
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

A COMPACT AND DYNAMIC CACHING SYSTEM FOR RDF GRAPH
DATABASES

TESIS PARA OPTAR AL MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN Y
MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN

CRISTÓBAL OSVALDO MIRANDA TORRES

PROFESORES GUÍA:
Gonzalo Navarro Badino

Aidan Hogan

PROFESOR CO-GUÍA:
Diego Arroyuelo Billiardi

MIEMBROS DE LA COMISIÓN:
Éric Tanter

Eduardo Godoy Vega
Renzo Anglés Rojas

SANTIAGO DE CHILE
2024

RESUMEN DE LA TESIS PARA OPTAR AL
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN
Y MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN
POR: CRISTÓBAL OSVALDO MIRANDA TORRES
FECHA: 2024
PROFESORES GUÍA:
Gonzalo Navarro Badino, Aidan Hogan
PROFESOR CO-GUÍA:
Diego Arroyuelo Billiardi

UN SISTEMA DE CACHING DINÁMICO Y COMPACTO PARA BASES DE
DATOS DE GRAFOS RDF

En este trabajo estudiamos la aplicación de un k2-tree dinámico y compacto como índice
para un sistema de caching de bases de datos RDF. A diferencia de cualquiera de los otros
sistemas existentes, este le da al motor principal de bases de datos resultados parciales,
que pueden ser obtenidos desde memoria en vez de disco y conseguir mejores tiempos que
los B+trees del motor principal cuando se tienen que hacer muchos accesos aleatorios en
disco. Esta configuración tiene como objetivo reducir los tiempos de respuesta de consultas
SPARQL, que son comunes en sistemas de bases de datos RDF y más aun para datasets tan
grandes como Wikidata, para los cuales la mayoría de los sistemas se enfrentan con problemas
al ejecutar incluso algunas consultas simples.

i

RESUMEN DE LA TESIS PARA OPTAR AL
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN
Y MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN
POR: CRISTÓBAL OSVALDO MIRANDA TORRES
FECHA: 2024
PROFESORES GUÍA:
Gonzalo Navarro Badino, Aidan Hogan
PROFESOR CO-GUÍA:
Diego Arroyuelo Billiardi

A COMPACT AND DYNAMIC CACHING SYSTEM FOR RDF GRAPH
DATABASES

In this work, we study the application of a dynamic and compact k2-tree as an index for
a caching system of RDF databases. Unlike any other existing caching system, this one feeds
the main engine with partial results that can be retrieved from memory instead of disk and
achieve better times than the B+trees from the main engine when they have to make too
many random disk accesses. This setup aims to reduce SPARQL query response times that
are typical in RDF database systems and more so with massive datasets such as Wikidata
for which most systems have trouble running even some simple queries.

ii

A mi madre Gladys y padre Segundo.

iii

Acknowledgments

Primero agradezco a mis profesores guía, Gonzalo y Diego por el apoyo en las estructuras
de datos e ideas clave y Aidan que me ayudó a diseñar el sistema en varias partes importantes
y con todo el tema relacionado a bases de datos, además de ser de gran ayuda en la etapa
final para poder concluir el trabajo. También les agradezco a todos su paciencia y buena
disposición.

Agradezco a mis amigos y familia por ser un apoyo moral durante este proceso que fue
muy esencial para llegar al punto de darle término.

iv

Table of Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Research questions . 2

2 Background 3
2.1 State of the art . 3

2.1.1 Caching of intermediate results for Distributed Hash Table RDF Stores 3
2.1.2 Improving the performance of semantic web applications with SPARQL

query caching . 4
2.1.3 Graph-Aware, Workload-Adaptive SPARQL Query Caching 4
2.1.4 Caching and Prefetching Strategies for SPARQL Queries 4
2.1.5 Identifying and Caching Hot Triples for Efficient RDF Query Processing 5
2.1.6 This work . 5

