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1 Introduction

Compression methods for text are arranged into two major classes, those for regular text and those for
highly repetitive text, text where many substrings repeat often with little to no changes. For these last
family of texts, specialized compressors achieve far superior compression rates[8] and some can be
extended to allow random substring access and pattern searching, directly on the uncompressed data
structure[11].
Compression methods for highly repetitive text are themselves divided into two large groups of diverse
algorithms: Those that indeed can implement efficient random access of any substring of the text, which
are generally simpler; and other more compression-efficient algorithms that are too complex to per-
mit efficient random access. This research is specifically concerned with Grammar-Based Compression
methods, which belong to the Random Accessible group.
Random Accessible methods generally build some sort of parse tree structure for representing the repeti-
tions inside the text, grammars in particular build what’s called a Grammar Tree[11]. This structure can
be upgraded very easily for acquiring random access in time proportional to the height of the tree, which
can be balanced during construction[7, 13].
Some of these methods, and grammars-based ones specifically, can be further upgraded into Text Indexes.
These are structures that allow efficient pattern search without decompression. The algorithm for this
query on grammars is generally more complex and requires building an additional data structure, but can
enumerate results in amortized logarithmic time[3].
There are three kinds of grammar, Classic Grammars, Run-Length Grammars and Locally Consistent
Grammars, where both the Classic and Locally Consistent kinds can become indexes[3, 4] and are subsets
of Run-Length Grammars, which themselves currently only have a theoretical index proposed in 2020[2].
Local consistency is a property of the Grammar Tree that enhances pattern search efficiency by reducing
the number of pattern splits that must be tried, at the cost of a generally larger tree[11].
These indexes work great for solving classic pattern search queries, but inside a highly repetitive text
collection many occurrences of a pattern probably appear surrounded by the same repeated context.
An alternative pattern search solution could be, then, Contextual Pattern Search: The query that receives
a grammar-compressed text T , a pattern P and an integer l, and returns the first occurrence of P for every
unique context it appears in within T . The context is defined as the two substrings of length l to the left
and right of every occurrence.
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This query was first proposed by Navarro[10] along with an efficient but storage-impractical algorithm
built on a classic index, the R-Index[6].
The issue that this research attempts to tackle is proposing and implementing the first efficient algorithm
for Contextual Pattern Search on Grammar Indexes of the Classic and Locally Consistent kind. The
solution is expected to be more efficient and practical that the one proposed on R-Indexes.
The research’s objectives can be summarized into: Present two implemented efficient algorithms for
computing the query, one for Classic and one for Locally Consistent Grammar-Based Indexes, that take
as much advantage as possible of the specific properties of both kinds of grammar. Then attempt to prove
a worst-case time complexity for these solutions leveraging those same properties.
Therefore the expected results are two implementations that are at least empirically faster than the trivial
solution of finding all classic occurrences of the pattern in the index, looking up their contexts, sorting
them and filtering the repetitions.
Finally, the contributions of this research are: All algorithms and properties found, with the implementa-
tions published under a free software license, and a publication in a conference that addresses repetitive
text indexing, text compression, or experimental algorithms.

2 State of the Art

2.1 Compression Methods

Current compression methods use a wide variety of techniques for achieving the lowest sized files possi-
ble. Among them, there are those that specialize on regular text, where the degree of substring repetition
within the text is small, and those that specialize on compressing highly repetitive strings like DNA
sequences and historic internet file collections.
The most used methods also allow for random accessing any substring (queried as a starting character
position and the length to be read) of the text without needing to decompress it. Even more interesting
still, most of these methods also allow for querying all the positions where a pattern occurs inside the
text without decompression. Methods with this last operation are specifically addressed as text indexes.
Techniques for highly repetitive string compression can achieve file sizes way smaller than regular com-
pression methods[8] when applied to strings that satisfy a set of different measures of repetitiveness[11].
For example, a classical compression method that relies on the relative frequency of each symbol in the
text (to then assign shorter codes to the most frequent symbols) cannot deal neatly with two identical
strings that have been concatenated together. The compression method simply cannot figure out that the
string repeats itself twice, which leaves the relative frequencies of the symbols unchanged, compressing
it into twice the size of the compressed unconcatenated string.

2.2 Highly Repetitive String Compression

Because of this limitations, many compression methods for highly repetitive strings have been proposed
and are used, some with their very own method-specific measures of repetitiveness. The mechanisms for
compressing and reconstructing the original string vary a lot, and can be roughly divided into two sets:

2.2.1 Random-Accessible Methods

These mechanisms assign some sort of identifier to each substring that repeats itself more than once, and
then find smart ways of grouping these identifiers together on a parse-tree-like way.
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The reconstruction of the string is straightforward after this has been done, for each identifier there is a
unique substring that must be found and replaced until the original string is rebuilt.
Because methods feature straightforward rules for decompression, they also allow efficient random ac-
cess to any substring of the original uncompressed text, without needing to decompress it in its entirety.
The most representative and powerful example of a random-accessible method is the construction of a
context-free grammar that represents the text, with another interesting example of this group being the
Block Tree[9]. Both methods can be enhanced to allow for random-access and substring search[11].

