
Universidad de Chile

Facultad de Ciencias F́ısicas y Matemáticas
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Profesor Gúıa : Gonzalo Navarro
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Abstract

Because of the many growing text collections available from different sources, the
full-text search problem arises in a wealth of applications, which need to provide efficient
access to large text collections. Classical text indexes require much space (besides storing
the text itself), and thus might not fit in main memory even for moderate texts which
do. The current trend in indexed text search is that of compressed full-text self-indexes,
which replace the text with a representation that takes space proportional to that of the
compressed text, and provide indexed access to it. The most prominent approaches include
indexes based on Compressed Suffix Arrays, on the Burrows-Wheeler transform, and on
Lempel-Ziv compression.

Though the attention of researchers has been biased towards suffix-array-based
compressed indexes, other kinds of compressed self-indexes deserve to be considered,
because of their efficiency. In this thesis we carry out a deep study of compressed full-
text self-indexes based on Lempel-Ziv compression (LZ-indexes for short), contributing
with new developments in this area. We base our study on Navarro’s LZ-index (or simply
LZ-index). Before our work, the LZ-indexes were an attractive alternative, though with
some drawbacks: they were usually larger than competing schemes, did not allow for
any space/time tradeoff (to fit different amounts of main memory available), required too
much construction space, and could not be handled efficiently on secondary storage (in
cases where the text is very large). We contribute to alleviate all these drawbacks.

Our first contribution is a practical approach to reduce the space of the LZ-index,
achieving up to 2/3rds of its space, and still maintaining its good features. Although
they can provide only good average-case search complexity, given the space they need, our
LZ-indexes are the most efficient alternatives in practice for extracting text substrings and
displaying the occurrence contexts, which are key operations for compressed self-indexes.

Then, we go one step further and study ways to reduce the space required by the LZ-
index, this time providing worst-case guarantees at search time. As a result, we obtain the
smallest existing LZ-indexes, also improving the original search complexity. We explore
several ways to achieve our goal, and obtain a novel and complete family of LZ-indexes,
providing competitive space/time trade-offs. Thus, we are now able to compete in cases
where the original LZ-index was unable because of space limitations.

We then study the space-efficient construction of our family of LZ-indexes. We
conclude that our indexes can be constructed without any extra space on top of that
required by the final index. This enhances the applicability of our LZ-indexes, since
wherever these can be used, we will be able to build them without accessing secondary
storage. In practice, our LZ-indexes are the fastest compressed self-indexes to be
constructed within compressed space.

Finally, we study how to adapt the LZ-index to work on secondary storage. We obtain
the smallest existing index on secondary storage, with a very competitive performance.
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Chapter 1

Introduction

1.1 Problem Definition and Applications

Text searching is a classical problem in Computer Science. Given a sequence of symbols
T [1..u], the text, over an alphabet Σ = {1, . . . , σ} of size σ, and given another (short)
sequence P [1..m], the search pattern, also over Σ, the full-text search problem consists in
finding all the occ occurrences of P in T . The aim of this thesis is to design and analyze
algorithms and data structures for the full-text search problem.

With the huge amount of text data available nowadays, which need to be searched to
find patterns of interest, the full-text search problem plays a fundamental role in modern
computer applications, which include text databases in general. Unlike word-based text
searching (which is typical in application areas like Information Retrieval), we wish to find
any text substring, not only whole words or phrases. This has applications in texts where
the concept of word is not well defined (e.g., Oriental languages), or texts where words do
not exist at all (e.g., DNA, protein, and MIDI pitch sequences), or where one wishes to
retrieve more than words (e.g., program code), etc.

One of the most important challenges of a system supporting text search is that of
providing fast access to the occurrences of user-entered patterns.

1.1.1 Application Domains

Nowadays, many applications are highly related to the full-text search problem, not only
because of the vast collections of traditional texts available either in digital libraries, emails,
government or corporate documents, and even the World Wide Web, but also because of
the many other, at first sight not so related, areas that generate data in form of text:
genomic and biological research, sensors and electronic devices (e.g., data from satellites
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and MIDI pitch sequences), XML and software databases, etc. We illustrate here some
application domains of full-text search.

(1) Computational Biology: Since the advent of the DNA sequencing technologies,
biological applications have become highly related to text processing, since biological
sequences (like DNA and proteins) are conceptualized as strings of symbols, or
texts. In the case of DNA, we need a four-symbol alphabet to distinguish among
the four possible nucleotides, or bases (A=Adenine, C=Cytosine, G=Guanine, and
T=Thymine). In the case of proteins, a twenty-symbol alphabet is used, as there are
twenty known amino acids.

A few years ago, the Human Genome Project [Hum05, Fre91] finished the task of
sequencing the Human Genome, which aimed at identifying the genes that make
up the entire Human Genome, as well as developing and improving the sequencing
technologies. The result is a sequence of about 3 × 109 base pairs. It is usual that
biologists need to search for DNA subsequences in this genome [Fre91], for instance
in order to find genes of interest [HTSW03]. In this case, we want to be able to
search for any text substring (since there are no word boundaries in DNA data), and
hence the full-text search problem is appropriate.

(2) Music Processing: The Musical Instrument Digital Interface (MIDI) format is a
standard protocol that enables the communication between computers and musical
instruments. A MIDI file consists of a sequence of events, usually coded as text,
which allows us to reconstruct an audio signal.

Although the full-text search problem may not be enough for the kind of processing
that one usually needs to carry out on MIDI pitch sequences, this is used as a first
filter to reduce the number of candidate subsequences that are further evaluated with
a more costly process [FMN06].

(3) Digital Libraries: these play an important role in many aspects of life nowadays,
since many text documents are represented in digital form, and stored in digital text
repositories. This includes government and corporate documents, scientific papers,
news wires and digital newspapers, etc. In order to find and use the information
stored in a repository, we must provide the user with search capabilities.

(4) XML Documents: The eXtensible Markup Language (XML) [w3c94] has become
the standard for exchange of data between applications, in particular on the World
Wide Web, among many other uses. Thus, vast collections of XML documents
are automatically generated by computer applications, and hence nowadays it is
quite common to find very large XML databases. Since an XML document can
contain text, it is natural to allow for full-text search capabilities (see, for example,
http://www.w3.org/TR/xpath-full-text-10-use-cases/).
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(5) Source Code Repositories: A source code repository stores large amounts of source
code, aiding developers to control the different versions of their software. Some
large repositories are public, as for instance Google Code or Source Forge. In
the former case, the user is provided with search capabilities on the source code
(http://www.google.com/codesearch). Thus, text searching plays an important
role in this application.

1.1.2 Approaches for Solving the Full-Text Search Problem

There are two general approaches for solving the full-text search problem:

Sequential Text Searching. We search for the pattern P directly on the plain representation
of T . That is, we do not construct any data structure on the text, mainly because the text
is small, highly dynamic, or it is not available in advance. The main problem here is to
reduce as much as possible the number of comparisons among text and pattern symbols,
which is O(mn) if we use a naive approach. See the book by Navarro and Raffinot [NR02]
for a complete review on sequential text searching. This is the approach used by the
widely-used Unix search tool grep.

Indexed Text Searching. Unlike the previous approach, we build a data structure (or index )
on the text to restrict the search to a small portion of the text, avoiding the sequential scan.
In this way we improve the search time at the expense of increasing the space requirement
to solve the problem, since we need to store the index. This approach is used when the
text is so large that a sequential scan is prohibitively costly, many searches (using different
patterns) must be performed on the same text, the text does not change so frequently, and
there is sufficient storage space to maintain the index and provide efficient access to it.

In this thesis we assume that the text is large and known in advance to queries, and we
need to perform several queries on it. Therefore, we focus on indexed text searching, thus
allowing efficient access to the pattern occurrences, yet increasing the space requirement
since we need to store the index along with the textual database. Therefore, in this thesis
we will study space-efficient text indexes, with the aim of reducing the space requirement
to solve the problem.

1.1.3 Typical Queries

There exist three typical kinds of queries, which arise in different types of applications,
namely:

— exists(P ), which tell us whether pattern P exists in T or not;

— count(P ), which counts the number of occurrences of pattern P in T ; and
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— locate(P ), which reports the starting position of all the occurrences of pattern P
in T .

These correspond to existential, cardinality, and locating queries respectively. From now
on, let occ be the total number of occurrences of pattern P in T . In the case of locate

queries, one can also be interested in finding only a certain number of pattern occurrences,
such that the remaining ones are located while the user processes the first ones, or on
user demand (think for example of the 10 result pages shown by a Web search engine).
In other cases we can just need, for example, to find a fixed number K of (arbitrary)
occurrences. Let us think again of Web search engines, where the answer to a user-entered
query usually consists of a ranking with the (hopefully) most relevant Web pages for the
query, plus an arbitrary (short) context (or snippet) where the pattern occurs within every
such page; this snippet is displayed in order to help users decide whether a page is relevant
or not for their needs. Therefore, in this example we must be able to quickly find just one
arbitrary pattern occurrence in the text and display its context. We call partial locate

queries those that ask to locate K arbitrary occurrences. We insist that the occurrences
found are arbitrary, so this is different to the better known problem of finding the K first
occurrences.

1.2 Full-Text Indexing

Since in this thesis we focus on indexed full-text searching, we review the classical full-text
indexes, as well as the new trends in this area.

1.2.1 Classical Full-Text Indexing

Classical full-text indexes, like suffix trees [Wei73, McC76, Apo85] and suffix arrays
[MM93, GBYS92], are among the best known and used data structures. Suffix trees allow
us to locate the occ occurrences of pattern P in text T in O(m + occ) time. Suffix arrays,
on the other hand, have a basic search time of O(m log u + occ), which can be dropped to
O(m + log u + occ) time if extra information is stored [MM93].

However, these indexes require lots of space: O(u log u) and u log u bits respectively,
which in practice is about 10-20 and 4 times the text size respectively, apart from the
text itself. Thus, we can have large texts which still fit into main memory, but whose
corresponding suffix tree (or array) cannot be handled in main memory. A typical example
is that of the Human Genome, which can be represented in less than 1 gigabyte of memory
(if we use just 2 bits per symbol), yet the space of the corresponding suffix tree and array
is about 40 gigabytes [Kur99] and 12 gigabytes respectively.

Using secondary storage for the indexes is several orders of magnitude slower, and
has a significant influence on the running time of an application [Vit08, KR03]. Therefore
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one looks for ways to reduce the index size, with the main motivation of maintaining the
indexes of very large texts entirely in main memory. The modern trend is to use the
compressibility of the text to reduce the space of the index.

A general objective of this thesis will be to provide fast access to the text using as
little space as possible. In recent years there has been much research on compressed text
databases, focusing on techniques to represent the text and the index using little space,
yet permitting efficient text searching [NM07].

1.2.2 Compressing and Indexing Texts

As we have seen, classical full-text indexes (like suffix trees and suffix arrays) require
O(u log u) bits of space, which is space demanding in practice. As a result, we can hold in
main memory only the indexes of relatively small texts. As we said before, using secondary
storage for the indexes is several orders of magnitude slower, hence we look to store the
indexes in main memory as much as we can.

An important question is whether a full-text index can require only O(u log σ) bits
of space (i.e., space proportional to the size of the uncompressed text) or, even better,
whether we can profit from the compressibility of the text to reduce the space of the index
(e.g., an index requiring space proportional to the size of the compressed text, O(uHk(T ))
bits 1).

The Former Attempts to Reduce the Index Space. Trying to answer these questions,
there are some (mainly practical) attempts to reduce the space requirement of the indexes,
as for example the work of Kärkkäinen [Kär95], which presents the suffix cactus, a hybrid
between suffix trees and suffix arrays that requires about 10 times the text size of main
memory to operate; Kurtz [Kur99] presents a more compact representation of suffix trees
requiring about 10 times the text size; and Abouelhoda et al. [AOK02], which define the
so-called enhanced suffix arrays, with a space requirement of 6 times the text size.

These approaches have been mainly practical, in the sense that the improvement was
mainly due to good engineering, with remarkable, though not spectacular, results: they
reduce the space requirement of classical indexes, providing some compromises of search
time and space requirement, yet not profiting from text compression. Also, they still need
the text to operate.

1uHk(T ) is a lower bound to the number of bits used to represent T by any k-th order compressor,
where Hk(T ) denotes the k-th order empirical entropy of T . See Section 2.4 for more details.
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Compressed Full-Text Self-indexes. To provide fast access to the text using little
space, the current (more principled) trend is to use compressed full-text self-indexes, which
are defined in what follows.

Definition 1.1. A compressed full-text index is one whose space requirement is
proportional to the compressed text size under some compression model (e.g., O(uHk(T ))
bits of space).

Therefore, the space of the index can be reduced when the text is compressible (for this
reason, Ferragina and Manzini [FM00, FM01] called opportunistic this kind of indexes).

This track was started by Kärkkäinen and Ukkonen [KU96a, Kär99], which studied
text indexes based on repetitions, defining the first indexes based on the Lempel-Ziv
compression algorithms [LZ76]. Later, Grossi and Vitter [GV00, GV05] defined the
Compressed Suffix Arrays, based on regularities of suffix arrays to reduce their space.
Independently, Mäkinen [Mäk00, Mäk03] obtained a compact representation of suffix
arrays, also profiting from some regularities in the runs of suffix arrays to reduce the space
in practice to about 2.5 times the text size. However, and just like classical indexes, all
these indexes still need the text to operate. An important space saving could be achieved
if we do not need the text to operate.

Definition 1.2. A full-text self-index allows one to search and extract any part of the
text without storing the text itself.

This introduces important savings of memory space. Sadakane [Sad00, Sad02, Sad03],
and Ferragina and Manzini [FM00, FM01, FM05] defined the first existing self-indexes.
The former is a representation of Compressed Suffix Arrays [GV05] which does not need
the text to operate. The index of Ferragina and Manzini, on the other hand, is based on the
close relation between suffix arrays and the Burrows-Wheeler transform [BW94]. Later,
many other compressed self-indexes were defined, like the ones by Grossi et al. [GGV03],
Foschini et al. [GGV04, FGGV06], Navarro [Nav04, Nav08], Mäkinen and Navarro [MN05],
Ferragina et al. [FMMN04, FMMN07], and Russo and Oliveira [RO06, RO07], among
others. An important survey about compressed self-indexes is given by Navarro and
Mäkinen [NM07].

To summarize, a compressed full-text self-index replaces the text with a more space-
efficient representation of it (profiting from text compressibility to get smaller indexes),
at the same time providing indexed access to the text. Taking space proportional to
the compressed text, replacing it, and providing efficient indexed access to it is an
unprecedented breakthrough in text indexing and compression.

Compressed full-text self-indexes are not only useful to reduce the space requirement
of text indexes, but also they have application in cases where accessing the text is so
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expensive that the index must search without having the text at hand, as occurs with
most Web search engines.

Extending the Set of Queries, with Applications. Since compressed full-text self-
indexes replace the text, we are also interested in supporting operations:

— display(P, `), which displays a context of ` symbols surrounding the occ occurrences
of pattern P in T ; and

— extract(i, j), which decompresses the substring T [i..j], for any text positions i 6 j.

Thus we can see compressed self-indexes as full-text indexes compressing the text, or as
compressors allowing efficient text extraction and indexed full-text searching.

In the scenario of compressed full-text self-indexes, where we replace the text with
a representation allowing indexed-search capabilities, being able to efficiently extract

arbitrary text substrings is one of the most basic and important problems that indexes
must solve efficiently.

While locate queries are important in classical full-text indexing (since we have the
text at hand to access the occurrences and their contexts, as needed by many applications),
they are usually not enough for compressed self-indexes, since we obtain just text positions,
and no clue about the text surrounding these occurrences. In many applications the
context surrounding an occurrence is as important as (and sometimes more important
than) the occurrence position itself. For example, a user might be interested in the context
surrounding the occurrences to decide whether the answer is interesting or not; think, for
example, of the widely-used Unix search tool grep, which by default shows the text lines
containing the occurrences. The relevance of this information is witnessed by the fact that
most modern Web search engines display, along with the answers to a query, a context
surrounding a pattern occurrence within each document. Therefore, in our scenario it
is usually more important to obtain the contexts surrounding the pattern occurrences
(i.e., display queries), than just text positions (i.e., locate queries). The latter can be
interesting in specific cases, for example if one wants to take statistics about the positions
of the occurrences (for instance, the average difference between successive occurrences,
e.g., for linguistic, data mining, or motif discovering applications), but display queries
are more frequently used in general.

Finally, count and exists queries have much more specific applications, and
they usually compose the internal machinery of more complex tasks, for example, for
approximate pattern matching (where one wants to find the occurrences of a pattern in a
text, allowing differences between the pattern and the occurrences) and text categorization
(where a document is assigned a class or category depending on the frequency of appearance
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of given keywords). However, this is not enough for many other applications. For example,
after categorizing the documents, a user might want to see a document, or a portion of it,
so we have to ask the index to reproduce it, or may want to search for a given pattern and
display the occurrence contexts in order to decide whether the document is of interest or
not. Some pattern discovery tasks may use the frequency of certain strings to decide that
they are important patterns. Another example is selective dissemination of information,
where user profiles are formed by keywords of interest and the system is interested in the
presence or absence of those keywords to send or not the document to the user.

As with text compression, where a text (or a part of it) must be uncompressed to
process it, using compressed indexes increases processing time. This increase depends on
the index and its performance. However, given the relation between main and secondary
memory access times, it is preferable to handle compressed indexes entirely in main
memory, rather than handling them in uncompressed form on secondary storage. In
our work we look for indexes that can be efficiently queried at search time. When the
compressed index is so large that it does not fit in main memory, we will try to reduce
the cost of transmission between secondary and main memory, since a smaller index
potentially requires both a smaller transfer time and smaller disk seek time, which is
the main component of the time to access a disk.

Families of Compressed Self-indexes. The main types of compressed self-indexes
[NM07] are Compressed Suffix Arrays [GV05, Sad03], indexes based on backward search
[FM05, FMMN07, MN05] (which are alternative ways to compress suffix arrays, known
as the FM-index family), and the indexes based on Lempel-Ziv compression algorithms
[LZ76, ZL78] (LZ-indexes for short) [KU96a, Nav04, FM05, RO07].

It is usual that indexes of a given family are suitable for a given kind of query.
For instance, indexes based on suffix arrays are very competitive for exists and count

queries, since the occurrences lie in a contiguous interval of the suffix array, which can be
found usually in time proportional to the pattern length. LZ-indexes, on the other hand,
support efficient locate and extract queries. In Table 1.1 we show the most efficient
existing compressed self-indexes, where the different families are separated by horizontal
lines. Some of the indexes obtained in this thesis are also shown; we give more details of
these later in this chapter.

In this thesis we are interested in LZ-indexes, since they have shown to be effective for
locating occurrences and extracting text, outperforming other compressed indexes. What
characterizes the particular niche of LZ-indexes is the O(uHk(T )) space combined with
O(log u) time per located occurrence. Moreover, and as we shall see in this thesis, in
practice many pattern occurrences can be actually found in constant time per occurrence,
which makes the LZ-indexes a very appealing alternative. Also, fast displaying of text
substrings is very important in self-indexes, as the text is not available otherwise.
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Table 1.1: Space and time complexities for the most efficient existing compressed self-indexes.
The different families (Compressed Suffix Arrays, FM-indexes, and LZ-indexes, respectively) are
separated by horizontal lines in the tables. We assume σ = O(polylog(u)) in all cases, except
for the FM-index, where σ = o(log u/ log log u) is assumed [FM05]. The time for locate is
after counting the pattern occurrences. We also assume 0 < ε < 1.

Index Space in bits

Sadakane’s Compressed Suffix Array (Sad-CSA) [Sad03] (1 + ε)uH0(T ) + O(u log log σ)
Grossi, Gupta and Vitter’s CSA (GGV-CSA) [GGV03] (2 + ε)uHk(T ) + o(u log σ)
FM-index (FMI) [FM05] 5uHk(T ) + o(n log σ)
Alphabet Friendly FM-index (AF-FMI) [FMMN07] uHk(T ) + o(u log σ)
Navarro’s LZ-index (Nav-LZI) [Nav04] 4uHk(T ) + o(u log σ)
Inverted LZ-index (ILZI) [RO07] (5 + ε)uHk(T ) + o(u log σ)
This thesis a [ANS06, ANS08] (1 + ε)uHk(T ) + o(u log σ)
This thesis b [ANS06, ANS08] (2 + ε)uHk(T ) + o(u log σ)
This thesis c [AN07b, ANS08] (3 + ε)uHk(T ) + o(u log σ)

Index count locate extract

Sad-CSA O(m log u) O(occ log
1

1+ε u) O(` + log
1

1+ε u)

GGV-CSA O( m
logσ u

+ log
3+ε

1+ε u

log
1−ε

1+ε σ

) O(occ log u logε
σ u) O(`/ logσ u + log u logε

σ u)

FMI O(m) O(occ log1+ε u) O(` + log1+ε u)
AF-FMI O(m) O(occ log1+ε u) O(` + log1+ε u)
Nav-LZI O(m3 log σ + m log u + occ) O(occ log u) O(` log σ)

ILZI O(m
ε

log u + occ) O(occ log u) O( `
ε logσ u

)

This thesis a O(m2

ε
) on average O(m2

ε
) on average O( `

ε logσ u
)

This thesis b O(m2

ε
+ m log u + occ

ε
) O(occ log u) O( `

ε logσ u
)

This thesis c O(m) O((m + occ
ε

) log u) O( `
ε logσ u

)

Historically, the first compressed index based on Lempel-Ziv compression was that
of Kärkkäinen and Ukkonen [KU96a, Kär99], the KU-LZI for short, which has a locating
time O(m2 + (m + occ) log u) and a space requirement of O(uHk(T )) bits, plus the text
(as it is needed to operate) [NM07].

Ferragina and Manzini [FM05] present an index based on Lempel-Ziv compression,
the FM-LZI for short, although combined with Burrows-Wheeler compression [BW94] to
support locating the pattern occurrences in optimal O(m + occ) time, without restrictions
on m or occ. This is the only existing compressed full-text self-index with optimal search
time, requiring O(uHk(T ) logγ u) + o(u log σ logγ u) = o(u log u) bits of space, for any
constant γ > 0. However, the O(logγ u) extra factor in the space usage can make the
space of this index excessive.

Navarro’s LZ-index [Nav04, Nav08], the Nav-LZI for short, or simply the LZ-index
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throughout this thesis, on the other hand, is a compressed full-text self-index based on
the Lempel-Ziv 1978 [ZL78] (LZ78 for short) parsing of the text. The LZ-index takes
about 4 times the size of the compressed text, that is 4uHk(T ) + o(u log σ) bits, for any
k = o(logσ u), and answers queries in O(m3 log σ + (m + occ) log u) worst-case time. The
index also replaces the text (i.e., it is a self-index ): it can display a text context of phrases
of length ` around an occurrence found (and in fact any sequence of LZ78 phrases) in
O(` log σ) time, or obtain the whole text in time O(u log σ). The index is built in O(u log σ)
time.

Russo and Oliveira [RO07] discard the LZ78 parsing of T and use a so-called maximal
parsing instead, which is performed for the reverse text. In this way they avoid the O(m2)
checks for the different pattern substrings, needed both by the KU-LZI and Nav-LZI.
The resulting LZ-index, the Inverted LZ-index (ILZI for short), requires (5 + ε)uHk(T ) +
o(u log σ) bits of space, for any 0 < ε < 1 and any k = o(logσ u). The locating time of the
index is O((m

ε + occ) log u).

Current Technologies for Compressed Text Indexing. The practical implemen-
tation and evaluation of compressed self-indexes is a very important issue, since many
indexes are proposed in theory but never implemented. Implementing the indexes and
making them available motivates the practical use of these new techniques, and encourages
technology transfer. Aiming at this, the Pizza&Chili corpus [FN05] provides practical
implementations of compressed indexes, as well as some testbed texts. The current state
of the art of practical compressed indexes in the corpus is surveyed in [FGNV08].

We are interested both in theoretical and practical results in this thesis. On the
practical side, we shall make available in the Pizza&Chili corpus the practical prototypes
described in this thesis, so that they can be used by the scientific community as well as
by practitioners looking for particular solutions to practical problems in Computational
Biology, Digital Libraries, and full-text databases in general.

1.3 Contributions of this Thesis

As we said before, the most basic problems for compressed self-indexes are that of
reproducing the text (or any text substring) and searching (locating the occurrences and
displaying a context, or counting occurrences), while requiring little space. However, there
are many other functionalities that a compressed self-index must provide in order to be
fully useful. Many of those have been obtained separately in the indexed text searching
literature. For example, there are

— indexes like the suffix trees, allowing to search for a pattern in optimal O(m + occ)
time, yet requiring O(u log u) bits of space; or the LZ-index of Ferragina and Manzini
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[FM05], also achieving optimal O(m+ occ) time yet requiring o(u log u) bits of space
if σ is small;

— the suffix arrays, which are one of the most used text indexes in practice and can be
built in O(u) time [KSPP03, KA03, KS03], yet they require basically u log u bits of
space, which can be excessive for large texts;

— compressed indexes using space proportional to the text entropy (and many times
including the text) [NM07];

— indexes requiring little space to be built [HLS+07, HSS03a, NP07, GN08b]:
compressed indexes are usually derived from a classical one. Although it is usually
simple to build a classical index and then derive its compressed version, there might
not be enough space to build the classical index first. Secondary memory might
be available, but many classical indexes are costly to build on secondary memory.
Therefore, an important problem is how to build compressed indexes without building
their classical versions first;

— indexes supporting efficient construction and search on secondary memory [FG99,
CM96]: although their small space requirements might permit compressed indexes
fit in main memory, there will always be cases where they have to operate on disk.
There is not much work yet on this important issue. A good survey on full-text
indexes on secondary memory is by Kärkkäinen and Rao [KR03];

— and others supporting efficient insertion and deletion of texts [FG99, FM00,
HLS+04a, CHLS07, MN08b, GN08b]: most indexes in the literature are static, in the
sense that they have to be rebuilt from scratch upon text changes. This is currently
a problem even on uncompressed full-text indexes, and not much has been done.

Some existing indexes accomplish several of these points [GN08b]. However, no existing
data structure for text searching fits all the above requirements.

As we said before, we are mainly interested in Lempel-Ziv-based compressed full-
text self-indexes, since they have shown to be effective in many aspects: They are fast
for locating the pattern occurrences, displaying occurrence contexts, and extracting the
text [Nav04, Nav08], which is very important in the track of compressed self-indexes.
However, the current state of the art on these indexes still needs further attention in order
to solve important existing problems. Therefore, in this thesis we carry out a deep study of
compressed full-text self-indexes based on the Lempel-Ziv compression algorithm of 1978
[ZL78].

Specifically, we will focus our studies on Navarro’s LZ-index. Before this thesis,
Navarro’s LZ-index had the following properties: fast full-text searching, fast text recovery,
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uses little space for operation (yet this space is relatively high compared to other
compressed full-text self-indexes), does not allow insertion nor deletion of text, only
operates in main memory, and it needs much construction space. Many of the weak points
of the LZ-index were already supported by compressed indexes based on suffix arrays,
like FM-indexes [FM05] and Compressed Suffix Arrays [GGV03, FGGV06, Sad03], which
are usually smaller (though sometimes slower) than LZ-indexes, provide time/space trade-
offs, can be constructed within little space [HLS+07, NP07, GN08b], support dynamism
[FM00, HLS+04a, CHLS07, MN08b, GN08b], and can be stored on secondary storage
[MNS04].

We aim at adding new features to the LZ-index, as well as improving the existing
ones (e.g., improve the time to locate pattern occurrences, improve the time to extract
text substrings, etc.), from a theoretical and practical point of view. The idea is to
compete with compressed indexes based on suffix arrays. The result are LZ-indexes which
are smaller than the original LZ-index [Nav04], provide time/space trade-offs, are very
competitive in practice, can be constructed within little space, and can be handled on
secondary storage.

This is a summary of the main results of this thesis:

1.3.1 Reducing the Space Requirement of Lempel-Ziv Text Indexes

Navarro’s LZ-index has shown to be an attractive alternative in practice [Nav04],
outperforming competing schemes in many practical scenarios. However, the space
requirement of the LZ-index is relatively large compared with competing schemes [Nav04]:
1.2–1.6 times the text size versus 0.6–0.7 and 0.3–0.8 times the text size of the Compressed
Suffix Array [Sad03] and the FM-index [FM05], respectively. In addition, the LZ-index
does not offer space/time trade-offs, which limits its applicability.

In Chapter 4 we aim at reducing the space requirement of the LZ-index, mainly
from a practical point of view. We introduce a scheme to study the redundancy of the
original LZ-index. As a result, we obtain indexes requiring 3uHk(T ) + o(u log σ) and
(2+ε)uHk(T )+o(u log σ) bits of space, for any 0 < ε < 1, which is less than the space of the
original LZ-index. Our indexes cannot provide worst-case guarantees at search time, yet
they support locate queries for patterns of length m in O(m

ε + n
εσm/2 ) average time, which

is O(m2

ε ) for m > logσ u. In practice, our data structure uses about 2/3 of the space of
the original LZ-index, while retaining a very good extracting and displaying performance:
our indexes offer an attractive alternative for full-text searching, outperforming competing
schemes in many practical scenarios.

We conclude that our LZ-indexes are an interesting alternative for highly compressible
texts, outperforming competing schemes while requiring little space.
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The main results of this chapter have been published in [AN08].

1.3.2 Stronger Lempel-Ziv Text Indexes

Despite the fact that in the previous part we reduce the space requirement of the LZ-
index, with relevant results in practice, that is a mainly practical result which only gives
us average-case guarantees at search time. The challenge of Chapter 5 is to reduce the space
requirement of the LZ-index, while retaining its good theoretical features. We develop a
theoretical method to support the reduction of space requirement of the LZ-index while
retaining worst-case guarantees at search time. Moreover, we show how to reduce the
original time complexity of the LZ-index.

We first show that the connection between the tries conforming the LZ-index (the
so-called LZTrie and RevTrie) can be supported within little space. This connection is
very important for the search algorithm of the LZ-index and, before our work, it was
thought that uHk(T ) + o(u log σ) bits were necessary for such a connection [Nav04]. This
result leads us to obtain an LZ-index requiring (1 + ε)uHk(T ) + o(u log σ) bits of space,
yet without worst-case guarantees at search time within this space. Building upon the
previous result, we obtain new compressed full-text self-indexes requiring about half the
space of the original LZ-index, (2+ε)uHk(T )+o(u log σ) bits of space, while simultaneously

improving the locating complexity to O(m2

ε + (m + occ) log u + occ
ε ) in the worst case.

Then, we build on these approaches to show how the locating time can be dropped to
O((m+occ) log u) in the worst case, with an index requiring only (3+ε)uHk(T )+o(u log σ)
bits of space, which is about half of the space required by competing schemes achieving
the same time complexity [RO07]. We finally show how to achieve optimal extracting
complexity, by adapting to our indexes a data structure of Grossi and Sadakane [GS06] to
extract text substrings.

As a result we obtain the smallest existing LZ-indexes. Notice that if ε is a constant,
we also achieve the same locating complexity O(m2 + (m + occ) log u) as the KU-LZI
[KU96a, Kär99, NM07], yet ours do not need the text to operate. Our technique has
shown to be useful also to reduce the space of the RO-LZI [RO07], yet they cannot achieve
the smaller overall space requirement that we achieve.

The main results of this chapter have been published in [ANS06, AN07b, ANS08].
In Table 1.1 we show our resulting indexes, compared against the most efficient known
compressed full-text self-indexes.

1.3.3 Space-Efficient Construction of Lempel-Ziv Text Indexes

As we said before, the space-efficient construction of compressed full-text self-indexes
is a very important aspect, regarding the practicality of the indexes. Therefore,
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researchers have focused on this topic, obtaining relevant results [HLS+07, HSS03a, NP07,
MN08b, GN08b]. All these works, however, define space-efficient algorithms to construct
Compressed Suffix Arrays, leaving the problem of the space-efficient construction of LZ-
indexes still open. It has been shown that the space required to build the LZ-index can
be excessive [Nav04], although comparable to that required to build suffix arrays. This is
mainly because, at construction time, a non-space-efficient representation of the tries that
compose the LZ-index is used. Thus, the space-efficient construction of the LZ-index is
highly related to the maintenance of succinct dynamic σ-ary trees (or tries), which was an
open problem posed by Munro et al. [MRS01].

In Chapter 6 we develop a space-efficient algorithm for constructing the LZ-index.
We replace the non-space-efficient intermediate representations of the tries that form the
LZ-index by space-efficient counterparts. Our algorithm for the original LZ-index requires
4uHk(T ) + o(u log σ) bits of space, which is as much space as the final LZ-index needs to
operate. The construction time is O(u(log σ + log log u)) in the worst case, which is an
improvement over the O(σu) time of the preliminary algorithm presented in [AN05] (which
is excessive for large alphabets). Thus, we conclude that wherever the LZ-index can be
used (i.e., it can be held in main memory), we can build it without the need of accessing
secondary storage.

We also show how to adapt this algorithm to build our smaller versions of the LZ-index
described in Section 1.3.2, requiring (1+ ε)uHk(T )+o(u log σ), (2+ ε)uHk(T )+o(u log σ),
and (3 + ε)uHk(T ) + o(u log σ) bits of space.

We present an alternative model to construct the indexes, in which we assume that
the available main memory to carry out the indexing process is smaller than the space
required by the final index. This model has applications in cases where the indexing
process must be carried out in a computer that is not powerful enough to maintain the
whole index in main memory, leaving a more powerful equipment exclusively to answer
user queries. We show that under this model, the LZ-indexes can be constructed within
(1 + ε)uHk(T ) + o(u log σ) bits of space, for any 0 < ε < 1, in O(u(log σ + log log u)) time.
This means that the LZ-indexes can be built within slightly more space than that required
by the compressed text.

Our experimental results show that our indexing algorithm needs in practice
about the same memory as that required by the final LZ-index. We compare our
proposal against existing space-efficient algorithms to construct Compressed Suffix Arrays
[Hon04, HLS+04b]. We find out that our algorithm is much faster than competing schemes:
for example, we are able to construct the LZ-index for the whole Human Genome in
about 5 hours on a 3 GHz CPU, versus 24 hours of Compressed Suffix Arrays and 28
hours of FM-index [Hon04, HLS+04b] (on a 1.7 GHz CPU). This introduces an important
practical result regarding applications to biological research. Under the reduced-memory
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scenario, our experimental results show that the LZ-index for the Human Genome can be
constructed within 1.6 GB of main memory, which is about half of the space required by
the uncompressed genome (assuming the symbols are represented by bytes).

It is important to note that our algorithm can be adapted to construct alternative
LZ-indexes [RO07], and also that by the time of its preliminary introduction [AN05], ours
was the first construction algorithm for a compressed full-text self-index requiring space
proportional to Hk(T ) instead of H0(T ). Nowadays, however, there exists a construction
algorithm for the FM-index requiring space proportional to Hk(T ) [MN08b, GN08b].

The first results of this chapter have been published in [AN05], others are submitted
[AN09]. In Table 1.2 we show a comparison among the best known algorithms for
constructing full-text indexes.

Table 1.2: Comparison of different algorithms for constructing text indexes.

Index Indexing space (in bits) Indexing time

Suffix Arrays (in-place suffix sorting) [FM07] u log u O(u log u)
Suffix Arrays (optimal space) [HSS03a] O(u log σ) (*) O(u log log σ)
Compressed Suffix Arrays [HLS+07] u(H0(T ) + 2 + ε) + o(u log σ) (¶) O(u log u)

Compressed Suffix Arrays [NP07] O(u log σ log
log3 2
σ u) (*) O(u)

Alphabet Friendly FM-index [GN08b] uHk(T ) + o(u log σ) (§) O(u log u(1 + log σ
log log u

))

Original LZ-index (this thesis) 4uHk(T ) + o(u log σ) O(u(log σ + log log u))
This thesis a (1 + ε)uHk(T ) + o(u log σ) (‡) O(u(log σ + log log u))
This thesis b (2 + ε)uHk(T ) + o(u log σ) O(u(log σ + log log u))

This thesis c (3 + ε)uHk(T ) + o(u log σ) O(u log u(1 + log σ
log log u

))

(*) this is o(u log u) bits for log σ = o(log u).
(¶) this is O(u log σ) bits of space, in the worst case.
(§) for any k 6 α logσ u and any constant 0 < α < 1.
(‡) for any 0 < ε < 1 and k = o(logσ u), applies to all LZ-index variants.

1.3.4 A Lempel-Ziv Text Index on Secondary Storage

Although compressed self-indexes are smaller and thus the indexes of larger texts could
be accommodated in main memory, there exists always the need of indexing larger and
larger texts, whose index cannot be maintained in main memory, nor even compressed.
Therefore, we must be able to manage compressed self-indexes on secondary storage. We
aim here to reduce the number of I/Os incurred by secondary-storage devices, since a
smaller index can be potentially read faster.

We propose in Chapter 7 a representation of the LZ-index which can be efficiently
managed on secondary storage. Our idea is to use the studies of previous chapters to
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add some (controlled) redundancy to the index, which shall allow us to exchange many
random disk accesses to index components into (equivalent) local accesses, which is more
adequate for disk memories. The result is a representation of the LZ-index that requires
O(uHk(T )) + o(u log σ) bits of space, but that can be efficiently managed on secondary
storage. Just as for the index of Clark and Munro [CM96], our index does not provide
worst-case guarantees at search time. However, our experimental results show that our
proposal offers an attractive trade-off for text searching on secondary-storage, being the
smallest existing alternative in practice, with a good performance at search time: in some
cases we are able to report up to 600 pattern occurrences per disk access, assuming a disk
page of 32 KB.

From our research we conclude that our LZ-index is very adequate for applications
where it is important to find quickly just a few pattern occurrences, so as to find the
remaining while processing the first ones, or on user demand (think for example of Web
search engines). Our work also shows that compressed indexes are suitable to be used
on secondary storage. The previous result on this line was the Compressed Suffix Array
on disk of Mäkinen et al. [MNS04], which requires the excessive amount of O(log u) disk
accesses per occurrence reported.

The main results of this chapter have been published in [AN07a].
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Chapter 2

Preliminary Concepts and Data
Structures

2.1 Model of Computation

Unless otherwise stated, in most of this thesis we assume the standard word RAM (Random
Access Machine) model of computation [AHU74], in which we can access any memory word
of length w = Θ(log u) in constant time (log x means dlog2 xe in this thesis). Standard
arithmetic and logical operations (like additions, bit-wise operations, etc.) are assumed to
take constant time under this model. We measure the size of our data structures in bits.
At the beginning of each chapter we shall make extra assumptions on the model.

2.2 Tries and some Properties of Strings

We introduce some notation and representation for basic concepts in this thesis: strings
and string sets.

2.2.1 Representing Strings

We model a string S[1..`] over an alphabet Σ = {1, . . . , σ} as a sequence of alphabet
symbols. We say that |S| = ` is the length of string S, and refer to the i-th symbol of S
as si. Given string S = s1 . . . s`, we use:

— S[i..j], for 1 6 i 6 j 6 `, to denote any substring of S.

— S[1..i], for 1 6 i 6 `, to denote any prefix of S. If 1 6 i < `, we say that S[1..i] is a
proper prefix of S.
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— S[j..`], for 1 6 j 6 `, to denote any suffix of S. If 1 < j 6 `, we say that S[j..`] is a
proper suffix of S.

— Sr = s` . . . s1 to denote its reverse string. Moreover, Sr[i..j] will actually mean
(S[i..j])r = sj . . . si.

As every symbol si is represented using log σ bits, string S requires ` log σ bits to be
represented. We use ε to denote the empty string, which is the string containing no
symbols.

2.2.2 Representing Set of Strings

Given a set of strings S, a digital tree, cardinal tree, or simply trie [Knu73] for S is a tree
where every string in S is represented by a node in the tree. Let v be the node representing
string Si ∈ S. This means that the trie edges in the root-to-v path are labeled with the
symbols of Si, in order (every edge is labeled with only one symbol). Notice that all nodes
descending from v in the trie represent strings which have Si as a prefix. The trie root
represents the empty string ε.

Example 2.1. As an example, consider the set of strings S1 =
{a, l, ab, ar, , a , la, a, lab, ard, a p, ara, ap, al, abr, arl, a$}. The corresponding
trie for this set is shown in Fig. 2.1(a). As another example, let us consider the set of
string S2 = {a, l, ba, ra, , a, al, a , bal, dra, p a, ara, pa , la, rba, lra, $a}. The resulting
trie is shown in Fig. 2.1(b). In both cases, nodes representing strings in the set are shown
in gray. We call empty nodes to those nodes not representing any string in the set; these
are shown in black.

It is important to note that a trie representing a set of string S represents a prefix
closure of S, meaning that any prefix of every string in the set is represented by a node in
the trie (the empty string is represented by the trie root). We say that a set of string S is
prefix closed when for every string Si ∈ S, any prefix of Si is also in S. In the same way,
we say that a set of string S is suffix closed when for every string Si ∈ S, any suffix of Si

is also in S.

Example 2.2. The set S1 defined in Example 2.1 is prefix closed, whereas set S2 is not.
This difference can be noted in the tries for these sets: the trie for S2 has empty nodes,
whereas the trie for S1 has not.

If we want to search the set for a given string P , we spell out the symbols of P and
use them to guide the descent in the trie, starting from the root. Let v be the trie node
representing P . Since all the descendants of v have P as a prefix, then we are actually
using the trie to support prefix searches, which we define as follows.
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(a) Trie data structure representing the set of strings S1 =
{a, l, ab, ar, , a , la, a, lab, ard, a p, ara, ap, al, abr, arl, a$}.
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(b) Trie data structure representing the set of strings S2 =
{a, l, ba, ra, , a, al, a , bal, dra, p a, ara, pa , la, rba, lra, $a}.

Figure 2.1: Trie data structures for different set of strings. Preorder (or depth-first) numbers
are shown outside each node.

Definition 2.1. Given a set of strings S = {S1, . . . , SN}, the prefix search problem consists
of finding all the strings Si ∈ S such that Si has a given string P [1..m] as a prefix.

We introduce next some traditional (pointer-based) trie representations, assuming
that n is the total number of trie nodes:

(1) The first one consists in storing, for each trie node, an array of size σ with pointers
to its children (the i-th pointer points to the child corresponding to the i-th alphabet
symbol, or null if such a child does not exist). This allows us to descend to any child
in constant time. However the space requirement of this representation is O(σn log n)
bits. This can be excessive in cases where the average number of children of a node is
much smaller than σ, which is usual in practice (except, perhaps, for small alphabets).

(2) Another alternative is to use a linked list in each node, storing the pointers to children
(along with the corresponding symbol by which every child descends). This requires
O(n log n) bits of storage, yet finding a given child now takes O(σ) worst-case time.
Instead, we can store these pointers in an array, requiring asymptotically the same
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space, yet allowing to find a given child in O(log σ) worst-case time (by binary-
searching the symbols labeling the children). However, adding a new child under
this scheme can be costly. Finally, we can use a balanced binary search tree (sorted
by the symbols), supporting to search for any child in O(log σ) time, as well as
supporting efficient trie updates.

(3) Finally, we can use perfect hashing to store the children of a node, achieving O(1)
worst-case time to find a given child, and requiring O(n log n) bits of space [Ram96].
The construction takes O(n) expected time if we use the classical randomized result
by Fredman et al. [FKS84, CLRS01]. In the worst case, we have that the n trie edges
distribute over Θ(n/σ) nodes, so these nodes have Θ(σ) children. Thus, the cost is
O(σ2) per node in the worst case, which is O(σn) overall when added over those
Θ(n/sigma) nodes.

In order to reduce the number of nodes in the trie representation of a set of strings, one
can compress the empty unary paths (i.e., the non-branching paths) in the trie. Now, the
edges are conceptually labeled with strings (formed by the concatenation of the symbols in
the compressed path), rather than with single symbols. To avoid storing the whole strings
labeling the edges, one stores only the first symbol and a number (which is called the skip
value) indicating how many symbols to skip in the search string P in order to descend to
a child node. This trie representation is known as Patricia tree [Mor68]. It is important
to note that all internal nodes in a Patricia tree have degree at least 2. Also, the leaves
always correspond to a string in the set we are representing. Then, it can be easily proved
that the total number of nodes in a Patricia tree is at most 2N .

2.2.3 Some Properties of Strings and Tries

Given an ordered alphabet Σ, the lexicographic order on Σ∗ is defined by x 6 y if and only
if either string x is a prefix of string y or x = uav and y = ubw, with a, b ∈ Σ, a < b, and
u, v,w ∈ Σ∗. Thus, given a set of strings S, it can be lexicographically sorted. We remind
that, in lexicographic order, for any strings x, y ∈ Σ∗ and symbols a, b ∈ Σ, the following
properties hold:

(1) ε 6 x;

(2) ax 6 by if a < b; and

(3) ax 6 ay if x 6 y.

Moreover, if the set is arranged in a trie data structure, then all the strings represented
in a subtree form a lexicographical interval of the universe. If we number the non-empty
nodes of a trie in preorder, then the subtree of a node forms a preorder interval.
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Example 2.3. In the tries of Fig. 2.1 we show preorder numbers (i.e., lexicographic rank
of the corresponding strings) outside each trie node (we only count non-empty nodes in
the enumeration). In the trie of Fig. 2.1(a), the preorder interval [1..11] corresponds to all
strings in the set S1 that start with ‘a’, and the preorder interval [6..9] corresponds to all
strings in S1 that start with ‘ar’.

2.3 Classical Indexes for Full-Text Searching

We review in this section the classical indexes for full-text searching, namely suffix trees
and suffix arrays. Given a text T over an alphabet Σ, we assume that a special end-of-
string symbol ‘$’ 6∈ Σ is appended to T . We assume that symbol ‘$’ is smaller than any
other symbol in the alphabet.

2.3.1 Suffix Trees

The suffix tree [Wei73, McC76, Apo85] of a text T [1..u], denoted by STT , is one of the
most known and elegant data structures in the algorithmic literature. It allows us, among
many other applications, to search for a given pattern P [1..m] based on a simple idea:
every occurrence of P in T is the prefix of some suffix of T . Thus, we represent all the text
suffixes in a data structure supporting prefix searches, for instance a trie. If we carry out
a prefix search with P on this trie, we get the set of text suffixes that have P as a prefix,
thus finding all the occurrences of P in T . This trie is called the suffix trie of T .

To get STT we prune the trie at a node as soon as there is only a unary path from the
node to a leaf. We store in that leaf a pointer to the text position where the corresponding
suffix starts. Moreover, every unary path in the trie is converted into a single edge, in
the same way as in a Patricia tree, which is conceptually labeled with the substring that
represents the replaced path. Thus, STT has O(u) nodes [Mor68, Apo85], because we are
representing u text suffixes in a Patricia tree. The edge labels are actually represented by
storing the starting position in the text for the edge label, plus the length of the label.
To descend in STT we have to access the text at the corresponding position and compare
these symbols against that of the pattern we are looking for.

To search for the occ occurrences of a pattern P in T , we descend in STT using the
symbols of P , up to:

(1) reaching a node v representing P ; or

(2) we reach a leaf without consuming all of P .

If at some node we cannot descend anymore, we know that the pattern does not occur in
T . For case (1), this takes O(m) time. For counting the number of occurrences, we must
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count the number of leaves within the subtree of node v. This can be done in constant
time if we also store the subtree size of each node. For locating the text positions of the
occurrences, we traverse the subtree of v, for example in preorder, and report the values
stored in the leaves of this subtree. Notice that since this subtree has occ leaves and we
are compressing unary paths, this subtree has O(occ) nodes. Thus, the overall search time
is optimal O(m + occ). For case (2), we are sure that there is at most one occurrence of P
in T . Then, we use the leaf to access the corresponding text position, and compare with
the pattern (to determine whether it exists in T or not).

2.3.2 Suffix Arrays

The suffix array [MM93, GBYS92] of a text T [1..u], denoted by SAT [1..u], is a
lexicographically sorted array of the text suffixes. Given i, SAT [i] stores the starting
text position for the i-th suffix in the lexicographic order. Suffix arrays are one of the
most used data structures in practice for full-text searching. A suffix array requires u log u
bits of space if no auxiliary data structure is used [MM93], which is typically 4 times the
size of the text (assuming that text symbols are implemented in 1 byte, while integers
require 4 bytes)

In such a case, given a pattern P [1..m] we are capable to find the suffix-array interval
[i1, i2] containing the starting positions of the pattern occurrences in O(m log u) time,
by binary searching SAT (as it is sorted). This corresponds to counting the pattern
occurrences, as the size of the interval equals the number of occurrences. To find the
starting positions, we traverse the interval [i1, i2] and report the positions stored in it, in
O(1) time per occurrence, resulting in the total search time of O(m log u + occ).

Example 2.4. In Fig. 2.2 we show the suffix array for our running example text,
T =“alabar a la alabarda para apalabrarla”, where for clarity we replace blanks by
‘ ’, which is assumed to be lexicographically larger than any other symbol in the alphabet.
We also show the corresponding (cyclically shifted) text suffix in each case. If we search,
for example, for the pattern ‘ala’, we will get the interval [6..8] in the suffix array (we
underline the prefix ‘ala’ of the corresponding suffixes).

Property 2.1. Given a suffix starting at position SAT [i] in T , its longest proper suffix
has position SAT [i] + 1 in T .

Notice that SAT is a permutation, and that SA−1
T denotes its inverse permutation.

Property 2.2. Given a suffix starting at position j of the text, its lexicographic rank
among all suffixes is SA−1

T [j].
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i SAT [i] suffix (cyclically shifted) btw(T ) Ψ[i]

1 38 $alabar a la alabarda para apalabrarla a 7
2 37 a$alabar a la alabarda para apalabrarl l 1
3 15 abarda para apalabrarla$alabar a la al l 18
4 3 abar a la alabarda para apalabrarla$al l 19
5 31 abrarla$alabar a la alabarda para apal l 20
6 13 alabarda para apalabrarla$alabar a la 23
7 1 alabar a la alabarda para apalabrarla$ $ 24
8 29 alabrarla$alabar a la alabarda para ap p 25
9 27 apalabrarla$alabar a la alabarda para 27
10 23 ara apalabrarla$alabar a la alabarda p p 30
11 17 arda para apalabrarla$alabar a la alab b 31
12 34 arla$alabar a la alabarda para apalabr r 32
13 5 ar a la alabarda para apalabrarla$alab b 33
14 11 a alabarda para apalabrarla$alabar a l l 34
15 25 a apalabrarla$alabar a la alabarda par r 35
16 8 a la alabarda para apalabrarla$alabar 37
17 20 a para apalabrarla$alabar a la alabard d 38
18 16 barda para apalabrarla$alabar a la ala a 11
19 4 bar a la alabarda para apalabrarla$ala a 13
20 32 brarla$alabar a la alabarda para apala a 29
21 19 da para apalabrarla$alabar a la alabar r 17
22 36 la$alabar a la alabarda para apalabrar r 2
23 14 labarda para apalabrarla$alabar a la a a 3
24 2 labar a la alabarda para apalabrarla$a a 4
25 30 labrarla$alabar a la alabarda para apa a 5
26 10 la alabarda para apalabrarla$alabar a 14
27 28 palabrarla$alabar a la alabarda para a a 8
28 22 para apalabrarla$alabar a la alabarda 10
29 33 rarla$alabar a la alabarda para apalab b 12
30 24 ra apalabrarla$alabar a la alabarda pa a 15
31 18 rda para apalabrarla$alabar a la alaba a 21
32 35 rla$alabar a la alabarda para apalabra a 22
33 6 r a la alabarda para apalabrarla$alaba a 36
34 12 alabarda para apalabrarla$alabar a la a 6
35 26 apalabrarla$alabar a la alabarda para a 9
36 7 a la alabarda para apalabrarla$alabar r 16
37 9 la alabarda para apalabrarla$alabar a a 26
38 21 para apalabrarla$alabar a la alabarda a 28

Figure 2.2: Suffix array SAT for the running example text. The text suffix indexed in each row
is shaded. We also show two concepts related to suffix arrays: the Burrows-Wheeler Transform

and the Ψ function of Compressed Suffix Arrays.
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2.4 Text Compression

Text compression is a technique used to represent a text using less space, taking advantage
of the regularities of non-random texts. It has two main advantages [BCW90]:

Advantage 1: It reduces the space requirement of the text, and

Advantage 2: It reduces the cost and increases the effective speed of text transmission,
both between computers in a network and from secondary to main memory (where
a compressed text is read/transferred faster than its uncompressed form).

