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Nowadays, we face an overwhelming problem: to store and access the massive amount of data generated every
day. Fortunately, many of the fastest-growing string collections are composed of very similar documents,
such as versioned code and document collections, genome repositories, etc. A lot of interest in this type of
collections has lately arisen, allowing the emergence of many pattern-matching indexes that exploit the string
repetitions in different ways: since the use of the efficient and well-known Lempel-Ziv parser to the novel
and promising string attractor proposal. Despite the amount of previous work in this area, recent researches
have triggered several lines of work, from which some questions remain open. On the other hand, document
retrieval techniques are less developed on generic and repetitive string collections. For both fields, there are
very few practical indexes implemented. Our main goal is to develop practical and flexible succinct indexes
to support pattern matching and document retrieval operations on repetitive string collections. Our indexes
must efficiently handle different repetitiveness scenarios.
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1 INTRODUCTION
The large amount of digital information that is generated by different human activities in a daily
basis, needs to be efficiently stored and accessed. It constitutes a generalized problem in most
organizations aimed at data processing. Handling of string data is a well-explored area. It is formed
by collections of symbol sequences — such as natural language text collections, DNA and protein
sequences, source code repositories, etc.

The sharp growth of text collections is a concern in many recent applications. This phenomenon
causes Moore’s Law to be outperformed in some cases [30]. Fortunately, many of the fastest-growing
text collections are highly repetitive: each document can be obtained from a few large blocks of other
documents. These collections arise in different areas, such as repositories of genomes of the same
species (which differ from each other by a small percentage only) like the 100K-genome project1;
software repositories that store all the versions of the code arranged in a tree or acyclic graph like
GitHub2; versioned document repositories where each document has a timeline of versions, like
Wikipedia3, etc. On such text collections, statistical compression is ineffective [20] and even O(n)
bits of extra space can be unaffordable.
Repetitiveness is the key to tackle the fast growth of these collections: their amount of unique

material grows much slower than their size. For example, version control systems provide efficient
storage and access to the documents of a versioned collection. For each version, they store the
list of edits regarding some reference document that is stored in plain form, and reconstruct it by
applying the edits to the reference version.

However, it is much more challenging to index those collections in a small space so as to support
more advanced functionalities such as fast pattern matching or document retrieval tasks. Given
a collection of string documents D = {T1, . . . ,Td} and a query pattern P , the pattern matching
problem consists in counting or listing all the occurrences of the string P in the collectionD. Instead,
document retrieval is a family of problems aimed at retrieving documents from a set that are relevant
to a query pattern. Document listing is the simplest and most basic task of the document retrieval
family, its goal is to return all the documents in which P is present, while the document counting

1https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project
2https://github.com/search?q=is:public
3https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
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task only returns the number of such documents. The top-k retrieval task lists the k documents
where P appears most often.

Compressed suffix arrays (CSAs) [26] are space-efficient representations of the suffix array (SA).
Due to the fact that they can find the interval [sp..ep] corresponding to P[1..m] and access any
cell SA[i], they are commonly used as pattern matching indexes. The range [sp..ep] is sufficient
to count the number of occurrences of pattern P . Accessing SA[sp], . . . , SA[ep], we can locate the
positions where the pattern occurs. Most CSAs need to store sampled SA values to support the
access operation. This can represent a bottleneck in terms of required space .

Exploiting the close link between the Burrows-Wheeler Transform [4], BWT [1..n], and the SA[1..n]
ofT[1..n], the FM-index [10, 11] can represent a collectionwithin its statistical entropy. For counting,
the FM-index resorts to backward search. For locating, the FM-index stores sampled values of SA at
regularly spaced text positions, say multiples of s . Statistical entropy is a measure that is insensitive
to repetitiveness[20], so the FM-index is not an adequate index for repetitive datasets.

