input symbol.
Each node stores a symbol and its frequency. This list is then sorted
by frequency.

2. The b least frequent nodes are picked from the list. (b = 2 in a binary
tree)

3. A new internal node is added to the tree. This internal node is assigned
the sum of the frequencies of the nodes picked in the previous step.
Then the b nodes are removed from the list of nodes (they are now in
the tree), being substituted by the internal node just created.

36

4.2. Classic Huffman Code

4. Steps 2) and 3) are again executed while more than b symbols remain in
the list of blocks. If b or less nodes remain in the tree, then those nodes
are join into a common parent. This new internal node is the root of
the Huffman tree (and its frequency will be the sum of occurrences of
all the input symbols).

To understand the whole process let see Example 4.2.1 and Figure 4.1.

Example 4.2.1 Building a Huffman tree from 5 input symbols: {a,b, ¢, d, e}
that have frequency 0, 40, 0,25, 0,18, 0,12 and 0, 05 respectively.

Figure 4.1 shows the process step by step. In the first step, a list of nodes
associated to the input symbols: {a,b,c,d, e} is created. In step two, the
two least frequent nodes are chosen, and they are joined into a new internal
node whose frequency is 0, 20, that is, the sum of frequencies of both d and
e. In step three, the current least frequent nodes b, ¢ and the internal node
just created could be taken. In this case, we chose the internal node, and
c and join them into a new internal node of frequency 0,40 which is added
to the three. Note that if b had been chosen, a distinct Huffman tree would
be generated (more that one Huffman tree exist usually). Next, b and the
previous internal node are joined into a new internal node, its frequency is
0,60. In the last step, only two nodes remained to be chosen. These two
nodes are set as children of the root node. a

The cost of building a character oriented huffman tree is O(n) where n
is the number of symbols in the tree. In general the number of iterations
needed to build a huffman tree can be bounded as [;%7].

Once the Huffman tree has been build it is possible to begin the
compression process. All branches in the tree are numbered as follows: The
left-branch of a node is set a 0 and the right-branch is given a 1. The path
from the root of the tree to the leaf node where a symbol appears gives the
code of that symbol.

Codes assigned to the symbols, using the tree in Example 4.2.1 as
encoding schema, are shown in Table 4.1.

37

4. Semi-static text compression techniques

2] [&] [)] [e],

040 020 020 “015 005

O @
040 020 020

Figure 4.1: Building a classic Huffman tree

input symbol — code assigned
a — 0
b — 11
c — 100
e — 1010
f — 1011

Table 4.1: Codewords assigned to each symbol in Example 4.2.1

38

4.2. Classic Huffman Code

To decompress a compressed text, the shape of the Huffman tree used
during compression has to be known. Then it is input one bit at a time. The
value of such a bit permits to chose the right or left branch of an internal
node. When a leaf is reached, a symbol has been recognized and is output.
Then the decompressor goes back to the root of the tree and continues the
process.

4.2.2 Canonical Huffman tree

In 1964, Schwartz and Kallick [44] defined the concept of a canonical Huffman
code. In essence the idea pointed there is that Huffman’s algorithm is only
needed to compute the length of the codewords that will be mapped to
each one of the symbols in the dictionary. Once those lengths are known,
codewords can be assigned in several ways, the only condition that has to
be taken into account is to produce preffiz codes.

Intuitively a canonical code builds the prefix code tree from left to right in
increasing order of depth. At each level, leaves are placed in the first position
available (from left to right). Figure 4.2 shows the canonical Huffman tree
from Example 4.2.1.

The canonical code possesses some mathematical properties.

e Codewords are assigned in increasingly size order, depending on the
lengths computed with Huffman’s algorithm.

e The codewords of a given length are consecutive binary numbers.

e The first codeword ¢; of length [is related to the last codeword of
length [— 1 byte the equation ¢; = 2(¢;—1 + 1).

Given Figure 4.2, where codeword lengths are respectively 1,2,3,4 and 4,
the codewords obtained are: 0, 10, 110, 1110 and 1111.

The main advantage of the canonical representation consists of that it
is possible to represent the Huffman tree, by only using the lengths of the
codewords. Therefore the vocabulary needed for decompression will only

39

4. Semi-static text compression techniques

Figure 4.2: Example of canonical Huffman tree

require storing: ¢) the list of symbols of the vocabulary,) the minimum
and mazimum codeword length values and 4ii) the number of codes of each
length. For example, the shape of the Huffman tree in Figure 4.2 can be
saved as: <a, b, ¢, d, e><1, 4><1,1, 1, 2>.

As result keeping a the shape of the canonical Huffman tree of n words
in a canonical Huffman code takes O(logan).

Moreover canonical codes reduce also the memory requirements needed
during compression and decompression, since the Huffman tree has not to
be kept into memory.

Implementation details of a canonical Huffman code can be seen in [24].
Even when the canonical representation was defined for bit-oriented Huffman
approach, it can be also defined to a byte-oriented approach. More details
about how a byte-oriented canonical Huffman code can be built, appear in
[35, 39].

4.3 Word-Based Huffman Compression

The traditional implementations of the Huffman code are character based,
i.e., they use the characters as the symbols of the alphabet. Therefore
compression is poor because the distribution of frequencies of characters in
natural language texts is not much biased. In [34], Moffat uses the words in
the text as the symbols to be compressed. This idea joins the requirements

40

4.3. Word-Based Huffman Compression

of compression algorithms and of IR systems, as words are the basic atoms
for most IR systems. The basic point is that a text is more compressible
when regarded as a sequence of words rather than characters.

In [49, 62], two compression schemes that uses this strategy combined
with a Huffman code is presented. From a compression viewpoint, character-
based Huffman methods are able to reduce English texts to approximately
60% of their original size, while word-based Huffman methods are able to
reduce them to 25% — 30% of their original size, because the distribution of
words is much more biased than the distribution of characters.

The compression schemes presented in [49, 62] use a semi-static model,
that is, the encoder makes a first pass over the text to obtain the frequency of
all the words in the text and then the text is coded in the second pass. During
the coding phase, original symbols (words) are replaced by codewords. For
each word in the text there is a unique codeword, whose length varies
depending on the frequency of the word in the text. Using the Huffman
algorithm, shorter codewords are assigned to more frequent words.

The basic method proposed by Huffman is mostly used as a binary code
as shown in Section 4.2, that is, each word in the original text is coded as
a sequence of bits. In [49] they modified the code assignment such that a
sequence of bytes instead of bits is associated with each word in the text.

The tree building of a 256-ary Huffman tree is similar to the construction
of a binary tree. The main difference is the start point of the process, in
the number of nodes R that have to be chosen in the first iteration of the
process. That is:

R 1+ ((n—2% mod (2° — 1)) if ((n—2°) mod (2° —1) >0
] n if ((n—2% mod (28 —1)=0

Then, in the following iterations of the process, 256 nodes are taken and
set as children of a new internal node, until only 256 available nodes remain
to be chosen.

Experimental results have shown that, on natural language, there is no
significant degradation in the compression ratio (less than 5%) by using
bytes instead of bits. In addition, decompression and searching are faster

41

4. Semi-static text compression techniques

with byte-oriented Huffman code because no bit manipulations are necessary.

4.3.1 Plain Huffman and Tagged Huffman Codes

In [49] two Huffman codes following a word-based approach are presented.
These codes are called Plain Huffman and Tagged Huffman.

Both Plain Huffman and Tagged Huffman codes allow to search for a
word in the compressed text without decompressing it, in such a way that the
search can be up to eight times faster for certain queries [49]. The key idea of
this work (and others like that of Moffat and Turpin [39]) is the consideration
of the text words as the symbols that compose the text (and therefore
the symbols that should be compressed). Since in Information Retrieval
(IR) text words are the atoms of searches, these compression schemes are
particularly suitable for IR. This idea has been carried on further up to a full
integration between inverted indexes and word-based compression schemes,
opening the door to a brand new family of low-overhead indexing methods
for natural language texts [56, 40, 62].

In [49], they call Plain Huffman Code to the one we have already
described, that is, a word-based byte-oriented Huffman code. Plain Huffman
obtains compression ratios about 30%-35% when applied to compression of
English texts.

Plain Huffman Code does not permit direct searching the compressed
text by simply compressing the pattern and then using any classical string
matching algorithm. This does not work, as the pattern could occur in
the text and yet not correspond to our codeword. The problem is that the
concatenation of parts of two codewords may form the codeword of another
vocabulary word.

The second code proposed in [49] is called Tagged Huffman Code, which
avoids that problem in searches. This technique is just like the previous one
differing only in that the first bit of each byte is reserved to flag whether
the byte is the first byte of a codeword. Hence, only 7 bits of each byte are
used for the Huffman code. Note that the use of a Huffman code over the
remaining 7 bits is mandatory, as the flag bit is not useful by itself to make

42

4.3. Word-Based Huffman Compression

Original message: to be or not to be good

Plain Huffman Code Tagged Huffman Code

to 2 (00 to 2 |[1p

be 2 (01 be 2 ||/ 00

or 1 10 or 1 |11 01 00

not 1 11 00 not 1 {11 010100
good 1 11 01 good 1 |41 010101

Compressed text
00 01 10 11@00 01 1101 10 1100 110100 11010100 10 1100 11010101

To be or notk be good To be or not to be good
False matching: when searching for “to”

Figure 4.3: Example of False Matchings in Plain Huffman

the code a prefix code.

Therefore, due to the use of the flag bit in each byte which determines
if the byte is the first byte of a codeword or not, no spurious matchings can
happen in Tagged Huffman Code. See Figure 4.3 for an example of how false
matchings can happen in Plain Huffman Code.

For this reason, searching with Plain Huffman requires inspecting all the
bytes of the compressed text from the beginning, while Boyer-Moore type
searching [12, 50] (that is, skipping bytes) is possible over Tagged Huffman
Code.

Tagged Huffman Code has a price in terms of compression performance:
full bytes are stored, but only 7 bits are used for coding. Hence, the
compressed file grows approximately by 11%. As compensation, Tagged
Huffman searches compressed text much faster than Plain Huffman.

The differences among the codes generated by the Plain Huffman Code
and Tagged Huffman Code are shown in the following example.

Example 4.3.1 Assuming that the vocabulary has 17 words, with uniform
distribution (p; = 1/17) in Table 4.2 and with exponential distribution
(pi = 1/2%) in Table 4.3. The resulting canonical Plain Huffman and Tagged
Huffman trees are shown in Figure 4.5 and Figure 4.4.

For the sake of simplicity, from this example, we consider that the bytes

43

4. Semi-static text compression techniques

Plain Huffman

Figure 4.5: Plain and Tagged Huffman trees for an exponential distribution

used are formed by only three bits. Hence, Tagged Huffman Code uses one
bit for the flag and two for the code (this makes it look worse than it is).
Flag bits are shown underlined. O

4.4 Searching Huffman Compressed Text

Direct text searching takes much importance in block addressing indexes,
a new family of low-overhead indexing methods for natural language texts
[56, 40, 62] which came up in the last years. Basically, in order to reduce
index space, the index does not point to exact word positions but to text

44

4.4. Searching Huffman Compressed Text

Word Probab. [Plain Huffman | Tagged Huffman
A 1/17 000 100 000

B 1/17 001 100 001

C 1/17 010 100 010

D 1/17 011 100 011

E 1/17 100 101 000

F 1/17 | 101 101 001

G 1/17 110 000 101 010

H 1/17 110 001 101 011

I 1/17 110 010 110 000

J 1/17 110 011 110 001

K 1/17 110 100 110 010

L 1/17 110 101 110 011

M 1/17 110 110 111 000

N 1/17 110 111 111 001

O 1/17 111 000 111 010

P 1/17 111 001 111 011 000
Q 1/17 111 010 111 011 001

Table 4.2: Codes for an uniform distribution.

Word Probab. [Plain Huffman [Tagged Huffman ‘

A 1/2 000 100

B 1/4 001 101

C 1/8 010 110

D 1/16 | o1l 111 000

E 1/32 | 100 111 001

F 1/64 | 101 111 010

G 1/128 | 110 111 011 000

H 1/256 | 111 000 111 011 001

I 1/512 | 111 001 111 011 010

J 1/1024 | 111 010 111 011 011 000

K 1/2048 | 111 011 111 011 011 001

L 1/4096 | 111 100 111 011 011 010

M 1/8192 | 111 101 111 011 011 011 000

N 1/16384 | 111 110 111 011 011 011 001

[9) 1/32768 | 111 111 000 111 011 011 011 010

P 1/65536 | 111 111 001 111 011 011 011 011 000
Q 1/65536 | 111 111 010 111 011 011 011 011 001

Table 4.3: Codes for an exponential distribution.

45

4. Semi-static text compression techniques

blocks (which can be documents or logical blocks independent of documents).
A space-time tradeoff is obtained by varying the block size. The price is
that searches in the index may have to be complemented with sequential
scanning. If blocks do not match documents, even single word searches
have to be complemented with sequential scanning of the candidate blocks.
It is also possible to perform phrase queries. In this case, the index can
point to blocks where all the words appear, but only a sequential search
can tell whether the phrase actually appears. As result, in the case of block
addressing indexes, it is essential to be able of keeping the text blocks in
compressed form and searching them without decompressing.

As it was introduced in previous Section, both Plain Huffman and
Tagged Huffman techniques enable searching the compressed text without
decompressing it. However, as shown no false matchings can occur in Tagged
Huffman compressed text, but they can take place with Plain Huffman,
therefore searches over Tagged Huffman codes are simpler and faster that
those over Plain Huffman.

4.4.1 Searching Plain Huffman Code

Two basic search methods were proposed in [49].

The first technique is known as plain filterless. It handles a Huffman
tree, such as the leaves are the words of the vocabulary. A preprocessing
phase starts marking in the vocabulary those words that are being searched
for (exact and complex searches are treated in the same way). In order to
handle phrase patterns, a bit mask is also associated to each marked word.
This bit mask indicates which element of the pattern matches that word
(that is, the order of the word inside the pattern), and permit building a
non-deterministic automaton which will enable recognizing a pattern.

After the preprocessing phase, the compressed text is explored one byte
at a time. Each byte enables traversing the Huffman tree downwards. When
a marked leaf is reached, its bit mask is sent to the automaton, which
will move from a state to one another depending on the bit mask received.
Figure 4.6 shows the pattern “red hot” can be found. (It is supposed that
the codeword of “red” is [255], and the codeword of “hot” is [127][201][0].

46

4.4. Searching Huffman Compressed Text

red 01
;’?’?
0? 1?
-{_hot 10 red hot
[—
automaton
——
Huffman tree vocabulary - mask

Figure 4.6: Searching Plain Huffman compressed text for pattern "red hot"

This is quite efficient, but not as much as the second choice, named plain
filter, which compresses the pattern and uses any classical string matching
strategy, such as Boyer-Moore [42]. For this second, faster, choice to be
of use, one has to ensure that no spurious occurrences are found, so the
filterless algorithm is applied in a region where the possible match was found.
To avoid processing the text from the beginning, texts are divided in small
blocks during compression, in such a way that no codeword crosses a block
boundary. Therefore the filterless algorithm can start the validation of a
match from the beginning of the block (blocks act as synchronization marks)
where that match takes place. This algorithm also support complex patterns,
that are searched by using a multi-pattern matching technique. However,
its efficiency may be reduced because a large number of matches may have
to be checked.

4.4.2 Searching Tagged Huffman Code

The algorithm to search for a pattern (a word, a phrase, etc.) under Tagged
Huffman Code consists basically of two phases: compressing the pattern and
then searching for it in the compressed text.

The first phase finds in the vocabulary all the words that compose the
searched pattern. Then the compressed codeword/s for the pattern are
created. If the pattern is not found in the vocabulary, then it cannot appear
in the compressed text.

In the case of approximated or extended searches, each element of the

47

4. Semi-static text compression techniques

pattern (if there is more than one word) can be associated with several
codewords from the vocabulary. To find all the words that match with the
pattern in the vocabulary, a sequential search is performed, and a list of
codewords is hold for each of the elements of the pattern.

The searching phase depends also on the type of search being performed.
For an exact search, the codeword of the pattern is searched in the
compressed text using any classical string matching algorithm with no
modifications (i.e. the Boyer-Moore algorithm presented in Section 3.5.1).
This technique is called direct searching [49, 62]. In the case of approximated
or extended searches of one pattern, the problem of finding the codewords in
the compressed text can be treated with a multi-pattern matching technique
(as Baeza and Navarro described in [3]).

In the case of a phrase pattern two situations are possible: The simplest
case consists of searching for simple words that compose a phrase, so their
codewords are obtained and concatenated. Finally this large concatenated-
codeword is searched as if it were a single codeword. The second situation
takes place when elements of the phrase pattern are not single words,
therefore more that one codeword can be associated to each element of that
phrase pattern. The algorithm needs creating, for each one of the elements
in the phrase pattern, a list with all their codewords. Then the search into
the compressed text is performed to search for the elements of one of the
lists. As an heuristic, it is chosen the list L; associated to element ¢ of the
pattern, such as the minimal length of the codewords in L; are maximized
[6]. Each time a match occurs, the rest of lists are used to wvalidate if that
match belongs to an occurrence of the entire pattern. Note that the heuristic
used, is based on the idea of choosing the list whose codewords are larger,
hence those codewords correspond to low-frequency words, so the number of
needed validations will be small.

Note that the efficiency of previous technique get worse when searching
for frequent words, because in this situation the number of matches that
occur is high and hence, lots of validations against the other lists have to be
performed. In this case, Plain Huffman searching methods can result to be
more suitable and fast.

In [49] they compare searching over Tagged Huffman and Plain Huffman

48

4.5. Other techniques

compressed text against searching the uncompressed text. Results show that
searching a compressed text can be up to eight times faster than searching the
uncompressed text for certain queries. Hence compression not only obtains
space savings, but also improves the search speed over text collections. As
result, keeping documents in compressed form and decompressing them only
during the presentation process seems really interesting.

4.5 Other techniques

In this Section, two more techniques are presented. The first one is a
simple compression technique, denominated Byte Pair Encoding, which offers
competitive decompression speed (at the expense of its bad compression
ratio). The second technique is Burrows- Wheeler Transform, an algorithm
to transform a original text (or string) to another which is easier to compress.

4.5.1 Byte Pair Encoding

Byte Pair Encoding (BPE) [21], is a simple text compression technique based
on pattern substitution. It is based on finding the most frequently occurring
pairs of letters that stand adjacent in the text and then substituting them
for a unique character which has not appeared previously in the text. This
operation is repeated until: i) Either all the 256 possible values of a byte
are used (hence no more substitutions can be done), or 4) no more frequent
adjacent pairs can be found (that is, all pairs have the same number of
occurrences).

Each time a substitution of a pair takes place, a hash table (also known
as substitution table) is also modified either to add the new substitution pair
or to increase is number of occurrences. The substitution table is necessary
during decompression, hence the compressed file is composed of two parts:
the substitution table and the packed data. An example of the compression
process is explained in Figure 4.7.

This algorithm can be considered as multi-pass, since the number of
passes over the text is not fixed, and depends on the two previous conditions.

49

4. Semi-static text compression techniques

zly|z]y[x|w]v][y|w|v]u|z]v[w|v]z]v]x]

IRt

[wv]y [w[v]ou|alw[v]a]x]

>
L
>

WV—> B

AX—» C

Figure 4.7: Compression process in Byte Pair Encoding

It requires that all the text being compressed, to be kept in memory
during compression (so it can present memory problems with large texts).
This technique could also present problems (bad compression ratio) when
compressing large binary files. This is due to that in large binary files, the
number of unused byte values could be small, and therefore the substitution
process would finish prematurely.

Those two problems (memory usage and not enough free byte values) can
be avoided by partitioning the text into blocks and then compressing each
block separately. This presents the advantage that the substitution table can
be locally adapted to the text in the block. However, for each compressed
block, substitution table has to be included along with the packed data, what
makes compression ratio to get worse.

The three main advantages of BPE stand in the high decompression
speed reached (competitive with respect to gzip), in the possibility of
partial decompression (which only needs to know the substitutions made
during compression) and the fact that it is byte-oriented. These three
properties make BPE very interesting when performing compressed pattern
matching. In [47] two different approaches to search BPE compressed text
are presented. Those are a brute force and a Shift-Or based technique.

The main disadvantages of BPE are: i) very slow compression, and bad
compression ratio (it is worse than compress and gzip).

50

4.5. Other techniques

To improve compression speed, modifications of the initial algorithm [21]
where proposed in [47], achieving better compression speed than gzip and
compress at the expense of a small lose in compression ratio. Basically, they
compute the substitution table for the first block of the text, and then they
use it for the remainder blocks.

4.5.2 Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) was discovered by Wheeler in 1983,
though it was not published until 1984 in [15]. It is not a compression
technique, but an algorithm to transform a original text (or string) to another
more compressible when using a compression technique.

This algorithm is reversible. Given a string S, BWT transforms it to a
new string T'S such as T'S contains the same data that S, but in a different
order, and from T'S (and some extra information) an Inverse BWT enables
recovering the original S source string.

Computing BWT

Let S be a string of length N. The algorithm starts building a N-order
matrix Myxpy, such as S appears in the first row, the second row contains
S >> 1 (S circularly shifted one position to the right), and so on.

The second step consists of sorting alphabetically all the rows of the
matrix, keeping track of the original position of the final rows. Note that
one of the rows of the sorted matrix corresponds to the initial S string. Let
call I the row containing the S string.

After the sorting, the first column of M if labelled F' and the last one is
labelled L. Two properties arise: 1) F' contains all characters in .S, but now
they are sorted alphabetically, and 2) character j in L is the prefix (referring
to S) of the string contained at row j.

The result of the BWT consists of the string composed of all characters
in column L of M, and the I value. That is, BWT(S) — (L, I). An example
of how applying BWT over a string ‘abraca’ is shown in Figure 4.8.

51

4. Semi-static text compression techniques

S M M
Oabraca 0| aabrac
llaabrac \ 1| abraca

«abraca® £|> 2lcaabra 2| acaabr = “caraab
3lacaabr bracaa bwt I=1

3
M is 4 racaabl Row 4|caabra
built 5bracaal sorting 5|racaab

F L~

Figure 4.8: Direct Burrows-Wheeler Transform

Computing Inverse BWT

The inverse BWT (IBWT) algorithm uses the output (L,I) of the BWT
algorithm to reconstruct its input, that is, the string S of length N. IBWT
consists of three phases.

In the first phase, the column F' of the matrix M is rebuilt. This is done
by sorting alphabetically the L string. In the example shown in Figure 4.8,
L = ‘caraab’, hence, after sorting L it is obtained F' = ‘aaabcr’.

In the second phase, the strings F' and L are used in order to calculate a
vector 1" which indicates the correspondence between the characters of both
the two strings. In such way, if L[j] is the k'* occurrence of the character ‘c’
in L, then T'[j] = i, such as F[i] is the k' occurrence of ‘c’ in F. Therefore
vector 1" represents a correspondence between the elements of F' and the
elements of L.

Example 4.5.1 Note that the first occurrence of ‘¢’= L[0] in F' happens
in position 4, hence T[0] = 4. The first occurrence of ‘a’ = L[1] is FI0],
therefore T[1] = 0, etc.

Position [0 1 2 3 4 5
L= a a a b
F= a b ¢ r
T=]4 0 5 1 2 3

52

4.5. Other techniques

From the definition of T, it can also be seen that F[T'[j]] = L[j]. This
property is interesting because it will enable recovering the source string S.

In the last phase, the source text S is obtained. Using the index I, as
well as vectors L and T', the process that permits to recover the text .S starts

performing:

i
T
~

Then N iterations are performed in order to recover the N elements of
S as follows:

Sn—i-1 < Lipl;
p Tlpl;
i 1+ 1;

|

|

Example 4.5.2 Having L="‘caraab’, T' = [4,0,5,1,2,3] and I = 1. The
process starts with p <« 1 and ¢ « 0. Hence the first iteration makes

Ss «— L[1] = ‘a’; p « T[1] = 0; i «— 1. The second iteration makes
Sy« L[0] = “c’; p < T[0] = 4; i — 2. So the string S is built right-to-left.
O

Using BWT in text compression

Once BWT has been applied over a source text S, and the transformed
string L and the I value have been obtained, it is possible to compress L
just applying a compression technique such as arithmetic encoding [57] or
Huffman [27].

In decompression, the process starts decompressing the compressed data
(using the same technique applied in compression) and then using the IBWT
process to obtain the plain text.