2.2 Semantic Web . 6
2.3 Resource Description Framework . 6

2.3.1 IRI . 10
2.3.2 Literal . 10
2.3.3 Blank . 10

2.4 SPARQL . 11
2.4.1 Basic Graph Pattern . 12
2.4.2 OPTIONAL . 12
2.4.3 UNION . 13
2.4.4 FILTER . 14

2.5 Wikidata . 15
2.6 Compact and dynamic k2-tree . 16

2.6.1 Compact and dynamic k2-tree . 17
2.6.2 Practical Variation: Regular tree on top 18

3 K2-Tree Serialization 19
3.1 Block’s Tree Serialization . 19
3.2 Mixed tree serialization . 22

4 Caching System 24
4.1 NodeIds pre-processing . 25
4.2 NodeIds streaming . 25
4.3 Mapping NodeIds to internal IDs . 26

4.3.1 From Jena NodeIds to internal IDs 28
4.3.2 From internal IDs to Jena NodeIds 28

v

4.3.3 Efficiency of translation . 28
4.4 Replacement Strategy . 29

4.4.1 Least Recently Used . 29

5 Query processing 31
5.1 Band Scanner . 31
5.2 Full Scanner . 33
5.3 One Variable Cartesian Product . 34
5.4 Two Variable Cartesian Product . 36
5.5 Index nested-loop join . 37
5.6 One Variable Intersection . 38
5.7 Two Variable Intersection . 40
5.8 Iterator algorithm . 40

6 Updates 42
6.1 Live updates . 43
6.2 Initialization . 43
6.3 Re-indexing . 44
6.4 Deletions . 44
6.5 Performance considerations . 44

7 Experiments 45
7.1 Experiments configuration . 45

7.1.1 Dataset . 45
7.1.2 Queries and Updates . 46
7.1.3 K2-tree . 46
7.1.4 Hardware Specs . 46

7.2 Index statistics . 46
7.2.1 Number of triples . 46
7.2.2 Index build time . 47
7.2.3 Index size . 48

7.2.3.1 Size in memory . 48
7.2.3.2 Size in disk . 49

7.2.4 Index loading . 50
7.3 Querying . 51

7.3.1 Timed out queries . 55
7.3.2 Few queries run in cold boot . 57
7.3.3 Some queries with better performance with Jena 58
7.3.4 Some queries with better performance with k2-trees 60
7.3.5 Network request optimization . 61
7.3.6 Selective usage of the cache . 62

7.4 Updates . 63
7.4.1 Random updates . 63
7.4.2 Wikidata insertion experiment . 64

7.5 WatDiv experiments . 65
7.6 Analysis . 68

8 Conclusion 71

vi

8.1 Future work . 72
8.1.1 Move some processing to the cache side 72
8.1.2 Optimize queries, specialized to the cache 72
8.1.3 Optimize the selection of the processing engine 72
8.1.4 Choosing B+tree when results are in memory 72
8.1.5 Optimizations around concurrent requests 72
8.1.6 Optimizations to reduce in-memory random access in favor of in-memory

sequential access . 73
8.1.7 Replacement strategy optimizations 73
8.1.8 Resources dictionary . 73

Bibliography 74

vii

1. Introduction

Why would one choose a graph database instead of a relational one? That is a question
to which you either may already know the answer. Maybe never questioned yourself about
it. Nonetheless, it is something to always keep in mind, with more reason if you work with
graph databases. Otherwise, one might have a feeling of constant uneasiness, which mostly
comes from the thought of relational databases. Their time-proven effectiveness makes one
wonder, why didn’t we choose a relational data model instead?

Graph databases thrive for inter-connected data [1], such as social graphs where nodes
are people, and edges are some relationship between those people (e.g., friendship). Other
examples include web graphs, where nodes are web pages, and edges are links referencing
other pages[2]. When having this kind of data, it feels unnatural to work with relational
databases. We want to perform path queries in graphs, which have an indefinite number of
joins. Graph database systems offer a simple syntax for those queries, for example in the
SPARQL language[3], whereas SQL was not designed with that in mind. It then becomes
burdensome doing those queries in SQL, which require advanced features of the query lan-
guage that not all engines have implemented and can lead to verbose and hard to interpret
expressions, for example Postgres [4], a very popular object-relational database management
system (ORDBMS), in its extended SQL language.