The main disadvantage of compression is that processing time is increased, as we have
to uncompress (a part of) the text in order to process it. Yet, the number of accesses
to secondary memory are reduced (that is, there is a trade-off between CPU time and
secondary memory accesses). More and more, it is advantageous to pay more CPU time
for less I/O.

A concept related to text compression, and that we shall use in this thesis to model
the compressibility of a text, is that of the k-th order empirical entropy of a sequence
of symbols T over an alphabet of size σ, denoted by Hk(T ) [Man01]. The value uHk(T )
provides a lower bound to the number of bits needed to compress T using any compressor
that encodes each symbol considering only the context of k symbols that precedes it in T .
Formally, we have:

Definition 2.2. Given a text T [1..u] over an alphabet Σ, the zero-order empirical entropy
of T is defined as

H0(T ) =
∑

c∈Σ

nc

u
log

u

nc

where nc is the number of occurrences of symbol c in T . The sum includes only those
symbols c that do occur in T , so that nc > 0.

Definition 2.3. Given a text T [1..u] over an alphabet Σ, the k-th order empirical entropy
of T is defined as

Hk(T ) =
∑

s∈Σk

|T s|
u

H0(T
s)

where T s is the subsequence of T formed by all the symbols that occur preceded by the
context s. Again, we consider only contexts s that do occur in T .

Property 2.3. Given a text T over an alphabet of size σ, it holds that 0 6 Hk(T ) 6

Hk−1(T ) 6 · · · 6 H0(T ) 6 log σ, for any k > 0.

This means that with longer contexts we get more compression. We remember now
some bounds on the zero-order entropy of a binary string.
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Property 2.4. Let B[1..u] be a binary string of length u, with n 6 u bits set. Then:

(1) log
(u
n

)

6 uH0(B) 6 log
(u
n

)

+ O(log n).

(2) n log u
n 6 uH0(B) 6 n log u

n + n log e.

Next we review two known techniques for text compression, which allow for indexed
text searching: LZ78 Compression [ZL78] and the Burrows-Wheeler transform [BW94].
We also introduce the first concepts about searching in compressed texts.

2.4.1 Lempel-Ziv Compression

The general idea of Lempel-Ziv compression is to replace substrings in the text by a pointer
to a previous occurrence of them [LZ76]. We obtain compression whenever the pointer
requires less space than the string it is replacing. There exist different variants based
on this type of compression [ZL77, ZL78, BCW90], yet we are particularly interested in
the LZ78 format, mainly because LZ78 is the base of many practical compression tools,
and because its properties make it more amenable for full-text searching [NR04] and full-
text self-indexing (for example, the fast extraction of text substrings, a very important
aspect for full-text self-indexes). Another interesting choice could be to focus on the LZ77
compression algorithm. However, using this for self-indexing is still full of challenges and
problems that need to be solved (as for example, the fast extraction of text substrings).
However, our results can also be applied to, for instance, the LZW compression algorithm
[Wel84], since this is just a coding variant of LZ78. LZW is commonly used in practice,
for example by Unix’s compress tool.

The Lempel-Ziv compression algorithm of 1978 (usually named LZ78 [ZL78]) is based
on a dictionary of phrases, in which we add every new phrase computed. At the beginning
of the compression, the dictionary contains a single phrase b0 of length 0 (i.e., the empty
string). The current step of the compression is as follows: If we assume that a prefix
T [1..j] of T has been already compressed into a sequence of phrases Z = b1 . . . br, all of
them in the dictionary, then we look for the longest prefix of the rest of the text T [j +1..u]
which is a phrase of the dictionary. Once we have found this phrase, say bs of length `s, we
construct a new phrase br+1 = (s, T [j+`s +1]), write the pair at the end of the compressed
file Z, that is, Z = b1 . . . brbr+1, and add the phrase to the dictionary.

We will call Bi the string represented by phrase bi, thus Br+1 = BsT [j+`s+1]. Then,
the LZ78 algorithm compresses the text T into a set of n + 1 phrases B0, . . . , Bn, such
that T = B0 . . . Bn, and B0 = ε (the empty string). We say that i is the phrase identifier
corresponding to Bi, for 0 6 i 6 n.

Property 2.5. For all 1 6 t 6 n, there exists ` < t and c ∈ Σ such that Bt = B` · c.
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That is, every phrase Bt (except B0) is formed by a previous phrase B` plus a symbol
c at the end. This implies that the set of phrases is prefix closed, meaning that any prefix of
a phrase Bt is also an element of the dictionary. Therefore, an alternative way to represent
the set of strings B0, . . . , Bn is a trie, which we call the LZTrie.

Property 2.6. Every phrase Bi, 0 6 i < n, represents a different text substring.

The only exception to this property is the last phrase Bn. We deal with the exception
by appending to T a special symbol ‘$’ 6∈ Σ, assumed to be smaller than any other symbol
in the alphabet. The last phrase will contain this symbol and thus will be unique too.

Example 2.5. In Fig. 2.3(a) we show the LZ78 phrase decomposition for our running
example text. We show the phrase identifiers above each corresponding phrase in the
parsing. In Fig. 2.3(c) we show the corresponding LZTrie. Inside each LZTrie node we
show the corresponding phrase identifier.

Definition 2.4. Let br = (r1, c1), br1 = (r2, c2), br2 = (r3, c3), and so on until rk = 0 be
phrases of the LZ78 parsing of T . The sequence of phrase identifiers r, r1, r2, . . . is called
the referencing chain starting at phrase r.

The referencing chain starting at phrase r reproduces the way phrase br is formed from
previous phrases and it is obtained by successively moving to the parent in the LZTrie.
This concept will be useful in order to get the text corresponding to a given phrase.

Example 2.6. For example, the referencing chain of phrase 9 in Fig. 2.3(c) is r = 9,
r1 = 7, r2 = 2, and r3 = 0.

Alternative Encodings of the LZ78 Parsing. We study here two alternative encodings
for the LZ78 parsing of text T :

Variant 1. The LZ78 phrases are represented by using two arrays, S[1..n] of n log σ bits
and A[1..n] of n log n bits. If Bi = Bj · c is a phrase in the LZ78 parsing of T , then we
represent the i-th phrase by storing the reference A[i] ← j and the symbol S[i] ← c. If a
phrase is composed just by a single symbol, then we store a value 0 in the corresponding
position of A. This representation requires n(log n + log σ) bits of space. See Fig. 2.3(b)
for an illustration of variant 1.

For the decompression, to compute the string Bi corresponding to the i-th LZ78
phrase we must follow the referencing chain for the phrase, obtaining the symbols that
compose Bi and stopping the procedure as soon as we get a 0 in A. This procedure takes
O(|Bi|) time.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a l ab ar a la a lab ard a p ara ap al abr arl a$
(a) LZ78 phrase decomposition for the running example text T =
“alabar a la alabarda para apalabrarla′′, and the corresponding phrase
identifiers.

phrase id. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A 0 0 1 1 0 1 2 5 7 4 4 4 8 1 3 4 1
S a l b r a a b d l a p l r l $

(b) Array representation for the LZ78 parsing of the running-example text.
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(c) Lempel-Ziv Trie (LZTrie) for the running example. Preorder numbers are
shown outside each node.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node[i] 1© 12© 3© 6© 15© 10© 13© 16© 14© 8© 11© 7© 17© 5© 4© 9© 2©
(d) Node data structure for the running example. The notation j©
represents a pointer to the LZTrie node with preorder j.

Figure 2.3: LZ78 parsing and the corresponding LZTrie for our running example text.
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We can uncompress the whole text (and in fact any set of phrases) by extracting
B1, B2, and so on, in O(u) overall time. However, this representation does not support
quickly finding the longest prefix of the rest of the text that matches a phrase already in
the dictionary, and thus it does not support the efficient construction of the LZ78 parsing.

Variant 2. We represent the set of LZ78 phrases with the LZTrie, plus a mapping
Node[1..n] such that Node[i] stores the LZTrie node corresponding to phrase Bi. The
LZTrie requires n log σ bits of space to represent the symbols labeling the trie, plus the
space needed to represent the trie topology, which is 2n + o(n) bits if we use a succinct
encoding [MR01, BDM+05] (see Section 2.5.2 of this thesis for a review of succinct
encodings of trees). The space used by Node is basically n log n bits if we store the
preorders of the nodes (many succinct encodings of trees allows one to retrieve a node
given its preorder, see Section 2.5.2). Thus, the space requirement of this representation
is basically n(log n + log σ + 2) bits.

Example 2.7. See Fig. 2.3(c) and Fig. 2.3(d) for an illustration of LZTrie and Node data
structures respectively.

To extract a given phrase Bi, we first access to node Node[i] in LZTrie, and then
extract the symbols labeling the upward path, by going to the parent until reaching the
trie root. Once again, many succinct-tree encodings support going to the parent of a node
in constant time, while still requiring little space. So this procedure takes O(|Bi|) time.

As for Variant 1, we can uncompress the whole text by extracting B1, B2, and so on,
in O(u) time overall. The compression algorithm takes also O(u) time and it is efficient in
practice provided we use the LZTrie for the construction, which allows rapid searching of
the new text prefix (for each symbol of T we move once in the trie).

Thus, both representations require basically n(log n+log σ) bits of space to represent
the output of the LZ78 compression algorithm. In our work, however, we shall use Variant
2, since the LZTrie allows for search capabilities on the compressed text. Moreover, Grossi
and Sadakane [GS06] use this representation to support extracting ` arbitrary contiguous
symbols of T in optimal O( `

logσ u) time (compare this against the O(`) time of the method

in Variant 2).

Some Properties of the LZ78 Parsing. We review here some key properties of the
LZ78 parsing of a text T .

Property 2.7 ([ZL78]). It holds that
√

u 6 n 6
u

logσ u . Thus, log n = Θ(log u) and
n log u 6 u log σ always hold.
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For strings T [1..u] generated from a stationary ergodic source (i.e., a model where an
indefinitely long string is a representative of the entire source [WMB99]), we have that the
ratio n log n

u achieved by the LZ78 parsing tends to H, the entropy of the source [BCW90].
Since the LZ78 representation of T uses basically n(log n+log σ) bits of space (as we have
seen before), the compression ratio of LZ78 is asymptotically optimal, since the n log n
term dominates.

Thus, LZ78 is able to compress an indefinitely long string within the optimal
space, according to the entropy model. This differentiates LZ78 compression from many
other compression techniques not achieving this important property [BCW90]. However,
optimality is achieved when u→∞. It is well known that LZ78 converges to the optimal
very slowly as the text length grows. Despite of this, LZ78 has a reasonable performance
in practice (for instance, the well-known compress compressor is based on LZ78), and its
nice combinatorial properties lead to effective indexing approaches [Kär99, Nav04].

We shall use the following result of Kosaraju and Manzini [KM99] to bound the
output of the LZ78 parsing of text T in terms of the k-th order empirical entropy of T .
The extra big-oh space term reflects, for finite texts, the slow asymptotic convergence.

Lemma 2.1 ([KM99]). It holds that n log n = uHk(T ) + O(u1+k log σ
logσ u ) for any k.

In our work we assume k = o(logσ u) (and hence log σ = o(log u) to allow for k > 0,
i.e., high-order compression); so that, n log n = uHk(T ) + o(u log σ).

By using Property 2.4, we can prove the following:

Lemma 2.2. Let T [1..u] be a text over an alphabet of size σ, and let n be the number of
phrases in the LZ78 parsing of T . Let B[1..u] be a binary string of length u and n bits set.
Then, it holds that nH0(B) = o(u log σ).

Proof. Because of Property 2.4 (2) we have that uH0(B) 6 n log u
n + n log e. Since log u

n
grows with n and since n 6

u
logσ u (Property 2.7), replacing n by u

logσ u yields n log u
n +

n log e 6
u

logσ u(log logσ u + log e), which is o(u log σ).

We can also prove the following result, which is related to Lemma 2.1 and will be
useful throughout our work.

Lemma 2.3. It holds that n log u = uHk(T ) + o(u log σ) for any k = o(logσ u).

Proof. Note that n log u = n log n+n log u
n . As shown in the proof of Lemma 2.2, n log u

n =
o(u log σ). On the other hand, because of Lemma 2.1 we have that n log n = uHk(T ) +
o(u log σ) for any k = o(logσ u). Overall, we have that n log u = uHk(T ) + o(u log σ) for
any k = o(logσ u).
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2.4.2 The Burrows-Wheeler Transform, the Backward-Search Concept, and
the Ψ Function

The Burrows-Wheeler Transform. The Burrows-Wheeler Transform [BW94] of a text
T (bwt(T ) for short) produces a permutation of the text which is easier to compress than
the original text. To compute the transform, after appending the special symbol ‘$’ to T ,
we construct the conceptual matrix M whose rows are the lexicographically-sorted cyclic
shifts of T$, and finally take the last column of M as the bwt(T ). This is a reversible
transform, as we can recover the original text from bwt(T ).

Example 2.8. In Fig. 2.2 we show the Burrows-Wheeler transform for our running
example text.

As it can be noted in Fig. 2.2, there is a close relation between suffix arrays and the
Burrows-Wheeler transform: as every row in M corresponds to a text suffix, and since rows
are lexicographically sorted1, if we associate to each row the starting position of the suffix
what we get is the suffix array of T . Also, note that the last column of M (i.e., bwt(T )) is
the symbol preceding each suffix of T , that is, T [SAT [i]− 1] (assuming T [0] = T [u]).

The Backward Search Concept. Given the close relation between suffix arrays and
the bwt(T ), Ferragina and Manzini [FM05] define the concept of backward search, which
consists of looking for the suffix array interval containing the pattern occurrences just
using the bwt(T ). Given a pattern P = p1 . . . pm, for pi ∈ Σ, the search proceeds in O(m)
steps: in the first step, we find the suffix array interval for the occurrences of pm; in the
second step, using the result of the previous step, we find the interval corresponding to
pm−1pm and so on, to finally find the suffix array interval for the whole pattern p1 . . . pm.

Example 2.9. For instance, if we search for the pattern ‘bar’ in our example of Fig. 2.2,
we first find the interval for the occurrences of ‘r’, which is [29..33], then the interval
[10..13] for the occurrences of ‘ar’, to finally find the interval [18..19] corresponding to the
occurrences of ‘bar’.

The first realization of the backward-search concept was the FM-index [FM05], yet its
use is appropriate only for texts on small alphabets (e.g., constant-size alphabets) because
of an exponential dependence on σ in the space requirement. A further improvement
on this line is the Alphabet-Friendly FM-index (AF-FMI) [FMMN07], which avoids these
alphabet dependencies and requires uHk(T ) + o(u log σ) bits of space. In this index, each
step of the backward search takes O(1 + log σ

log log u) time, and thus the counting time is

O(m(1+ log σ
log log u)), which is O(m) time whenever σ = O(polylog(u)) holds. It supports the

location of the pattern occurrences in O(log1+ε u) time per occurrence, provided it stores

1Because of the unique terminator ‘$’, sorting the rows is the same as sorting the suffixes.
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a sampling of the suffix array requiring o(u log σ) extra bits of space. Although requiring
“sublinear” space, this extra information stored is not compressible at all, as it consists of
a sampling of raw suffix-array positions. For instance, to achieve the previous locate time

a sampling step of log1+ε u
log σ must be used [FGNV08]. By using the same samplig step, the

time to extract any string of length ` is O(log1+ε u + `(1 + log σ
log log u)).

The Ψ Function and Compressed Suffix Arrays. Another concept related to suffix
arrays is that of function Ψ [GV05], which also allows us to compress the suffix array. This
function is defined as Ψ[i] = SA−1

T [SAT [i] + 1], for i = 2, . . . , u, and Ψ[1] = SA−1
T [1]. In

other words, Ψ[i] stores the suffix array position (i.e., lexicographic rank) of the longest
proper suffix of SAT [i], and hence it can be seen as a suffix link for SAT [i] [Ukk95].

A naive way to represent Ψ requires u log u bits of space, the same as the suffix array
itself. However, it can be shown that Ψ can be divided into σ strictly increasing sequences:
for every i < j, if T [SAT [i]] = T [SAT [j]] holds, then Ψ[i] < Ψ[j].

Thus, Ψ can be represented in the following way in order to require uH0(T )+o(u log σ)
bits of space [Sad03]: rather than storing Ψ[i], store the δ-code [Eli75] of the differences
Ψ[i]−Ψ[i− 1] if T [SAT [i]] = T [SAT [j]]. Otherwise store the δ-code of Ψ[i].

In order to access Ψ[i] in constant time, absolute Ψ values are inserted every Θ(log u)
bits, which adds O(u) bits. To extract an arbitrary position of Ψ, we go to the nearest
absolute sample before that position and then sequentially advance summing up differences
until reaching the desired position. By maintaining a precomputed table with the total
number of differences encoded inside every possible chunk of log u

2 bits, we can process
each such chunk in constant time, so the Θ(log u) bits of differences can be processed in
constant time. The size of that table is only O(

√
u log2 u) = o(u) bits. See [Sad03] for

further details.

Example 2.10. In Fig. 2.2 we show Ψ for the running example. We divide the rows of
the suffix array to separate suffixes starting with the same symbol. Notice the strictly
increasing runs of Ψ within these intervals.

2.5 Succinct Data Structures

A succinct data structure requires space close to the information-theoretic lower bound,
while supporting the corresponding operations efficiently. In this section and the next, we
review some results on succinct data structures, which are necessary to understand our
work.
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2.5.1 Data Structures for Sequences, Permutations, and Range Searching

Data Structures for Rank and Select. Given a bit vector B[1..n], we define the
operation rank0(B, i) (similarly rank1) as the number of 0s (1s) occurring up to the i-th
position of B. The operation select0(B, i) (similarly select1) is defined as the position of
the i-th 0 (i-th 1) in B. We assume that select0(B, 0) always equals 0 (similarly for select1).
We also define operation access(B, i), which yields the value B[i]. These operations can
be supported in constant time and requiring n+ o(n) bits [Mun96], or even nH0(B)+ o(n)
bits [RRR02].

Lemma 2.4. Let B[1..n] denote a binary sequence, then:

(1 ) There exists a representation [Mun96] that requires n + o(n) bits of space and
supports operations rank, select, and access on B in constant time.

(2 ) There exists a representation [RRR02] that requires nH0(B) + o(n) bits of space
and supports operations rank, select, and access on B in constant time.

There exist a number of practical data structures supporting rank and select, like the
one by González et al. [GGMN05], Kim et al. [KNKP05], Okanohara and Sadakane [OS07],
Claude and Navarro [CN08b], etc. Among these, the index of González et al. [GGMN05] is
very (perhaps the most) efficient in practice to compute rank, requiring little space on top
of the sequence itself. Operation select is implemented by binary searching the directory
built for operation rank, and thus without requiring any extra space for that operation
(yet, the time for select becomes O(log n)).

Given a sequence S[1..n] over an alphabet Σ = {1, . . . , σ}, we generalize the above
definition for rankc(S, i) and selectc(S, i) for any c ∈ Σ. If σ = O(polylog(n)), the
solution of Ferragina at al. [FMMN07] allows one to compute both rankc and selectc,
as well as accessing to S[i] for any i, in constant time and requiring nH0(S) + o(n) bits
of space. Otherwise the time is O( log σ

log log n) and the space is nH0(S) + o(n log σ) bits. The
representation of Golynski et al. [GMR06] requires n(log σ + o(log σ)) = O(n log σ) bits of
space [BHMR07], allowing us to compute selectc in O(1) time, and rankc and access to
S[i] in O(log log σ) time.

Lemma 2.5. Let S[1..n] denote a sequence over an alphabet Σ of size σ, then

(1 ) There exists a representation [FMMN07] that requires nH0(S) + o(n log σ) bits
of space and supports operations rankc and selectc on S, for any c ∈ Σ, as well as
access to any S[i], in O( log σ

log log n) time.

(2 ) There exists a representation [GMR06] that requires O(n log σ) bits of space and
supports operations rankc and access to any S[i] in O(log log σ) time, and selectc on
S in constant time, for any c ∈ Σ.
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Data Structures for Searchable Partial Sums. Given an array A[1..n] of n integers
of k′ bits each, a data structure for searchable partial sums allows one to retrieve A[i] and
supports operations:

— Sum(A, i), which computes
∑i

j=1 A[j];

— Search(A, i), which finds the smallest j′ such that Sum(A, j′) > i;

— Update(A, i, δ), which sets A[i]← A[i] + δ;

— Insert(A, i, e), which adds a new element e to the set between elements A[i− 1] and
A[i]; and

— Delete(A, j), which deletes element A[j].

The data structure of [MN08b] supports all these operations in O(log n) worst-case
time, and requires nk′ + o(nk′) bits of space. It is interesting to note that the space can
be made nk′ + O(n) bits, see [MN08b] for details.

Lemma 2.6 ([MN08b]). There exists a representation for a sequence of n integers of
k′ bits each, requiring nk′ + O(n) bits of space and supporting operations Sum, Search,
Update, Insert, and Delete, all of them in O(log n) worst-case time.

Succinct Representation of Permutations. The problem here is to represent a
permutation π of [n] = {1, . . . , n}, such that we can compute both π(i) and its inverse
π−1(j) in constant time and using as little space as possible. A natural representation for π
is to store the values π(i), i = 1, . . . , n, in an array of n log n bits. The brute-force solution
to the problem computes π−1(j) by looking for j sequentially in the array representing π.
If j is stored at position i, that is, π(i) = j, then π−1(j) = i. Although this solution does
not require any extra space to compute π−1, it takes O(n) time in the worst case.

A much more efficient solution is based on the cycle notation of a permutation. The
cycle for the i-th element of π is formed by elements i, π(i), π(π(i)), and so on until the
value i is found again. It is important to note that every element occurs in one and only
one cycle of π.

Example 2.11. For example, the cycle notation for permutation ids of Fig. 2.4(a) is
shown in Fig. 2.4(b).

So, to compute π−1(j), instead of looking sequentially for j in π, we only need to look
for j in its cycle: π−1(j) is just the value “pointing” to j in the diagram of Fig. 2.4(b).

Example 2.12. To compute ids−1(13), we start at position 13, then move to position
ids(13) = 7, then to position ids(7) = 12, then to ids(12) = 2, then to ids(2) = 17, and as
ids(17) = 13 we conclude that ids−1(13) = 17.
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The only problem here is that there are no bounds for the size of a cycle, hence this
algorithm takes also O(n) in the worst case. However, it can be improved for a more
efficient computation of π−1(j).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ids[i] 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13
(a) An example of permutation ids.

2 17 13 7 12 4 15 5 14 9 16 8 10 6 1131

(b) Cycle notation of permutation ids.

Figure 2.4: Cycle representation of a permutation. Each solid arrow i → j in the diagram
means ids(i) = j. Dashed arrows represent backward pointers.

Given 0 < ε < 1, we create subcycles of size O(1/ε) by adding a backward pointer
out of O(1/ε) elements in each cycle of π. Dashed arrows in Fig. 2.4(b) show backward
pointers for 1/ε = 2.

Example 2.13. Now, to compute ids−1(17), we first move to ids(17) = 13; as 13 has a
backward pointer we follow it and hence we move to position 2. Then, as ids(2) = 17 we
conclude that ids−1(17) = 2, in O(1/ε) worst-case time.

We store the backward pointers compactly in an array of εn log n bits. We mark the
elements having a backward pointer by using a bit vector supporting rank queries, which
also help us to find the backward pointer corresponding to a given element (see [MRRR03]
for details). Overall, this solution requires (1 + ε)n log n + n + o(n) bits of storage if we
use the data structure of Lemma 2.4 (1) to support operation rank.

Lemma 2.7 ([MRRR03]). There exists a representation for a permutation π of [n] that
requires (1 + ε)n log n + n + o(n) bits of space, for any 0 < ε < 1, and supports the
computation of π(i) in O(1) time, as well as the inverse permutation π−1(j) in O(1/ε)
time.

Next we present a result which shall be useful later for our purposes of constructing
the LZ-index for a text T . This states that any permutation π can be inverted in-place in
linear time and using only n extra bits of space. This can be seen as a particular case of
rearranging a permutation [FMP95], where we are given an array and a permutation, and
want to rearrange the array according to the permutation.
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Lemma 2.8. Given a permutation π of {1, . . . , n} represented by an array using n log n
bits of space, we can compute on the same array the inverse permutation π−1 in O(n) time
and requiring n bits of extra space.

Proof. Let Aπ[1..n] be an auxiliary bit vector requiring n bits of storage, which is initialized
with all zeros (this is just the raw bit vector, no additional data structure for rank and
select is added). Let π be the array representing the permutation, using n log n bits of
space. The idea to construct π−1 is to use the cycle structure of π to reverse the “arrows”
that form the cycles (i.e., “i → j” in a cycle of π, which means π[i] = j, now becomes
“i ← j”, which means π−1[j] = i). So, the main idea is to regard the cycles of π as
“linked lists”. Thus, constructing π−1 is a matter of reversing the pointers in the lists,
and therefore we shall need three auxiliary pointers to do that job. We follow the cycles
of π, using Aπ to mark with a 1 those positions which have been already visited during
this process.

We start with the cycle at position a ← 1, and traverse it from position p ← π[a].
We then set b← π[p], π[p]← a (i.e., we store the position a which brings us to the current
one), and Aπ[p]← 1. Then we move to position a← p, set p← b, and repeat the process
again, stopping as soon as we find a 1 in Aπ, where p has value 1. Then we try with the
cycle starting at position p + 1, which is the next one after the position that started the
previous cycle, and follow it if the corresponding bit in Aπ is 0. Otherwise we try with
p + 2, p + 3, until we traverse the whole array.

Thus, each element in the permutation is visited twice: elements starting a cycle are
visited at the beginning and at the end of the cycle, while elements in the middle of a
cycle are visited when traversing the cycle to which they belong, and when trying to start
a cycle from them. Thus, the overall time is O(n), we use n extra bits on top of the space
of π, and the lemma follows.

Succinct Representation for Two-Dimensional Range Searching. Orthogonal
Range Searching is a classical problem in Computational Geometry [Mat94, AE99], with a
vast number of applications [dBCvKO08]. In the two-dimensional case, we are given a set
U of n points in the plane, and want to find those points which lie within a given query
range [i1..i2]× [j1..j2]. We are particularly interested in the case where the search space is
a two-dimensional grid [1..n]× [1..n], and the points in U have integer coordinates within
this grid [Ove88].

Kärkkäinen [Kär99] showed the relation between range searching and compressed text
searching, which is intensively used by Lempel-Ziv compressed indexes [KU96a, FM05,
Nav04, RO07], among many others [HMR05, CHSV08].

We describe here a data structure by Chazelle [Cha88, Kär99], since it can be
represented succinctly [MN07]. We assume first that the points represent a permutation
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of {1, . . . , n}, i.e., no two points share the same coordinate. Moreover, there is a point
with first coordinate i for any 1 6 i 6 n, and a point with second coordinate j for any
1 6 j 6 n.

To construct the data structure, we first sort the set by the second coordinate j.
Then, we divide the set according to the first coordinate i, to form a perfect binary tree
where each node handles an interval of the first coordinate i, and thus knows only the
points whose first coordinate falls in that interval. The root handles those points whose
first coordinate i lies within the interval [1..n], and the children of a node handling the
interval [i..i′] are associated to [i..b(i + i′)/2c] and [b(i + i′)/2c + 1..i′]. The leaves handle
intervals of the form [i..i].

Every tree node v is then represented with a bit vector Bv indicating, for each point
handled by v, whether the point belongs to the left or right child. In other words, Bv[r] = 0
iff the r-th point handled by node v (in the order given by the second coordinate j) belongs
to the left child. Every level of the tree is represented as a single bit vector of n bits, using
the data structure for constant-time rank and select of Lemma 2.4 (1), which are needed
to support the search (as well as, given a node, finding the corresponding starting position
within the level, see [MN07] for more details). Thus, we only need O(log n) pointers to
represent the levels of the tree, avoiding in this way to store the pointers that represent
the balanced tree.

This data structure supports counting the number of points that lie within a two-
dimensional range (i.e., a rectangle) in O(log n) time. After counting the points, we can
get the coordinates of the points in O(log n) time per point. Thus, the overall time to
report the occ points inside the search range is O((1 + occ) log n) (see [MN07]).

Lemma 2.9 ([Cha88, MN07]). There exists a representation for a set of n two-dimensional
points requiring n log n + O(n log log n) bits of space, and supporting the counting of
the number of points lying inside a two-dimensional search range in O(log n) time, and
reporting the occ points lying inside the search range in O((1 + occ) log n) time.

2.5.2 Succinct Representation of Trees

Given a tree with n nodes, there exist a number of succinct representations requiring
2n + o(n) bits of space [Jac89, MR01, BDM+05, GRR06, JSS07b], which is close to the
information-theoretic lower bound of 2n − Θ(log n) bits. We explain the representations
that we shall need in our work.

Balanced Parentheses. The problem of representing a sequence of balanced parentheses
is highly related to the succinct representation of trees [MR01]. Given a sequence par of
2n balanced parentheses, we want to support the following operations on par:
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— findclose(par, i), which given an opening parenthesis at position i, finds the position
of the matching closing parenthesis;

— findopen(par, j), which given a closing parenthesis at position j, finds the position
of the matching opening parenthesis;

— excess(par, i), which yields the difference between the number of opening and closing
parentheses up to position i in the parentheses sequence; and

— enclose(par, i), which given a parentheses pair whose opening parenthesis is at
position i, yields the position of the opening parenthesis corresponding to the closest
matching parentheses pair enclosing the one at position i.

Munro and Raman [MR01] show how to compute all these operations in constant
time and requiring 2n + o(n) bits of space. They also show one of the main applications
of maintaining a sequence of balanced parentheses: the succinct representation of
general trees. Among the practical alternatives, we have the representation of Geary
et al. [GRRR06], Sadakane [Sad08], and the one by Navarro [Nav08, Section 6]. The latter
has shown to be very effective for representing LZ-indexes, and therefore we briefly review
it in what follows.

Navarro’s Practical Representation of Balanced Parentheses [Nav08]. To support the
operations we could simply precompute and store all the possible answers, requiring
O(n log n) bits overall. However, in many applications (e.g., the representation of trees)
most matching opening and closing parentheses are close to each other. Profiting from this
property, and for instance to support findclose, Navarro uses a brute-force approach for
these parentheses, sequentially looking for the closing parenthesis within the next few, say
32, parentheses. Actually, this search is performed by using precomputed tables to avoid
a bit-by-bit scan.

If the answer cannot be found in this way, Navarro searches a hash table storing the
answers for parentheses that are not so close, though not so far away from each other. Say,
for example, matching parentheses with a difference of up to 256 positions (parentheses).
Instead of storing absolute positions, the difference between positions is stored, and thus
we can use 8 bits to code these numbers, which saves space. Finally, if the answer cannot
be found in the previous hash table, another table is searched for matching parentheses
that are far away from each other (here full numbers are stored, but there are hopefully
few entries). A similar approach is used to compute enclose and findopen operations.

The parentheses operations are supported in O(log log n) average time [Nav08].
However, this representation does not provide theoretical worst-case guarantees in the
space requirement, since in the worst case almost every opening parenthesis has its
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matching parenthesis far away, so we have to store its information in the tables. Fortunately
these cases are not common in practice.

Operation excess(i) can be supported through operation rank over the binary
sequence of parentheses, since excess(i) ≡ rank((par, i) − rank)(par, i). We use the
representation of González et al. [GGMN05] to efficiently support rank and select (which
will be needed later) on par, while requiring little space on top of the sequence.

bp Representation of Trees. The balanced parentheses (bp) representation of a tree
defined by Munro and Raman [MR01] is built from a depth-first preorder traversal of the
tree, writing an opening parenthesis when arriving to a node for the first time, and a
closing parenthesis when going up (after traversing the subtree of the node). In this way,
we get a sequence of balanced parentheses, where each node is represented by a pair of
opening and closing parentheses. We identify a tree node x with its opening parenthesis in
the representation. The subtree of x contains those nodes (parentheses) enclosed between
the opening parenthesis representing x and its matching closing parenthesis. In this way,
a leaf is represented by ‘()’ in bp, because it encloses an empty tree.

This representation requires 2n + o(n) bits and supports, in constant time, the
following operations:

— parent(x), which gets the parent of node x;

— subtreesize(x), which gets the size of the subtree of node x, including x itself;

— depth(x), which gets the depth of node x in the tree;

— firstchild(x), which gets the first child of node x;

— nextsibling(x), which gets the next sibling of node x; and

— ancestor(x, y), which tell us whether node x is an ancestor of node y

If we assume that par represents the sequence of balanced parentheses representing
the tree, these operations are supported by:

parent(x) ≡ enclose(par, x)

subtreesize(x) ≡ (findclose(par, x)− x + 1)/2

depth(x) ≡ excess(par, x)

firstchild(x) ≡ x + 1

nextsibling(x) ≡ findclose(par, x) + 1

ancestor(x, y) ≡ x 6 y 6 findclose(par, x)
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Operation child(x, i) (which gets the i-th child of node x) can be computed in O(i) time by
repeatedly applying operation nextsibling. This takes, in the worst case, linear time on the
maximum arity of the tree. There exist some recent representations for bp [LY08, Sad08]
that support operation child(x, i) in constant time. However, we disregard these in our
work and use a different approach to support constant-time child(x, i) operations, as we
shall see later.

The preorder position of a node can be computed in this representation as the number
of opening parentheses before the one representing the node. That is,

preorder(x) ≡ rank((par, x) − 1

Notice that in this way we assume that the preorder of the tree root is always 0. Given a
preorder position p, the corresponding node is computed by

selectnode(p) ≡ select((par, p + 1)

This is a very important aspect of this (and many other) succinct representations of trees,
since we can map between tree nodes and preorder positions without requiring extra space
for the mapping (e.g., extra pointers in case of using a pointer-based representation).

Lemma 2.10 ([MR01]). There exists a representation for a general tree of n nodes
requiring 2n + o(n) bits of space and supporting operations parent, subtreesize, depth,
firstchild, nextsibling, and ancestor in O(1) time. Operation child(x, i) is supported in
O(i) time.

Example 2.14. In Fig. 2.5(a) we show the balanced parentheses representation for the
LZTrie of Fig. 2.3(c), along with the sequence of phrase identifiers sequence (ids) in
preorder, and the sequence of symbols labeling the edges of the trie (letts), also in preorder.
As the identifier corresponding to the LZTrie root is always 0, we do not store it in ids.
The data associated with node x is stored at position preorder(x) both in ids and letts
sequences. Note this information is sufficient to reconstruct LZTrie.

dfuds Representation of Trees. To get this representation [BDM+05] we perform a
preorder traversal on the tree, and for every node reached we write its degree in unary
using parentheses. For example, a node of degree 3 reads ‘((()’ under this representation.
Notice that a leaf is represented by ‘)’ in dfuds. What we get is almost a balanced
parentheses representation: we only need to add a fictitious ‘(’ at the beginning of the
sequence. A node of degree d is identified by the position of the first of the (d + 1)
parentheses representing the node.

This representation requires also 2n + o(n) bits, and supports operations parent(x),
subtreesize(x), ancestor(x, y), child(x, i), as well as
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

par: ( ( ( ) ( ( ) ) ( ) ( ( ) ( ) ( ) ) ( ( ) ) ) ( ( ( ) ) ) ( ( ( ) ) ) )
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a $ b r l r a d l p l a b a p
(a) Balanced parentheses representation of LZTrie for the running example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

par: ( ( ( ( ) ( ( ( ( ( ) ) ( ) ) ) ( ( ( ) ) ) ) ( ) ) ( ) ( ) ) ( ) ( ) )
ids: 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a l $ b l r r a d l p a b a p
(b) dfuds representation of LZTrie for the running example. The phrase identifiers are stored in
preorder, and the symbols labeling the arcs of the trie are stored according to dfuds.

Figure 2.5: Succinct representations of LZTrie for the running example.

— degree(x), which gets the degree, i.e., the number of children, of node x; and

— childrank(x), which gets the rank of node x among its siblings [JSS07b];

all in O(1) time in the following way, assuming that par represents now the dfuds sequence
of the tree:

parent(x) ≡ select)(par, rank)(par, findopen(par, x− 1))) + 1

child(x, i) ≡ findclose(par, select)(par, rank)(par, x) + 1)− i) + 1

subtreesize(x) ≡ (findclose(par, enclose(par, x)) − x)/2 + 1

degree(x) ≡ select)(par, rank)(par, x) + 1)− x

childrank(x) ≡ select)(par, rank)(par, findopen(par, x− 1)) + 1)

−findopen(par, x− 1)

ancestor(x, y) ≡ x 6 y 6 findclose(par, enclose(par, x))

Operation depth(x) can be also computed in constant time on dfuds by using the approach
of Jansson et al. [JSS07b], requiring o(n) extra bits. It is important to note that, unlike
the bp representation, dfuds needs operation findopen on the parentheses in order to
compute operation parent on the tree. In practice, if we build on Navarro’s parenthesis
data structure, this implies that dfuds needs more space than bp since we need additional
hash tables to support findopen.

Given a node in this representation, say at position i, its preorder position can be
computed by counting the number of closing parentheses before position i; in other words,

preorder(x) ≡ rank)(par, x− 1)
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Given a preorder position p, the corresponding node is computed by

selectnode(p) ≡ select)(par, p) + 1

Representing σ-ary trees with dfuds. For cardinal trees, σ-ary trees, or simply tries (i.e.,
trees where each node has at most σ children, each child labeled by a symbol in the set
{1, . . . , σ}) we use the dfuds sequence par plus an array letts[1..n] storing the edge labels
according to a dfuds traversal of the tree: we traverse the tree in depth-first preorder,
and every time we reach a node x we write the symbols labeling the children of x. In this
way, the labels of the children of a given node are all stored contiguously in letts, which
will allow us to efficiently compute operation

— child(x, α), which gets the child of node x with label α ∈ {1, . . . , σ}.

Example 2.15. In Fig. 2.5(b) we show the dfuds representation of LZTrie for our running
example.

Notice the inverse relation between the d opening parentheses defining x and the
symbols of the children of x. The label of the i-th child is at position i within the symbols
of the children of x, while the corresponding opening parenthesis is at position (d− i + 1)
within the definition of x. This shall mean extra work when retrieving the symbol by
which a given node descends from its parent.

We support operation child(x, α) as follows. Suppose that node x has position p
within the dfuds sequence par, and let p′ = rank((par, p)− 1 be the position in letts for
the symbol of the first child of x. Let nα = rankα(letts, p′− 1) be the number of αs up to
position p′− 1 in letts, and let i = selectα(letts, nα + 1) be the position of the (nα + 1)-th
α in letts. If i lies within positions p′ and p′ + degree(x) − 1, the child we are looking
for is child(x, i− p′ + 1), which, as we said before, is computed in constant time over par;
otherwise x has not a child labeled α. We can also retrieve the symbol by which x descends
from its parent with letts[rank((par, parent(x)) − 1 + childrank(x) − 1], where the first
term stands for the position in letts corresponding to the first symbol of the parent of
node x. The second term, childrank(x), comes from the inverse relation between symbols
and opening parentheses representing a node.

Thus, the time for operation child(x, α) depends on the representation we use for
rankα and selectα queries (see Lemma 2.5). Notice that child(x, α) could be solved in a
straightforward way by binary searching the labels of the children of x, in O(log σ) worst-
case time and not needing any extra space on top of array letts. The access to letts[·]
takes constant time.

We can represent letts with the data structure of Ferragina et al. (see Lemma 2.5 (1))
which requires n log σ + o(n log σ) bits of space, and allows us to compute child(x, α) in
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O( log σ
log log u) time. The access to letts[·] also takes O( log σ

log log u) time. These times are O(1)
whenever σ = O(polylog(u)) holds. On the other hand, we can use the data structure of
Golynski et al. (see Lemma 2.5 (2)), requiring O(n log σ) bits of space, yet allowing us to
compute child(x, α) in O(log log σ) time, and access to letts[·] also in O(log log σ) time.
In most of this thesis we will use the data structure of Lemma 2.5 (1) to represent the
symbols, since it is able to improve its time complexity to O(1) for moderate alphabets.

The scheme we have defined to represent letts is slightly different than the original one
[BDM+05], which achieves O(1) time for child(x, α) for any σ. However, ours is simpler
and allows us to efficiently access letts[·], which will be very important in our indexes to
extract text substrings. Also, our method is simpler to build, since the original one is
based on perfect hashing, which is expensive to construct. We need to store the array of
symbols explicitly if we use the original approach and we need to access them (fortunately,
this will not asymptotically affect the space requirement of our results).

Lemma 2.11 ([BDM+05, JSS07b]). There exists a representation for a σ-ary tree of
n nodes requiring 2n + n log σ + o(n) bits of space and supporting operations parent,
child(x, i), child(x, α), subtreesize, depth, degree, childrank, and ancestor in O(1) time.

xbw Representation. The xbw transform of Ferragina et al. [FLMM05] is a succinct
representation for labeled trees: given a labeled tree T , with n nodes and labels taken from
an alphabet Σ of size σ, the xbw transform of T is computed by first traversing the tree in
preorder, and for each node writing a triplet in a table ST . The first component of each
triplet indicates whether the node is the last child of its parent in the tree, the second
component is the symbol labeling the edge by which we reach the node, and the third
component is the string labeling the path from the parent of the node to the root of T . In
this way each node is represented by a row in ST . As in the original work [FLMM05], we
call Slast, Sα, and Sπ the columns of table ST , storing respectively the first, second and
third components of each triplet. As a last step we perform an upward-path-sorting of the
table by stably sorting the rows of ST lexicographically according to the strings in Sπ.

Example 2.16. In Table 2.1 we show the xbw transform for the LZTrie of Fig. 3.1(a).

We have to add a dummy child to each leaf, labeling the dummy edge with a special
symbol ∆ not in Σ, so that the paths leading to the leaves appear in column Sπ, and hence
later we will be able of searching for them (notice that, in the worst case, this duplicates
the number of nodes in the tree). As we said before, each node in the LZTrie is represented
by a row in the table, being the row number what we call the xbw position of the node.

The xbw representation supports operations parent(x), child(x, i), and child(x, α), all
of them in O(1) time if σ = O(polylog(u)), and using 2n log σ+O(n) bits of space, because
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the column Sπ of the table is not stored. The representation also allows subpath queries,
a very powerful operation which, given a string s, returns all the nodes x such that s is a
prefix of the string labeling the path from the parent of x to the root. If σ = O(polylog(n)),
subpath queries can be computed in O(|s|) time [FLMM05]. For general σ, the time for
all these operations depends on the representation used for Sα (since we need to support
rank and select operations on it), which is O(1+ log σ

log log u) time if we use the representation
of Lemma 2.5 (1), and O(log log σ) time if we use the data structure of Lemma 2.5 (2),
in which case the space requirement is O(n log σ). Also [FLMM05] show how to achieve
constant time for the operations (and O(|s|) time for subpath queries), for any alphabet,
though duplicating the space, since the representation given for rank and select does not
provide operation access.

Because of the upward-path sorting in table ST , the result of a subpath query is
a contiguous interval in such table, containing the answers to the query. For example,
a subpath query for string ‘r’ yields the interval [21..24] in Table 2.1, corresponding
respectively to the nodes with preorders 7, 8, and 9 in Fig. 3.1(a), plus a fictitious leaf
which is a child of node with preorder 4. As another example, a subpath query for string
‘ba’ yields the xbw interval [13..14], for node with preorder 4 plus a fictitious leaf which is
a child of node with preorder 14. In all cases, note that the string s we are looking for is
a prefix of the corresponding string in Sπ.

Lemma 2.12. [FLMM05] There exists a representation for a labeled tree of n nodes that
requires 2n log σ + O(n) + o(n log σ) bits of space, where σ is the size of the alphabet
of the symbols labeling the tree, and supports operations parent and child(x, i) in O(1)
time, operation child(x, α) in O(1 + log σ

log log n) time, and subpath queries for a string s in

O(|s|(1 + log σ
log log n)) time.

Notice that the xbw representation does not support operations preorder, selectnode,
subtreesize, etc., many of which are useful for our purposes. Thus, in such cases we
shall enrich the xbw representation to support these operations, basically by succinctly
combining this representation with others.
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Table 2.1: xbw representation for the LZTrie of Fig. 3.1(a).

i Slast Sα Sπ

1 0 a empty string
2 0 l empty string
3 1 empty string
4 1 ∆ $a

5 0 $ a

6 0 b a

7 0 l a

8 0 r a

9 1 a

10 1 b al

11 1 ∆ ara

12 1 p a

13 1 r ba

14 1 ∆ bal

15 1 ∆ dra

16 1 a l

17 1 ∆ la

18 1 ∆ lra

19 1 ∆ pa

20 1 ∆ p a

21 0 a ra

22 0 d ra

23 1 l ra

24 1 ∆ rba

25 1 a

26 1 p a
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Chapter 3

A Survey of Lempel-Ziv Indexes

The general idea of Lempel-Ziv (LZ) compression algorithms [LZ76, ZL77, ZL78] is to
parse the text T [1..u] into a set of n phrases T = B1 . . . Bn. Every phrase Bi is somehow
formed by a substring of T that already appeared in a linear scan of the text. Different
variants of LZ compression differ in the way they define the phrases. See Section 2.4.1 for
a review of the LZ78 compression algorithm [ZL78].

The search of a pattern P [1..m] = p1 . . . pm in an LZ-compressed text has the
additional problem that, as the text has been parsed into phrases, a pattern occurrence
could span several (two or more) consecutive phrases. We call occurrences of type 1
those occurrences contained in a single phrase (say there are occ1 occurrences of type
1); occurrences of type 2 are those occurrences spanning two consecutive phrases (there
are occ2 occurrences of type 2); and occurrences of type 3 are those spanning more than
two consecutive phrases (there are occ3 occurrences of type 3).

Example 3.1. As an example of occurrences of type 1 on our running example text of
Fig. 2.3(a), let us consider the pattern “ab”, occurring in phrases 3, 15, and 9. As an
example of occurrences of type 2, consider the pattern “ala”, spanning phrases 8 and
9 (partitioned as a · la) and spanning phrases 14 and 15 (partitioned as al · a). As an
example of occurrences of type 3, consider the pattern “alabar”, spanning phrases from
1 to 4 (partitioned as a · l · ab · ar) and spanning phrases from 8 to 10 (partitioned as
a · lab · ar).

In this chapter we review the existing Lempel-Ziv compressed indexes (LZ-indexes for
short), showing the results and main concepts introduced by these works. We show the
state of the art previous to our thesis, and also show some works that appeared in parallel
to our research.
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3.1 Kärkkäinen and Ukkonen’s LZ-index (KU-LZI)

Historically, the LZ-index of Kärkkäinen and Ukkonen [KU96a, Kär99] (the KU-LZI, for
short) was the first LZ-index. Indeed, up to the best of our knowledge, this was the first
compressed index. The KU-LZI is based on a variant of the original Lempel-Ziv parsing
of 1976 (LZ76 for short) [LZ76].

In the LZ76 parsing, the text T [1..u] is represented as a sequence of phrases
T = B1, . . . , Bn, which are built as follows. Assume that a prefix T [1..j] of T has been
compressed into a sequence of phrases B1, . . . , Br. Then, we look for the longest prefix
T [j + 1..j′] of the rest of the text T [j + 1..u] which equals a substring T [s..s + j′ − j + 1]
of T [1..j] 1.

If j′ > j, then Br+1 = T [j + 1..j′], and we go on to process T [j′ + 1..u]. We call the
substring T [s..s + j′ − j + 1] the source for phrase Br+1. Otherwise, the symbol T [j + 1]
has not appeared before and then Br+1 = T [j + 1], and we go on to process T [j + 2..u].
The process finishes once we obtain Bn =“$”.

The output is essentially the starting position of the source of every phrase and its
length (new symbols in Σ that appear are exceptions in this encoding). It is worth to
note that Property 2.7 (on page 28) and Lemma 2.1 (on page 29) are also valid if n is
the number of phrases generated by the LZ76 parsing of the text [Kär99, NM07]. An
important property of this parsing is that every phrase has appeared before, unless it is a
new symbol of Σ. Because of this property, the first occurrence of a pattern P [1..m] in T
(i.e., the leftmost occurrence of P in T ) cannot be completely contained inside a phrase,
otherwise it would have appeared before in T . Thus, in this parsing occurrences of type
1 are repetitions of other occurrences either of type 2 or type 1 (henceforth, Kärkkäinen
and Ukkonen call primary occurrences those of type 2, and secondary occurrences those
of type 1). Occurrences of type 3 are treated as a particular case of occurrences of type 2
in this index.

Occurrences of type 2 are found as follows. Assume that for some 1 6 i < m, P [1..i]
is the suffix of a phrase Bt and that P [i + 1..m] is aligned with the next phrase Bt+1.
Thus, occurrences of P [i + 1..m] are found using a sparse suffix tree [KU96b] that only
indexes the text suffixes which are aligned with the phrase beginnings. Notice that we are
interested only in the phrase-aligned occurrences of P [i + 1..m], so we only must descend
in the suffix tree by using the symbols of P [i + 1..m], reaching node v2 corresponding to
the occurrences. Thus, we avoid the more costly process of looking for the non-aligned
occurrences [KU96b]. Let [l2..r2] be the preorder interval corresponding to node v2.

1Notice the difference with the LZ78 parsing, where T [j +1..j′] must exists as a whole phrase in T [1..j],
see Section 2.4.1
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To find the phrases ending with P [1..i], the text prefixes ending where the LZ phrases
end are reversed and stored in a dual sparse suffix tree. Thus, by searching for P r[1..i] in
the reverse suffix tree (reaching node v1) we find the set of phrases ending with P [1..i].
Let [l1..r1] be the preorder interval corresponding to node v1 in the reverse suffix tree.

Thus, for every partition P [1..i] and P [i + 1..m] of P we have a subtree containing
the phrases ending with P [1..i], and a subtree containing the phrases aligned with the
occurrences of P [i + 1..m]. The search for these subtrees (or preorder intervals) takes
overall O(m2) time. We want to find those phrases Bt in the former subtree such that
phrase Bt+1 is in the latter subtree.

Kärkkäinen and Ukkonen relate this problem to a two-dimensional range search
problem: for every phrase Bt, for 1 6 t < n, let i′ be the preorder of the node representing
Br

t in the reverse sparse suffix tree, and let j′ be the preorder of the node for the next phrase
Bt+1 in the sparse suffix tree. Then, we store the point (i′, j′) in a two-dimensional range
search data structure. Thus, the points corresponding to phrases ending with P [1..i] can
be found if we search for the range [l1..r1]× [−∞,+∞] in the range search data structure.
The phrases that are aligned with occurrences of P [i + 1..m] can be found with the range
[−∞,+∞]× [l2..r2]. Finally, occurrences of type 2 correspond to those points lying in the
range [l1..r1]× [l2..r2]. A more detailed example of using a range search to find occurrences
of type 2 is given in Section 3.3. We can use the data structure of Lemma 2.9 to report all
these points in O((m + occ2) log u) time, and requiring n log n + o(n log n) bits of space.

For occurrences of type 1, given an occurrence of type 2 T [j..j + m− 1], we wish to
find all phrases Bt whose source contains [j..j +m−1]. Those phrases contain occurrences
T [j′..j′ + m− 1] of type 1, which are again tracked for new occurrences. With some slight
changes to the original LZ76 parsing [KU96a, Kär99], they ensure that no source contains
another source, and thus source intervals can be linearly ordered.

Let S be an array of phrase numbers sorted by their source interval position in the
text, plus a bit vector B[1..u] indicating the starting text positions for the sources. Array
B is represented with the data structure for constant-time rank and select of Lemma 2.4
(2), so this requires uH0(B) + o(u) 6 n log u

n + o(u) 6 u log log u
logσ u + o(u) = o(u log σ) bits of

space (recall Property 2.7 and Lemma 2.2).