However, even when it is possible to compress L with either an arithmetic
or a Huffman based technique, results are better if a more specific encoder is

53

4. Semi-static text compression techniques

used. In [15], Burrows and Wheeler also showed how a “Move-to-Front”
(MTF) encoder [11] could be used along with BWT to achieve better
compression ratios. The idea consists of transforming the pair (L,I) to
another pair (R,I) such as R is a vector of numbers.

To see why this might lead to effective compression, let consider the
example of the letter ‘t’ in the word ‘the’, and let assume an input English
text S, containing many instances of ‘the’. When the rows in M are sorted,
all those rows starting with ‘he ’ will appear together. A large proportion
of them are likely to end in ‘t’. Hence, one region of the text L will contain
a very large number of ‘t’ characters, along with other characters that
can precede ‘he’ in English, such as space, ‘s’, ‘T’, and ‘S’. The same
argument can be applied to all characters in all words, so any localized region
of the string L will contain a large number of a few distinct characters.

The overall effect is that the probability that a character ch will occur at
a given point in L is very high if ch occurs near that point in L, and is low
otherwise. This property is exactly the one needed for effective compression
by a MTF encoder [11], which encodes an instance of character ch by the
count of distinct characters seen since the nearest previous occurrence of
chl.

Summarizing, consecutive repetitions of a character will set consecutive
zeros in the vector R, and consecutive repetitions of a small set of characters
will produce an output dominated by low numbers. For example, for some
sequences taken from Calgary corpus the percentage of zeros in the sequence
R may reach 90%. On average, this sequence contains 60% zeros [10].

As result, the R sequence will be more compressible than the initial S
text. It is usually compressed using either a Huffman based or an arithmetic
encoder. However, since zero is the dominant symbol in R, there are many
long runs in the sequence R consisting of zeros, so called zero-runs. This
lead to Wheeler to propose another transform called Zero-Run Transform
which is also known as RLE-0 to treat 0-runs in a special way. It was not

!Basically, a MTF encoder keeps a list Z with all characters in the alphabet used. Each
time a character ch is processed, ch is searched in Z, and the position j such as Z; = ch
is output. Then Z; is moved to the front of Z (by shifting the characters Z;, i = 0..j — 1
to the positions 1..j and setting Zy = ch).

94

4.6. Summary

bwt

— BWT » MTF

mtf

Rie-0| Huffman or)
S Arithmetic —S>
encoder |output

RLE-0

Y

Y

Figure 4.9: Whole compression using BWT, MTF and RLE-0

published by Wheeler but reported by Fenwick in [20]. Experimental results
indicate [7] that the application of the RLE-0 transform indeed improves the
compression ratio.

Figure 4.9 summarizes the whole compression process of a text S when
applying BWT, MTF and RLE-0 transforms.

4.6 Summary

In this Chapter, an introduction to classical Huffman technique as well as a
description of the mechanism to build a Huffman tree, and its representation
via a canonical tree were shown. Special emphasis in the description of the
two word-based Huffman techniques appeared in [48] was paid, since those
techniques use the same approach that the codes we develop in this thesis
and are presented in Chapters 5 and 6. In Section 4.4, the way Tagged
Huffman and Plain Huffman compressed text can be direct searched was
described.

Finally, two more techniques: Byte Pair Encoding, a compression scheme
based on pattern substitution, and the Burrows-Wheeler Transform (a
technique that is able to transform a text into another more compressible
one) were presented.

56

4. Semi-static text compression techniques

56

End-Tagged Dense Code

5.1 Chapter overview

This Chapter explains in detail the End-Tagged Dense Code, the precursor
of our work. This technique was developed in the Database Laboratory of
the University of A Corufia in collaboration with Gonzalo Navarro in 2003.
Even it is not a contribution of this thesis, it is deeply reviewed here because
it is the basis of the technique presented in Chapter 6, the (s, ¢)-Dense Code,
which constitutes the first real contribution presented in this thesis.

In Section 5.2, the motivation of the End-Tagged Dense Code is
presented. Next, the way End-Tagged Dense Code works is described in
Section 5.3. Later, encoding and decoding mechanisms are explained and
pseudocode is given in Section 5.4. Finally analytical and empirical results,
as well as some conclusions about End-Tagged Dense Code, are shown.

5.2 Introduction

End-Tagged Dense Code was first presented in [13]. This technique uses, as
Plain and Tagged Huffman do, a semi-static word-based model, but it is not
based on Huffman at all. It maintains the good features of Tagged Huffman

o7

5. End-Tagged Dense Code

code:

e It is a prefiz codel.

o As Tagged Huffman code, it enables fast decompression of arbitrary
portions of text, by using a flag bit in all the bytes that compose a
codeword.

e It permits using Boyer-Moore type searching algorithms [12] directly
on the compressed text!.

End-Tagged Dense Code improves Tagged Huffman compression ratio.
Besides, encoding and decoding processes are simpler and faster.

The remainder of this Chapter is organized as follows: First, End-Tagged
Dense Code is defined. Next, encoding and decoding processes are explained.
At last, empirical results which compare End-Tagged Dense Code against
Plain Huffman and Tagged Huffman are also shown.

5.3 End-Tagged Dense Code

End-Tagged Dense Code [13] starts with a seemingly dull change to Tagged
Huffman Code. Instead of using the flag bit to signal the beginning of a
codeword, the flag bit is used to signal the end of a codeword. That is, the
flag bit is 0 for the first bit of any byte of a codeword except for the last
one, which has a I in its more significative bit.

Table 5.1 describes the differences of codewords in End-Tagged Dense
Code and Tagged Huffman Code.

This change has surprising consequences. Now the flag bit is enough to
ensure that the code is a prefix code regardless of the contents of the other
7 bits of each byte. To see this, consider two codewords X and Y, being X
shorter than Y (|X| < |Y|). X cannot be a prefix of Y because the last byte

'Even when it is a prefiz code, it is not a suffiz code as Tagged Huffman is. Therefore,
even when it permits Boyer-Moore type searching algorithms, when a match is found, a
check over the previous byte is needed. A full explanation is presented in Page 90.

58

5.3. End-Tagged Dense Code

’ #Bytes ‘ Tagged Huffman Code ‘ End-Tagged Dense Code ‘
1 IXXXXXXX IXXXXXXX
2 IxxxxXXX OXXXXXXX OxxXXXXXX 1XXXXXXX
3 Ixxxxxxx OxxXXxxX OXXXXXXX OxxxXXXX OXXXXXXX 1XXXXXXX
n IxxxxXXX OXXXXXXX ... OXXXXXXX | OXXXXXXX ... DXXXXXXX 1XXXXXXX

Table 5.1: Format of codeword in both Tagged Huffman and End-Tagged
Dense Code

of X has its flag bit in 1, while the |X|-th byte of Y has its flag bit in 0.
This fact can be easily saw in Table 5.1, since a two-bytes codeword cannot
start with a 1xxxxxxx byte.

At this point, there is no need at all to use Huffman coding over the
remaining 7 bits to get a prefix code. Therefore it is possible to use all the
possible combinations of 7 bits in all the bytes, as long as the flag bit is used
to mark the last byte of the codeword.

Encoding process is simpler and faster than Huffman, since no tree has to
be built. Notice that it is not restricted to use symbols of 8 bits to form the
codewords. It is possible to use symbols of b bits. In such a way End-Tagged
Dense Code is defined as follows:

Definition 5.3.1 Given source symbols with decreasing probabilities
{pi}o<i<n the corresponding codeword using the End-Tagged Dense Code is
formed by a sequence of symbols of b bits, all of them representing base-
(2°=1Y digits (that is, from 0 to 2°=' — 1), except the last one which has a
value between 2°~1 and 2° — 1, and the assignment is done in a completely
sequential fashion.

That is, using symbols of 8 bits, the encoding process can be described
as follows:

e Words in the vocabulary are decreasingly ranked by number of
occurrences.

59

5. End-Tagged Dense Code

Word rank codeword assigned # Bytes | # words
0 10000000 1
1 10000001 1
2 10000010 1 27
2T —1=127 11111111 1
27 =128 00000000:10000000 2
129 00000000:10000001 2
130 00000000:10000010 2
255 00000000:11111111 2
256 00000001:10000000 2 2727
257 00000001:10000001 2
258 00000001:10000010 2
2797 427 —1=16511 | 01111111:11111111 2
2727 4+ 27 = 16512 00000000:00000000:10000000 3
16513 00000000:00000000:10000001 3
16514 00000000:00000000:10000010 3 (27)3
(273 + (2% +2" -1 | 01111111:01111111:11111111 3

Table 5.2: Code assignment in End-Tagged Dense Code

e Codewords 128 to 255 (10000000 to 11111111) are given to the first
128 words in the vocabulary.

e Words ranked from 128 to 16511 are assigned sequentially to two-byte
codewords. The first byte of each codeword has a value in the range
[0,127] and the second in range [128,255].

e Word 16512 is assigned a tree-byte codeword, and so on, just as if we
had a 21-bit number.

As it can be seen in Table 5.2, the computation of codes is extremely
simple: It is only necessary to order the vocabulary words by frequency
and then sequentially assign the codewords. Hence the coding phase will be
faster than using Huffman because obtaining the codes is simpler.

What is perhaps less obvious is that the code depends on the rank of the

60

5.4. Encoding and Decoding algorithms

words, not on their actual frequency. That is, if we have four words A, B, C,
D (ranked i...i+ 3) with frequencies 0.24, 0.22, 0.22 and 0.20, respectively,
then the code will be the same as if their frequencies were 0.9, 0.09, 0.009
and 0.001.

In Example 5.3.1, the differences among the codes generated by the Plain
Huffman Code, Tagged Huffman Code and End-Tagged Dense Code, are
shown. For the sake of simplicity we consider that the “bytes” used are
formed by only three bits (b = 3).

Example 5.3.1 A vocabulary which has 17 words us used. Table 5.3 shows
the codeword assigned to each word, assuming that the frequencies of those
words in the text follow an uniform distribution (p; = 1/17). In Table 5.4
an exponential distribution (p; = 1/2%) is assumed.

Assuming “bytes” of three bits, Tagged Huffman and End-Tagged Dense
Code use one bit for the flag and two for the code (this makes it look worse
than it is). Flag bits are shown underlined. Moreover, it can be seen that
Plain Huffman uses the whole three bits to the code.

Note that in the case of End-Tagged Dense Code, the code assignment
is the same independently of the distribution of frequencies of the words in
the vocabulary. O

5.4 Encoding and Decoding algorithms

5.4.1 Encoding algorithm

As seen, Encoding process is really simple. In fact, it is not necessary to
physically store the results of these computations: With a few operations
we can obtain on-the-fly, given a word rank i, its ¢-byte codeword, in
O(¢) = O(logi) time. However, in practice, it is faster to sequentially
compute the codewords of the whole words in the vocabulary (in O(n) time)
in such a way that the assignment word-codeword is precomputed before the
second pass of the compression starts.

61

5. End-Tagged Dense Code

Word Probab. [Plain Huffman | Tagged Huffman | End-Tagged Dense Code

A 1/17 000 100 000 100

B 1/17 001 100 001 101

C 1/17 010 100 010 110

D 1/17 011 100 011 111

E 1/17 100 101 000 000 100

F 1/17 101 101 001 000 101

G 1/17 110 000 101 010 000 110

H 1/17 110 001 101 011 000 111

I 1/17 110 010 110 000 001 100

J 1/17 110 011 110 001 001 101

K 1/17 110 100 110 010 001 110

L 1/17 110 101 110 011 001 111

M 1/17 110 110 111 000 010 100

N 1/17 110 111 111 001 010 101

O 1/17 111 000 111 010 010 110

P 1/17 111 001 111 011 000 010 111

Q 1/17 111 010 111 011 001 011 100

Table 5.3: Codes for an uniform distribution.

Word Probab. [Plain Huffman [Tagged Huffman [End-Tagged Dense Code
A 1/2 000 100 100
B 1/4 001 101 101
(@] 1/8 010 110 110
D 1/16 011 111 000 111
E 1/32 100 111 001 000 100
F 1/64 101 111 010 000 101
G 1/128 110 111 011 000 000 110
H 1/256 111 000 111 011 001 000 111
1 1/512 111 001 111 011 010 001 100
J 1/1024 111 010 111 011 011 000 001 101
K 1/2048 111 011 111 011 011 001 001 110
L 1/4096 111 100 111 011 011 010 001 111
M 1/8192 111 101 111 011 011 011 000 010 100
N 1/16384 | 111 110 111 011 011 011 001 010 101
O 1/32768 | 111 111 000 111 011 011 011 010 010 110
P 1/65536 | 111 111 001 111 011 011 011 011 000 | 010 111
Q 1/65536 | 111 111 010 111 011 011 011 011 001 | 011 100

Table 5.4: Codes for an exponential distribution.

62

5.4. Encoding and Decoding algorithms

Notice that there is no need to store the codewords (in any form such as
a tree) nor the frequencies in the compressed file. It is enough to store the
plain words sorted by frequency. Therefore, the vocabulary will be slightly
smaller than in the case of the Huffman code, where some information about
the shape of the tree must be stored (even when a canonical Huffman tree
is used).

Even the codes are assigned in a sequential way, once words have been
sorted by frequency in the vocabulary, a on-the-fly encode algorithm can also
be used. Next, the pseudocode for the on-the-fly encode algorithm is shown.
The algorithm outputs the bytes of each codeword one at a time from right
to left. That is, it begins outputting the less significative bytes first.

Encode (i)
1) //input i: rank of the word being encoded 0 <i<n —1

(

(2) output ((¢ mod 128) + 128); //rightmost byte
(3) © «— i div 128;

(4) while ¢ > 0 // remainder bytes

(5) i i1,

(6) output (i mod 128);

(7) i «— 1 div 128;

5.4.2 Decoding algorithm

The first step to decompress a compressed text is to store the words
that compose the vocabulary in a vector. Since these words were stored
ranked by frequency along with the compressed text during compression,
the vocabulary of the decompressor is already recovered ranked by frequency.
Once the sorted vocabulary is obtained the decoding of codewords can begin.

In order to obtain the word w; which corresponds to a given codeword
¢;, the decoder can run a simple computation to obtain the rank of the word
i from the codeword ¢;. Then, using the value i, the corresponding word
can be obtained from vocabularyli]. A code ¢; of £ bytes can be decoded in
O(¢) = O(log1) time.

The algorithm inputs a codeword z, and it iterates over each byte of

63

5. End-Tagged Dense Code

x. The last byte of the codeword has the tag byte to 1, so its value is
greater than 127. This permits to distinguish the end of the codeword.
After the iteration, a position 7 is returned, and the decoded word obtained
from vocabulary[i]. Note that decoding a four bytes codeword = = zoz1x223
basically performs:

i = (((wo x 128) + 21) x 128) + x3) x 128) + (x5 — 128)

Decode (x)

1) //input z: the codeword to be decoded

2) //output i: the position of the decoded word in the ranked vocabulary
3) i+ 0;

4) k < 0; // byte of the codeword

while z[k] < 128

NN N N N N S S
ot
N 2NN AN NS NN NN

6 1 — 1 x 128 + z[k];
7 k—k+1,

8) i« ix 128 + x[k] — 128;
9) return i;

5.5 Using ETDC to bound Plain Huffman

An interesting property of this code is that it can be used as a bound for
the compression that can be obtained with a Huffman code. It is clear that
the End-Tagged Dense Code uses all the possible combinations of all bits,
except the first one, that is used as a flag as in the Tagged Huffman Code.
Therefore, calling Dy the code length of an End-Tagged Dense Code that
uses symbols of b bits we have

Dyt S Hy <Dy <Tpy < Dy

Note that Figure 5.1 shows the shape of a Tagged Huffman tree. It is also
shown how would be a tree represented by the codewords generated by End-
Tagged Dense Code. As presented there, it can be seen that End-Tagged
Dense Code achieves a smaller compressed text size than Tagged Huffman,
since a internal node will have 256 children: 128 internal nodes and also 128

64

5.6. Empirical Results

= 127

Mk [lO] xxxxxxx | of o 1] xxxxxxx |

M 727 o o000] O 727 [xooo00 |
Tagged Huffman End-Tagged Dense Code

k leaves (128 - k) 128 leaves 128
internal nodes internal nodes

Figure 5.1: Comparison of Tagged Huffman and End-Tagged Dense Code

leaf nodes. However in Tagged Huffman a internal node cannot have more
than 128 children, some of them k will be leaves and the other (128 — k)
will be internal nodes. Therefore End-Tagged Dense Code have, at least,
the same number of codewords of a given length | (where [corresponds to a
level in the tree).

In [13] a more precise comparison on these three codes is presented.
There, it is shown how the End-Tagged Dense Code provides lower and
upper bounds to the compression that can be obtained by Huffman with
texts in natural language where the Zipf’s Law is assumed [59]. We present
a generalization of this bounds in the next Chapter. Using our compression
method, the (s, c)-Dense Code even closer bound were obtained.

5.6 Empirical Results

Some large text collections from TREC-2 (AP Newswire 1988 and Ziff Data
1989-1990) and from TREC-4 (Congressional Record 1993, Financial Times
1991, 1992, 1993 and 1994) were used in the tests. Corpora were compressed
using Plain Huffman, End-Tagged Dense Code and Tagged Huffman. The

65

5. End-Tagged Dense Code

spaceless word model [48] was used to create the vocabulary; that is, if a
word was followed by a space, we just encoded the word, otherwise both the
word and the separator were encoded.

The size of the compressed vocabulary was excluded from the results (this
size is negligible and similar in all cases, although a bit smaller End-Tagged
Dense Code because only the ranking of words is needed).

Table 5.5 shows the compression ratio obtained by the codes mentioned.
The second column contains the original size of the processed corpus and
the following columns indicate the number of words in the vocabulary, the
0 parameter of the Zipf’s Law [59, 6] and the compression ratio for each
method.

‘ Corpus H Original Size ‘ Voc. Words ‘ 0 ‘ P.H. ‘ ETDC ‘ T.H. ‘
AP Newswire 1988 250,994,525 268,896 | 1.852045 | 31.18 32.00 | 34.57
Ziff Data 1989-1990 185,417,980 237,607 | 1.744346 | 31.71 32.60 35.13
Congress Record 51,085,545 117,713 | 1.634076 | 27.28 28.11 30.29
Financial Times 1991 14,749,355 75,687 | 1.449878 | 30.19 31.06 33.44
Financial Times 1992 175,449,248 284,878 | 1.630996 | 30.49 31.31 33.88
Financial Times 1993 197,586,334 291,404 | 1.647456 | 30.60 | 31.48 34.10
Financial Times 1994 203,783,923 294,490 | 1.649428 | 30.57 | 31.46 34.08

Table 5.5: Comparison of compression ratios.

As it can be seen, Plain Huffman gets the best compression ratio (as
expected since it is the optimal prefix code) and End-Tagged Dense Codes
always obtain better results than Tagged Huffman, with an improvement of
up to 2.5 points. In fact, it is worse than the optimal Plain Huffman only
by less than 1 point on average.

5.7 Conclusions

End-Tagged Dense Code, a simple and fast technique for compressing natural
language texts databases, was presented. Its compression scheme is not
based on Huffman at all, however it generates prefiz codes by using a tag bit
that indicates if a byte is the last byte of the codeword or not. Being a Tagged
code, direct searching the compressed text, and also direct decompression
are possible.

66

5.7. Conclusions

Empirical results (in compression ratio) show that the compression
achieved is good. It achieves less than one percentage point of compression
ratio overhead with respect to Plain Huffman, and improves Tagged
Huffman’s about 2,5 percentage points. Moreover, compression and
decompression processes are faster, because the encode and decode algorithm
are simpler. Empirical results about efficiency are provided in the next
Chapter, using our generalized version of ETDC.

67

5. End-Tagged Dense Code

68

The new technique:
(s,c)-Dense Code

6.1 Chapter overview

The first contribution of this thesis is presented in this Chapter. It consists of
a new word-based byte-oriented two-pass technique denominated (s, ¢)-Dense
Code, which generalizes the End-Tagged Dense Code technique described in
the previous Chapter.

This Chapter is structured as follows: First, the key idea and the
motivation of the (s,c)-Dense Code is shown. In Section 6.3 the new
technique is defined and described. Next, procedures to obtain optimal s
and ¢ parameters are presented and encoding and decoding processes are
explained via pseudocodigo. In Section 6.6, empirical results comparing
(s,c)-Dense Code against End-Tagged Dense Code, Plain Huffman and
Tagged Huffman are also shown. Finally some conclusions end this Chapter.

6.2 Introduction

End-Tagged Dense Code [13] has been described in Chapter 5. As shown
this technique uses also a semi-static word-based model as the compression

69

6. The new technique: (s, c)-Dense Code

techniques presented in [48, 49], but it is not based on Huffman at all.

It maintains the good features of Tagged Huffman code:

o It is a prefiz code’.
e It enables fast decompression of arbitrary portions of text.

e It permits to use use Boyer-Moore type searching algorithms [42], that
is, skipping bytes, directly on the compressed text!.

In Section 5.6 it is shown how End-Tagged Dense Code improves Tagged
Huffman compression ratio in more than 2.5 % points. However, its
difference with respect to Plain Huffman is about 1 point (in percentage).

As shown in Chapter 5, End-Tagged Dense Code uses 20~! digits, from
0 to 20~ — 1, for the bytes at the beginning of a codeword, and it uses the
other 20=1 digits, from 2°~! to 2° —1, for the last byte of the codeword. The
question that arises now is whether that proportion between the number of
non terminal and terminal digits is the optimal one; that is, for a given
corpus with a specific distribution of word frequencies, it might be that
a different number of non terminal digits (continuers) and terminal digits
(stoppers) could compress better than just using 20=1 This idea has been
previously pointed out in [43], and it is the basic difference between End-
Tagged Dense Code and (s, ¢)-Dense Code, as it will be presented later.

Example 6.2.1 introduces the advantages of using a variable -rather a
fixed- number of stoppers and continuers.

Example 6.2.1 Let suppose that 5,000 distinct words compose the
vocabulary of the text to compress. Suppose also that bytes are used to
form the codewords, so b = 8.

If End-Tagged Dense Code is used, that is, if the number of stoppers
and continuers is 27 = 128, the maximum codeword length will be 2, since

'Even when it is a prefiz code, it is not a suffiz code as Tagged Huffman is. Therefore,
even when it permits Boyer-Moore type searching algorithms, when a match is found, a
check over the previous byte is needed. A full explanation is presented in Page 90.

70

6.2. Introduction

n=5,000
128 230
1128 | 128 + 128x128 = 16,512
| 230 | 230 + 230x26 = 6,210 \

Figure 6.1: 128 versus 230 stoppers with a vocabulary of 5,000 words

128 + 1282 = 16,512 is the number of words that can be encoded with
codewords of one or two bytes. Therefore, there are 16,512—5,000 = 11,512
unused codewords of two bytes. In this situation, all the 128 one-byte
codewords and 5,000 — 128 = 4,872 two-bytes codewords are used.

If the number of stoppers chosen is 230 (so the number of continuers is
256 — 230 = 26), then 230 + 230 x 26 = 6,210 words can be encoded with
codewords of only one or two bytes. The first 230 words can be encoded
with one-byte codewords, and the remainder 230 x 26 = 5,980 words with
two-bytes codewords. Therefore the whole 5,000 words can be assigned
codewords of 1 or 2 bytes in the following way: the 230 most frequent words
are assigned one-byte codewords and the remainder 5,000 — 230 = 4,770
words are assigned two-bytes codewords.

It can be seen that words from 0 to 128 and words ranked from 231 to
5,000 are assigned codewords of the same length in both schemes. However
words from 129 to 230 are assigned shorter codewords when using 230
stoppers instead of only 128. Figure 6.1 describes this scenario. a

As result, it seems appropriated to adapt the number of stoppers and

continuers to:

71

6. The new technique: (s, c)-Dense Code

e The size of the vocabulary (n). It is possible to maximize the available
number of short codewords depending on n.

e The distribution of frequencies of the words of the vocabulary.
Intuitively, if that distribution presents a very steep slope (that is, if it
is very biased), it can be desirable to increase the number of words that
can be encoded with small codewords (so a high number of stoppers
should be chosen). However this will imply that the less frequent words
are encoded with larger codewords, what does not matter since the gain
in the most frequent words compensate the loss of compression in the
least frequent words.

When that distribution is quite plain, it is preferred to reduce the
largest-codeword size, in order not to loss compression in the least
frequent words.