Within the realm of graph databases, there are plenty of options. Some of those are for
general use and others for a more specific intent. In this work, we focus on a somewhat
specialized data model for graph databases, the Resource Description Framework (RDF).
RDF was created to fulfill the Semantic Web’s purpose of providing machine-to-machine
communication tools, complementing the original Web’s objective of allowing humans to
interact with it.

RDF gives a flexible way to model data without predetermined schemas. For example,
Wikidata uses RDF to model relationships among a massive amount of entities with data
intended to complement Wikidata. Also, researchers in some areas of biology, such as genetics,
prefer RDF because of this and its simplicity.

Furthermore, RDF can be extended by specifications like RDF Schema [5], enriching the
semantic description of the data, allowing for the data to be “reasoned” over machines.

RDF Stores have challenges in terms of storage and querying. The one that we address
in this work is the slow response times of queries, which can occur due to high amounts of
data, for example in databases such as Wikidata and DBPedia where we can have billions
of RDF triples. Another factor for this is the complexity of the queries one might want to
evaluate over these data stores. It tends to be that many interesting queries tend to be highly
complex. The fact that query services like Wikidata receive millions of queries per day [6]
make the resource requirements more challenging.

There are seemingly two general ways to approach this problem of scale. One of them is to

1

convert the system into a distributed system, which has the disadvantage that it might bring
more challenges, or in a bad scenario amplify the main issues, for example, when machines
need to coordinate and share lots of data over the network to evaluate queries. The other
way is to improve upon how fast we retrieve the data from its source. The course of action
in this thesis is part of the second category. These two methods are by no means exclusive
to each other. In practice, hybrid approaches tend to win over single-strategy ones.

Several works explore ways to represent RDF stores, mostly in secondary memory [7].
Here, we consider using an in-memory cache, auxiliary to the primary database, that at any
given time holds all the relations of the most relevant predicates in the RDF store. The
relevance of the predicates can be configured according to some criteria. In this work, we use
the Least Recently Used (LRU) strategy.

This thesis proposes an approach of indexing data within a cache for RDF databases
based on a relatively new data structure, a compact and dynamic k2-tree. We also explore
the exclusive use of these trees as indexes for an in-memory database, for which we perform
query evaluation completely in RAM.

1.1. Objectives
Our first objective is to study the use of a compact data structure in a cache of RDF

databases.
Second, we want to prove that the cache can improve query response times.
Third, would be to show that apart from allowing queries, we can also support updates

to the cache structure.

1.2. Research questions
Our first research question would be, what is the impact of using a dynamic and compact

k2-tree as a cache for RDF databases?
Secondly, can we improve query response times by using a dynamic and compact k2-tree

as cache?
And last, is it possible to also support updates to the structure, without impacting per-

formance significantly?

2

2. Background

In this chapter, we explore the most important topics from which this works builds upon.
First, we describe some of the state-of-the-art caching mechanisms for RDF/SPARQL

systems.
Second, we discuss the Semantic Web, which gave birth to many technologies like RDF

Databases, aiming to fulfill its vision.
Then, we go into more detail about the Resource Description Framework model, from

which this work greatly depends, as it provides the unit structure to build indices like the
one we study in this work.

After that, we delve a bit onto SPARQL, the query language that the users have to write
to request some data from RDF databases.

Having considered these technologies, we focus then on the public dataset used in this
work, Wikidata, which holds an immense number of RDF triples.

Lastly, we introduce the dynamic and compact k2-tree data structure used in this work,
we explain, at a high level, how it works and what it looks like.

2.1. State of the art
In the literature we can find some works of caching systems that are specialized for RD-

F/SPARQL databases.

2.1.1. Caching of intermediate results for Distributed Hash Table
RDF Stores

Battré [8] worked on one of the first caching systems for RDF databases. Specifically, on
the caching of intermediate results to mitigate the effect of too many networking messages in
Distributed Hash Table (DHT) RDF stores, which can be very expensive in query processing.