Therefore, all phrases whose source contains [j..j + m− 1] are found in constant time
by using these data structures: S[rank1(B, j)] is the last phrase in S whose source starts
in T [1..j]. We traverse S backwards from that position until the source intervals finish
before T [j+m−1]. Proceed recursively on the phrases found. We report a new occurrence
per unit of work. Thus, occurrences of type 1 are reported in O(occ1) overall time.

Lemma 3.1 ([KU96a, Kär99]). Given a text T [1..u] over an alphabet of size σ, and with
k-th order empirical entropy Hk(T ), the LZ-index of Kärkkäinen and Ukkonen (KU-LZI)

47



requires O(uHk(T )) + u log σ + o(u log σ) bits of space, for any k = o(logσ u). Given a
search pattern P [1..m], this index is able to:

(1 ) locate the occ occurrences of pattern P in text T in O(m2 +(m+ occ) log u) time;

(2 ) count the number of pattern occurrences in O(m2 + m log u + occ) time;

(3 ) determine whether pattern P exists in T in O(m2 + m log u) time; and

(4 ) extract any text substring of length ` in optimal O(`/ logσ u) time (the text is
available).

Many other trade-offs for the KU-LZI are presented in [Kär99], yet we disregard them
here. It is important to note that the extracting time is reported as O(`) in the survey
[NM07], which is a mistake since the text is available and therefore O(logσ u) text symbols
can be accessed per memory access in a RAM.

3.2 Ferragina and Manzini’s LZ-index (FM-LZI)

The LZ-index of Ferragina and Manzini [FM05] (the FM-LZI for short) is a compressed
full-text self-index based on the combination of the LZ78 parsing of text T [ZL78] and the
Burrows-Wheeler transform of T [BW94]. The result is a very efficient full-text self-index,
as we shall see below

The following data structures compose the FM-LZI:

(1) LZTrie: the trie formed by the LZ78 phrases B0, . . . , Bn of text T . Every trie node
stores the starting text position of the corresponding LZ78 phrase. Since the number
of LZTrie nodes is n, and since a pointer representation is originally used, the space
requirement is O(n log n) = O(uHk(T )) + o(u log σ) bits of space.

(2) FMI(T ): the FM-index [FM00, FM05] of text T , which is based on the Burrows-
Wheeler transform of T and hence requires O(uHk(T ))+ o(u log σ) bits of space. By
itself, this index is able to search for the pattern occurrences. However, it is slower
than the LZ-indexes to locate the pattern occurrences.

(3) FMI(T r
#): the FM-index of text T r

#, where T# = B1# . . . #Bn# is the string formed
by adding an special symbol ‘#’ 6∈ Σ after every LZ78 phrase of T . Thus, the length
of T# is n + u symbols. By using this data structure we shall be able to find all
phrases ending with a given substring, as we will see later. Ferragina and Manzini
[FM05] proved that (u+n)Hk(T

r
#) 6 uHk(T )+o(u log σ) always holds, for any fixed

k > 0. Thus, FMI(T r
#) requires O(uHk(T )) + o(u log σ) bits of space.
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(4) N [1..n]: an array that, for each position of FMI(T r
#) indexing a suffix of T r

# starting
with #Br

t , stores the corresponding LZTrie node for phrase Bt. This array requires
n log n = uHk(T ) + o(u log σ) bits of space.

(5) Range: a data structure for two-dimensional range searching in the grid [1..u]×[1..u].
If the position of FMI(T r

#) corresponding to phrase Bt (i.e., the suffix array position
indexing the suffix of T r

# starting with #Br
t ) is i and the position for Bt+1 in FMI(T )

(i.e., the suffix array position indexing the suffix of T starting with Bt+1) is j, then
we store the point (i, j) corresponding to phrase t. Hence, this data structure stores
n points, so it can be stored as an [1..n] × [1..n] grid by adding two bit vectors of u
bits each, indicating in each case which positions of the corresponding FMI define
the coordinates of the points in Range. These bit vectors can be represented with the
data structure of Lemma 2.4 (2), supporting rank and select queries and requiring
o(u log σ) bits of space. Ferragina and Manzini use the data structure of Alstrup et
al. [ABR00] to support range queries, which is modified to support finding the occ
occurrences inside a query range in O(m + occ) time, while requiring O(n log1+γ n)
bits of space. In our case this is O(uHk(T ) logγ u) + o(u log σ logγ u) bits, for any
γ > 0.

To search for occurrences of type 1 using these data structures, assume that phrase
Bt contains P . If Bt does not end with P and if Bt = B` · c, for ` < t and c ∈ Σ, then
B` contains P as well. Therefore, we must search for the minimal phrases containing P .
By properties of LZ78 compression, all those phrases end with P . The rest of the phrases
containing P are formed from those phrases, and can be found using the LZTrie.

To find the phrases ending with P , we search for #P r = #pm . . . p1 in FMI(T r
#),

which give us the corresponding suffix array interval [first, last] in FMI(T r
#). Then, for

each i ∈ [first, last] we use N [i] to get the LZTrie node corresponding to a phrase ending
with P . We then traverse the subtree of node N [i] to report occurrences of type 1. As
the search in FMI(T r

#) takes O(m) time and the work in LZTrie is proportional to occ1,
occurrences of type 1 are found in O(m + occ1) time.

For occurrences of type 2 and type 3, we proceed in a similar way as for the KU-LZI:
for every possible partition P [1..i] and P [i+ 1..m] of P , we search for phrases ending with
P [1..i] and for phrases aligned with an occurrence of P [i + 1..m]. However, now we have
different data structures, which help us to solve this problem very efficiently.

We first search for P in FMI(T ), using the backward-search algorithm (recall Section
2.4.2). Thus, in O(m) steps we find the suffix-array intervals [li+1..ri+1] in FMI(T ),
corresponding to the occurrences of P [i + 1..m], for i = m− 1, . . . , 1.

We then search for #P r in FMI(T r
#). At every backward-search step we find the suffix

array interval [li..ri] containing the occurrences of P r[1..i] in FMI(T r
#), for i = m−1, . . . , 1.
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After finding every such interval in FMI(T r
#), we add the symbol ‘#’ to obtain the interval

[l′i..r
′
i] in FMI(T r

#) containing the occurrences of #P r[1..i].

Note that the search in FMI(T r
#) ensures that P [1..i] occurs at the end of a phrase,

and the search in FMI(T ) permits P [i + 1..m] to span as many phrases as necessary (in
other words, there is no difference between occurrences of type 2 and those of type 3). All
this process takes O(m) time, because of the backward-search process (compare it against
the O(m2) time needed to find the preorder intervals in the KU-LZI).

Then, we search for the two-dimensional range [l′i..r
′
i]× [li+1..ri+1] in the Range data

structure, in order to find the occurrences of type 2 for the partition P [1..i] and P [i+1..m]
of P , for 1 6 i < m (before performing the query, both intervals must be mapped to the
[1..n]× [1..n] grid by using rank over the two bit vectors that we mentioned previously).

Lemma 3.2 ([FM05]). Given a text T [1..u] over an alphabet of size σ, and with k-th
order empirical entropy Hk(T ), the LZ-index of Ferragina and Manzini (FM-LZI) requires
O(uHk(T ) logγ u) + o(u log σ logγ u) bits of space, for any γ > 0 and any k = o(logσ u).
Given a search pattern P [1..m], this index is able to:

(1 ) locate the occ occurrences of pattern P in text T in O(m + occ) time;

(2 ) count the number of pattern occurrences in O(m) time;

(3 ) determine whether pattern P exists in T in O(m) time; and

(4 ) extract any text substring of length ` in O(`) time.

Later in this chapter we shall explain the procedure used to extract text substrings.

3.3 Navarro’s LZ-index (Nav-LZI)

Navarro [Nav04, Nav08] uses a somehow different approach to define an LZ-index (the
Nav-LZI, or simply the LZ-index throughout this thesis): Navarro bases the search process
mainly on the LZTrie, and exploits its relation with the trie of reversed LZ78 phrases, the
so-called RevTrie.

As a result, this is the only existing LZ-index not using the concept of suffix tree or
array at all. This introduces the extra problem that, as we do not index whole text suffixes
but just the phrases, using an implicit representation of the LZ78 phrases (the LZTrie),
we cannot use range search to find occurrences of type 3 as done in the KU-LZI and the
FM-LZI indexes. Thus, in this index range searching only works for occurrences of type 2,
while occurrences of type 3 must be searched by hand, checking each of the O(m2) possible
candidates, and hence introducing an extra quadratic term to the time complexity of the
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index. Despite of this, the Nav-LZI has shown to be effective in practice [Nav08], being
the first LZ-index to be implemented.

At the time of its introduction, this LZ-index was smaller than all the others in
exchange for weaker search structures. We will show in this thesis that the original search
performance of the Nav-LZI can be improved to achieve that of competing schemes, yet
with a smaller index.

As we base our research on the Nav-LZI (yet many of our results can be extended
to other LZ-indexes), we review it in more detail.

3.3.1 Original Nav-LZI Components

The following data structures compose the original LZ-index [Nav04, Nav08]:

(1) LZTrie: is the trie formed by all the phrases B0 . . . Bn. Given the properties of LZ78
compression (Property 2.5), this trie has exactly n+1 nodes, each one corresponding
to a string.

(2) RevTrie: is the trie formed by all the reverse strings Br
0 . . . Br

n. In this trie there
could be internal nodes not representing any phrase. We call these nodes “empty”.

(3) Node: is a mapping from phrase identifiers to their node in LZTrie.

(4) Range: is a data structure for two-dimensional range searching in the space [0..n]×
[0..n]. We store the points

{(preorderr(t), preorderlz(t + 1)), t ∈ 0 . . . n− 1}

in this structure, where preorderr(t) is the RevTrie preorder of the node for
phrase t (considering only the non-empty nodes in the preorder enumeration), and
preorderlz(t+1) is the LZTrie preorder of node for phrase t+1. For each such point,
the corresponding t value is stored.

Example 3.2. Fig. 3.1 shows the LZTrie and RevTrie data structures, and Fig. 3.2 shows
the Range and Node data structures, all of them corresponding to our running example.
We show preorder numbers, both in LZTrie and RevTrie (in the latter case only counting
non-empty nodes), outside each trie node. In the case of RevTrie, empty nodes are shown
in black.

The next example gives a hint on the usage of those structures for searching, which
will be detailed in Section 3.3.5.
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Example 3.3. To find all phrases ending with substring ‘ab’ in the running example, we
search for the reversed string ‘ba’ in RevTrie, reaching the node with preorder 6. The
subtree of this RevTrie node contains the phrases we are looking for: phrases 3 and 9
(see Fig. 2.3(a)). As the preorder interval in RevTrie defined by this subtree is [6..7],
this means that the horizontal semi-infinite range [−∞..∞]× [6..7] in Range also contains
those phrases. To find all phrases starting with ‘ar’, note that the LZTrie subtree for node
with preorder (incidentally also) 6 (which corresponds to string ‘ar’) contains the phrases
starting with ‘ar’: phrases 4, 12, 10, and 16. The LZTrie preorder interval for this subtree
is [6..9]. This means that the vertical semi-infinite range [6..9]× [−∞..∞] contains phrases
i such that phrase i + 1 starts with ‘ar’: phrases 3, 11, 9, and 15. Finally, the range
[6..9] × [6..7] contains the phrase numbers i such that phrase i ends with ‘ab’ followed by
phrase i + 1 starting with ‘ar’: phrases 3 and 9, see Fig. 3.2(a).

3.3.2 Succinct Representation of the Nav-LZI Components

In the original work [Nav04], each of the four structures described requires n log n +
o(u log σ) bits of space if they are represented succinctly.

— LZTrie is represented using the balanced parentheses representation of Lemma 2.10,
requiring 2n + o(n) bits; plus the sequence letts of symbols labeling each trie edge,
requiring n log σ bits; and the sequence ids of n log n bits storing the LZ78 phrase
identifiers. Both letts and ids are stored in preorder, so we use preorder(x) to index
them. See Fig. 2.5(a) for an illustration.

— For RevTrie, balanced parentheses are also used to represent the Patricia tree [Mor68]
structure of the trie, compressing empty unary nodes and so ensuring n′ 6 2n nodes.
This requires at most 4n + o(n) bits. The RevTrie-preorder sequence of identifiers
(rids) is stored in n log n bits (i.e., we only store the identifiers for non-empty nodes).
Non-empty nodes are marked with bit vector B[1..n′], such that B[j] = 0 iff node x
with preorder j is empty. Thus, the phrase identifier for node x is rids[rank1(B, j)].
The symbols labeling the arcs of the trie and the Patricia-tree skips are not stored in
this representation, since they can be retrieved by using the connection with LZTrie.
Therefore, the navigation on RevTrie is more expensive than that on LZTrie. See
Fig. 3.1(c) for an illustration.

— For Range, the data structure of Lemma 2.9 permits two-dimensional range searching
in a grid of n pairs of integers in the range [0..n] × [0..n], answering queries in
O((occ+1) log n) time, where occ is the number of occurrences reported, and requiring
n log n+O(n log log n) bits of space [MN07]; note that since n is the number of LZ78
phrases of T , the latter term O(n log log n) is just o(u log σ) bits. This data structure
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(a) Lempel-Ziv Trie (LZTrie) for the running-example text. Phrase identifiers
are shown inside each node. Preorder numbers are shown outside each node.

0
0

1

17
1

a

$

1
2

7
3

l

1

12
4
a

r

8
5

a

1

3
6

9
7
l

a

b

1

1

10
8

a

r

d

2
9

14
10

a

1

16
11

a

r

l

1

1

13
12

a

1

11
13

a

p

1

4
14

a

1

15
15

a

b

r

5
16

6
17

a

(b) RevTrie data structure. Empty nodes are shown in light gray.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

par: ( ( ) ( ( ) ( ) ( ) ) ( ( ) ) ( ) ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ) )
B: 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1

rletts: $ a l r b l d l a r p a r a b a
rids: 0 17 1 7 12 8 3 9 10 2 14 16 13 11 4 15 5 6

(c) Balanced parentheses representation of RevTrie, compressing empty unary paths. The bitmap B
marks with a 0 the empty non-unary nodes. Array rletts stores only the first symbol of every edge label,
after compressing empty-unary paths. Array rids is indexed by means of preorder and rank over B.

Figure 3.1: Tries composing the LZ-index for the running example.
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are for LZTrie preorders, and vertical coordinates
are for RevTrie preorders.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node[i] 0 1 23 4 10 29 18 24 30 25 13 19 11 31 8 5 15 2
(b) Node data structure, assuming that the parentheses sequence
starts from position zero, cf. Fig. 2.5(a).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

RNode[i] 0 3 17 11 30 35 36 4 8 12 15 26 6 24 18 32 20 1
(c) RNode data structure, assuming that the parentheses sequence
for RevTrie starts from position zero.

Figure 3.2: Remaining LZ-index components, Range and Node for the running example. The
RNode data structure is used instead of Range in the practical implementation of the LZ-index.
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supports counting the number of points in a given range in O(log n) time, while
requiring uHk(T ) + o(u log σ) bits of space.

— Finally, Node is just a sequence of n pointers to LZTrie nodes. As LZTrie is
implemented using balanced parentheses, Node[i] stores the position within the
sequence for the opening parenthesis representing the node corresponding to phrase
i. As there are 2n such positions, we need n log 2n = n log n + n bits of storage. See
Fig. 3.2(b) for an illustration.

According to Lemma 2.1, the final size of the LZ-index is 4uHk(T ) + o(u log σ) bits for
k = o(logσ u) (and hence log σ = o(log u) if we want to allow for k > 0).

In theory, the succinct trie representations used [Nav04] implement (among others)
operations parent(x) and child(x, α), both in O(log σ) time for LZTrie (the O(log σ) factor
comes from the fact that the tries are represented using a binary encoding, which is defined
in [Nav04]), and O(log σ) and O(h log σ) time respectively for RevTrie, where h is the depth
of node x in RevTrie (the h in the cost comes from the fact that we must access LZTrie
to get the label of a RevTrie edge). The operation ancestor(x, y) is implemented in O(1)
time in both LZTrie and RevTrie.

In practice, however, Navarro’s practical implementation is used (recall Section
2.5.2). Despite that under this representation operation child(x, α) is implemented by
using operation child(x, i) in O(σ log log n) worst-case time, this has shown to be very
effective in practice [Nav08]. Operation parent is supported in O(log log n) time under
this representation.

3.3.3 Constructing the Nav-LZI

The data structures that compose the LZ-index are built and represented as follows.

LZTrie. For the construction of LZTrie we traverse the text and at the same time build a
trie representing the Lempel-Ziv phrases, spending (as usual) one pointer per parent-child
relation. At step t (assume Bt = B` · c), we read the text that follows and step down the
trie until we cannot continue. At this point we create a new trie leaf (child of the trie node
of phrase `, by symbol c, and assigning the leaf phrase number t), go to the root again,
and go on with step t+1 to read the rest of the text. The process completes when the last
phrase finishes with the text terminator “$”. After we build the trie, we free the text as
it is not anymore necessary, since we have now enough information to build the remaining
index components.

Then we build the final succinct representation of LZTrie, essentially using the
parentheses representation of Munro and Raman [MR01]. Arrays ids and letts are also
created at this stage.
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Node. Once the LZTrie is built, we free the space of the pointer-based trie and build
Node. This is just an array with the n nodes of LZTrie. If the i-th position of the ids
array corresponds to the j-th phrase identifier (i.e., ids[i] = j), then the j-th position of
Node stores the position of the i-th node within the balanced parentheses. As there are
2n parentheses, Node requires n log 2n bits.

RevTrie. To construct RevTrie we traverse LZTrie in preorder, generating each LZ78
phrase Bi stored in LZTrie in constant time, and then inserting it into a trie of reversed
strings (represented with pointers). For simplicity, empty unary paths are not compressed
in the pointer-based trie. When we finish, we traverse the trie and represent the trie
topology of RevTrie and the phrase identifiers in array rids. Empty unary nodes are
removed only at this step, and so the final number of nodes in RevTrie is n 6 n′ 6 2n.

Range. The Range data structure is built just as explained in Section 2.5.1.

3.3.4 Experimental Indexing Space

Although the LZ-index is a compressed full-text self-index, and its final representation
requires little space, a large amount of storage is needed to construct the index, mainly
because of the pointer representation of the tries used originally at construction time.
In the experimental results obtained with the original LZ-index [Nav08], over an English
text and DNA sequences, the largest extra space needed to build LZTrie is that of the
pointer-based trie, which is 1.7–2.0 times the text size [Nav08].

On the other hand, the indexing space for the pointer-based reverse trie is, in some
cases, 4 times the text size. This is, mainly, because of the empty unary nodes. This space
dictates the maximum indexing space of the algorithm. The overall indexing space was
4.8–5.8 times the text size for the case of English text, and 3.4–3.7 times the text size for
the DNA sequences. As a comparison, the construction of a plain suffix array without any
extra data structure requires 5 times the text size [MF04].

3.3.5 The Nav-LZI Search Algorithm

Let us consider now the search algorithm for a pattern P [1..m] [Nav04]. For locate

queries, pattern occurrences are reported in the format Jt, oK, where t is the phrase where
the occurrence starts, and o is the distance between the beginning of the occurrence and
the end of the phrase. Later, in Section 5.4, we will show how to map these two values into
a single text position. As we deal with an implicit representation of the text (the LZTrie),
and not the text itself, we distinguish three types of occurrences of P in T , depending on
the phrase layout.
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Occurrences of Type 1. These are found by using the same properties as in the FM-LZI,
yet in a different way (because the data structures are different). Given the properties
of LZ78 compression, every phrase Bt containing P is formed by a shorter phrase B`

concatenated to a symbol c (Property 2.5). If P does not occur at the end of Bt, then B`

contains P as well. We want to find the shortest possible phrase Bi in the LZ78 referencing
chain for Bt that contains the occurrence of P .

Since we can only perform prefix searching with LZTrie, and since phrase Bi has the
string P as a suffix, we cannot use the LZTrie to find Bi. But note that P r is a prefix of
Br

i , therefore it can be easily found by searching for P r in RevTrie in O(m2 log σ) time.
Say we arrive at node vr. Any node v′r descending from vr in RevTrie (including vr itself)
corresponds to a phrase terminated with P . Notice the relation with subpath queries (see
Section 2.5.2). For each such v′r, we traverse and report the subtree of the corresponding
LZTrie node vlz (found using rids and Node). For any node v′lz in the subtree of vlz, we
report an occurrence Jt,m+(depth(v′lz)−depth(vlz))K, where t is the phrase identifier (ids)
of node v′lz.

Occurrences of type 1 are located in O(m2 log σ + occ1) time, since each occurrence
takes constant time in LZTrie. For cardinality queries we just need to compute the subtree
size of each vlz in LZTrie, as every v′lz in that subtree corresponds to an occurrence of type
1.

Occurrences of Type 2. The occurrence spans two consecutive phrases, Bt and Bt+1,
such that a prefix P [1..i] matches a suffix of Bt and the suffix P [i+ 1..m] matches a prefix
of Bt+1. P can be split at any position, so we have to try them all. The idea is that, for
every possible split, we search for the reverse pattern prefix P r[1..i] in RevTrie (getting
node vr) and for the pattern suffix P [i+1 . . . m] in LZTrie (getting node vlz). The RevTrie
node vr for P r[1..i] is stored in array Cr[i], since it shall be needed later.

As in a trie all the strings represented in a subtree form a preorder interval, we have
two preorder intervals: one in the space of reversed phrases (phrases finishing with P [1..i])
and one in that of the normal phrases (phrases starting with P [i+1..m]), and need to find
the phrase pairs (t, t + 1) such that t is in the RevTrie preorder interval and t + 1 is in the
LZTrie preorder interval. As we have seen in Example 3.3, this is what the range searching
data structure (Range) is for. If we denote plz = preorder(vlz) and pr = preorder(vr), we
must search Range for:

[plz..plz + subtreesize(vlz)− 1]× [pr..pr + subtreesize(vr)− 1]

For every point (p, p′) found, we use either p or p′ to map to the corresponding RevTrie
or LZTrie node, respectively (recall that the coordinates p and p′ are preorders in these
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tries). Depending on the representation used for the data structures, throughout this thesis
sometimes we will choose to map to RevTrie (obtaining the corresponding phrase identifier
t) or we will choose to map to LZTrie (obtaining the corresponding phrase identifier t+1).
For every such point we report an occurrence Jt, iK. Occurrences of type 2 are then located
in O(m3 log σ + (m + occ2) log n) time, where the first term comes from searching the tries
(in particular, searching for the O(m) partitions of P in the RevTrie), and the second one
is for the m− 1 range searches on Range.

Occurrences of Type 3. The occurrence spans three or more phrases, Bt−1, . . . , B`+1,
such that P [i..j] = Bt . . . B`, P [1..i− 1] matches a suffix of Bt−1 and P [j + 1..m] matches
a prefix of B`+1. We need one more observation for this part: Since the LZ78 algorithm
guarantees that every phrase represents a different string (Property 2.6), there is at most
one phrase matching P [i..j] for each choice of i and j. Therefore, if we partition P into
more than two consecutive substrings, there is at most one pattern occurrence for such
partition, which severely limits occ3 to O(m2), the number of different partitions of P .

Let us define matrix Clz[1..m, 1..m] and arrays Ai, for 1 6 i 6 m, which store
information about the search. We first identify the only possible phrase matching each
substring P [i..j]. This is done by searching for every pattern substring P [i..j] in LZTrie,
for increasing i and for each i value we increase j. Thus, we perform a single search in
the trie for each i. We record in Clz[i, j] the LZTrie node corresponding to P [i..j], and
store the pair (id, j) at the end of Ai, such that id is the phrase identifier of the node
corresponding to P [i..j]. Note that since we search for P [i..j] for increasing j, we get the
values of id in increasing order, as the phrase identifier of a node is always larger than
that of the parent node. Therefore, the corresponding pairs in Ai are stored by increasing
value of id. This process takes O(m2 log σ) time.

Then we find the O(m2) maximal concatenations of successive phrases that match
contiguous pattern substrings. For 1 6 i 6 j 6 m, for increasing j, we try to extend the
match of P [i..j] to the right. If id is the phrase identifier for node Clz[i, j], then we have
to search for (id + 1, r) in array Aj+1, for some r. Array Aj+1 can be binary searched
because it is sorted. If we find (id + 1, r) in Aj+1, this means that Bid = P [i..j] and
Bid+1 = P [j + 1..r], which also means that the concatenation of phrases BidBid+1 equals
P [i..r]. We repeat the process from j = r, and stop when the pair (id+1, r) is not found in
the corresponding array (this means that a concatenation of phrases cannot be extended
further, so the current concatenation is maximal). See [Nav04] for further details.

As we have to perform O(m2) binary searches in arrays of size O(m), this procedure
takes O(m2 log m) worst-case time. In practice, the binary search is replaced by hashing
schemes, taking O(m2) time on average [Nav04, Section 6.5].

If P [i..j] = Bt . . . B` is a maximal concatenation, then we check whether phrase B`+1
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starts with P [j + 1..m], that is, we check whether Node[` + 1] is a descendant of node
Clz[j + 1,m], in constant time per maximal concatenation. Finally we check whether
phrase Bt−1 ends with P [1..i− 1], by starting from Node[i− 1] in LZTrie and successively
going to the parent to check whether the last i−1 symbols, read upwards, equal P r[1..i−1],
in O(m log σ) time per maximal concatenation. If all these conditions hold, we report an
occurrence Jt− 1, i − 1K. Overall, occurrences of type 3 are located in O(m3 log σ) time.

Overall Query Time. Note that each of the occ = occ1 +occ2 +occ3 possible occurrences
of P lies exactly in one of the three cases above. Overall, the total search time to report
the occ occurrences of P in T is O(m3 log σ + (m + occ) log u).

Extracting Text Substrings. The original LZ-index is able to extract text substrings,
yet not in the way we have defined before: we have to provide an LZ78 phrase number
from where to start the extraction. We assume also that the ` symbols we want to extract
correspond to whole phrases (in Section 5.4 we shall avoid all these restrictions). Given
phrase i, we follow the upward path from Node[i] up to the LZTrie root, outputting the
symbols labeling the upward path. Then we perform the same procedure but now starting
from Node[i + 1] in LZTrie, and so on until we extract the ` desired symbols, taking
overall O(` log σ) time, because operation parent is supported in O(log σ) time in theory
[Nav04]. Finally, we can uncompress the whole text T in O(u log σ) time using the same
idea, starting the procedure from the first LZ78 phrase.

Lemma 3.3 ([Nav04, Nav08]). Given a text T [1..u] over an alphabet of size σ, and with k-
th order empirical entropy Hk(T ), the LZ-index of Navarro (Nav-LZI) requires 4uHk(T )+
o(u log σ) bits of space, for any k = o(logσ u). Given a search pattern P [1..m], this index
is able to:

(1 ) locate the occ occurrences of pattern P in text T in O(m3 log σ + (m + occ) log u)
worst-case time;

(2 ) count the pattern occurrences in O(m3 log σ + m log u + occ) time;

(3 ) determine whether pattern P exists in T in O(m3 log σ + m log u) time; and

(4 ) extract any text substring of length ` in O(`) time.

3.3.6 Improving the Algorithm for Finding Maximal Concatenations

We now improve the algorithm for finding maximal concatenation of phrases, which is
needed to find occurrences of type 3. We replace the binary searches on arrays Ai by an
access to the correct position in matrix Clz.
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When computing maximal concatenations of phrases, for each 1 6 i 6 j 6 m, for
increasing j, we try to extend the match of P [i..j] to the right. Let id be the phrase
identifier for node Clz[i, j], then P [i..j] = Bid holds. Then, to check whether P [j + 1..r] =
Bid+1 holds, instead of searching for (id + 1, r) in Aj+1 as before, we note that r = j + l,
where l is the length of phrase Bid+1, which in turn is computed as l = depth(Node[id+1])
in LZTrie. Then we check, in constant time, whether the node Clz[j +1, j + l] corresponds
to identifier id + 1. This means that P [j + 1..r] = Bid+1 holds, for r = j + l, and hence
we can extend the concatenation of phrases to P [i..r] = BidBid+1. We repeat the process
for j = r and stop the procedure when the above condition does not hold, or r becomes
greater than m.

Lemma 3.4. Given the LZ78 parsing of text T$ = B0 . . . Bn, and given a pattern P [1..m],
we can compute the maximal concatenation of successive phrases Bt . . . B` that match
contiguous pattern substrings P [i..j], for any 0 6 i 6 j 6 m, in O(m2) time overall.

Note that using this algorithm to find maximal concatenations we do not improve
the total performance of the algorithm for finding occurrences of type 3. However, the
reduction will be relevant in Chapter 5 for improved versions of the LZ-index.

3.3.7 The Nav-LZI in Practice

In the practical implementation of LZ-index [Nav04, Nav08], the Range data structure
defined in Section 3.3.1 is replaced by RNode, which is a mapping from phrase identifiers
to their node in RevTrie. The RNode data structure requires n log n bits, and so this
practical version of LZ-index also requires 4uHk(T )+o(u log σ) bits, for any k = o(logσ u).

Now occurrences of type 2 are found as follows: For every possible split P [1..i] and
P [i+1..m] of P , assume the search for P r[1..i] in RevTrie yields node vr, and the search for
P [i + 1..m] in LZTrie yields node vlz. Then, one checks each phrase t in the subtree of vr

and reports it if Node[t+1] descends from vlz. Each such check takes constant time. Yet, if
the subtree of vlz has fewer elements, one does the opposite: check phrases from vlz in vr,
using RNode[t − 1]. Unlike when using Range, now the time to solve occurrences of type
2 is proportional to the smallest subtree size among vr and vlz, which can be arbitrarily
larger than the number of occurrences reported. That is, by using RNode we have no
worst-case guarantees at search time. However, the average search time for occurrences of
type 2 is O(n/σm/2) [Nav04, Nav08]. This is O(1) for long patterns, m > 2 logσ n.

For occurrences of type 3, after finding that P [i..j] = Bt . . . B` is a maximal
concatenation, one checks whether phrase B`+1 starts with P [j + 1..m] by using operation
ancestor(Clz[j+1,m], Node[`+1]), just as in Section 3.3.5. To check whether phrase Bt−1

ends with P [1..i − 1], instead of performing a symbol-per-symbol checking in LZTrie, as
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done in the original LZ-index, one simply checks whether ancestor(Cr[i−1], RNode[t−1])
holds in RevTrie.

Despite this version of LZ-index does not provide worst-case guarantees at search
time, it has been shown to be competitive against state-of-the-art indexes [Nav08].

3.4 Russo and Oliveira’s LZ-index (ILZI)

Russo and Oliveira [RO07] define the Inverted Lempel-Ziv Index (ILZI for short). They
discard the original LZ78 parsing of the text, and define a variant parsing instead, which
they call the maximal parsing of text T .

To construct the ILZI, they first construct the LZ78 parsing of T r = Z1 . . . Zn′ , and
then construct, among other data structures, the sparse suffix tree T78 for the set of strings
{Zr

1 , . . . , Zr
n′}. Russo and Oliveira prove that the number of nodes in T78 is at most 2n,

where n is the number of phrases in the LZ78 parsing of T .

At search time, occurrences of type 1 are found in a similar way as for the Nav-LZI,
in O(m + occ1) time. Occurrences of type 2 and type 3 are found in time proportional to
O(m) in a very clever way. Instead of searching for every possible pattern substring, as
done by the Nav-LZI for occurrences of type 3, Russo and Oliveira divide the pattern into
maximal substrings, i.e., substrings of P that are nodes of T78 and are not the prefix of
another substring of P that is also a node of T78. This process of dividing P into maximal
substrings is carried out by means of a dynamic programming algorithm, and using some
properties of the sparse suffix tree T78 to reuse the work done for some substring of P (the
so-called descend and suffix walk process [RO07]). An important aspect is that pattern P
cannot have more than O(m) maximal substrings.

After partitioning the pattern into maximal substrings, and using these to find the
sparse-suffix-tree ranges which allows us to search for occurrences spanning several phrases
(as explained for other LZ-index in this chapter), they use these ranges in order to search
for occurrences of type 2 and type 3 by means of a two-dimensional range search, in
O((m + occ2) log u) time.

Lemma 3.5 ([RO07]). Given a text T [1..u] over an alphabet of size σ, and with k-th
order empirical entropy Hk(T ), the LZ-index of Russo and Oliveira (ILZI) requires (5 +
ε)uHk(T ) + o(u log σ) bits of space, for any 0 < ε < 1. Given a search pattern P [1..m],
this index is able to:

(1 ) locate the occ occurrences of pattern P in text T in O((m
ε + occ) log u) time;

(2 ) count the pattern occurrences in O(m
ε log u + occ) time;

(3 ) determine whether pattern P exists in T in O(m
ε log u) time; and
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(4 ) extract any text substring of length ` in O( `
ε logσ u) time

It is important to note that the optimal bound for extract queries is achieved by
Russo and Oliveira [RO07] by using the same approach that we shall define later in this
thesis.
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Chapter 4

Reducing the Space Requirement
of LZ-indexes

The Nav-LZI, or simply the LZ-index, has a space requirement which is relatively large
compared with competing schemes [Nav08]: 1.2–1.6 times the text size versus 0.6–0.7
and 0.3–0.8 times the text size of Compressed Suffix Array (CSA) [Sad03] and FM-index
[FM05], respectively. In addition, the LZ-index does not offer space/time trade-offs, which
limits its applicability. Yet, the LZ-index is faster to locate and to display the context of
an occurrence. As we said before, fast displaying of text substrings is very important in
self-indexes, as the text is not available otherwise.

Therefore, the challenge in this chapter is to reduce the space requirement of LZ-
index (providing space/time trade-offs), while retaining the good features of fast locating
and fast displaying of text substrings. We study how to reduce the space requirement of
Navarro’s LZ-index, using what we call the navigational scheme approach. This shall be
the first step towards the more principled approach of Chapter 5.

4.1 The LZ-index as a Navigation Scheme

4.1.1 The Original Navigation Scheme

The LZ-index structure defined in Section 3.3.7 can be regarded as a navigation scheme
that permits us moving back and forth from trie nodes to the corresponding preorder
positions, both in LZTrie and RevTrie. The phrase identifiers are common to both tries
(arrays ids and rids) and permit moving from one trie to the other by using Node and
RNode mappings.

Fig. 4.1 shows the navigation scheme, where solid arrows represent the main data
structures of the index. Dashed arrows are asymptotically “for free” in terms of
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space requirement, since they are followed by applying preorder and selectnode on the
corresponding parentheses structure (see Section 2.5.2). From now on we use the subscript
“lz” for the operations on LZTrie, and subscript “r” for RevTrie. The four solid arrows
in the diagram are in fact the four main components in the space usage of the LZ-index:
array of phrase identifiers in LZTrie (ids) and in RevTrie (rids), and mapping from phrase
identifiers to tree nodes in LZTrie (Node) and in RevTrie (RNode). The structure is
symmetric and we can move from any point to any other.

LZTrie

node

LZTrie

preorder

RevTrie

node

RevTrie

preorder

phrase
identifier

preorderlzselectnodelz preorderr selectnoder

ids

Node RNode

rids

Figure 4.1: The original LZ-index navigation structures over index components.

The structure, however, is redundant in the sense that the number of arrows is not
minimal. Given a graph with t nodes (in our case t index components), t arrows are
sufficient to connect them in both directions (actually forming a ring structure). Since
nodes and preorder positions in the tries are “connected” using operations preorder and
selectnode over the trie representations (see Section 2.5.2), we can think that there are
only three main index components to connect: LZTrie (either nodes or preorder positions),
phrase identifiers, and RevTrie (either nodes or preorder positions). Next we define more
space-efficient representations for LZ-index, trying to reduce the number of arrows in the
scheme. Note that, because of Lemma 2.1, we are interested in reducing the number of
index components that require n log n = uHk(T ) + o(u log σ) bits of storage.

4.1.2 Schemes Requiring 3uHk + o(u log σ) bits

In this section we present schemes requiring only three solid arrows to connect the LZ-
index components, thus forming a ring structure that still allows the same navigation as in
the original LZ-index. Different choices yield different efficiencies depending on how often
each type of navigation is used during the search.

Scheme 1. The following data structures compose this version of LZ-index:
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(1) LZTrie: The Lempel-Ziv trie, which is implemented with the following data
structures

— par[0..2n − 1]: The tree shape of LZTrie represented either with balanced
parentheses (Lemma 2.10) or with dfuds (Lemma 2.11), requiring in any case
2n + o(n) bits.

— letts[1..n]: The array of symbols labeling the arcs of LZTrie, represented as
explained in Section 2.5.2, depending on the representation used for par. The
space requirement is, in any case, n log σ + o(n log σ) = o(u log σ) bits.

— ids[1..n]: The array of LZ78 phrase identifiers in preorder. Since ids[0] = 0, we
do not store this value. Note that ids is a permutation of {1, . . . , n}. The space
requirement is n log n bits.

(2) RevTrie: The Patricia tree [Mor68] of the reversed LZ78 phrases, which is
implemented with the following data structures

— rpar[0..2n′ − 1]: The RevTrie structure, represented either with bp or with
dfuds, compressing empty unary paths and thus ensuring n′ 6 2n nodes,
because empty non-unary nodes still exist. Thus, the space requirement is
2n′ + o(n′) bits.

— rletts[1..n′]: The array storing the first symbol of each edge label in RevTrie,
represented as for LZTrie and requiring n′ log σ + o(n′) bits of space.

— skips[1..n′]: the Patricia tree skips of the nodes in preorder, using log log u bits
per node and inserting empty unary nodes when the skip exceeds log u. In
this way, one out of log u empty unary nodes could be explicitly represented.
In the worst case there are O(u) empty unary nodes, of which O(u/ log u) are
explicitly represented. This adds O(u/ log u) nodes to n′, which translates into
O((n′ + u

log u)(3 + log σ + log log u)) = o(u log σ) bits overall for the RevTrie
nodes, symbols, and skips.

— B[1..n′]: A bit vector supporting rank and select queries, and requiring
n′(1 + o(1)) bits of space (see Lemma 2.4 (1)). This bit vector marks the
non-empty nodes: The j-th bit of B is 1 iff the node with preorder position
j in rpar is not empty, otherwise the bit is 0. Given a position i in rpar
corresponding to a RevTrie node, the corresponding bit in B is B[preorderr(i)].
The preorder of a node p counting only non-empty nodes can be computed as
rank1(B, preorderr(i)).

(3) RNode[1..n]: The mapping from phrase identifiers to the corresponding RevTrie
node. Since we represent nodes as the positions of opening parentheses, and since
there are 2n′ 6 4n such positions in RevTrie, this mapping needs n log 4n = n log n+
2n bits. We only store pointers to non-empty nodes.
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(4) Rev [1..n]: A mapping from a RevTrie preorder position to the corresponding LZTrie
node, defined as Rev[i] = Node[rids[i]]. Given a position i in rpar corresponding
to a non-empty RevTrie node, the corresponding Rev value (i.e., LZTrie node) is
Rev[rank1(B, preorderr(i))]. The space requirement is n log n + n bits.

The resulting navigation scheme is shown in Fig. 4.2(a). The search algorithm
remains the same since we can map preorder positions to nodes in the tries and
vice versa (see Section 2.5.2), and also we can simulate the missing arrays rids(i) ≡
ids[preorderlz(Rev[i])] and Node(i) ≡ Rev[rank1(B, preorderr(RNode[i]))], all of which
take constant time.

We have reduced the space requirement to 3n log n + 3n log σ + 2n log log u + 11n +
o(u) = 3n log n + o(u log σ) bits if log σ = o(log u), which according to Lemma 2.1 is
3uHk(T ) + o(u log σ) bits, for any k = o(logσ u).

The child operation on RevTrie can now be supported in O(1) time if we use dfuds,
because we store rletts and the skips. This compares well to the O(h log σ) time of the
original LZ-index [Nav04]. Now, because RevTrie is a Patricia tree and the underlying
strings are not readily available, it is not obvious how to traverse it. The next lemma
addresses this issue.

Lemma 4.1. Given a string s ∈ Σ∗, we can determine whether it is represented in RevTrie
or not (finding the corresponding node in the affirmative case) in O(|s|) time.

Proof. To find the node corresponding to string s we descend from the RevTrie root, using
operation child(x, α) on the first symbol of each edge label, which is stored in rletts, and
using the skips to compute the next symbol of s to use in the descent. If s cannot be
consumed while descending, then we determine that it is not represented in RevTrie in
O(|s|) time. Otherwise, assume that after consuming string s in this way we arrive at node
vr with preorder j in RevTrie (counting only non-empty nodes). The string labeling the
root-to-vr path in RevTrie can be computed by accessing the node vlz = Rev[j] in LZTrie,
and then extracting the string labeling the vlz-to-root path in LZTrie. Then we compare
that string against s to verify that the node we arrived at corresponds to s, or otherwise
that s does not occur in RevTrie.

In case node vr in RevTrie is empty, Rev[j] is undefined. Notice, however, that there
must be at least one non-empty node descending from this empty node, since leaves in
RevTrie cannot be empty as they always correspond to an LZ78 phrase. Given that the
string represented by every non-empty node in the subtree of node vr has the string s
as a prefix, the corresponding strings in LZTrie have sr as a suffix. So we can use any
Rev value within the subtree of node vr in order to map to the LZTrie and then extract
the string it represents. We can use, for example, the value Rev[rank1(B, j) + 1], which
corresponds to the next non-empty node within the subtree of node vr. We know when to
stop extracting in LZTrie, since we know the length of the string we are looking for.
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The overall cost for the descending process is therefore O(|s|).

Operations child and parent on LZTrie can be also computed in O(1) time if we use
dfuds on this trie, versus the O(log σ) time (in theory) of the original LZ-index. Hence,
occurrences of type 1 are located in O(m+occ1) time; occurrences of type 2 are located now
in O( n

σm/2 ) average time; occurrences of type 3 are located as in the original LZ-index, in

O(m2) average time, by using hashing to find the maximal concatenations of phrases (for
practical reasons, we decide to use this approach in practice, instead of the one defined by
Lemma 3.4). Therefore, the occ occurrences of P can be located in O(m2 + n

σm/2 ) average

time. This time is O(m2) on average for m > 2 logσ u.

Practical Issues. On the practical side, the access from RevTrie nodes to the corresponding
LZTrie node is faster under this scheme, since the direct link Rev is faster than the
composition of rids and Node of the original scheme. This is good, for example, for
finding occurrences of type 1, which can be dominant for short patterns, as there is a high
probability that an occurrence is contained in a single phrase. However, sometimes we must
follow longer navigation paths in the search process: for example, when finding occurrences
of type 2, we can choose to traverse the subtree in RevTrie, and for each phrase identifier
id in such subtree apply Node(id + 1) to check whether it descends from the appropriate
subtree in LZTrie. As now we have to simulate Node, this is more expensive (in practice,
even if not asymptotically) than in the original scheme. Even worse, since array rids is
not stored in RevTrie, we must simulate rids(i) to get the phrase identifier id. Therefore,
the search time could be increased in practice, depending on the number of occurrences of
each type.

Let us study occurrences of type 2 in more detail, since they seem to be critical
under this scheme. Suppose that for a given partition P [1..i] and P [i + 1..m] of P we
get nodes vlz and vr in LZTrie and RevTrie respectively. If we choose to traverse the
subtree of vr in RevTrie, then for each node v′r in this subtree we get the corresponding
phrase identifier id = ids[preorderlz(Rev[pr])], where pr is set initially to pr = rank1(B,
preorderr(vr)), and it is incremented by one with each node in a preorder traversal of
the subtree. We then check whether the node Rev[rank1(B, preorderr(RNode[id + 1]))]
descends from vlz in LZTrie. If, on the other hand, we choose to traverse the subtree of vlz

in LZTrie, then for each node v′lz in this subtree we get the phrase identifier as id = ids[plz],
where plz is set initially as plz = preorderlz(vlz), and it is incremented by one with each
node in a preorder traversal. We then check whether the node RNode[id−1] descends from
vr in RevTrie. Empirically, a check from RevTrie to LZTrie is about 3 times as expensive
as in the opposite direction, and thus we choose to traverse the subtree of vr whenever its
size is less than 1/3 the size of the subtree of vlz.
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Figure 4.2: Reduced navigation schemes over LZ-index components, requiring 3uHk +
o(u log σ) bits.
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Scheme 2. This scheme tries to reduce the space requirement while also reducing the
average path length in the navigation scheme:

(1) LZTrie: The Lempel-Ziv trie, defined just as for Scheme 1.

(2) RevTrie: The Patricia tree of the reversed LZ78 phrases, defined just as for Scheme
1, but now we add

— rids−1[1..n]: The explicit representation of the inverse of permutation rids of
the original LZ-index definition, requiring n log n bits.

(3) R[1..n]: A mapping from RevTrie preorder positions to LZTrie preorder positions
defined as R[i] = ids−1(rids[i]) and requiring n log n bits. Given a position i in
rpar corresponding to a non-empty RevTrie node, the corresponding R value (i.e.,
preorder in LZTrie) can be computed as R[rank1(B, preorderr(i))].

The resulting navigation scheme is shown in Fig. 4.2(b). We can compute rids(i) ≡
ids[R[i]], RNode(i) ≡ selectnoder(rids−1[i]), and Node(i) ≡ selectnodelz(R[rids−1[i]]), all
in constant time.

The space requirement is 3n log n + 3n log σ + 2n log log u + 8n + o(u) = 3n log n +
o(u log σ) bits if log σ = o(log u), which according to Lemma 2.1 is 3uHk(T ) + o(u log σ)
bits, for any k = o(logσ u).

If we use dfuds to represent both LZTrie and RevTrie, then we can locate the occ
occurrences of pattern P in O(m2 + n

σm/2 ) average time, which is O(m2) for m > 2 logσ u.

Practical Issues. It is interesting to note that the average path length of this scheme is
shorter than that of Scheme 1, which can translate into a more efficient navigation among
index components. In this scheme, for occurrences of type 1 we have direct access to a
LZTrie preorder by using R, and then we have to apply selectnode to get the node whose
subtree contains the pattern occurrences. This can be slightly slower than for Scheme 1,
where we have direct access to the corresponding node.

However, for occurrences of type 2 we have to follow shorter paths than for Scheme 1.
Suppose that for a given partition P [1..i] and P [i + 1..m] of P we get nodes vlz and vr in
LZTrie and RevTrie respectively. If we choose to traverse the subtree of vr in RevTrie, for
each node in this subtree we get the corresponding phrase identifier id by using both the
R mapping and then ids. Then we use R[rids−1[id + 1]] to get the corresponding LZTrie
preorder, and then we check whether this preorder lies within the subtree of vlz. If, on the
other hand, we choose to traverse the subtree of vlz in LZTrie, then for every node in this
subtree we get the corresponding phrase identifier id using ids, and then we check whether
the preorder rids−1[id − 1] lies within the subtree of vr in RevTrie. Thus, a check from
RevTrie to LZTrie is twice as expensive as in the opposite direction, and thus we choose
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to traverse the subtree of vr whenever its size is less than half the size of the subtree of
vlz.

Fortunately, the checks of type 2 can be carried out directly on the preorders of both
tries, avoiding the use of (the usually expensive) selectnode to get the corresponding trie
node: if we choose to traverse the subtree of vr, for example, we compute the preorder
interval for the subtree of vlz as [preorderlz(vlz)..preorderlz(vlz) + subtreesizelz(vlz) − 1]
(recall that preorder is computed by means of rank), and then we check whether the
LZTrie preorders we get from the nodes in the subtree of vr lie within the preorder interval
of vlz. In this way, we compute just one rank per partition to get the interval, and then
we check the LZTrie preorder of the candidates by using just this interval, rather than
computing selectnode for every possible candidate in that partition. This introduces very
important savings in the practical search time.

There are many other possible schemes that achieve 3uHk(T )+o(u log σ) bits of space.
We have focused on the two most promising ones. For example, consider a scheme where
we only replace the R mapping of Scheme 2 by the Rev mapping of Scheme 1. We have
again direct access for occurrences of type 1, but occurrences of type 2 now introduce the
computation of rank in LZTrie for every possible candidate, which is expensive.

4.1.3 Schemes Requiring (2 + ε)uHk + o(u log σ) bits

In Section 4.1.2 we have used the minimal number of arrows to connect the three main
components of LZ-index, forming a ring structure. It seems that we cannot reduce
further the space requirement of the index by using our navigation-scheme approach.
However, many of the data structures of the LZ-index are just permutations, and so
the corresponding arrows can be made bidirectional by means of the data structure for
permutations described in Lemma 2.7, using just (1 + ε)n log n + n + o(n) bits for both
arrows. This opens several new possibilities.

Scheme 3. This scheme represents the following data:

(1) LZTrie: The Lempel-Ziv trie, defined as for Scheme 1, except that now we use the
representation of Lemma 2.7 for ids such that the inverse permutation ids−1 can be
computed in O(1/ε) time, requiring (1 + ε)n log n + n + o(n) bits for any 0 < ε < 1.

(2) RevTrie: The Patricia tree of the reversed LZ78 phrases, defined as in Scheme 1,
but now we add the array rids represented using the data structure of Lemma 2.7,
so as to be able to compute rids−1 efficiently.

The resulting navigation scheme is shown in Fig. 4.3(a). We can simulate the missing
arrays Node(i) ≡ selectnodelz(ids−1(i)) and RNode(i) ≡ selectnoder(rids−1(i)), all in
O(1/ε) time.
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The space requirement is (2 + ε)n log n + 3n log σ + 2n log log u + 10n + o(u) = (2 +
ε)n log n+o(u log σ) bits, which according to Lemma 2.1 is (2+ ε)uHk(T )+o(u log σ) bits,
for any k = o(logσ u).

Once again, if we use dfuds to represent both tries of the LZ-index, then occurrences
of type 1 can be located in O(m+ occ1

ε ) time, because we must use ids−1 to access to LZTrie;
occurrences of type 2 are located in O( n

εσm/2 ) because we must use inverse permutations

to move between tries; occurrences of type 3 are located in O(m2

ε ) time, since we need to

use Node and RNode to check every possible candidate, in O(m2

ε ) time overall. Thus, the

occ occurrences of P can be located in O(m2

ε + n
εσm/2 ) average time, for 0 < ε < 1. This is

O(m2

ε ) for m > 2 logσ u.

Practical Issues. This scheme stores the phrase identifiers for both tries, which, as we
have seen for the previous schemes, is very convenient for occurrences of type 2: recall
that when traversing the RevTrie subtree we have to get the phrase identifier of each node
in the subtree; if we do not store the RevTrie identifiers, we have to access LZTrie to
get them (as is the case of Schemes 1 and 2) and then we have to access LZTrie again
to perform the check. This is not the case for Scheme 3. However, now we have paths
including inverse permutations, which introduce an extra time overhead in practice.

Notice also that this scheme is symmetric in the sense that the checks for occurrences
of type 2 cost the same in any direction we choose.

Scheme 4. This scheme represents the following data:

(1) LZTrie: The Lempel-Ziv trie, defined just as in Scheme 3.

(2) RevTrie: The Patricia tree of the reversed LZ78 phrases, defined just as in Scheme
1.

(3) R[1..n]: The mapping from RevTrie preorder positions to LZTrie preorder positions,
as defined in Scheme 2. This time R is implemented using the succinct data structure
for permutations of Lemma 2.7, requiring (1 + ε)n log n + n + o(n) bits to represent
R and compute R−1 in O(1/ε) worst-case time.

In Fig. 4.3(b) we draw the navigation scheme. We can simulate the missing arrays
rids(i) ≡ ids[R[i]], RNode(i) ≡ selectnoder(R

−1(ids−1(i))), and Node(i) ≡ selectnodelz(
ids−1(i)), all of which take O(1/ε) time.