6.3 (s,c)-Dense Code

We define (s, ¢)- stop-cont codes as follows.

Definition 6.3.1 Given source symbols with probabilities {p; }o<i<n an (s, c)
stop-cont code (where ¢ and s are integers larger than zero) assigns to each
source symbol i a unique target code formed by a s plus base-c digit (from s
to s + ¢ — 1) sequence terminated by a base-s digit (between 0 and s —1).

It should be clear that a stop-cont coding is just a base-c numerical
representation, but adding s to each digit, with the exception that the last
digit is between 0 and s — 1. Digits between s and s + ¢ — 1 are called
“continuers” and those between 0 and s — 1 are called “stoppers” . The next
property clearly follows.

Property 6.3.1 Any (s,c) stop-cont code is a prefiz code.

Proof 6.3.1 If one code were a prefiz of the other, since the shorter code
must have a final digit of value lower than s, then the longer code must have

72

6.3. (s,c)-Dense Code

an intermediate digit which is not in base ¢ plus s. This is a contradiction.
O

Among all the possible (s,c¢) stop-cont codes for a given probability
distribution, the dense code is one that minimizes the average codeword
length. This is because a dense code uses all the possible combinations of
bits in each byte. That is, codes can be assigned sequentially to the ranked
symbols.

Definition 6.3.2 Given source symbols with decreasing probabilities
{pi}o<i<n, the corresponding (s, c)-Dense Code ((s,c)-DC) is an (s,c) stop-
cont code where the codewords are assigned as follows: Let k be the number
of bytes in each codeword, which is always > 1, then k will be such that

k=11 k-1

s—<i<s
c—1 — c—1

Thus, the code corresponding to source symbol ¢ is formed by £k — 1 s
plus base-c digits and a final base-s digit. If £ = 1 then the code is simply
the stopper i. Otherwise the code is formed by the number |z/s| written
in base ¢, and adding s to each digit (they are base-c digits which are then

sch—1_g
c—1

increased by s), followed by x mod s, where x =i —

That is, using symbols of 8 bits (b = 8), the encoding process can be
described as follows:

e One-byte codewords from 0 to s — 1 are given to the first s words in
the vocabulary.

e Words ranked from s to s + sc — 1 are assigned sequentially two-bytes
codewords. The first byte of each codeword has a value in the range
[s,s + ¢ — 1] and the second in range [0,s — 1].

e Words from s+ sc to s+ sc+sc? — 1 are assigned tree-bytes codewords,
and so on. Table 6.1 presents this process.

Lets see another example of how codewords are assigned.

73

6. The new technique: (s, c)-Dense Code

Word rank codeword assigned | # Bytes | # words

0 [0] 1
1 1] 1

2 2] 1 s
s—1 1] 1
s [s][0] 2
s+1 [s][1] 2
s+2 [s][2] 2

s +;— 1 [s] [s-1] 2 sc
s+s [s+1][0] 2
s+s+1 [s+1][1] 2
s+ sc -1 .[é.+c—1} [s-1] 2
s+ sc [s][s][0] 3
s+sc+1 s][s][1] 3

s+sc+2 [s][s][2] 3 sc?
s+ sc —;—“302 -1 .[.s.—i—c-l}[s—&—c-l][s-l] 3

Table 6.1: Code assignment in (s, ¢)-Dense Code

Example 6.3.1 The codes assigned to symbols i € 0...15 by a (2,3)-DC
are as follows: (0), (1), (2,0), (2,1), (3,0), (3,1), (4,0), (4,1), (2,2,0), (2,2,1),
(2,3,0), (2,3,1), (2,4,0), (2,4,1), (3,2,0) and (3,2,1). O

Note that the code does not depend on the exact symbol probabilities,
but just on their ordering by frequency. We now prove that the dense coding
is an optimal stop-cont coding.

Property 6.3.2 The average length of a (s, c)-dense code is minimal with
respect to any other (s,c) stop-cont code.

Proof 6.3.2 Let us consider an arbitrary (s,c) stop-cont code, and let us
write all the possible codewords in numerical order, as in FExample 6.5.1,
together with the symbol they encode, if any. Then it is clear that (i) any
unused code in the middle could be used to represent the source symbol with

74

6.3. (s,c)-Dense Code

longest codeword, hence a compact assignment of target symbols is optimal;
and (ii) if a less probable symbol with a shorter code is swapped with a more
probable symbol with a longer code then the average code length decreases,
and hence sorting the symbols by decreasing frequency is optimal. O

Since sc*~1 different codewords can be coded using k digits, let us call

k
i1 Ck—l
Wkszg scdT =5 1
: c—

(where W§ = 0) the number of source symbols that can be coded with up
to k digits. Let us also call

Wy

=Y

=W +1
the sum of probabilities of source symbols coded with k& digits by an
(s,c)-DC.
Then, the average codeword length, LDy,), for the (s,¢)-DC is

Wy

LD = Zkfk—zk > oy
k=1 j=Wp_ +1

S

Ks—-1 k+1 K*—1
S YR Y m=1 Y Y
k=1 j=W:+1 k=1 j=W?:+1

where K% = [logap_ (1 + M)L and n is the number of symbols in
the vocabulary.

It is clear from Definition 6.3 that the End-Tagged Dense Code is a
(20=1,20-1.DC and therefore (s,¢)-DC can be seen as a generalization of
the End-Tagged Dense Code where s and ¢ are adjusted to optimize the
compression for the distribution of frequencies and the size of the vocabulary.

As it is shown in [13] it is proved that (207120=1)-DC is more efficient
than Tagged Huffman. This is because Tagged Huffman is a (2°71,271) (non
dense) stop-cont code, while the End-Tagged Dense Code is a (2071,20-1)-
Dense Code.

75

6. The new technique: (s, c)-Dense Code

Freq X bytes

Rank Word Freq PH (6,2)-DC ETDC TH PH (6,2)-DC ETDC TH
1 A 0.200 [0] [0] [4] [4] 0.20 0.20 0.20 0.20
2 B 0.200 [1] [1] [5] [5] 0.20 0.20 0.20 0.20
3 C 0.150 [2] [2] [6] [6] 0.15 0.15 0.15 0.15
4 D 0.150 [3] [3] [7] [7][0] 0.15 0.15 0.15 0.30
5 E 0.140 [4] [4] [0][4] [7][1] 0.14 0.14 0.28 0.28
6 F 0.090 [5] [5] [0][5] [7112] 0.09 0.09 0.18 0.18
7 G 0.040 [6] [6][0] [0][6] [7][3][0] 0.04 0.08 0.08 0.12
8 H 0.020 [7][0] [6][1] [0][7] [7][3][1] 0.04 0.04 0.04 0.06
9 I 0.005 [71[1] [6][2] [1][4] [71(3]12] 0.01 0.01 0.01 0.015
10 J 0.005 [7]12] [6][3] [1][5] [7][3][3] 0.01 0.01 0.01 0.015
average codeword length 1.03 1.07 1.30 1.52

Table 6.2: Comparative example among compression methods, for b=3

Example 6.3.2 Table 6.2 shows the codewords assigned to a small set of
words ordered by their frequency when using Plain Huffman (P.H.), (6,2)-
DC, End-Tagged Dense Code (ETDC) which is a (4,4)-DC, and Tagged
Huffman (TH). Digits of three bits (instead of bytes) are used for simplicity
(b=3), and therefore s + ¢ = 8. The last four columns present the products
of the number of bytes by the frequency for each word, and its addition, the
average codeword length, is shown in the last row.

It is easy to see that, for this example, Plain Huffman and the (6,2)-Dense
Code are better than the (4,4)-Dense Code (ETDC) and therefore they are
also better than Tagged Huffman. Notice that (6,2)-Dense Code is clearly
better than (4,4)-Dense Code because it takes advantage of the distribution
of frequencies and of the number of words in the vocabulary. However the
values (6,2) for s and ¢ are not the optimal ones since a (7,1)-Dense Code
obtains an optimal compressed text having, in this example, the same result
than Plain Huffman. O

The problem now consists of finding the s and ¢ values (assuming a fixed b
where 2° = s + ¢) that minimize the size of the compressed text.

6.4 Optimal s and ¢ values

The key advantage of this method with respect to End-Tagged Dense Code
is the ability to use the optimal s,c values. In all the real text corpora from

76

6.4. Optimal s and ¢ values

TREC? used in our experiments, the size of the compressed text, as a function

of s, has only one local minimum. See Figures 6.2 and 6.3, where optimal

s values are shown for some real corpora, as well as the curves where it can

be seen that a unique minimum exists.

In Figure 6.2 the size of the compressed texts and the compression ratios

are shown as a function of the s values, for Ziff and Ap-Newswire texts. As

it is also shown, in the Table of Figure 6.2, the optimal s value for Ziff corpus

is 198, while for the AP-Newswire corpus the maximum compression ratio is

achieved with s = 189. In the bottom table, we show sizes and compression

ratios when s values close to the optimum are used over these two corpus.

a1

40

391

38

371

36

compression ratio (%)

351

341

331

321

31p

—— Ap Newswire
ZIFF Data

50

s value

s value

I

Ap Newswire Corpus

ZIFF Corpus

ratio(%) size(bytes) ratio(%) size(bytes)
186 31.4575 78,956,616 31.9234 59,191,693
187 31.4565 78,954,060 31.9192 59,183,930
188 31.4558 78,952,303 31.9156 59,177,207
189 31.4554 78,951,377 31.9122 59,171,003
190 31.4555 78,951,674 31.9092 59,165,319
191 31.4560 78,952,893 31.9064 59,160,290
192 31.4569 78,955,045 31.9041 59,155,863
195 31.4622 78,968,414 31.8990 59,146,488
196 31.4650 78,975,466 31.8981 59,144,824
197 31.4684 78,983,892 31.8976 59,143,905
198 31.4722 78,993,433 31.8976 59,143,837
199 31.4764 79,004,086 31.8980 59,144,550
200 31.4813 79,016,243 31.8987 59,146,012
201 31.4866 79,029,758 31.9000 59,148,335

Figure 6.2: Compressed text

values.

sizes and compression ratios for different s

“Text REtrieval Conference (TREC) is an international conference where standard and

well-known real corpora are used to test Text Retrieval Systems.

77

6. The new technique: (s, c)-Dense Code

9.5r

©

*®
3

o]
T

N
3

~

I
3
T

Size of the compressed text (bytes)

(o]
T

@
3
T

50 100 150 200 250
s value

Figure 6.3: Size of the compressed text for different s values

This property (that is used as a heuristic) permits a binary search for
the optimal s value (and ¢ = 2° — s). We have produced, however, artificial
distributions where more than one local minima exist. Hence, although a
sequential search for the optimal s,c values is theoretically necessary, a binary
search will, in real cases, find the best s and ¢ values.

When a unique minimum exists, the size of the compressed text decreases
when s is increased, until reaching the unique optimal s value. After that
optimal s value, increments of s produce a loss in the compression ratio.
This is shown in Figure 6.3. Of course the value of ¢ depends on the value
of s because ¢ = 2° — s always holds.

Intuitively, it is easy to see that when s is very small the number of high
frequency words encoded with very few bytes (that is, one or two bytes) is
also very small (s words are encoded with just one byte and s - ¢ with two
bytes) but in this case ¢ is large and therefore words with low frequency will
be encoded with few bytes (s - ¢ words will be encoded with 3 bytes, s - ¢3
with 4 bytes and so on, but if ¢ is so large, probably 3 bytes will be enough

to encode the last word of the ranked vocabulary).

It is clear that, as s grows, highest frequency words will be encoded with

78

6.4. Optimal s and ¢ values

less bytes, so we improve the compression of high frequency words. But at
the same time, as s grows, lowest frequency words will need more bytes to
be encoded, so we loss compression in those words.

As consequence, if we try all the possible values of s starting at s = 1,
we will see (as in Figure 6.3) that, in the beginning, compression improves
a lot because each increment of s produce that words with high frequency
become encoded by a codeword that is one byte shorter.

When s becomes larger, for each increment of s the number of words
encoded with less bytes is smaller in proportion and these words have
lower frequency. Therefore, with each increment of s, we gain less and less
compression in the highest frequency words. At the same time, we lose more
and more compression in the lowest frequency words, because with each
increment of s they will need more bytes to be encoded. At some point, the
compression lost in the last words is larger than the compression gained in
words at the beginning, and therefore the global compression ratio decreases.
That point gives us the optimal s value. It is easy to see in Figure 6.3 that,
around of the optimal value, the compression is relatively insensitive to the
exact value of s. This fact causes the smooth bottom of the curve.

The binary search algorithm takes advantage of this property. It is not
necessary to check all the values of s because the shape of the distribution of
compression ratios as a function of s is known. Therefore it leads the search
towards the area where compression ratio improves.

6.4.1 Algorithm to get the optimal s and ¢ values

This Section present both the binary and sequential algorithms developed
to obtain the optimal ¢ and ¢ values for a given vocabulary.

Both algorithms BinaryFindBestS() and SequentialFinBestS() need to
know the size (in bytes) of the compressed text for any given s and ¢ values,
in order to chose the best. This size is computed by another algorithm called
computeSizeS().

ComputeSizeS() uses a list of accumulated frequencies acc() previously
computed to efficiently get the size of the compressed text. The size

79

6. The new technique: (s, c)-Dense Code

of the compressed text can be computed for any given s and c values,
as follows: size(yres) = acc(s) + 3 pso K * (acc(sc"1) — ace(sch2)) =
acc(n) + 3,50 (ace(n) — ace(sc’)). The pseudocode of computeSizeS() is
next addressed:

computeSizeS (s, c, acc)
1) //inputs: s, ¢ and acc, the vector of accumulated frequencies

2) //output: the length of the compressed text using s and ¢
3) k « 1;n < number ofpositions in vector 'acc’;
4) Right «— min(s,n);
5) total «— acc[Right —1];
6) while Right < n
7) Left < Right;
8) Right — Right + sc®;
9) ke k41
0

10) if Right > n then

11) Right «— n;

12) total — total + k * (acc[Right — 1] — acc[Left]);
)

13) return total,;

(
(
(
(
(
(
(
(
(
(
(
(
(

Notice that computing the size of the compressed text for a specific value
of s costs O(log.n), except for ¢ = 1, in which case it costs O(n/s) =

O(n/2°).

Sequential search

Sequentially searching the best s and ¢ values consist on computing the size
of the compressed text for each possible s value and then choosing the s
value that minimizes the compressed text size.

SequentialFindBestS (b, acc)
(1) //inputs: b value (2° = ¢+ s) and acc, the vector of accumulated frequencies
(2) //output: The best s and c values
(3) sizeBestS «— oo;
(4) fori=1to2°—1
(5)

5 sizeS «— computeSizeS(i,2° — i, acc);

80

6.4. Optimal s and ¢ values

(6) if sizeS < sizeBestS then
(7) bestS «—
(8) sizeBestS «— sizeS;
(9) bestC «— 2° — bestS;
(10) return bestS, bestC)

Since this algorithm call computeSizeS() for each s ¢ {1 .. 2 — 1},
sequential search cost is

2b—1 2b—1
n n 1 n b
0 % + z-:EQ log;n] = O % + log(n) ;:2 o0 | = O (ﬁ +2 log(n))

The other operations of the sequential search are constant, and we have
also an extra O(n) cost to compute the accumulated frequencies. Hence the
overall cost to find s and ¢ is O(n + 5 + 2%log(n)) = O(n), supposing a
previously sorted vocabulary.

Binary search

It consists of a binary search algorithm that, using the ComputeSizeS()
function, computes the size of the compressed text for two consecutive values
of s in the middle of the interval that is checked in each iteration. Initially
these two points are: (|2°~'| — 1 and |[2°7!|). Then the algorithm (using
the heuristic of the existence of a unique minimum) can lead the search to
the point that reaches the best compression ratio. In each new iteration, the
search space is reduced by half and a new computation of the compression
that is obtained with the two central points of the new interval is performed.
Finally, the s and ¢ values that minimize the length are returned.

BinaryFindBestS (b, acc)

(1) //inputs: b value (2° = ¢ + s) and acc, the vector of accumulated frequencies
(2) //output: The best s and c¢ values

(3) Lp « 1; //Lp and Up the lower and upper

81

6. The new technique: (s, c)-Dense Code

)y Up «— 2°—1; //points of the interval being checked
) while Lp+1 < Up
!
) sizePp — computeSizeS(M —1,2% — (M — 1), acc); //size with M — 1
8) sizeM «+ computeSizeS(M,2° — M, acc); //size with M
) if sizePp < sizeM then
0) Up «— M —1;
1) else Lp «— M;
12)if Lp <Up then //Lp=Up—1and M = Lp
) sizeNp «— computeSizeS(Up,2° — Up, acc); //size with M + 1
14) if sizeM < sizeNp then
) bestS — M;
) else bestS «— Up;
17) else bestS «— Lp; //Lp=Up=M —1
)
)

Notice that computing the size of the compressed text for a specific
value of s costs O(log.n), except for ¢ = 1, in which case it costs
O(n/s) = O(n/2"). Hence the most expensive possible sequence of calls
to computeSizeS in a binary search is that for values ¢ = 2071, ¢ = 2072,
c=20"3_ ... ¢=1. The total cost of computeSizeS over that sequence of

c values is

b—1 b—1
n n 1 n
o = gty = 05 ko)

The other operations of the binary search are constant, and we have
also an extra O(n) cost to compute the accumulated frequencies. Hence
the overall cost to find s and ¢ is O(n + log(n)log(b)). Since the maximum
b of interest is such that b = [logsn| (as at this point we can code each
symbol using a single stopper), the optimization algorithm costs at most
O(n +log(n)loglog(n)) = O(n), assuming the vocabulary is already sorted.
We have succeeded in making the part that computes the optimal s and ¢
values totally negligible.

Comparing with Huffman algorithm is also linear once the vocabulary
is sorted, but the constant is in practice larger because it involves more
operations than just adding up frequencies.

82

6.5. Encoding and Decoding algorithms

Comparing the cost of computing the optimal s and ¢ values against
the process of building a Plain Huffman tree optimally [35], it can be seen
that both processes run in linear time O(n) once the vocabulary is sorted.
However, building a Huffman tree® takes O([n +n/2°] + [n/2%] + [n/2° +
n]), while computing the optimal s and ¢ values takes only O(n +
log(n)loglog(n)). As result, (s,c)-Dense Code encoding is faster than Plain
Huffman encoding process.

6.5 Encoding and Decoding algorithms

Once the optimal s and ¢ values for a given vocabulary are known, it is
possible to perform the code generation process. This encoding is usually
done in a sequential fashion as shown in Table 6.1. However an on-the-
fly encoding process is also available as happened in End-Tagged Dense
Code. Given a word rank i, its £-byte codeword, can be easily computed in
O(¢) = O(log1) time.

Hence, there is no need to store the codewords (in any form such as a
tree) nor the frequencies in the compressed file. It is enough to store the
plain words sorted by frequency and the s value used in the compression
process. Therefore, the vocabulary will be slightly smaller than in the case
of the Huffman code, where some information about the shape of the tree
must be stored (even when a canonical Huffman tree is used).

6.5.1 Encoding algorithm

Even though the encoding process which assigns a codeword to each word
in the ordered vocabulary, is performed in a sequential way, a on-the-fly
encoding is also possible.

The following pseudocode presents the on-the-fly encode algorithm. The

3In order to be able to perform a canonical Huffman encoding, it is not needed to
maintain a Huffman tree in memory. It is only needed to calculate the number of leaves
that will appear in each level of the tree. That is, the number of codewords of 1, 2, 3, ...
bytes that will be generated.

83

6. The new technique: (s, c)-Dense Code

algorithm outputs the bytes of each codeword one at a time from right to
left. That is, it begins outputting the less significative bytes first.

Encode (i)
1) //input: 4, the rank of the word in the vocabulary

(

(2) //outputs: the codeword C; from right to left
(3) output i mod s;

(4) = — i/s;

(5) whilez >0

(6) z — x—1;

(7) output(z mod c) + s;

8) @ e g

6.5.2 Decoding algorithm

The first step of decompression is to store the words that compose the
vocabulary in a vector. Since these words were saved ranked by frequency
along with the s value and the compressed text during compression, the
vocabulary of the decompressor is already recovered ranked by frequency.
Once the sorted vocabulary is loaded, the decoding of codewords can begin.

In order to obtain the word w; which corresponds to a given codeword
¢; the decoder can run a simple computation to obtain, from the codeword,
the rank of the word i. Then, using the value i, it obtains the word from
the vocabulary sorted by frequency. A code ¢; of £ bytes can be decoded in
O(¢) = O(log i) time as follows:

The decoder uses a base table. This table indicates the rank of the first
word of the vocabulary that is encoded with k bytes (k > 1). Therefore
base[l] = 0, base[2] = s, base[3] = s + sc,... base[k] = base[k — 1] + scF2.

The decode algorithm inputs a codeword x, and it iterates over each byte
of . The end of the codeword can be easily recognized because its value is
smaller than s. After the iteration, the value ¢ holds the relative position of
the word w; among all the words of k bytes. Then the base table is used,
and ¢ < i+ base[k] is performed. As result, a position 7 is returned, and the
decoded word w; is obtained from vocabularyli].

84

6.6. Empirical Results

Decode (base,x)
1) //inputs: z, the codeword to be decoded and the base table
/ /output: %, the position of the decoded word in the ranked vocabulary
i «— 0;
k < 1; // number of bytes of the codeword

5) while z[k] > s
7 k—k+1;
8) i+—ixs+zxlk];

(

(2)

3)

(4)

(5)

(6) i —1iXc+ (z[k] — s);
(7)

(8)

(9) ¢« i+ baselk];

(10

6.6 Empirical Results

We used some large text collections from TREC-2 (AP Newswire 1988 and Ziff
Data 1989-1990) and from TREC-4 (Congressional Record 1993, Financial
Times 1991, 1992, 1993 and 1994). We compressed them applying Plain
Huffman (P.H.), (s,c)-Dense Code ((s,c)-DC), End-Tagged Dense Code
(ETDC) and Tagged Huffman (T.H.), using bytes (b = 8) as the symbols
of the codewords. We used the spaceless word model [49] to create the
vocabulary, that is, if a word was followed by a space, we just encoded the
word, otherwise both the word and the separator were encoded.

6.6.1 Compression Ratio

We excluded the size of the compressed vocabulary in the results (this size
is negligible and similar in all cases, although a bit smaller in (s, c)-DC and
ETDC because only the sorted words are needed).

Table 6.3 shows the compression ratio obtained by the different codes.
The second column contains the original size of the processed corpus, the
third the number of words in the vocabulary, and the following columns give
the compression ratio for each method. The fifth column, which refers to
(s,¢)-DC, also gives the optimal (s, c) values.

As it can be seen in Table 6.3, Plain Huffman gets the best compression

85

6. The new technique: (s, c)-Dense Code

’ Corpus H Original Size { n { P.H. { (s,c)-DC { ETDC { T.H. ‘
AP Newswire 1988 250,994,525 | 268,896 31.18 | (189,67) 31.46 32.00 34.57
Ziff Data 1989-1990 185,417,980 | 237,607 31.71 | (198,58) 31.90 32.60 35.13
Congress Record 51,085,545 | 117,713 27.28 | (195,61) 27.50 28.11 30.29
Financial Times 1991 14,749,355 75,687 30.19 | (193,63) 30.44 31.06 33.44
Financial Times 1992 175,449,248 | 284,878 30.49 | (193,63) 30.71 31.31 33.88
Financial Times 1993 197,586,334 | 291,404 30.60 | (195,61) 30.79 31.48 34.10
Financial Times 1994 203,783,923 | 294,490 30.57 | (195,61) 30.77 31.46 34.08

Table 6.3: Comparison of compression ratios.

ratio (as expected since it is the optimal prefix code) and End-Tagged
Dense Codes always obtain better results than Tagged Huffman, with an
improvement of up to 2.5%. As expected, (s,c)-DC improves the results
reached by ETDC ((128,128)-DC), and it is worse than the optimal Plain
Huffman only by less than 0.5% on average.

6.6.2 Encoding Time

As shown in the previous section, (s, ¢)-DC compression ratios are very close
to Plain Huffman ones. In this section we compare (s,c)-DC and Plain
Huffman encoding phase and measure code generation time.

The model used for compressing a corpus in our experiments is described
in Figure 6.4. Three main phases arise.

1. The first phase is vocabulary extraction. The corpus is processed once
in order to obtain all distinct words in it (n) and their number of
occurrences. The result is a list of pairs (word, frequency), which
is then sorted by frequency. This phase is identical for both Plain
Huffman and (s, ¢)-Dense Code.