The Run-Length FM-index or RLFM-index [23, 24] is a variant of the FM-index that takes advan-
tage of the compressibility of BWT [1..n], which is formed by r runs of equal symbols. Besides, r is
usually a relatively small number in repetitive collections (r ≪ n). RLFM-index supports the count
operation in O(r ) space. However, due to the required sampling, it needs a much larger O(n/s)
space to support locating in time proportional to s .
r-index[15] closed the long-standing problem of efficiently locating the occurrences of a pattern

in a text using O(r ) space. The experiments show that the r-index outperforms all the other
implemented indexes by orders of magnitude in space or in time to locate pattern occurrences on
highly repetitive datasets.
Several other indexes are proposed based on other compression schemes that perform well on

repetitive texts: indexes based on the Lempel-Ziv parse [22] of T , with size bounded in terms of
the number z of phrases [20, 12, 2]; indexes based on a approximation of the smallest context-
free grammar that generates T and only T [5], with size bounded in terms of the size д of the
grammar [8, 25]; indexes based on the size e of the smallest automaton (CDAWG) [3] recognizing
the substrings of T [2]; index based on the string attractors [19] of T , with size bounded in terms
of the size γ of the smallest string attractor [27]. Many others are referenced by Gagie et al. [15]
and Navarro and Prezza [27].
For the repetitiveness measures r , z, д, and e exist few known asymptotic bounds: z ≤ д =

O(z log(n/z)) [29, 5, 18] and e = Ω(max(r , z,д)) [2]. The measure r is not comparable with z and д
[2, 28]. However, theoretical and experimental results [24, 20, 2, 19] suggest that γ < z < r ≈ д ≪ e
on repetitive datasets.

Despite the abundance of indexes for pattern matching for repetitive collections, there are hardly
any solutions for document retrieval tasks on repetitiveness scenarios[7, 13, 25, 9].

2 PROBLEM STATEMENT
Recent works have triggered several lines of research, from which some questions remain open.
It forces us to revisit several pattern matching and document retrieval problems using the most
recent advances that have been made in indexes for repetitive collections.
This thesis is focused on answering some of the fundamental questions: What other pattern

matching operations can be supported within O(r ) space? How can we use the repetitiveness in
the suffix array to improve document retrieval methods? What new queries make the most sense in
an environment of repetitiveness, considering that many of the traditional queries lose relevance
in this case?
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3 RESEARCH GOALS
The goal of this thesis is to develop succinct indexes and compression-aware algorithms to support
pattern matching and document retrieval tasks on repetitive string collections. To accomplish this
goal, we will research the following topics:

• Designing practical indexes in terms of space that efficiently exploit the intrinsic repetitiveness
in the collections. These indexes must support at least the most basic pattern matching
operations. We will focus mainly in the following problems:
– Designing more stable and resistant indexes to different repetitive scenarios. r-index[15]
is an excellent solution for highly repetitive collections, but it has a problem: when repeti-
tiveness decreases, the required space degrades quickly.

– Supporting pattern matching operations within O(r ) space. A recent O(r )-space index[15]
can efficiently count and locate the occurrences of a pattern. Extending these results to
other operations is a challenge. Our initial aim is to study the task of extracting a substring
from the text collection.

– Improving suffix tree representation in terms of space. We will study the feasibility to
represent the suffix tree of the collection T within O(r ) space.

• Designing flexible indexes to support more useful and relevant queries on repetitive scenarios.
Document retrieval tasks include, perhaps, more natural queries for a collection of documents.
Despite this, this area has been less developed over repetitive collections. For these reasons,
we will research the following document retrieval problems:
– Designing indexes that exploit the repetitiveness of the suffix array. Our recent work[9]
proposes a competitive index based on grammar-compression to solve document listing
task. We will work in reducing, even more, the space required by this solution. Also, we
will study how to extend this index to support other document retrieval tasks.

– Studying new problems and queries in the areas of pattern matching and document retrieval
suited to the features of current repetitive collections. Traditional queriesmay lose relevance
in an environment of repeatability: listing only the highest-level versions of the documents
where a pattern appears in a collection of versioned documents versus listing all the
documents. Very few works have addressed this kind of problems.

4 HYPOTHESES
It is possible to improve the space or time required by pattern matching operations on repetitive
datasets taking advantage of the different kinds of repetitiveness scenarios. Combining recent
results, it is possible to create indexes with better theoretical bounds in terms of space for document
retrieval tasks as document listing.
On the other hand, competitive and efficient indexes can be implemented to support classical

and novel problems in these fields, thus, augmenting the available practical solutions.

5 METHODOLOGY ANDWORK PLAN
Our main goal is to design succinct data structures capable of representing collections in a small
space taking advantage of their repetitiveness, as well as efficient algorithms capable of handling
this representation of the collections to answer pattern matching and document retrieval queries.

To achieve our research goals and validate our hypotheses, we propose the following milestones:
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5.1 Practical indexes
We will focus on indexes based on Burrows-Wheeler Transform (BWT ). Despite extensive research
on this area in the last years and the widespread use given to these indexes in fields such as
biotechnology, the recently emerged results open new lines of future work.