The space requirement is (2 + ε)n log n + 3n log σ + 2n log log u + 10n + o(u) = (2 +
ε)n log n+o(u log σ) bits, which according to Lemma 2.1 is (2+ ε)uHk(T )+o(u log σ) bits,
for any k = o(logσ u). Just as for the previous scheme, the occ occurrences of P can be

located in O(m2

ε + n
εσm/2 ) average time, for 0 < ε < 1.
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Figure 4.3: Reduced navigation schemes over LZ-index components, requiring (2 + ε)uHk +
o(u log σ) bits.
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Practical Issues. This scheme has more efficient access between tries than Scheme 3, as we
have to use R in the RevTrie-to-LZTrie direction, and R−1 in the opposite way. However,
since we store the phrase identifiers only in LZTrie, retrieving the identifier of a RevTrie
node requires to access two arrays. For occurrences of type 2, the checks from RevTrie to
LZTrie require to access R, then ids, and finally ids−1, while in the opposite way we need
to use ids, then ids−1, and finally R−1. The latter case can be more expensive since we
have to compute two inverse permutations. Note also that ids−1 is used in both directions
for occurrences of type 2, which means that this inverse permutation is the most used at
search time. Hence, given an amount of space we are able to use, we should use a denser
sampling for ids−1 than for R−1.

Again, we have focused on the most promising schemes requiring (2 + ε)uHk(T ) +
o(u log σ) bits, although there are many other choices.

4.2 Some Implementation Details

We describe in this section the most important details in the implementation of our indexes.
We followed the API interface specification provided in the Pizza&Chili Corpus [FN05],
and made the source code available at http://pizzachili.dcc.uchile.cl/indexes/

LZ-index/.

4.2.1 Representing the Tries

We defined our indexes in Section 4.1 in such a way that we can use almost any suitable
representation for the tries that compose the indexes. We just need to define accordingly
the preorder and selectnode operations for the chosen representation. Taking this into
account, we implement our reduced LZ-indexes in two different ways:

(1) Using the bp representation (Lemma 2.10) for both LZTrie and RevTrie;

(2) using the dfuds representation (Lemma 2.11) for LZTrie, and the bp representation
for RevTrie.

Note that we do not use dfuds for RevTrie, as it requires more space in practice. Moreover,
just as for the original LZ-index, we do not store the symbols labeling the RevTrie edges
(i.e., the first symbol of each string labeling an edge) nor the Patricia-tree skips. This is
in order to save space in practice, since these can be computed by using the connection
with the LZTrie: previous experiments [Nav04, Nav08] showed that this is sufficient for
RevTrie as most navigations on it are supported by using the LZTrie (and those that are
not are usually deep in the trie, where the arity is very low and the attractive of dfuds

vanishes). We needed to use these arrays in theory in order to guarantee the average-time
complexity of our data structures.

We describe these implementations in what follows.
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Using bp Representation. We implemented the trie operations on top of the data
structure for balanced parentheses of Navarro [Nav04, Section 6.1]. The trie operations
are supported as explained in Section 2.5.2. Recall that in order to support the operations
on bp we must support operations findclose, excess, and enclose on the sequence of
balanced parentheses. Therefore, we do not store information to support findopen, thus
saving space. Moreover, we do not need to support operation parent on RevTrie, and thus
we do not store information to support enclose on the parentheses representing this trie.

Operation child(x, α) is supported by using child(x, i), for i = 1, 2, . . ., until finding
the child labeled α. This is because the symbols labeling the children of x are scattered
throughout array letts and must be found one by one using the operations on the
parentheses. Whenever we need to support rank and select queries (this is, on top of
the parenthesis sequences, to represent bitmap B in RevTrie, and for the permutation
data structures), we use the data structure of González et al. [GGMN05].

Using dfuds Representation. The main idea of using the dfuds representation for
LZTrie is to reduce the time overhead for computing operation child(x, α) incurred by bp.

As done for bp, we represent the dfuds sequence of LZTrie on top of the data
structure for balanced parentheses of Navarro [Nav04]. Note that the dfuds representation
of a trie tends to have far matching parentheses, since every node is formed by a number of
opening parentheses (indicating the degree of the node), and only a few of these parentheses
have the corresponding closing parentheses close enough so as not to be stored in the hash
tables. Thus the hash tables tend to require more space under dfuds. We also use the
data structure of González et al. [GGMN05] to support rank and select queries.

We study the way in which the trie operations are used by the LZ-index search
algorithm in order to make this representation more efficient. For example, dfuds

introduces a heavier use of rank and select in its operations (see Section 2.5.2), according
to the original definitions [BDM+05]. However, many of these are redundant in the LZ-
index (sometimes they are repeated twice in a given sequence of operations, as we will see
below), and many others can be replaced by sequential scans over par, since the dfuds

position we are looking for should be not so far away from the current position. A list
with the most important implementation details follows:

Supporting Operation findopen. Unlike the representation of LZ-index based exclusively
on bp, with dfuds we need to provide operation findopen over the parentheses sequence.
This is necessary, for example, to compute operation parent [BDM+05] (recall also Section
2.5.2). Therefore, we need to add a second data structure, like the one used by Navarro
[Nav04] (i.e., hash tables) to support findopen and enclose operations. This adds extra
space to dfuds.
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Figure 4.4: Illustration of our practical representation of array letts for the dfuds

representation. Notice that the labels of the children of a given node are stored in reverse
order.

A Practical Representation of letts. Recall from Section 2.5.2 that the symbol by which a
node x descends from its parent can be computed as letts[rank((par, parent(x)) − 1 +
childrank(x) − 1], which involves computing several rank, select, and parentheses
operations. Although these can be computed in constant time in theory, we look for a
more practical variant in practice.

This problem comes from the fact that there is an inverse relationship between the
symbol labeling the i-th child of node x′ of degree d (this symbol is originally stored at
position i within the labels of children of x′) and the opening parenthesis used to compute
the dfuds position of the i-th child of x′ (recall that we use the (d − i + 1)-th opening
parenthesis within the representation of x′).

Therefore, we propose to represent letts by traversing the LZTrie in preorder and, for
every node x reached, writing contiguously the symbols labeling the children of x, this time
in reverse order. This means that the label of the last child appears in the first place, the
label of the first child appears in the last place, and so on. See Fig. 4.4 for an illustration.

In this way there is a direct relationship between each of the opening parentheses
defining a given node x′ (which are used to find the children of x′) and the labels of
the children of x′. Thus, the label by which a given node x descends from its parent
can be computed as letts[rank((par, findopen(par, x − 1))], avoiding the use of operation
childrank(x) as in Section 2.5.2, which involves more rank and select operations [JSS07b].

Moreover, in many cases we can reuse the operation findopen computed to get the
symbol. For example, in the LZ-index, most of the times that we need to know the
symbol of a given node, we also need to go to the parent node, as for instance when
computing extract and display operations, and when we use the LZTrie to descend in
RevTrie. Then, after computing the corresponding symbol, we retain the position given
by operation findopen in order to search for the parent of the current node, avoiding to
repeat the same operation findopen when computing operation parent.

Since the labels of the children of node x are stored contiguously and sorted (yet
in reversed order, according to our representation), array letts is stored in a plain way,
without using any rank and select data structure, thus saving space. Operation child(x, α)
is implemented by binary searching the list of labels of x. When the list is small (say, less
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than 10 elements) we perform a sequential scan on the symbols. This saves time compared
with the bp representation, where we have to repeatedly use operation findclose on the
parentheses in order to find the child we are looking for. With dfuds, on the other hand,
this work is done on the symbols, and then we map again to the dfuds sequence to find
the corresponding child (this involves only one findclose operation).

Avoiding Operation depth on dfuds. The original dfuds representation [BDM+05] does
not provide operation depth, later supported by Jansson et al. [JSS07b] in O(1) time and
requiring o(n) extra bits of space. However, in the LZ-index we need to use depth in a very
limited way, which helps us implement this operation simply and efficiently. We choose
not to store any extra depth information, and thus we save space. Instead we completely
avoid the computation of depth at search time.

In the LZ-index search algorithm, we only need to use operation depth when locating
occurrences of type 1 (see Section 3.3.5). Recall that to find occurrences of type 1 we must
first search for P r in RevTrie, getting node vr. Then, for each node in the subtree of vr

we map to the corresponding node vlz in LZTrie, and then we traverse the subtree of vlz

to report occurrences of type 1. The problem here is how to compute the offset of every
occurrence within the corresponding phrase (in Section 3.3.5 we use operation depth to do
that). However, note that the offset for node vlz is m, since the phrase ends with P . Note
also that the offset for the children of vlz is m + 1, and in general the offset of node v′lz
within the subtree of vlz is m + d, where d is the difference of depths between vlz and v′lz.

So, instead of computing the depth of the nodes within the subtree of vlz, which is
expensive in our representation, we compute the offset of the nodes. This problem can be
solved in a straightforward way in bp, since we perform a preorder traversal from vlz, with
initial offset m. We then increment the offset every time we enter a new subtree (which is
indicated by ‘(’ in bp), and decrement it when leaving a subtree (which is marked by ‘)’
in bp). The preorder traversal is carried out by sequentially traversing the bp sequence
and array ids, and not by using operation child on LZTrie. However, this is not so easy
in dfuds, since, for example, there is no clear marker of the end of a subtree (i.e., in a
sequential scan on dfuds there is no direct way to know whether a node is the last child
of its parent).

Therefore, in the dfuds representation we start a preorder traversal from node vlz,
and store the degree (number of children) of vlz and its offset m in an initially empty stack.
We then continue with the next node in preorder. At every step, the offset for the current
node is computed as the offset of the parent node (which is the one at the top of the stack)
plus one. Every time the degree stored in the top is (or becomes) 0 (leaves are a particular
case), we pop it, and then decrement the degree of the node in the top, indicating that
a new child of this node has been fully processed (this can eventually produce more pops
when all of the children of the top node have been processed). As it can be seen, we are
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using the stack to know when the subtree of a node has been completely processed. This
procedure ends when the stack becomes empty.

As in the case of bp, the preorder traversal is performed by a sequential scan on the
dfuds sequence, and the degree of every node x is computed by counting the number of
opening parentheses in the representation of x.

This procedure could be also used to compute the depth of all nodes within the
subtree of vlz, by initializing the stack with the depth of vlz, instead of storing the initial
offset m. Note also we do not need to explicitly store depths or offsets, as they correspond
to the stack height plus a constant.

Implementation of Operation degree. In our implementation we do not use the original
definition for operation degree, which is based on operation select in order to find the next
closing parenthesis which finishes the definition of the node. This allows us to count the
number of opening parentheses defining the current node. In practice, in most cases this
closing parenthesis is not so far away from the current position in dfuds, except perhaps
for the trie root. This is because in practice the tries tend to have high degrees only in
the first levels. Thus, we explicitly store the degree of the root node, and for the rest of
the nodes we perform a sequential scan on the dfuds sequence. To avoid looking at every
parenthesis in the process, we advance by machine words (in our experiments this shall
mean 32 bits), until finding the first word containing a closing parenthesis. We represent
opening parentheses with a 0, and closing ones with a 1. Thus, we advance while the
corresponding word represents a 0, i.e., it stores only opening parentheses. However, in
the case of very large alphabets the original definition of degree could be better, or we
could replace the sequential search by an exponential search using the rank subdirectory.

4.2.2 Computing Text Positions

We add to our indexes a data structure in order to transform pattern occurrences in the
format Jt, oK into real text positions. We define array TPos storing the absolute starting
position (in the text) for the LZ78 phrases with identifier i · b, for i > 0, for a total
of n

b log u bits. We also define array Offset, storing in Offset[i · b + j], for j > 0, the
offset (in number of text symbols) of phrase i · b + j with respect to phrase i · b, requiring
n log M extra bits of space, where M is the maximum number of text positions between
two consecutive sampled phrases. If LZTrie has height h = O(log n) (which is true in
practice with high probability [KS00]), then M = O(b log n), and thus array Offset requires
O(n(log b + log log n)) bits. By choosing b = log u the total space requirement for both
arrays is n + O(n log log u) = o(u log σ) bits.

Given an occurrence Jt, oK, the real text position for that occurrence can be computed
in constant time as TPos[b(t + 1)/bc] + Offset[t + 1] − o. In our experiments, we choose
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b = 32 (in a 32-bit machine) such that the division by b and taking the floor can be carried
out efficiently by using shifts on machine words. For extract queries, we are given a text
position from where to extract and we want to know the corresponding LZTrie node from
where to start uncompressing the text. Therefore, given a text position pos we can obtain
the phrase containing pos by first binary searching TPos, finding the greatest phrase i · b
such that its position TPos[i] is smaller or equal to pos. Then, we sequentially look in the
corresponding segment of Offset[i · b..(i + 1) · b] for the greatest phrase t whose starting
position does not exceed pos. Thus, the text position pos belongs to phrase t. The time
for this operation is O(log u), because of the binary search on TPos and the sequential
search in the segment of Offset.

In Section 4.3.2 we will show the experimental space requirement of this data structure
for a set of real-life texts.

4.2.3 Supporting Partial locate Queries

In many applications it is quite common that we do not need to find all of the pattern
occurrences, but just a few (arbitrary) of them. For this kind of applications, we design
an algorithm to answer partial locate queries, where we are interested in locating just
K arbitrary pattern occurrences. Our algorithm, which profits from the properties of the
LZ-index in order to support fast searches, is as follows:

(1) Given a search pattern P , notice that a particular occurrence of it can be found by
searching for P in LZTrie. In other words, P equals an LZ78 phrase, which is a
particular case of occurrence of type 1, and can be found very fast in practice since
this is better than using the slower RevTrie [Nav08]. If P exists as a phrase, say
corresponding to node vlz in LZTrie, then all of the nodes descending from vlz in the
trie also correspond to occurrences of P , and can be used to answer the query. Thus,
we traverse the subtree of vlz and report every node found, as done for occurrences
of type 1 (see Section 3.3.5). We stop the procedure as soon as we find K pattern
occurrences.

(2) If the previous step was not enough to answer the query, and in case that P exists
in LZTrie, we map to the node corresponding to P r in RevTrie (which exist for sure
since P is an LZ78 phrase), and go on to locate the rest of occurrences of type 1 as
usual. Otherwise, we delay occurrences of type 1 for a further step and go to the
next step.

(3) In case P does not exist as an LZ78 phrase, we proceed with occurrences of type 2,
trying to reuse as much as possible the work already done in step (1). We are thus
delaying occurrences of type 1 for a further step. Let P [1..i] be the longest proper
prefix of the pattern that exists as an LZ78 phrase. Hence, P r[1..i] exists as a reverse
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phrase in RevTrie. Because of Property 2.5, every prefix of P [1..i] also exists as a
phrase in LZ78 (and the corresponding reverses exist in RevTrie). Then, to reuse
the work already done when searching for P in LZTrie, we map to the RevTrie node
corresponding to P r[1..i], which gives us node vr, and then search for P [i + 1..m] in
LZTrie, to get node vlz. We then search for occurrences of type 2 corresponding to
the partition P [1..i] and P [i + 1..m], using the nodes vlz and vr, in the usual way
and stopping as soon as we find K occurrences. Note that by choosing the longest
prefix P [1..i] that exists in LZTrie, we are reducing as much as possible the length
of the suffix P [i + 1..m] to be searched in LZTrie. If this was not enough to answer
the query, we repeat the process for the occurrences of P [1..i − 1] and P [i..m], in a
similar way, and so on.

(4) We search for the remaining occurrences of type 2 (i.e., using those partitions of the
pattern that were not tried in the previous step)

(5) Then, we continue with occurrences of type 1, as usual and just if P does not exist
in LZTrie (i.e., these were not tried before).

(6) Finally we try occurrences of type 3.

We call level 0 of the search to the step of searching for P in LZTrie, level 1 the search
for occurrences of type 1 (either at steps (2) and (5)), level 2 the search for occurrences of
type 2 (either at steps (3) and (4)), and level 3 the search for occurrences of type 3 (step
(6)). As it can be seen, we try to get fast access to the pattern occurrences, avoiding as
much as we can the trie navigations, which become more expensive if we want to locate
just a few occurrences. We shall use this approach also to support efficient exists queries
(similar to K = 1).

4.3 Experimental Results

We have now a number of practical reduced schemes for LZ-index, each one requiring
a different amount of memory space. Hence given an amount of available storage, it
is interesting to know which alternative is the best for that space. We hope that larger
alternatives are faster in practice, whereas the smaller ones will still be competitive against
the best existing indexes.

4.3.1 Experimental Setup

For the experiments of this section we used an Intel(R) Pentium(R) 4 processor at 3
GHz, about 4 gigabytes of main memory and 1024 kilobytes of cache, running version
2.6.13-gentoo of Linux kernel. We compiled our algorithms with gcc 3.3.6 using full
optimization.
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Text Collections. We test our indexes in different practical scenarios, using the texts
provided in the Pizza&Chili Corpus [FN05]:

— English Texts: Although in many cases natural-language texts are searched for
whole words or phrases, there are many other cases where a more powerful
full-text search is needed. For the experiments with English text we use the
file http://pizzachili.dcc.uchile.cl/texts/nlang/english.200MB.gz of 200
megabytes.

— DNA Sequences: Nowadays, one of the main applications of full-text indexing is that
of computational biology, in particular indexing DNA sequences. We test with the file
http://pizzachili.dcc.uchile.cl/texts/dna/dna.200MB.gz, of 200 megabytes.

— MIDI Pitch Sequences: A very interesting application that has appeared in recent
years is that of processing MIDI pitch sequences. In this case we test with the
file of about 53 megabytes downloadable from http://pizzachili.dcc.uchile.

cl/texts/music/pitches.gz.

— XML Texts: Since XML is becoming the standard to represent semi-structured text
databases as well as in many other applications, there exists the need of managing
a huge amount of texts of this kind. In typical applications, XML documents are
automatically generated in large amounts. It is interesting therefore to be able to
compress the data, while at the same time being able to search and extract any part of
the text, since XML data is usually queried and navigated by other applications. We
test with the XML file of 200 megabytes downloadable from http://pizzachili.

dcc.uchile.cl/texts/xml/dblp.xml.200MB.gz.

— Proteins: Another interesting application of text-indexing tools in biology is that of
indexing and searching proteins. We use the file http://pizzachili.dcc.uchile.

cl/texts/protein/proteins.200MB.gz, of 200 megabytes.

— Source Code: To test our indexes in applications like software development, we use
the source-code file http://pizzachili.dcc.uchile.cl/texts/code/sources.

200MB.gz, of 200 megabytes.

Comparison against Other Indices. We compare our indexes against the most efficient
indexes we are aware of, most of them available in Pizza&Chili :

Sadakane’s Compressed Suffix Array (CSA). This index [Sad03] is a representative
of the family of compressed suffix arrays [GV05, GGV03, Sad03]. It requires
ε−1uH0(T ) + O(u log log σ) bits of space, a counting time of O(m log u), a locating
time of O(logε u) per occurrence reported, and an extracting time O(` + logε u) for
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any text substring of length `, where 0 < ε 6 1 is any constant. We use the code
provided at http://pizzachili.dcc.uchile.cl/indexes/Compressed Suffix Array/

sada csa.tgz. We have two parameters to set up for this index. The first one is the
sample rate of suffix array positions (this information is used to speed up the locating
and extracting operations), and the second one is the sample rate of the Ψ function. For
exists and count queries we do not store any suffix array position, but only Ψ values. For
locate queries, we used values of 4, 8, 16, 32, and 64 for suffix array positions, and the
value 128 to sample the Ψ function (as this has shown to be the most efficient alternative
[FGNV08]).

Alphabet Friendly FM-index (AF-FMI). This index [FMMN07] is based on the backward-
search concept [FM05]. It has a space requirement of uHk(T ) + o(u log σ) bits, a counting
time O(m), a locating time O(log1+ε u) per occurrence reported, and an extracting time
O(`+log1+ε u), for σ = O(polylog(u)), any constant ε > 0, and any k 6 α logσ u, where 0 <
α < 1 is any constant. We use the code provided at http://pizzachili.dcc.uchile.cl/
indexes/Alphabet-Friendly FM-Index/af-index v2.tgz. We have only one parameter
to set up in the code, which is the sample rate of suffix array positions. We have used
sample rates of one suffix array position stored out of 4, 8, 16, 32, and 64 text positions.
For exists and count queries we do not store any suffix array position.

Succinct Suffix Array (SSA). This index [MN05] is also based on backward search, but
uses only one wavelet tree [GGV03], achieving uH0(T ) + o(u log σ) bits of space. The
time complexities of this index are just as for the AF-FMI. We use the code provided
at http://pizzachili.dcc.uchile.cl/indexes/Succinct Suffix Array/SSA v2.tgz.
We use the same parameters as for the AF-FMI.

Navarro’s LZ-index (Nav-LZI). The original implementation of Navarro’s LZ-index
[Nav08]. We added to this index our data structures to report text positions, in order to
conform the Pizza&Chili API. As explained before, this index does not provide space/time
trade-offs.

Inverted LZ-index (ILZI). This is the implementation of the index of Lemma 3.5 by Luis
Russo, which does not conform the Pizza&Chili API as the other indexes. In particular,
pattern occurrences are reported in the format Jt, oK, just like for the original LZ-index.
The index does not include the data structure to transform those occurrences into real
text positions, as our implementations do. To be fair, we sum the space of the described
data structure for text positions to the space of this index. We also sum the average time
to transform occurrences into real text positions for locate queries. According to our
experiments, this is 1.3 microseconds per occurrence. As an additional consequence, this
index does not provide extract queries, but only display queries. So, we are not able to
extract arbitrary text substrings.
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It is important to note also that the current implementation of the ILZI does not
return to the invoking application an array with the pattern occurrences, as required by
the Pizza&Chili API. This implementation just prints the number of phrases containing
the starting position of the occurrences. We get rid of the print operation in the code, and
thus there is no reporting operation at all (we just find the occurrences). In particular,
we are not accounting for the overhead of managing the occurrence array, which grows
dynamically as more occurrences are found.

Russo and Oliveira [RO07] define a practical variant of LZ78 parsing, the so-called
LZ78 maximal parsing with quorum l. The idea is that for every phrase Bi = Bj · c, Bj is
the longest prefix of the rest of the text that appears at least l+1 times in B0 . . . Bi−1. Note
that by using l = 0 we get the original LZ78 parsing. In this way, by using larger quorum
values we can reduce the number of phrases in the LZ78 maximal parsing, hence reducing
the number of nodes in the trie representing those phrases, and thus reducing the space of
the index. We use quorum values l = 0, 1, 2, 4, 8, and 16 to get different space/time trade-
offs, though this is not actually a trade-off parameter, but an optimization parameter, as
we shall see in our experiments. Smaller values of l do not yield a significant reduction in
the space requirement.

4.3.2 Comparison of Space Requirement and Construction Time

In Table 4.1 we show the construction time and final space requirement for the indexes we
have tested. For Schemes 3 and 4, we test with 1/ε = 1, 2, 3, 4, 5, 10, and 15. Notice that
before we enforced ε to be smaller than 1, because this makes no sense for the permutation
data structures. In our implementation, however, we allow for ε = 1, by simply storing the
inverse permutation explicitly. As it can be seen, we have reduced the space of the original
LZ-index, and in the cases of Scheme 3 and Scheme 4 we offer space/time trade-offs,
which come from the data structures for permutations used in these schemes. A smaller
sampling in these structures yield a smaller representation, yet a higher construction time,
since these permutations are used to implement the Node data structure, which is used to
construct the data structure for text positions of Section 4.2.2. Note that the maximum
space requirement of both Scheme 3 and Scheme 4 is about the same as that of the original
LZ-index, and that the minimum space requirement we achieve is in all cases around 2/3
the space of the original LZ-index.

In many cases, such as for XML documents and DNA data, our indexes are smaller
than the original text. This is important by itself since we are able to provide indexing
capabilities with a representation which is smaller than the original text.

We also conclude that our indexes are much faster to build than competing schemes.
It can be argued that construction time is not so important in indexed text searching,
where one constructs the index once and queries it several times, so that construction
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time is amortized over a number of queries. However, as we deal with very large texts
(because we would use a classical index otherwise), construction time is not irrelevant. As
a comparison between LZ-based schemes, the ILZI, which is in most cases the slowest index
to build, is built about 9 times slower than our schemes (e.g., in the case of English text).
One reason for this is that our indexes are constructed by performing only one pass over
the text, while the ILZI needs two passes [RO07]. Recall that the ILZI does not construct
any text-position data structure, which would further increase its construction time.

In Table 4.2 we show the experimental size of the data structures described in Section
4.2.2 for reporting text positions in our LZ-indexes. This space is already accounted for
in Table 4.1.

4.3.3 Comparison of Search Time

Next we experimentally test whether the trade-offs we provide are competitive for
compressed text searching. In our experiments, we call S2 dfuds the version of Scheme
2 implemented on dfuds, and S3 dfuds the dfuds version of Scheme 3. We do not
include Scheme 1 based on dfuds, since it is outperformed by S2 dfuds, both of them
requiring about the same space. We no dot include Scheme 4 in our plots, since Scheme
3 outperforms it in most cases (though they require almost the same space). However,
Scheme 4 is interesting by itself, as we shall see in Chapter 5, since we can reduce its space
requirement even more, which we cannot achieve by using other schemes.

Extract Queries. Since compressed full-text self-indexes replace the text, the fast
extraction of arbitrary text substrings is essential in most applications, and thus one of
the most relevant problems the indexes face. To test the performance of our indexes, we
extract 10,000 random snippets, each of length 100. We measure the time per symbol
extracted, so we average over a total of 1 million extracted symbols.

In Fig. 4.5 we show the experimental results. As we can see, our indexes are very
competitive in the range of space they require, in most cases outperforming competing
schemes, which in some cases cannot compete even if using more memory than ours. In
the particular case of DNA text, our indexes are competitive against the SSA, which in
the case of small alphabets is a very good alternative. This is because the corresponding
wavelet tree [GGV03], on which the SSA is based, is shallow, and then each text symbol
can be extracted very fast (every symbol is extracted in time proportional to the height of
the corresponding wavelet tree).

This shows the superiority of our LZ-indexes in this important aspect. Also, we can
see that our approach to reduce the space of the LZ-index is effective in this case, since
we are able to reduce the space while still maintaining a good extracting performance.
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Table 4.1: Range of space requirement and construction time for the indexes we have tested.
The space is shown as a fraction of the text size. Indexing time is shown in MB per second.

Text Index Range of space req. Indexing speed
(fract. of text size) (MB per second)

English CSA 0.43 – 1.50 0.45 – 0.44
SSA 0.87 – 2.87 0.93 – 0.90
AF-FMI 0.65 – 2.65 0.26
ILZI 1.23 0.15
Original LZ-index 1.69 1.47
Scheme 1 1.39 1.30
Scheme 2 1.38 1.27
Scheme 3 1.13 – 1.69 0.91 – 1.33
Scheme 4 1.13 – 1.69 0.71 – 1.31

DNA CSA 0.46 – 1.53 0.51
SSA 0.50 – 2.50 1.33 – 1.28
AF-FMI 0.48 – 2.48 0.43
ILZI 0.95 0.66
Original LZ-index 1.24 2.35
Scheme 1 1.03 2.02
Scheme 2 1.01 1.99
Scheme 3 0.83 – 1.24 1.36 – 2.12
Scheme 4 0.83 – 1.24 1.03 – 2.06

MIDI Pitches CSA 0.62 – 1.68 0.94 – 0.92
SSA 1.04 – 3.04 1.80 – 1.71
AF-FMI 0.93 – 2.94 0.36
ILZI 1.86 0.24
Original LZ-index 2.58 1.76
Scheme 1 2.16 1.49
Scheme 2 2.12 1.47
Scheme 3 1.76 – 2.58 0.88 – 1.58
Scheme 4 1.76 – 2.58 0.62 – 1.56

XML CSA 0.29 – 1.35 0.68
SSA 0.98 – 2.98 1.34 – 1.29
AF-FMI 0.54 – 2.54 0.44 – 0.43
ILZI 0.61 0.34
Original LZ-index 0.93 2.38
Scheme 1 0.77 2.15
Scheme 2 0.76 2.15
Scheme 3 0.63 – 0.93 1.57 – 2.23
Scheme 4 0.63 – 0.93 1.24 – 2.17

Proteins CSA 0.67 – 1.73 0.57 – 0.56
SSA 0.82 – 2.82 0.97 – 0.95
AF-FMI 0.82 – 2.82 0.38 – 0.37
ILZI 1.73 0.24
Original LZ-index 2.40 1.55
Scheme 1 1.99 1.29
Scheme 2 1.96 1.25
Scheme 3 1.62 – 2.40 0.79 – 1.35
Scheme 4 1.62 – 2.40 0.58 – 1.30

Sources CSA 0.38 – 1.44 0.76 – 0.75
SSA 1.01 – 3.01 1.37 – 1.32
AF-FMI 0.73 – 2.73 0.30
ILZI 1.15 0.17
Original LZ-index 1.67 1.73
Scheme 1 1.39 1.54
Scheme 2 1.37 1.51
Scheme 3 1.13 – 1.67 1.04 – 1.59
Scheme 4 1.13 – 1.67 0.79 – 1.54
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Figure 4.5: Experimental extracting time, for random snippets of length ` = 100. Times are
measured in microseconds per symbol extracted.
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Table 4.2: Size of the data structure for reporting text positions in our LZ-indexes.

Text Size of text-position data structure
(as a fraction of text size)

English 0.14
DNA 0.11
MIDI Pitches 0.27
XML 0.09
Proteins 0.22
Sources 0.16

Display Queries. In many applications displaying a context surrounding the occurrences
is as important as (and sometimes more important than) the occurrence positions
themselves. This is not a problem for classical indexes, since the text is available and
hence we can get the contexts from the occurrence positions obtained with locate. In the
case of self-indexes, on the other hand, one must ask the index to reproduce the occurrence
contexts, which is achieved with display queries since we do not have the text at hand.
Thus, fast displaying the occurrence contexts is also important for a self-index.

To test our indexes, we search for 5 million pattern occurrences and then show a
context of 50 symbols surrounding every occurrence, for patterns of length 10 (in other
words, we display 110 symbols per occurrence).

In most indexes, display(P, `) queries can be thought of as a locate(P ) query (in
order to find the pattern occurrences) followed by an extract(i, j) query (where i and
j are computed by means of the positions obtained with locate and the context length
`). In our LZ-indexes, however, we originally get the occurrences in the format Jt, oK, to
finally transform t and o into a text position (by means of the data structure described
in Section 4.2.2). This text position must be transformed by extract again into an LZ78
phrase (recall that this involves binary searching the text-position data structures), from
where we start the extraction of text in LZTrie. To avoid repeating this work, we do not
transform the occurrences into text positions when performing display queries. We rather
display text with a simplified version of extract that works on LZ78 phrases rather than
on text positions.

In Fig. 4.6 we show the experimental results. The current implementation of the
ILZI shows only a context preceding the pattern occurrences, and not surrounding the
occurrences as other schemes do. For our LZ-indexes, showing a context surrounding the
occurrences (which is usually required) introduces the use of extra operations which are
not needed when showing a context preceding an occurrence. As it can be seen, just like
for extract queries, our indexes are among the most competitive schemes for displaying
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text, in many cases outperforming the competing ILZI.

Locate Queries. For locate queries we search for 10,000 patterns extracted at random
positions from the text, with length 5, 10, and 15. For short patterns, we limit the total
number of occurrences found to 5 million. We measure the time in microseconds per
occurrence found.

As we said before, locate queries are important in classical full-text indexing, where
one has the text at hand in order to access the occurrences and the contexts surrounding
them. This is somehow equivalent to display queries in the scenario of compressed full-
text self-indexes. Obtaining just text positions (and nothing else) can be interesting in
specific cases, but display queries have broader applications.

Partial locate Queries. In many applications we do not need to locate all of the pattern
occurrences at once, but just a few of them. This is a very challenging problem for our
LZ-indexes since, for example, the indexes based on suffix arrays are very efficient to find
the suffix-array interval containing the occurrences, and hence they are rapidly ready to
start locating the occurrences. The ILZI has also a very fast O(m)-time trie navigation
before starting the locating procedure.

We test here our algorithm defined in Section 4.2.3 (recall that we divide the search
process into four levels, level 0 up to 3). In Table 4.3 we show the percentage of occurrences
that are found in each level of search, for K = 1 and for the different text collections. Notice
that the search of level 0 (i.e., searching for P as a whole phrase in LZTrie) is very effective
for patterns of length 5 to 10 (in the case of DNA, for example, almost 100% of the queries
can be answered at level 0). Notice also that the percentage found at level 1 is relatively
small compared to the corresponding percentage of level 0. Recall that with the search of
level 0 we look for a particular case of occurrences of type 1. This leads us to conclude
that most of the times a pattern exists as an occurrence of type 1, this can be found at
level 0 of the search. For longer patterns, m = 15, there is a smaller probability of finding
the occurrence contained in a single phrase, and thus the percentage found at level 0 is
smaller.

In Figs. 4.7 up to 4.10 we show the experimental result for values K = 1 and 5, and
for m = 5 and 10. We do not show the results for m = 15 since the results are poorer, as
predicted by the results of Table 4.3.

For m = 5 and K = 1, the most interesting results are obtained in the cases of English
text, DNA, XML, and proteins, though in the latter case our indexes do not obtain good
compression. For DNA, S3 dfuds is unbeatable since, as we have seen in Table 4.3, 100%
of the occurrences are found at level 0 of the search. Notice that for MIDI pitches our
performance is not so competitive (except perhaps for S2 dfuds), as it was also predicted
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Figure 4.6: Experimental display time, for snippets of length ` = 110 around every pattern
occurrence. Times are measured in microseconds per symbol extracted.
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Table 4.3: Percentage of patterns found at each level of search, for partial locate queries with
K = 1 and for different pattern lengths. Level 0: P is found as an LZ78 phrase in LZTrie;
Level 1: P is found as occurrence of type 1, but not as a whole phrase; Level 2: P is found as
occurrence of type 2; Level 3: P is found as occurrence of type 3.

Text Level Percentage per level
m = 5 m = 10 m = 15

English 0 98.64 55.86 7.80
1 0.54 6.27 1.83
2 0.82 34.97 63.14
3 0.0 2.90 27.23

DNA 0 100.0 99.26 11.63
1 0.0 0.33 1.06
2 0.0 0.41 78.74
3 0.0 0.0 8.57

MIDI Pitches 0 72.28 20.01 9.69
1 3.69 2.10 1.38
2 23.82 42.66 19.67
3 0.21 35.23 69.26

XML 0 95.41 65.61 37.56
1 2.59 11.53 15.53
2 1.99 19.55 32.13
3 0.01 3.31 14.78

Proteins 0 98.96 13.29 8.51
1 0.71 1.41 1.29
2 0.33 63.87 11.23
3 0.0 21.43 78.97

Sources 0 94.31 48.40 21.41
1 2.73 9.34 6.01
2 2.94 37.15 44.11
3 0.02 5.11 28.47
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Figure 4.7: Experimental time for partial locate queries, for patterns of length m = 5 and
retrieving just K = 1 occurrence. We measure the time in microseconds per occurrence
reported.
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by Table 4.3: only 73% of the occurrences are found at level 0, and thus we need more trie
navigations.

Except for MIDI pitches, the best alternatives are the indexes based on Lempel-
Ziv compression: ours and the ILZI (the best in each case depends on the space usage,
as it can be seen). This shows that Lempel-Ziv-based indexing is a very competitive
choice in general, despite that suffix-array-based indexes basically compute the suffix-
array interval containing the occurrences, and then we ask the index to obtain just one of
these occurrences. As we shall see later with count queries, these indexes are very efficient
to find the suffix-array interval; however, asking them to obtain just one occurrence makes
them significantly less competitive.

Notice also that our indexes based on dfuds outperform (in most cases by far) our
indexes based on bp. This is because the fast navigation on the tries becomes a fundamental
aspect, since we are reporting just a few occurrences. For this reason, and in order to make
our plots clearer, we do not show the results for the bp-based Scheme 1, Scheme 2, and
original LZ-index.

As we increase the number of occurrences to locate, in principle the trie navigations
are amortized by reporting more occurrences. However, our indexes may need to go on
more levels of the search, which means more navigations on the tries. Therefore, the total
cost depends on the number of occurrences found in each search level. In general, as K
grows, it becomes more difficult to compete since occurrences at higher levels are more
expensive to obtain. Yet, we still provide some interesting cases for K = 5 and K = 10
(the latter case is not shown; results are close to those for K = 5).

The trie traversals also raise when we increase the pattern length, as it can be seen
for m = 10.

Thus, we conclude that our technique for solving partial locate queries of Section
4.2.3 is relevant, and more efficient when the probability of finding the occurrences at level
0 of the search is high, as for example when we search for short patterns, the alphabet is
small, or we look for very few occurrences (e.g., K = 1).

Full locate Queries. We test here locate queries without limiting the number of
occurrences. In Fig. 4.11 we show the experimental results for patterns of length m = 5.
As we can see, there is no clear winner in all cases, but the performance depends on the
available space. However, we can see some clear performance patterns: in most cases our
schemes outperform all competing schemes (including the very competitive ILZI) as soon
as we have space available to store, at least, Scheme 2. When we reduce the space usage
of the index, however, the ILZI outperforms Scheme 3, yet the latter is still competitive
(in most cases outperforming the competitive CSA). In general, for locate queries with
short patterns the superiority of Lempel-Ziv-based indexes is clear.
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Figure 4.8: Experimental time for partial locate queries, for patterns of length m = 5 and
retrieving just K = 5 occurrences. We measure the time in microseconds per occurrence
reported.
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Figure 4.9: Experimental time for partial locate queries, for patterns of length m = 10
and retrieving just K = 1 occurrence. We measure the time in microseconds per occurrence
reported.
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Figure 4.10: Experimental time for partial locate queries, for patterns of length m = 10
and retrieving just K = 5 occurrences. We measure the time in microseconds per occurrence
reported.
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Notice also that, in most cases, Scheme 2 outperforms Scheme 1, both requiring about
the same space. This means that the shorter average path length of Scheme 2 is better
than having direct access from RevTrie to LZTrie nodes as in Scheme 1, which is good
only for occurrences of type 1. As we said before, occurrences of type 2 are more costly
in Scheme 1. It is also important to note that the dfuds versions of LZ-index have a
performance which is similar to the LZ-index based on bp. Notice, however, that dfuds

requires more space than bp, as it was predicted in Section 4.2.1.

In the particular case of XML text, we can see a very important aspect that
differentiate LZ-indexes from indexes based on suffix arrays. The latter need to store
extra non-compressible information (the sampled suffix array positions) to efficiently carry
out locate and extract queries. The extra data stored by LZ-indexes, on the other
hand, is compressible, for example the size of the arrays for which we sample the inverse-
permutation information depends on n, the number of LZ78 phrases of T . Therefore,
when the texts are highly compressible, the LZ-indexes can be smaller and faster than
alternative indexes.

For proteins, as an opposite case, our LZ-indexes are larger and slower. They are
large since the text is not as compressible as others, which can be also noted in the size
of competing schemes. Our LZ-indexes are in addition slower in this case, since each
search retrieves on average only a few patterns, and therefore the work on the tries is not
amortized by reporting many occurrences.

We show the results for patterns of length m = 10 in Fig. 4.12. As we can see,
our indexes are still competitive, yet not as significantly as in the previous case where
m = 5. The dfuds implementation of LZ-index outperforms bp in all cases, except for
MIDI pitches, XML text, and source code, where these have about the same performance.
In particular for proteins and English text, where the number of occurrences per pattern
is relatively small, the difference is greater for dfuds, since the cost of navigating the tries
becomes predominant. It is important to note also that Scheme 2 (both for bp and dfuds

implementations) is interesting (in some cases the best) alternative, for the memory space
it requires. For patterns of length m = 15 (figure omitted), the behavior of the indexes is
similar to that of length m = 10.

Our results indicate that our LZ-indexes, despite not being the best in many cases,
are an attractive alternative for locate queries. In most cases we need at least the space
required by Scheme 2 in order to outperform competing schemes. In particular, our LZ-
indexes are an interesting alternative for full locate when the total number of occurrences
to report is considerable. For long patterns, the number of pattern occurrences becomes
smaller, and therefore the time of searching for the O(m2) pattern substrings in the tries
dominates. This problem can be somehow alleviated by using the dfuds implementation
for the tries. We can conclude that the LZ-indexes based on bp and on dfuds behave very
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Figure 4.11: Experimental locating time, for patterns of length m = 5. We measure the time
in microseconds per occurrence reported.
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Figure 4.12: Experimental locating time, for patterns of length m = 10. We measure the time
in microseconds per occurrence reported.
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similarly when reporting a great number of occurrences fast is an important issue (e.g.,
when m = 5). Yet dfuds requires more space. On the other hand, when the navigation
in the tries becomes more important (e.g., for larger m), the dfuds implementation offers
a more attractive alternative, which can replace the bp implementation at the cost of a
little extra space requirement.

Count Queries. This kind of queries has applications in much more specific and limited
cases, generally composing the internal machinery of more complex tasks.

In our experiments we search for patterns of length 20 extracted at random positions
from the text. We measure the times per symbol of the pattern. As competing schemes
based on suffix arrays do not store suffix-array sampling information in order to count
(and thus are able to support efficiently only count queries), to be fair in this case we do
not store the data structure for text positions in our LZ-indexes. Yet, note that, within
this space, we are still able to support fast locate queries (though without reporting text
positions), and display queries.

The experimental results for count queries are shown in Fig. 4.13. As we can see,
our schemes can implement this query, yet they cannot compete against the indexes based
on suffix arrays, since the counting complexity of these indexes is related to the pattern
length, and not to the number of pattern occurrences. Our schemes basically need to
locate the pattern occurrences in order to count them. We can also see that the dfuds

implementation of LZ-index outperforms in all cases the bp implementation, yet the former
requires slightly more space. This is mainly because we are searching for long patterns,
and dfuds provides more efficient descent in the LZTrie.

Exists Queries. In some specialized applications we just need to know whether pattern
P exists or not in the text. Indices based on suffix arrays basically need to count the
number of occurrences, since they first search for the pattern, and then check whether
the suffix-array interval they get is empty or not. Despite that our LZ-indexes are not
competitive for count queries, we show here that they are much more efficient for finding
the first occurrence of a pattern, which is useful to support exists queries (indeed, this
has been already shown in the experiment with partial locate queries). The key is that
we do not necessarily need to count the occurrences, but just to find the first pattern
occurrence as fast as we can. We test with patterns of length 5, 10, and 15, and search
for 10,000 patterns that exist in the text. We implement existential queries in our indexes
using the idea of partial locate queries, explained in Section 4.2.3.

In Fig. 4.14 we show the experimental results for exists queries, for patterns of
length 5. Excluded plots for patterns of length m = 10 produced similar results, while
those for patterns of length m = 15 gave worse results (this is because, as predicted in
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Figure 4.13: Experimental counting time, for patterns of length m = 20. We measure the time
in microseconds per symbol of the pattern.
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Table 4.3, the heuristic of level 0 is not so effective for longer patterns). As it can be seen,
our indexes are much more competitive than for count queries, showing that our approach
of first looking for P in LZTrie is effective in practice. Our indexes achieve the same times
(though not the same space) in many cases. As in the case of count queries, our indexes
are larger than competing schemes, yet ours are able to support more than just count and
exists queries within this space.

4.4 Final Comments

In this chapter we have reduced the space requirement of LZ-indexes, in particular,
Navarro’s LZ-index. Given a text T [1..u] over an alphabet of size σ, and with k-th
order empirical entropy Hk(T ) [Man01], the original LZ-index of Navarro [Nav04] requires
4uHk(T ) + o(u log σ) bits of space. In this chapter we define several new versions of the
LZ-index, requiring 3uHk(T )+o(u log σ) and (2+ ε)uHk(T )+o(u log σ) bits of space. The
latter ones allow us to partially overcome one of the drawbacks of the original LZ-index:
the lack of space/time tuning parameters. Although our schemes do not provide worst-case

guarantees at search time, they ensure O(m2

ε + n
εσm/2 ) average-case time for locating the

occurrences of pattern P [1..m] in T . This is O(m2

ε ) for m > 2 logσ u. In Chapter 5 we
shall add worst-case guarantees to some of our reduced schemes.

Our experimental results show that the space of the index can be dropped up to 2/3
the size of the original LZ-index. When comparing the search performance, we conclude
that our indexes are able to reduce the space of the original LZ-index while retaining much
of the good features of the original LZ-index. In particular, we can conclude that:

— Our indexes are very competitive (in most cases the best) alternatives for extract

and display queries, which we argue are the most basic queries in the scenario of
compressed full-text self-indexes, where the text is not available otherwise1. In some
cases we are able to extract about 1 to 1.5 million symbols per second, being about
twice as fast as the most competitive alternatives.

— For partial locate queries (where a fixed number of occurrences is located), our
algorithm is efficient in cases of searching for short patterns, of texts with small
alphabets, or when we want to locate very few occurrences (e.g., only one occurrence).

— For full locate queries, we showed that our indexes are more effective when the
search pattern is not too long, or there are many occurrences to report. In other cases,
the O(m2)-time navigation on the tries is predominant, and thus our performance
degrades. For example, for short patterns of length 5, in most scenarios our schemes

1In the literature [NM07] the count operation is taken as the most basic one, but this is probably biased
towards suffix-array-based indexes, more than to considering typical applications.
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Figure 4.14: Experimental time for exists queries, for patterns of length m = 5. We measure
the time in microseconds per pattern.
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are the best alternative if we can spend at least 80% the size of the original LZ-
index. When less memory space is available, our indexes are outperformed by the
very competitive Inverted LZ-index (ILZI) [RO07], which is yet another variant
of the Lempel-Ziv-based index family. In this case, however, our indexes are still
competitive with all suffix-array-based schemes (e.g., the competitive Compressed
Suffix Array of Sadakane [Sad03]).

It is well known that the original LZ-index is more adequate for short patterns
[Nav08]. We somehow alleviated the problem of long patterns, by using a more
efficient representation, the so-called dfuds representation of Lemma 2.11, for the tries
that compose the LZ-index. From our experiments we can conclude that our dfuds

implementation allows us for very efficient search, in many cases outperforming the
traditional balanced-parentheses representation (Lemma 2.10) of the LZ-index. However,
more work is needed to compete in this respect against suffix-array-based indexes. We
hope to get further improvements on this line when working on alphabets larger than
those tried in this chapter, for example, if defining an LZ-index working on words, for
applications of natural-language processing.

We also exhibit an important difference between LZ-indexes and those based on
suffix arrays: the latter need to store extra non-compressible information (the suffix-
array samples) in order to carry out extract, display, and locate queries, whereas
the information stored by our LZ-indexes is compressible. Thus, when the text is highly
compressible, we get very small LZ-indexes, which are still fast. Indices based on suffix
arrays, on the other hand, cannot use a denser suffix-array sampling (because otherwise
they become larger), and henceforth their performance is poor. Thus, our indexes are also
a very good option for highly compressible texts.

Overall, we believe that our indexes offer an extremely relevant alternative considering
their overall performance across the multiple tasks of interest in many real text-search
applications. We made the code of our indexes available in the Pizza&Chili corpus, at the
site http://pizzachili.dcc.uchile.cl/indexes/LZ-index/.

We do not consider in this chapter the space-efficient construction of our indexes,
which is a very important issue in practice, since many times a small index requires
a large amount of memory space to be build. Currently, our indexes are constructed
in an uncompressed way, needing about the same space used to build suffix-array-based
compressed self-indexes. The space-efficient construction of the latter is still at a theoretical
stage [MN08b], or still does not achieve higher-order entropy-bound space [HLS+07]. In
Chapter 6 we will show how to space-efficiently construct our LZ-index schemes.
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Chapter 5

Stronger Lempel-Ziv Text Indexes

In Chapter 4 we have shown that the space of the Nav-LZI (or simply the LZ-index) can
be reduced (in practice to about 2/3 the space of the original LZ-index) while retaining
much of the good features of the original LZ-index. However, that is a practical approach
since we cannot provide worst-case guarantees at search time; moreover, we are not able
to reduce even more the space requirement of LZ-index by those means.

As we have seen in Chapter 4, for the LZ-index we can achieve (2 + ε)uHk(T ) +

o(u log σ) bits of space and O(m2

ε ) average search time for patterns of length m > 2 logσ u.
Hence, two questions may arise:

Question 5.1. Can we reduce the space requirement of LZ-index to (1 + ε)uHk(T ) +
o(u log σ) bits?, that is, to almost optimal space (in terms of Hk).

Question 5.2. Can we retain worst-case guarantees at search time (as for the original
LZ-index), yet requiring (2 + ε)uHk(T ) + o(u log σ) bits of storage (as for the schemes of
Fig. 4.3)?

In this chapter we will find affirmative answers to these questions. We shall study
how to reduce by about a half the space requirement of the original LZ-index, while at
the same time improving its time complexities. The result are attractive, much stronger,
alternatives to current state of the art in compressed self-indexing.

In a first approach (Section 5.1), we compress one of the data structures composing
the original LZ-index by using an idea which is, in some sense, related to the compression
of suffix arrays [GV05, Sad03]. Theorem 5.1 shall answer Question 5.1 and Theorem 5.2
shall answer Question 5.2. In a second approach (Section 5.2) we combine the balanced
parentheses representation of Munro and Raman [MR01] (see Lemma 2.10) of the LZ78 trie

This chapter is based on joint work [ANS06, ANS08] with Kunihiko Sadakane, from Kyushu University,
Japan.
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with the xbw transform of Ferragina et al. [FLMM05] (see Lemma 2.12), whose powerful
operations are useful for the LZ-index search algorithm. In Section 5.3 we will show how
to achieve the same results as for the ILZI [RO07] (see Lemma 3.5), yet with a smaller
index. Finally, in Section 5.4 we show how to achieve optimal extracting time with all of
our indexes.

5.1 Suffix Links in RevTrie

In this section we will build on the reduced Scheme 4 described in Section 4.1.1 and
illustrated in Fig. 4.3(b) (on page 72). We assume that the tries composing the LZ-index
are represented with dfuds (see Lemma 2.11). Given an LZTrie node with preorder
position i, let us define

parentlz(i) ≡ preorder(parent(selectnode(i)))

That is, parentlz is the parent operation working on preorders rather than on the
corresponding nodes. Let childlz(i, α) be defined similarly as

childlz(i, α) ≡ preorder(child(selectnode(i), α))

Also, let us define

lettslz(i) ≡ letts[rank((par, parent(selectnode(i))) − 1 + childrank(selectnode(i)) − 1]

which yields the symbol by which the node with preorder i descends from its parent (recall
from Section 2.5.2 how letts is represented in the case of dfuds). We denote strlz(i) the
string represented by node with preorder i in LZTrie. In the same way we define strr(j)
for node with preorder j in RevTrie.

The idea is that we are going to compress the R mapping defined for Scheme 4 of LZ-
index. Let us see this array as a kind of suffix array which, instead of storing text positions,
stores LZTrie preorder positions (see Section 2.3.2). Array R is a lexicographically sorted
array of the reversed LZ78 phases (because it is sorted according to RevTrie preorders).
Given a reversed phrase with preorder i in RevTrie (and preorder R[i] in LZTrie), its
longest proper suffix has position parentlz(R[i]) in LZTrie (as this corresponds to the
longest proper prefix in LZTrie). Compare it with Property 2.1 for suffix arrays. Given
a reverse phrase with position j in LZTrie, its lexicographic rank is R−1[j]. Compare it
with Property 2.2 for suffix arrays.

Given this analogy, the question is: can we compress the R mapping just as we
can compress a suffix array [GV05, Sad03]? We define now the analogue in LZ-index to
function Ψ of Compressed Suffix Arrays (CSA), recall Section 2.4.2.
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5.1.1 Defining Suffix Links in RevTrie

Definition 5.1. For every RevTrie preorder 1 6 i 6 n we define function ϕ such that
ϕ(i) = R−1(parentlz(R[i])), and ϕ(0) = 0.

We have the following properties for function ϕ.

Property 5.1. Given a non-empty node with preorder i in RevTrie, such that strr(i) = ax,
for some a ∈ Σ, x ∈ Σ∗, then

(1) strr(ϕ(i)) = x,

(2) R[ϕ(i)] = parentlz(R[i]), and

(3) lettslz(R[i]) = a.