2. In the second phase, encoding, each word in the vocabulary is assigned
a codeword that minimizes average codeword length. This process is
done in a different way for each method:

e Plain Huffman encoding phase is split into two main parts:
Creating the Huffman tree uses the Huffman algorithm to build

86

6.6. Empirical Results

Vocabulary extraction

| File processing | word
freq
Words vector /
1 [1 n
\ v
Increasing frequency sorting Decreasing frequency sortin
HRREN [TTTT1]
1 n 1 n
Encoding v A
. . To
Creating Huffman tree Optimal s,c
search

Accumulated list
of frequencies
Find Best S ’U;,\
* (¢
N
Sequential code &)
generation O

NI il
N Eﬁm - 1
v

siydop jog

uewynH

éﬂ/fi?.@l

Sequential code

Code generation

0 Hash table

Compression

Figure 6.4: Vocabulary extraction and encoding phases

a tree where each leaf corresponds to one of the n words in the
vocabulary, and the number of internal nodes is at most []
Then, starting from the root of the tree, the depth of each leaf
is computed. Further details of this first part can be found
in [35, 39]. Code assignment starts at the bottom of the tree
(longest codewords) and goes through all leaf nodes. Nodes in
the same level are given codewords sequentially, and a jump of
level is determined by using the previously computed leaf depths.
During this process, two vectors base and first, needed for fast
decompression, are also set: base[l] = z if z is the first node of
the I*" level, and first[l] = y if y is the first codeword of [bytes.
Encoding takes O(n) time overall.

e (s,¢)-DC encoding phase has also two parts: The first computes

87

6. The new technique: (s, c)-Dense Code

the list of accumulated frequencies and searches for the optimal
s and ¢ values. Its cost is O(n + 2°1log(n)) = O(n). After getting
the optimal s and ¢ values, (s, ¢) sequential encoding is performed.
The overall cost is O(n).

In both cases, the result of the encoding section is a hash table of pairs
(word, codeword).

3. The third phase, compression, processes again the whole source text.
For each word input, compression looks for it inside the hash table and
outputs its corresponding codeword.

Since vocabulary extraction (previous to code generation), and building
the hash table of pairs and compression (after code generation) are common
phases for Plain Huffman and (s, ¢)-DC methods, we only measured code
generation time (77 — Ty in Figure 6.4), to compare both methods.

We also included other text collections such as the Calgary corpus (a
very small one), and two larger collections: ALL_FT aggregates corpuses
FT91, FT92, FT93 and FT94, and ALL is composed by Calgary corpus and
all texts from TREC-2 and TREC-4. We compressed them applying Plain
Huffman and (s,¢)-Dense Code.

A dual Intel®pentium®-II1 800 Mhz system, with 768 SDRAM-100Mhz
was used in our tests. It ran Debian GNU/Linux (kernel version 2.2.19).
The compiler used was gcc version 2.95.2 20000220 and -0O9 compiler
optimizations were used. Time results measure encoding “user time”.

CORPUS #words n (s.c)-DC Plain DIFF

H ‘ ‘ (msec) ‘ (msec) ‘ (%)
CALGARY 528,611 31,000 6.150 11.133 44.76
FT91 3,135,383 75,687 15.350 26.500 42.08
CR 10,230,907 117,713 25.750 49.833 48.33
ZIFF 40,866,492 237,607 56.650 105.900 46.51
AP 53,349,620 268,896 64.700 121.900 46.92
FT92 36,803,204 284,878 69.000 129.817 46.85
FT93 42,063,804 291,404 69.725 133.350 47.71
FT94 43,335,126 294,490 71.600 134.367 46.71
ALL_FT 124,971,944 577,290 142.875 260.800 45.22
ALL 229,596,845 885,873 216.225 402.875 46.33

Table 6.4: Code generation time comparison

88

6.6. Empirical Results

Table 6.4 shows the results obtained. The first column indicates the
corpus processed, the second the number of words in the corpus, and the
third the number of distinct words in the vocabulary. The fourth and fifth
columns give the encoding time (in milliseconds) for (s,c)-DC and Plain
Huffman. The last column shows the gain (in percentage) of (s, ¢)-DC over
Plain Huffman.

(s,¢)-DC code generation process is always about 45% faster than Plain
Huffman. Although the encoding is in both methods O(n), (s,c¢)-DC
performs simpler operations. Computing the list of accumulated frequencies
and searching for the best (s, ¢) pair only involve elemental operations, while
the process of building a canonical Huffman tree has to deal with the tree
structure.

6.6.3 Decompression Time

The decompression process is almost identical for Plain Huffman and (s, ¢)-
DC. The process starts by loading the words of the vocabulary into a vector
V. For decoding a codeword, (s,c)-DC also needs the s value used in
compression, while Plain Huffman needs to load two vectors: base and first.
Next, the compressed text is read and each codeword is replaced by its
corresponding uncompressed word. Since it is possible to detect the end of
a codeword by using either the s value (in (s,¢)-DC) or the first vector
(in Plain Huffman), decompression is performed codeword-wise. Given a
codeword C, a simple decoding algorithm obtains the position ¢ of the word
in the vocabulary, such that V[i] is the uncompressed word that corresponds
to codeword C. Decompression takes O(n) time, being n the size of the
compressed text.

Each corpus described in Section 6.6.2 was decompressed using both
Plain Huffman and (s, ¢)-DC. Results are shown in Table 6.5. The size of
the compressed text is shown in columns two and three. Next two columns
present decompression “user-time” (in seconds). The sixth and the seventh
columns show decompression speed (in Kbytes per second) and the latter
shows the gain (in percentage) of decompression speed of (s,c)-DC over
Plain Huffman. Results give (s,¢)-DC a small advantage in decompression

89

6. The new technique: (s, c)-Dense Code

speed in most corpora, although differences are usually negligible.

Compressed Text Size Decompression time (sec) Decompression speed (Kbytes/sec)
CORPUS (s,c)-DC PH (s,c)-DC PH (s,c)-DC PH DIFF%
CALGARY 748,657 740,698 0.165 0.158 4,530.45 4,687.96 -3.477
FT91 4,489,787 4,453,239 1.073 1.006 4,186.28 4,426.68 -5.743
CR 14,049,996 13,937,879 3.429 3.346 4,097.40 4,165.53 -1.663
ZIFF 59,143,837 58,793,833 13.064 12.994 4,527.14 4,524.59 0.056
AP 78,951,674 78,266,031 18.091 17.985 4,364.16 4,351.74 0.285
FT92 53,884,292 53,501,281 12.541 12.509 4,296.55 4,277.17 0.451
FT93 60,846,348 60,460,320 13.752 13.676 4,424.65 4,420.91 0.085
FT94 62,704,466 62,305,648 14.315 14.392 4,380.33 4,329.19 1.168
ALL_FT 182,657,196 181,810,383 42.070 41.882 4,341.74 4,341.01 0.017
ALL 348,361,693 346,337,592 77.627 77.756 4,487.63 4,454.16 0.746

Table 6.5: Decompression speed comparison

6.7 Searching (s,c)-Dense Code

As shown, (s,c)-Dense Code is a prefix code. For this reason, the
concatenation of bytes from two consecutive codewords cannot produce a
false matching. Therefore, it possible to use a Boyer-Moore type searching
which permits to skip exploring some bytes of a codeword. however, it has
to be taken into account that both the End-Tagged Dense Code and the
(s,c)-Dense Code, are not suffiz free codes (a codeword can be the suffix of
another codeword). Hence, each time that a matching occurs it is mandatory
to check if the previous byte to the byte where the text starts to match the
pattern, is or not a stopper. If the previous byte is a stopper, then a right
matching has to be reported. However, if it is a continuer, then the match is
not with the searched codeword, but with the suffix of a larger codeword, and
the process continues. An example of how false matchings can be detected
is presented in Figure 6.5.

This overload in searches is negligible because checking the previous byte
is only needed when a matching is detected, and it is not necessary during
the search phase. Moreover, this small disadvantage with respect to Tagged
Huffman (which is a suffix code) is compensated because the size of the
compressed text is smaller in (s, ¢)-Dense Code and End-Tagged Dense Code
than in Tagged Huffman.

90

6.8. Bounding Plain Huffman with (s, ¢)-Dense Code

pattern 101 001 continuer stopper

Compressed text 010[111 (i:01 \(\i:01 00:1:,‘

e

false matching right matching

Figure 6.5: Searching (5, 3)-Dense Code

6.8 Bounding Plain Huffman with (s,c¢)-Dense
Code

Gonzalo, cuando revise lo que hicimos con la Ziff-MandelBrot y le des el
visto bueno (eso espero), lo incluiremos aqui.

6.9 Conclusions

(s,c)-Dense Code, a simple method for compressing natural language
text databases with several advantages over the existing techniques was
presented. This technique is a generalization of the previous End-Tagged
Dense Code, and improves its compression ratio by adjusting the parameters
s and c¢ to the distribution of frequencies of the text to be compressed. Some

Compression ratio Compression speed Search speed
high o slow o [} slow— ©
me * med + med
low-+ o + fast * fast . + *
—t f t t Tt f —t f t f
P.H. TH. (S,C) ETDC PH. TH. (S,C) ETDC P.H. TH. (S,C) ETDC

Figure 6.6: Compression ratio, compression speed and search speed
comparison

empirical results comparing (s, c)-DC against Huffman codes are shown. In
compression ratio, our new code is strictly better than Tagged Huffman
Code (by 3.5% in practice), reaching only 0.5% excess over the optimal
Plain Huffman Code. The new code is simpler to build than Huffman Codes
and can be built in around half the time. This makes (s,c)-DC a real

91

6. The new technique: (s, c)-Dense Code

alternative to Plain Huffman in situations where a simple, fast and good
compression method is required. Moreover, (s,c)-DC enables, as Tagged
Huffman, fast direct search on the compressed text, which improves Plain
Huffman searching efficiency. Only Tagged Huffman Code can be searched
so efficiently, but it produces about 11% larger compressed texts.

Figure 6.6 summarizes compression ratio, compression speed and search
speed of the different methods.

92

Part 11

Adaptive Compression

93

Dynamic Text Compression
Techniques

7.1 Overview

In this Chapter a brief description of the State of Art of dynamic text
compression techniques is presented. First the motivation of adaptive
techniques versus static and semi-static ones is shown. In Section 7.3 the
operation of statistical dynamic codes is explained. Dynamic character-
based Huffman techniques, which are the basis of the methods presented in
Chapters 8, 9 and 10 are described in Subsection 7.3.1. Arithmetic Coding,
another typical statistical dynamic technique, is shown in Subsection 7.3.2.
Section 7.4 is dedicated to PPM, an interesting statistical compression
scheme. Finally, Section 7.5 describes dictionary techniques and the
variations of Ziv-Lempel, one of the most widespread compression families.

7.2 Introduction

Transmission of compressed data is usually composed of four processes:
compression, transmission, reception, and decompression. The first two are
carried out by a sender process and the last two by a receiver. This structure

95

7. Dynamic Text Compression Techniques

can be shown for example when a user download a zip file from a website.
The file, which was previously compressed in the server, is transmitted in
compressed form when the user downloads it. Finally, once the transmission
has finished, it can be decompressed.

There are several interesting real-time transmission scenarios, however,
where compression, transmission, reception, and decompression processes
should take place concurrently. That is, the sender should be able to start
the transmission of compressed data without preprocessing the whole text,
and simultaneously the receiver should start reception and decompression of
the text as it arrives.

Real-time transmission is usually of interest when communicating over
a network. This kind of compression can be applied, for example, in the

following scenarios:

e Interactive services such as remote talk/chat protocols, where small
messages are exchanged during the whole communication process.

e Transmission of Web pages. Installing a browser plug-in to handle
decompression, enables the exchange of compressed (relatively small)
pages between a server and a client along the time in a more efficient
way.

e Wireless communication with hand-held devices with little bandwidth
and processing power (therefore the decompressor must be simple).

Real-time transmission is handled by dynamic compression techniques.
Currently, the most widely used adaptive compression techniques belong
to the Ziv-Lempel family [60, 61, 54]. When applied to natural language
text, however, the compression ratios achieved by Ziv-Lempel are not that
good (around 40%). Their advantages are compression speed and mainly
decompression speed.

Other adaptive techniques as the Arithmetic Encoding [1, 57, 38] or the
Prediction by Partial Matching (PPM) technique [8] has been proven as
competitive adaptive techniques regarding to compression ratio. However
they are not time-efficient.

96

7.3. Statistical Dynamic Codes

Classic Huffman code [27] is a well-known two-pass method. Making it
dynamic was first proposed in [19, 22]. This method was later improved
in [29, 52]. However being character-based the compression ratios achieved
where not good. It is interesting to point out that the operation of the
adaptive Huffman based techniques can be extrapolated to a word-based
approach. They are the basis of the dynamic techniques that are presented
in Chapters 8, 9 and 10.

This Chapter shows the most common adaptive compression alternatives
which are used in Chapter 10 to empirically compare them against the
dynamic compression techniques developed in this work.

7.3 Statistical Dynamic Codes

Statistical dynamic compression techniques are one-pass. Symbol frequency
is collected as the text is read, and consequently, the mapping between
symbols and codewords is updated as compression progresses. The receiver
acts in the same way that the sender. It computes symbol frequencies and
updates the correspondence between codewords and symbols each time a
codeword is received.

In particular, dynamic statistical compressors model the text using only
the information about source symbol frequencies, that is, f(s;) is the number
of times that the source symbol s; appears in the text (read up to now).

In order to maintain the vocabulary up-to-date, dynamic techniques need
a data structure to keep all symbols s; and their frequencies f(s;) up to
now. This data structure is used by the encoding/decoding scheme, and
is continuously updated during compression/decompression. For each new
source symbol, if it is already in the vocabulary, its frequency is increased
by 1. If it is not, it is inserted in the vocabulary and its frequency is set to 1.
After each change, the vocabulary is reordered and therefore the codeword
assigned to any source symbol may be different than before.

To permit the sender to inform the receiver of new source symbols that
appear in the text, a special source symbol new-Symbol (whose frequency

97

7. Dynamic Text Compression Techniques

is zero by definition to keep it always in the last position) is always held in
the vocabulary. The sender transmits new-Symbol each time a new symbol
arises in the source text. Then, the sender encodes the source symbol in
plain form (e.g., using ASCII code for words) so that the receiver can insert
it in its vocabulary.

Figure 7.1 depicts the sender and receiver processes, highlighting the
symmetry of the scheme. CodeBook stands for the mapping between symbols
and codes, which is used to assign codes to source symbols or vice versa. Note
that new-Symbol is always the least frequent symbol of the CodeBook, and
n is the number of symbols in the source text.

7.3.1 Dynamic Huffman Codes

In [19, 22] an adaptive character-oriented Huffman coding algorithm was
presented. It was later improved in [29], being named FGK algorithm. FGK
is the basis of the UNIX compact command.

FGK maintains a Huffman tree for the source text already read. The tree
is adapted each time a symbol is read to keep it optimal. It is maintained
both by the sender, to determine the code corresponding to a given source
symbol, and by the receiver, to do the opposite.

Thus, the Huffman tree acts as the CodeBook of Figure 7.1.
Consequently, it is initialized with a unique special node called zeroNode
(corresponding to new-Symbol), and it is updated every time a new source
symbol is inserted in the vocabulary or when a frequency is increased. The
codeword for a source symbol corresponds to the path from the tree root
to the leaf corresponding to that symbol. Any leaf insertion or frequency
change may require reorganizing the tree to restore its optimality.

The main challenge of Dynamic Huffman is how to reorganize the
Huffman tree efficiently upon leaf insertions and frequency increments. This
is a complex and potentially time-consuming process that must be carried
out both by the sender and the receiver.

The basis of the FGK algorithm is the sibling property defined by
Gallager in [22].

98

Statistical Dynamic Codes

Sender ()
1) Vocabulary <+ {Cnew-symbol};

2) Initialize C'ode Book;
3) foriel...ndo
4 read s; from the text;

)

)

)

) if s; &€ Vocabulary then
6) send Chew-Symbol;

) send s; in plain form;

)

)

0

8 Vocabulary <« Vocabulary U {s;};
9 f(si) < 1;

10) else

11) send CodeBook(s;);

12) f(si) = fls)+ 1

13) Update CodeBook;

Receiver ()
1) Vocabulary «— {Crew-symbol};

(

(2) Initialize CodeBook;

(3) foriel...ndo

(4) receive Cj;

(5) if CZ = Cnew-Symbol then

(6) receive s; in plain form;
(7) Vocabulary «— Vocabulary U {s;};
®)) — 1

(9) else

(10) si < CodeBook™(C});
(11) f(si) — flsi)+ 15

(12) output s;;

(13) Update CodeBook;

Figure 7.1: Sender and receiver processes in statistical dynamic text

compression.

99

7. Dynamic Text Compression Techniques

Property 7.3.1 A binary code tree has the sibling property if each mode
(except the root) has a sibling and if all nodes can be listed in decreasing
weight order, with each node adjacent to its sibling.

Gallager proved also that a binary prefix code is a Huffman code iff the
code tree has the sibling property.

Using the sibling property, the main achievement of FGK is to ensure
that the tree can be updated by doing only a constant amount of work per
node in the path from the affected leaf to the tree root. Calling [(s;) the path
length from the leaf of source symbol s; to the root, and f(s;) its frequency,
then the overall cost of algorithm FGK is) f(s;)l(si), which is exactly the
length of the compressed text, measured in number of target symbols.

In [52] an improvement upon FGK denominated A algorithm was
presented. An implementation of A can be found in [53]. The main difference
with respect to FGK is that A algorithm uses a different method to update
the tree, which not only minimizes > f(s;)l(s;) (compressed text length) but
also the external path length, > [(s;), and the height of the tree, maxi(s;).
Moreover, A algorithm reduces to 1 the number of interchanges in which a
node is moved upwards in the tree during an update of the tree. Although
these changes do not modify the complexity of the whole algorithm, they
give A algorithm advantage in compression ratio over FGK and even over
static Huffman for small messages. Results shown in [52] show that adaptive
Huffman methods are directly comparable to classic Huffman in compression
ratio.

7.3.2 Arithmetic Codes

Arithmetic coding was first presented in the sixties in [1]. Using the same
idea of Huffman it uses the probabilities of the input symbols in order to

achieve compression.

Distinct models can be used to calculate, for a given context the
probability of the next input symbol, so that static, semi-static and also
adaptive arithmetic codes are available. The key-idea of this technique is
to represent an input sequence of symbols using a unique real number in

100

7.3. Statistical Dynamic Codes

the range [0,1). As the message to be encoded becomes larger, the interval
needed to represent it becomes narrower, and therefore, the number of bits
needed to represent it grows.

Basically an arithmetic encoder starts with a list of the n symbols of the
vocabulary and their probabilities. The initial interval is [0,1). When a new
input symbol is processed, the interval is reduced in accordance with the
symbol probability provided by the model used, and the interval becomes
a narrower range which represents the input sequence of symbols already
processed.

We present in Example 7.3.1, a semi-static arithmetic compressor to
explain how arithmetic compression works. Note that making it dynamic
consists only of adapting the frequency of the source symbols each time one

of them is input.

Example 7.3.1 Let compress the message “AABC! ” using an semi-static
model.

In the first phase the compressor creates the vocabulary that is composed of
four symbols: 'A’, 'B’, ’C’ and ’!". Their frequencies are: 0,4, 0,2, 0,2 and
0,2 respectively. Therefore, in the initial state, any number in the interval
[0, 0,4) represents symbol "A’, and intervals [0,4, 0,6), [0,6, 0,8) and [0,8, 1)
represent symbols 'B’, C’, and ’!" respectively.

Since the first symbol to encode is ’A’, the interval [0,1) is reduced to [0, 0,4).
Next possible sub-intervals are [0, 0,16), [0,16, 0,24), [0,24, 0,32) and [0,32,
0,4). They would represent the sequences "AA’,’AB’, ’AC’ or "Al". Figure 7.2
represents graphically the intervals of the whole process. Since next symbol
is again "A’; the current working-interval is reduced to [0, 0,16). Note that
the size of this interval depends on the probability of the sequence encoded;
that is: 0,4 x 0,4 = 0, 16.

To encode next input symbol "B’ the new interval is reduced to [0,064, 0,096),
such as the sequence ’AAB’ has probability of 0,032 = 0,096 — 0, 064.
After processing 'C’ the range becomes [0,0832, 0,0896), and the probability
associated to TAABC’ is 0, 0064.

Finally the possible sub-intervals are [0,0832, 0,08576), [0,08576, 0,08704),
[0,08704, 0,08832) and [0,08832, 0,096). Since ’!” was the last symbol of
the vocabulary, each number in the interval [0,08832, 0,096) represents the

101

7. Dynamic Text Compression Techniques

A L B | C | ! |
) 0, 0,6 0,8 1
A | B 1 C | 1t
) 0, 0,24 0,32 0,4
A | B I
0 7064 0,16
| A | B | C | I~
0,064 0,0768 __6,0832 O,ON%
| A | B | C | !
0,0832 0,08576 0,08704 0,08832 0,0896

Figure 7.2: Operation of an arithmetic compressor

message "AABC!. So the encoder generates the number in that interval that
can be encoded with less bits. O

The decompressor only has to know the the vocabulary used, the
probabilities of the source symbols and the number of symbols transmitted.
From the compressed data it can detect the intervals used in the encoding
phase and from these intervals, it recovers the source symbols.

In general, arithmetic compression overtakes Huffman compression
ratios. When static or semi-static models are used, compression and
decompression speed are not competitive with respect to Huffman based
techniques, and moreover they have the disadvantage that decompression
and searches cannot be performed directly in the compressed text because
it is represented by a simple number, so decompression is mandatory before
a search can be performed. As result, arithmetic coding is not useful in

102

7.4. Prediction by Partial Matching

TR environments. However, it becomes a good alternative to adaptive
Huffman codes. In [57] an adaptive character based arithmetic technique is
compared against the compact algorithm (which is based on FGK dynamic
Huffman). In this case arithmetic encoding is faster in both compression
and decompression processes, and also it achieves best compression ratio.

Several modifications of the basic arithmetic algorithm improving its
performance and/or using distinct models were made. In [57], Witten,
Neal and Cleary explained an arithmetic coder based on the use of integer
arithmetic. In [38] Moffat et all made improvements focused in avoiding
using multiplications and divisions that could be replaced with faster
shift/add operations. Moreover the code from [16] (based on [38]) is of
public domain and has been used in our tests.

7.4 Prediction by Partial Matching

Prediction by Partial Matching technique (PPM), was first presented in 1984
by Cleary and Witten [18].

PPM is an adaptive statistical data compression technique based on
context modelling and prediction. Basically, PPM uses sequences of previous
symbols in the uncompressed symbol stream to predict the frequency of the
next symbol in the input stream, and then it applies an arithmetic technique
[57, 36] to encode that symbol using the predicted frequency.

PPM is based on using the last k characters from the input stream to
predict the probability of the following one. This is the reason for it to be
a finite-context model of order k. That is, a finite-context model of order
2 will use only two previous symbols to predict the frequency of the next

incoming symbol.

The maximum context length (that is, the length of a sequence of symbols
that are considered through the highest-order model) is usually 5. It was
shown [18, 33] that increasing the context length beyond 5 — 6 does not
usually improve compression ratio.

PPM combines several finite-context models of order k, such as k takes

103

7. Dynamic Text Compression Techniques

the values from 0 to m (m is the maximum context length). For each
model, PPM takes account of all k —length sequences S; that have appeared
previously. Moreover, for each of those sequences 5;, all characters that have
followed previously S;, as well as the number of times they have appeared,
are kept. The number of times that a character followed a k-length sequence
is used to predict the probability of the incoming character in the model
of order k. Therefore, for each model, a separate predicted probability
distribution is achieved.

The m + 1 probability distributions are blended into a single one,
and arithmetic coding is used to encode the current character using that
distribution. In general, the probability predicted by the highest-order
model (the m-order model) is used. However, if a novel character is found
in this context (no m-length sequence precedes the new character), then
it is not possible to encode the new character using the given m-order
model, and it is needed to try the (m — 1)-order model. In this case, a
escape symbol is transmitted to warn the decoder that a change from a m to
(m — 1)-order model occurs. The process continues until reaching a model
where the incoming symbol is not novel (so that symbol can be encoded
with the frequency predicted by the model). To ensure that the process
always finishes, a (—1)-order model is assumed to exist. This bottom-level
model predicts all characters s; from the source alphabet (X) with the same
probability, that is p(s;) = %'

Note that, each time a model shift (from k to & — 1) happens due to
a novel symbol , the probability given to the escape symbol in the k-order
model needs to be combined with the probability that the (k — 1)-order
model assigns to the novel symbol.