5.1.1 Making r-index less sensitive to lower repetitiveness. The repetitiveness measure r (and thus
r-index) is more sensitive than д and z to the decrease in repetitiveness. In particular, д and z are
always O(n/logσ n), and thus, the related indexes always use O(n logσ ) bits. Instead, r can be as
large as n [28], so in the worst case r-index can use Θ(n log n) bits.
A challenge is making the r-index less sensitive to lower repetitiveness scenarios.
To locating occurrences of P in O(r ) space, r-index proposes a new sampling scheme. It samples

the text character T[i] if and only if T[i] is the first or last character in its BWT run. This sampling
can be inadequate in areas where the BWT runs are very short because it can produce oversampled
areas on the collection T .
We are going to work in designing sampling mechanisms to overcome this problem. Our first

approach will be to create a kind of hybrid sampling scheme that uses the r-index’s sampling over
large BWT runs but, in oversampled areas of the text, it samples at regularly spaced text positions
(like classic FM-index). Thus, we can handle the areas with higher and lower repetitiveness in
different ways.

5.1.2 Self-index within O(r ) space. A self-index is a data structure built on T[1..n] that, in addition
to supporting the count and locate operations, can efficiently extract any substring T[i ..i + ℓ]. With
the extract operation, a self-index can be a replacement of T , avoiding its expensive storage.

The r-index is the first structure built on BWT runs that replaces T while retaining direct access.
Gagie et al. [15] showed how r-index supports efficiently count and locate pattern occurrences.
However, it requires O(r log(n/r )) space to provide random access to the text or to extract any
substring of length ℓ.

We are going to study whether efficient random access to the text is possible within O(r ) space.
To achieve this, we only need to know the suffix array (SA) position p that points to the desired
text position T[i]. Once we get p, we can get T[i] using a backward search over the sampling
scheme of the r-index (similar to locate operation). Since p = SA−1[i], our main concern is how to
represent SA−1 within O(r ) space.

5.1.3 Suffix tree within O(r ) space. Compressed suffix trees provide much more complete function-
ality than self-indexes since they support the operations of a classical suffix tree using much less
space. Generally, they are built using a compact representation of the topology of the suffix tree, a
compressed suffix array (CSA), and other data structures to support some basic operations such as
the longest common prefix (LCP).
Gagie et al. [14] proposed the first compressed suffix tree whose space is bound in terms of r ,

O(r log(n/r )) words. r-index can return the SA cells that result from a pattern search within O(r )
space, but accessing an arbitrary SA cell requires O(r log(n/r )) space.

We are going to study whether efficient random access to the suffix array is possible within O(r )
space. Compute p = SA[i] is the dual problem of i = SA−1[p], so this is a very close problem to
provide random access to the text.

5.2 Flexible indexes
We will focus on exploiting the repetitiveness of the suffix array (SA) and the document array (DA)
to build document retrieval indexes.
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5.2.1 Document retrieval indexes. Recently, we presented a simple and efficient SA-based index for
document listing on repetitive string collections[9]. It uses a grammar-compressed document array
(GCDA), and it obtains a better performance as the texts are more repetitive. Also, we adapted other
previous solutions to run on our grammar-compressed document array, obtaining unprecedented
performance on repetitive texts.

We are going to further reduce the space of GCDA and our index variants that use the grammar-
compressed document array, by using a more clever encoding of the grammars that may nearly
halve their space at a modest increase in time[16].
As the grammar compressor, GCDA uses Re-Pair[21] since it performs very well in practice.

Despite this, it may be advisable to use another compressor for the set of inverted lists. We will
experiment with a promising choice: the Web graph compressor[17], successfully used in another
document listing solution, a variant of the PDL algorithm[13].
Another line of work is to extend the GCDA index to support top-k document retrieval, that is,

find the k documents where P appears most often. For example, following previous ideas[13], we
can store the list of documents where each nonterminal appears in decreasing order of frequency,
and use algorithms developed for inverted indexes [1] on the O(log n) lists involved in a query. The
frequency of the candidates can be efficiently counted on repetitive collections [13].
The grammar-based indexes grammar-compress the text collections. Grammar-compressing T

means finding a context-free grammar that generates T and only T . These indexes use the grammar
as a substitute for T , which provides good compression when T is repetitive. To search for a
pattern P[1..m], some grammar-based indexes[8, 7, 25] first find the primary occurrences, that is,
those that appear when B is concatenated withC in a ruleA → BC . They cut P into two non-empty
parts P = P1P2, in the m − 1 possible ways, to find the rules A → BC such that P1 is a suffix of the
expansion of B and P2 is a prefix of the expansion of C . The primary occurrences appear at these
rules.