This method doesn’t directly compare to this work, because here we don’t use a distributed
database and we don’t cache results either, but indexes. In other words, this falls into a
different category of caching systems.

However, some of its benefits include optimized cache utilization by giving precedence to
popular triple patterns when looking for cache hits and also reducing the network overhead.
Furthermore, the caching of intermediate results can help in avoiding to compute repeatedly
some of the most recurrent sub-queries among several different queries.

One of the drawbacks of the solution from Battré or any caching of results solution is
that it invokes the graph isomorphism problem, which in this scenario means that different
equivalent queries will yield the same result, so it is desirable that the caching algorithm can

3

identify isomorphic queries, with the purpose of saving resources, but the graph isomorphism
problem is NP. In the solution from Battré there is a normalization by variable renaming,
but it doesn’t address isomorphic queries more broadly than that.

Another issue with the solution is that it relies too much on a greedy heuristic which may
or may not yield good results often. Also, as briefly mentioned above, the caching mechanism
itself needs several network messages for coordination, which can contribute a lot to the costs
of the processing.

2.1.2. Improving the performance of semantic web applications
with SPARQL query caching

Martin et al. [9] introduced a cache of query results that depends on the assumption that
most of the data in the RDF datasets remains unchanged while there are a few updates
during a short timeframe. It relies on invalidating cache results when there are updates that
make the cached results no longer correct.

Some of its benefits include being able to work with most RDF databases, because it is
implemented on a proxy that processes queries before they are sent to a RDF database and
in this proxy layer it decides whether or not to execute the queries according to its caching
algorithm.

It is also smart enough to reuse a same cache result for different queries, instead of duplica-
ting it. However, it neither considers equivalent queries after variable renaming nor attempts
to find other equivalent queries.

One of its main selling points is the ability to cache application objects like full HTML
pages, which is done in addition to caching query results. This comes with the promise to
speed up much more the query responses.

2.1.3. Graph-Aware, Workload-Adaptive SPARQL Query Caching
Papailiou et al. [10] worked on a solution that involves canonical labelling, which attempts

to cover the case of isomorph graphs when deciding what queries should be considered the
same at the moment of retrieving a cache result.

The work also contemplates query planning in order to decide which cache results to use,
because it can happen that there are several cache results that can be used in a single query,
but some are more efficient than others. This is done by adapting a well known dynamic
programming planner to the context of SPARQL/RDF.

The cache replacement strategy depends on a benefit estimation of the cache results based
on the number of triples cached and the cost of the query. However, depending only on that
can cause that less relevant results are held in the cache, while more popular results could use
that space and therefore increase cache hits. To deal with that problem, the benefits are not
set as a fixed property of a graph pattern, but as a changing property that can be modified
during each selection of query patterns by the planner.

In general, this is a quite sophisticated caching solution for the category of results caching.

2.1.4. Caching and Prefetching Strategies for SPARQL Queries
Lorey et al. [11] explore the idea of caching results that will aid in the evaluation of

subsequent queries, on the same assumption that there are not many updates in a short

4

timeframe.
One of the main characteristics of this work is that instead of only caching previous results,

it attempts to predict what other results will be needed in the future. The way in which they
predict other results to cache is by rewriting past queries into new ones that are expected
to yield more relevant results. These prefetched results may or may not be used in future
queries. This kind of caching is referred to as “semantic caching”.

The way this work “predicts” results is by considering different methods of “query augmen-
tation” that modify queries, such as adding more triple patterns to the query that include new
variables, replacing some concrete subject, predicate or objects by variables, or by removing
some patterns in a way that scope of results is increased.

Some of the costs in this solution are increased requirements of persistent storage and
memory. Also, there is the possibility of data staleness that would cause outdated results and
the requirement of recomputation more often, which can become very expensive.

Another possible disadvantage of the solution is incurring in too much cost of precomputing
values while attempting to maximize cache hits.