We call w the symbol whose probability is being predicted, pi(w) the
probability that a k-order model assigns to w and e the probability assigned
to the escape symbol by a k-order model. Two situations can happen:

1. w can be predicted by the m-order model. In this case w is encoded
using the probability p(w) = pm(w).

2. w can be predicted by a k-order model (k < m). Then the probability
used to encode w is p(w) = pr(w) x [T}%41 e

10/

7.4. Prediction by Partial Matching

Distinct methods can be used to assign probabilities to both the escape

symbol and also to a novel input symbol. For example, PPMA [18] uses a

method called method A, which makes pi(w) = cﬁ(fk) and e, = ﬁ,

¢k(w) is the number of times that the character w appeared in the k-order

where

model, and ¢ is the total count of characters that were first predicted by
a k-order model. PPMC [33], the first popular PPM variant (because PPM
algorithms require a significant amount of memory and previous computers

were not powerful enough), uses method C to assign probabilities. It sets
ep = Ccl—:, and pg(w) = 7(5’“_‘1’“2;%(@

characters that were first predicted by a k-order model.

, where dj, is the number of distinct

Choosing a method to assign probabilities to the escape symbol
constitutes an interesting problem called the zero-order frequency problem.
Distinct methods have been proposed: Methods A and B [18], method C[33],
method D [26] and method X [55]. A description and a comparison of the
those available methods can be found in [37].

Recent PPM implementations obtains good compression results. As
shown in [17], PPMC uses 2.48 bits per character (bpc) to encode Calgary
corpus and another variant PPM* (or PPMX)[17] needs only 2.34 bpc (less
than 30% in compression ratio). However, compression and decompression
speed are not so good (it is 5 times slower than gzip in compression).

Nowadays, the main competitor of PPM in compression ratio is bzip2!.
In [56], it is shown that PPM and bzip2 compression ratio and compression
speed are quite similar (with a small advantage to PPM). However bzip2
is 3 times faster than PPM in decompression. These reasons (similar
compression, but worse decompression) and the fact that bzip2 has become
a well-known and widespread compression technique, led us to use bzip2
instead of PPM in our tests.

Ybzip2 is a is a freely available, patent free data compressor. It uses the Burrows-
Wheeler Transform along with a Huffman code

105

7. Dynamic Text Compression Techniques

7.5 Dictionary techniques

Dictionary techniques do not take account of statistics about the number of
occurrences of symbols in a text. They are based on building a dictionary
where substrings are stored, in such a way that each substring is assigned
a codeword (usually the codeword consist of its position in the dictionary).
Using that dictionary, each time a substring is read from the source stream, it
is searched in the dictionary, and substituted by its codeword. Compression
is achieved because of the length of the substituted substrings is usually
bigger than the number of bits needed to represent their codeword.

Dictionary techniques are the most commonly used compression
techniques. In fact, Ziv-Lempel family [60] is the most representative
technique, and its two main variations LZ77 [60] and LZ78 [61] are the
basis of the gzip and compress programs respectively.

7.5.1 LZ77

This technique, presented in 1977 [60], is the first technique that Abraham
Lempel and Jacob Ziv presented. LZ77 uses the dictionary strategy. It has
a dictionary that is composed of the n last characters already processed (n
is a fixed value) and is commonly called sliding window.

Compression starts with an empty sliding window. In each step of the
compression process, the largest substring w that already appears in the
window is read. That is, characters wq, w1, ..., wy after the window are read
while the substring w = wg, wy, ..., w; can be found in the window. Suppose
that U is the next character after w. Then the compressor outputs the triplet
< position, length, U >, and the window is slid k + 1 positions. If w = ()
then the triplet < 0, 0, U > is output. The position element of the triplet
represents the backwards offset with respect to the end of the window where
w appears, and the length element corresponds to the size of the w substring
(that is, k).

Example 7.5.1 Let compress the text “abbabcabbbbc” wusing LZ77
technique and supposing a sliding window of only 5 bytes. The process,

106

7.5. Dictionary techniques

v output . .
step 1[2[b[b]a[ble[alblb[b[blc] <00a> Step 5 in detail
2B A, "
step2[a[b[b[a]b]c]alb[b|b[b]c| <00b> T Current position
v / offset = 3
step3|alblblalb][clalb[b[b[b[c] <1la> [#
v \a\b\b\ 2Bl cEln] c]
step4\a\b\b\a\b\c\a\b\b\b\b\c\ <2lc>/,
_____ - sliding window W U
stepS\a\b\b\a\b\c\a\b\b\b\b\c\ <32b> 27

Figure 7.3: Compression using LZ77

which is summarized in Figure 7.3, consists of the following six steps:

1. The window starts with no characters, so ’a’ is not in the dictionary
and < 0,0,a > is output. Moreover, the window is slid 1 character to
the right, therefore window will contain (-,-,--.’a’).

2. Next b’ is read, it is not in the dictionary and < 0,0,b > is output.
Finally the window is slid 1 position. Hence the new window contains

<_’_,_’7a7,7b7>.

3. A new ’b’ isread, and it was in the last position of the window, but the
prefix ’ba’ is not in the vocabulary yet. Therefore w = ’b’, U = ’a’
and < 1,1,a > is output. Finally the window is slid |w| +1 = 2
positions, so window contains (-,’a’,’b’’b’,’a’).

4. The next substring is ’b’, but ’bc’ does not appear in the sliding
window, so w = ’b’, U = ¢’ and < 2,1,¢ > is output. After sliding
the window |w| + 1 = 2 positions, it contains ('b’,’b’,’a’,’b’,’c’).

5. The process continue reading ’abb’, such as ’ab’ is a prefix in
the window, and < 3,2,b > is output. The new window contains
<7b7’7c7’7a7’7b7,7b’>.

6. Finally, since ’bb’ is a new recognized substring but >bbc’ does not
appear in the sliding window, < 2,2, c > is output. O

107

7. Dynamic Text Compression Techniques

Decompression is similar to compression, since the window holds the
last decoded elements. Given a triplet < position,length, nextChar >, the
decompressor outputs length characters starting in position elements before
the end of the window and finally it also outputs nextchar. Note that the
vocabulary is quite small (it can be kept in cache in an actual processor),
and decoding process implies only one array lookup, therefore decompression
is very fast.

In general, a minimum substring size (usually 3 characters) is used to
avoid the substitution of small prefixes. Moreover, the length of the sliding
window has a fixed value. A higher value provokes that larger substrings can
be found in the sliding window, however that implies that a larger pointer will
also be needed to represent the position element of the triplet. In general,
the position element is represented by 12 bits (hence the sliding window has
4096 bytes at most), and 4 bits are used for the length element. That is,
2 bytes are needed to represent both position and length.

7.5.2 LZ78

Instead of a window that contains the last processed text, LZ78 technique
[61] builds a dictionary that holds all phrases recognized in the text. This
dictionary is efficiently searched via a trie data structure in such a way that
a leaf [; in the trie stores a pointer i to a dictionary entry (entry;), and the
path from the root of the trie to the leaf node I; refers to the letters of entry;.

Encoding and decoding in LZ78 are simple. Basically it consists of: i)
From the current position in the text, the longest entry in the vocabulary
(entry;) that matches with the following characters in the text is found. i)
The pair (i, U) is output (where U is the character that follows entry; in
the text). i) The new phrase (entry;+U) is appended to the dictionary.
Figure 7.4 explains how to compress the text “abbabcabbbbc” using LZ78
technique.

Compression in LZ78 is faster than in LZ77, however decompression is
slower because the decompressor needs to store the phrases. However this
technique results interesting, and a variation of LZ78 called LZW is widely
used, as shown next.

108

7.5. Dictionary techniques

’ step ‘ input ‘ output ‘ Dictionary

1 a (0,a) entry; = "a”

2 b (0,b) entrys = "b”
Trie structure 3| ba (2,a) entrys = ”"ba”

4| bc (2,c) entry, = "bce”

5| ab (1,b) entry; = "ab”

6| bb (2,b) entryg = "bb”

7| be (4,0) -

Figure 7.4: Compression of the text “abbabcabbbbc” using LZ78

LZW

It is a variation of LZ78 which was proposed by Welch in 1984 [54]. LZW is
widely used, the Unix compress program and the GIF image format use this
technique to achieve compression. The main difference of LZW with respect
to LZ78 is that it only produces a list of pointers in the output, while LZ78
outputs also characters explicitly. This can be avoided in LZW by initializing
the vocabulary with phrases that include all the characters from the source
alphabet (for example, the 128 AsScCII values). Another difference consists
of that fast searching for a word in the vocabulary is made through a hash
table instead of a trie data structure.

The encoding process starts with the initial vocabulary. From the input,
the largest phrase that exists in the vocabulary is searched for (note that
since all characters belong to the vocabulary, phrases are always found in the
vocabulary). Suppose that the entry in the vocabulary which corresponds
to that phrase is ¢, then 7 is output, and the a new phrase, formed as the
concatenation of phrase; and the next character in the input, is added to the
vocabulary. Then the process iterates reading next characters from the input
and searching again for the largest phrase in the vocabulary. An example
describing the whole compression process is shown in Table 7.1.

109

7. Dynamic Text Compression Techniques

’ input ‘ next character ‘ output ‘ Dictionary
initial initial initial | entryp = "a”
initial initial initial | entry; = "b”
initial initial initial | entryo, = "¢”

a b 0 entrys = "ab”
b b 1 entryy; = "bb”
b a 1 entrys = "ba”

ab ¢ 3 entryg = "abc”
c a 2 entry; = "ca”

ab b 3 entryg = "abb”

bb b 4 entryg = "bbb”
b c 1 entryig = "bc”
c 0 2 -

Table 7.1: Compression of “abbabcabbbbc”, (F={a, b,

c}), using LZW

Since a maximum dictionary size has to be defined, some choice has to

be taken when all the available entries in the vocabulary are completed:

e Do not permit more entries and continue compression with current

vocabulary.

e To use a least recently used policy to discard entries when a new entry

has to be added.

e Delete the whole dictionary continuing with an empty one (which has

only the initial entries, that is,the symbols of the alphabet).

e Continue monitoring the compression ratio, and drop the dictionary

when compression decreases.

Two Ziv-Lempel based techniques are widely used. The first one is gzip
(it is based on LZ77) and the second is compress (based on LZW). As it
is shown in [56], gzip achieves better compression ratio (about 35-40%)

and compression speed than compress (compression ratio about a 40%).

However, compress is a bit faster in compression.

Gzip was used in our

110

7.6. Summary

tests, as a representative of dictionary based techniques. We decided to use
gzip instead of compress because of its better compression ratio.

7.6 Summary

In this Chapter, the State of Art of dynamic text compression techniques
has been revisited. Special attention was paid to statistical methods such
as Huffman-based ones. Arithmetic compression, as well as a symbolwise
model as the Prediction by Partial Matching technique, were also shown.
Finally a brief review of Ziv-Lempel based compressors, the most commonly
used compression strategy, was also presented.

111

7. Dynamic Text Compression Techniques

112

Dynamic Byte-oriented
word-based Huffman code

8.1 Chapter overview

In this Chapter, a dynamic byte-oriented word-based Huffman code is
presented. This is a minor contribution of this thesis. Even though we
developed and implemented this technique in order to compare it against
the Dynamic End-Tagged Dense Code and Dynamic (s,c)-Dense Code,
presented in Chapters 9 and 10 respectively, the results achieved both
in compression ratio, and also in compression/decompression speed, make
it a competitive adaptive technique, and hence a valuable contribution.
Therefore it is presented in this Chapter in detail.

We start with a brief introduction which explains the motivation of
developing a word-based byte-oriented Huffman code. Next, some properties
and definitions about the code are shown. In Section 8.4 the technique
is described. Later, the data structures used and the update algorithm
that enables maintaining a well-formed Huffman tree dynamically are
shown. Finally, some empirical results compare the our Dynamic word-based
Huffman Code against the well-known character-based approach.

113

8. Dynamic Byte-oriented word-based Huffman code

8.2 Introduction

However, those methods are character- rather than word-oriented, and thus
their compression ratio on natural language is poor (around 60%).

In recent years, however, new Huffman-based compression techniques for
natural language have appeared, based on the idea of taking the words, not
the characters, as the source symbols to be compressed [34]. Since in natural
language texts the frequency distribution of words is much more biased
than that of characters, the gain in compression is enormous, achieving
compression ratios around 25%-30%. Additionally, since in Information
Retrieval (IR) words are the atoms searched for, these compression schemes
are well suited to IR tasks. Word-based Huffman variants focused on fast
retrieval are presented in [49], where a byte- rather than bit-oriented coding
alphabet speeds up decompression and search.

Two-pass codes, unfortunately, are not suitable for real-time
transmission. Hence, developing an adaptive compression technique with
good compression ratio for natural language texts is a relevant problem.

In this Chapter a dynamic word-based byte-oriented Huffman method
is presented. It yields the advantages of the semi-static word-based
techniques (compression ratio about 30%-35% in large texts) and the real-
time facilities of the dynamic character-based bit-oriented classic Huffman
techniques. Moreover, being byte- rather than bit-oriented, compression and
decompression speed are clearly competitive.

8.3 Word-based Dynamic Huffman Codes

We implemented a word-based byte-oriented version of algorithm FGK. This
is by itself a contribution because no existing adaptive technique obtains
similar compression ratio on natural language.

As the number of text words is much larger than the number of
characters, several challenges arised to manage such a large vocabulary. The
original FGK algorithm pays little attention to these issues because of its

114

8.3. Word-based Dynamic Huffman Codes

underlying assumption that the source alphabet is not very large.

For example, the sender must maintain a hash table that permits fast
searching for a word s;, in order to obtain its corresponding tree leaf and its
current frequency. In a character-oriented approach, this can be simply an
array indexed by character.

However, the most important difference between our word-based version
and the original FGK is that we chose the code to be byte- rather than bit-
oriented. Although this necessarily implies some loss in compression ratio, it
gives a decisive advantage in efficiency. Recall that the algorithm complexity
corresponds to the number of target symbols in the compressed text. A bit-
oriented approach requires time proportional to the number of bits in the
compressed text, while ours requires time proportional to the number of
bytes. Hence byte-coding is almost 8 times faster.

Being byte-oriented implies that each internal node can have up to 256
children in the resulting Huffman tree, instead of 2 as in a binary tree.
This required extending FGK algorithm in several aspects. In particular,
some parent/child information that is made implicit by an appropriate node
numbering, must be made explicit when the tree arity exceeds 2. So each
node must store pointers to its first and last child. Also, the process of
restructuring the tree each time an input symbol is processed, is more
complex in general.

The sibling property (see Property 7.3.1) can be modified for its use in a
byte-oriented Huffman code as follows:

Property 8.3.1 A 2°-ary code tree has the sibling property if each node
(except the oot and the zeroNode and its siblings), have 2° — 1 siblings, as
well as if all nodes can be listed in decreasingly frequency order, with each
node adjacent to its siblings.

Note that the zeroNode is a special zero-frequency node that is used in
dynamic codes to introduce those symbols that have not appeared yet.

Intuitively, it can be seen that in a 2°-ary well-formed Huffman tree all
internal nodes have 2° children. However the parent of the zeroNode can

115

8. Dynamic Byte-oriented word-based Huffman code

have less than 2° children. In fact, if n is the number of symbols (leaves) in a
2b_ary Huffman tree (including the zeroNode), the parent of the zeroNode
has exactly R child-nodes, such as:

po) 1+(n- 2%) mod (2° — 1)) if ((n —2%) mod (2° —1) >0
] n if (n—2% mod (2°—1)=0

Note that the zeroNode and its R — 1 siblings are the least frequent leaf
nodes of the tree.

Definition 8.3.1 To achieve a dynamic word-based, byte-oriented Huffman
code it is only needed to maintain two conditions:

- All nodes of the Huffman tree (both internal and leaf nodes) remain
sorted by frequency. In this ranking the root is the most frequent node,
and the zeroNode is the least weighted node.

- All the siblings of a node remain adjacent.

To maintain the conditions needed by Definition 8.3.1, a node-numbering
method was considered. It ranks nodes in following way:

- Nodes in the top levels of the tree precede nodes in the bottom levels.

- For a given level of the tree, nodes are ranked left-to-right. Therefore
the left-most node of a level precede all nodes in that level.

8.4 Method Overview

The compressor/sender and decompressor/receiver algorithms use the
general guidelines shown in Figure 7.1. Considering that general scheme,
the main issue that has to be taken into account is how to maintain the
Codebook up to date, after insertions of new words, or when the frequency
of a word is increased.

116

8.4. Method Overview

In this case, the Codebook is a 256-ary Huffman tree that stores all words
procesed up to a given moment of the compression/decompression process.

This Huffman tree is used by both the encoder and the decoder to handle
the encoding of a word and also the decoding of a codeword. In the encoding
process, a codeword is given by the path from the root of the tree to the
leaf node where that word is placed. The process of decoding a codeword,
starts in the root of the tree, and each byte value in the codeword specifies
the child node in the next step in a top-down traversal of the tree. A word
is recognized each time a leaf node is reached.

Once a encoding/decoding of a word s; has been performed, the tree has
to be updated. If s; was already in the tree, the frequency of the leaf node
q representing s; has to be increased, having into account that the order by
frequency of words must be maintained. To achieve this, the first node ¢
in the node-numbering such as frequency, = frequency, is located. Next
step involves an interchange of nodes ¢ and t. After that, ¢’s frequency can
be increased (without altering the order of words). Finally the increase of
frequency has to be promoted to ¢’s parent. The process continues until the
root of the tree is reached.

If s; was not in the Huffman tree a new node ¢ representing s; has to be
added (with frequency = 1). Two situations can take place: i) if zeroNode
has less than 255 siblings then ¢ is added as a new sibling of the zeroNode.
ii) If the zeroNode has 255 siblings then a new internal node p is created in
the position of zeroNode and both ¢ and zeroNode are set as children of p.
In both cases the increase of frequency has to be promoted to the ancestors
of q.

Figure 8.1 presents the way a 4-ary Huffman tree is maintained via the
adaptive process when words “aaaaaaaaabbbbbbbbcddddddcccceceeefg” are
transmitted.

The first box shows the initial state of the Huffman tree. The only nodes
in the tree are the zeroNode and the root node. In step 2, a new node
'a’ is inserted into the tree as a sibling of the zeroNode (as the parent of
the zeroNode has enough space to hold ’a’ no extra internal nodes have
to be added). In step 7, node ’d’ is added. As the zeroNode has already

117

8. Dynamic Byte-oriented word-based Huffman code

- a aaaaaaaa b
0 1 9 10
O O @
0 1 0 9 0 9 1 0
[a] [-] [a] [-] [a] [b] [-]
1 Initial state 2] New letter 4] New letter
bbbbbbb c d

5 | Increase weight

13] Increase weight 14] Increase weight 15] New letter 16] New letter

Figure 8.1: Dynamic process to maintain a well-formed 4-ary Huffman tree

118

8.5. Data Structures

20— 1 = 3 siblings, a new internal node is created. In the eighth box,
increasing the frequency of node ’d’ implies and interchange with node 'c’
(needed to maintain the ordered list of nodes). In step 13, the increase of
frequency of node e’ cause and interchange between the parent of e’ and
node 'c’.

8.5 Data Structures

In this Section, the data structures that support this code are presented.
Two main parts arise: i) A data structure that supports the Huffman tree,
and enables fast lexicographical searches (given a word it is needed to find
the node representing it in the tree). And i) A blocks data structure that,
given a frequency value z, enables finding efficiently the first node ¢ whose
frequency is x in the ordered list of nodes.

8.5.1 Definition of the tree data structures

Let suppose that the maximum number of distinct words that will be encoded
is n. That is, n is the maximum number of leaf nodes of the Huffman tree and
the number of internal nodes is at most [n/255]. Let call N = n+ [n/255],
the maximum number of nodes in the tree.

The Huffman tree is hold through three different data structures: i) a
node index that enables the management of both leaves and internal nodes
independently of their type,) an internal nodes data structure, and
ii1) a hash table that holds the words of the vocabulary (and hence the leaf
nodes of the tree). Two more variables zeroNode and mazInternal Node
handle respectively the first free position in the node index and the first free
position in the internal nodes data structure. Figure 8.2 presents all the
data structures and their relationship.

119

8. Dynamic Byte-oriented word-based Huffman code

Node Index

As shown, this structure keeps up to N nodes (both internal and leaf nodes).
It consists of four arrays, all of them of N elements:

e nodeType [q] = 'I'’) 1 < q < N iff the ¢* most frequent node
of the Huffman tree is an internal node. If it is a leaf node then
nodeType [q] =L’

e freq[q] = w, 1 < ¢ < N. Depending on the value nodeType|q]:

- If nodeType[q] = 'L’ then freq[q] = w indicates that the number
of occurrences of the ¢ node in the tree is w.

- If nodeType[q] ='I’ then freq[q] = w represents the summation of
the frequencies of all the leaf nodes located in the subtree whose
root is the ¢*"* node in the tree.

e parent[q] = j, 1 < ¢ < N and 1 < j < [n/255], iff the j*" internal
node is the parent of node ¢. In the case of the root of the tree, that
is, the first node in the node index, parent[1] = 1.

e relPos[q] = j, 1 < ¢ < N. Depending on the value nodeTypelq]:

- If nodeType[q] = T’ then relPos[q] = j, 1 < j < [n/255] means
that the ¢*" node of the tree corresponds to the internal node that
is stored in the j** position of the internal nodes data structure.

- If nodeType[q] = 'L’ then relPos[q] = j, 1 < j < nextPrime(2n)
means that the ¢** node of the tree corresponds to the leaf node
stored in the hash table in the j** position.

Internal nodes data structure

It stores the data that the algorithms need for internal nodes. As shown,
the maximum number of internal nodes is [n/255]. Tree vectors are used:

e minChild [i] = ¢, 1 < i < [n/255], 1 < g < N, iff the first child of
internal node i is held in the ¢** position of the node index.

120

8.5. Data Structures

e maxChild [i] = ¢, 1 <i < [n/255], 1 < ¢ < N, iff the last child (less
frequent) of the internal node i is located in the ¢ position of the node
index. Note that it always holds that maxChild[i] —minChild[i] = 255
(except if 7 is the parent of the zeroNode. In such case the number of
children of i can be smaller than 256).

e inodePosi] = ¢, 1 < i < [n/255], 1 < ¢ < N. It means that the 5
internal node is the ¢** node of the node index.

Hash table to hold leaf nodes

e word[q] = w;, 1 < q¢ < nextPrime(2n). That is, a word w;, is
in position ¢ in the hash table. This happens if and only if: i)
q = frasn(w;i) and words[q] = Null before adding w; into the tree.
i) ¢ = frash(wi), words[q'] # w; and q = solveCollision(q', w;).

e InodePos|i] = ¢, 1 < i < nextPrime(2n), 1 < g < N. It means that
the word in the position i in the hash table corresponds to the ¢*" node
of the node index.

Figure 8.2 shows how the tree data structure is used supposing a 4-ary
tree. In the right part, the tree that is represented by the data structures
previously defined is shown. In the left, those vectors are filled in order to
represent the tree of step 12 in Figure 8.1.

Note that the tree data structures just defined are enough to enable
maintaining sorted by frequency all nodes in the Huffman tree. In fact,
the first position in the node index stores the root of the tree (the most
frequent node), the second position holds the most frequent nodes among
the remainder ones (except the root), and so on. However with only those
data structures it is time-expensive to find the first node of a given weight
in the node index, as a sequential search should be done (remember that
finding the first node is needed, at least once, when updating the tree). In
order to improve performance next structure is also used.

121

8. Dynamic Byte-oriented word-based Huffman code

NODE INDEX zeroNode = 8
relPos| 1 (8 |17 3 |2 |11]|14
nodeType [| L|L|L | L|{LJL
tred|31| 9|8 |7 |76 \s\
parent | - | 1 1 1 1121212
1 2 3 4 5 6 7.8 9 10 11 12
INTERNAL NO?ES
minChild\| 2T 6
maxChjld || 5181
iNodePas -1 | 5 lastinternalNode = 2
1 2 3 4
LEAVES HASH TABLE "
word c a d e b
INodePos 4 2 6 7 3

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 8.2: Use of the data structure to represent a Huffman tree

8.5.2 List of blocks

Using the idea pointed in [29, 52] nodes with the same weight are joined
into blocks and a list of blocks is maintained sorted in decreasing order of
weight. We define block; as the block that groups all nodes whose number
of occurrences is j. We also define top; and last; nodes respectively as the
first and the last nodes in the node index that are members of block;.

