
Beyond Worst-Case-Optimal Database Joins
FABRIZIO BARISIONE, University of Chile, Chile

The natural join is arguably the most studied operation in database theory and systems. In 2008, the way
traditional join algorithms work was found to be suboptimal and a new tight bound to reach worst-case
optimality (wco) was proposed. Several wco join algorithms have been designed over the years, but they all
experience the same problem: for a relation R with d dimensions, d! indexes are required, which in terms of
space makes them impractical for higher dimensions. To solve this limitation, a new data structure dubbed the
ring was designed to enable worst-case optimality in graph databases using compact space. The experiments
showed that the ring outperforms its competitors in space and time.

In this research, we propose to further enhance the ring performance, aiming to reach beyond wco runtime
guarantees, and translate them into practical time improvements. We will start by studying, designing and
implementing query optimizations for graph databases, where the ring was implemented and tested. Then,
we will expand it to support higher dimensions, extending its functionality to relational databases.

Additional Key Words and Phrases: Worst-case Optimal Join Algorithms, AGM Bound, Relational Databases,
Graph Databases, Compact Data Structures

1 PROBLEM STATEMENT AND STATE OF THE ART
The success of the relational model relies on the fact that efficient ways to resolve relational algebra
expressions have been developed and implemented since the 60s. The join (most typically, the
natural join) is by far the most expensive of those operations.
Traditional join algorithms such as merge join, hash join and nested loop operate in a binary

fashion. That is, they resolve joins by grouping pairs of relations and producing intermediate
results in the form of tables. On the other hand, Commercial databases use highly optimized join
heuristics to determine the join evaluation order, considering a variety of factors such as the table
sizes, memory, statistics, etc. These optimizations enable the binary join algorithms to have better
runtimes.
New developments in join algorithms have been made during the last decades, starting with a

breakthrough: traditional query plans using a binary join approach were proven to be inherently
suboptimal [6]. It was shown that there are types of queries for which any binary join plan is slower
than the best possible runtime by a polynomial factor in the data size.
In 2008, Atserias, Grohe and Marx (AGM) defined a limit on the number of results for a join

query [6], bounding it in terms of the sizes of the participating relations and the structure of the
join. Historically, RDBMSs mostly considered the table cardinalities to optimize the join process.
Instead, given a query Q, Atserias et al. demonstrated that, with the structural information of𝑄 , we
can upper bound its size more tightly. This discovery led to the concept of multi-way joins, which
operate differently from binary joins, by intersecting all common attributes at the same time rather
than by pairs.
Several worst-case optimal (wco) join algorithms that reach the so-called AGM bound were

devised [12], with Leapfrog Triejoin[14] (LTJ) the most renowned of them due to its simplicity.
LTJ guarantees wco runtimes by joining all input relations simultaneously, without yielding
intermediate results. The latter is accomplished by storing the rows of each relation in a trie data
structure, in which each row sequence can be read along a root-to-leaf path in the trie. The LTJ
algorithm performs a backtracking over all those tries simultaneously, binding each variable of the
query at a time. This requires, however, that the tries are built over a column ordering of the tables

Author’s address: Fabrizio Barisione, University of Chile, Santiago, Chile, fbarisio@dcc.uchile.cl.



2 Fabrizio Barisione

that is suitable for that particular query, which in practice implies that a different trie must be built
for each of the 𝑑! orders of the 𝑑 columns of each table.

Worst-case optimal join algorithms are particularly promising for graph databases [14] because
these are modeled as relations with low fixed arity (e.g. RDF 1), and thus graph queries tend to
feature many joins. Those are are precisely the types of queries that benefit the most from wco join
algorithms. Various works have proposed or adapted wco joins to graph queries [2, 10, 13], with
favorable results. Nevertheless, just for graphs with arity 3, a complete database index supporting
wco joins requires 3! = 6 index orders (tries simulated over B+-trees), leading to a high level of
redundancy and high space requirements. To our knowledge, all wco algorithms up to date were
mainly focusing on time performance rather than space usage, thereby ignoring a problem that
becomes more pressing as larger datasets are handled.
To face the space problem, it has been recently proposed the ring [3], a read-only and main-

memory succinct representation of triple datasets (e.g., RDF graphs), that regards the (subject,
predicate, object) triples as cyclic and bidirectional, in a way that the 6 required orders can be
represented using only one. As a consequence, the ring uses only sublinear additional space on
top of the raw data. By storing the Burrows-Wheeler Transform (BWT) [7] of the set of triples
instead of the raw triples, and by representing that BWT using wavelet trees [9], the ring enables
worst-case optimal evaluation of multi-joins in compact space, with the Leapfrog Triejoin variable
elimination algorithm [14].