2.2.2 Non-Random-Accessible Methods

These mechanisms compute the original string from a set of expansion rules more powerful than those
in context-free grammars. They go beyond assigning a unique identifier to every repeated substring, and
can make it so that the identifier’s substring depends on the context where it is used, needing further com-
putation. This makes it significantly harder to extract any specific zone of the text without decompressing
all of it.
These methods, since they are more powerful, achieve higher compression rates on many common string
families, but attempting random access or pattern search with them is very challenging and impractical
when compared to simpler alternatives. Hence, they are widely used, but only for compression.
Because of this added complexity, efficient random-access of substrings using these methods simply does
not exist yet, unless the original text is decompressed first or the method is simplified in some way.
The most representative method family in this group is Lempel-Ziv Compression[15], which can only be
enhanced with random access at the heavy cost of simplifying the compression[5] (and larger file sizes).
One other representative example of this group is the Macro Scheme method, which constructs a context-
full grammar-like representation of the text[14].

2.3 Features of Random-Accessible Methods

Among these methods, as previously mentioned, variants of the context-free grammar representation of
a text are considered the most powerful in terms of their random access capabilities (although there are
better methods for minimizing storage)[11], and so will be used from this point onward as examples for
the necessary concepts.
There are many random-accessible methods, but they tend to have the following things in common:

• These methods rely on parsing the string into all substrings that are repeated more than once.

• When the string has been parsed, the methods assign substrings to nodes in some sort of parse-
tree-like structure, in grammar methods this is called the Grammar Tree.

• Within this structure, only the first appearance of each substring needs to be stored, since the nodes
in the tree of the same type can be transformed into that same substring later, saving space.

• It is formally said, then, that these compression methods parse the original string into phrases
represented and grouped by specific nodes in the tree.

As shown in the Grammar Tree of Figure 1 all individual phrases can be recognized upon construction
of the tree and the gray segments are not saved because they can be inferred from the black segments.
Since this is a grammar, symbols A, B and C in Figure 1 are what is called ”Non-Terminals”: They are
parts of the tree that will eventually need to be replaced by their corresponding substrings.
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Figure 1: Edit of Figure 8 from Navarro’s Survey[11], shows a Grammar Tree for the text alabaralal-
abarda, the symbols stored in memory are shown in black, while those that can be reconstructed while
decompressing are shown in gray. Additionally, all individual phrases are underlined.

Figure 2: The Grammar Tree from Figure 1, including substring lengths for all kinds of non-terminal.

For the structure to become random-accessible it simply needs the modification shown in Figure 2.
When storing the substring lengths of every kind of non-terminal, an algorithm can know in which node
a certain position of the text is contained, and subsequently access any substring in time proportional to
the height of the Grammar Tree.
The access time can become logarithmic on the size of the text when the Grammar Tree is balanced,
which can be forced upon construction[13, 7], or even better than logarithmic, when using advanced
techniques and complex additional structures[1].

2.4 Upgrading to Text Indexes

A text index is any structure that allows pattern searching within a representation of some text. Here the
focus is on compressed indexes, but there are uncompressed examples too.
A classic and used example of an index is the R-Index presented by Gagie et al.[6]. This index is larger
than what can be achieved with a Grammar-Based Index, but is also generally faster.
Grammar-Based Methods, and Parse-Based Methods in general, use an additional structure called a Parse
Grid for allowing efficient substring search. As shown in Figure 3, the structure stores the indexes of
every border where two phrases collide and keeps sorted lists of the reversed prefixes and suffixes of the
text that end and start at these borders.
The algorithm for finding all occurrences of a particular pattern string in the text using this structure is
rather simple, for every prefix of the string:

1. The prefix is reversed and binary-searched in the y axis of the grid, until the set of phrases that end
with that prefix is found.
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Figure 3: Edit of Figure in Slide 43 of Navarro’s Talk[12], shows a Grammar Tree enhanced with a Parse
Grid for the text alabaralalabarda. The x axis of the grid represents all alphabetically sorted suffixes
that start at a phrase border. The y axis of the grid represents all alphabetically sorted, reversed, prefixes
that end at a phrase border. The Grid itself stores pointers to the phrase borders where each prefix and
suffix collide.

2. Then the rest of the string, the remaining suffix, is binary searched in the x axis of the grid, finding
the phrases that start with that suffix.