Point (1) means that ϕ acts as a suffix link in RevTrie, and it follows from the fact
that since strr(i) = ax, then strlz(R[i]) = xra, because node i in RevTrie corresponds
to node R[i] in LZTrie. Therefore, strlz(parentlz(R[i])) = xr, which finally means
strr(R

−1(parentlz(R[i]))) = strr(ϕ(i)) = x. Point (2) implies that by following a suffix
link in RevTrie, we are “going to the parent” in LZTrie, and it follows from applying R
to both sides of the equation in Definition 5.1. Fig. 5.1 illustrates. Note that the edge
connecting the LZTrie nodes with preorders R[ϕ(i)] and R[i] is labelled a (as stated by
point (3)) which is the same symbol we are missing when following the suffix link ϕ(i) in
RevTrie.

We can prove that RevTrie is suffix closed since LZTrie is prefix closed, hence suffix
links are well defined.

Lemma 5.1. Every non-empty node in RevTrie has a suffix link.

Proof. Let us consider any non-empty node in RevTrie with preorder i, such that strr(i) =
ax, for a ∈ Σ and x ∈ Σ∗. As ax is a RevTrie phrase (with preorder i), then xra must be
a LZTrie phrase (with preorder R[i]). By Property 2.5 of the LZ78 parsing it follows that
xr is also a LZTrie phrase and thus x must be a RevTrie phrase. Hence, every non-empty
node in RevTrie (i.e., every RevTrie node belonging to a reverse LZ78 phrase) has a suffix
link.

We will use Property 5.1 to reduce the space requirement of the R mapping: suppose
that we do not store R[i] for the RevTrie node with preorder i in Fig. 5.1, but we store
R[ϕ(i)]; then note that R[i] can be computed as childlz(R[ϕ(i)], a). Russo and Oliveira
[RO07] also use properties of suffix links in their index; however, their main objective is to
reduce the locating complexity of their LZ-index to O((m + occ) log u), yet not being able
of reducing the space requirement as we do. In Section 5.3, however, we will show how to
use suffix links to reduce the time complexity of our indexes, achieving their same locating
complexity while requiring less space.
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R[i]
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RevTrie

ϕ(i)

LZTrie

i

xr

x

Figure 5.1: Illustration of Property 5.1. Preorder numbers, both in LZTrie and RevTrie, are
shown outside each node. Dashed arrows associate a RevTrie node with its corresponding
node in LZTrie. This association is given by the R mapping.

Example 5.1. In Table 5.1 we show some arrays composing the reduced version of LZ-
index for our running example, including the ϕ function and the set of reversed LZ78
phrases in RevTrie (in preorder, i.e., lexicographically sorted).

5.1.2 Using Suffix Links to Compute R

Let us show how to compute R[i] using function ϕ. We define array L[1..n], which for each
non-empty node with preorder i in RevTrie stores the first symbol of the string strr(i).

Example 5.2. In the RevTrie of Fig. 3.1(b), it holds that L[i] = ‘a’ for every i in the
preorder interval [2, 5]. In the same example, note that if we follow the suffix link ϕ(i), for
2 6 i 6 5, we discard the symbol ‘a’.

In the example of Fig. 5.1 we have L[i] = a; as we said before, this also means that
L[i] is the label of the edge connecting LZTrie nodes with preorders R[ϕ(i)] and R[i]. In
other words, L[i] = lettslz(R[i]). In Table 5.1 we show the values of L for our example.

It is not hard to prove that L[i] 6 L[j] whenever i 6 j: let i and j be two preorders
in RevTrie, such that i 6 j. Therefore, for the strings corresponding to these preorders it
holds that strr(i) 6 strr(j). As L[i] and L[j] store the first symbol of strr(i) and strr(j)
respectively, then it holds that L[i] 6 L[j]. Thus, L can be divided into σ runs of equal
symbols. In this way L can be represented by an array L′ of at most σ log σ bits and a
bit vector LB of n + o(n) bits, such that LB[i] = 1 iff L[i] 6= L[i − 1], for i = 2 . . . n, and
LB [1] = 0 (this position belongs to the text terminator “$”, which is not in the alphabet).
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Table 5.1: Illustration of the different components of our index for the running example. In
the case of RevTrie, array rids is shown just for simplicity, yet this is not explicitly stored. In
each case, i indicates the preorders in each trie.

LZTrie components

i ids[i] lettslz(i) R−1(i)

0 0 0
1 1 a 2
2 17 $ 1
3 3 b 6
4 15 r 15
5 14 l 10
6 4 r 14
7 12 a 4
8 10 d 8
9 16 l 11
10 6 17
11 11 p 13
12 2 l 9
13 7 a 3
14 9 b 7
15 5 16
16 8 a 5
17 13 p 12

RevTrie components

i rids[i] R[i] ϕ(i) L[i] LB [i] string in RevTrie

0 0 0 0 (empty string)

1 17 2 2 $ 0 $a

2 1 1 0 a 1 a

3 7 13 9 a 0 al

4 12 7 14 a 0 ara

5 8 16 16 a 0 a

6 3 3 2 b 1 ba

7 9 14 3 b 0 bal

8 10 8 14 d 1 dra

9 2 12 0 l 1 l

10 14 5 2 l 0 la

11 16 9 14 l 0 lra

12 13 17 5 p 1 pa

13 11 11 17 p 0 p a

14 4 6 2 r 1 ra

15 15 4 6 r 0 rba

16 5 15 0 1
17 6 10 2 0 a
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For every i such that LB [i] = 1, we store L′[rank1(LB , i)] = L[i]. Hence, L[i] can be
computed as L′[rank1(LB , i)] in O(1) time.

Given a RevTrie preorder position i, in order to compute R[i] we could follow suffix
links in RevTrie starting from node with preorder i, until we reach the RevTrie root. At
this point we could apply, starting from the root of LZTrie, child operations using the first
symbol of each RevTrie string we got while following suffix links, in reverse order. This
procedure is formalized in the following lemma.

Lemma 5.2. Given a RevTrie preorder position 0 6 i 6 n, the corresponding LZTrie
preorder position R[i] can be computed by the following recurrence:

R[i] =

{

childlz(R[ϕ(i)], L[i]) if i 6= 0
0 if i = 0

Proof. R[0] = 0 holds from the fact that the preorder position corresponding to the
empty string, both in LZTrie and RevTrie, is 0. To prove the other part we note
that if x is the parent in LZTrie of node y with preorder position R[i], then the
symbol labeling the edge connecting x to y is stored in L[i] = lettslz(R[i]). That is,
childlz(parentlz(R[i]), L[i]) = R[i]. The lemma follows from this fact and replacing ϕ(i)
by Definition 5.1 in the recurrence.

Example 5.3. To compute R[13] for the example of Table 5.1, which corresponds to
string ‘p a’ in RevTrie, we need to compute childlz(R[17], L[13]), where L[13] = ‘p’ and
ϕ(13) = 17 corresponds to the RevTrie preorder position of string ‘ a’. Now, to compute
R[17] we need to compute childlz(R[2], L[17]), where L[17] = ‘ ’. Then, R[2] is computed
as childlz(R[0], L[2]), which is just childlz(0, ‘a’). At this point we must perform the child
operations from the LZTrie root. Recall that we assume the childlz operation works on
preorder positions, so we must compute childlz(childlz(childlz(0, ‘a’), ‘ ’), ‘p’) in LZTrie,
which is the same as childlz(childlz(1, ‘ ’), ‘p’), which in turn is childlz(10, ‘p’), which finally
yields the node with preorder position 11. Hence, we conclude that R[13] = 11.

5.1.3 Compressing the R Mapping

As in the case of the Ψ function of CSA [GV05, Sad03], we can prove the following lemma
for the ϕ function, which is the key to compress the R mapping.

Lemma 5.3. For every i < j, if L[i] = L[j], then ϕ(i) < ϕ(j).

Proof. Let strr(i) denote the i-th string in the lexicographically sorted set of reversed
strings. Note that strr(i) < strr(j) iff i < j. If i < j and L[i] = L[j] (i.e., strr(i) and
strr(j) start with the same symbol), then strr(ϕ(i)) < strr(ϕ(j)) (as strr(ϕ(i)) is strr(i)
without its first symbol, recall Property 5.1, point (1)), and thus ϕ(i) < ϕ(j).
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Corollary 5.1. Array ϕ can be partitioned into at most σ strictly increasing sequences.

This fact is illustrated in Table 5.1, where the increasing runs of ϕ, corresponding to
runs of equal symbols in L, are separated by horizontal lines.

As a result, we replace R by ϕ, L′, and LB, and use them to compute a given
value R[i]. According to Corollary 5.1, we can represent ϕ using the idea of Sadakane
[Sad03] to represent Ψ, which was explained in Section 2.4.2. Thus, ϕ can be encoded
with nH0(letts) + O(n log log σ) bits, and hence we replace the n log n-bits representation
of R by the nH0(letts) + O(n log log σ) + n + o(n) = O(n log σ) = o(u log σ) bits of the
representation of ϕ, L′, and LB . The absolute values of ϕ now add O(n) bits, while the
size of the table used to sum the differences is o(n) bits.

5.1.4 Computing R and R−1 in O(1/ε) Time

The time to compute R[i] according to Lemma 5.2 is O(|strr(i)|), which actually
corresponds to traversing LZTrie from the root with the symbols of strr(i) in reverse order.
However, the procedure of Lemma 5.2 can be adapted to allow constant-time computation
of R[i]. We store εn values of R in an array R′, plus a bit vector RB of n + o(n) bits
indicating which values of R have been stored, ensuring that R[i] can be computed in
O(1/ε) time while requiring εn log n extra bits.

To determine the R values to be explicitly stored, we fix l = Θ(1/ε) and carry out a
preorder traversal on LZTrie to mark the nodes (1) whose depth is j · l, for some j > 0,
and such that (2) the corresponding node height is greater or equal to l. Since for every
such marked node we have at least l non-marked nodes descending from it, we mark O(εn)
nodes overall. We also ensure that, if we start at an arbitrary node in LZTrie and go
successively to the parent, in the worst case we must apply O(1/ε) parent operations to
find a marked node. It can be the case that near the leaves of the trie we must follow a
longer path to get a marked node, because of condition (2) above. However, notice that
this path is never longer than 2l, which still is O(1/ε). On the RevTrie side, this means
that in the worst case we must follow O(1/ε) suffix links to find a node whose R value has
been stored.

If the node to mark is at preorder position j, then we set RB [R−1(j)] = 1 (note
that RB is indexed by RevTrie preorder). After we mark the positions of R to be stored,
we scan RB sequentially from left to right, and for every i such that RB[i] = 1, we set
R′[rank1(RB , i)] = R[i]. Then, we free R since R[i] can be computed in O(1/ε) worst-case
time, as stated by the following lemma.

Lemma 5.4. Given a RevTrie preorder position 0 6 i 6 n and given any constant 0 < ε <
1, the corresponding LZTrie preorder position R(i) can be computed in O(1/ε) worst-case
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time by the following recurrence:

R(i) =

{

childlz(R(ϕ(i)), L′[rank1(LB , i)]) if RB [i] = 0
R′[rank1(RB , i)] if RB [i] = 1

requiring εn log n + O(n log σ) = εHk(T ) + o(u log σ) bits of space.

Note that the same structure used to compute R−1 using the explicit representation
of R (see Section 2.5.1, Lemma 2.7) can be used under this reduced-space representation
of R, with cost O(1/ε2) to compute R−1(j) (as we have to access O(1/ε) positions in R).
However, we shall show how to compute R−1(j) in O(1/ε) time, using a novel approach
which basically consists in reverting the process used to compute R.

Definition 5.2. For every RevTrie preorder 0 6 i 6 n and every symbol a ∈ Σ, we define
function ϕ′ such that ϕ′(i, a) = R−1(childlz(R[i], a)).

We have the following properties for function ϕ′.

Property 5.2. Given a non-empty node with preorder i in RevTrie, such that strr(i) = x,
for x ∈ Σ∗, then for a ∈ Σ it holds that

(1) strr(ϕ
′(i, a)) = ax,

(2) R[ϕ′(i, a)] = childlz(R[i], a).

Point (1) means that ϕ′ acts as a Weiner link [Wei73] in RevTrie. Point (2) means
that by following a Weiner link by symbol a from node with preorder i, we are “going to
a child by symbol a” in LZTrie. Fig. 5.2 illustrates.

Next we show how to efficiently compute ϕ′ while requiring little space (since the
obvious way to represent it requires basically n log n bits). Let SW [1..n] be an array of
n log σ bits storing, for every RevTrie node, in preorder, the symbols by which the node
has Weiner links defined, and let VW be a bit vector. Because of Property 5.2 (2) (i.e.,
following a Weiner link by a symbol in RevTrie means going to the child by the same
symbol in LZTrie), we can use the LZTrie as an aid to construct SW : We perform a
preorder traversal on RevTrie, and for every non-empty node with preorder i, let d be the
degree of the corresponding LZTrie node R[i]. Then, we write the degree d in unary in
VW , in the format 10d. Thus, the 1s in VW will be used to locate the position of a node
within the data structure (via operation select1), while the 0s in VW shall be used to locate
the position for the symbols of the links of a given node, as we will see soon. In the same
traversal we also store in SW the symbols labeling the children of node R[i] in LZTrie. We
represent arrays VW and SW with data structures for rank and select queries, requiring
o(u log σ) bits overall.
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parentlz(j)
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a

x

RevTrieLZTrie

xr

x

R−1(j)=ϕ′(R−1(parentlz(j)),a)

R−1(parentlz(j))

Figure 5.2: Illustration of Property 5.2 for function ϕ′. Preorder numbers, both in LZTrie
and RevTrie, are shown outside each node. Dashed arrows associate an LZTrie node with
its corresponding node in RevTrie. This association is given by R.

In order to understand how Weiner links can be represented in a compact way and
computed efficiently, we shall store them (conceptually) in such a way that we can divide
the resulting array into at most σ strictly increasing subsequences (note that this cannot
be ensured if we simply store the links in preorder). Let W [1..n] be the (conceptual)
array storing the sequence of Weiner links. We will have an increasing subsequence in W
for every symbol in the alphabet; every such subsequence stores the links going out by
that symbol. Let CW [1..σ] be an array storing the starting position for the subsequence
corresponding to every alphabet symbol. We then go on a new preorder traversal on
RevTrie. For every non-empty node with preorder i (counting just non-empty nodes), let
R[i] be the corresponding LZTrie node, of degree d. Let i1 ← select1(VW , i + 1) be the
position in VW corresponding to the current RevTrie node. Let i2 ← rank0(VW , i1) + 1
be the starting position in SW corresponding to the current node. Then, for every child
j = 1, . . . , d of node R[i], which is labeled by symbol s← lettslz(childlz(R[i], j)) in LZTrie,
we store W [CW [s] + ranks(SW , i2 − 1)]← R−1(childlz(R[i], j)).

Given this representation, we can compute, for any non-empty node with preorder i
in RevTrie and a symbol a ∈ Σ:

ϕ′(i, a) ≡W [CW [a] + ranka(SW , rank0(VW , select1(VW , i + 1)) + 1)]

Now it remains to show that this representation can be compressed.

Lemma 5.5. Array W can be partitioned into at most σ strictly increasing sequences.

Proof. Let positions i and j in W , for i < j, correspond to Weiner links going out by the
same symbol a ∈ Σ. Assume that position i corresponds to node for string x ∈ Σ∗ in
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RevTrie, and position j corresponds to string y ∈ Σ∗. Since i < j and given the way in
which W is constructed, it follows that the preorder of the node for x is smaller than the
preorder of node representing y. This also means that x < y. Then, ax < ay also holds.
Therefore the preorder stored at W [i] (i.e., the one pointing to the node for string ax) is
smaller than the preorder stored at W [j] (which points to the node for string ay).

Thus, we could represent W in the same way as array ϕ, requiring overall O(n log σ) =
o(u log σ) bits of space. However, we can do better. Let j ← childr(0, a) be the preorder
of the child of the RevTrie root by symbol a. Notice that all Weiner links going out by a
given symbol, let us say symbol a, point to a node within the subtree of node with preorder
j. Since Lemma 5.5 states that the Weiner links for symbol a appear in increasing order
within the corresponding subsequence of W , this means that the first link for a points to
the first node in preorder within the subtree of node with preorder j, the second link points
to the second node in preorder within the subtree of node with preorder j, and so on. This
means that just performing a rank on SW allows us to compute the corresponding link,
so we do not need to store array W . Formally, we have:

ϕ′(i, a) ≡ childr(0, a) + ranka(SW , rank0(VW , select1(VW , i + 1)) + 1)− 1

We will use function ϕ′ and its properties in order to compute R′: suppose that
we do not store R−1(j) for the LZTrie node with preorder j in Fig. 5.2, but we store
R−1(parentlz(j)). Then notice that R−1(j) can be computed as ϕ′(R−1(parentlz(j)), a).
For every LZTrie node that has been marked to store an R value, as explained above,
we also store the corresponding value of R−1 in array R′′. We mark in a bit vector R−1

B

(according to preorder in LZTrie) the nodes whose R−1 value has been stored. This
ensures that, starting at an arbitrary node in LZTrie, we shall find a sampled node after
performing at most O(1/ε) parent operations. Then we can conclude:

Lemma 5.6. Given an LZTrie preorder position 0 6 j 6 n and given any constant
0 < ε < 1, the corresponding RevTrie preorder position R−1(j) can be computed in O(1/ε)
worst-case time by the following recurrence:

R−1(j) =

{

ϕ′(R−1(parentlz(j)), lettslz(j)) if R−1
B [j] = 0

R′′[rank1(R
−1
B , j)] if R−1

B [j] = 1

requiring εn log n + O(n log σ) = εHk(T ) + o(u log σ) bits of space.

5.1.5 Space and Time Analysis

As now we store ids in n log n bits, ids−1, R′ and R′′ in εn log n bits each, and ϕ,
ϕ′, letts, and rletts in O(n log σ) = o(u log σ) bits, the total space requirement is
(1 + ε)n log n + o(u log σ) bits (renaming 4ε = ε), and we provide the same navigation
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scheme as in Fig. 4.3(b) (on page 72). Occurrences of type 1 are found as usual, in
O(m + occ1

ε ) time, where the extra O(occ1
ε ) term appears because we have to use R to map

from RevTrie to LZTrie, which takes O(1/ε) each time. Occurrences of type 2 are solved as
explained in Section 3.3.7, in O( n

εσm/2 ) average time since now the access between tries is

provided by R and R−1. Finally, for solving occurrences of type 3, we first search for all the
pattern substrings in LZTrie in O(m2) time, then compute the maximal concatenations of

phrases, in O(m2

ε ) time by using the improved algorithm of Lemma 3.4 (the O(1/ε) factor
comes from the fact that we use ids−1 to simulate Node), and finally for each of the O(m2)
maximal concatenations found we carry out the tests as explained in Section 3.3.7, with
cost O(m2

ε ) because RNode is implemented by using R−1. We have proved:

Theorem 5.1. Given a text T [1..u] over an alphabet of size σ and with k-th order empirical
entropy Hk(T ), and let n be the number of phrases in the LZ78 parsing of T , there exists
a compressed full-text self-index requiring (1 + ε)uHk(T ) + o(u log σ) bits of space, for
σ = O(polylog(u)), any k = o(logσ u) and any 0 < ε < 1. Given a pattern P [1..m],
this index is able to locate (and count) the occ occurrences of pattern P in text T in

O(m2

ε + n
εσm/2 ) average time, which is O(m2

ε ) if m > 2 logσ n.

Now we can get worst-case guarantees in the search process by adding Range, the
two-dimensional range search data structure defined in Section 3.3 for the original LZ-
index, requiring n log n + o(u log σ) extra bits [MN07]. Occurrences of type 2 can now be
solved in O((m + occ2) log n) worst-case time by using Range, and then we use the LZTrie
coordinate of the point to map to the corresponding LZTrie node, in order to get the
phrase identifier for that occurrence (we do this because RevTrie does not store the phrase
identifiers in our representation, and we must use R in order to get them, which would
take O(1/ε) per occurrence). Occurrences of type 1 and type 3 are found as for the index
of Theorem 5.1. Existential queries, on the other hand, can be solved by first looking
whether there is any occurrence of type 1 (i.e., by looking for P r in RevTrie and then
checking whether the corresponding subtree is empty or not) in O(m) time. If there are no
occurrences of type 1, we check whether there is any occurrence of type 2 by partitioning
the pattern and using Range to count the number of occurrences for each partition. This
takes O(m log n) time overall, since we use Range just to count. Finally, if there are no
occurrences of type 2, we look for occurrences of type 3 in O(m2/ε) time. Hence, we have
the following theorem.

Theorem 5.2. Given a text T [1..u] over an alphabet of size σ, and with k-th order
empirical entropy Hk(T ), there exists a compressed full-text self-index requiring (2 + ε)
uHk(T ) + o(u log σ) bits of space, for σ = O(polylog(u)), any k = o(logσ u) and any
0 < ε < 1. Given a search pattern P [1..m], this index is able to:

(1 ) locate the occ occurrences of pattern P in text T in O(m2

ε + (m + occ) log u + occ
ε )

worst-case time;
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(2 ) count the number of pattern occurrences in O(m2

ε +m log u+ occ
ε ) worst-case time;

and

(3 ) determine whether pattern P exists in T in O(m2

ε + m log u) worst-case time.

In Section 5.5 we show that the theorem is valid for the more general case log σ =
o(log u). We leave for Section 5.4 the study of display and extract queries on our indexes.

5.2 Using the xbw Transform to Represent LZTrie

A different idea to reduce the space requirement of LZ-index is to use the xbw transform of
Ferragina et al. [FLMM05] to represent the LZTrie. We show that subpath queries, which
are efficiently solved by the xbw transform (see Section 2.5.2), are so powerful that we can
carry out the work of both LZTrie and RevTrie only with the xbw representation of LZTrie,
thus achieving the same result as in Section 5.1 (always assuming σ = O(polylog(u))),
yet by radically different means. Ferragina et al. [FLMM05] have shown how the xbw
representation can be compressed in order to take advantage of the tree regularities, which
can be very important in practice and adds extra value to this representation.

5.2.1 Index Definition

We represent LZ-index with the following data structures:

— xbw LZTrie: the xbw representation [FLMM05] of LZTrie (see Lemma 2.12), where
the nodes are lexicographically sorted according to their upward paths in the trie.
We store

• Sα: the array of symbols labeling the edges of the trie. In the worst case LZTrie
has 2n nodes (because of the dummy leaves we add, recall Section 2.5.2, Lemma
2.12). We represent this array by using the data structure for rank and select
of Lemma 2.5 (1), which are needed to compute the operations on xbw. The
space requirement is 2n log σ + o(n log σ) bits.

• Slast: a bit array such that Slast[i] = 1 iff the corresponding node in LZTrie is
the last child of its parent. We represent this array with the data structure for
rank and select of Lemma 2.4 (1). The space requirement is at most 2n + o(n)
bits.

Example 5.4. See Table 2.1 on page 44 for an illustration of the xbw of LZTrie for the
running example. See Fig. 5.3 for an illustration of our LZ-index.

— Balanced parentheses LZTrie: the trie of the Lempel-Ziv phrases, implemented by

114



• par: the balanced parentheses representation (see Lemma 2.10) of LZTrie. In
order to index the LZTrie leaves with xbw, we have to add a dummy child to
each, as it was explained in Section 2.5.2, Lemma 2.12. In this way, the trie
has n′ 6 2n nodes. Non-dummy nodes are marked in a bit vector B[1..n′] in
the same way as empty nodes are marked in RevTrie (see Section 4.1.2). We
represent array B with a data structure for rank and select queries (see Lemma
2.4 (1)). The space requirement is 2n′ + n′ + o(n) bits, which is 6n + o(n) bits
in the worst case. This sequence par is needed to solve some operations which
are not supported by the xbw, such as ancestor(x, y) and depth(x).

• ids: the array of LZ78 phrase identifiers in preorder, only for non-dummy nodes
(we find the phrase identifier for a given node by using rank1 on B). This array
is represented by the data structure of Lemma 2.7, such that we can compute
the inverse permutation ids−1 in O(1/ε) time, requiring (1 + ε)n log n bits.

— Pos: a mapping from xbw positions to the corresponding LZTrie preorder positions
(i.e., this is a permutation of LZTrie preorders). In the worst case there are 2n
such positions, and so the space requirement is 2n log (2n) bits. We can reduce
this space to εn log (2n) bits by storing in an array Pos′ one out of O(1/ε) values
of Pos, such that Pos[i] can be computed in O(1/ε) time. We need a bit vector
PosB of 2n + o(n) bits indicating which values of Pos have been stored. Assume
we need to compute the preorder position Pos[i], for a given xbw position i. If
PosB [i] = 1, then such preorder position is stored explicitly at Pos′[rank1(PosB, i)].
Otherwise, we simulate a preorder traversal in xbw from the node at xbw position
i, until PosB[j] = 1, for an xbw position j. Each preorder step we perform in xbw
corresponds to moving to the next opening parenthesis in par. Once this j is found,
we map to the preorder position j′ = Pos′[rank1(PosB , j)]. If d is the number of
nodes in preorder traversal from xbw position i to xbw position j, then j′ − d is the
preorder position corresponding to the node at xbw position i.

We also need to compute Pos−1, which can be done in O(1/ε2) time under this
scheme, requiring εn log (2n) extra bits if we use the representation of Lemma 2.7 for
inverse permutations. However, we can support the computation of Pos−1 in O(1/ε)
time as follows. For every node such that its Pos value has been stored in Pos′, we
also store the corresponding value of Pos−1 in array Pos′′. If we want to compute
Pos−1[i], we first compute the preorder of the previous node that has been sampled
in Pos′′ by j = lb ilc, where l = Θ(1/ε). Then, we use the sampled value stored at
Pos′′[b ilc] to map to the xbw, and then we perform i − j preorder steps in xbw, to
find the node corresponding to Pos−1[i]. This takes O(1/ε) time in the worst case.

— Range: a range search data structure in which we store the point k (belonging to
phrase identifier k) at coordinate (x, y), where x is the xbw position of node for
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phrase k and y is the LZTrie preorder position of node for phrase k + 1. We use the
data structure of Lemma 2.9, as for the original LZ-index. The space requirement is
n log n + O(n log log n) = n log n + o(u log σ) bits.

0 10 20 30 40 50
par: ( ( ( ( ) ) ( ( ( ) ) ) ( ( ) ) ( ( ( ) ) ( ( ) ) ( ( ) ) ) ( ( ( ) ) ) ) ( ( ( ( ) ) ) ) ( ( ( ( ) ) ) ) )

B: 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0

ids: 0 1 17 3 15 14 4 12 10 16 6 11 2 7 9 5 8 13

letts: a $ ∆ b r ∆ l ∆ r a ∆ d ∆ l ∆ p ∆ l a b ∆ a p ∆

Pos−1: 1 5 4 6 13 24 7 17 8 21 11 22 15 23 18 9 26 20 2 16 10 14 3 25 12 19

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Pos[i] 1 19 23 3 2 4 7 9 16 21 11 25 5 22 13 20 8 15 26 18 10 12 14 6 24 17

Figure 5.3: Balanced-parentheses representation of LZTrie for the running example, with
dummy leaves added in order to index the (original) leaves with the xbw representation. Bit
vector B marks with a 0 the dummy nodes. Given node x, the corresponding phrase identifier
can be computed as ids[rank1(B, preorder(x))]. We also show the Pos mapping (from xbw

positions, see Table 2.1 on page 44, to LZTrie preorders), and the Pos−1 mapping (from
LZTrie preorders to xbw positions).

In Fig. 5.4 we show the basic resulting navigation scheme following the notation of
Chapter 4. The total space requirement is (2+ ε)n log n+2n log σ +10n+O(n log log n)+
o(n) bits, which is (2 + ε)uHk(T ) + o(u log σ) bits for k = o(logσ u).

LZTrie

node

LZTrie

preorder
xbw

position

phrase
identifier

rankselect

ids
ids−1

Pos

Pos−1

Figure 5.4: Basic navigation for the scheme using the xbw representation of LZTrie.

5.2.2 Search Algorithm

We depict now the search algorithm for a pattern P of length m.
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Occurrences of Type 1. Recall from Section 3.3.5 that first we need to find all
phrases having P as a suffix. To do this we perform a subpath query with P r on the
xbw representation of LZTrie, simulating in this way the work done on RevTrie in the
original scheme, in O(m) time. Suppose that we obtain the interval [x1..x2] in the xbw
of LZTrie, corresponding to all nodes whose phrase ends with P . In other words, the
interval [x1..x2] contains the roots of the subtrees containing the nodes we are looking for
to solve occurrences of type 1. For each position i ∈ [x1..x2], we can get the corresponding
preorder in the parentheses representation using Pos(i), which takes O(1/ε) time, and then
selectnode(Pos(i)) over par yields the node position. As in the worst case this mapping is
carried out occ times, the overall time is O(occ

ε ). Finally we traverse the subtrees of these
nodes in par and report all the identifiers found, in constant time per occurrence as done
with the usual LZ-index.

Occurrences of Type 2. To solve occurrences of type 2, for every possible partition
P [1..i] and P [i+1..m] of P , we traverse the xbw from the root, using operation child(x, α)
with the symbols of P [i + 1..m]. This takes O(m2) time overall for the m − 1 partitions
of P . In this way we are simulating the work done on LZTrie when solving occurrences
of type 2 in the original scheme. Once this is found, say at xbw position j, we switch
to the preorder tree (parentheses) using selectnode(Pos(j)) over par, to get the node vlz

whose subtree has preorder interval [y1..y2] of all the nodes that start with P [i + 1..m].
This takes overall O(m

ε ) time, for the m− 1 partitions of P . Next we perform a subpath
query for P [1..i] in xbw, and get the xbw interval [x1..x2] of all the nodes that finish with
P [1..i] (actually we have to perform x1 ← rank1(Slast, x1) and x2 ← rank1(Slast, x2) to
avoid counting the same node multiple times, see [FLMM05]). This also takes O(m2)
time overall. Finally, we search the Range data structure for [x1..x2] × [y1..y2] to get all
phrase identifiers t such that phrase Bt finishes with P [1..i] and phrase Bt+1 starts with
P [i + 1..m], in O((m + occ) log n) time overall.

Occurrences of Type 3. For occurrences of type 3, one proceeds mostly as with the
original LZTrie (navigating the xbw instead), so as to find all the nodes equal to substrings
of P in O(m2) time. Then, for each maximal concatenation of phrases P [i..j] = Bt . . . B`

we must check that phrase B`+1 starts with P [j +1..m] and that phrase Bt−1 finishes with
P [1..i−1]. The first check can be done in O(1/ε) time by using ids−1: as we have searched
for all substrings of P in the trie, we know the preorder interval of the descendants of
P [j + 1..m], thus we check whether the node at preorder position ids−1(` + 1) belongs to
that interval. The second check can be done in O(1/ε) time, by determining whether t− 1
lies in the xbw interval of P [1..i − 1] (that is, Bt−1 finishes with P [1..i − 1]). For this, we
need Pos−1, so that the position is Pos−1(ids−1(t− 1)).

Summarizing, occurrences of type 1 cost O(m + occ
ε ), occurrences of type 2 cost
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O(m2 + m
ε +(m+occ) log n), and type 3 cost O(m2

ε ). Thus, we have achieved Theorem 5.2
again with radically different means. The same complexities are also achieved for counting
and existencial queries. We can also get a version requiring (1 + ε)uHk(T ) + o(u log σ)
bits and O(m2) average reporting time if m > 2 logσ n (as in Theorem 5.1) if we solve
occurrences of type 2 by using a procedure similar to that used to solve occurrences of
type 3.

5.3 Faster and Still Small LZ-indexes

In Section 5.1 we have shown how to use suffix links in RevTrie to reduce the space
requirement of LZ-index. Russo and Oliveira [RO07] show how to use suffix links to reduce
the locating time of their LZ-index to O((m + occ) log u); yet, they do not use suffix links
to reduce the space of their index (recall Section 3.4). On the other hand, Ferragina and
Manzini [FM05] combine the backward-search concept with a Lempel-Ziv-based scheme
to achieve optimal O(m + occ) locating time, without restrictions on m or occ. Yet, their
index is even larger, requiring O(uHk(T ) logγ u) bits of space, for any constant γ > 0
(recall Section 3.2).

In this section we use suffix links to speed up occurrences of type 2, using an idea
similar to that of [RO07], and we solve occurrences of type 3 as a particular case of
occurrences of type 2, using a similar idea to that of [FM05]. In this way we manage to
avoid the O(m2) term in the locating complexity of LZ-index, achieving the same locating
time as [RO07], while reducing their space requirement of (5 + ε)uHk(T ) + o(u log σ) bits.

5.3.1 Index Definition.

We build basically on the LZ-index of Theorem 5.1, composed of LZTrie, RevTrie, and
the R mapping (compressed using suffix links ϕ). We add to LZTrie the data structure
of Jansson et al. [JSS07b] to compute level ancestor queries, LA(x, d), which gets the
ancestor at depth d of node x. This requires o(n) extra bits and supports LA queries in
constant time. Therefore, the overall space requirement of the three above data structures
is (1 + ε)uHk + o(u log σ) bits.

To avoid the O(m2) term in the locating complexity, we should avoid occurrences of
type 3, since they make us check the O(m2) possible candidates. We cannot use the same
procedure as for occurrences of type 2 (using the Range data structure) because LZTrie is
only able to index whole phrases, and not text suffixes. Then, by using LZTrie to query
the Range data structure we are only capable to get the phrases starting with a given
suffix P [i + 1..m] of the pattern, an therefore we can find only occurrences spanning two
consecutive phrases (i.e., occurrences of type 2).
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Hence we add the alphabet friendly FM-index [FMMN07] of T (AF-FMI(T ) for short)
to our index. By itself this self-index is able to search for pattern occurrences, requiring
uHk(T )+o(u log σ) bits of space. However, its locate time per occurrence is O(log1+ε u), for
any constant ε > 0, which is greater than the O(log u) time per occurrence of LZ-indexes.

As AF-FMI(T ) is based on the Burrows-Wheeler Transform [BW94] of T (bwt(T )
for short), it can be (conceptually) thought of as the suffix array SAT of T (see Section
2.4.2). The AF-FMI(T ) indexes text suffixes. In particular, we will be interested in those
suffixes which are aligned with the LZ78 phrase beginnings. By using this structure to
query the Range data structure (instead of using LZTrie) we will be able to find those text
suffixes which are aligned with LZ78 phrases and that have P [i + 1..m] as a prefix. Thus,
P [i + 1..m] can span more than two consecutive phrases, and therefore we will consider
occurrences of type 3 as a special case of occurrences of type 2.

To find occurrences spanning several phrases we re-define Range, the data structure
for 2-dimensional range searching. Now it will operate on the grid [1..u]× [1..n]. For each
LZ78 phrase with identifier id, for 0 < id 6 n, assume that the RevTrie node for id has
preorder j′, and that phrase (id + 1) starts at position p in T . Then we store the point
(i′, j′) in Range, where i′ is the lexicographic order of the suffix of T starting at position
p, i.e., SAT [i′] = p holds.

Suppose that we search for a given string s2 in AF-FMI(T ) and get the interval [i1, i2]
in the bwt(T ) (equivalently, in the suffix array of T ), and that the search for string sr

1 in
RevTrie yields a node such that the preorder interval for its subtree is [j1, j2]. Then, a
search for [i1, i2] × [j1, j2] in Range yields all phrases ending with s1 such that the next
phrase is aligned with an occurrence of s2 in T .

We transform the grid [1..u] × [1..n] indexed by Range to an equivalent grid [1..n] ×
[1..n] by defining a bit vector V [1..u], which indicates (with a 1) which positions of AF-
FMI(T ) point to an LZ78 phrase beginning. We represent V with the data structure of
Lemma 2.4 (2) allowing rank queries, and requiring uH0(V ) + o(u) bits of space, which
according to Lemma 2.2 is uH0(V ) + o(u) 6 n log u

n + o(u) 6
u log log u

logσ u + o(u) = o(u log σ)

bits of storage. Thus, instead of storing the point (i′, j′) as in the previous definition of
Range, we store the point (rank1(V, i′), j′). The same search of the previous paragraph
now becomes [rank1(V, i1), rank1(V, i2)]× [j1, j2].

As there is only one point per row and column of Range, we can use the data structure
of Lemma 2.9, which can be implemented by using n log n + O(n log log n) = uHk(T ) +
o(u log σ) bits [MN07]. As a result, the overall space requirement of our LZ-index is
(3 + ε)uHk(T ) + o(u log σ), for any k = o(logσ u) and any 0 < ε < 1.
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5.3.2 Search Algorithm

For exists and count queries we can achieve O(m) time by just using the AF-FMI(T ). We
focus now on locate queries. Assume that P [1..m] = p1 . . . pm, for pi ∈ Σ. As explained,
we need to consider only occurrences of P in T of type 1 and 2. Those of type 1 are solved
just as for the original LZ-index, in O(m + occ1

ε ) time. The rest of the section is devoted
to those of type 2.

To find the pattern occurrences spanning two or more consecutive phrases we must
consider the m − 1 partitions P [1..i] and P [i + 1..m] of P , for 1 6 i < m. For every
partition we must find all phrases terminated with P [1..i] such that the next phrase starts
at the same position as an occurrence of P [i + 1..m] in T . Hence, as explained before,
we must search for P r[1..i] in RevTrie and for P [i + 1..m] in AF-FMI(T ). Thus, every
partition produces two one-dimensional intervals, one in each of the above structures.

If the search in RevTrie for P r[1..i] yields the preorder interval [j1, j2], and the
search for P [i + 1..m] in AF-FMI(T ) yields interval [i1, i2], the two-dimensional range
[rank1(V, i1), rank1(V, i2)] × [j1, j2] in Range yields all pattern occurrences for the given
partition of P . For every pattern occurrence we get a point (i′, j′) from Range. The
corresponding phrase identifier can be found as t = ids(R(j′)), to finally report a pattern
occurrence Jt, iK.

Overall, occurrences of type 2 are found in O((m + occ2) log n) time. Yet, we still
have to show how to find efficiently the intervals in AF-FMI(T ) and in RevTrie.

The m− 1 intervals for P [i + 1..m] in AF-FMI(T ) can be found in O(m) time thanks
to the backward search concept, since the process to count the number of occurrences
of P [2..m] proceeds in m − 1 steps, each one taking constant time if σ = O(polylog(u))
[FM05]: in the first step we find the BWT interval for pm, then we find the interval
for occurrences of pm−1pm, then pm−2pm−1pm, and so on to finally find the interval for
p2 . . . pm = P [2..m].

However, the work in RevTrie can take time O(m2) if we search for strings P r[1..i]
separately, as done for the indexes of Section 5.1. Fortunately, some work done to search
for a given P r[1..i] can be reused to search for other strings. We have to search for
strings pm−1pm−2 . . . p1; pm−2 . . . p1;. . . ; and p1 in RevTrie. Note that every pj . . . p1

is the longest proper suffix of pj+1pj . . . p1. Suppose that we successfully search for
P r[1..m − 1] = pm−1pm−2 . . . p1, reaching the node with preorder i′ in RevTrie, hence
finding the corresponding preorder interval in RevTrie in O(m) time. Now, to find the
node representing suffix pm−2 . . . p1 we only need to follow suffix link ϕ(i′) (which takes
O(1) time) instead of searching for it from the RevTrie root (which would take O(m) time
again). The process of following suffix links can be repeated m − 1 times up to reaching
the node corresponding to string p1, with total time O(m). This is the main idea to get
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the m − 1 preorder intervals in RevTrie in time less than quadratic. The general case is
slightly more complicated and corresponds to the descend and suffix walk method used in
[RO07].

In the sequel we explain the way we implement descend and suffix walk in our data
structure. However, we must prove a couple of properties for RevTrie in order to be
able to apply this method. First, we know that every non-empty node in RevTrie has
a suffix link (see Lemma 5.1), yet we need to prove that every RevTrie node (including
empty-non-unary nodes) has also a suffix link.

Lemma 5.7. Every empty non-unary node in RevTrie has a suffix link.

Proof. Assume that node vr in RevTrie is empty non-unary, and that it represents string
ax, for a ∈ Σ and x ∈ Σ∗. As node vr is empty non-unary, the node has at least two
children. In other words, there exist at least two strings of the form axy and axz, for y,
z ∈ Σ∗, y 6= z, both strings corresponding to non-empty nodes, and hence these nodes
have a suffix link. These suffix links correspond to strings xy and xz in RevTrie. Thus,
there must exist a non-unary node for string x, which is the suffix link of node vr.

The descent process in RevTrie will be a little bit different from the one described
in the proof of Lemma 4.1. This time, we are going to reuse the work done for a string
already searched in RevTrie, so we have to be sure that every time we arrive to a RevTrie
node, the string represented by that node matches the corresponding pattern prefix (the
usual skipping process of a Patricia tree does not ensure that). Thus, the second property
is that, although RevTrie is a Patricia tree and hence we store only the first symbol of
each edge label, we can get all of it.

Lemma 5.8. Any edge label of length l in RevTrie can be extracted in O(l) time.

Proof. Assume that we are at node vr in RevTrie, and want to extract the label for edge
evrv′r between nodes vr and v′r in RevTrie. Since we arrive at a node in RevTrie by
descending from the root, the length of the string represented by a given node can be
computed by summing up the skips we have seen in the descent. Let lvr and lv′r be the
length of strings represented by nodes vr, and v′r respectively. Then, lv′r − lvr is the length
of the label of edge evrv′r .

If we assume that node v′r has preorder j1 in RevTrie, we can access the LZTrie node
from where to start the extraction of the label by v′lz = LA(R[j1], lv′r − lvr), in constant
time [JSS07b]. The label of evrv′r is the label of the v′lz-to-root path. Notice that with the
level-ancestor query on LZTrie we avoid to extract the string represented by node vr in
RevTrie, as it has been already extracted before descending to vr.

In case that v′r is an empty node, recall that the corresponding value R[j1] is
undefined. However, just as in the proof of Lemma 4.1, we can use any non-empty
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node within the subtree of v′r to map to the LZTrie. For instance, we can use the next
non-empty node within the subtree of v′r: let j2 = rank1(B, j1) + 1, then the length of
the corresponding string can be computed as depth(R[j2]) in LZTrie, and we compute
v′lz = LA(R[j2], depth(R[j2]) − lvr), to finally extract the edge label by moving to the
parent lv′r − lvr times.

Thus, we search RevTrie as in a normal trie, comparing every symbol as we descend,
without skipping as it is done in Lemma 4.1. In this way, every time we arrive to a
RevTrie node, the string represented by that node will match the corresponding prefix of
the pattern.

Previously we showed that it is possible to search for all strings P r[1..i] in time O(m),
assuming that P r[1..m− 1] exists in RevTrie (therefore all P r[1..i] exist in RevTrie). The
general case is as follows.

Let P r[1..m − 1] = pm−1 . . . p1 be the longest string that we need to search for in
RevTrie. We define three integer indices on P r[1..m − 1], which guide the search:

i1: marks the beginning of the pattern suffix we are currently searching for. It is initialized
at 1 since we start searching for pm−1pm−2 . . . p1;

i2: indicates the current symbol in the pattern that is being compared with a symbol in
an edge label, with the aim of descending to a child of the current node. Notice that
(P r)[i1..i2 − 1] is the part of the current pattern that has been matched with the
edge labels of RevTrie; and

i3: delimits the string corresponding to the current node, which represents string
(P r)[i1..i3] in RevTrie. Thus (P r)[i3 + 1..i2 − 1] will be the part of the pattern
that has been compared with the label of the edge leading to the node we are trying
to descend to.

Our descend and suffix walk will be composed of three basic operations: descend,
suffix, and retraverse.

Descend. We start searching for pm−1pm−2 . . . p1 from the RevTrie root, using the method
of Lemma 5.8 and using i2 to indicate the current symbol being compared in the descent.
Every time we can descend to a non-empty-unary child node (after matching all the
characters of an edge), we set i3 ← i2 and continue descending in the same way from
this node. If, when trying to descend to a child node, we find an empty-unary node (which
were added to limit the skips in RevTrie, see Section 4.1.2), the index i3 is not updated
as explained before. In this case, we continue the descent with i2 from the empty-unary
node, using Lemma 5.8.
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Suffix. Now assume that, being at current node vr (with preorder j1 in RevTrie and
representing string ax, for a ∈ Σ, x ∈ Σ∗), we cannot descend to a child node v′r (with
preorder j2 in RevTrie and representing string axyz, for y, z ∈ Σ∗, such that |yz| > 0).
Let evrv′r be the edge between nodes vr and v′r, with label yz, where y = (P r)[i3 +1..i2−1]
and (P r)[i2] 6= z1. Hence there are no phrases ending with P [1..m− i1].

Then, we go on to consider the next suffix P r[1..m − i1 − 1]. To reuse the work
done up to node vr (i.e., (P r)[i1..i3] = ax), we follow the suffix link to get the node ϕ(j1)
representing string x, setting i1 ← i1 + 1.

Retraverse. We have reused the work up to x, but we had actually worked up to xy. Notice
that suffix xy exists for sure in RevTrie, yet it could be represented by an empty unary
node which has been compressed in an edge. Therefore, from node ϕ(j1) we descend using
y = (P r)[i3 + 1..i2 − 1]. The edge evrv′r = yz could be split into a path of several nodes
between nodes ϕ(j1) and ϕ(j2). As substring y has been already checked in the previous
step, the descent from node ϕ(j1) is done by skipping and checking only the first symbols
of the edge labels (advancing i3 accordingly as we reach new nodes). If being at node v′′r
and trying to descend to the next node we find an empty-unary node, we directly jump to
the position of the next non-empty-unary node (with preorder j3) and then compute the
length l of the string represented by that node.

For this direct jump we need a bit vector E marking the empty-unary nodes, in
preorder. We preprocess E with a data structure for rank and select queries, so this
requires n′ + o(n′) extra bits. The node with preorder j3 can be found by using rank and
select on E. The length l can be computed as the sum of the length of the current node
plus ne · log u, where ne is the number of empty-unary nodes between the current node
and the one with preorder j3 (which can be computed as the number of 1s between the
corresponding positions in E), and log u comes from the skips of empty-unary nodes (recall
Section 4.1.2). In case that l > |xy|, we resume the suffix mode from v′′r . Otherwise we
stay in retraverse mode from the node with preorder j3. This process is carried out up to
fully consuming string y, and then we resume the descend mode from the corresponding
node.

After we find the first suffix P r[1..i] in RevTrie (if any), we are sure that every suffix
of it also exists in RevTrie (because this trie is suffix-closed). The nodes corresponding to
these suffixes are found by following suffix links.

Lemma 5.9. Given a string P of length m, we can search for strings P r[1..i], for 1 6 i <
m, in RevTrie in O(m) time.

Proof. Consider the method just described. Indices i1, i2, and i3 grow from 1 to at most
m. For every constant-time action we carry out, at least one of those indexes increases.
Thus the total work is O(m).
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Therefore, we have proved:

Theorem 5.3. Given a text T [1..u] over an alphabet of size σ, and with k-th order
empirical entropy Hk(T ), there exists a compressed full-text self-index requiring (3+ε)uHk

(T )+o(u log σ) bits of space, for σ = O(polylog(u)), any k = o(logσ u), and any 0 < ε < 1.
Given a search pattern P [1..m], this index is able to:

(1 ) report the occ occurrences of pattern P in text T in O((m + occ
ε ) log u) worst-case

time;

(2 ) count pattern occurrences in O(m) worst-case time; and

(3 ) determine whether pattern P exists in T in O(m) worst-case time.

5.4 Optimal Displaying of Text Substrings

5.4.1 Reporting Text Positions with LZ-index

As we said before, LZ-index is able to report occurrences in the format Jt, oK, where t is
the phrase in which the occurrence starts and o is the distance between the beginning of
the occurrence and the end of the phrase, and therefore so are our indexes of Sections 5.1,
5.2, and 5.3. However, we can report occurrences as text positions by adding a bit vector
TPos[1..u] that marks the n phrase beginnings. Given a text position i, then rank1(Tpos, i)
is the phrase number i belongs to. Given a phrase identifier j, select1(TPos, j) yields the
text position at which the j-th phrase starts. Therefore, given an occurrence in the format
Jt, oK, the text position for that occurrence can be computed as select1(TPos, t + 1)− o.

Such TPos can be represented with uH0(TPos) + o(u) 6 n log u
n + o(u) 6

u log log u
logσ u +

o(u) = o(u log σ), see Lemma 2.4 (2) and Lemma 2.2.

The algorithm for extract queries (of whole LZ78 phrases) described in Section 3.3.5
can be also used on the indexes of Theorems 5.1, 5.2, and 5.3, yet this time providing
the text positions from where to extract (rather than the phrase identifiers), since these
positions can be transformed into phrase identifiers by using data structure TPos. As the
Node data structure is simulated by using ids−1, it takes O(`(1 + 1

ε logσ `)) time to extract
any text substring of length `, since we perform ` parent operations to get the ` symbols
we want to display, and we must pay O(1/ε) time to use ids−1 each time we go on to
extract the next phrase, which in the (very) worst case is done O(`/ logσ `) times.

To extract the text with xbw -based LZ-index of Section 5.2, we use TPos to transform
the text positions into phrase identifiers, and then we use ids−1 to find the preorder
position of the corresponding phrase, to finally map to the xbw representation of LZTrie
by using Pos−1 in O(1/ε) time. Then we move to the parent in the xbw, displaying the
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corresponding symbol stored in Sα. When we reach the tree root, we use ids−1 again to
consider the next phrase, and map to the xbw again. The time is therefore O(`(1+ 1

ε logσ `)).

The restriction of displaying only whole phrases can be avoided by adding a data
structure for level-ancestor queries on LZTrie. The data structure defined in [JSS07b]
builds on dfuds, allows constant time computation of level-ancestor queries, and requires
o(n) extra bits of space. Thus, the part of a phrase that we do not need to display is
skipped by using the appropriate level-ancestor query. Yet, the displaying time is not
optimal, since we work O(1) per extracted symbol and on a RAM we are able to handle
Θ(log u) bits per access, which means Θ(log u/ log σ) = Θ(logσ u) symbols per access.

5.4.2 Achieving Optimal Displaying Time

Instead we will describe a technique that can be plugged to any of the indexes proposed
in Sections 5.1, 5.2, and 5.3, and those of Chapter 4, for displaying any text substring
T [i..i + ` − 1], in optimal O(1 + `/ logσ u) time. A compressed data structure [GS06]
to display any text substring of length Θ(logσ u) in constant time, turns out to have
similarities with LZ-index. We take advantage of this similarity to plug it within our
indexes, with some modifications, and obtain improved time to display text substrings. In
[GS06], they added auxiliary data structures of o(u log σ) bits to LZTrie to support this
operation efficiently. Given a position i of the text, we first find the phrase including the
position i by using rank1(TPos, i), then find the node of LZTrie that corresponds to the
phrase using Node (that is, the corresponding implementation of it). Then displaying a
phrase is equivalent to outputting the path going from the node to the root of LZTrie.
The auxiliary data structure, of size O(n log σ) = o(u log σ) bits, permits outputting the
path by chunks of Θ(logσ u) symbols in O(1) time per chunk. As explained before, we can
also display not only whole phrases, but any text substring within this complexity. Thus
the displaying can start backwards from anywhere in a phrase, and of course it can stop
at any point as well.

We modify this method to plug it into our indexes. In their original method [GS06],
if more than one consecutive phrases have length less than (logσ u)/2 each, their phrase
identifiers are not stored. Instead the substring of the text including those phrases
are stored without compression. This guarantees efficient displaying operation without
increasing the space requirement. However this will cause the problem that we cannot find
patterns including those phrases. Therefore in our modification we store, for those short
phrases, both the phrases themselves and their phrase identifiers. The search algorithm
remains as before. To decode short phrases we can just output the explicitly stored
substring including the phrases. For each phrase with length at most (logσ u)/2, we store
a text substring of length log u containing the phrase. Because there are at most O(

√
u)

such phrases in the text (recall that all LZ78 phrases are different), we can store all these
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substrings in O(
√

u log u) = o(u) bits. These auxiliary structures work as long as we can
convert a phrase identifier into a preorder position in LZTrie (that is, compute ids−1).
Hence they can be applied to all the data structures in Sections 5.1, 5.2, and 5.3.