Experimental results on the Wikidata graph 2 demonstrate that the ring uses 6% additional space
beyond the raw data and 4–11 times less space than various prominent alternatives (EmptyHeaded,
Jena, RDF-3X, Blazegraph, Virtuoso), being at the same time about 2–36 times faster in general
to solve basic graph patterns. Overall, the ring offers the best performance and stability in query
times while using a small fraction of the space required by several state-of-the-art approaches [3].

Despite these promising initial results, wco join algorithms have some shortcomings. First, even
though the worst-case optimality is guaranteed regardless of the variable elimination order [12], it
is known that some of them are much better than others [3]. Therefore, the biggest optimization
problem is to implement multi-joins efficiently, because choosing the right order impacts the
performance heavily. Second, it ignores binary join plans altogether, which have been shown to
be efficient on many queries by decades of research in the field. In fact, the experiments showed
that a wco-only join plan is not efficient for all types of queries [4]. Furthermore, since the 80s the
scientific community knows that acyclic queries can be solved in instance-optimal runtime using
Yannakakis algorithm [15], thus, solving acyclic queries in worst-case optimal time seems excessive.
To face the latter problem, hybrid join plans have been proposed by various other works [1, 8, 11].

Therefore we think it is possible to improve the performance our Ring-based multi-join plan,
by studying beyond worst-case optimality techniques, such as hybrid / adaptive plans, advance
variable elimination order, and many others.

Additionally, we want to extend the ring to higher dimensions, such as relational databases with
𝑑 columns. Although a single ring cannot cover all the 𝑑! orders needed to support worst-case
optimality for 𝑑 > 3, it has been proven that the number of orders needed to be stored is 𝑂 (2𝑑 )[3],
and an order of magnitude lower than other alternatives[3] in practice. Moreover, we know that the
ring is a special case to what has to been dubbed order graphs, which enables further reductions.
Lastly, we will study if an on-the-fly ring construction, and hybrid join plans can potentially

produce better runtimes. The former alternative has the benefit of knowing the required order

1https://www.w3.org/RDF/
2https://www.wikidata.org/wiki/Wikidata:Database_download



Beyond Worst-Case-Optimal Database Joins 3

during query evaluation, and the latter, inspired by a previous work [1], could allow us to handle
more query patterns efficiently.

2 RESEARCH GOALS
As it has been demonstrated by previous works, the ring provides unmatched results in terms of
space and runtime using a graph-adapted LTJ algorithm. The goal of this thesis is to expand the
ring to support beyond worst-case optimality, building on in the state-of-the-art theoretical and
practical results. To achieve this, we will exploit features inherent to the ring that are given by the
wavelet tree structures that comprises it. For example, counting the number of different children
for a given range can be calculated on wavelet trees.

• Graph Query Optimizations: Improving the graph-join wco algorithms, including techniques
such as, hybrid join plans, and a better use of query structure and the database.

• Extending the Ring to Relational Databases: Adding support for higher arities (𝑑 > 3).
• Optional Extensions: Generalizing the supported language and collect improvements made
to the ring in other works.

The first two objectives are the core of our plan and the third one collects a less clear and optional
objective.

3 HYPOTHESIS
Adding hybrid plans that combine wco with non-wco joins, choosing a better variable elimination
order by leveraging in-ring statistical information, and creating the ring indexes on-the-fly will
provide a more competitive compact structure than its current implementation and than any of the
classical RDBMSs indexes.

4 METHODOLOGY ANDWORK PLAN
4.1 Methodology
We have established several goals and a hypothesis that represent our work plan. We will have
frequent meetings and constant communication to discuss new ideas and results. Additionally, we
will study the literature and propose new algorithms and data structures, which will be analyzed
theoretically when possible and empirically in any case, implementing and comparing them against
the state-of-the-art in established benchmarks.

4.2 Work Plan
The work plan is derived from the research goals. Although some of the tasks may overlap we
will first focus on the graph query optimizations and second, in extending the ring to relational
databases. The third objective is optional, we will evaluate pursuing it depending on the progress
on the others.

As any research, we are expecting shifts in the plan, to which we will adapt accordingly.

4.2.1 GraphQuery Optimizations.

• On-the-fly ring creation. This allows us to exclusively create and store the orders required
to perform the query evaluation. First, each participating column of the join is represented
a wavelet tree and the rest of the columns as a regular table. Then, multi-joins are executed
using LTJ as usual.

• Design and implement ring-based binary joins. This corresponds to a traditional merge-join
over wavelet trees. An initial approach is to measure how the algorithm behaves in a column



4 Fabrizio Barisione

store, where there is one column per attribute and a single order. Then, we can compare
the results with our multi-join algorithm.