The main advantage of maintaining a list of blocks, is that it can be easily
maintained sorted in constant time. Lets suppose that a word w;, such as w;
already belongs to block bj, is been input. The number of occurrences of the
leaf node that represents to w; needs to be increased (if the word was not in
the tree yet, it is added at the end of the tree by using the zeroNode value).
This is done by changing w; from block b; to block bj1, what basically
implies two operations:

e Interchange w; with top;, such as top; is the first node in the node
index whose frequency is j by definition. That is, freq[top;] = j by
definition and j >= freq[z] V node x > top;.

e Set w; as lastjq1.

122

8.5. Data Structures

(©)

Figure 8.3: Increasing of frequency of word e

Figure 8.3 describes the process of changing a given node e from block
by to block bs. In Figure 8.3(B) it is shown how e is interchanged with d,
the top of its block b4. Finally, Figure 8.3(C), e is set as the last node of bs.

When a node wj; is processed, several situations can take place depending
on the state of the tree and the state of sorted list of blocks:

A. w; was not in the tree: In this case, w; is added to the tree, and set as
the last node of b;. See Figure 8.4(A). To add w; to the tree, both the
node index and the hash table are updated in the following way: i) if
zeroNode has less than 255 siblings then w; is added as a new sibling
of the zeroNode. ii) If the zeroNode has already 255 siblings then a
new internal node ¢ is created (in the address of the zeroNode) and
both w; and zeroNode are set as children of q.

B. w; is the unique node in b; and bj4q exits. Since wj; is the only node
in b;, then when w; pass to block b;1, hence b; remains empty and
has to be removed from the list of blocks. This scenario is shown in
Figure 8.4(B).

C. w; belongs to b; and b;41 does not exist. If there are two or more nodes
in b; then block bj;1 has to be added to the list of blocks (see Figure
8.4(C).

D. w; is the unique node of b; and bj;1 does not exist. Therefore b; is

123

8. Dynamic Byte-oriented word-based Huffman code

Figure 8.4: Distinct situations of increasing the frequency of a node

124

8.6. Huffman tree update algorithm

turned into block bj;1, and no insertions or deletions of blocks are
needed, as it is shown in Figure 8.4(D).

Several arrays and a variable denominated available Block define the list
of blocks data structure:

e nodelnBlock[q] =i, 1 < ¢ < N, if and only if the node ranked ¢ in the
node index belongs to block i.

e topBlock[q] = i, 1 < ¢ < N, if and only if the node ranked i in node
index is the top of block by.

e lastBlock|q] = i, 1 < ¢ < N, if and only if the node ranked 7 in the
node index is the last node of block b,.

e nextBlock[q] = nb, 1 < ¢ < N, if and only if the block b, is the next
block of b, in the list of blocks.

e previousBlock[q] = nb, 1 < ¢ < N, if and only if the block by, is the
previous block of b, in the list of blocks.

e freqlq] = w, 1 < ¢ < N, if and only if the frequency of all words in
block b, is w. Note that this vector is used instead of the one described
in the node Inder data structure.

e availableBlock indicates the first block that is unused. All unused
blocks are linked together in a list using nextBlock array, and
availableBlock is the header of that list or 1 if the available blocks
list is empty.

8.6 Huffman tree update algorithm

The compressor/sender and decompressor/receiver algorithms use the
general guidelines shown in Figure 7.1.

The update algorithm is presented next. It supposes that ¢ is the rank
in the node index of the node whose frequency has to be increased (or
g = zeroNode if a new word is been added to the tree).

125

8. Dynamic Byte-oriented word-based Huffman code

update(q)
1) findNode(q); //sets q as the node to be incremented

(

(2) while g # 0 do; //bottom-up traversal of the tree

(3) top = topBlock[nodeInBlock[q]];

(4) if g # top then;

(5) if nodeType[q] =" L' then; //q is a leaf node
(6) if nodeType[top] =" L' then;

(7) interchangeNodesLL (g, top);

(8) else interchangeNodesIL (g, top);

(9) else //qis an internal node

(10) if nodeType[top] =" L' then;

(11) interchangeNodesIL (top, q);

(12) else interchangeNodeslII (top, q);

(13) q = top;

(14) increaseBlock(q);

(15) frequency|0] = frequency[0] + 1; //root’s frequency ;

Interchanging two nodes depends on their type. Next three algorithms
enable interchanging either two leaves, two internal nodes or both a leaf and
an internal node.

interchangeNodesLL(leaf;, leaf;)
(1) INodePos[relPoslleaf;]] < [NodePos[relPos[leaf;]];
(2) relPoslleaf;] < relPos[leaf;];

interchangeNodesIL(leaf, internal)

(1) INodePos|relPoslleaf]] < iNodePos[rel Pos[internall];
(2) relPoslleaf] < relPos[internall;

(3) nodeTypelleaf] < nodeTypelinternall;

interchangeNodesII(i, j)
(1) iNodePos|relPos[i]].nodePos < iNodePos[relPos[j]].nodePos]];
(2) relPos[i] < relPoslj);

Next, procedure findNode() is shown, it sets current ¢ node, as the node
to be incremented.

126

8.6. Huffman tree update algorithm

nodeTypelq] =" L';

parent[q] = pg;

zeroNode = zeroNode + 1;

nodeType|zeroNode] =" L';

parent[zeroNode] = pg;

intNodes[pq].maxChild = int Nodes[pq].mazChild + 1;
else //a new internal node has to be created in position zeroNode

lastIntNode = lastIntNode + 1;

npq = lastIntNode;

rel Pos[q] = npg;

nodeTypelq] =" I';

findNode(q)

(1) bg = nodeInBlock|q];

(2) if ¢ = zeroNode then

(3) pq = parent[q];

(4) if (maxChild[pg] — minChild[pq]) < 255 then //pq has less than 256
(5) nbq = nextBlock[bql; //children, so it has space to hold ”q”.
(6) if frequency[nbg] = 1then //block 71" already exists
(7) nodelnBlock[q] = 1;

(8) nodeInBlock[q + 1] = 0;

9) lastBlock[1] = ¢;

(10) lastBlock[0] = q + 1;

(11) topBlock[0] = ¢ + 1;

(12) else //block 71”7 did not exists so it is created
(13) bql = availableBlock;

(14) available Block = nextBlock[available Block];
(15) nextBlock[bqgl] = nextBlock[bg];

(16) previousBlock[bgl| = previousBlock[nbg];
(17) nextBlock[bg] = bql;

(18) previousBlock[nbq] = bql;

(19) frequencylbgl] = 1;

(20) nodeInBlocklq] = 1;

(21) nodeInBlock[q + 1] = 0;

(22) topBlock[bql] = g¢;

(23) lastBlock[bqI] = q;

(24) topBlocklbq] = ¢+ 1;

(25) lastBlocklbq] = q + 1;

(26) //q is added to the tree

(27) addr = frash(s:i);

(28) word[addr] = s;;

(29) INodePos[addr] = ¢;

(30) relPos[q] = addr;

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

parent[q] = pg;

127

8. Dynamic Byte-oriented word-based Huffman code

(43) minChildnpq] = q + 1;

(44) mazChildnpg] = q + 2;

(45) iNodePos[npq] = ¢;

(46) nbq = nextBlock[bql;

(47) if frequency[nbg] =1 then //block 717 already exists
(48) nodeInBlocklq] = 1;

(49) nodelnBlock[qg + 1] = 1;

(50) nodelnBlock[q + 2] = 0;

(51) lastBlock[l] = ¢+ 1;

(52) lastBlock[0] = ¢ + 2;

(53) topBlock[0] = q + 2;

(54) else //block ”1” does not exist yet
(55) bql = availableBlock;

(56) available Block = nextBlock[available Block];
(57) nextBlock[bqI] = nextBlock[bg];
(58) previousBlock[bgl] = previousBlock[nbg];
(59) nextBlock[bq] = bql;

(60) previousBlock[nbq] = bql;

(61) frequency[bgl] = 1;

(62) nodelnBlock[q] = 1;

(63) nodelnBlock[q + 1] = 1;

(64) nodelnBlock[q + 2] = 0;

(65) topBlocklbql] = g;

(66) lastBlocklbql] = q + 1;

(67) topBlock[bq] = q + 2;

(68) lastBlock[bq] = q + 2;

(69) q=q+1;

(70) addr = fhash(currentWord);

(71) word[addr] = currentWord,

(72) INodePos[addr] = g;

(73) relPos[q] = addr;

(74) nodeTypelq] =" L';

(75) parent[q] = npg;

(76) zeroNode = zeroNode + 2;

(77) nodeType[zeroNode] =" L';

(78) parent[zeroNode] = npg;

(79) q = intNodes[pq].node Pos;

(80)

Note that the function frasp(currentWord) used in lines 27 and 70
returns the position inside the hash table where currentWord should be
placed. Note also that in the case of the decompressor, as it needs only

128

8.6. Huffman tree update algorithm

an array of words, rather than a hash table, this lines should be replaced
by next two instructions: addr = nextFreeWord;nextFreeWord =
nextFreeWord + 1; where nextFreeWord stores the next available free
position in words vector.

The last procedure used in update() is called increaseBlock(q). This
procedure is called in each step of the bottom-up traversal of the Huffman
tree. It increases the frequency of the node ¢ and sets ¢ to point to its parent,
next level upward in the tree.

increaseBlock(q)

1) bg = nodelnBlock[q];

) mbg = nextBlock[bg];

) if frequency[nbq] == (frequencylbg] + 1) then

) nodelInBlock|q] = nbg;

) lastBlock[nbq] = ¢;

) if lastBlock[bg] == q then //q’s old block disappears
) previousBlock[nbq] = previousBlock[bg];

) nextBlock[previous Block[bg]] = nbg;

) nextBlock[bq] = available Block;

© 00 J O Uk W

) available Block = bg;
) else topBlock[bq] = q + 1;
) else //Next block does not exist
) if last Block[bq] == ¢ then
) frequency[bq] = frequencylbg] + 1;
) else
) b = available Block;
) available Block = nextBlock[available Block);
) nextBlock[bq] = b;
19) previousBlock[b] = bg;
) nextBlock[b] = nbg;
) previousBlock[nbg| = b;
) topBlocklbq] = g + 1;
) topBlock[b] = g;
) lastBlock[b] = g;
) frequency[b] = frequencylbq] + 1;
) nodelInBlock|q] = b;
)

e e e e e e N I s e N N N e
[\ =
[N

129

8. Dynamic Byte-oriented word-based Huffman code

8.7 Empirical Results: Character- versus word-
oriented Huffman

We compressed the real texts used in Section 10.5 to test the compression
ratio and time performance of the character-based FGK algorithm (using the
compact command) against the dynamic word-based byte-oriented Huffman
code described in this Chapter.

Table 8.1 compares the compression ratio and compression speed of both
techniques. As expected, for being a word-based technique, it reduces the
compression ratio of the character-based dynamic Huffman technique to the
half. Compression speed is also increased. The dynamic word-based byte-
oriented Huffman (DynPH) reduces FGK algorithm compression time in
about 6 times.

[CORPUS || O SIZE | Dyn PH FGK algorithm \
[H bytes ‘ bytes ratio time (sec) ‘ Bytes ratio ‘ time(sec) ‘
CALGARY 2,131,045 991,911 46.546 0.520 1,315,774 61.743 3.270

FT91 14,749,355 5,123,739 34.739 3.428 9,109,215 61.760 20.020
CR 51,085,545 15,888,830 31.102 11.450 31,398,726 61.463 71.010
FT92 175,449,235 56,185,629 32.024 41.330 108,420,660 61.796 259.125
ZIFF 185,220,215 60,928,765 32.895 44.628 155,010,899 83.690 264.570
FT93 197,586,294 63,238,059 32.005 47.118 124,501,969 63.011 272.375
FT94 203,783,923 65,126,566 31.959 48.260 128,274,442 62.946 278.210
AP 250,714,271 80,964,800 32.294 60.702 155,010,899 61.828 361.120
ALL_FT 591,568,807 187,586,995 31.710 143.050 370,551,380 62.639 832.134
ALL 1,080,719,883 355,005,679 32.849 268.983 678,287,443 62.763 1,523.890

Table 8.1: Comparison of word-based and character-based dynamic
approaches

In Section 10.5, more empirical results, comparing the Dynamic word-
based byte-oriented Huffman technique explained in this Chapter against
several well-known compression techniques, are also presented.

8.8 Conclusions

Our dynamic word-based byte-oriented Huffman code and the data
structures that support efficiently the update process of the Huffman tree in
each step of both compression and decompression processes were presented.

130

8.8. Conclusions

Word-based Huffman codes, are known to obtain good compression. For
this sake, we adapted an existing algorithm so as to handle very large sets
of source words and byte-oriented output. The latter decision sacrifices
some compression ratio in exchange for an 8-fold improvement in time
performance. The resulting algorithm obtains compression ratio very similar
to its static version (only 0.06% off) and compresses about 4 megabytes per
second on a standard PC.

Some empirical results comparing the new technique with the FGK
algorithm, a good character-based dynamic Huffman method, were
presented. Those results show that our implementation clearly improves
the compression ratio and reduces the compression time achieved by the
character-based FGK.

As a result, we have obtained an adaptive natural language text
compressor that obtain 30%-32% compression ratio for large texts, and
compresses more than 4 megabytes per second. Empirical results also show
its good performance when it is compared against other compressors such
as gzip, bzip2 and arithmetic encoding (see Section 10.5 for more details).

Having set the efficiency of this algorithm, we will use it as a competitive
compression technique to prove that dynamic versions of both End-
Tagged Dense Code and (s,c)-Dense Code are, as their two-pass versions,
good alternatives to Huffman compression techniques for their competitive
compression ratio, compression and decompression speed and mainly for the
ease of their implementation.

131

8. Dynamic Byte-oriented word-based Huffman code

132

Dynamic End-Tagged Dense
Code

9.1 Chapter overview

This Chapter presents our first contribution to dynamic compression, a
dynamic version of the End-Tagged Dense Code. First the motivation of
this new technique is explained. Next, its basis are presented in Section 9.3.
The data structures needed to make it an efficient adaptive technique,
are explained in Section 9.4. Section 9.5 presents pseudocode for both
compressor and decompressor processes. It includes the algorithms to adapt
the model used, whenever a symbol is input. Empirical results, comparing
the compression ratio of both the dynamic version against the semi-static
approach are given in Section 9.6. Finally, some conclusions regarding to

this new technique are shown.

9.2 Introduction

In Chapter 8 a good word-based byte-oriented dynamic Huffman code
was presented. That code joins the good compression ratios achieved
by the word-based semi-static statistical Huffman methods (in this case,

133

9. Dynamic End-Tagged Dense Code

Plain Huffman method[48]) with the advantages of adaptive compression
techniques in file transmission scenarios. The resulting code permits real-
time transmission of data and achieves compression ratios really close to the
semi-statical version of the code.

However, this algorithm is rather complex to implement and the update
of the Huffman tree is expensive. Each time a symbol s; is input, it is
required to perform a full bottom-up traversal of the tree to update the
weights of all the ancestors of s; until reaching the root (and at each level,
reorganizations can happen).

In Chapter 5 we describe End-Tagged Dense Code, a statistical word-
based compression technique (not using Huffman) which we first presented
in [13]. End-Tagged Dense Code is shown as a good alternative to Huffman
due to several features:

e [t is really simple to build since only a list of words ranked by frequency
is needed by both the encoding and decoding processes.

e End-Tagged Dense Codes are faster than Huffman based codes.

e The lose of compression ratio compared against the Plain Huffman
code is small (about 1 percentage point).

e It enables direct searching the compressed text.

For the first three reasons it seemed interesting to develop a
Dynamic End-Tagged Dense Code in this thesis. This new code is
shown in the remainder sections of this Chapter, and improves the
compression/decompression speed of the dynamic Huffman-based technique
(about 22%-26% faster in compression and 35% in decompression), at the
expense of loosing a little bit of compression ratio (one percentage point).

9.3 Method overview

In this Section it is shown how ETDC can be made dynamic. Considering
again the general scheme of Figure 7.1, the main issue is how to maintain the

134

9.3. Method overview

Bytes = 36
Plain text [t [h]e] [rolslel Irlolslel li[s] [blelalult[i [f[ull | [blelalult]i [f [ull]
Input order 0 1 2 3 4 5 6
Word parsed the rose rose is | beautiful| beautiful
In vocabulary? no no yes no no yes
Data sent _ 4 J\C1\the Ca,rose ,{\Cg\ Czis | Cybeautiful Cy
110 the thg)/ rose 2 rose 2 rose 2 rose 2
Vocabulary |
state Y Yrose ! the ! the ' the ! beautifl

1

1 1 1 1
(2 2 2 2

3 3 s '3 is |3 s
4 4 4 4 the '

Bytes = 28
Compressed text [ci| t] h[e[#c.[r] of s[e[#c.[c.]i]s]#cbleaut[i]f[u]l]#ci

1 1 1
2 2 2
3 3 3
4 4 4

beautiful

Figure 9.1: Transmission of message "the rose rose is beautiful
beautiful"

CodeBook up to date upon insertions of new source symbols and frequency
increments.

In the case of ETDC, the CodeBook consists essentially on one structure
that keeps the vocabulary ordered by frequency. Since we maintain such
sorted vocabulary upon insertions and frequency changes, we can encode any
source symbol or decode any target symbol by using the on-the-fly encode
and decode procedures explained in Section 5.4.

Figure 9.1 shows how should the compressor operate. At first (step 0),
no words have been read so new-Symbol is the only word in the vocabulary
(it is implicitly placed at position 1). In step 1, a new symbol "the" is read.
Since it is not in the vocabulary, C; (the codeword of new-Symbol) is sent,
followed by "the" in plain form (bytes *t’, *h’, e’ and some terminator
*#7). Next, "the" is added to the vocabulary with frequency 1, at position
1. Tmplicitly, new-Symbol has been displaced to position 2. Step 2 shows
the transmission of "rose", which is not yet in the vocabulary. In step 3,
"rose" is read again. As it was in the vocabulary at position 2, only the
codeword (Y is sent. Now, "rose" becomes more frequent than "the", so
it moves upwards in the ordered vocabulary. Note that a hypothetical new
occurrence of "rose" would be transmitted as C1, while it was sent as C5 in
step 3. In steps 4 and 5, two more new words, "is" and "beautiful", are

185

9. Dynamic End-Tagged Dense Code

transmitted and added to the vocabulary. Finally, in step 6, "beautiful" is
read again, and it becomes more frequent than "is" and "the". Therefore,
it moves upwards in the vocabulary by means of an exchange with "the".

The receiver works similarly to the sender. It receives a codeword Cj,
and decodes it. As result of decoding C;, a symbol S; is obtained. If C;
corresponds to the new-Symbol, then the receiver knows that a new word
s; will be received in plain form next, so s; is received and added to the
vocabulary. When C; corresponds to a word s; that is already in the
vocabulary, the receiver only has to increase its frequency.

The main challenge is how to efficiently maintain the vocabulary sorted.
In Section 9.4 it is shown how to do it with a complexity equal to the number
of source symbols transmitted. This is always lower than FGK complexity,
because at least one target symbol must be transmitted for each source
symbol, and usually several more.

Essentially, we must be able to identify groups of words with the same
frequency in the ordered vocabulary, and be able to fast promote a word
to the next group when its frequency increases. Promoting a word w; with
frequency f to next frequency group f + 1 consists of:

e Sliding w; over all words whose frequency is f. This operation implies
two operations:

- Locating the first ranked word in the ordered vocabulary whose
frequency is f. This word is called topy.

- Interchanging w; with topy

e Increasing the frequency of w;

Example 9.3.1 Suppose that the ranked vocabulary is composed of words
{’A’,’B’,’C’, ’D’, ’E’, ’F’, ’G’} with frequencies {3, 3, 2, 1, 1, 1, 1}, and a
new 'G’ comes, so its frequency has to be increased.

The frequency of 'G’ is 1, and the first word in the vocabulary with frequency
1 is 'D’. Therefore, ’'D’ and 'G’ are interchanged. Now it is possible to
increase the frequency of ’G’, and the vocabulary remains sorted. So the

136

9.4. Implementation Data structures

resulting vocabulary contains words {’A’, 'B’, ’C’, 'G’, 'E’, 'F’, "D’} and
their frequencies are {3, 3, 2, 2, 1, 1, 1} respectively. a

The whole data structures and the way they are used to maintain the
sorted vocabulary efficiently are shown next.

9.4 Implementation Data structures

As with word-based dynamic Huffman (Chapter 8), the sender maintains
a hash table that permits fast searching for a source word s;, this time to
obtain its rank ¢ in the vocabulary vector (remember that to encode a word
s; only its rank i is needed), as well as its current frequency f; (which is used
to rapidly find the position topy,).

The receiver does not need to maintain a hash table to hold words. It
only needs to use a word vector, because the decoding process generates
directly a rank value ¢ that can be used to index the word vector. Therefore,
it never has to find a word lexicographically.

Lets n be the vocabulary size, F' the maximum frequency value expected
for any word in the vocabulary and N = max{n, F'}. The data structures
used by both the sender and the receiver, as well as their functionality are
shown in Subsections 9.4.1 and 9.4.2 respectively.

9.4.1 Sender’s Data Structures

The following three main data structures are needed:

e A hash table of words keeps in word the source word characters, in
posInVoc the rank (or position) of the word in the ordered vocabulary,
and in freq its frequency. Both word, posInVoc and freq are defined as
H-elements arrays (having H = nextPrime(2n)).

e In the posInHT array, each position represents a specific word of the
vocabulary. Words are not explicitly represented, but a pointer to

137

9. Dynamic End-Tagged Dense Code

word vector in the hash table is stored. posInHT is defined as a n-
elements vector. This vector keeps words ordered by frequency. That
is, posInHT[1] points to the most frequent word, posInHT[2] to the
second most frequent word, and so on.

e Array top is defined as a N-elements array. Each position represents
implicitly a value of frequency. That is, top[l] represents words whose
frequency is 1, top[2] represents words with frequency 2, an so on. For
each possible frequency, top vector keeps a pointer to the hash table
entry where the first word with that frequency is stored.

gives, for each possible frequency, the vocabulary array position of the
first word with that frequency. It is defined as a N-elements array.

Two more variables new-Symbol and mazFreq hold the first free position
in the vocabulary (in posInHT) and the position “higher frequency of current
words + 17 (associated to top vector) respectively.

9.4.2 Receiver’s Data Structures
The following three vectors are needed:

e A word vector that keeps the source word characters. It consists of a
n-elements array.

e A freq vector that keeps the frequency of each word. That is,
freqli] = f, if the number of occurrences of the word stored in word]|i]
is f. As the word array, this vector can keep up to n elements.

e Array top. As it happened in the sender, this array gives, for each
possible frequency, the word position of the first word with that
frequency. It is also defined here, as a N-elements array.

Variables new-Symbol and maxFreq are also needed by the receiver.

Next Section explains the way both sender and receiver work, and how
they use the data structures just presented to make sending/compression
and reception/decompression processes efficient.

138

9.5. Sender’s and Receiver’s pseudocode

2 ABABBCC ABABBCCC
2 word C A B word C A B
; posinVoc 3 2 D posinVoc 2 3 1
je 2 (3 freq 3 2 3
5 7 1 2 3 4 5 6 7 8
g
3 top[- [-[3]1]-]|maxFreq=4
<} o 1 2 4
[2]
g posinHT[Z [3 [5] [|newSymbol=4
2 1. 2 3 4 5

ABABBCCCD ABABBCCCDD
word| D C A B word| D C A B
posinVoc | 4 2 3 1 posinVoc | 4 2 3 1
freq| 1 3 2 3 freq| 2 3 2 3
1 2 3 4 5 6 7 8 1 3 6 7 8
op[- [4T3] 17 - | maxFreq=4 top ----- maxFreq = 4
0 1 2 3 4
posinHT[Z [3 [5 [1| |newSymbol =5 posinHT[Z [3 [5 [1| |newSymbol =5
1.2 3 4 1 2 3 4 5

Figure 9.2: Transmission of words C, C, D and D having transmitted
ABABB earlier.