3. The pointers in that rectangle of the grid point to all primary occurrences of the pattern string.

4. Then, the algorithm can climb the tree to search for all repeated appearances in the non-terminals
that are not being explicitly saved in memory. This means that one must look for all other occur-
rences of a non-terminal that has a primary occurrence.

The example in Figure 4 shows the two primary occurrences of the pattern ala in text alabaralalabarda
on positions 1 and 7 (starting from 1).
Looking at the text it is clear that there is also a third occurrence at position 9, but since the algorithm
explicitly only searches for primary occurrences in the borders between phrases, and this third occurrence
is inside a phrase, it must be found as a secondary occurrence.
Then Figure 5 shows the only secondary occurrence of ala in text alabaralalabarda, on position 9, found
by looking for all repetitions of the non-terminal B (That contains the primary occurrence of position 1)
in the tree.
Using this algorithm, Grammar Indexes can find all occurrences of a pattern in amortized logarithmic
time[3].

2.5 Kinds of Grammar Index

As stated before, among Random-Accessible Methods, one of the most used and well-studied groups are
those that construct a context-free grammar for representing the text. These are widely considered to be
the most powerful method as well.
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Figure 4: Edit of Figure in Slide 43 of Navarro’s Talk[12], shows a Grammar Tree enhanced with a Parse
Grid for the text alabaralalabarda, marking all primary occurrences of the pattern ala in the text.

Figure 5: Edit of Figure in Slide 45 of Navarro’s Talk[12], shows a Grammar Tree for the text alabar-
alalabarda, marking how to find the only secondary occurrence of the pattern ala in the text.

Grammars have such a high status because they are simultaneously conceptually simple to understand,
very memory efficient, and easily upgradeable to indexes. They are, though, generally slower than some
of the more memory-intense methods like R-Indexes.
There are three main kinds of Grammar Representations:

1. Classic Grammars: These correspond to the examples used above.

2. Run-length Grammars: A super-set of Classic Grammars, these are grammars that can represent a
substring that is concatenated to itself many times as a non-terminal of the form A8 :=AAAAAAAA.

3. Locally Consistent Grammars: A subset of Run-Length Grammars, these are grammars that satisfy
an extra property, the sub-trees of the Grammar Tree expanding to two identical substrings S[i.. j] =
S[i′.. j′] are identical except for the O(1) nodes on the left and right in each level of the sub-
trees[11].
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3 Problem Statement

When searching for a particular pattern in a highly repetitive text, all occurrences of this pattern are
returned, even when they come from parts of the text that look generally the same.
That kind of search, though, is useful but limiting when the string is indeed very repetitive, as many of
the search results will appear in similar context within the repeated substrings that comprise it[10]. For
example, if a particular string is constructed by repeating a substring 10 times, all patterns that occur k
times within the substring will have 10k occurrences in the whole text.
This is specially frustrating in cases like:

• DNA exon searches, where knowing the possible intron-exon-intron combinations in a particular
sequence requires listing and sorting all the numerous occurrences of the exon pattern in the entire
sequence.

• Searching for mentions of some sentence in the historic archive of some wiki, where many in-
stances of the sentence are probably unchanged between different versions of the same overall
page.

Therefore, as proposed by Navarro[10], a new type of query could be of use.

Given a text T , a pattern P and a length ρ

• Let O be the set of positions of all occurrences of pattern P in the original text T .

• Let T ′ := $ρT $ρ , be T padded with ρ blank characters on each side.

• Using T ′ when looking at Oi, the ith occurrence:

– Let Li := T ′[Oi]...T ′[Oi +ρ − 1] be the substring of length ρ immediately to the left of the
occurrence, in T ′ instead of T .

– Let Ri := T ′[Oi + |P|+ρ]...T ′[Oi + |P|+2ρ−1] be the substring of length ρ immediately to
the right of the occurrence, in T ′ instead of T .

– The pair (Li,Ri) is known as the context of occurrence Oi.

• Then, we define C as the set of all occurrences of pattern P in text T that are the first in their
respective context:

C := {Oi ∈ O | ∀ j 6= i ∈ [1, |O|], ((Li,Ri) = (L j,R j)∧ i < j)∨ (Li,Ri) 6= (L j,R j)}

– Note that C ⊆ O.
– An alternative definition is C := {Oi ∈ O | i = min j∈[1,|O|] { j : LiPRi = L jPR j}}

The Contextual Pattern Search of pattern P and length ρ in text T is then the query that enumerates the
set C.
The proposed research is to extend Grammar-Based Indexes of both the Classic and Locally Consistent
kind with an efficient Contextual Pattern Search query.