The locally consistent grammars guarantee that for equal substrings in the text T , their subtrees
in the grammar derivation tree are identical except, maybe, the external nodes in the coverture. We
will use this interesting property of this kind of grammar that avoids cutting the query pattern
in its m − 1 partitions. We only need to cut the pattern in O(logm) positions, the ones that
coincide with the external nodes of the corresponding parser subtree. Our initial research will
try to combine locally-consistent grammars like the ones proposed by Christiansen et al. [6] with
the grammar-based index for document listing proposed by Navarro [25]. This work can be an
important enhancement to grammar-based indexes that use primary occurrence searching.

5.2.2 New pattern matching and document retrieval problems. Among the most repetitive datasets
nowadays, we have the versioned document repositories like the ones formed by natural language
documents or source code. In this kind of collections, we are not usually interested in obtaining all
the versions of the same document where a pattern appears. However, there are some practical
queries that we can handle.

Retrieving only documents in a given range of the collection is an interesting query. This range
can be a time interval in datasets with a linear structure or a version subtree in hierarchical datasets.
We will extend GCDA index[9] to support this query. We can store additional information in the
nonterminals of the grammar. This facilitates the filtering of nonrelevant documents.
Given a hierarchical collection, with documents structured in a tree of versions, and different

granularities (e.g. x, x .y, x .y.z) for each level of the tree, we can be interested in listing only the
documents at a certain level of granularity, i.e., at a certain depth in the version tree. We will work
in a solution to this problem handling the topology of the version tree with compact data structures.



6 Dustin Cobas Batista

REFERENCES
[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 2011. Modern Information Retrieval: The Concepts and Technology

Behind Search.
[2] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. 2015. Composite Repetition-

Aware Data Structures. In Combinatorial Pattern Matching - 26th Annual Symposium, {CPM} 2015, Ischia Island, Italy,
June 29 - July 1, 2015, Proceedings (Lecture Notes in Computer Science). Ferdinando Cicalese, Ely Porat, and Ugo
Vaccaro, (Eds.) Vol. 9133. Springer, Cham, 26–39.

[3] Anselm Blumer, J. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehrenfeucht. 1987. Complete Inverted
Files for Efficient Text Retrieval and Analysis. Journal of the ACM (JACM), 34, 3, (July 1987), 578–595.

[4] Michael Burrows and David J. Wheeler. 1994. A block-sorting lossless data compression algorithm. Tech. rep. 124.
Digital Equipment Corporation.

[5] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and Abhi Shelat. 2005.
The Smallest Grammar Problem. {IEEE} Transactions on Information Theory, 51, 7, (July 2005), 2554–2576.

[6] Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. 2018.
Optimal-Time Dictionary-Compressed Indexes. arXiv e-prints, (Nov. 2018), arXiv:1811.12779.

[7] Francisco Claude and J. Ian Munro. 2013. Document Listing on Versioned Documents. In String Processing and
Information Retrieval - 20th International Symposium, {SPIRE} 2013, Jerusalem, Israel, October 7-9, 2013, Proceedings
(Lecture Notes in Computer Science). Oren Kurland, Moshe Lewenstein, and Ely Porat, (Eds.) Vol. 8214. Springer-
Verlag, Berlin, Heidelberg, 72–83.

[8] Francisco Claude and Gonzalo Navarro. 2012. Improved Grammar-Based Compressed Indexes. In String Processing
and Information Retrieval - 19th International Symposium, {SPIRE} 2012, Cartagena de Indias, Colombia, October 21-25,
2012. Proceedings (Lecture Notes in Computer Science). Liliana Calderón-Benavides, Cristina González-Caro, Edgar
Chávez, and Nivio Ziviani, (Eds.) Vol. 7608. Springer, Berlin, Heidelberg, 180–192.

[9] Dustin Cobas and Gonzalo Navarro. 2019. Fast, small, and simple document listing on repetitive text collections.
CoRR, abs/1902.07599.

[10] Paolo Ferragina and Giovanni Manzini. 2005. Indexing Compressed Text. Journal of the ACM, 52, 4, (July 2005),
552–581.

[11] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. 2007. Compressed Representations of
Sequences and Full-text Indexes. ACM Transactions on Algorithms (TALG), 3, 2, (May 2007).