9.5 Sender’s and Receiver’s pseudocode

When the sender reads word s;, it uses the hash function to obtain its
position p in the hash table, so that frqsn(s;) = p and therefore word[p] = s;.
After reading f = freq[p], it increments freg[p]. The position of s; in the
vocabulary array is also obtained as i = posInVoc[p] (so it will send code Cj).
Now, word s; must be promoted to its next group. For this sake, sender’s
algorithm finds the head of its group j = top[f] and the corresponding word
position h = posInHT[j], so as to swap words ¢ and j in the vector posInHT.
The swapping requires exchanging posIn HT[j] with posInHT[i] = p, setting
posInVoc[p] = j and setting posInVoclh| = i. Once the swapping is done,
we promote j to the next group by setting top[f] = j + 1.

If s; turns out to be a new word, we set word[p] = s;, freq[p] = 0, and
posInVoc[p] =new-Symbol. Then exactly the above procedure is followed
with f = 0 and i =new-Symbol. Finally also new-Symbol is increased.

Figure 9.2 explains the way the sender works and how its data structures

are used.

159

9. Dynamic End-Tagged Dense Code

ciA#cBH#c cococ3CHC3 c1A#coBH#C CoCc3CHeC3

olword| B[A|[C nlword| B | C [A
g freqi(3)] 2 | 2 'g freql 3|3 | 2
3 ¢« 2 3 4 5 6 E 1 2 3 4 5 6
2 newSymbol = 4 2 newSymbol = 4
> 3
2\ top[- [\ [2 I - | maxFreq=4 o) top[- [- [3[1] -] maxFreq=4
b 0 T 243 4 > 0 1 2 3 4

c1A#CB#Cc.coc5CHCs03C4DE c1AHCB#C1CoCocCHesC3cDHCYy
olword| B{C[A]|D olword B{C|A|D
X freq 3 [3] 2] 1 K freqf 3[3[2]2
E 1 2 3 4 5 6 E 1 2 3 4 5 6
®» newSymbol = 5 ® newSymbol = 5
5, 5
2 top| - [4]3] 1] -] maxFreq=4 8 top| - [- [3] 1] -] maxFreq=4
© 0 1 2 3 4 © 0 1 2 3

Figure 9.3: Reception of ¢3, c¢3, c4D# and c4 having received
c1 A coB#ci cococsCH# previously.

The receiver works very similarly to the sender, but it is even simpler.
Given a codeword Cj, the receiver decodes it using the decode algorithm in
Page 64, achieving the position i such as decode(C;) = i and word|[i] contains
the word s; that corresponds to C;. Therefore word[i] can be output. Next
it performs f = freq[i] and then increases freg|i]. In order to promote s;
in the vocabulary, j = topli] is located. In next step word[i| and word]j] as
well as freq[i] and freq[j] are swapped. Finally j is promoted to the group
of frequency f + 1 by setting top[f] = j + 1.

If i = new-Symbol then a new word s; is being transmitted in plain form.
We set word[i] = s;, freqli] = 0, and again the previous process is performed
with f =0 and ¢ =new-Symbol. Finally new-Symbol is also increased.

Figure 9.3 gives an example of how the receiver works.

Pseudocode for both sender and receiver processes is shown in Figures 9.4
and 9.5. Notice that implementing dynamic ETDC is simpler than building
dynamic word-based Huffman. In fact, our implementation of the Huffman
tree update (Section 8.6) takes about 120 C source code lines, while the
update procedure takes less than 20 lines in dynamic ETDC.

140

9.5. Sender’s and Receiver’s pseudocode

Sender main algorithm ()
1) new-Symbol — 1,

(

(2) top[0] «— new-Symbol,

(3) mazFreq «— 1;

(4) while more words left

(5) read s; from text;

(6) if (s; ¢ word) then
(7) P — fhasn(8:);
(8) i «— new-Symbol;
(9) send (encode(7));
(10) send s; in plain form;
(11) else

(12) i «— posInVoc[pl;
(13) send (encode(7));
(14) update();

Sender update ()
1) if i =new-Symbol then // new word
) word|p] — si;
) freqlp] < 0;
) posInVoc[p] «— new-Symbol ;
) posInHT [new-Symbol] — p;
) new-Symbol «— mnew-Symbol + 1;
) f — freqpl;
) [freqlp] — freq[p] +1;
) g — toplfl;
0) h «— posInHT[jl;
1) posInHT[i] < posInHTI[j];
12) posInVoc[p] «— j;
) posInVoc[h] «— 1i;
14) toplf] — j+1;
15) if maxFreq = f + 1 then
) toplf 1] — 0
) mazrFreq «— maxFreq+ 1;

Figure 9.4: Dynamic ETDC sender pseudocode

141

9. Dynamic End-Tagged Dense Code

Receiver main algorithm ()
1) new-Symbol «— 1;

(

(2) top[0] < new-Symbol,

(3) mazFreq «— 1;

(4) while more codewords remain
(5) i« decode(c;);

(6) if i =new-Symbol then
(7) receive s; in plain form;
(8) output s;;

(9) else

(10) output word|i];

(

11) update();

Receiver update ()

1) if i =new-Symbol then // new word
2
3
4

(

(2) word[i] — si;

(3) freqli] < 0;

(4) new-Symbol «— new-Symbol + 1;
(5) f < freqli;

(6) fregli] <« freqli] +1;

(7) j < toplfl;
(8)
(9)
(10
(11
(

(

Ut

8) freqli] = frealj]
9) word[i] < word[jl;
1
1
12
13

) top[f] — j+1;

) if maxFreq= f+ 1 then

) top[f +1] < 0;

) maxFreq «— maxFreq+ 1;

Figure 9.5: Dynamic ETDC sender pseudocode

142

9.6. Empirical Results

9.6 Empirical Results

We compressed the real texts used in Section 10.5 to test the compression
ratio of the one- and two-pass versions of End-Tagged Dense Code (ETDC)
and Plain Huffman (PH).

Table 9.1 compares the compression ratio of two-pass versus one-pass
techniques. Columns labelled diff measure the increase, in percentage
points, in the compression ratio of the dynamic codes compared to their
semi-static version. The last column compares those differences between
Plain Huffman and ETDC.

Plain Huffman End-Tagged Dense Code diff

CORPUS TEXT SIZE 2-pass | 1l-pass | diff 2-pass | 1l-pass | diff ETDC
bytes ratio% | ratio% | PH ratio% | ratio% | ETDC -PH

CALGARY 2,131,045 46.238 46.546 0.308 47.397 47.730 0.332 0.024
FT91 14,749,355 34.628 34.739 0.111 35.521 35.638 0.116 0.005

CR 51,085,545 31.057 31.102 0.046 31.941 31.985 0.045 -0.001

FT92 175,449,235 32.000 32.024 0.024 32.815 32.838 0.023 -0.001
ZIFF 185,220,215 32.876 32.895 0.019 33.770 33.787 0.017 -0.002
FT93 197,586,294 31.983 32.005 0.022 32.866 32.887 0.021 -0.001
FT94 203,783,923 31.937 31.959 0.022 32.825 32.845 0.020 -0.002

AP 250,714,271 32.272 32.294 0.021 33.087 33.106 0.018 -0.003
ALL_FT 591,568,807 31.696 31.710 0.014 32.527 32.537 0.011 -0.003
ALL 1,080,719,883 32.830 32.849 0.019 33.656 33.664 0.008 -0.011

Table 9.1: Compression ratios of dynamic versus semi-static techniques

Compression ratios are around 31-34% in the larger texts. In the smaller,
compression is poor because the size of the vocabulary is proportionally too
large with respect to the compressed text size.

From the experimental results, it can also be seen that the cost of
dynamism in terms of compression ratio is negligible. The dynamic
versions lose very little in compression (about 0.02 percentage points, 0.06%)
compared to their semi-static versions. Moreover, in most texts (the negative
values in the last column) dynamic ETDC loses even less compression than
the dynamic Plain Huffman.

143

9. Dynamic End-Tagged Dense Code

9.7 Conclusions

In this Chapter it was considered the problem of providing adaptive
compression for natural language text, with the combined aim of competitive
compression ratios and good time performance.

We adapted a simpler alternative to Huffman, End-Tagged Dense Code
(ETDC) to make it one-pass. The resulting dynamic version is much simpler
than the Huffman-based one (proposed in Chapter 8). This is because
maintaining ordered a list of words is much simpler than adapting a Huffman
tree (and less operations are performed).

As result, Dynamic ETDC is 22%-26% faster, compressing typically
5.5 megabytes per second. Moreover, the compressed text is only 0.06%
larger than with semi-static ETDC and 3% larger than with Huffman. In
Section 10.5 empirical results comparing both the semi-statical against the
one-pass version of ETDC, as well as the comparative against other well-
known compression techniques are presented.

144

10

Dynamic (s, c)-Dense Code
SIN TERMINAR !!

Il' ESTE CAPITULO NO ESTA FINALIZADO!! pero los resultados
empiricos son VALIDOS, a falta de mejorar el Dyn-SCDC.

..AUN TENGO QUE :

e REVISAR LA IMPLEMENTACION preliminar QUE HICIMOS DEL
Dyn-SCDC sobre las ideas que hablamos cuando estuviste aqui en A
Coruna.

Actualmente tengo una versién preliminar y (con las pocas pruebas que
hice con la versién nuevo) mejoramos un poco (sobre todo en textos
pequenos) los tiempos del Dyn-SCDC respecto a los tiempos que se
incluyen en la seccién de resultados empiricos (con la versién vieja)

Quiero revisar un poco la implementacién, y después jtomar més

tiempos para que las medias sean fiables!

e CONTAR COMO FUNCIONA ESA NUEVA VERSION. Secciones
10.3 v 10.4

145

10. Dynamic (s, c)-Dense Code SIN TERMINAR !!

10.1 Chapter overview

This Chapter presents the last contribution of this thesis. It consists of
the development of a new adaptive compression technique named Dynamic
(s,c)-Dense Code (D-SCDC). D-SCDC is a generalization of the Dynamic
End-Tagged Dense Code, in which not only the vocabulary is dynamically
maintained sorted, but also the s and ¢ parameters can vary along the
compression/decompression processes in order to achieve better compression.

The Chapter is structured as follows: First the motivation of this new
technique is introduced. In Section 10.3, Dynamic (s,c)-Dense Code is
described. It treats the similarities between Dynamic End-Tagged Dense
Code and Dynamic (s,c)-Dense Code data structures, as well as those
differences that arise due to the necessity of adapting the s and ¢ parameters.
Then, the way the s and ¢ parameters are maintained optimal is presented,
and its pseudocode is given in Section 10.4. Section 10.5 shows empirical
results where the three new dynamic techniques developed are compared
with the two-pass versions, as well as with other well-known compressors
such as gzip, gzip2 and an adaptive arithmetic compressor [38]. Finally
some conclusions are presented in Section 10.6.

10.2 Introduction

In the previous two chapters, two dynamic word-based byte-oriented
techniques were defined.

The first one is based on Plain Huffman. It achieves better compression
than the second one, Dynamic End-Tagged Dense Code (ETDC) (about
3 points in percentage of the compressed text). However it is slower in

compression and decompression (about 20 % in large texts).

As shown in Chapter 6, (s, c)-Dense Code [14] is a compression technique
that generalizes End-Tagged Dense Code and obtains compression ratios
very close to those of the optimal Plain Huffman Code.

The work being presented in the current Chapter involves building an

1/6

10.3. Dynamic (s, c)-Dense Codes

adaptive version of (s,c)-Dense Code [14]. It consists of an extension to
ETDC where the number of byte values that signal the end of a codeword
can be adapted to optimize compression, instead of being fixed at 128 as in
ETDC.

The remainder of this Chapter treats the similarities between Dynamic
ETDC and Dynamic (s,c)-Dense Code data structures, as well as those
differences appeared due to the necessity of adapting s and c¢. Finally
empirical results and some conclusions are presented.

10.3 Dynamic (s,c)-Dense Codes

In this Section it is shown how to generalize Dynamic ETDC to build
Dynamic (s, ¢)-Dense Code (Dynamic SCDC).

Based on Dynamic ETDC, Dynamic (s,c¢)-DC also uses the scheme
presented in Figure 7.1. The CodeBook is essentially the array of source
symbols sorted by frequencies, and the on-the-fly encode and decode
procedures explained in Section 6.5, are used.

The main difference with respect to Dynamic ETDC is that, in each step
of the compression/decompression processes, it is mandatory not only to
maintain the sorted vocabulary, but also to check if current s value remains
optimal or if it should change.

10.3.1 Maintaining the s and ¢ parameters optimal

Both encoder and decoder starts with s = 256. This s value is optimal while
the first 255 words of the vocabulary are input. When word 256 arrives, s
has to be decreased by 1 since a two-bytes codeword is needed. From this
point on, the optimal s and ¢ values are estimated depending on the number
of bytes needed to encode, using current s and c values, the last processed
input word, and comparing that value with the number of bytes that would
be need if the current s value would had been prevs = s —1 or nexts = s+1
(remember that ¢ = 256 — s).

147

10. Dynamic (s, c)-Dense Code SIN TERMINAR !!

Three variables are needed: prev, sy and next. prev holds an estimation
of the size of the compressed text when the value s —1 is used as the number
of stoppers in the encoding/decoding process. so and next accumulates the
size of the compressed text, supposing that the last word input was encoded
using the current s value or s + 1 respectively.

First, the tree variables are initialized to zero. Each time a symbol s;
arrives, prev, sp and next are increased. Lets countBytes(s_value, i) be a
function that computes the number of bytes needed to encode the word
ranked ¢ having s = s_value.

Therefore the three variables are increased as follows:

e prev «— prev + countBytes(s — 1,1)
e 5o «— so + countBytes(s,1i)

o next — prev + countBytes(s + 1,1)

A change of the s value takes place when prev < sg or when next < so.
If prev < sg then the s — 1 becomes the new s value. When next < sg holds,
then s + 1 is set as the new s value.

Each time the parameter s changes, sg, next and prev are initialized
again, and the process continues. This initialization depends on the change
of s that takes place.

- If sis increased then prev < so; and sg < next (next does not change).

- If s is decreased then mext «— sp; and so <« prev (prev does not
change).

The update algorithm to maintain the list of words sorted is the same
used in the case of Dynamic End-Tagged Dense Code, in Figures 9.4 and
9.5. However the test that indicates a possible change of the s value, has to
be performed once after each call to the update process.

148

10.4. Pseudocode for parameters check and change

10.4 Pseudocode for parameters check and change

Two main procedures are used to check if s and ¢ values have to change
after having processed a new input symbol. The first one is countBytes().
This algorithm calculates, given a s; value and a word ranked 4, in the
vocabulary, the number of bytes needed to encode the word i,,s using s = s;.

The second algorithm, TakelntoAccount()is invoked after each call to the
update() procedure. This algorithm checks either if prev < sg or next < sq,
and changes the s value used in compression or decompression if needed.

The pseucode to both algorithms is shown in Figure 10.1.

10.5 Empirical Results

We tested the different compressors over several texts. As representative
of short texts, we used the Calgary corpus. We also used some large text
collections from TREC-2 (AP Newswire 1988 and Ziff Data 1989-1990) and
from TREC-4 (Congressional Record 1993, Financial Times 1991 to 1994).
Finally, two larger collections, ALL_FT and ALL, were used. ALL_FT
aggregates all texts from Financial Times collection. ALL collection is
composed by Calgary corpus and all texts from TREC-2 and TREC-4.

We first compressed the texts to test the compression ratio and time
performance of the one- and two-pass versions of End-Tagged Dense Code
(ETDC), (s, c)-Dense Code (SCDC) and Plain Huffman (PH). These results
are shown in Subsection 10.5.1. Next, corpora were also compressed with two
well-known techniques such as gzip and bzip2 and a word-based arithmetic
compressor [16]. Results showing compression and decompression time and
compression ratio are presented in Tables 10.3, 10.4 and 10.5.

The spaceless word model [48] was used to model the separators. A
separator is the text between two contiguous words, and it must be coded
too. In the spaceless word model, if the separator following a word is a
single whitespace, we just encode the word, otherwise both the word and the
separator are encoded. Hence, the vocabulary is formed by all the different

149

10. Dynamic (s, c)-Dense Code SIN TERMINAR !!

countBytesAlgorithm (s;, ipos)
//Calculates the size of the encoding of word ranked ipos
//when using s = s; in the compression process

1) k& « 1;

(2) last «— ss;

(3) pot — si;

(4) ¢ «— 256 — s;;

(5) while last <= ipos

(6) pot <« pot * ¢i;
(7) last «— last + pot;
(8) ke k41

(9) return k;

TakeIntoAccount (s,i)
/ /It changes, if needed, the s value than will be used in
//both compression and decompression processes.

1) prev <« countBytes (s —1,1);
2) so < countBytes (s,1);

3) if prev < so then

4 s «— s—1; //sis decreased

Ut

c — c+1;

next <« so;

So «— prev;
else

oo

© =2}
o= e DD DO —

next < countBytes (s+ 1,1);

—_

if next < sp then

NN N N N N N N N N N S S

)
11) s «— s+1; //sis increased
12) c — c—1;
13) prev <« So;
14) so «— next;

Figure 10.1: Algorithm to change s and ¢ parameters if needed

150

10.5. Empirical Results

words and all the different separators, excluding the single whitespace.

A dual Intel®Pentium®-111 800 Mhz system, with 768 MB SDRAM-
100Mhz was used in our tests. It ran Debian GNU/Linux (kernel version
2.2.19). The compiler used was gcc version 3.3.3 20040429 and -09 compiler
optimizations were used. Time results measure CPU user-time.

10.5.1 Semi-static Vs dynamic approach: Compression ratio

Table 10.1 compares the compression ratios of the two-pass versus the one-
pass versions of ETDC, SCDC and PH. Columns labeled diffpy, diffgrpc
and diffgopc measure the increase, in percentage points, in the compression
ratio of the dynamic codes compared against their semi-static version. The
last columns show those differences between PH and ETDC, and between
PH and SCDC respectively.

Plain Huffman End-Tagged Dense Code
CORPUS TEXT SIZE 2-pass | dynamic [Increase 2-pass [dynamic [Increase
bytes ratio % [ratio % [diffp rr ratio % [ratio % [diffprpo
CALGARY 2,131,045 46.238 46.546 0.308 47.397 47.730 0.332
FT91 14,749,355 34.628 34.739 0.111 35.521 35.638 0.116
CR 51,085,545 31.057 31.102 0.046 31.941 31.985 0.045
FT92 175,449,235 32.000 32.024 0.024 32.815 32.838 0.023
ZIFF 185,220,215 32.876 32.895 0.019 33.770 33.787 0.017
FT93 197,586,294 31.983 32.005 0.022 32.866 32.887 0.021
FT94 203,783,923 31.937 31.959 0.022 32.825 32.845 0.020
AP 250,714,271 32.272 32.294 0.021 33.087 33.106 0.018
ALL_FT 591,568,807 31.696 31.710 0.014 32.527 32.537 0.011
ALL 1,080,719,883 32.830 32.849 0.019 33.656 33.664 0.008
(s, c)-Dense Code

CORPUS 2-pass | dynamic | Increase diffgrpce diffscpco

ratio % | ratio % | diffscpc — diffpy — diffpy

CALGARY 46.611 46.809 0.198 0.024 -0.110

FT91 34.875 34.962 0.086 0.005 -0.025

CR 31.291 31.332 0.041 -0.001 -0.005

FT92 32.218 32.237 0.020 -0.001 -0.004

ZIFF 33.062 33.078 0.016 -0.002 -0.003

FT93 32.178 32.202 0.024 -0.001 0.002

FT94 32.132 32.154 0.021 -0.002 -0.001

AP 32.542 32.557 0.015 -0.003 -0.006

ALL_FT 31.839 31.849 0.010 -0.003 -0.004

ALL 33.018 33.029 0.011 -0.011 -0.008

Table 10.1: Compression ratio of dynamic versus semi-static techniques

As it can be seen, a very small lose of compression occurs when converting
the techniques into dynamic codes. To understand this increase of size
of dynamic versus semi-static codes, two issues have to be considered: (i)

151

10. Dynamic (s, c)-Dense Code SIN TERMINAR !!

each new word s; parsed during dynamic compression is represented in the
compressed text (or sent to the receiver) as a pair (Chew-Symbol; Si), while
in two-pass compression only the word s; needs to be stored/transmitted in
the vocabulary; (i7) on the other hand, some low-frequency words can be
encoded with shorter codewords by dynamic techniques, since by the time
they appear the vocabulary may still be small.

Compression ratios are around 31%-33% for large texts. For the
smallest one (Calgary collection), compression is poor because the size of
the vocabulary is proportionally too large with respect to the compressed
text size (as expected from Heaps’ law [23]). This means that proportionally
too many words are transmitted in plain form. The increase of compression
ratio in ETDC compared against PH is always under 1 percentage point, in
the larger texts.

On the other hand, the dynamic versions lose very little compression
(not more than 0.05 percentage points in general) compared to their semi-
static versions. This shows that the price paid by dynamism in terms of
compression ratio is practically negligible. Note also that in most cases,
dynamic ETDC loses even less compression than dynamic Plain Huffman,
while adding dynamism to SCDC only produces more loss of compression
ratio than PH, in the F'T93 corpus.

10.5.2 Comparative of Dynamic PH, Dynamic ETDC and
Dynamic SCDC: compression speed and compression
ratio

Table 10.2 compares the time performance and the compression ratio of our
three dynamic compressors. The first three columns indicate the corpora,
their size and the size of the vocabulary (number of distinct words parsed).

The latter four columns (columns “Dyn ETDC Vs Dyn PH” and “Dyn
SCDC Vs Dyn PH”) measure the increase of compression ratio and the
reduction of compression time (in percentage) of Dynamic ETDC and
Dynamic SCDC, with respect to Dynamic PH.

As it can be seen, Dynamic ETDC loses less than 1 percentage point

152

10.5. Empirical Results

CORPUS TEXT SIZE n Dyn PH [Dyn ETDC |
H bytes l time (sec) [ratio% [time (sec) [ratio %]
CALGARY 2,131,045 30.995 0.520 46.546 0.384 47.730
FT91 14,749,355 75.681 3.428 34.739 2.488 35.638
CR 51,085,545 117.713 11.450 31.102 8.418 31.985
FT92 175,449,235 284.892 41.330 32.024 31.440 32.838
ZIFF 185,220,215 237.622 44.628 32.895 33.394 33.787
FT93 197,586,294 291.427 47.118 32.005 36.306 32.887
FT94 203,783,923 295.018 48.260 31.959 36.718 32.845
AP 250,714,271 269.141 60.702 32.294 47.048 33.106
ALL_FT 591,568,807 577.352 143.050 31.710 111.068 32.537
ALL 1,080,719,883 886.190 268.983 32.849 213.068 33.664
[CORPUS | Dyn SCDC [Dyn ETDC Vs Dyn PH | Dyn SCDC Vs Dyn PH_|
l “ time (sec) [ratio [Inc. size % [Decr. time [Inc. size % [Decr. time]
CALGARY 0.410 | 46.809 2.543 22.892 0.565 17.671
FT91 2.660 | 34.962 2.588 22.685 0.642 17.340
CR 9.010 | 31.332 2.839 22.629 0.737 17.188
FT92 33.980 | 32.237 2.542 26.404 0.667 20.459
ZIFF 36.197 | 33.078 2.710 22.559 0.557 16.060
FT93 37.923 | 32.202 2.755 20.840 0.614 17.314
FT94 39.240 | 32.154 2.774 22.006 0.610 16.649
AP 50.610 | 32.557 2.514 22.796 0.816 16.951
ALL_FT 120.073 | 31.849 2.609 23.796 0.438 17.617
ALL 227.747 | 33.029 2.481 25.927 0.548 21.134

Table 10.2: Comparison of dynamic ETDC, dynamic SCDC and dynamic
PH

of compression ratio (about 3% increase of size) with respect to Dynamic
Plain Huffman, in the larger texts. In exchange, it is 22%-26% faster and
considerably simpler to implement.

In the case of Dynamic SCDC the loss of compression ratio with respect
to Dynamic Plain Huffman is about 0.25 percentage points what implies an
increase of the size of the compressed text of less that 1%. Moreover, the
compression speed is improved about 17%.

Dynamic Plain Huffman compresses 4 megabytes per second, while
Dynamic SCDC reaches 5, and Dynamic ETDC compression speed is about
5.5 megabytes per second.