3.1 Literature Support

As stated before, this problem was formalized and proposed by Navarro. In his paper he offers a com-
pelling case for the use of the query and an efficient implementation built on R-Indexes[10].
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This solution is functional and efficient complexity-wise, but necessitates approximately double the stor-
age of the original R-Index to work[10]. With the R-Index being already comparatively large on its own,
it sets up an opportunity that Grammar-Based Indexes might offer a specially good solution for.
The Grammar-Based approach may be more practical, even if slower, than the existing R-Index imple-
mentation, since Grammar methods (specially of the Locally Consistent kind) already have an in-built
concept of context:

• A non-terminal is contained by another when it is surrounded by a certain pattern of symbols, and
that pattern of symbols is known by the parent non-terminal.

• Therefore, by getting closer and closer to the root of the Grammar Tree, a non-terminal will even-
tually be found to contain both the pattern and one of its contexts. An element of C has been
found.

• Since the query only concerns itself with the first occurrence or the pattern in any specific context,
it is unnecessary to search through the secondary occurrences of C. This reduces the computation
time when compared to the classic pattern search.

• This process can then be repeated for all other contexts by following different paths in the tree.

Finding a way to efficiently traverse these non-terminals is one of the open problems we wish to address.
Since in a Locally Consistent Grammar every context can only appear in a reduced amount of sub-trees
in the Grammar Tree, we believe that these grammars might offer a specially efficient solution.

4 Research questions

• Can a Grammar-Based Index be implemented for solving Contextual Pattern Search queries with
a better empirical time cost than the trivial solution of listing all occurrences, searching for their
contexts, sorting the contexts and filtering repetitions?

• Can the performance of the query be improved by leveraging properties unique to Locally Consis-
tent Grammars?

• Can it be proven that the proposed Grammar-Based Index has a better complexity cost than the
trivial solution?

5 Hypothesis

A Grammar-Based Index can be implemented, such that it can execute Contextual Pattern Search queries
more efficiently than the trivial solution of using a normal grammar-based index to list all occurrences of
the pattern and then filter out the ones with a repeated context.

6 Objectives

6.1 General Objective

Propose and implement a grammar-based index that can do contextual pattern search better than the
trivial solution of listing all occurrences and filtering repeated contexts.
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6.2 Specific Objectives

1. Develop a basic contextual index on top of a Grammar Index.

2. Develop a basic contextual index on top of a Locally Consistent Grammar Index.

3. Find properties in both kinds of grammar indexes that could allow for faster contextual search
algorithms.

4. Develop optimized contextual indexes that take advantage of these properties.

5. Evaluate whether these properties can lead to proving that the algorithm’s complexity is be better
than the trivial implementation’s complexity.

7 Methodology

The steps to take are:

1. Become familiarized with Alejandro Pacheco’s[3] implementation of a Grammar Index.

2. Implement a trivial contextual index on top of Pacheco’s implementation, that simply finds the pat-
tern and climbs the grammar tree looking for all non-terminal nodes that contain different contexts,
and then reports the locations of these non-terminal nodes.

3. Benchmark this solution and the trivial solution, to quantify their difference in performance, by
executing queries on a collection of Grammar-compressed DNA sequences or historic document
databases.

4. Become familiarized with Diego Diaz’s[4] implementation of a Locally Consistent Grammar In-
dex.

5. Mirror the previous contextual index implementation on top of Diaz’s index, which should lead to
less repeated non-terminals with the same context and a more efficient result.

6. Benchmark this solution as well, running on the same previously mentioned dataset.

7. Study the search mechanism, looking for additional structures or other modifications that might
enhance performance with or without an additional storage cost.

8. Propose concrete modifications to the trivial contextual indexes that could leverage whichever
properties were found.

9. Implement the more efficient contextual indexes according to these modification proposals.

10. Benchmark the new solutions in the same manner as the previous ones.

11. Attempt to prove a worst-case complexity order for the improved algorithm, taking all modifica-
tions and found properties into account.

12. Redact the publication explaining the designed algorithms, related properties, implementation con-
siderations, and results obtained along the way.
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8 Expected results

At least two implementations of a grammar-based index that can execute Contextual Pattern Search
queries better than the trivial solution of listing all occurrences and filtering repeated contexts:

• One implementation for Classic Grammar Indexes.

• One implementation for Locally Consistent Grammar Indexes.

9 Contributions

All algorithms, heuristics or helpful structures, as well as all implemented code will be published online
in a freely accessible, readable, modifiable and usable manner.
Depending on the quality and complexity of the proposed algorithms, the resulting article will be sub-
mitted to one or more of the following academic conferences:

• SPIRE: String Processing and Information Retrieval Conference.

• DCC: Data Compression Conference.

• CPM: Combinatorial Pattern Matching Conference.

• SEA: Symposium on Experimental Algorithms Conference.

• ALENEX: Symposium on Algorithm Engineering and Experiments Conference.

• ESA B: European Symposium on Algorithms Conference, Engineering and Applications Track
(Track B).
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