• Study, implement and experiment the EmptyHeaded hybrid join plan with our ring-based
LTJ[1]. This includes studying about generalized hypertree decompositions, Yannakakis
algorithm and using ring-based binary joins.

• Design new hybrid plans that benefit from the ring structure.
• Study and design optimizations to choose a better variable elimination order, based on
statistical information retrieved from the wavelet tree. An initial idea is to estimate the
number of results of a join, to decide not only the variable order, but also if a binary join is
more suitable than a multi-join, or vice-versa.

4.2.2 Extending the Ring to Relational Databases.

• Study, design and implement a stand-alone version of a multidimensional ring based on the
more general data organization idea of order graph [3].

• Investigate regarding high-arity vs. low-arity relations trade-off. Provide a theoretical
analysis, Design, implementation, and experiment of new techniques on the ring to handle
relations of variable arities.

• Study, analyze and design an ecosystem of indexes which generalize a column store data
organization. This involves indexing columns on-the-fly to evaluate queries, caching of
results, and a robust index pooling, among others.

4.2.3 Optional Extensions.

• Generalize the supported language, which includes studying and implementing some other
relational algebra operations, such has aggregations and projections.

• Integrate existing ring-based regular path queries implementation to our wco join algorithm
[5].

• Extend the ring to support updates.

REFERENCES
[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. Empty-

Headed. ACM Transactions on Database Systems (TODS) 42 (2017), 1 – 44.
[2] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. 2016. EmptyHeaded: A Relational Engine for

Graph Processing. In Proc. International Conference on Management of Data (SIGMOD). 431–446. https://doi.org/10.
1145/2882903.2915213

[3] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-Ledesma, and Adrián Soto. 2021. Worst-
Case Optimal Graph Joins in Almost No Space. In Proc. International Conference on Management of Data (SIGMOD).
102–114. https://doi.org/10.1145/3448016.3457256

[4] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-Ledesma, and Adrián Soto. 2021. Worst-
Case Optimal Graph Joins in Almost No Space. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD/PODS ’21). Association for Computing Machinery, New York, NY, USA, 102–114.
https://doi.org/10.1145/3448016.3457256

[5] D. Arroyuelo, A. Hogan, G. Navarro, and J. Rojas-Ledesma. 2022. Time- and Space-Efficient Regular Path Queries. In
Proc. 38th IEEE International Conference on Data Engineering (ICDE). To appear.

[6] A. Atserias, M. Grohe, and D. Marx. 2013. Size bounds and query plans for relational joins. SIAM J. Comput. 42, 4
(2013), 1737–1767. https://doi.org/10.1137/110859440

[7] Michael Burrows and David J. Wheeler. 1994. A block-sorting lossless data compression algorithm. Technical Report
124. Digital Equipment Corporation.

[8] Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann. 2020. Combining
Worst-Case Optimal and TraditionalBinary Join Processing.

[9] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. 2003. High-order entropy-compressed text indexes. In Proc.
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

https://doi.org/10.1145/2882903.2915213
https://doi.org/10.1145/2882903.2915213
https://doi.org/10.1145/3448016.3457256
https://doi.org/10.1145/3448016.3457256
https://doi.org/10.1137/110859440


Beyond Worst-Case-Optimal Database Joins 5

[10] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. 2019. A Worst-Case Optimal Join Algorithm for
SPARQL. In ISWC (1). 258–275. https://doi.org/10.1007/978-3-030-30793-6_15

[11] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by Combining Binary and Worst-Case
Optimal Joins. ArXiv abs/1903.02076 (2019).

[12] Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew Strikes Back: New Developments in the Theory of Join
Algorithms.

[13] Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q. Ngo, Christopher Ré, and Atri Rudra.
2015. Join Processing for Graph Patterns: An Old Dog with New Tricks. In Proc. International Workshop on Graph
Data Management Experiences and Systems (2015). http://arxiv.org/abs/1503.04169

[14] Todd L. Veldhuizen. 2014. Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In Proc. 17th International
Conference on Database Theory (ICDT). 96–106. https://doi.org/10.5441/002/icdt.2014.13

[15] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very Large Data Bases, 7th International
Conference, September 9-11, 1981, Cannes, France, Proceedings. IEEE Computer Society, 82–94.

https://doi.org/10.1007/978-3-030-30793-6_15
http://arxiv.org/abs/1503.04169
https://doi.org/10.5441/002/icdt.2014.13

	Abstract
	1 Problem statement and state of the art
	2 Research Goals
	3 Hypothesis
	4 Methodology and Work Plan
	4.1 Methodology
	4.2 Work Plan

	References