Theorem 5.4. The indexes of Theorem 5.1, Theorem 5.2 and Theorem 5.3 (and also thar
of Section 5.2) can be adapted to extract a text substring of length ` surrounding any text
position in optimal O(1+ `

ε logσ u) worst-case time, using only o(u log σ) extra bits of space,
for any 0 < 1 < ε.

5.5 Handling Larger Alphabets

For simplicity, throughout this chapter we have assumed σ = O(polylog(u)), or
equivalently log σ = O(log log u). Here we study the cases log σ = o(log u) and log σ =
Θ(log u).

5.5.1 The Case log σ = o(log u)

As long as log σ = o(log u) holds, we can still have k = o(logσ u) > 0, while it also holds
that n log n = uHk(T ) + o(u log σ) [KM99]. Therefore, the space requirements of the
indexes of Theorems 5.1 to 5.3 stay the same.

Index of Section 5.1. The data structure of Lemma 2.5 (1), which we use to represent letts
and array SW , has a time complexity of O( log σ

log log u) for rank and select queries; thus, we

lose the constant time for operations child(x, α) and ϕ′(x, α) on the tries, which would
increase the time complexity of the whole index. Yet, we can represent letts with the
(more complicated) data structure used in [BDM+05], thus ensuring constant time for
child(x, α) for any σ and retaining the same time complexity in our theorems. In the case
of SW we can use the scheme used to represent array Sα of the xbw in [FLMM05], in this
way achieving constant time to compute rank over SW , and requiring n log σ + o(u log σ)
bits of space. None of the remaining data structures of the index are affected by the
alphabet size. As a result, Theorem 5.2 can be extended for the case log σ = o(log u),
rather than only for σ = O(polylog(u)).

Index of Section 5.2. The times for the operations on the xbw representation of LZTrie are
affected by the alphabet size, depending on the representation used for Sα. If we use the
data structure of Lemma 2.5 (2), occurrences of type 1 are found in O(m log log σ + occ

ε )
time, because of the subpath query we perform on LZTrie; occurrences of type 2 are
found in O(m2 log log σ + m

ε + (m + occ) log n) time, where the first term comes from
searching for the m − 1 partitions of P in xbw ; and occurrences of type 3 are found in
O(m2 log log σ + m2

ε ), where the first term comes from searching for the O(m2) pattern
substrings in the xbw representation of LZTrie. Overall, the time for locate is O(m2(1

ε +
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log log σ) + (m + occ) log u). We can also replace O(log log σ) for O( log σ
log log u) in all these

figures. Alternatively, we can use for Sα the representation given in [FLMM05], which
allows constant time rank and select over Sα (though doubling the space for this array,
since the data structure does not provide operation access). In this way, we retain the
original complexities.

Index of Section 5.3. For this index the only affected part is the Alphabet-Friendly FM-
index, AF-FMI(T ), which still has a space requirement of uHk(T ) + o(u log σ) bits. The
counting time is increased to O(m(1+ log σ

log log u)). Thus, the time for locate of this version of

LZ-index now becomes O(m(1+ log σ
log log u)+(m+ occ

ε ) log u), which is still O((m+ occ
ε ) log u),

the same as stated by Theorem 5.3, since m log σ
log log u = O(m log u). The counting time, on

the other hand, now becomes O(m(1 + log σ
log log u)). Thus, we have a more general version of

Theorem 5.3:

Theorem 5.5. Given a text T [1..u] over an alphabet of size σ, and with k-th order
empirical entropy Hk(T ), there exists a compressed full-text self-index requiring (3+ε)uHk

(T ) + o(u log σ) bits of space, for any k = o(logσ u), any 0 < ε < 1, and such that
log σ = o(log u). Given a search pattern P [1..m], this index is able to:

(1 ) report the occ occurrences of pattern P in text T in O((m + occ
ε ) log u) worst-case

time;

(2 ) count pattern occurrences in O(m(1 + log σ
log log u)) worst-case time;

(3 ) determine whether pattern P exists in T in O(m(1 + log σ
log log u)) worst-case time;

and

(4 ) extract any text substring of length ` in O(`/(ε logσ u)) worst-case time.

5.5.2 The Case log σ = Θ(log u)

For the case log σ = Θ(log u), because of Lemma 2.1 we have that n log n = uHk(T ) +
O(u(1 + k log σ)) bits of space, which is Θ(u log σ) even for k = 1. Thus, high-order
compression is lost. For k = 0 the space is uH0(T ) + o(u log σ) bits of space, so zero-order
compression is retained. On the other hand, all the time complexities obtained for the
case log σ = o(log u) are valid for this larger σ.

However, it has been shown that the empirical-entropy model is not so adequate for
such a large alphabet [Gag06].
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5.6 Final Comments

We have found affirmative answers for Question 5.1, showing that the space of LZ-index
can be squeezed to (1+ε)uHk(T )+o(u log σ) bits, for any k = o(logσ u) and any 0 < ε < 1,
with O(m2/ε) average-case search time if m > 2 logσ n. This space approaches as much
as desired the optimal uHk(T ) under the k-th order empirical entropy model for all k.
However, this index does not provides worst-case guarantees at search time.

Then, we also found an affirmative answer for Question 5.2, achieving (2+ε)uHk(T )+
o(u log σ) bits of space, for any k = o(logσ u) and any 0 < ε < 1. This is about half
the space the original LZ-index needs to operate [Nav04]. Moreover, we also improved
the search time of the LZ-index, achieving stronger compressed self-indexes based on the
Lempel-Ziv compression algorithm [ZL78]: Our indexes are able to search for the occ

occurrences of a pattern P [1..m] in T in O(m2

ε + (m + occ) log u) worst-case time, as well

as extracting any text substring of length ` in optimal O( `
ε logσ u) time. Thus, we achieve

the same locate time as the index of Kärkkäinen and Ukkonen [KU96a] (see Lemma 3.1),
yet with a much smaller index that does not need the text to operate.

In Table 1.1 (see page 9) we summarize the space and time complexities of some
of the best existing compressed self-indexes (other less competitive ones are ignored
[NM07]). We conclude that ours are the smallest existing compressed self-indexes based
on Lempel-Ziv compression. As we argued in previous chapters, operations extract and
display are the most useful in most practical scenarios. As it can be seen from the
table, our LZ-indexes are superior in this respect. Total locate times in the table are
after counting the pattern occurrences. The fast locating (O(log u) time per occurrence
found) is also a strong point of our structure. Other data structures achieving the
same or better complexity for locating occurrences either are of size O(uH0(T )) bits
plus a non-negligible extra space of O(u log log σ) [Sad03], or they achieve this locating
time for constant-size alphabets [FM05]. Finally, the CSA of Grossi, Gupta, and Vitter

[GGV03] requires ε−1uHk(T )+o(u log σ) bits of space, with a locating time of O((log u)
ε

1−ε

(log σ)
1−2ε
1−ε ) per occurrence, after a counting time of O( m

logσ u +(log u)
1+ε
1−ε (log σ)

1−3ε
1−ε ), where

0 < ε < 1/2 is a constant. When ε approaches 1/2, the space requirement approaches (from

above) 2uHk(T ) + o(u log σ) bits, with a counting time of O( m
logσ u + log3 u

log σ ) and a locating

time per occurrence of still ω(log u).

We also showed how to use an LZ-index to achieve O((m + occ) log u) time to locate
the pattern occurrences, requiring (3 + ε)uHk(T ) + o(u log σ) bits of space. This is about
half the space required by other LZ-indexes having the same search time [RO07] (see also
Lemma 3.5).

Overall, we have achieved LZ-indexes with space requirements ranging from (1 + ε)
to (3 + ε) times the size of the compressed text (plus lower-order terms), with different
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achievements in the time complexities according with the space requirement of the index.
These indexes are very competitive with state-of-the-art indexes, both in time and space
requirement.
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Chapter 6

Space-Efficient Construction of
Lempel-Ziv Text Indexes

Many works on compressed full-text self-indexes do not consider the space-efficient
construction of the indexes. Yet, this aspect becomes crucial when implementing the
index in practice. For example, the original construction of Compressed Suffix Arrays
(CSA) [GV05, Sad03] and FM-index [FM05] involves building first the suffix array of the
text, using for example the algorithm of Larsson and Sadakane [LS99] or the one by Manzini
and Ferragina [MF04]. Similarly, Navarro’s LZ-index is constructed over a non-compressed
intermediate representation [Nav04]. In both cases one needs in practice about 5 times
the text size (in the case of CSA and the FM-index, by using the deep-shallow algorithm
[MF04]). For example, the Human Genome (of 3 × 109 base pairs) may fit in less than 1
GB of main memory using these indexes (and thus it can be operated entirely in RAM on
a desktop computer), but 15 GB of main memory is needed to build the indexes! Using
secondary memory for the construction is nowadays the most practical alternative in the
case of suffix arrays [DKMS08]. In this chapter we are interested in indexing algorithms
for the LZ-index, that work directly in compressed space in main memory. The idea is to
perform as much as we can of the indexing process in main memory.

Model of Computation. In this chapter we assume the standard word RAM model of
computation, just as stated in Section 2.1. However, we make some extra assumptions
here. Usually, after an indexing algorithm builds a text index in main memory, the index
is stored on disk along with the text database, for persistence purposes. In the case of
compressed self-indexes, the index by itself represents the database. At query time, the
index is loaded into main memory in order to answer (many) user queries. Thus, by saving
the index the (usually costly) indexing process is amortized over several queries. Yet, in
other scenarios, one builds the index in main memory and answers queries on the fly.
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We will initially assume that there is enough main memory to hold the final index.
Later we will consider reduced-main-memory scenarios, where we will resort to secondary
memory to hold the intermediate results. In this case, as the final index must reside on
disk, we will assume that there is enough secondary memory to hold the index we build.

Since, depending on the scenario, we might or might not have to read the text from
disk, and we might or might not have to write the final index to disk, and because those
costs are fixed, we will not mention them. Yet, in the reduced-main-memory scenarios we
will use the disk to read/write intermediate results, and in this case we will also consider
the amount of extra I/O performed.

When accessing the disk, we assume the standard model [Vit08] where a disk page of
B bits can be transferred to/from secondary storage with each access.

Finally, the space required by the text is not accounted for in the space required by
the indexing algorithms. If it resides on disk one can process it sequentially so it does not
require any significant main memory. Moreover, in most of our algorithms one could erase
the text at an early stage of the construction process.

6.1 Related Work

Next we review related work dealing with the space-efficient construction of text indexes:

— An important research path is to try building the suffix array directly in compressed
space in main memory. Hon et al. [HSS03a] present an algorithm to construct suffix
arrays (and also suffix trees) using O(u log σ) bits of storage, in O(u log log σ) =
o(u log u) time for suffix arrays, and O(u logε u) time for suffix trees, where 0 < ε < 1.
From this they derive an alternative algorithm to construct the CSA and the FM-
index using O(u log σ) bits of storage and O(u log log σ) time, in the case of FM-index
assuming log σ = o(log u). However, the space requirement to construct the CSA is
still bigger than the space needed by the final index.

— The works of Lam et al. [LSSY02] and Hon et al. [HLSS03, HLS+07] deal with
the space (and time) efficient construction of CSA. The former work presents an
algorithm that uses (2H0(T )+1+ε)u+o(u log σ) bits of space to build the CSA, where
ε is any positive constant; the construction time is O(σu log u), which is good enough
if the alphabet is small (as in the case of DNA sequences), but may be impractical
in the case of larger alphabets such as proteins and Oriental languages. The second
work [HLS+07] addresses this problem by requiring (H0(T )+2+ ε)u+o(u log σ) bits
of space and O(u log u) time to build the CSA. Also, they show how to build the
FM-index from CSA using negligible extra space in O(u) time. In practice they are
able to construct the CSA for the Human Genome in about 24 hours and requiring
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about 3.6 GB of main memory [Hon04], on a 1.7 GHz CPU. The FM-index can be
constructed from the CSA in about 4 extra hours, for a total of about 28 hours.

— Finally, Na and Park [NP07] construct the CSA in O(u log σ logε
σ u) bits of space and

O(u) time, for ε = log3 2. This is the most space-efficient linear-time algorithm for
constructing the CSA. They leave open, however, the question of whether the CSA
can be constructed in linear time and requiring O(u log σ) bits of space.

As it can be noticed, many works study the space-efficient construction of the CSA
and the FM-index. However, the space-efficient construction of LZ-indexes has not been
addressed in the literature. As we have shown in previous chapters, the LZ-indexes are
competitive for locating pattern occurrences and extracting text substrings. Since this is
very important in the scenario of self-indexes, the space-efficient construction of LZ-indexes
is also an important issue.

In this chapter we present an efficient algorithm to construct the LZ-index using little
space. We look for an indexing algorithm requiring at most the same space the final
LZ-index needs to operate (within a lower-order additive term).

6.2 Space-Efficient Construction of the LZ-index

As we have seen, the LZ-index is a compressed full-text self-index, and as such it allows
large texts to be indexed and stored in main memory. However, the construction process
requires a large amount of main memory, mainly to support the pointer-based tries used
to build the final versions of LZTrie and RevTrie (recall Section 3.3.4). So our problem
is: given a text T [1..u] over an alphabet of size σ, construct the LZ-index for T using as
little space as possible and within reasonable time.

In this chapter we aim at an efficient algorithm to build those tries in little memory,
by replacing the pointer-based tries with space-efficient data structures that support
insertions. These can be seen as hybrids between pointer-based tries and the final
succinct representations. The space-efficient construction algorithm for LZ-index presented
in [AN05] has a construction time of the form O(σu). This makes the construction
algorithm impractical for moderately-large alphabets. In the sequel we shall achieve
O(u(log σ + log log u)) time by using an improved dynamic representation.

In Sections 6.2.1 to 6.2.5 we assume that we have enough main memory to store
the final LZ-index. A very important aspect is that of the management of the available
memory done by our algorithm. In Section 6.2.6 we study how to manage the memory
dynamically, using a standard model of memory allocation [RR03] . In Section 6.3, we
shall adapt our algorithm to the cases in which there is no enough space to store the whole
final index in main memory.
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We show next how to space-efficiently construct the LZ-index components. From now
on we assume σ > 2, as otherwise the whole indexing problem is trivial.

6.2.1 Space-Efficient Construction of LZTrie

The space-efficient construction of LZTrie is based on a compact representation supporting
a fast incremental construction as we traverse the text. In either the bp and dfuds

representations (see Lemma 2.10 and Lemma 2.11 respectively), the insertion of a new
node at any position of the sequence implies to rebuild the sequence from scratch, which
is expensive. To avoid this we define a hierarchical representation, such that we rebuild
only a small part of the entire original sequence upon the insertion of a new node.

We incrementally cut the trie into disjoint blocks such that every block stores a subset
of nodes representing a connected component of the whole trie. We arrange these blocks
in a tree by adding some inter-block pointers, and thus the entire trie is represented by a
tree of blocks.

If a node x is a leaf of a block p, but is not a leaf of the whole trie, then node x stores
an inter-block pointer to the representation of its subtree. Let us say that this pointer is
pointing to block q. We say that q is a child block of p. In our representation, node x
is also stored in block q, as a fictitious root node. Thus, every block is a tree by itself,
which shall simplify the navigation on our representation, as well as the management of
each block.

To summarize, every such node x has two representations: (1) as a leaf in block p; (2)
as the root node of block q. Note that the number of extra nodes introduced by duplicating
nodes equals the number of blocks in the representation (minus one), and also that we are
enforcing that every node is stored in the same block of its children, which also means that
sibling nodes are all stored in the same block.

Rather than using a static representation for the blocks of the tries [AN05], which
are rebuilt from scratch upon insertion of new nodes, we represent each block by using
dynamic data structures, which can be updated in time less than linear in the block size.
We adapt the approach used in [Arr08] to represent succinct dynamic σ-ary trees: We first
reduce the size of the problem by dividing the trie into small blocks, and then represent
every block (i.e., smaller trie) with a dynamic data structure to avoid the total rebuilding
of blocks upon trie updates.

Defining Block Sizes. We divide the LZTrie into blocks of N nodes each, where Nm 6

N 6 NM , for minimum block size Nm = Θ(log2 u) nodes and maximum block size NM >

2σNm nodes. We also need NM = (σ log u)O(1), for example NM = Θ(σ log3 u) (we do not
show the rounding in the block sizes, but it should be clear that these must be integers).
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In this way, notice that we shall have one inter-block pointer out of at least Nm nodes.
Since each pointer is represented with log u bits, and since we have n nodes in the tree,
we have at most n

Nm
log u = O(n/ log u) bits overall for inter-block pointers.

The definition of NM , on the other hand, is such that it ensures that a block p has
room to store at least the potential σ children of the block root (recall that sibling nodes
must be stored all in the same block). Also, when we insert a node in a block of maximal
size NM (i.e., the block overflows), we should be able to split the block into two blocks,
each of size at least Nm. By defining NM as we do, in the worst case (i.e., the case where
the overflown block has the smallest possible size) the root of the block has some child with
at least Nm nodes, as NM > 1+σNm. Thus, upon an overflow, we can create a new block
of size at least Nm from such subtree, requiring little space for inter-block pointers and
maintaining the properties of our data structure. The stricter factor 2 shall be useful for
our amortized analysis of block partitioning, whereas the polylog upper bound is necessary
to ensure short enough pointers within blocks, and because our operation times will be
O(log NM ).

Defining the Block Layout. Each block p of N nodes consists of (we will explain later
how to represent each block component):

— The representation Tp of the topology of the block, using any suitable tree
representation.

— A bit-vector Fp[1..N ] (the flags) such that Fp[j] = 1 iff the j-th node of Tp (in
preorder) has associated an inter-block pointer. We shall represent Fp by using a
data structure supporting rank and select queries, requiring N + o(N) bits.

— log NM bits to count the current number N of nodes stored in the block.

— The sequence idsp[1..N ] of LZ78 phrase identifiers for the nodes of Tp, in preorder.
Except for the LZTrie root, every block root is replicated as a leaf in its parent block,
as explained. In that case we store the corresponding phrase identifier only in the
leaf of the parent block. That is, fictitious roots in each block do not store phrase
identifiers. We use log u bits per phrase identifier, instead of using log n bits as in
the final representation of ids. This is because, before constructing the LZ78 parsing
of the text, we do not know n, the number of phrase identifiers.

— The symbols (lettsp) labeling the edges in the block (the order of the symbols depends
on the representation used for Tp, recall Section 2.5.2). Each symbol uses log σ bits
of space.

134



— A variable number of inter-block pointers, stored in data structure ptrp. The number
of inter-block pointers varies from 0 to N , and it corresponds to the number of flags
with value 1 in Fp.

Example 6.1. In Fig. 6.1 we show an example of hierarchical representation of LZTrie
for the running example text, assuming that bp is used to represent the trie topology of
each block.

If the subtree of the j-th node (in preorder) of block p is stored in block q, then q is a
child block of p and the j-th flag in p has the value 1. If the number of flags with value 1

before the j-th flag in p is h, then the h-th inter-block pointer of p points to q. Note that
h can be computed as rank1(Fp, j).
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Figure 6.1: Hierarchical representation of the LZTrie of Fig. 2.3(c). The trie topology inside
the blocks is represented with bp. Nodes having an inter-block pointer are duplicated as the
root of the child block, and shown outside each block.

Since blocks are tries by themselves, inside a block p we use the traditional trie-like
descent process, using operation childp(x, α) on Tp. From now on we use the subscript
p with the trie operations, to indicate operations which are local to a block p, i.e.,
disregarding the inter-block structure (e.g., preorderp computes the preorder of a node
within block p, and not within the whole trie, and so on). When we reach a block leaf
(with preorder j inside the block), we check the j-th flag in p. If Fp[j] = 1 holds in that
block, we compute h = rank1(Fp, j) and follow the h-th inter-block pointer in p to reach
the corresponding child block q. Then we follow the descent inside q as before. Otherwise,
if Fp[j] = 0, then we are in a leaf of the whole trie, and we cannot descend anymore.

We represent the above components for block p in the following way.
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Representation of the Trie Topology, Tp. To represent the trie topology of block p
we use the data structure for dynamic balanced parentheses of [CHLS07] to represent the
dfuds of the block. The main idea of Chan et al. is to divide the original parentheses
sequence into segments Si of O(log N) bits, which in our case also means O(log N) nodes
per segment (by identifying each node with its first parenthesis). Every segment Si is
stored in the leaves of a balanced binary tree T ′

p, such that concatenating the leaves from
left to right gives us back the original sequence Tp.

Some information is stored in the internal nodes of T ′
p in order to support the

operations on the parentheses sequence, as well as support insertions and deletions of
pairs of matching parentheses. All the operations of Section 2.5.2 on balanced-parentheses
sequences are supported in O(log N) time by navigating T ′

p. In addition, we store in every
internal node of T ′

p the number of opening parentheses within the left subtree, as well as
the total number of parentheses within the left subtree, such as in [MN08b], in order to
support operations rank(, rank), select(, and select) over Tp in O(log N) time.

All these operations on the sequence of parentheses allow us to support the dfuds

operations (recall Section 2.5.2): parentp, childp(x, i), subtreesizep, degreep, preorderp,
selectnodep, etc., all of them in O(log N) = O(log NM ) time. As we shall explain later in
this section, the insertion of a new node in dfuds can be simulated by inserting a new
pair of matching parentheses in Tp, and thus we can handle it in a straightforward way
with the data structure of [CHLS07]. Deletions of leaves are handled in a similar way. The
space requirement is O(N) bits per block, which adds up to O(n) = o(u) bits overall1.

Representation of the Flags, Fp. We represent the flags of block p in preorder and
using a dynamic data structure for rank and select over a binary sequence [MN08b].
This data structure supports rank, select, and updates on Fp in O(log N) worst-case
time, and requires N + o(N) bits of space. This data structure can be connected with
Tp via operations preorderp and selectnodep: Given a node x in p, the corresponding
flag is Fp[preorderp(x)]. Given Fp[j], on the other hand, the corresponding node in Tp

is selectnodep(j). When we insert a new node in Tp, we insert a new flag (with value 0

because the new node is inserted with no related inter-block pointer) at the corresponding
position (given by preorderp). This data structure adds n + o(n) = o(u) extra bits to
our representation. A more involved representation for Fp, requiring o(n) bits, is given in
[Arr08], yet the one we are using here is simpler yet adequate for our purposes.

Representation of the Symbols, lettsp. We represent the symbols labeling the edges
of the block according to a dfuds traversal on Tp (see Section 2.5.2), yet this time we store

1The space requirement of the trie topology can be reduced to 2n + o(n) bits overall, see [Arr08].
However, O(n) bits is sufficient for our purposes.
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them in differential form, except for the symbol of the first child of every node, which is
represented in absolute form. We then represent this sequence of N integers of k′ = log σ
bits each with the dynamic data structure for searchable partial sums of Lemma 2.6,
which supports all the operations (including insertions and deletions) in O(log N) time,
and requiring Nk′ + O(N) = N log σ + O(N) bits of space (recall Lemma 2.6), adding
overall n log σ + O(n) = o(u log σ) extra bits of space. This is more efficient (both in
time and extra sublinear space) than using a dynamic data structure supporting rank and
select [GN08b].

We can connect lettsp with Tp by using rank( over Tp. Given a node x in Tp, the
subsequence lettsp[rank((Tp, x)..rank((Tp, x)+ degreep(x)− 1] stores the symbols labeling
the children of x. To support operation childp(x, α), which shall be used to descend in
the trie at construction time, we first compute i ← rank((Tp, x) to obtain the position in
lettsp for the first child of x. We then compute s ← Sum(lettsp, i − 1), which is the sum
of the symbols in lettsp up to position i − 1 (i.e., the sum before the first child of x). To
compute the position of symbol α within the symbols of the children of node x, we perform
j ← Search(lettsp, s + α). Thus, the node we are looking for is the (j − i + 1)-th child of
x, which can be computed by childp(x, j − i + 1), in O(log N) time overall. To make sure
j is a valid answer, we use operation degreep(x) to check whether j − i + 1 is smaller or
equal to the degree of x, and then we check whether Sum(lettsp, j− i+1)−s = α actually
holds.

Representation of the Phrase Identifiers, idsp. To store the phrase identifiers of the
trie nodes, we define a list Lidsp for block p, storing the identifiers in preorder. Given a
new inserted node x in Tp, we must insert the corresponding phrase identifier at position
preorderp(x) within Lidsp , so we must support the efficient search of this position.

The linked-list functionality to represent Lidsp is easily achieved by simplifying, for
example, the dynamic partial sums data structure of Lemma 2.6, so that only accesses
and insertions are permitted. For a list of N elements, this data structure is a balanced
tree storing circular arrays of Θ(log N) list elements at the leaves, and subtree sizes at
internal nodes. It carries out all the operations in O(log N) time and poses an extra space
overhead of O(N) bits.

We need N log u + O(N) bits of space to maintain the identifiers, which adds up to
n log u + O(n) bits overall. This is uHk(T ) + o(u log σ) bits of space according to Lemma
2.1. Recall that N = O(NM ) in our case, and therefore the time to manipulate the list is
O(log σ + log log u) per operation.

Representation of the Inter-Block Pointers, ptrp. For the inter-block pointers, we
use also a linked list Lptrp , managed in a similar way as for Lidsp . Since blocks have

137



at least Nm nodes, we have at most one pointer for every Θ(log2 u) nodes, which adds
O(n/ log u) = o(u/ log u) bits overall.

Construction Process. The construction of LZTrie proceeds as explained in Section
3.3.3, using the symbols in the text to descend in the trie, until we cannot descend anymore.
This indicates that we have found the longest prefix of the rest of the text that equals a
phrase B` already in the phrase dictionary of LZ78. Thus, we form a new phrase Bt = B`·c,
where c is the next symbol in the text, and then insert a new leaf representing this phrase.
However, this time the nodes are inserted in a hierarchical representation of LZTrie, instead
of a pointer-based trie.

The insertion of a new node for the LZ78 phrase Bt in the trie implies to update only
the block p in which the insertion is carried out. Assume that the new leaf must become
the j-th node (in preorder) within the block p, and that the new leaf is a new child of
node x in block p (i.e., node x represents phrase B`). We explain next how to carry out
the insertion of the new leaf within the dfuds of Tp.

We must insert a new ‘(’ within the representation of x (which simulates the increase
of the degree of node x, because of the insertion of the new child), and we must insert also
a new ‘)’ to represent the new leaf we are inserting. Assume that the new leaf will become
the new i-th child of node x, assuming first that i 6 degree(x) (i.e., the new node is not
inserted as the last child of x). Therefore the new ‘(’ must be inserted to the right of the
opening parenthesis already at position i′ = x+degree(x)−i (recall from Section 2.5.2 how
operation child(x, i) uses the opening parentheses defining node x to descend to the i-th
child). Then, the new ‘)’ must be inserted at position i′′ = findclose(Tp, i

′ + 1), shifting
to the right the last ‘)’ in the subtree of the (i− 1)-th child of x, which now becomes the
new leaf. As a result, the two inserted parentheses form a matching pair, which can be
handled in a straightforward way with the data structure of [CHLS07]. See Fig. 6.2 for an
illustration.

If, on the other hand, the new node is inserted as the last child of x (i.e., i =
degree(x)+1), notice that there is no opening parenthesis at position i′ = x+degree(x)−
i = x− 1, because that corresponds to the closing parenthesis finishing the representation
of the previous node in preorder. So we use a different procedure instead. We need to
find the position of the rightmost closing parenthesis in the subtree of x. In the example
of Fig. 6.2(a), we must find the rightmost ‘)’ in the subtree of the fourth child of node
x. The new leaf ‘)’ must be inserted at the right of this parenthesis. Notice that the
rightmost closing parenthesis in the subtree of node x matches the opening parenthesis at
position i′ = enclose(Tp, x). Then, if we add an opening parenthesis at position x, and a
closing parenthesis at position i′′ = findclose(Tp, i

′), we will have a new pair of matching
parentheses, which can be handled with the data structure of [CHLS07].
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(a) A node x of degree 4 and its corresponding subtree in the dfuds representation of
the LZTrie. Notice the relation among the four opening parentheses in the definition
of x and the subtrees of the children of node x.

first child second child third child) )(   ( ( ( )( )) fifth child )

(b) Insertion of a new child of node x. The new leaf is inserted as the new fourth child of
x, and thus it is represented by the new bold pair of matching parentheses. Notice how the
degree of x is increased to 5 with the new opening parenthesis. The last closing parenthesis
in the subtree of the third child of x is shifted to the right and now represents the new
inserted leaf.

Figure 6.2: Illustration of the insertion of a new leaf node in the dfuds representation of
LZTrie.

Then, we add a new flag 0 at position j in Fp. Also, c is inserted at the corresponding
position within lettsp, and t is inserted at position j within the identifiers of block p (since
these are stored in preorder). All this takes O(log NM ) = O(log σ + log log u) time.

Managing Block Overflows. A block overflow occurs when, at construction time, the
insertion of a new node must be carried out within a block p of NM nodes. In such a case,
we need to make room in p for the new node by selecting a subset of nodes to be copied
to a new child block (of p) and then will be deleted from p. We explain this procedure in
detail.

First we select a node z in p whose local subtree (along with z itself) will be copied
to a new child block. In this way we ensure that a node and its children (and therefore all
sibling nodes) are always stored in the same block (recall that a copy of z, as a leaf, will
be kept in p).

Suppose that we have selected in this way the subtree of the j-th node (in preorder)
in the block. Both the selected node z and its subtree are copied to a new block p′, via
insertions in Tp′ . We must also copy to p′ the flags Fp[preorderp(z) + 1..preorderp(z) +
subtreesizep(z)−1] (via insertions in Fp′) as well as the corresponding inter-block pointers
within the subtree of the selected node z, which are stored in array ptrp from position
rank1(Fp, preorderp(z)) + 1 up to rank1(Fp, preorderp(z) + subtreesizep(z)− 1).

139



Next we add in p a pointer to p′. The new pointer belongs to z, the j-th opening
parenthesis in p (because we selected its subtree). We compute the position for the new
pointer as rank1(Fp, j), adding the pointer at this position in Lptrp , and then we set to 1

the j-th flag in Fp, updating accordingly the rank/select data structure for Fp (the portion
copied to Fp′ must be deleted from Fp). Finally, we delete in p the subtree of z (via the
corresponding deletions in Tp), leaving z as a leaf in p.

Thus, the reinsertion process can be performed in time proportional to the size of
the reinserted subtree (times O(log NM )), by using the insert and delete operations on the
corresponding dynamic data structures that form a block. However, we must be careful
with the selection of node z, which can be performed in two different ways:

(1) Upon a block overflow, we traverse block p to select node z, which takes O(NM ) time
in the worst case; or

(2) we look for z in advance to overflows, as we perform the insertion of new nodes (using
the insertion path to look for possible candidates).

We choose the latter option, since in this way we can obtain a good amortized cost for
updates, as we will see later in our analysis.

To quickly select node z, we maintain in each block p a candidate list Cp [Arr08],
storing the local preorders of the nodes that can be copied to a new child block p′ upon
block overflow. With selectnode we can obtain the candidate node corresponding to such
a preorder. A subtree must have size at least Nm to be considered a candidate. Thus,
after a number of insertions we will find that a node (within the insertion path) becomes
a candidate. Let us think for a moment that we only maintain a candidate per block, and
not a list of them. It can be the case that a few children of the block root have received
(almost) all the insertions, so we have a few large subtrees within the block. When block
p overflows, we reinsert the only candidate to a new child block, so we have no candidate
anymore for p. We have to use the next insertions in order to find a new one. However, it
can be also the case that different children of the root of p receive the new insertions, and
hence block p could overflow again within a few insertions, without finding a new subtree
large enough so as to be considered a candidate (recall that we just use the insertion path
to look for candidates). By maintaining a list of candidates in each block, instead of a
unique candidate per block, we can keep track of all the nodes in p whose subtree is large
enough, avoiding this problem.

Since the preorder of a node within a block p can change after the insertion of a new
node in p, we must update Cp in order to reflect these changes. In particular, we must
update the preorders stored in Cp for all candidate nodes whose preorder is greater than
that of the new inserted node. To perform these updates efficiently, we represent Cp using
a searchable partial sum data structure (see Lemma 2.6). Thus, the original preorder Cp[i]
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is obtained by performing Sum(Cp, i) in O(log N) time. Let x be the new inserted node.
Then, with j = Search(Cp, preorderp(x)) we find the first candidate (in preorder) whose
preorder must be updated, and we perform operation Update(Cp, j, 1). In this way, we
are increasing Cp[j] by 1, and hence we are automatically updating all the preorders in Cp

that have changed after the insertion of x, in O(log N) time overall.

If we keep track of every candidate of size at least Nm, every time p overflows there
will be already candidate blocks. The reason is, again, that NM > 1+σNm, and thus that
at least one of the children of the root must have size at least Nm, and this is a candidate.

Since we use the descent process to look for candidates, we will find them as soon as
their subtrees become large enough. In other words, the subtree of a node becomes larger
as we descend through the node many times to insert new nodes, until eventually finding
a candidate.

We must also ensure that the space to maintain Cp is small (so we cannot have too
many candidates). The size of the local subtree (i.e., only considering the descendant
nodes stored in block p) of every candidate must be at least Nm. Also, we enforce that
no candidate node descends from another candidate, in order to bound the number of
candidates.

To maintain Cp, every time we descend in the trie to insert a new LZ78 phrase, we
maintain the last node z in the path such that subtreesizep(z) > Nm. When we find the
insertion point of the new node x, say at block p, before adding z to Cp we first perform
p1 = Search(Cp, preorderp(z)), and then p2 = Search(Cp, preorderp(z)+subtreesizep(z)).
Then, z is added to Cp whenever:

(1) z is not the root of block p, and

(2) there is no other candidate in the subtree of z (that is, p1 = p2 holds).

If in the descent we find a candidate node z′ which is an ancestor of the prospective
candidate z, then after inserting z to Cp we delete z′ from Cp. In this way, we keep the
lowest possible candidates, avoiding that the subtree of a candidate becomes too large after
choosing it as a candidate, which would not guarantee a fair partition into two blocks of
size between Nm and NM upon an overflow. Because of Condition (2) above, there are one
candidate out of (at least) Nm nodes; thus, the total space for Cp is n

Nm
log NM + O( n

NM
)

bits, which is o(n/ log u).

If Cp becomes empty after solving an overflow, it can be the case that there are still
valid candidates in the block. Notice that if this happens, there must be at least one
ancestor of node z (the candidate node that was just moved to a new block upon the last
overflow) which is a valid candidate. So we look for a valid candidate starting from node z
and going successively to the parent node, until eventually finding the candidate. Notice
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that we need to perform at most Nm parent operations until finding a candidate, because
in this way we will arrive to a node that has at least Nm descendants. So the cost of
looking for the candidate is subsumed by the cost of solving the overflow.

The reinsertion cost is in this way proportional to the size of p′, since finding node
z now takes O(log NM ) time (because of the partial-sum data structure used to represent
Cp). Notice that the first time a node is reinserted, the reinsertion cost amortizes with
the cost of the original insertion. Unfortunately, there are no bounds on the number
of reinsertions for a given node. However, we shall show that multiple reinsertions of
a node over time amortize with the insertion of other nodes. We use the following
accounting argument [CLRS01] to prove the amortized cost of insertions. Let ĉ = 2 be
the amortized cost of normal insertions (without overflows), being c = 1 the actual cost
of an insertion. Therefore, every insertion spends one unit for the insertion itself, and
reserves the remaining unit for future (more costly) operations. Let us think that we have
separate reserves, one per block of the data structure. We shall prove that every time a
block overflows, it has enough reserves so as to pay for the costly operation of reinserting
a set of nodes.

In particular, every time a block overflows, its reserve is NM − I, where I was the
initial number of nodes for the block (notice that I = 0 holds only for the root block). Let
I ′ be the number of nodes of the new block p′. Then we must prove that NM − I > I ′

always holds, that is, NM > I + I ′. We need the following lemma:

Lemma 6.1. For every candidate node x in block p, it holds that subtreesizep(x) < σNm.

Proof. By maintaining the lowest possible candidates, we find the smallest possible ones.
If a node cannot be chosen as a candidate, this means that its subtree size is smaller than
Nm nodes (another possibility is that there is another candidate within the subtree, yet
this case is not interesting here). Therefore, the smallest subtree that can be chosen as
a candidate may have up to Nm − 1 nodes in each children, and hence its total size is at
most 1 + σ(Nm − 1) < σNm.

Because of this, blocks are created with I ′, I < σNm nodes. As we have chosen
NM > 2σNm, it follows that NM > I + I ′. This means that every reinsertion of a
node has been already paid by some node at insertion time.2 Thus, the insertion cost
is O(log NM ) amortized. After n insertions, the overall cost amortizes to O(n log NM ) =
O(n(log σ + log log u)).

Once we solved the overflow, the insertion of the new node is carried out either in
p′ or in p, depending whether the insertion point lies within the moved subtree or not,
respectively. Notice that there is room for the new node in either block.

2More generally we could have set NM ≥ (1 + α)σNm for any constant α > 0, and the analysis would
have worked with ĉ = 1 + 1/α.
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Hierarchical LZTrie Construction Analysis. As the trie has n nodes, we need O(n)+
(n+ o(n))+ (n log σ +O(n))+ (n log u+O(n))+ o(n/ log n)+ o(n/ log n) bits of storage to
represent the trie topology, flags, symbols, identifiers, inter-block pointers, and candidate
lists, respectively. Because of Lemma 2.1, the space requirement is uHk(T ) + o(u log σ)
bits, for any k = o(logσ u).

When constructing LZTrie, the navigational cost per symbol of the text is O(log
NM ) = O(log σ+log log u), for a total worst-case time O(u(log σ+log log u)). On the other
hand, the cost of rebuilding blocks after an insertion is O(log NM ) amortized, and therefore
the total cost amortizes to O(n(log σ + log log u)) = o(u(log σ + log log u)). Therefore, the
total construction time is O(u(log σ + log log u)).

Representing the Final LZTrie. Once we construct the same hierarchical
representation for LZTrie, we delete the text since this is not anymore necessary, and then
use the hierarchical LZTrie to build the final version of LZTrie in O(n(log σ + log log u))
time. We perform a preorder traversal on the hierarchical tree, transcribing the nodes to
a linear representation. Every time we copy a node, we check the corresponding flag, and
then decide whether to descend to the corresponding child block or not. We also allocate
n log σ = o(u log σ) bits of space for the final array letts, and n log n bits for array ids.

Thus, the maximum amount of space used is 2uHk(T )+o(u log σ), since at some point
we store both the hierarchical and final versions of LZTrie. We then free the hierarchical
LZTrie, thus we end up with a representation requiring uHk(T ) + o(u log σ) bits.

Thus, we have proved:

Lemma 6.2. There exists an algorithm to construct the LZTrie for a text T [1..u] over an
alphabet of size σ and with k-th order empirical entropy Hk(T ), in O(u(log σ + log log u))
time and using 2uHk(T ) + o(u log σ) bits of space, for any k = o(logσ u).

6.2.2 Space-Efficient Construction of RevTrie

For the space-efficient construction of RevTrie, we use the hierarchical technique of Section
6.2.1, to represent not the original reverse trie but its Patricia tree [Mor68], which
compresses empty unary paths of the reverse trie, yielding an important saving of space.
However, as we still maintain empty non-unary nodes, the number of nodes in the reverse
trie is n′ 6 2n.

Throughout the construction process we store in the nodes of the reverse trie pointers
to LZTrie nodes, instead of the corresponding phrase identifiers rids stored by the final
RevTrie. Each pointer uses log 2n bits, since the LZTrie parentheses representation has
2n positions (either in bp or dfuds representations, recall that LZTrie is already in final
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static form). We store these pointers to LZTrie in the same way as for array idsp in
Section 6.2.1, in preorder according to RevTrie and spending O(1) extra bits per element
for the linked list functionality. The aim is to obtain the text of the phrase represented by
a RevTrie node, since we are compressing empty-unary paths and the string represented
by a node is not available otherwise (unlike what happens with the traditional Patricia
trees). This connection is given by Node in the final LZ-index. However, at construction
time we avoid accessing Node when building the reverse trie, so we can build Node after
both tries have been built, thus reducing the maximum indexing space.

Empty non-unary nodes are marked by storing in each block p a bit vector Bp

(represented in the same way as Fp, with a dynamic data structure supporting rank and
select queries). We store pointers to LZTrie nodes only for non-empty RevTrie nodes, so
we store n of them. This shall reduce the indexing space of the preliminary definition of
the algorithm [AN05], which shall be useful later when constructing reduced versions of
LZ-index, yet introducing some additional problems in our hierarchical representation, as
we shall see below.

As we compress empty-unary paths, the edges of the trie are labeled with strings
instead of single symbols. The Patricia tree stores only the first symbol of the string that
labels the edge, using the same partial sum approach as for LZTrie. We store the Patricia-
tree skips of every trie node in a linked list skipsp, in preorder and using the linked-list
approach used for idsp in LZTrie, using log log u bits per node. To enforce this limit,
we insert empty unary nodes when the skip exceeds log u. In this way, one out of log u
empty unary nodes could be explicitly represented. In the worst case there are O(u) empty
unary nodes, of which O( u

log u) can be explicitly represented. This means O( u
log u(O(1) +

log log u + log σ)) = o(u log σ) extra bits overall in the hierarchical representation (this is
for the space of Tp, Fp, Bp, skipsp, and rlettsp, plus their overheads). Since we use a linked
list for skipsp, it takes O(log NM ) time to find the skip corresponding to a given node.

Construction Process. To construct the reverse trie we traverse the final LZTrie in
depth-first order, generating each LZ78 phrase Bi stored in LZTrie, and then inserting its
reverse Br

i into the reverse trie.

When searching for a given string s in RevTrie, we descend in the trie checking only
the first symbols stored in the trie edges, using the skips to know which symbol of s to
use at each node. When the longest possible prefix of string s is thus consumed, say upon
arriving at node vr of RevTrie, we must compare the string represented by vr against s, in
order to determine whether the prefix is actually present in RevTrie or not. To compute
the string corresponding to node vr we use the connection with the LZTrie: we follow the
pointer to the corresponding LZTrie node, and go up to the LZTrie root, extracting the
symbols in the upward path. However, we are storing some empty nodes in RevTrie, for
which we do not store pointers to LZTrie.
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Assume that node vr in block p is empty, and represents string s′. Since every
descendant of vr has s′ as a suffix, if we map to LZTrie from any of these descendants we
would find string s′ also by reading the upward path in LZTrie (we know the length of the
string we are looking for, so we know when to stop going up in LZTrie). Notice that there
exists at least one non-empty descendant v′r of vr since RevTrie leaves cannot be empty
(because they always correspond to an LZ78 phrase). So we can use the LZTrie pointer
of v′r to find s′. Since we only store pointers for non-empty nodes, the pointer of v′r can be
found at position rank1(Bp, preorderp(vr)) + 1 within the pointer array.

However, there exists an additional problem in our hierarchical representation: the
local subtree of node vr can be exclusively formed by empty nodes, in which case finding
the non-empty node v′r is not as straightforward as explained before, since v′r is stored
in a descendant block. This problem comes from the fact that, upon a block overflow in
the past, we might have chosen empty nodes z descending from vr, whose subtrees were
reinserted into new blocks.

To solve this problem, we store in every block p a pointer to LZTrie, which is
representative for the nodes stored in the block p. If a block is created from a non-empty
node, then we can store the pointer of that node. In case of creating a new block p′ from
an empty node, if the new block p′ is going to be a leaf in the tree of blocks, then it will
contain at least a non-empty node. Thus, we associate with p′ the pointer to LZTrie of
this non-empty node. If, otherwise, p′ is created as an internal node in the tree of blocks,
then it can be the case that all of the nodes in p′ are empty. In this case, we choose any of
the descendants blocks of p′ and copy its pointer to p′. This pointer has been “inherited”
(in one or several steps) from a leaf block, thus this corresponds to a non-empty RevTrie
node.

Thus, in case that the local subtree of vr is formed only by empty nodes, we take one
of the blocks descending from vr (say the first in preorder) and use the LZTrie pointer
associated to that block, in order to compute string s′.

An important difference with the LZTrie construction is that in RevTrie we do not
necessarily insert new leaves: there are cases where we insert a new non-empty unary
internal node (this is non-empty because it corresponds to the phrase we are inserting in
RevTrie). Notice that in dfuds, the representation of a unary node is ‘()’, which is a
matching pair and hence the insertion can be handled by the data structure of [CHLS07]
representing Tp. If we insert the new node as the parent of an existing node x, then the
insertion point is just before the representation of x in the dfuds sequence.

Hierarchical RevTrie Construction Analysis. The hierarchical representation of the
reverse trie requires O(n′) + (n′ + o(n′)) + (n′ + o(n′)) + (n log 2n + O(n)) + (n′ log σ +
O(n′)) + (n′ log log u + O(n′)) + o(n′/ log n′) + o(n′/ log n′) bits of storage to represent the
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trie topology, flags, bit vector of empty nodes, pointers to LZTrie stored in the nodes,
symbols, skips, pointers (both inter-block and extra LZTrie pointers associated to each
block), and candidates, respectively. As we compress empty unary paths, n 6 n′ 6 2n
holds, and thus, the space is upper bounded by n log n + o(u log σ), which according to
Lemma 2.1 is uHk(T ) + o(u log σ) bits, for any k = o(logσ u).

For each reverse phrase Br
i to be inserted in the reverse trie, 1 6 i 6 n, the

navigational cost is O(|Br
i | log NM ) (this subsumes the O(|Br

i |) time needed to extract the
string from LZTrie, in order to do the final check in the Patricia tree). Since

∑n
i=1 |Br

i | = u,
the total navigational cost to construct the hierarchical RevTrie is O(u log NM ). Since the
number of node insertions is n′ = O(n), the total cost stays O(u(log σ + log log u)), just as
for LZTrie.

Constructing the Final RevTrie After we construct the hierarchical reverse trie,
we construct RevTrie directly from it in O(n′ log NM ) = o(u log σ) time, replacing the
pointers to LZTrie by the corresponding phrase identifiers (rids). This raises the space
to 3uHk(T ) + o(u log σ) bits. We then free the hierarchical trie, dropping the space to
2uHk(T ) + o(u log σ) bits.

Thus, we have proved:

Lemma 6.3. Given the LZTrie for a text T [1..u] over an alphabet of size σ and with k-th
order empirical entropy Hk(T ), there exists an algorithm to construct the corresponding
RevTrie in O(u(log σ + log log u)) worst-case time and using a total space of 2uHk(T ) +
o(u log σ) bits of space on top of the space required by the final LZTrie, for any k =
o(logσ u).

6.2.3 Space-Efficient Construction of Range

To construct the Range data structure, recall that for every LZ78 phrase Bt of T
we must store the point (preorderr(vr), preorderlz(vlz)), where vr is the RevTrie node
corresponding to Br

t , and vlz is the LZTrie node corresponding to phrase Bt+1. We
allocate memory space for a temporary array RQ[1..n] of n log n bits, storing the points
to be represented by Range. Array RQ is initially sorted by the first coordinates of the
points. Notice that since there is a point for every first coordinate 1 6 i 6 n, the first
coordinate of every point is represented simply by the index of array RQ, thus saving
space. In other words, RQ[i] = j represents the point (i, j). Notice also that RQ is a
permutation of {0, . . . , n}.

To generate the points, we first notice that for a RevTrie preorder i = 0, . . . , n
(corresponding only to non-empty nodes) representing the reverse phrase Br

t , we can obtain
the corresponding phrase identifier t = rids[i], and then with the inverse permutation
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ids−1[t + 1] we obtain the LZTrie preorder for the node corresponding to phrase Bt+1.
Thus, we define RQ[i] = ids−1[rids[i] + 1].

Therefore, we start by computing ids−1 on the same space of ids, using the algorithm
of Lemma 2.8, requiring O(n) time and n extra bits of space. Then, we allocate n log n bits
for array RQ, and traverse RevTrie in preorder. For every non-empty node with preorder
i we set RQ as defined above. The total space is thus raised to 3uHk(T ) + o(u log σ) bits.
Next, we recover ids from ids−1, using again Lemma 2.8.

After building RQ, to construct Range we must sort the points in RQ by the second
coordinate (recall Section 2.5.1, see Lemma 2.9), which in our space-efficient representation
of the points means using the second coordinates as array indexes, and storing the first
coordinates as array values 3. This means sorting the current values stored in array RQ.
However, since these values along with the corresponding array indexes represent points,
after sorting the points we must recall the original array index for every value, so as to
store that value in the array. This is straightforward if we store both coordinates of the
points, requiring 2n log n bits of space. However, we are trying to reduce the indexing
space, and therefore use an alternative approach.

Notice that since RQ[i] = j represents the point (i, j), RQ−1[j] = i shall also represent
the point (i, j), yet the points in the inverse permutation RQ−1 are sorted by their second
coordinate. In other words, in RQ−1 the second coordinates are used as array indexes.
Thus, we use the algorithm of Lemma 2.8 to construct RQ−1 on top of the space for RQ,
in O(n) time and requiring n extra bits of space.

Now, we can finally build Range from RQ−1. We allocate space for log n bit vectors of
n bits each, requiring n log n extra bits, thus raising the space usage to 4uHk(T )+o(u log σ)
bits. Then, we construct Range just as explained in Section 2.5.1 (see Lemma 2.9) and
using the points represented by RQ−1. This takes O(n log n) time, which in the worst case
is O(u log u

logσ u ) = O(u log σ). We then free RQ−1, dropping the space to 3uHk(T )+ o(u log σ)
bits.

Lemma 6.4. Given a text T [1..u] over an alphabet of size σ and with k-th order empirical
entropy Hk(T ), and given the corresponding LZTrie and RevTrie data structures, there
exists an algorithm to construct the Range data structure requiring a maximum total space
of 2uHk(T ) + o(u log σ) extra bits on top of the space for LZTrie and RevTrie, and takes
O(u log σ) time in the worst case.

3We could choose to define RQ in a different way, storing the first coordinate of the points and using
the second coordinate as array index. However, by using our approach we can construct array RQ with a
sequential scan over arrays rids and R itself. The importance of this fact shall be made clear later in this
chapter.
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6.2.4 Construction of the Node Mapping and Remaining Data Structures

After building RevTrie, we proceed to construct the Node mapping, which given a phrase
identifier, yields the corresponding LZTrie node. Node is constructed as follows: we
traverse LZTrie in preorder, and for every node x with LZ78 identifier i, we store in Node[i]
a “pointer” to node x, which corresponds to the node position within the corresponding
parentheses sequence. This increases the total space requirement to 4uHk(T ) + o(u log σ)
bits, which is the final space required by the LZ-index. The process can be carried out in
O(n) time.

As we said in Section 3.3.7, in a practical implementation the Range data structure
is replaced by the RNode mapping [Nav08]. This is built from rids in the same way as
Node is built from ids. The process explained in Section 6.2.3 is not carried out in such a
case.

Finally, it is important to note that the data structures defined in Chapters 4 and 5,
in order to transform the occurrences from the original LZ-index format into actual text
positions, can be constructed without requiring any extra space, and thus to simplify we
omit them in this chapter.

6.2.5 The Whole Compressed Indexing Process

The whole compressed construction of LZ-index is summarized in the following steps:

(1) We build the hierarchical LZTrie from the text. We can then erase the text.

(2) We build LZTrie from its hierarchical representation. We then free the hierarchical
LZTrie.

(3) We build the hierarchical representation of the reverse trie from LZTrie.

(4) We build RevTrie from its hierarchical representation, and then free the hierarchical
RevTrie.

(5) We build Range.

(6) We build Node from ids.

In Table 6.1 we show the total space and time requeriment at each step. The meaning of
the third column in the table shall be made clear later in Section 6.3.
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Table 6.1: Space and time requirements of each step in the whole compressed indexing process.
We assume k = o(logσ u), and that the tree topology of blocks is represented with dfuds.