2.1.5. Identifying and Caching Hot Triples for Efficient RDF Query
Processing

Zhang et al. [12] studied the caching of results based on query hit rate and considered a
frequency-based replacement mechanism and a forecasting method to assign cost to triples.

They use an offline algorithm that runs in the background of the main system to process
queries found in the query log. Similarly to [11], the solution rewrites those queries and
estimates frequency of the resulting triples. With the frequencies at hand they rank the
triples and keep the top ranked triples in memory.

The solution is an improvement over [11]. It covers more types of queries and it also
addresses cache replacement with their frequency-based algorithm. Unlike the other solution
which only describes “semantic caching” as a way to select results based on a heuristic to
rewrite queries, but without giving any indication on how to deal with capacity issues in any
real world system.

One of the issues of the solution is the cost of the forecasting algorithm, which requires
processing previous queries, rewrite them, and run them in a query endpoint. This needs to
happen constantly to keep the data fresh.

2.1.6. This work
In this work, we take a completely different approach than the previously mentioned

strategies, where instead of caching results, we index the full dataset in a compact and
dynamic data structure that can hold in memory many RDF triples at once.

For each predicate in the dataset, there is a k2-tree index that contains all the subject-
object relationships with that predicate. These indices have a very low memory usage, because
they use a specialized implementation of the k2-tree that compacts branches by a using 4-bit
representation for each node in the tree.

The replacement strategy runs each time there is a user query and it scans all the predi-
cates in it to increase the hit count of the indices. Based on the least recently used strategy
for replacement, it can retrieve or discard indices, having a maximum capacity defined befo-
rehand. This replacement strategy contributes significantly to a lower memory usage.

5

One of the big concerns of this solution is that even if the data is in memory, it is not
directly accessible, but it needs to be decompressed on the fly, which can reduce some CPU
cache benefits during query processing that other structures with directly accessible data can
have, such as B+trees.

Another issue is that if the indices need to contain a high number of triples, the index
build time can be considerable. This is not an impediment for production scenarios, since an
extra structure is considered in the work to support the live scenario and it is accompanied
by a periodic full rebuild that can happen offline.

2.2. Semantic Web
The Semantic Web is an initiative aiming to revolutionize the way data is used on the

Web, by allowing machines to interact with it not only for displaying purposes, but also
reasoning about it to produce additional information hidden by the relationships among the
data.

The Semantic Web was introduced into popularity by the famous 2001 paper with the same
name by Tim Berners Lee, together with James Hendler and Ora Lassila [13]. Nevertheless,
Tim Berners Lee had earlier published in 1998 his Semantic Web Road Map, a more technical
description of what the Semantic Web would become [14].

The interface between any user exploring the web and the Semantic Web would be an
agent, an entity knowledgeable about the Semantic Web which could navigate it easily to
produce relevant information on behalf of the user. This agent is an abstract entity, meaning
that it does not restrict how it should work exactly, just what it does. This property leaves
it open for the community to create its agents. Those agents could be web services or bots.

A large amount of work has been done since then, from standards to software. The stan-
dards picked the Resource Description Framework (RDF) for data modeling [15], introduced
with the Semantic Web. Also, the standard considered SPARQL as a query language for
data manipulation [16]. This query language offers a natural way to retrieve RDF data with
pattern-matching statements at its core called basic graph patterns (BGP), enriched with
other higher-level operations, allowing the user to have highly expressive freedom for quer-
ying. We will cover RDF and SPARQL in the sections that follow.

Initially, there was no single consensus on how to describe semantics within the data,
which is one of the main points of the Semantic Web. Instead, several alternatives were in
exploration by the community and some of those are still in use today. Nonetheless, the W3C
recommended the Web Ontology Language (OWL), and it seems that it is the most adopted
language for semantics [17], followed by RDF Schema.

As for software, there are several alternatives developed for data management. For exam-
ple, some of the most famous are Apache Jena, Blazegraph, Virtuoso, AllegroGraph, GraphDB,
MarkLogic, and Oracle’s triple-store.