10.5.3 Comparative against gzip, bzip2 and arithmetic
Compressors

Tables 10.3, 10.4 and 10.5 compare Dynamic PH, Dynamic SCDC and
Dynamic ETDC against gzip (Ziv-Lempel family), bzip2 (Burrows-Wheeler
[15] type technique) and an adaptive arithmetic compressor (arith) [38].

153

10. Dynamic (s, c)-Dense Code SIN TERMINAR !!

Experiments were run setting gzip and bzip2 parameters to both “best” (-b)
and “fast” (-f) compression.

CORPUS compression ratio %

D-PH D-SCDC D-ETDC arith gzip -f | gzip -b bzip2 -f | bzip2 -b
CALGARY 46.546 46.809 47.730 34.679 43.530 36.840 32.827 28.924
FT91 34.739 34.962 35.638 28.331 42.566 36.330 32.305 27.060
CR 31.102 31.332 31.985 26.301 39.506 33.176 29.507 24.142
FT92 32.024 32.237 32.838 29.817 42.585 36.377 32.369 27.088
ZIFF 32.895 33.078 33.787 26.362 39.656 32.975 29.642 25.106
FT93 32.005 32.202 32.887 27.889 40.230 34.122 30.624 25.322
FT94 31.959 32.154 32.845 27.860 40.236 34.122 30.535 25.267
AP 32.294 32.557 33.106 28.002 43.651 37.225 33.260 27.219
ALL_FT 31.710 31.849 32.537 27.852 40.988 34.845 31.152 25.865
ALL 32.849 33.029 33.664 27.982 41.312 35.001 31.304 25.981

Table 10.3: Comparison of compression ratio against gzip, bzip2 and
arithmetic compression

As expected “bzip2 -b” achieves the best compression ratio. It is
about 5-7 percentage points better than Dynamic PH (and hence a little
bit more with respect to Dynamic SCDC and Dynamic ETDC). However,
it is much slower than the other techniques tested in both compression
and decompression processes. Using the “fast” bzip2 option seems to
be undesirable, since compression ratio gets worse (it becomes closer to

Dynamic PH) and compression and decompression speeds remain poor.

On the other hand, “gzip -f” is shown to achieve good compression speed,
at the expense of compression ratio (about 40%). It is shown that Dynamic
ETDC is also a fast technique. It is able to beat “gzip -f” in compression
speed (except in the ALL corpus). Dynamic SCDC is also really close to
“g7ip -f” in compression speed (an even sometimes better than it). Regarding
to compression ratio, Dynamic ETDC achieves also best results than “gzip
-b” (except in CALGARY and ZIFF corpora). However, gzip is clearly the
fastest method in decompression. Note that “gzip -f” is slower than “gzip
-b” in decompression. This is because of decompression has to performed
over a smaller compressed file (because “gzip -best” compresses more than
“gzip -fast”).

Regarding to decompression speed, Dynamic PH decompresses about 6
megabytes per second, while Dynamic SCDC and Dynamic ETDC achieves
about 8 and 9 respectively. Therefore, Dynamic SCDC decompresses
35% faster than Dynamic PH, and Dynamic ETDC is 50% faster in

15

10.5. Empirical Results

decompression.

Hence, Dynamic ETDC is either much faster or compresses much better
than gzip, and it is by far faster than bzip2. Dynamic SCDC is also a good
alternative to gzip. It is almost so fast as “gzip -f” in compression, and
its compression ratio is better. Regarding to Dynamic PH, it is a well-
balanced technique. It is about 22%-26% slower than Dynamic ETDC (17%
with respect to Dynamic SCDC) and its compression ratios are even more

competitive.

With respect to the arithmetic compressor used (it also uses a word-based
approach, but it is bit-oriented rather than byte-oriented), it is possible
to note the advantages in compression ratio of bit-oriented word-based
techniques. However it can be seen how compression and decompression
speed is about the half of Dynamic PH and about 3 times slower than the
byte-oriented techniques presented.

CORPUS compression time (sec)

D-PH D-SCDC D-ETDC arith gzip -f gzip -b bzip2 -f bzip2 -b
CALGARY 0.498 0.410 0.384 1.030 0.360 1.095 2.180 2.660
FT91 3.218 2.660 2.488 6.347 2.720 7.065 14.380 18.200
CR 10.880 9.010 8.418 21.930 8.875 25.155 48.210 65.170
FT92 42.720 33.980 31.440 80.390 34.465 84.955 166.310 221.460
ZIFF 43.122 36.197 33.394 82.720 33.550 82.470 174.670 233.250
FT93 45.864 37.923 36.306 91.057 36.805 93.135 181.720 237.750
FT94 47.078 39.240 36.718 93.467 37.500 96.115 185.107 255.220
AP 60.940 50.610 47.048 116.983 50.330 124.775 231.785 310.620
ALL_FT 145.750 120.073 91.068 274.310 117.255 293.565 558.530 718.250
ALL 288.778 227.747 213.905 509.710 188.310 532.645 996.530 1,342.430

Table 10.4: Comparison of compression speed against gzip, bzip2 and

arithmetic compression

CORPUS Decompression time (sec)

D-PH D-SCDC D-ETDC arith gzip -f gzip -b bzip2 -f bzip2 -b
CALGARY 0.330 0.275 0.240 0.973 0.090 0.110 0.775 0.830
FT91 2.350 1.790 1.545 5.527 0.900 0.825 4.655 5.890
CR 7.745 5.940 5.265 18.053 3.010 2.425 15.910 19.890
FT92 30.690 21.630 19.415 65.680 8.735 7.390 57.815 71.050
ZIFF 30.440 23.405 20.690 67.120 9.070 8.020 58.790 72.340
FT93 32.780 24.498 21.935 71.233 10.040 9.345 62.565 77.860
FT94 33.550 25.320 22.213 75.925 10.845 10.020 62.795 80.370
AP 43.660 31.745 27.233 88.823 15.990 13.200 81.875 103.010
ALL_FT 104.395 75.535 66.238 214.180 36.295 30.430 189.905 235.370
ALL 218.745 144.168 126.938 394.067 62.485 56.510 328.240 432.390

Table 10.5: Comparison of decompression time against gzip, bzip2 and
arithmetic technique

155

10. Dynamic (s, c)-Dense Code SIN TERMINAR !!

10.6 Conclusions

In this Chapter, Dynamic ETDC was extended to make variable the number
of stoppers and continuers that can be used during the encoding/decoding
processes.

The resulting code achieves compression ratios really close to the
Huffman based tecnique presented in Chapter 8 while it is faster to build.

With respect to Dynamic ETDC, Dynamic SCDC worsen a little in
compression and decompression speed, however compression ratios are better
and really close to Huffman values.

Empirical results comparing our three contributions to the State of Art
in dynamic text compression techniques, one against each other, as well
a comparison against well-known compressors have been presented. As a
result, we have obtained adaptive natural language text compressors that
obtain about 30%-35% compression ratio, compress more than 4 megabytes
per second and decompresses over 6 megabytes per second.

156

11

Conclusions and Future
Work

Through the work contained in this thesis, four compression codes have been
developed.

The first is a semi-statical code is denominated (s, c)-Dense Code. It is
well-suited for its integration into a Text Retrieval system. It almost achieves
the same compression ratio that the optimal Plain Huffman Code [49, 48]
and maintains the good features of other similar compression schemas as the
Tagged Huffman Code:

It is a word-based technique.

It generates a prefix code encoding.

It enables decompression of random portions of a compressed text,

for using a tag condition that allows to distinguish codes inside the
compressed text.

e It improves searches with respect to the search over the uncompressed
text (about 8 times faster) and enables direct searching.

This encoding incorporates new advantages over the previous ones:

157

11. Conclusions and Future Work

e Its compression ratios are better than Tagged Huffman and also than
End-Tagged Dense Code.

e Encoding and Decoding is faster and simpler than Huffman based
Methods.

Summarizing, an almost optimal, fast and simple compression technique

was developed.

The other three techniques developed are: i) a Dynamic word-based
byte-oriented Huffman code, a Dynamic End-Tagged Dense Code and an
Adaptive version of the (s,c)-Dense Code. These techniques are based in
the semi-statical word based Plain Huffman Code, End-Tagged Dense Code
and in the (s, c)-Dense Code respectively.

They are appropriated for both file compression and network
transmission. Their main contributions are the following ones:

e They join the real-time capabilities of the Adaptive Huffman character-
oriented existing techniques with the good compression ratios achieved
the the statistical two-pass word-based compression techniques.

e Being byte-oriented, compression and decompression speed is high.

As future work, we are now interested in the application of (s, ¢)-Dense
Code to indexing scenarios, for example in the implementation of block
addressing indexes, and also to use it with suffix arrays [5], to test (s,c)-
Dense Code in compressed suffix arrays.

In the case of the dynamic techniques their are directly applicable to file
compression, and would enable for example the transmission of compressed
web pages, or even to introduce compression in other real-time scenarios
as chat/talk services. Therefore implementing a web-browser plug-in would
enable comparing the transmission of plain web pages with the compressed

ones.

158

Appendix A

Publications and Other
Research Results Related to
the Thesis

A.1 I"FALTA !'!!

A.2 Publications

A.2.1 International Conferences
A.2.2 National Conferences

A.2.3 Journals and Book Chapters

A.3 Research Stays

159

Appendix A. Publications and Other Research Results Related to the
Thesis

160

Appendix B

Descripcion del Trabajo
Realizado

B.1 !'"FALTA '!!
B.2 Introduccién
B.3 Metodologia Utilizada

B.4 Conclusiones y Trabajo Futuro

161

Appendix B. Descripcién del Trabajo Realizado

162

Bibliography

Bibliography

1]
2]

[3]

[10]

N Abramson. Information Theory and Coding. McGraw-Hill, 1963.

N. Abramson. Information Theory and Coding. McGraw-Hill, New
York, 1963.

R. A. Baeza-Yates and G. Navarro. Faster approximate string matching.
Algorithmica, 23(2):127-158, 1999.

Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text
searching. Communications of the ACM, 35(10):74-82, October 1992.

Ricardo A. Baeza-Yates, R. Baeza-Yates, and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison-Wesley Longman Publishing
Co., Inc., 1999.

Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley Longman, May 1999.

Bernhard Balkenhol and Yuri M. Shtarkov. Omne attempt of a
compression algorithm using the BWT, 1999.

T. Bell, J. Cleary, , and I. Witten. Data compression using
adaptive coding and partial string matching. IEFE Transactions on
Communications, 32(4):396-402, 1984.

T. C. Bell, J. G. Cleary, and 1. H. Witten. Text Compression. Prentice
Hall, 1990.

Timothy Bell, Tan H. Witten, and John G. Cleary. Modeling for text
compression. ACM Comput. Surv., 21(4):557-591, 1989.

163

Bibliography

[11]

[14]

[15]

[16]

[19]

[20]

Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, and Victor K.

Wei. A locally adaptive data compression scheme. Commun. ACM,
29(4):320-330, 1986.

Robert S. Boyer and J. Strother Moore. A fast string searching
algorithm. Communications of the ACM, 20(10):762-772, October 1977.

Nieves R. Brisaboa, Eva L. Iglesias, Gonzalo Navarro, and José R.
Paramd. An efficient compression code for text databases. In 25th
FEuropean Conference on IR Research, ECIR 2003; LNCS 2633, pages
468-481, Pisa, Italy, 2003.

N.R. Brisaboa, A. Farina, G. Navarro, and M.F. Esteller. (s,c)-dense
coding: An optimized compression code for natural language text
databases. In Proc. 10" International Symposium on String Processing
and Information Retrieval (SPIRE 2003), LNCS 2857, pages 122-136,
2003.

M. Burrows and D. J. Wheeler. A block-sorting lossless data
compression algorithm. Technical Report 124, 1994.

John Carpinelli, Alistair Moffat, Radford Neal, Wayne Salamonsen,
Lang Stuiver, Andrew Turpin, and lan Witten. Word, character,
integer, and bit based compression using arithmetic coding. Available
at http:www.cs.mu.oz.aualistairarith_coder, 1999.

J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length
contexts for PPM. In Data Compression Conference, pages 52—61, 1995.

John G. Cleary and Ian H. Witten. Data compression using ADaptive
coding and partial string matching. IEEE Trans. Comm., 32(4):396—
402, 1984.

N Faller. An adaptive system for data compression. In In Record of the
Tth Asilomar Conference on Circuits, Systems, and Computers, pages
593-597, 1973.

Peter Fenwick. Block sorting text compression - final report. Technical
report, April 23 1996.

164

Bibliography

[21]

[22]

23]

[28]

[29]

[30]

32]

[33]

Philip Gage. A new algorithm for data compression. C' Users Journal,
12(2):23-77, February 1994.

R.G Gallager. Variations on a theme by Huffman. IEEFE Trans. on Inf.
Theory, 24(6):668-674, 1978.

H. S. Heaps. Information Retrieval: Computational and Theoretical
Aspects. Academic Press, New York, 1978.

Daniel S. Hirschberg and Debra A. Lelewer. Efficient decoding of prefix
codes. Commun. ACM, 33(4):449-459, 1990.

R. N. Horspool. Practical fast searching in strings. Software Practice
and Fxperience, 10:501-506, 1980.

Paul Glor Howard. The design and analysis of efficient lossless data
compression systems. Technical Report CS-93-28, 1993.

D. A. Huffman. A method for the construction of minimum-redundancy
codes. In Proc. Inst. Radio Eng., pages 1098-1101, September 1952.
Published as Proc. Inst. Radio Eng., volume 40, number 9.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6:323-350, 1977.

Donald E. Knuth. Dynamic Huffman coding. Journal of Algorithms,
6(2):163-180, June 1985.

L. G. Kraft. A device for quanitizing, grouping and coding amplitude
modulated pulses. Master’s thesis, Mater’s Thesis, Department of
Electrical Engineering, MIT, Cambridge, MA, 1949.

Udi Manber and Sun Wu. GLIMPSE: A tool to search through entire file
systems. In Proc. of the Winter 1994 USENIX Technical Conference,
pages 23-32, 1994.

M. Miyazaki, S. Fukamachi, M. Takeda, and T. Shinohara. Speeding
up the pattern matching machine for compressed texts. Transactions
of Information Processing Society of Japan, 39(9):2638-2648, 1998.

Moffat. Implementing the PPM data compression scheme.
IEEETCOMM: IEEE Transactions on Communications, 38, 1990.

165

Bibliography

[34]

[35]

[36]

[37]

[38]

A. Moffat. Word-based text compression. Software - Practice and
Experience, 19(2):185-198, 1989.

A. Moffat and J. Katajainen. In-place calculation of minimum-
redundancy codes. In S.G. Akl, F. Dehne, and J.-R. Sack, editors, Proc.
Workshop on Algorithms and Data Structures (WADS’95), LNCS 955,
pages 393-402, 1995.

A. Moffat, R. Neal, and 1. H. Witten. Arithmetic coding revisited.
In J. A. Storer and M. Cohn, editors, Proc. IEEE Data Compression
Conference, pages 202-211, Snowbird, Utah, March 1995. IEEE
Computer Society Press, Los Alamitos, California.

A. Moffat and A. Turpin. Compression and Coding Algorithms.
Kluwer_Academic Publ., March 2002.

Alistair Moffat, Radford M. Neal, and lan H. Witten. Arithmetic coding
revisited. ACM Trans. Inf. Syst., 16(3):256-294, 1998.

Alistair Moffat and Turpin. On the implementation of minimum
redundancy prefix codes. [IEEETCOMM: IEEE Transactions on
Communications, 45:170-179, 1996.

Navarro, Edleno Silva de Moura, M. Neubert, Nivio Ziviani, and
Ricardo Baeza-Yates. Adding compression to block addressing inverted
indexes. Information Retrieval, 3(1):49-77, 2000.

Navarro and J. Tarhio. Boyer-Moore string matching over Ziv-Lempel
compressed text. In R. Giancarlo and D. Sankoff, editors, Proceedings
of the 11th Annual Symposium on Combinatorial Pattern Matching,
number 1848 in Lecture Notes in Computer Science, pages 166—180,
Montréal, Canada, 2000. Springer-Verlag, Berlin.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings —
Practical on-line search algorithms for texts and biological sequences.
Cambridge University Press, 2002. ISBN 0-521-81307-7. 280 pages.

J. Rautio, J. Tanninen, and J. Tarhio. String matching with stopper
encoding and code splitting. In Proc. 13th Annual Symposium on
Combinatorial Pattern Matching (CPM 2002), LNCS 2373, pages 42—
52, 2002.

166

Bibliography

[44]

[45]

[46]

[48]

[52]

[53]

Eugene S. Schwartz and Bruce Kallick. Generating a canonical prefix
encoding. Commun. ACM, 7(3):166-169, 1964.

C. E. Shannon and W. Weaver. The Mathematical Theory of
Communication. University of Illinois Press, Urbana, Illinois, 1949.

Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa.
A Boyer-Moore type algorithm for compressed pattern matching. In
Proc. 11th Ann. Symp. on Combinatorial Pattern Matching (CPM’00),
LNCS 1848, pages 181-194, 2000.

Ayumi Shinohara, Masayuki Takeda, Shuichi Fukamachi, Takeshi
Shinohara, Takuya Kida, and Yusuke Shibata. Byte pair encoding:

A text compression scheme that accelerates pattern matching. April 19
1999.

Edleno Silva de Moura, G. Navarro, Nivio Ziviani, and Ricardo Baeza-
Yates. Fast searching on compressed text allowing errors. In W. Bruce
Croft, Alistair Moffat, C. J. van Rijsbergen, Ross Wilkinson, and
Justin Zobel, editors, Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR-98), pages 298-306, New York City, August 24-28
1998. ACM Press.

Edleno Silva de Moura, G. Navarro, Nivio Ziviani, and Ricardo Baeza-
Yates. Fast and flexible word searching on compressed text. ACM
Transactions on Information Systems, 18(2):113-139, April 2000.

Daniel M. Sunday. A very fast substring search algorithm.
Communications of the ACM, 33(8):132-142, August 1990.

M. Takeda, Y. Shibata, T. Matsumoto, T. Kida, A. Shinohara,
S. Fukamachi, T. Shinohara, and S. Arikawa. Speeding up string pattern
matching by text compression: The dawn of a new era. Transactions
of Information Processing Society of Japan, 42(3):370-384, 2001.

J.S. Vitter. Design and analysis of dynamic Huffman codes. Journal of
the ACM (JACM), 34(4):825-845, 1987.

J.S. Vitter. Algorithm 673: dynamic Huffman coding. ACM
Transactions on Mathematical Software (TOMS), 15(2):158-167, 1989.

167

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Terry A. Welch. A technique for high performance data compression.
Computer, 17(6):8-20, June 1984.

Tan H. Witten and T. C. Bell. The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression. IFEE
Transactions on Information Theory, 37(4):1085-1094, 1991.

Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and Images. Morgan

Kaufmann Publishers, USA, 1999.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding
for data compression. Commun. ACM, 30(6):520-540, 1987.

Sun Wu and Udi Manber. Fast text searching allowing errors.
Communications of the ACM, 35(10):83-91, October 1992.

George K. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley (Reading MA), 1949.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory,
23(3):337-343, 1977.

Jacob Ziv and Abraham Lempel. Compression of individual sequences
via variable-rate coding. IEEFE Transactions on Information Theory,
24(5):530-536, 1978.

Nivio Ziviani, Edleno Silva de Moura, G. Navarro, and Ricardo Baeza-
Yates. Compression: A key for next-generation text retrieval systems.
IEEE Computer, 33(11):37-44, 2000.

Justin Zobel and Alistair Moffat. Adding compression to a full-text
retrieval system. Software Practice and Experience, 25(8):891-903,
August 1995.

168

	1 Introduction
	1.1 Text Compression
	1.1.1 Compression to space saving
	1.1.2 Compression to file transmission

	1.2 Objectives and contributions of the thesis
	1.3 Outline

	2 Basic concepts
	2.1 Chapter overview
	2.2 Concepts on Information Theory
	2.2.1 The Kraft Inequality

	2.3 Redundancy and compression
	2.4 Entrophy in Context dependent messages
	2.5 Classification of Text Compression Techniques
	2.6 Measuring the efficiency of compression techniques

	I Semi-static Compression
	3 Compressed Text Databases
	3.1 Chapter overview
	3.2 Motivation
	3.3 Inverted indexes
	3.4 Compression schemes for Text Databases
	3.4.1 Direct access
	3.4.2 Direct search

	3.5 String matching
	3.5.1 Boyer-Moore algorithm
	3.5.2 Shift-Or algorithm

	3.6 Summary

	4 Semi-static text compression techniques
	4.1 Chapter overview
	4.2 Classic Huffman Code
	4.2.1 Building a Huffman Tree
	4.2.2 Canonical Huffman tree

	4.3 Word-Based Huffman Compression
	4.3.1 Plain Huffman and Tagged Huffman Codes

	4.4 Searching Huffman Compressed Text
	4.4.1 Searching Plain Huffman Code
	4.4.2 Searching Tagged Huffman Code

	4.5 Other techniques
	4.5.1 Byte Pair Encoding
	4.5.2 Burrows-Wheeler Transform

	4.6 Summary

	5 End-Tagged Dense Code
	5.1 Chapter overview
	5.2 Introduction
	5.3 End-Tagged Dense Code
	5.4 Encoding and Decoding algorithms
	5.4.1 Encoding algorithm
	5.4.2 Decoding algorithm

	5.5 Using ETDC to bound Plain Huffman
	5.6 Empirical Results
	5.7 Conclusions

	6 The new technique: (s,c)-Dense Code
	6.1 Chapter overview
	6.2 Introduction
	6.3 (s,c)-Dense Code
	6.4 Optimal s and c values
	6.4.1 Algorithm to get the optimal s and c values

	6.5 Encoding and Decoding algorithms
	6.5.1 Encoding algorithm
	6.5.2 Decoding algorithm

	6.6 Empirical Results
	6.6.1 Compression Ratio
	6.6.2 Encoding Time
	6.6.3 Decompression Time

	6.7 Searching (s,c)-Dense Code
	6.8 Bounding Plain Huffman with (s,c)-Dense Code
	6.9 Conclusions

	II Adaptive Compression
	7 Dynamic Text Compression Techniques
	7.1 Overview
	7.2 Introduction
	7.3 Statistical Dynamic Codes
	7.3.1 Dynamic Huffman Codes
	7.3.2 Arithmetic Codes

	7.4 Prediction by Partial Matching
	7.5 Dictionary techniques
	7.5.1 LZ77
	7.5.2 LZ78

	7.6 Summary

	8 Dynamic Byte-oriented word-based Huffman code
	8.1 Chapter overview
	8.2 Introduction
	8.3 Word-based Dynamic Huffman Codes
	8.4 Method Overview
	8.5 Data Structures
	8.5.1 Definition of the tree data structures
	8.5.2 List of blocks

	8.6 Huffman tree update algorithm
	8.7 Empirical Results: Character- versus word-oriented Huffman
	8.8 Conclusions

	9 Dynamic End-Tagged Dense Code
	9.1 Chapter overview
	9.2 Introduction
	9.3 Method overview
	9.4 Implementation Data structures
	9.4.1 Sender's Data Structures
	9.4.2 Receiver's Data Structures

	9.5 Sender's and Receiver's pseudocode
	9.6 Empirical Results
	9.7 Conclusions

	10 Dynamic (s,c)-Dense Code SIN TERMINAR !!
	10.1 Chapter overview
	10.2 Introduction
	10.3 Dynamic (s,c)-Dense Codes
	10.3.1 Maintaining the s and c parameters optimal

	10.4 Pseudocode for parameters check and change
	10.5 Empirical Results
	10.5.1 Semi-static Vs dynamic approach: Compression ratio
	10.5.2 Comparative of Dynamic PH, Dynamic ETDC and Dynamic SCDC: compression speed and compression ratio
	10.5.3 Comparative against gzip, bzip2 and arithmetic compressors

	10.6 Conclusions

	11 Conclusions and Future Work
	A Publications and Other Research Results Related to the Thesis
	A.1 !!!FALTA !!!
	A.2 Publications
	A.2.1 International Conferences
	A.2.2 National Conferences
	A.2.3 Journals and Book Chapters

	A.3 Research Stays

	B Descripción del Trabajo Realizado
	B.1 !!!FALTA !!!
	B.2 Introducción
	B.3 Metodología Utilizada
	B.4 Conclusiones y Trabajo Futuro

	Bibliography