Indexing step Maximum total space Maximum main-memory space Indexing time

1 uHk(T ) + o(u log σ) uHk(T ) + o(u log σ) O(u(log σ + log log u))
2 2uHk(T ) + o(u log σ) uHk(T ) + o(u log σ) O(u(log σ + log log u))
3 2uHk(T ) + o(u log σ) uHk(T ) + o(u log σ) O(u(log σ + log log u))
4 3uHk(T ) + o(u log σ) uHk(T ) + o(u log σ) O(u(log σ + log log u))
5 4uHk(T ) + o(u log σ) uHk(T ) + o(u log σ) O(u log σ)
6 4uHk(T ) + o(u log σ) uHk(T ) + o(u log σ) O(u/ logσ u)

6.2.6 Managing Dynamic Memory

The model of memory allocation is a fundamental issue of succinct dynamic data structures,
since we must be able to manage the dynamic memory fast and without requiring much
extra memory space due to memory fragmentation [RR03]. We assume a standard model
where the memory is regarded as an array, with words numbered 0 up to 2w − 1. The
space usage of an algorithm at a given time is the highest memory word currently in use
by the algorithm. This corresponds to the so-called MB memory model [RR03], which is
the most restrictive one. Note w = log n + o(log n), as we need Θ(n log n) bits of space to
build our index4.

We manage the memory of every trie block separately, each in a “contiguous” memory
space. However, trie blocks are dynamic due to insertion of new nodes, therefore the
memory space for trie blocks must grow accordingly. If we use an Extendible Array (EA)
[BCD+99] to manage the memory of a given block, we end up with a collection of at most
O(n/Nm) = O(n/ log2 u) EAs, which must be maintained under the operations:

— create, which creates a new empty EA in the collection;

— destroy, which destroys an EA from the collection;

— grow(A), which increases the size of array A by one;

— shrink(A), which shrinks the size of array A by one; and

— access(A, i), which access the i-th item in array A.

Raman and Rao [RR03] show how operation access can be supported in O(1) worst-case
time, create, grow and shrink in O(1) amortized time, and destroy in O(s′/w) time, where
s′ is the nominal size (in bits) of array A to be destroyed. The space requirement for the

4Note this is consistent with our earlier w = Θ(log u) assumption for the RAM model (see Section 2.1),
as log u = Θ(log n) (see Property 2.7).
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whole collection is s+O(a∗w+
√

sa∗w) bits, where a∗ is the maximum number of EAs that
ever existed simultaneously in the collection, and s is the nominal size of the collection.

To simplify the analysis we store every component of a block in different EA collections
(i.e., we have a collection for Tps, a collection for lettsps, and so on). The memory for
lettsp, Fp, Cp, Tp, Lidsp , etc. inside the corresponding EAs is managed as in the original
work [MN08b].

Thus, we use operation grow on the corresponding EA every time we insert a node
in the tree, and operation create to create a new block upon block overflows, both in O(1)
amortized time. Operation shrink, on the other hand, is used by our representation after
we reinsert the subtree upon block overflow, in O(1) amortized time. Finally, operation
destroy over the blocks is used when destroying the whole hierarchical trie. As the cost
to build the trie is O(log NM ) per element inserted, which adds Θ(log u) bits to the data
structure, the amortized cost per bit inserted is O( log σ+log log u

log u ). The amortized cost for

destroy is just O(1/w) = O( 1
log u) per bit, which is subsumed by the earlier construction

cost.

Let us analyze the space overhead due to EAs for the case of Tp. Since we only insert
nodes into our tries, we have that the maximum number of blocks that we ever have is
a∗ = O(n/Nm). As the nominal size of the EA collection for Tp is O(n) bits, the EA requires

O(n)+O( nw
Nm

+n
√

w
Nm

) = O(n) bits of space. A similar analysis can done for the collections

supporting Fp and Cp. The nominal size of the collection for lettsp is n log σ + O(n), and

thus we have n log σ + O(n) + O( nw
Nm

+ n
√

w log σ
Nm

) = n log σ + O(n) bits overall. For the

collection supporting idsp we obtain n log u + O(n) + O( nw
Nm

+ n
√

w log u
Nm

) = n log u + O(n)

bits of space. In general, the whole space overhead due to memory management is O(n)
bits.

To complete the definition of our memory allocation model, it remains to say that we
can store the EAs representing the block components within a unique EA. In this case,
the number of EAs in the collection is a∗ = O(1), since we have a constant number of
block components. The nominal size of the whole collection is s = n log u + n log σ + O(n)
bits (notice that the O(n) term includes the space for the collections of Tp, Fp, etc.,
as well as the space overhead due to the EA memory management of these collections).
Hence, the space overhead to manage this collection is O(w +

√
wn log u) bits, which is

O(
√

n log u) = O(
√

n log n) = o(n) bits.

Now that we have defined our memory allocation model, we can conclude:

Theorem 6.1. There exists an algorithm to construct the LZ-index for a text T [1..u]
over an alphabet of size σ and with k-th order empirical entropy Hk(T ), using 4uHk(T ) +
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o(u log σ) bits of space and O(u(log σ + log log u)) time. This holds for any k = o(logσ u).
The space and time bounds are valid in the standard model MB of memory allocation.

6.3 Constructing the LZ-index in Reduced-Memory Scenarios

In this section we assume a model where we have restrictions in the amount of main
memory available to build our indexes, such that we cannot maintain the whole index in
main memory. So, we aim at reducing as much as possible the main memory usage of our
algorithms. We shall prove that the LZ-index can be constructed as long as the available
memory is uHk(T )+ o(u log σ) bits. This means that we have enough main-memory space
to store just the compressed text. This has applications, for instance, in text search
engines, where new versions of the text must be indexed, while providing indexed access
to the current text version. Thus, we can use a less powerful computer to carry out
the indexing process, devoting a more powerful one (i.e., one able to accommodate the
whole index in main memory) to answer user queries. Thus, we have the advantage that
every machine is devoted to a specific task, besides the fact that the cost of the indexing
technology can be reduced.

Since we have assumed that we have enough secondary storage space so as to store
the final index (see Section 6), we will use that space to temporarily store on disk certain
LZ-index components which will not be needed in the next indexing step, and then possibly
loading them back to main memory when needed. It is important to note that this does
not mean that the index is built on secondary storage, but that in certain cases we use the
available secondary memory to store an index component which is not currently needed,
thus reducing the peak of main memory usage. However, and as we have seen before
throughout Section 6.2, our indexing algorithm is independent of this fact, and we can
choose not to use the disk at all when enough main memory is available.

In the following, we show how to adapt our original algorithm to this scenario. At
every step we will show the space requirement in two ways: the maximum amount of
main memory used at that step and the total amount of memory used at that step (main-
memory plus secondary-memory space). The latter corresponds to the amount of main
memory used at every step if we do not use the disk along the construction process.

Step (1) We build the hierarchical LZTrie from the text. We can then erase the text.
The total and main-memory space is uHk(T ) + o(u log σ) bits.

Step (2) We build LZTrie from its hierarchical representation. To construct the final
ids array while trying to reduce the maximum main-memory space, we do not allocate
space for it at once. Since this array is indexed by preorder, and since we perform a
preorder traversal on the trie, the values in array ids are produced by a linear scan.
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Thus, we only allocate main-memory space for a constant number of components of the
array, e.g., a constant number of disk pages, which are stored on disk upon filling them.
This process performs (n log n)/B (sequential) disk accesses. The symbols (letts) and
the trie topology, however, are maintained in main memory for the next step, requiring
2n + n log σ + o(n log σ) = o(u log σ) bits of space (recall the text is read by small chunks
into main memory).

Thus, the maximum main-memory space is uHk(T ) + o(u log σ) bits, while the
maximum total amount of space is 2uHk(T )+o(u log σ) bits, since we store the hierarchical
LZTrie in main memory and array ids on disk. We then free the hierarchical LZTrie,
ending up with a representation requiring o(u log σ) bits of main-memory space, and a
total of uHk(T ) + o(u log σ) bits.

Step (3) We build the hierarchical representation of the reverse trie from LZTrie. Recall
that every non-empty RevTrie node stores a pointer to the corresponding LZTrie node.
This raises the total space requirement to 2uHk(T )+o(u log σ) bits of space. The maximum
main-memory usage is uHk(T ) + o(u log σ) bits of space (recall that array ids is on disk).

Step (4) We build RevTrie from its hierarchical representation as follows. We store the
pointers to LZTrie associated with RevTrie nodes in a linear array on disk, in the same way
as done in Step (2) for array ids in LZTrie. In this way we do not need extra main-memory
space on top of the hierarchical RevTrie. After storing the pointers on disk and representing
the remaining components of RevTrie, the total space is raised to 3uHk(T ) + o(u log σ)
bits, since we have at the same time the final LZTrie (array ids is on disk), the hierarchical
RevTrie (in main memory), and the final RevTrie (pointers to LZTrie are on disk). Then,
we free the hierarchical RevTrie, thus reducing the total and main-memory space.

Then, we proceed to replace the pointers by the corresponding phrase identifiers. We
first load array ids to main memory (leaving a copy of it on disk, for further use). Then,
we perform a sequential scan on the array of pointers, bringing to main memory just a
constant number of disk pages, then following these pointers to LZTrie to get the phrase
identifier stored in ids (note this means that the accesses to ids are at random, hence we
need ids in main memory) and storing these identifiers in the same space of the pointers,
writing them to disk and loading the next portion of the pointer array. Finally, we leave
a copy of array ids in main memory (this shall be useful for the next step).

The maximum main-memory space needed along this step is uHk(T ) + o(u log σ)
bits, which corresponds to the space of the hierarchical RevTrie, and we end up with a
representation requiring uHk(T )+o(u log σ) bits of main memory, and 3uHk(T )+o(u log σ)
bits overall. The number of disk accesses performed is (4n log n)/B.
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Step (5) We build Range, basically using the procedure of Section 6.2.3, yet with some
changes in the memory management in order to reduce the peak of memory usage.
Therefore, we compute ids−1 on the same space required by ids, using the algorithm
of Lemma 2.8, requiring O(n) time and n extra bits of space. Then, we traverse rids in
preorder and for every non-empty node with preorder i we set RQ[i]← ids−1[rids[i] + 1].
Notice that both arrays rids and RQ are accessed sequentially, which means that we can
maintain just a constant number of components of these arrays in main memory. Array
ids−1, on the other hand, is accessed randomly, so we maintain it in main memory. In this
way, the maximum main-memory space needed along this process is uHk(T ) + o(u log σ)
bits.

When this process finishes, the total space is raised to 4uHk(T )+ o(u log σ) bits, and
then we free array ids−1 (recall that we have a copy of the original array ids still on disk),
dropping the space to 3uHk(T ) + o(u log σ) bits of space, and the main-memory space to
o(u log σ) bits, since we maintain just the trie topology and symbols of both LZTrie and
RevTrie. This process takes O(n) time overall.

After building RQ, to construct Range we must sort the points in RQ by the second
coordinate, by means of constructing RQ−1. Thus, we bring RQ to main memory (and
delete it on disk), and use the algorithm of Lemma 2.8 to construct RQ−1 on top of the
space for RQ, in O(n) time and requiring n extra bits of space on top of RQ−1. To
build Range from RQ−1, instead of allocating memory for the log n bit vectors of n bits
each, which would require n log n extra bits of space on top of RQ−1, we just allocate
memory level per level (i.e., we allocate just n bits per level), construct that level from
RQ−1, just as explained in Section 2.5.1 (see Lemma 2.9), and then we save that level
to disk. Thus, the maximum main-memory space requirement to construct Range is
n log n + o(u log σ) = uHk(T ) + o(u log σ) bits of space. The maximum total space is
2n log n + o(u log σ) = 2uHk(T ) + o(u log σ) extra bits on top of the space for LZTrie and
RevTrie, which means a total space of 4uHk(T )+o(u log σ) bits. The construction process
takes O(n log n) time, which in the worst case is O(u log u

logσ u ) = O(u log σ). After getting

Range, we free array RQ−1 and we are done in this step with a partial representation of
LZ-index requiring 3uHk(T )+o(u log σ) bits. The number of disk accesses is (4n log n)/B.

Step (6) We build Node from ids, by traversing LZTrie in preorder. In this way, array
ids is sequentially traversed, while Node is randomly accessed. Thus, we allocate n log 2n
bits of space for Node, and maintain it in main memory. Array ids, on the other hand, is
brought by parts to main memory, according to a sequential scan. Finally, we save Node
to disk. The number of disk accesses is (2n log n)/B.

Thus, we need only uHk(T )+o(u log σ) bits of main-memory space to construct Node,
and this increases the total space requirement to 4uHk(T ) + o(u log σ) bits, which is the
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final space required by the LZ-index. The process can be carried out in O(n) time. We
use the same procedure in case of using the RNode data structure instead of Range.

In the third column of Table 6.1 we show the maximum main-memory space
requirement at each step. The overall number of disk accesses is (11n log n)/B =
(11uHk(T ) + o(u log σ))/B. Thus, we have proved:

Theorem 6.2. There exists an algorithm to construct the LZ-index for a text T [1..u] over
an alphabet of size σ, and with k-th order empirical entropy Hk(T ), using a maximum
main-memory space of uHk(T ) + o(u log σ) bits and O(u(log σ + log log u)) time, for any
k = o(logσ u). The algorithm performs (7uHk(T ) + o(u log σ))/B disk accesses, plus those
to write the final index. The total space used by the algorithm is 4uHk(T )+ o(u log σ) bits.
The space and time bounds are valid in the standard model MB of memory allocation.

6.4 Space-Efficient Construction of Reduced LZ-indexes

We have shown first how to construct the original LZ-index by using our space-efficient
algorithm. However, in Chapters 4 and 5 we defined new versions of LZ-index, some of
which are able to replace the original LZ-index in many practical scenarios. Henceforth, in
this section we adapt our space-efficient algorithm to build the most promising members
of the LZ-index family defined in this thesis.

Throughout this section, and just as in Chapter 5, we assume that the final tries are
represented with dfuds. We also assume the reduced-memory scenario as in Section 6.3.
Recall that we present the space usage of our algorithms in two ways: the total maximum
main-memory space and the maximum total space (main-memory plus secondary-memory
space) at every step.

6.4.1 Space-Efficient Construction of Scheme 2

We perform the following steps in order to build the reduced Scheme 2 of LZ-index (recall
its definition in Section 4.1.2).

(1) We build the hierarchical LZTrie from the text. This takes O(u(log σ + log log u))
time, and the maximum space requirement is uHk(T ) + o(u log σ) bits.

(2) We derive the final LZTrie from the hierarchical one, which is then freed. The
LZTrie stores the trie topology par, the symbols letts, and the phrase identifiers
ids, requiring uHk(T ) + o(u log σ) extra bits. This takes O(u(log σ + log log u))
time because of the traversals on the hierarchical LZTrie. We use the approach of
Section 6.3 (Step (2)) to construct ids, without requiring extra asymptotic space. In
practice, we use the same approach to build array letts, in order to reduce the peak
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of main memory, introducing o(u log σ)/B extra disk accesses. The total space usage
is 2uHk(T ) + o(u log σ) bits, while the maximum main-memory usage is uHk(T ) +
o(u log σ) bits. The main-memory space after freeing the hierarchical trie is o(u log σ)
bits. After freeing the hierarchical LZTrie, we load array letts to main memory. The
resulting number of I/Os is (uHk(T ) + o(u log σ))/B, because of the construction of
array ids.

(3) We build the hierarchical RevTrie from the LZTrie, as in Section 6.2.2. This takes
O(u(log σ + log log u)) time. The total space usage is raised to 2uHk(T ) + o(u log σ)
bits. The maximum main-memory space is uHk(T ) + o(u log σ) bits.

(4) We build the final RevTrie from the hierarchical one, storing the trie topology rpar,
the Patricia-tree skips, the symbols rletts, and bit vector B marking the empty
nodes, requiring (n′ + u

log u)(3 + log log u + log σ) = o(u log σ) extra bits of space. In

order to reduce the indexing space, array rids−1 is built later. Array R is built from
the pointers to LZTrie, replacing them by the corresponding LZTrie preorder (recall
that we apply rank on par to get the LZTrie preorder of a node). We construct
R by using the same approach as for array ids in Step (2), performing (uHk(T ) +
o(u log σ))/B extra I/Os. The total time is O(u(log σ + log log u)). We then free the
space of the hierarchical RevTrie. The maximum total space is 3uHk(T )+ o(u log σ)
bits, while the maximum main-memory space is uHk(T ) + o(u log σ) bits. We end
up using o(u log σ) bits of main-memory space.

(5) To space-efficiently construct array rids−1, we first construct rids in the following
way: we start by loading array ids to main memory and erasing it from disk. Then,
for every non-empty RevTrie node with preorder j we store rids[j] ← ids[R[j]].
In this way, arrays rids and R are traversed sequentially, for increasing values of
j. Then, we can store/load them to/from disk by parts (respectively), without
requiring extra main-memory space. After we build rids, the total space has
raised to 3uHk(T ) + o(u log σ) bits. We then store array ids to disk, and free its
main-memory space (hence dropping the total space). Finally, we load rids to
main memory, and use the procedure of Lemma 2.8 to construct rids−1 on top
of rids, to finally store rids−1 on disk. The overall time is O(n). The maximum
total space is 3uHk(T ) + o(u log σ) bits, while the maximum main-memory space is
uHk(T )+o(u log σ) bits. The total number of disk accesses performed by this process
is (6uHk(T ) + o(u log σ))/B.

Notice that this is a practical version of the LZ-index, and thus we do not store the
Range data structure. Thus, we conclude:

Theorem 6.3. There exists an algorithm to construct Scheme 2 of the LZ-index for a
text T [1..u] over an alphabet of size σ, and with k-th order empirical entropy Hk(T ), using
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a total space of 3uHk(T ) + o(u log σ) bits and O(u(log σ + log log u)) time, for any k =
o(logσ u). The maximum main-memory space used at any time to construct Scheme 2 can
be reduced to uHk(T )+o(u log σ) bits, in such a case performing (5uHk(T )+o(u log σ))/B
disk accesses, plus those to write the final index. The space and time bounds are valid in
the standard model MB of memory allocation.

6.4.2 Space-Efficient Construction of Scheme 3

Scheme 3 of LZ-index can be constructed in a straightforward way, using some of the
techniques we have developed up to now. We first build the LZTrie in O(u(log σ+log log u))
time, storing par, letts, and ids. This requires a maximum of 2uHk(T )+ o(u log σ) bits of
space, and ends up with a representation requiring uHk(T ) + o(u log σ) bits (i.e., the final
LZTrie). The maximum main-memory space is uHk(T ) + o(u log σ) bits, using the same
procedure as in Section 6.3, Step (2). This requires (uHk(T )+ o(u log σ))/B disk accesses.

We then construct the hierarchical RevTrie, storing pointers to LZTrie nodes to
provide the connectivity among tries. Thus, the space requirement raises to 2uHk(T ) +
o(u log σ) bits. We build the final RevTrie storing just rpar, skips, and rletts, and discard
the pointers to LZTrie, thus temporarily losing the connectivity between tries. We then
free the hierarchical RevTrie, which drops the space used to uHk(T ) + o(u log σ) bits.

Next we allocate memory space for array rids[1..n], requiring n log n extra bits. We
traverse the LZTrie in preorder, and generate every phrase Bt stored in it (assuming that
i is the preorder of the corresponding LZTrie node). We then look for Br

t in the RevTrie.
Recall that at this point we do not have the connectivity between tries, which is generally
used to search in the RevTrie. However, since this string exists for sure in RevTrie (because
it exists as an LZ78 phrase in LZTrie), we only need to descend in the RevTrie using the
skips, up to consuming Br

t . At this point we have arrived at the node for Br
t , which has

preorder j in RevTrie, without the need of accessing the LZTrie to extract the string.
Then we set rids[j] ← ids[i] (notice the sequential scan on ids, which is brought to main
memory by parts). Then, we store array rids on disk, and free its main memory space.
This requires (2uHk(T ) + o(u log σ))/B extra disk accesses.

Now, we go on to compute the inverse permutations for ids and rids arrays. We first
load ids from disk, performing (uHk(T )+o(u log σ))/B extra disk acceses, and construct on
it the data structure for permutations of Lemma 2.7, in order to support the computation
of ids−1. This requires εn log n + O(n) extra space, for 0 < ε < 1, and takes O(n) time if
we use the following procedure.

Let Aids[1..n] be an auxiliary bit vector, and let Bids[1..n] be a bit vector marking
which elements of ids have an associated backward pointer. Both bit vectors are initialized
to all zeros.
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We start from the first position of ids, and follow the cycles of the permutation. We
mark every visited position i of the permutation as Aids[i]← 1. We also mark one out of
1/ε elements when following the cycles, by setting to 1 the appropriate position in Bids.
We stop following the current cycle upon arriving to a position j such that Aids[j] = 1;
then, we move sequentially from position j to the next position j′ such that Aids[j

′] = 0,
and repeat the previous process.

Each element in ids is visited twice in this process (this is similar to the process done
in the proof of Lemma 2.8), thus this first scan takes O(n) time.

Then, we go on a second scan on the cycles of ids. We set Aids to all zeros again, and
allocate array Bwd of εn log n bits of space, which shall store the backward pointers of the
permutation. We preprocess array Bids with data structures to support operation rank
2.4 (1). We start from the first element and follow the cycles once again. Visited elements
are marked in Aids, as before. Every time we reach a position i in the permutation such
that Bids[i] = 1, we store a backward pointer to the previously visited position j in the
cycle, such that Bids[j] = 1 (this means that there are 1/ε elements between these two
positions within the cycle). In other words, we set Bwd[rank1(Bids, i)]← j.

This second scan takes also O(n) time, thus the overall process takes O(n) time. We
finally free the space of Aids and maintain bit vector Bids as a marker of the positions
storing the backward pointers.

Then, we store ids and the data structure for ids−1 on disk, and free its main-memory
space. This yields ((1 + ε)uHk(T ) + o(u log σ))/B disk accesses. Finally, we build on rids
the data structure of Lemma 2.7, to support the efficient computation of rids−1, with
((2 + ε)uHk(T ) + o(u log σ))/B extra disk accesses. Thus, we conclude:

Theorem 6.4. There exists an algorithm to construct Scheme 3 of the LZ-index for a
text T [1..u] over an alphabet of size σ, and k-th order empirical entropy Hk(T ), using
(2+ε)uHk(T )+o(u log σ) bits of space and O(u(log σ+log log u)) time. This holds for any
0 < ε < 1 and any k = o(logσ u). The main-memory space used at any time to construct
Scheme 3 can be reduced to (1 + ε)uHk(T ) + o(u log σ) bits, in such a case performing
(5uHk(T ) + o(u log σ))/B disk accesses, plus those to write the final index. The space and
time bounds are valid in the standard model MB of memory allocation.

6.4.3 Space-Efficient Construction of Index of Theorem 5.1 and Relatives

To construct the LZ-index of Theorem 5.1 without (asymptotically) requiring extra space,
we will need two passes over the text, and several traversals over the LZTrie and RevTrie
(yet the number of traversals is a constant). This is because we must be careful not to
surpass the reduced space requirement of this index, (1 + ε)uHk(T ) + o(u log σ) bits. We
carry out the following steps in order:
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(1) We build the hierarchical LZTrie, just storing the trie topology and the symbols
labeling the edges of the trie, without storing the phrase identifiers idsp in each trie
block p. This requires O(n log σ) = o(u log σ) bits of space, and takes O(u(log σ +
log log u)) time. We cannot yet erase the text, as we need it at a later step.

(2) We build the final LZTrie from its hierarchical representation, in O(u(log σ +
log log u)) time and requiring extra O(n log σ) bits of space. Recall that we do not
store the phrase identifiers ids. We then free the hierarchical LZTrie.

(3) We traverse LZTrie in preorder, generating each LZ78 phrase Bi in constant time
per string, and insert Br

i into a hierarchical RevTrie. We store pointers to LZTrie
nodes in the RevTrie nodes, just as in Section 6.2. This requires a maximum of
uHk(T ) + o(u log σ) bits of space after the hierarchical RevTrie is built, and takes
O(u(log σ + log log u)) time.

(4) We build the final RevTrie from its hierarchical representation, storing just the tree
topology rpar, the Patricia-tree skips, and the symbols rletts, requiring o(u log σ)
extra bits of space. The pointers to LZTrie nodes are not stored, but these were
used just to provide the connectivity between tries while constructing RevTrie.
We then free the hierarchical RevTrie. This takes O(u(log σ + log log u)) time.
The maximum space requirement is uHk(T ) + o(u log σ) bits (before freeing the
hierarchical RevTrie), and we end up with a representation using just o(u log σ) bits
of space.

(5) We allocate memory for array R[1..n], of n log n bits of space, which is constructed as
follows. We traverse the LZTrie in preorder, and for every phrase Bi, we look for Br

i

in RevTrie, which exists for sure and therefore we do not need the connection between
tries in order to search. This takes O(|Br

i | log σ) time. Let vlz be the LZTrie node
corresponding to Bi. Then we store R[preorder(vr)] ← preorder(vlz). The overall
work on LZTrie is O(n log σ), since each string is generated in O(log σ) time (because
of the data structure used to represent letts). For the RevTrie, on the other hand,
we have that

∑n
i=1 |Br

i | = u, and therefore the overall time is O(u log σ). We sample
εn values of R, as explained in Section 5.1.4.

(6) We allocate space for arrays VW and SW , which are used to compute function ϕ′

in RevTrie. This adds O(n log σ) = o(u log σ) extra bits. We use the procedure
explained in Section 5.1.4 in order to construct these arrays, traversing the RevTrie
in preorder and using R to map to the LZTrie. This takes O(n) time overall. Then
we preprocess VW and SW with data structures to support rank and select on them.

(7) We build on R the data structure for inverse permutations of Lemma 2.7, using
the same procedure as in Section 6.4.2, raising the overall space requirement to
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(1 + ε)uHk(T ) + o(u log σ) bits. This takes O(n) time. We then sample εn values of
R−1, as explained in Section 5.1.4.

(8) We reuse the space allocated for array R to build the uncompressed representation
of function ϕ. Just as in Step (5), we do not need the connection between tries in
order to navigate the RevTrie, and hence we do not need the information of array
R. Recall from Section 5.1 that ϕ acts as a suffix link in RevTrie, and we only store
suffix links for the n non-empty nodes. Henceforth, we traverse again the LZTrie
in preorder, and generate each phrase Bi = xa in O(log σ) time, for x ∈ Σ∗, and
a ∈ Σ. Then we search for axr and xr in RevTrie, obtaining non-empty nodes vr

and v′r respectively. Thus, we store ϕ[preorder(vr)]← preorder(v′r), and go on with
the next phrase in LZTrie.

Thus, the work for phrase Br
i = xa takes O((|axr|+ |xr|) log σ) = O(|Br

i | log σ) time,
and thus the overall time is O(

∑n
i=1 |Br

i | log σ) = O(u log σ).

(9) We build the compressed version of ϕ, requiring only extra O(n log σ) = o(u log σ)
bits for the final compressed representation of ϕ. Recall that the representation of
ϕ is the same as Ψ function of CSA, see Sections 2.4.2 and 5.1.3. We then free the
uncompressed ϕ.

We could alternatively use the approach of [CHLS07] to construct ϕ, which is
originally defined to construct function Ψ of CSA [GV05, Sad03] in O(u log u)
time and requiring only O(u log σ) bits of space. In the case of constructing
ϕ = R−1(parentlz(R[i])), for every RevTrie preorder i = 1, . . . , n, this alternative
approach would take O(n log n + n

ε ) = O(u log σ + u log σ
ε log u ) time, for any 0 < ε < 1,

requiring no asymptotic extra space (just the o(u log σ) bits for ϕ). The O(n
ε ) factor

comes from computing n times the inverse R−1. In our case, however, we have
previously allocated space for array R, which we use to construct ϕ much faster. At
the end of this step we drop the overall space requirement to εuHk(T ) + o(u log σ)
bits.

(10) We finally allocate memory for array ids[1..n], and set it with all zeros. We also
set i ← 1. We perform a second pass on the text T to enumerate the LZ78
phrases (this yields (u log σ)/B extra disk accesses in case the text is stored on
disk in plain form), descending in the LZTrie with the symbols of T as done when
constructing the LZ78 parsing for the first time. Every time we reach a node vlz

in LZTrie, we check whether ids[preorder(vlz)] is 0 or not. In the affirmative case,
this means that the corresponding phrase has not yet been enumerated, and thus
we store ids[preorder(vlz)] ← i and set i ← i + 1. We go back to the LZTrie
root and go on with the next symbol of T . In case we arrive at a node vlz with
ids[preorder(vlz)] 6= 0, then we continue the descent from this node, since its phrase
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has been already enumerated. This takes O(n log σ) time provided the LZTrie is
represented with dfuds. Finally, we can erase the text.

Theorem 6.5. There exists an algorithm to construct the LZ-index of Theorem 5.1 for a
text T [1..u] over an alphabet of size σ, and with k-th order empirical entropy Hk(T ), using
(1 + ε)uHk(T ) + o(u log σ) bits of space and O(u(log σ + log log u)) time. This holds for
any 0 < ε < 1 and any k = o(logσ u). The algorithm performs two passes over text T , thus
requiring (u log σ)/B disk accesses in addition to those for writing the final index to disk.
The space and time bounds are valid in the standard model MB of memory allocation.

We can use this algorithm to construct the LZ-index of Theorem 5.2, which only
adds the Range data structure, which in turn can be constructed with the same procedure
used in Section 6.3, Step (5). Since this requires 2uHk(T ) + o(u log σ) bits of space to be
constructed, we build Range before Step (5) of the previous algorithm. Thus we conclude:

Corollary 6.1. There exists an algorithm to construct the LZ-index of Theorem 5.2 for a
text T [1..u] over an alphabet of size σ, and with k-th order empirical entropy Hk(T ), using
(2+ε)uHk(T )+o(u log σ) bits of space and O(u(log σ+log log u)) time. This holds for any
0 < ε < 1 and any k = o(logσ u). The algorithm requires (u log σ+2uHk(T )+o(u log σ))/B
disk accesses in addition to those to write the final index to disk. The space and time bounds
are valid in the standard model MB of memory allocation.

Finally, the LZ-index of Theorem 5.3 adds the Alphabet-Friendly FM-index
[FMMN07], which according to [GN08b] can be constructed with uHk(T ) + o(u log σ)
bits of space in O(u log u(1 + log σ

log log u)) time. Then, we have:

Corollary 6.2. There exists an algorithm to construct the LZ-index of Theorem 5.3 for a
text T [1..u] over an alphabet of size σ, and with k-th order empirical entropy Hk(T ), using
(3+ε)uHk(T )+o(u log σ) bits of space and O(u log u(1+ log σ

log log u)) time. This holds for any
0 < ε < 1 and any k = o(logσ u). The algorithm requires (u log σ +uHk(T )+o(u log σ))/B
disk accesses, in addition to those to write the final index. The space and time bounds are
valid in the standard model MB of memory allocation.

6.5 Experimental Results

We implemented a simplification of the algorithm presented in Sections 6.2 and 6.3, which
shall be tested in this section. We run our experiments on an Intel(R) Pentium(R) 4
processor at 3 GHz, 4 GB of RAM and 1MB of L2 cache, running version 2.6.13-gentoo of
Linux kernel. We compiled the code with gcc 3.3.6 using full optimization. Times were
averaged over 10 repetitions.
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6.5.1 A Practical Implementation of Hierarchical Tries

We implement our construction algorithms for Scheme 2 and Scheme 3, and use a simpler
representation for the hierarchical trie, just as defined in our original work [AN05].

In this simpler representation, every block in the tree uses contiguous memory space,
which stores all the block components. We define different block capacities N1 < N2 . . . <
Nt, and say that a block of size Ni is able to store up to Ni nodes. When we want to
insert a node in a block p of size Ni < Nt which is already full, we first create a new block
of size Ni+1, copy the content of p to the new one, and then insert the new node within
this block. This is called a grow operation. If the full block p is of size Nt, we say that p
overflows. In such a case we proceed as explained in Section 6.2.1, with the only difference
that the subtree to be reinserted is searched by traversing the whole block (we choose the
subtree of maximum size not exceeding Nt/2 nodes, just as in [AN05]).

To ensure a minimum fill ratio 0 < α < 1 in the trie blocks, thus controlling the
wasted space, we define Ni = Ni−1/α, for i = 2, . . . , t, and 1 6 N1 6 1/α. Notice that
parameter α allows us for time/space trade-offs: smaller values of α yield a poor utilization
of blocks, yet they trigger a smaller number of grow operations (which are expensive) as
we insert new nodes. The opposite occurs for large values of α.

The block representation is completely static. This means that the whole block is
rebuilt from scratch when inserting new nodes, or upon block overflows. We do not store
information to quickly navigate the parentheses within each block. So, we navigate them
by brute force (using precomputed tables to avoid a bit-per-bit scan, just as for the simple
balanced parentheses data structure implemented by Navarro, see Section 2.5.2). In this
way, the navigations can be a little bit slower, yet we save space and time reconstructing
these data structures after every insertion. We will show, however, that this is a very
efficient representation for our intermediate tries, achieving competitive results in practice.

We use the following parameters throughout our experiments: N1 = 2, Nt = 1024,
and α = 0.95, according to the preliminary results obtained in [AN05]. We assume the
reduced-memory model presented in Section 6.3. We also show the results for the model in
which only main memory is used, where in most cases the maximum total space coincides
with the size of the final LZ-index. We use the memusage application by Ulrich Drepper5

to measure the peaks of main memory usage. Since our algorithms need to use the disk to
store intermediate partial results, we measure the user time plus the system time of our
algorithms.

We show the results only for Scheme 2 and Scheme 3. This is because these are the
most competitive schemes in practice (recall Chapter 4), and also because the most critical
points along the indexing algorithm (i.e., the construction of the hierarchical tries) is the

5http://pizzachili.dcc.uchile.cl/utils/memusage/memusage-2.2.2.tar.gz
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same for all schemes (including the original LZ-index). In case of Scheme 3, we choose
parameters 1/ε = 1 and 1/ε = 15 for the inverse-permutation data structures. Remember
from Section 4.3.2 that for ε = 1 we simply store the inverse permutation explicitly. These
values represent the extreme cases (both for time and space requirements) tested in Chapter
4; all intermediate values offer interesting results as well. Notice that when 1/ε = 1 the
space requirement of Scheme 3 is the same as that of the original LZ-index.

6.5.2 Indexing English Texts

For the experiments with English texts we use the 1-GB file provided in the Pizza&Chili
Corpus [FN05], downloadable from http://pizzachili.dcc.uchile.cl/texts/nlang

/english.1024MB.gz.

In Table 6.2 we show the experimental results for English text. As it can be seen,
the most time-consuming tasks along the construction process are that of building the
hierarchical representations of the tries. For LZTrie, the construction rate is about 1.01
MB/sec, while for RevTrie the result is about 0.39 MB/sec. Thus, RevTrie is much slower
than LZTrie to be built. The overall average indexing rate is 0.29 MB/sec for Scheme 2,
0.29 MB/sec for Scheme 3 (1/ε = 1), and 0.28 MB/sec for Scheme 3 (1/ε = 15). As it can
be seen, the sample rate of the inverse permutations in Scheme 3 does not affect much the
indexing speed.

For Scheme 2, the maximum main-memory peak is reached at Step 3, and it is of about
548 MB. This means that we need about 0.54 times the size of the original text to construct
Scheme 2 for the English text. This is 0.59 times the space of the final Scheme 2. When
comparing the space required by the hierarchical trie representations with that required
by the final trie representations, we have 411,928,076 bytes for the hierarchical LZTrie and
408,876,348 bytes for the hierarchical RevTrie, versus 410,873,083 bytes for LZTrie and
309,412,004 bytes for RevTrie. This means that the hierarchical LZTrie requires about
1.01 times the size of the final LZTrie, while the hierarchical RevTrie requires about 1.32
times the size of the final RevTrie. The bigger difference between RevTrie representations
comes from the fact that the hierarchical RevTrie stores the symbols labeling the arcs and
the Patricia-tree skips, while in practice the final RevTrie does not.

Table 6.3 summarizes all these results. Numbers in boldface in the table indicate the
final index size in every case, not including the text-position data structure of Section 4.2.2
(although this can be constructed without affecting the current memory peak). Notice
that the index sizes (seen as a fraction of the original text size) are smaller than the
corresponding sizes reported in Table 4.1 (on page 84) for shorter prefixes of the same
texts: 1.03 times the text size for Scheme 1 (including the size for the text-position data
structure), versus 1.38 times the text size as reported in Table 4.1 for the shorter text.
For Scheme 2 we have now 0.96–1.26 times the text size, versus 1.13–1.69 for the shorter
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Table 6.2: Experimental results for English text. The numbers in boldface indicate the final
index size in every case.

Index Indexing step Main-memory Total space Time
space (bytes) (bytes) (secs)

Scheme 2 1 411, 928, 076 411, 928, 076 909.37
2 505, 729, 592 822, 801, 159 17.55
3 574, 548, 639 819, 749, 431 2, 554.07
4 454, 026, 216 883, 576, 755 15.01
5 & 6 491, 169, 360 965,869,767 52.19
Total (peak) 574, 548, 639 965, 869, 767 3, 549.20

Scheme 3 1 411, 928, 076 411, 928, 076 898.40
1/ε = 1 2 505, 729, 592 822, 801, 159 17.51

3 574, 548, 639 819, 749, 431 2, 590.78
4 454, 026, 216 883, 576, 755 14.86
5 & 6 491, 169, 360 1,204,608,375 62.00
Total (peak) 574, 548, 639 1, 204, 608, 375 3, 583.56

Scheme 3 1 411, 928, 076 411, 928, 076 896.88
1/ε = 15 2 505, 729, 592 822, 801, 159 17.46

3 574, 548, 639 819, 749, 431 2, 588.83
4 454, 026, 216 883, 576, 755 14.81
5 & 6 274, 463, 684 771,197,007 102.80
Total (peak) 574, 548, 639 883, 576, 755 3, 620.87

text. To understand this difference we compute the ratio n log n
u , which should give us an

idea on how well LZ78 compresses the texts (see Section 2.4.1). The result is that the
ratio is about 2.55 for the shorter text (which is close to the third-order empirical entropy
of the text, according to the results shown in the Pizza&Chili Corpus 6), while for the
longer text the ratio es about 1.83 (which is close to the fifth-order empirical entropy of
the text). So we can conclude that this is a realization of the fact that LZ78 compression
converges to the entropy of the source as the text length grows. Also, recall that with
LZ78 we achieve nHk(T ) + o(u log σ) bits for k = o(logσ u), and since logσ u grows with
u, it is natural to achieve higher order compression (i.e., higher values of k) for longer
texts. In addition, there are several terms of the form O(n) or O(n log σ), which vanish
asymptotically compared to n log n.

The results are very similar for Scheme 3 and 1/ε = 1. For 1/ε = 15, however, the
peak of memory usage when considering the total indexing space at each step is reached
at Step 4, and it is slightly greater than the space needed by the final Scheme 3 (more

6See http://pizzachili.dcc.uchile.cl/texts.html.
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precisely, 1.15 times the size of the final Scheme 3).

As a comparison, we indexed a 500-MB prefix of this text with the original
construction algorithm of Scheme 2, using an approach similar to that used in [Nav08], with
non-space-efficient intermediate representation for the tries. The peak of main memory
is 1,566 MB (this means 3.13 times the size of the original text)7, with an indexing rate
of about 1.29 MB/sec (see Table 6.4). This means that our indexing algorithm is 4.60
times slower than the original indexing algorithm (see column “Slowdown” in Table 6.4),
yet we require 5.80 times less memory (see column “Space reduction” in Table 6.4). The
intermediate LZTrie required 751,817,455 bytes (extrapolating, this is 3.66 times the size
of our hierarchical LZTrie, see column “Intermediate LZTrie” in Table 6.4), while the
intermediate RevTrie required 1,185,969,250 bytes (extrapolating, this is 5.79 times the
size of our hierarchical RevTrie, see column “Intermediate RevTrie” in Table 6.4). Note
the bigger difference among RevTrie representations. This is because we are not only
using a space-efficient representation, but also because we are compressing empty unary
paths at reverse-trie construction time. Thus, we can conclude that our space-efficient trie
representations are effective to reduce the indexing space of LZ-index schemes. The price
is, on the other hand, a slower construction.

Table 6.3: Statistics for our space-efficient indexing algorithm for Scheme 2. The results for
Scheme 3 are similar.

Text Main-memory Size hierarchical Size hierarchical
peak LZTrie (bytes) RevTrie (bytes)

English 0.54 times text size 411,928,076 309,412,004
0.59 times size of final (1.01 times size of (1.32 times size of
Scheme 2 final LZTrie) final RevTrie)

Human Genome 0.50 times text size 1,233,336,206 1,209,073,218
0.44 times size of final (1.02 times size of (1.27 times size of
Scheme 2 final LZTrie) final RevTrie)

XML 0.40 times text size 90,563,835 84,591,900
0.61 times size of final (1.07 times size of (1.29 times size of
Scheme 2 final LZTrie) final RevTrie)

Proteins 1.05 times text size 839,446,471 807,660,745
0.51 times size of final (0.99 times size of (1.28 times size of
Scheme 2 final LZTrie) final RevTrie)

7It is important to note that the original algorithm uses just main memory to construct Scheme 2
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Table 6.4: Main statistics for the construction of Scheme 2 versus the non-space-efficient
original algorithm. Column “Slowdown” shows the slowdown obtained by using our space-
efficient algorithm instead of the original one. “Space reduction” indicates the factor of
space reduction gained by using our algorithm instead of the original one. Finally, columns
“Intermediate LZTrie” and “Intermediate RevTrie” show the size of the intermediate data
structures used to build the final tries, as a fraction of the size of the final trie representations.

Text Main-memory Indexing rate Slowdown Space Intermediate Intermediate
peak (MB/secs) reduction LZTrie RevTrie

English 1,566 MB 1.29 4.60 5.80 3.66 5.74
(500 MB) (3.13 times

text size)

Genome 1,275 MB 1.86 9.78 5.10 3.22 5.95
(500 MB) (2.55 times

text size)

XML 862 MB 2.31 5.25 7.50 2.68 9.02
(3.02 times
text size)

Proteins 1,781 MB 1.82 9.58 3.39 2.41 3.04
(500 MB) (3.56 times

text size)

6.5.3 Indexing the Human Genome

For the test on DNA data we indexed the Human Genome8, whose size is about 3,182MB.
In Table 6.5 we show the experimental results obtained with our construction algorithm.
The indexing rate for the hierarchical LZTrie is about 1.30 MB/sec, while for RevTrie it
is about 0.23 MB/sec. The total indexing time (user time plus system time) is about 4.63
hours, which means and overall indexing rate of about 0.19 MB/sec.

See Table 6.3 for the statistics regarding the memory peak of the algorithm, as well
as a comparison between intermediate and final trie representations. See Table 6.4 for
a comparison with the original construction algorithm for Scheme 2, indexing a 500-MB
prefix of the Human Genome.

We show in Table 6.6 the practical results for the best existing indexing algorithms
we know of. The results have been taken from the original papers indicated in the table.
As a comparison, W.-K. Hon et al. [HLSS03, Hon04] index the Human Genome with the
CSA in about 24 hours, using a Pentium IV processor at 1.7 GHz with 512 KB of L2 cache,

8http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz.
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Table 6.5: Experimental results for the Human Genome. The numbers in boldface indicate the
final index size in every case.

Index Indexing step Main-memory Total space Time
space (bytes) (bytes) (secs)

Scheme 2 1 1, 233, 336, 206 1, 233, 336, 206 2, 440.33
2 1, 428, 595, 278 2, 442, 409, 424 51.73
3 1, 677, 938, 853 2, 467, 406, 392 13, 966.22
4 1, 405, 350, 330 2, 665, 257, 752 45.00
5 & 6 1, 579, 033, 696 2,985,958,274 181.96
Total (peak) 1, 677, 938, 853 2, 985, 958, 274 16, 685.28

Scheme 3 1 1, 233, 336, 206 1, 233, 336, 206 2, 443.83
1/ε = 1 2 1, 428, 595, 278 2, 442, 409, 424 51.98

3 1, 677, 938, 853 2, 467, 406, 392 13, 791.08
4 1, 405, 350, 330 2, 665, 257, 752 44.93
5 & 6 1, 579, 033, 696 3,775,475,122 211.81
Total (peak) 1, 677, 938, 853 3, 775, 475, 122 16, 543.63

Scheme 3 1 1, 233, 336, 206 1, 233, 336, 206 2, 445.02
1/ε = 15 2 1, 428, 595, 278 2, 442, 409, 424 51.61

3 1, 677, 938, 853 2, 467, 406, 392 13, 812.29
4 1, 405, 350, 330 2, 665, 257, 752 44.92
5 & 6 841, 516, 932 2,300,440,426 365.18
Total (peak) 1, 677, 938, 853 2, 665, 257, 752 16, 719.02

and 4 GB of main memory, running Solaris 9 operating system. Despite the difference in
CPU rate of our machine compared to Hon et al.’s, the difference in indexing time suggests
that the LZ-index can be space-efficiently constructed in much less time than CSAs. Hon
et al. are also able to construct the FM-index in about 4 extra hours, for a total of about
28 hours. The algorithm of [DKMS08], on the other hand, allows us to index the Human
Genome in about 8.52 hours on a machine with 80-GB ATA IBM 120-GPX disks, and
about 5.56 hours on a machine with 73-GB SCSI Seagate 15,000 RPM ST373453LC disks,
in both cases using secondary storage and just a constant amount of main memory. Ours
is a relevant practical result, specifically for biological research, since it demonstrates that
it is feasible to index the Human Genome within a few hours (less than 5) and in the main
memory of a desktop computer.

6.5.4 Indexing XML Data

For XML data we indexed the file http://pizzachili.dcc.uchile.cl/texts/xml/

dblp.xml.gz of about 285 MB provided in the Pizza&Chili Corpus. This text has shown
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Table 6.6: Comparison of indexing algorithms to construct an index for the Human Genome.
For suffix trees, Kurtz estimated the indexing time on his machine, whose CPU is 10 times
slower than ours. In case of suffix arrays, we estimate the indexing space according to the space
used with other texts; we do not have time estimations for these. In both cases the indexing
algorithms are probably faster than our algorithms for the LZ-index (provided they have the
given amount of main memory available).

Index Construction Indexing Maximum
algorithm time indexing

space (RAM)

Suffix tree [Kur99] < 9 hours (*) 45.31 GB
Suffix array [LS99] — 27.96 GB
Suffix array [MF04] — 18.64 GB
Suffix array [DKMS08] 5.56 – 8.52 hours sec. storage
CSA [Hon04] 24 hours 3.60 GB (¶)
FM-index [Hon04] 28 hours 3.60 GB
Scheme 2 of LZ-index This thesis 4.63 hours 2.78 GB
Scheme 2 (reduced-memory model) This thesis 4.63 hours 1.56 GB (†)

(*) Estimated, on a Sun-UltraSparc 300 MHz, 192 MB of main memory, under Solaris 2.
(¶) Hon [Hon04] reported a size of 2.88 GB for the Human Genome, whereas ours is of

size 3.11 GB. They use a 1.7 GHz CPU.
(†) Just regarding main-memory space.

to be highly compressible.

In Table 6.7 we show the experimental results for XML text. The indexing rate for
LZTrie is about 1.43 MB/sec, while for RevTrie it is about 0.65 MB/sec. The overall
indexing rate is about 0.44 MB/sec.

See Table 6.3 for the statistics regarding the memory peak of the algorithm, as well
as a comparison between intermediate and final trie representations. See Table 6.4 for a
comparison with the original construction algorithm for Scheme 2.

6.5.5 Indexing Proteins

We indexed the text http://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz
of about 1 GB of protein sequences, provided in the Pizza&Chili Corpus. This has shown
to be a not so compressible text.

In Table 6.8 we show the experimental results for proteins. The indexing rate for
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Table 6.7: Experimental results for XML text. The numbers in boldface indicate the final index
size in every case.

Index Indexing step Main-memory Total space Time
space (bytes) (bytes) (secs)

Scheme 2 1 90, 563, 835 90, 563, 835 199.74
2 111, 467, 467 175, 009, 211 3.82
3 120, 592, 538 169, 037, 276 435.20
4 98, 337, 536 185, 878, 936 3.23
5 & 6 97, 231, 032 198,518,068 9.29
Total (peak) 120, 592, 538 198, 518, 068 651.28

Scheme 3 1 90, 563, 835 90, 563, 835 201.43
1/ε = 1 2 111, 467, 467 175, 009, 211 3.88

3 120, 592, 538 169, 037, 276 441.91
4 98, 337, 536 185, 878, 936 3.24
5 & 6 97, 231, 032 245,871,260 11.02
Total (peak) 120, 592, 538 245, 871, 260 661.41

Scheme 3 1 90, 563, 835 90, 563, 835 200.91
1/ε = 15 2 111, 467, 467 175, 009, 211 3.79

3 120, 592, 538 169, 037, 276 441.34
4 98, 337, 536 185, 878, 936 3.20
5 & 6 54, 641, 864 160,692,920 18.66
Total (peak) 120, 592, 538 185, 878, 936 667.91

the hierarchical LZTrie is about 0.92 MB/sec, while for RevTrie it is about 0.24 MB/sec.
Note that the indexing rate for RevTrie is much slower than for other texts. This could
be mainly because proteins are not so compressible, and therefore the tries have a greater
number of nodes to be inserted, which makes the process slower. The overall indexing rate
is about 0.19 MB/sec.

See Table 6.3 for the statistics regarding the memory peak of the algorithm, as well
as a comparison between intermediate and final trie representations. See Table 6.4 for
a comparison with the original construction algorithm for Scheme 2, indexing a 500-MB
prefix of proteins.

6.6 Final Comments

The main result of this chapter is that both the original LZ-index and the whole family
of LZ-indexes defined in this thesis (i.e., the LZ-indexes defined in Chapters 4 and 5) can
be constructed without requiring extra space on top of that required by the index. This
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Table 6.8: Experimental results for proteins. The numbers in boldface indicate the final index
size in every case.

Index Indexing step Main-memory Total space Time
space (bytes) (bytes) (secs)

Scheme 2 1 839, 446, 471 839, 446, 471 1, 087.58
2 1, 018, 660, 027 1, 681, 050, 175 33.82
3 1, 133, 180, 292 1, 649, 264, 449 4, 105.11
4 895, 675, 465 1, 766, 181, 601 27.83
5 & 6 1, 032, 374, 144 1,990,895,000 112.75
Total (peak) 1, 133, 180, 292 1, 990, 895, 000 5, 374.88

Scheme 3 1 839, 446, 471 839, 446, 471 1, 095.56
1/ε = 1 2 1, 018, 660, 027 1, 681, 050, 175 33.49

3 1, 133, 180, 292 1, 649, 264, 449 4, 113.27
4 895, 675, 465 1, 766, 181, 601 27.55
5 & 6 1, 032, 374, 144 2,502,718,500 134.72
Total (peak) 1, 133, 180, 292 2, 502, 718, 500 5, 404.62

Scheme 3 1 839, 446, 471 839, 446, 471 1, 097.09
1/ε = 15 2 1, 018, 660, 027 1, 681, 050, 175 33.86

3 1, 133, 180, 292 1, 649, 264, 449 4, 117.30
4 895, 675, 465 1, 766, 181, 601 27.62
5 & 6 575, 948, 072 1,589,866,364 232.25
Total (peak) 1, 133, 180, 292 1, 766, 181, 601 5, 508.14

is a relevant aspect regarding the practicality of our indexes, since wherever these LZ-
indexes can be used, we will be able to build them without the need of accessing secondary
storage. The construction time is O(u(log σ + log log u)), which is linear on the text size
on polylog-sized alphabets.