[12] Travis Gagie, Juha Gawrychowski Pawełand Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi. 2014. LZ77-Based
Self-indexing with Faster Pattern Matching. In {LATIN} 2014: Theoretical Informatics - 11th Latin American Symposium,
Montevideo, Uruguay, March 31 - April 4, 2014. Proceedings (Lecture Notes in Computer Science). Alberto Pardo and
Alfredo Viola, (Eds.) Vol. 8392. Springer, Berlin, Heidelberg, 731–742.

[13] Travis Gagie, Aleksi Hartikainen, Kalle Karhu, Juha Kärkkäinen, Gonzalo Navarro, Simon J. Puglisi, and Jouni Sirén.
2017. Document Retrieval on Repetitive String Collections. Information Retrieval Journal, 20, 3, 253–291.

[14] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. 2018. Fully-Functional Suffix Trees and Optimal Text Searching
in BWT-runs Bounded Space, (Sept. 2018).

[15] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. 2018. Optimal-Time Text Indexing in BWT-runs Bounded Space.
In Proceedings of the Twenty-Ninth Annual {ACM-SIAM} Symposium on Discrete Algorithms, {SODA} 2018, New Orleans,
LA, USA, January 7-10, 2018 (SODA ’18). Artur Czumaj, (Ed.) Society for Industrial and Applied Mathematics {SIAM},
Philadelphia, PA, USA, 1459–1477.

[16] Rodrigo González, Gonzalo Navarro, and Héctor Ferrada. 2014. Locally Compressed Suffix Arrays. {ACM} Journal of
Experimental Algorithmics ({JEA}), 19, (Jan. 2014), 1.1:1–1.1:30.

[17] Cecilia Hernández and Gonzalo Navarro. 2014. Compressed Representations for Web and Social Graphs. Knowledge
and Information Systems, 40, 2, (Aug. 2014), 279–313.

[18] Artur Jeż. 2016. A really simple approximation of smallest grammar. Theoretical Computer Science, 616, (Feb. 2016),
141–150.

[19] Dominik Kempa and Nicola Prezza. 2018. At the Roots of Dictionary Compression: String Attractors. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018). ACM, New York, NY, USA, 827–840.

[20] Sebastian Kreft and Gonzalo Navarro. 2013. On compressing and indexing repetitive sequences. Theoretical Computer
Science, 483, 115–133.

[21] N. Jesper Larsson and Alistair Moffat. 2000. Off-line dictionary-based compression. Proceedings of the {IEEE}, 88, 11,
(Nov. 2000), 1722–1732.

[22] Abraham Lempel and Jacob Ziv. 2006. On the Complexity of Finite Sequences. IEEE Transactions on Information
Theory, 22, 1, (Sept. 2006), 75–81.

[23] Veli Mäkinen and Gonzalo Navarro. 2005. Succinct Suffix Arrays Based on Run-length Encoding. Nordic Journal of
Computing, 12, 1, (Mar. 2005), 40–66.



Practical and Flexible Indexes 7

[24] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. 2010. Storage and Retrieval of Highly Repetitive
Sequence Collections. Journal of Computational Biology, 17, 3, (Mar. 2010), 281–308.

[25] Gonzalo Navarro. 2019. Document listing on repetitive collections with guaranteed performance. Theoretical Computer
Science, 772, 58–72.

[26] Gonzalo Navarro and Veli Mäkinen. 2007. Compressed Full-text Indexes. {ACM} Computing Surveys, 39, 1, (Apr. 2007).
[27] Gonzalo Navarro and Nicola Prezza. 2019. Universal Compressed Text Indexing. Theoretical Computer Science, 762,

41–50.
[28] Nicola Prezza. 2016. Compressed Computation for Text Indexing. Ph.D. Dissertation. University of Udine.
[29] Wojciech Rytter. 2003. Application of Lempel–Ziv factorization to the approximation of grammar-based compression.

Theoretical Computer Science, 302, 1-3, (June 2003), 211–222.
[30] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai, Miles J Efron, Ravishankar Iyer,

Michael C Schatz, Saurabh Sinha, and Gene E Robinson. 2015. Big Data: Astronomical or Genomical? PLOS Biology,
13, 7, 1–11.


	Abstract
	1 Introduction
	2 Problem Statement
	3 Research Goals
	4 Hypotheses
	5 Methodology and Work Plan
	5.1 Practical indexes
	5.2 Flexible indexes