Given the data structures that compose the LZ-index, the space-efficient construction
is highly related to the representation of succinct dynamic σ-ary trees (or tries). Thus,
the basic idea is to construct the tries of LZ-index using space-efficient intermediate
representations supporting fast incremental insertion of nodes. This gives us, as a spin
off, an efficient representation of succinct dynamic σ-ary trees, with basic operation times
O(log σ + log log u) (amortized in the case of updates), where u is the number of nodes
in the tree [Arr08]. This is the first such representation with operation times related to
O(log σ) rather than just to O(log u) [CHLS07], so we are able to take advantage of smaller
values of σ.

The space-efficient construction of the LZ-index tries is combined, however, with a
careful construction of the remaining index components, in order to not to surpass the space
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requirement of the final index. Many combinatorial properties of the index components
are exploited in order to achieve this goal.

We also defined an alternative model in which we have a reduced amount of main
memory to perform the indexing process (perhaps less memory than that needed to
accommodate the whole index). We show that the LZ-indexes can be constructed within
(1+ε)uHk(T )+o(u log σ) bits of space, in O(u(log σ+log log u)) time. This means that the
LZ-indexes can be constructed within asymptotically the same space than that required
to store the compressed text.

On the practical side, our experimental results indicate that all LZ-index versions can
be constructed within the same amount of memory as needed by the final index. Under the
reduced-memory scenario, we have that the LZ-index versions can be constructed requiring
0.40 – 1.05 times the size of the original text, depending on the compressibility of the text.
This means about 3.39 – 7.50 times less space as that needed by the original construction
algorithm (which works assuming that there is enough memory to store the whole index in
main memory). Our indexing rate is about 0.19 – 0.44 MB/sec., which is 4.60 – 9.58 times
slower than the original construction algorithm. In conclusion, our algorithm requires
much less memory than the original one, in exchange for a slower construction algorithm.
However, our indexing algorithm is still competitive with existing indexing technologies.
For example, we are able to construct the LZ-index for the Human Genome in less than 5
hours, while Dementiev et al. [DKMS08] and Hon et al. [HLS+07] require 5.6–8.5 and 24
hours to construct the suffix array and CSA for the Human Genome, respectively.

Given the similarities in the composition of the indexes, we believe that our methods
could be extended to construct related LZ-indexes [FM05, RO07] within limited space.

6.6.1 A Further Application

An interesting (and direct) application of our indexing algorithm is in the construction
of the LZ78 parsing of a text T . Grossi and Sadakane [GS06] define an alternative
representation for the LZ78 parsing, which has the nice property of supporting optimal
time to access any text substring. The parsing consists basically of the LZTrie (the trie
topology and array of symbols labeling the trie), plus an array that, for any phrase identifier
i, stores the preorder of the corresponding LZTrie node (see Variant 2 to represent the
LZ78 parsing, in Section 2.4.1 of this thesis). Using our notation, the latter array is just
ids−1.

Jansson et al. [JSS07a] propose an algorithm to construct the parsing in

O( u
logσ u

(log log u)2

log log log u) time and requiring uHk(T ) + o(u log σ) bits of space. The algorithm,

however, needs two passes over the text, which means (u log σ)/B extra disk accesses if it
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is stored on disk, which can be expensive. We can reduce the number of disk accesses as
follows, mainly when the text is compressible:

— We construct the hierarchical LZTrie for T , storing the phrase identifier for each
node. We can erase T since it is not anymore necessary. This takes O(u(log σ +
log log u)) time.

— We build the final LZTrie, storing array ids on disk, as it was explained in Section 6.3.
This takes extra O(u(log σ + log log u)) time, and performs (uHk(T ) + o(u log σ))/B
extra disk accesses.

— We then free the hierarchical LZTrie and load array ids back to main memory,
performing (uHk(T ) + o(u log σ))/B extra disk accesses.

— We compute ids−1 in place, using the algorithm of Lemma 2.8, and this way we
complete the representation for the LZ78 parsing of text T .

As we can see, we exchange the u log σ/B extra disk accesses of [JSS07a] by (2uHk(T ) +
o(u log σ))/B disk accesses. This can be much better, specifically in the case of large
compressible texts. The total time is O(u(log σ + log log u)), and the maximum main-
memory space required is uHk(T ) + o(u log σ) bits.
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Chapter 7

A Secondary-Memory LZ-index

The initial statement in behalf of compressed full-text self-indexes was that larger texts
could be indexed and stored in main memory, without accessing secondary storage.
However, some texts are so large that their corresponding indexes do not fit entirely in main
memory, even compressed. In these cases the index must be stored on secondary memory
and the search proceeds by loading the relevant parts into main memory. Because of
its high cost, the problem here consists in reducing the number of accesses to secondary
storage at search time.

Unlike what happens with sequential text searching, which speeds up with
compression, because the compressed text is transferred faster to main memory
[MNZBY00], working on secondary storage with a compressed index usually requires more
disk accesses in order to find the pattern occurrences. This is because of the overhead
introduced to retrieve the pattern occurrences from the compressed index, since most
compressed indexes use non-local compression methods: somehow, they rearrange the
data in order to achieve compression, thus locality is usually destroyed. Yet, these indexes
require less space, which in addition can reduce the seek time incurred by a larger index
because seek time is roughly proportional to the size of the data. It is worth reminding
that seek time is the most expensive component in the disk-access time.

Model of Computation. We assume in this chapter a model of computation where a disk
page of size B (able to store b = ω(1) integers of log u bits, i.e., B = b log u bits) can be
transferred to main memory in a single disk access [Vit08]. Because of their high cost, the
performance of our algorithms is measured as the number of disk accesses performed to
solve a query. We count every disk access, which is an upper bound to the real number
of accesses, as we disregard the disk caching due to the operating system. Assume we can
only hold a constant number of disk pages in main memory. As in all of this chapter, we
assume that our text T is static, i.e., there are no insertions nor deletions of text symbols.
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7.1 Related Work

In what follows we depict the most important works on disk-based full-text indexes.

— The classical suffix arrays can be adapted to work on disk, following the idea of
Baeza-Yates et al. [BYBZ96]: we divide the suffix array into blocks of h 6 b elements
(pointers to text suffixes), and move to main memory the first l text symbols of the
first suffix of each block, that is, we store u

h l extra symbols. At search time, we
carry out two binary searches [MM93] to delimit the interval [i..j] of the pattern
occurrences. Yet, the first part of the binary search is done over the samples without
accessing the disk. Once the blocks where i and j lie are identified, we bring them
to main memory and finish the binary search, this time accessing the text on disk at
each comparison. Therefore, the total cost is 2 + 2 log h disk accesses. We must pay
at most 1 + docc−1

b e extra accesses to report the occurrences of P within those two

positions. The space requirement including the text is (5 + l
h) times the text size,

assuming 4-byte integers.

— One of the best known indexes for secondary memory is the String B-tree [FG99],
although this is not a compressed data structure. It requires O(logb u + m+occ

b ) disk
accesses in searches and O(u/b) disk pages of space. This value is, in practice, about
12.5 times the text size (not including the text) [FG96], which is prohibitive for very
large texts. Its static version takes about 3–5 times the text size (including the text).

— Clark and Munro [CM96] present a compact representation of suffix trees on
secondary storage (the Compact Pat Trees, or CPT for short). This is not a
compressed index, and also needs the text to operate. Although not providing worst-
case guarantees, the representation is organized in such a way that the number of disk
accesses is reduced to 3–4 per query. The authors claim that the space requirement
of their index is comparable to that of suffix arrays, needing about 4–5 times the
text size (not including the text).

— Mäkinen et al. [MNS04] propose a technique to store a Compressed Suffix Array on
secondary storage, based on backward searching [Sad02]. This is the only proposal to
store a (zero-th order) compressed full-text self-index on secondary memory, requiring
u(H0 + O(log log σ)) bits of storage and a counting cost of at most 2(1 + mdlogB ue)
disk accesses. Locating the occurrences of the pattern would need O(log u) extra
accesses per occurrence, which is prohibitively costly.

— González and Navarro [GN08a] present a suffix-array-based scheme working on
secondary storage. When the text is compressible, their scheme takes significantly
less space than the corresponding suffix array. Given the definition of function Ψ of
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Compressed Suffix Arrays as in Section 2.4.2, the idea is to represent Ψ in differential
form, transforming its regularities into true repetitions. These repetitions are then
compressed with an algorithm like Re-Pair [LM99], which has the advantage of
providing fast local decompression. This is called the Locally Compressed Suffix
Array (LCSA) [GN07]. The advantage of this scheme is that we can store in every
disk page a greater number of suffix-array entries (i.e., occurrences). Therefore, with
each disk access we are able to report many more occurrences than with suffix arrays.
The result is a very competitive index that requires between 2(m − 1) to 4(m − 1)
disk accesses for count (this depends on the available main memory). Operation
locate takes 1+docc−1

b e extra I/Os in the worst case, and cr ·occ/b I/Os on average,
being 0 < cr 6 1 the suffix array compression ratio achieved. Thus, unlike most
other indexes, the performance of this index improves with compression. The space
requirement of this index is O(Hk(T ) log (1/Hk(T ))u log u) bits (if sufficient main
memory is available), which in practice can be up to 4 times smaller than classical
suffix arrays.

— Recently Sinha et al. [SPMT08] presented the LOF SA, a disk-based full-text index
which is a new variant to arrange suffix arrays on disk. The index is basically divided
into two parts: the LOF trie and the LOF array. The former is a truncated suffix trie,
in order to make it compact (sometimes this can be maintained in main memory).
The latter is an interleaving of suffix-array entries and LCP (longest common prefix
[MM93]) values, plus some extra symbols from the text (which are used in the same
way as for the disk-based suffix array of [BYBZ96]). These components are stored on
disk as an array of triples. The search starts in the LOF trie, and then proceeds into
the LOF array. The idea is to use the LOF trie to narrow as much as possible the
suffix array portion that must be searched, thus reducing the number of accesses
performed by the binary search on the suffix array. The authors show a good
performance in practice, being up to three times faster than the best existing suffix
array on disk (see [SPMT08] for further details). The space requirement is, however,
excessive: 13 times the text size.

As it can be seen from the related works, except for the disk-based LCSA [GN08a],
all the existing full-text indexes on secondary storage are either non-compressed (and
they require a considerable amount of storage), or they are compressed yet have a poor
performance for extract, display, and locate queries, as for example Compressed Suffix
Arrays on disk [MNS04].

In this chapter we propose a version of Navarro’s LZ-index that can be efficiently
handled on secondary storage, mostly from a practical point of view.
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7.2 The LZ-index on Secondary Storage

Navarro’s LZ-index (see Section 3.3) was originally designed to work in main memory, and
hence it has a non-regular access pattern to the index components. As a result, it is not
suitable to work on secondary storage. This can be noticed with the navigational-scheme
approach of Chapter 4: every time we follow an arrow in the scheme, this means a random
access to an index component. We shall show how to achieve locality in the access to the
LZ-index components, so as to have good secondary storage performance. In this process
we introduce some redundancy over main-memory proposals of previous chapters.

7.2.1 Supporting the Basic Trie Operations

To represent the tries of the index we use a space-efficient representation similar to the
hierarchical representation of Chapter 6, which now we make searchable by adding a more
complete set of operations. We cut the trie into disjoint blocks of size B such that every
block stores a connected component of the whole trie. We arrange these blocks in a tree
by adding some inter-block pointers.

We cut the trie in a bottom-up fashion, trying to maximize the number of nodes in
each block. This is the same partition used by Clark and Munro [CM96], and so we also
suffer of very small blocks. To achieve a better fill ratio and reduce the space requirement,
we store several trie blocks within each disk page.

Just as in Chapter 6, every trie node x in this representation is either a leaf of the
whole trie, or it is an internal node. For internal nodes there are two cases: the node x is
internal to a block p or x is a leaf of block p (but not a leaf of the whole trie). In the latter
case, x stores a pointer to the representation q of its subtree. The leaf is also stored as a
fictitious root of q, so that every block is a subtree. Therefore, every such node x has two
representations: (1) as a leaf in block p; (2) as the root node of the child block q.

Each block p of N nodes and root node x consists basically of:

— The trie topology Tp of block p, using the balanced parentheses (BP) representation
(Lemma 2.10) of the subtree, requiring 2N + o(N) bits.

— A bit-vector Fp[1..N ] (the flags) such that Fp[j] = 1 iff the j-th node of the block
(in preorder) is a leaf of p, but not a leaf of the whole trie. In other words, the j-th
node has a pointer to the representation of its subtree. We represent Fp using the
data structure of Lemma 2.4 (1) to allow rank and select queries in constant time
and requiring N + o(N) bits.

— The sequence lettsp[1..N ] of symbols labeling the arcs of the subtree, in preorder.
The space requirement is Ndlog σe bits.
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— Only in the case of LZTrie, the sequence idsp[1..N ] of phrase identifiers in preorder.
The space requirement is N log n bits.

— A pointer to the leaf representation of x in the parent block.

— The depth and preorder of x within the whole trie.

— A variable number of pointers to child blocks. The number of child blocks of a given
block can be known from the number of 1s in Fp.

— An array Sizep such that each pointer to child block stores the size of the
corresponding subtree.

Using this information, given node x with preorder j within block p, we are able to support
the following operations (see Section 2.5.2 for a definition of the operations):

Operation parent(x). If x is not the root of some trie block, then both x and parent(x)
are stored in the same block and parent(x) is found in constant time using the BP
representation of Tp. Otherwise, parent(x) is stored in the parent block q of p (the block
which is pointing to p). We follow the pointer to the leaf representation of x in q and
finally use the parent operation on the BP representation of q. As a result, in the worst
case we need one disk access to solve the operation.

Operation child(x, α). If x is not a leaf of some block, the desired child is also stored in
block p. Therefore, we use the child(x, i) operation (which gets the i-th child of node x)
provided by BP for i = 1, . . . , σ, until we reach the child by symbol α (or until we discover
that such child does not exist). This takes O(σ) CPU time in the worst case, but it is
free of disk accesses. If x is a leaf of block p, the child we are looking for is a child of the
root representation of x in the corresponding child block q. If i = rank1(Fp, j), then q is
the i-th child block of p. We then move to q and look for the child of its root by label α.
Hence, in the worst case we need only one disk access to solve this operation.

Operation depth(x). It can be computed as the depth of the root of p plus the depth of x
within p, which can be computed in constant time by using BP [MR01]. Therefore, this
operation can be supported in constant time and free of disk accesses.

Operation subtreesize(x). The BP representation allows us to support the subtreesize
operation in constant time, so the operation can be supported trivially if the subtree of
x is completely contained in block p (we call subtreesizep that operation). However, the
subtree of x can span more than its block. We use array Sizep to solve this problem.
The portion of Sizep corresponding to x goes from position p1 = rank1(Fp, j − 1) + 1 to
p2 = rank1(Fp, j+subtreesizep(x)−1). If p1 equals p2, the subtree of x is completely stored
in p. Otherwise, subtreesize(x) can be computed as subtreesizep(x)+

∑p2
i=p1

Sizep[i]. We
do not need extra accesses to support this operation.
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Operation preorder(x). This is computed from three main components: the preorder of the
root of block p within the whole trie, plus the preorder of x within p (computed using BP),
plus the number of nodes stored in child blocks of p, such that all nodes in these child blocks
have preorder less than x. We compute the last term as

∑r
i=1 Sizep[i], where r = rank1(Fp,

j − 1).

Operation ancestor(x, y). This is trivially solved provided we can solve operations
subtreesize and preorder: node x is an ancestor of node y iff preorder(x) 6 preorder(y)
6 preorder(x) + subtreesize(x).

Improving CPU Time. To achieve more efficient CPU time we can represent the subtrees
in each block using the dfuds representation of Lemma 2.11 (which allows child(x, α)
in O(1) time). The only consideration is with operation depth, which is not originally
supported by dfuds, yet we can use the data structure of [JSS07b] to support it. We can
also represent Sizep using a searchable partial sum data structure [HSS03b].

Analysis of Space Complexity. In the case of LZTrie, as the number of nodes is n,
the space requirement is 2n + n + n log σ + n log n + o(n) bits, for the BP representation,
the flags, the symbols, and phrase identifiers respectively. To this we must add the space
required for the inter-block pointers and the extra information added to each block, such
as the depth of the root, etc. If the trie is represented by a total of K blocks, these data
add up to O(K log n) bits. The bottom-up partition of the trie ensures K = O(σn/b),
because the trie is σ-ary and thus we can only guarantee an utilization of O(1/σ) of
every block. However, we have that K = min {n, σn/b}, because the number of blocks
is smaller or equal to the number of nodes. Hence, the extra information stored in each
block requires O(uHk(T ))+ o(u log σ) bits of space in the worst case. If b = ω(σ), we have
o(n log n) = o(u log σ) bits of space for the extra information.

In the case of RevTrie, as there can be empty nodes, we represent the trie using a
Patricia tree [Mor68], compressing empty unary paths so that there are n 6 n′ 6 2n nodes.
In the worst case the space requirement is 4n + 2n + 2n log σ + o(n) bits, plus the extra
information as before.

As we pack several trie blocks in a disk page, we ensure a utilization ratio of 50% at
least. Hence the space of the tries can be at most doubled on disk.

7.2.2 Reducing the Navigation between Structures

We add the following data structures with the aim of reducing the number of disk accesses
required by the LZ-index at search time:
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— ids−1[1..n]: a mapping from phrase identifiers to the corresponding LZTrie preorder,
requiring n log n bits of space.

— Rev[1..n]: a mapping from RevTrie preorder positions to the corresponding LZTrie
node. Since LZTrie has K = O(σn

b ) blocks, every such pointer requires log n +
log σ + O(1) − log b bits of space to indicate the block in which the node is stored,
and log b + O(1) bits o indicate the position of the node within the block. The total
per pointer is, therefore, log n + log σ + O(1) bits of space. The total space for this
array is n log n + n log σ + O(n) bits. We use one extra bit per pointer, for a total of
n extra bits. Later in this section we explain why we need n extra bits of space.

— TPoslz [1..n]: if the phrase corresponding to the node with preorder i in LZTrie starts
at position j in the text, then TPoslz[i] stores the value j. This array requires n log u
bits and is used just for locate queries.

— LR[1..n]: an array requiring n log n bits. If the node with preorder i in LZTrie
corresponds to the LZ78 phrase Bk, then LR[i] stores the preorder of the RevTrie
node for Bk−1.

— Sr[1..n]: an array requiring n log u bits, storing in Sr[i] the subtree size of the LZTrie
node corresponding to the i-th RevTrie node (in preorder). This array is used just
for count queries.

— Node[1..n]: the mapping from phrase identifiers to the corresponding LZTrie node,
as defined in Section 3.3.1, requiring n log n + n log σ + O(n) bits. This is used to
support extract queries.

As the size of these arrays depends on the compressed text size, we do not need that
much space to store them: they require 2n log u + 4n log n + 2n log σ + O(n) bits, which
summed to the space of the tries yields O(uHk(T )) + o(u log σ) bits of space, for any
k = o(logσ u). If b = ω(σ), the space requirement is 8uHk(T )+ o(u log σ) bits of space, for
any k = o(logσ u) 1. Later in our experiments we will show estimations for the constant
in the main component of the space requirement.

If the index is used only for count queries, we basically need arrays ids−1, LR, Sr,
and the tries, plus an array RL[1..n], which is similar to LR but mapping from a RevTrie
node for Bk to the LZTrie preorder for Bk+1. All these add up to 6uHk + o(u log σ) bits
if b = ω(σ).

After searching for all pattern substrings P [i..j] in LZTrie (recording in Clz[i, j] the
phrase identifier, the preorder, and the subtree size of the corresponding LZTrie node,

1The space requirement is 16uHk(T ) + o(u log σ) bits in the worst case, if b = ω(σ) does not hold, for
any k = o(logσ u).
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along with the node itself) and all reversed prefixes P r[1..i] in RevTrie (recording in
array Cr[i] the preorder and subtree size of the corresponding RevTrie node), the pattern
occurrences are found as follows:

Occurrences of Type 1. Assume that the search for P r in RevTrie yields node vr. For
every node with preorder i, such that preorder(vr) 6 i 6 preorder(vr) + subtreesize(vr)
in RevTrie, with Rev[i] we get the node vlzi

in LZTrie representing a phrase Bt ending
with P . The length of Bt is d = depth(vlzi

), and the occurrence starts at position d −m
inside Bt. Therefore, if p = preorder(vlzi

), the exact text position can be computed as
TPoslz [p] + d −m. We then traverse all the subtree of vlzi

and report, as an occurrence
of type 1, each node contained in this subtree, accessing TPoslz[p..p + subtreesize(vlzi

)]
to find the text positions. Note that the offset d −m stays constant for all nodes in the
subtree.

Note that every node in the subtree of vr produces a random access in LZTrie. In
the worst case, the subtree of vlzi

has only one element to report (vlzi
itself), and hence

we have occ1 random accesses in the worst case. To reduce the worst case to occ1/2, we
use the n extra bits in Rev: in front of the log u bits of each Rev element, a bit indicates
whether we are pointing to a LZTrie leaf. In such a case we do not perform a random
access to LZTrie, but we use the corresponding log u bits to store the exact text position
of the occurrence.

To avoid accessing the same LZTrie page more than once, even for different trie blocks
stored in that page, for each Rev[i] we solve all the other Rev[j] that need to access the
same LZTrie page. As the tries are space-efficient, many random accesses could need to
access the same page.

For count queries we traverse the Sr array instead of Rev, summing up the sizes of
the corresponding LZTrie subtrees without accessing them, therefore requiring O(occ1/b)
disk accesses.

Occurrences of Type 2. For occurrences of type 2 we consider every possible partition
P [1..i] and P [i+1..m] of P . Suppose the search for P r[1..i] in RevTrie yields node vr (with
preorder pr and subtree size sr), and the search for P [i + 1..m] in LZTrie yields node vlz

(with preorder plz and subtree size slz). Then we traverse sequentially LR[j], for j = plz

..plz + slz, reporting an occurrence at text position TPoslz [j] − i iff LR[j] ∈ [pr..pr +
sr]. This algorithm has the nice property of traversing arrays LR and TPoslz sequentially,
yet the number of elements traversed can be arbitrarily larger than occ2.

For count queries, since we have also array RL, we choose to traverse RL[j], for
j = pr..pr + sr, when the subtree of vr is smaller than that of vlz, counting an occurrence
only if RL[j] ∈ [plz..plz + slz].

To reduce the number of accesses from 2d1 + slz
b e to d2slz+1

b e, we interleave arrays
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LR and TPoslz , such that we store LR[1] followed by TPoslz [1], then LR[2] followed by
TPoslz [2], etc.

Occurrences of Type 3. We find all the maximal concatenations of phrases using the
information stored in Clz and Cr. If we found that P [i..j] = Bt . . . B` is a maximal
concatenation, we check whether phrase B`+1 has P [j + 1..m] as a prefix, and whether
phrase Bt−1 has P [1..i− 1] as a suffix. Note that, according to the LZ78 properties, B`+1

starting with P [j + 1..m] implies that there exists a previous phrase Bt′ , t′ < ` + 1, such
that Bt′ = P [j + 1..m]. In other words, Clz[j + 1,m] must not be null (i.e., phrase Bt′

must exist) and the phrase identifier stored at Clz[j +1,m] must be smaller than `+1 (i.e.,
t′ < ` + 1). If these conditions hold, we check whether P r[1..i− 1] exists in RevTrie, using
the information stored at Cr[i − 1]. Only if all these condition hold, we check whether
ids−1[`+1] descends from the LZTrie node corresponding to P [j+1..m] (using the preorder
and subtree size stored at Clz[j+1,m]), and if we pass this check, we finally check whether
LR[ids−1[t]] (which yields the RevTrie preorder of the node corresponding to phrase t−1)
descend from the RevTrie node for P r[1..i− 1] (using the preorder and subtree size stored
at Cr[i − 1]). Fortunately, we have a high probability that ids−1[` + 1] and ids−1[t] need
to access the same disk page. If we find an occurrence, the corresponding position is
TPoslz [ids−1[t]]− (i− 1).

Extract Queries. For extract(T, i, j) we have the following problem: given any text
position i, we need to compute the corresponding LZTrie node so as to extract the text
from there. We store in a B-tree the starting text position for every phrase Bp·h, for
p = 1, . . . , n

h and h > 0. This requires n
h log u bits of space. We hold the root block of the

B-tree always in main memory. Using the B-tree we can search for the rightmost phrase
Bt with starting text position pt, such that pt 6 i and pt has been stored in the B-tree.
From pt we get the disk page at which we access Node, using the fact that the sampling in
the text positions is regular. We then repeatedly access Node[t + s] in LZTrie, for s > 0,
adding depth(Node[t + s]) to pt, so as to get the text position pt+s of phrase Bt+s, until
the sum is greater than i. At this point, we are in the LZTrie node corresponding to the
phrase Bt+s containing text position i. The text can be extracted by going successively to
the parent in LZTrie, getting the symbol at each node. Once we reach the LZTrie root,
we go on to extract the text in the next phrase. For any h = ω(1) we have o(u log σ) extra
bits, and we perform ω(1) extra disk accesses.

For display(T, P, `) queries, we first solve locate(T, P ). Then, for each occurrence
starting at position i we carry out operation extract(T, i− `, i + m + `− 1).
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7.3 Experimental Results

For the experiments of this chapter we consider two text files: the text wsj (Wall Street
Journal) from the trec collection [Har95], of 128 megabytes, and the XML file provided in
the Pizza&Chili Corpus, downloadable from http://pizzachili.dcc.uchile.cl/texts

/xml/dblp.xml.200MB.gz, of 200 megabytes. Although these texts are smaller than the
ones used in the experiments of previous chapters, we use them in order to compare against
state-of-the-art indexes, which use similar texts to perform their experiments. We searched
for 5,000 random patterns, of length from 5 to 50, generated from these files. As in [FG96],
we assume a disk page size of 32 kilobytes. We compared our results against the following
state-of-the-art indexes for secondary storage:

Suffix Arrays (SA): The suffix arrays of [BYBZ96], as explained in Section 7.1. Recall
that we move to main memory the first l text symbols of the first suffix of each
block (of size h), so we have u

h l extra symbols. We assume in our experiments
that l = m holds, which is the best situation. The total cost is 2 + 2 log h disk
accesses, plus d1 + occ−1

b e extra accesses to report the occurrences of P . The space
requirement including the text is (5+ m

h ) times the text size. In the experiments, we
use h = 1, 2, 4, 8, 16, and 32.

String B-trees [FG99]: in [FG96] they pointed out that an implementation of String
B-trees for static texts would require about 2+ 2.125

t times the text size (where t > 0
is a constant) and the height h of the tree is 3 for texts of up to 2 gigabytes, since the
branching factor (number of children of each tree node) is b′ ≈ b

8.25 . The experimental
number of disk accesses given by the authors is O(log t)(bmb c + 2h) + docc

b′ e. Notice
that this model assumes that the trie root is kept in main memory. We assume a
constant of 1 for the O(log t) factor, since this is not clear in the paper [FG96, Sect.
2.1]. We use t = 2, 4, 8, 16, and 32.

Compact Pat Trees (CPT) [CM96]: we assume that the tree has height 3, according
to the experimental results of Clark and Munro, and assume that the trie root is
kept in main memory. We need 1 + docc−1

b e extra accesses to locate the pattern
occurrences. According to the original paper, the space is about 4–5 times the text
size (plus the text). Hence, the space requirement of this index is shown in our plots
as a line between 5 and 6 times the text size, meaning that the space requirement
lies within this range.

Locally-Compressed Suffix Arrays (LCSA) [GN08a]: we show the same results as
in the original work [GN08a]. It is important to note that this index needs some data
structures to reside in main memory, as for instance the Re-Pair dictionary used
to decompress the suffix-array entries. According to the experiments in [GN08a],
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Figure 7.1: Count cost versus space requirement for the different indexes we tested.

the amount of main memory used is 19.15 MB for XML, and 12.54 MB for WSJ.
Though this index includes enough information so as to be able to extract any text
substring, this is not efficient on disk. So one would need to add an extra data
structure representing the compressed text [GN07] in order to support efficient text
extraction on disk. We do not account for this data structure in our experiments.

We restrict our comparison to indexes that have been implemented, or at least
simulated, in the literature. Hence we exclude the Compressed Suffix Arrays (CSA)
[MNS04] since we only know that it needs at most 2(1 + mdlogb ue) accesses for count

queries. This index requires about 0.22 and 0.45 times the text size for the XML and WSJ
texts respectively, which, as we shall see, is smaller than ours. However, CSA requires
O(log u) accesses to report each pattern occurrence, which is prohibitively costly.

Fig. 7.1 shows the time/space trade-offs of the different indexes for count queries, for
patterns of length 5 and 15. For the LZ-index and the LCSA we show two version of the
indexes: “LZ-index C” and “LCSA C” are the versions allowing just count queries, while
“LZ-index C+L” and “LCSA C+L” are the versions supporting both count and locate
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queries.

As it can be seen, our LZ-index requires about 1.04 times the text size for the (highly
compressible) XML text, and 1.68 times the text size for the WSJ text. For m = 5, the
counting requires about 23 disk accesses, and for m = 15 it needs about 69 accesses. Note
that for m = 5, there is a difference of 10 disk accesses among the LZ-index and String
B-trees, but the latter requires 3.39 (XML) and 2.10 (WSJ) times the space of the LZ-
index. For m = 15 the difference is greater in favor of String B-Trees. The SA outperforms
the LZ-index in both cases, but the latter requires about 20% the space of SA. Finally,
the LZ-index needs (depending on the pattern length) about 7–23 times the number of
accesses of CPTs, but the latter requires 4.9–5.8 (XML) and 3–3.6 (WSJ) times the space
of LZ-index. When comparing with the LCSA in the case of supporting just count queries,
we can see that our index is competitive only for XML, the LCSA requiring 1.19 times
the size of the LZ-index. When, on the other hand, we consider an scenario where both
count and locate queries need to be supported, our LZ-index is much more competitive,
the LCSA requiring 1.85 (XML) and 2.00 (WSJ) times the size of the LZ-index, in both
texts with a difference of about 15 disk accesses in favor of the LCSA (for m = 5), and a
difference of about 35 disk accesses (XML) and 50 disk accesses (WSJ) for m = 15.

Fig. 7.2 shows the time/space trade-offs for locate queries, this time showing the
average number of occurrences reported per disk access. The LZ-index requires about 1.37
(XML) and 2.23 (WSJ) times the text size, and is able of reporting about 597 (XML) and
63 (WSJ) occurrences per disk access for m = 5, and about 234 (XML) and 10 (WSJ)
occurrences per disk access for m = 15. We estimate the constant in the space requirement
of our LZ-index, dividing the index size in bits (we previously subtract the lower order
terms corresponding to the space for parentheses, symbols, etc.) by n log n. We get the
constants 7.71 for XML and 7.62 for WSJ, which indicate that in practice the constant
is smaller than 8, the worst-case constant that we predicted in theory when b = ω(σ),
since σ is not so big in the texts we are using, and also b ≈ 8, 192. The average number
of occurrences found for m = 5 is 293,038 (XML) and 27,565 (WSJ); for m = 15 there
are 45,087 and 870 occurrences on average. String B-trees report 3,449 (XML) and 1,450
(WSJ) occurrences per access for m = 5, and for m = 15 the results are 1,964 (XML) and
66 (WSJ) occurrences per access, but they require 2.57 (XML) and 1.58 (WSJ) times the
space of the LZ-index.

Fig. 7.3 shows the cost for the different parts of the LZ-index search algorithm, for
locate queries and in the case of XML (WSJ yields similar results): the work done in the
tries (labeled “tries”), the different types of occurrences, and the total cost (“total”).
The total cost can be decomposed in three components: a part linear on m (trie traversal),
a part linear in occ (type 1), and a constant part (type 2 and 3).
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Figure 7.2: Locate cost versus space requirement for the different indexes we tested. Higher
means better locate performance.

Now that we compared our LZ-index against existing alternatives, we run experiments
with larger texts, in order to test more cases. We test with a 500-MB prefix of the English
text from the Pizza&Chili Corpus, and a 500-MB prefix of the Human Genome. For the
English text, our LZ-index requires 2.49 times the text size for the complete index, and
1.78 times the text size if we only want to use the index for count queries. The constant
in the main component of the space requirement is 7.40. At search time, we are able
to locate on average about 687 occurrences per disk access for patterns of length 5, and
about 34 occurrences per access for patterns of length 15. For the Human Genome, our
LZ-index requires 2.07 times the text size, and 1.48 times the text size if we only need to
count occurrences. The constant in the main component of the space requirement is 7.38.
At search time, we are able to locate on average about 1,984 occurrences per access for
patterns of length 5, and about 81 occurrences per access for patterns of length 15.
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Figure 7.3: Cost for the different parts of the LZ-index search algorithm, for locate queries
and variable pattern length.

7.4 Final Comments

We can conclude that the LZ-index can be adapted to work on secondary storage, requiring
O(uHk) + o(u log σ) bits of space, for any k = o(logσ u). In practice, this value is about
1.4–2.3 times the text size, including the text, which means 39%–65% the space of String
B-trees [FG99]. Saving space in secondary storage is important not only by itself (space
is very important for storage media of limited size, such as CD-ROMs), but also to reduce
the high seek time incurred by a larger index, which usually is the main component in the
cost of accessing secondary storage, and is roughly proportional to the size of the data.

Our index is significantly smaller than any other practical secondary-memory data
structure. In exchange, it requires more disk accesses to locate the pattern occurrences. For
XML text, we are able to report (depending on the pattern length) about 597 occurrences
per disk access, versus 3,449 occurrences reported by String B-trees. For English text
(WSJ file from [Har95]), the numbers are 63 versus 1,450 occurrences per disk access. In
many applications, it is important to find quickly a few pattern occurrences, so as to find
the remaining while processing the first ones, or on user demand, recall partial locate
queries, defined in Section 1.1.3. Fig. 7.3 (left, see the line “tries”) shows that for m = 5
we need about 11 disk accesses to report the first pattern occurrence, while String B-trees
need about 12. If we only want to count the pattern occurrences, the space can be dropped
to 6uHk + o(u log σ) bits; in practice 1.0–1.7 times the text size. This means 29%–48% the
space of String B-trees, with a slowdown of 2–4 in the time.

We have considered only the number of disk accesses in our work, ignoring seek
times. Random seeks cost is roughly proportional to the size of the data. If we multiply
the number of accesses by the index size, we get a very rough idea of the overall seek times.
The smaller size of our LZ-index should favor it in practice. For example, it is very close
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to String B-trees for counting on XML and m = 5 (Fig. 7.1). This model is optimistic,
but counting only accesses is pessimistic.

Now that we know that the LZ-index can be adapted to work on secondary storage,
the construction of our index becomes an important issue. An alternative would be to
construct our index in main memory of a bigger machine, then generating the secondary-
memory version, to finally move the index to the (smaller) machine used for queries. Since
the index components are similar to the ones defined for the LZ-index versions of previous
chapters, we can adapt to our index the reduced-memory construction algorithm of Section
6.3. The difference is that this time we cannot provide guarantees in the number of disk
accesses needed to construct the index, since we need to navigate the tries. So we could
construct our LZ-index using just uHk(T ) + o(u log σ) bits. Notice that the machine used
for queries will have less than uHk(T ) + o(u log σ) bits of main memory available, because
otherwise we would use the index of Theorem 5.1 directly in main memory. As a future
work, we plan to study the direct construction on secondary storage of our LZ-index. We
think that this is feasible, adapting the method of Chapter 6 to work on disk.

An important line of future research is to achieve good worst-case guarantees at
search time. For example, we should represent the tries with a data structure supporting
secondary-storage access [FGG+08], as well as efficient support for occurrences of type 1
(recall the random pattern of accesses from RevTrie). Occurrences of type 2, on the other
hand, should be found by using the Range data structure on disk. Another interesting line
of research is that of studying the best ways to use the available main memory in order to
reduce the number of disk accesses performed by the index at search time. Another plan
for future work is to handle dynamism.
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Chapter 8

Conclusions and Further Work

Since about a decade ago, the track of compressed full-text self-indexes is a very active
area of research, aiming at both theoretical and practical results with diverse applications.
As a consequence, the area has grown very fast, achieving unexpected (and sometimes
even unsuspected) results, as for instance the fact that we are able to replace a text by a
compressed representation of it which, besides supporting indexed-text-search capabilities,
is also supporting the extraction of any text substring in optimal time (i.e., in the same
time as with the text at hand). Undoubtedly, this has been a breakthrough in the areas
of text compression and string matching.

However, given the popularity of classical text indexes like suffix trees and suffix
arrays, the attention of researchers has been biased towards suffix-array-based compressed
indexes. As an example, most of the literature only considers this kind of indexes when
studying compressed full-text self-indexes (see, e.g., [MN08a]). There are, however, other
kind of compressed full-text self-indexes which we believe deserve attention. In this thesis
we made a deep study on Lempel-Ziv compressed full-text self-indexes (LZ-indexes). This
was the first family of compressed indexes [KU96a, Kär99], although they did not receive
much attention from researchers, until recently [FM05, Nav04, RO07]. We base our study
on Navarro’s LZ-index [Nav04].

As a result from our study, we get a new family of LZ-indexes, which are space efficient,
competitive at search time with the best existing alternatives, practical, able to be built
within compressed space, and adaptable to work on secondary storage when the indexed
text is very large. Thus, we can conclude that the LZ-indexes can be also effective and
competitive, outperforming the suffix-array based compressed indexes in many key aspects,
as for example more efficient support for operations extract and display, which are
essential for self-indexes since the text is not available otherwise. The faster construction
of our indexes makes them suitable for scenarios where the index must be built and queried
on the fly, as for instance in cases where there are updates in the text and one wants to

187



quickly give access to the latest text version that has arrived (e.g., for indexing blogs or
online newspapers).

8.1 Summary of Main Contributions

Let T [1..u] be a text over an alphabet of size σ, and let Hk(T ) denote the k-th order
empirical entropy of T . Let P [1..m] be a search pattern over the same alphabet. From our
study, we can draw the following general conclusions (see the final comments at the end
of each chapter for more specific ones):

8.1.1 A method to reduce the space requirement of LZ-indexes

We have defined in Chapter 4 a method to reduce the space requirement of LZ-indexes.
Our method provides a way to add space/time trade-offs to the LZ-index, alleviating this
drawback of the original index. Thus, we obtain LZ-indexes whose size is up to 2/3rd of
the size of the original LZ-index, while still retaining much of the good features of it (e.g.,
fast extraction of text substrings and fast locating of pattern occurrences). Though we
are not able to provide worst-case guarantees at search time, our indexes are very effective
in practice: they are in most cases the most efficient for extracting text substrings, as
well as displaying occurrence contexts, which we argued are the most basic operations a
self-index must support, since the text is not available otherwise and displaying queries
are the most frequent ones. The extracting rate is about 1 to 1.5 million symbols per
second, being about twice as fast as the most competitive alternatives. Our indexes are
also competitive (though not always the best) with the best existing compressed self-
indexes for locating pattern occurrences. However, in scenarios where one does not need
to retrieve all the pattern occurrences, but just a fraction of them, we show that our indexes
are competitive, specifically in cases of short patterns, small alphabets, or retrieving just a
few occurrences. We also conclude that our indexes are very competitive in cases of highly
compressible texts, since we obtain smaller indexes which are still fast. In these cases,
suffix-array-based compressed indexes need to add extra non-compressible information in
order to compete, thus requiring much more space.

We made the prototypes of our LZ-indexes publicly available in the Pizza&Chili
corpus, throughout the site http://pizzachili.dcc.uchile.cl/indexes/LZ-index/.

8.1.2 A family of stronger LZ-indexes

Pushing further the previous approaches to reduce the space requirement of LZ-indexes,
we studied in Chapter 5 a further reduction in space requirement (which was not possible
anymore by using the approach of Chapter 4). The result is an even smaller index, which
can be then augmented to provide worst-case guarantees at search time. Moreover, we
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improve the search time of the original LZ-index. In summary, starting with the original
space requirement of 4uHk(T )+o(u log σ) bits of space, for any k = o(logσ u), and original
locate time O(m3 log σ+(m+occ) log u), we obtain LZ-indexes with the following features:

— (1 + ε)uHk(T ) + o(u log σ) bits of space and O(m2

ε ) average locate time for m >

2 logσ u. This is the smallest existing LZ-index, yet we cannot provide worst-case
guarantees at search time.

— (2 + ε)uHk(T ) + o(u log σ) bits of space and O(m2

ε + (m + occ) log u + occ
ε ) worst-

case locate time. This is the smallest LZ-index that provides worst-case guarantees
at search time. We showed that this index is competitive against state-of-the-art
indexes, outperforming them while requiring about the same space.

— (3 + ε)uHk(T ) + o(u log σ) bits of space and O((m + occ
ε ) log u) worst-case locate

time. This index requires about half of the space required by competing schemes
and achieves the same time complexity.

So we have a novel family of LZ-indexes, with space ranging from (1 + ε) to (3 + ε)
times the size of the compressed text (plus lower-order additive terms). In all cases, our
indexes are competitive with state-of-the-art indexes.

8.1.3 A space-efficient method to construct the LZ-indexes

We have defined a space-efficient algorithm to build the LZ-indexes, which allows us to
construct each of the indexes of the previous paragraph in O(u(log σ + log log u)) time,
and without requiring extra space on top of that required by the final index. This is very
important for the applicability of the indexes, since wherever these can be used, we will
be able to construct them. We also defined a method to construct the indexes when the
main-memory space available for the indexing process is smaller than that required by the
final index. Our result is that we can construct our LZ-indexes in O(u(log σ + log log u))
time while requiring just (1+ε)uHk(T )+o(u log σ) bits of main-memory space. This means
that we are able to construct our LZ-indexes whenever we have slightly more main-memory
space on top of the space needed to store the compressed text. This has applications in
text search engines, where we can use a less powerful computer to carry out the indexing
process, devoting a more powerful one to answer user queries.

On the practical side, we achieve an indexing algorithm that is very competitive with
the best existing indexing technologies. As an example, we are able to index the Human
Genome (of about 3×109 base pairs) in less than 5 hours (on a 3GHz CPU), and requiring
only 1.6 GB of main memory space (which is about half of the space required by the
genome if we assume that ASCII codes are used to represent the bases). This is much
faster than the space-efficient indexing algorithms for competing schemes: 24 hours for
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Compressed Suffix Arrays [Hon04] and 28 hours for FM-index [Hon04] (both on a 1.7GHz
CPU), and less than 9 hours for suffix arrays, using secondary storage to construct them
[DKMS08]. There are scenarios where one needs to construct the index and query it on
the fly. Our indexes are superior in such scenarios.

Cardinal trees, or tries, are a fundamental data structure for pattern-matching
applications (among many other in Computer Science). Since the space-efficient
construction of LZ-index is highly related to the maintenance of succinct dynamic cardinal
trees, we achieve the first representation for that kind of trees reaching space close to
the information-theoretic lower bound of 2n + n log σ + o(n log σ) bits, supporting basic
operations in O(log σ + log log u) time (amortized in the case of update operations).

We summarize the results of Sections 8.1.2 and 8.1.3 in the following Corollaries,
which characterize the new family of LZ-indexes:

Corollary 8.1. Given a text T [1..u] over an alphabet of size σ, and with k-th order
empirical entropy Hk(T ), and let n be the number of phrases in the LZ78 parsing of T ,
there exists a compressed full-text self-index requiring (1 + ε)uHk(T ) + o(u log σ) bits of
space, for log σ = o(log u), any k = o(logσ u) and any 0 < ε < 1. Given a search pattern
P [1..m], this index is able to:

(1 ) locate (and count) the occ occurrences of pattern P in text T in O(m2

ε + n
εσm/2 )

average time, which is O(m2

ε ) if m > 2 logσ n; and

(2 ) extract a text substring of length ` surrounding any text position in optimal O(1+
`

ε logσ u) worst-case time.

This index can be constructed in O(u(log σ + log log u)) time and without requiring any
extra space.

Then, we have:

Corollary 8.2. Given a text T [1..u] over an alphabet of size σ, and with k-th order
empirical entropy Hk(T ), there exists a compressed full-text self-index requiring (2 + ε)
uHk(T )+o(u log σ) bits of space, for log σ = o(log u), any k = o(logσ u) and any 0 < ε < 1.
Given a search pattern P [1..m], this index is able to:

(1 ) locate the occ occurrences of pattern P in text T in O(m2

ε + (m + occ) log u + occ
ε )

worst-case time;

(2 ) count the number of pattern occurrences in O(m2

ε +m log u+ occ
ε ) worst-case time;

(3 ) determine whether pattern P exists in T in O(m2

ε +m log u) worst-case time; and
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(4 ) extract a text substring of length ` surrounding any text position in optimal O(1+
`

ε logσ u) worst-case time.

This index can be constructed in O(u(log σ + log log u)) time and without requiring any
extra space. The indexing space can be reduced to (1 + ε)uHk(T ) + o(u log σ) bits, in such
a case performing (u log σ + 4uHk(T ) + o(u log σ))/B disk accesses (where B is the size of
a disk page, in bits).

It is important to note that with the index of Corollary 8.2 we are achieving the same
result as the classical LZ-index of Kärkkäinen and Ukkonen [KU96a, Kär99], yet with a
much smaller index which does not need the text to operate. Notice, however, that we are
still able to access any text substring in optimal time, without having to store the text as
the classical index does.

Finally, we have:

Corollary 8.3. Given a text T [1..u] over an alphabet of size σ, and with k-th order
empirical entropy Hk(T ), there exists a compressed full-text self-index requiring (3+ε)uHk

(T ) + o(u log σ) bits of space, for log σ = o(log u), any k = o(logσ u) and any 0 < ε < 1.
Given a search pattern P [1..m], this index is able to:

(1 ) locate the occ occurrences of pattern P in text T in O((m + occ
ε ) log u) worst-case

time;

(2 ) count the number of pattern occurrences in O(m(1 + log σ
log log u)) worst-case time;

(3 ) determine whether pattern P exists in T in O(m(1 + log σ
log log u)) worst-case time;

and

(4 ) extract a text substring of length ` surrounding any text position in optimal
O(`/(ε logσ u)) worst-case time.

This index can be constructed in O(u log u(1 + log σ
log log u)) time and without requiring any

extra space. The indexing space can be reduced to (1 + ε)uHk(T ) + o(u log σ) bits, in such
a case performing (u log σ + 4uHk(T ) + o(u log σ))/B disk accesses (where B is the size of
a disk page, in bits).

8.1.4 An efficient LZ-index working on secondary storage

We have defined an LZ-index version which is able to efficiently work on secondary storage.
Based on the study done for reducing the space of LZ-indexes, we added some redundancy
to the index in order to transform random accesses to index components into sequential
scanning of arrays, which is much more efficient for secondary storage devices. We end
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up with an index requiring O(uHk(T )) + o(u log σ) bits of space. Though not providing
worst-case guarantees at search time, we obtained in practice the smallest existing full-
text index working on disk, with a very competitive performance, specifically for locating
pattern occurrences: we are able to report about 65–600 (depending on the indexed text)
occurrences per access, versus 1,450–3,450 occurrences per access of String B-Trees [FG99].
Yet, our index is significantly smaller, requiring 39%–65% the space of String B-Trees.

8.2 Lines for Future Research

These are the most important lines for future research related to our work:

— Since the results obtained in the definition of our disk-based LZ-index are promising,
it would be interesting to get an actual implementation of it (currently we only have
a simulator). As usual, it should be accompanied of a complete engineering process,
in order to get a competitive implementation. This prototype should be used also to
study the best ways to profit from the available main-memory space, reducing the
number of disk accesses. Some possibilities could be to use the available space to store
the first levels of the tries in main memory, thus reducing the cost of navigating the
tries. Another possibility could be to store some LZTrie subtrees in main memory
in order to reduce the amount of random accesses due to occurrences of type 1.

— It would be interesting to study a way of adding worst-case guarantees to our
disk-based LZ-index. For example, we could represent the tries with a data
structure supporting secondary-storage access [FGG+08], as well as efficient support
for occurrences of type 1 (recall the random pattern of accesses from RevTrie).
Occurrences of type 2, on the other hand, should be found by using a representation
of the Range data structure on disk. Another important issue for future research is
the direct construction of the LZ-index on disk.

— Adding dynamism to full-text indexes is an area of research that has not been
explored in depth, though it has an important number of applications. The idea of a
dynamic LZ-index would be to improve the O(log2 n) time per occurrence incurred
by existing dynamic compressed full-text self-indexes. To represent the dynamic
LZ-index, we could use the dynamic representation defined for the space-efficient
construction algorithm. However, there are many issues that must be solved, as for
instance how to efficiently update the external pointers to the nodes of a given trie
block, after we insert a new node in that block (e.g., how to efficiently update the
Node data structure in such a case).

— Nowadays, many applications produce texts which are highly self-repetitive (e.g.,
think of a collection of genomes or a collection with the source codes for the different
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versions of a given program). Hence, it is important to have techniques which profit
from this property to reduce the space of the resulting self-index. It is well known that
LZ78 is not good in catching long repetitions in the text, since the very restrictive
parsing destroys most of them [SVMN08]. However, it could be more amenable to
work on indexes based on the LZ77 compression algorithm. This seems to be the
most promising future line for LZ-indexes, yet it is full of challenges for self indexing.

— LZ78 can be seen as a grammar-based compressor [CLL+05]. It would be interesting
to study other kinds of grammar compression techniques to define compressed self-
indexes. For example, indexes based on straight-line programs [CN08a]. This kind
of compression was shown to be very effective for local decompression [GN07], which
is very important when dealing with indexes stored on disk.

— In this thesis we showed different representations for the tries that compose the
LZ-index. In particular, we showed that the dfuds representation is effective
when working with larger alphabets. An example of application dealing with large
alphabets is that of indexing natural-language texts, since in that case the words that
compose the text are mapped to symbols in a larger alphabet. Compressed Suffix
Arrays have already been adapted to work on natural-language texts [BFN+08].
Since the LZ-index is very effective for queries with short patterns, an LZ-index on
words could profit from the usually short queries given by users. Notice that a query
with only one word consists only of occurrences of type 1 in the LZ-index, which can
be found very fast in O(1) time per occurrence. A query with a phrase of length
2, on the other hand, consists only of occurrences of types 1 and 2. Let n1 be the
number of occurrences of the first word composing the phrase, and let n2 be the
number of occurrences of the second word. The occurrences of the whole phrase
can be determined in O(min {n1, n2}) time, by using the process to find occurrences
of type 2 in practice (i.e., checking by hand the possible candidate occurrences one
by one). This should be compared with the time achieved by classical solutions to
the problem of natural-language indexing, as for instance inverted indexes. These
indexes must solve this kind of queries by means of intersecting the posting lists
for the occurrences of the first and second word of the phrase, which takes time
O(min {n1, n2} · log (max {n1, n2})) with the approach of [CM07].

— Classical full-text search (i.e., the one assumed in this thesis, where the exact
pattern occurrences need to be found) is not enough in some applications, like
biological research, music and image retrieval, etc. In these cases, more complex
search capabilities are needed, as for instance approximate full-text search, regular-
expression search, etc. It would be interesting to add these capabilities to our indexes
[RNO07].
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[FMN06] K. Fredriksson, V. Mäkinen, and G. Navarro. Flexible music retrieval in
sublinear time. International Journal of Foundations of Computer Science
(IJFCS), 17(6):1345–1364, 2006.

[FMP95] F. Fich, J. I. Munro, and P. Poblete. Permuting in place. SIAM Journal on
Computing, 24(2):266–278, 1995.

[FN05] P. Ferragina and G Navarro. Pizza&Chili Corpus — Compressed indexes
and their testbeds, 2005. http://pizzachili.dcc.uchile.cl.

[Fre91] K. Frenkel. The human genome project and informatics. Communications
of the ACM, 34(11):41–51, 1991.

[Gag06] T. Gagie. Large alphabets and incompressibility. Information Processing
Letters, 99(6):246–251, 2006.

[GBYS92] G. Gonnet, R. Baeza-Yates, and T. Snider. New indices for text: PAT trees
and PAT arrays. In W. Frakes and R. Baeza-Yates, editors, Information
Retrieval: Data Structures and Algorithms, chapter 5, pages 66–82. Prentice-
Hall Publishers, 1992.
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