2.3. Resource Description Framework
The Resource Description Framework (RDF) is a framework for representing information

on the Web [18]. The W3C recommendation defines the abstract syntax for the framework
and in the following will be summarized and in some technical parts paraphrased or textually
cited. Similarly, we collected some portions from external RFC documents.

6

Its core unit is the RDF Triple, a tuple of three elements where each has a name, respec-
tively, subject, predicate, and object.

Magento ProgrammedIn PHP .
Log4j ProgrammedIn Java .
"Star Wars: Republic Commando: Order 66" ProgrammedIn Java .
Vue.js ProgrammedIn Javascript .
.NET ProgrammedIn C# .
Chromium ProgrammedIn C++ .

Figure 2.1: RDF Example: Software programmed in a language (Labels)

wd:Q1884012 wdt:P277 wd:Q59 .
wd:Q286923 wdt:P277 wd:Q251 .
wd:Q55237 wdt:P277 wd:Q251 .
wd:Q24589705 wdt:P277 wd:Q2005 .
wd:Q21622213 wdt:P277 wd:Q2370 .
wd:Q48524 wdt:P277 wd:Q2407 .

Figure 2.2: RDF Example: Software programmed in a language (IRIs)

Chromium ProgrammedIn C++ .
Chromium InstanceOf WebBrowser .
Chromium FoundedBy Google .
Chromium Inception 2008 .
Chromium OperatingSystem GNU/Linux .
Chromium OperatingSystem BSD .
Chromium OperatingSystem Android .
Chromium OperatingSystem macOS .
Chromium OperatingSystem Windows .
Chromium SoftwareEngine V8 .
Chromium SourceURL https://chromium.googlesource.com/chromium/src .
Chromium SocialMediaFollowers 390797 .
Chromium CopyrightStatus Copyrighted .

Figure 2.3: RDF Example: Facts about Chromium (Labels)

7

Firefox InstanceOf WebBrowser.
Chromium InstanceOf WebBrowser .
"Internet Explorer 10" InstanceOf WebBrowser .
"Yandex Browser" InstanceOf WebBrowser .
Mosaic InstanceOf WebBrowser .

Figure 2.4: RDF Example: Web browsers (Labels)

A set of these triples can be viewed as a directed labeled graph, where subject and objects
are the nodes and predicates are the labels. In this directed graph, a subject corresponds
to the origin node of an edge. The edge is labeled with a predicate, and an object is the
destination of this connection. With this representation, one node can be both a subject or
an object for different triples. This modeling, allows terms to take the role of predicates in
some triples to behave either as subject or object in different triples within the same graph.

For example, in figure 2.1 we have a set of RDF triples, where subjects are a software title,
predicate is “ProgrammedIn” and objects are a programming language. In practice, IRIs are
more commonly used for establishing these kinds of relationships and the same example would
look like what we have in figure 2.2, but we use the labels for more clarity in the examples.
The reason why IRIs are more used is because they work better as unique identifiers and
support multiple languages. We will discuss IRIs in more detail in the following parts.

If we pick one software like Chromium in figure 2.3 and see what else can be found about
it in the graph, we can see several other interesting facts that can be represented by RDF,
like what type of software it is, who founded it, when was it created, what operating systems
it supports, and so on.

Also, if we are interested in other web browsers, we can focus on subjects that have
predicate InstanceOf and object WebBrowser, like we do in figure 2.4.

8

Chromium

Firefox

Google

C++

2008
Windows

GNU/Linux

macOS
Web Browser Fo

un
de

dB
yIns

tan
ceO

f

ProgrammedIn

Prog
ram

med
In

OperatingSystemOperatingSystem

O
peratingSystem

O
pe

ra
tin

gS
ys

te
m

Ope
ra
tin

gS
ys

tem

Ope
rat

ing
Sy

ste
m

In
ce

pt
io

n

InstanceO
f

Figure 2.5: Web Browsers graph. Focused in Chromium, but it can be seen
that it has some shared information with Firefox

In figure 2.5, we have a web browsers graph that can be built using RDF information.
There are restrictions on what can be put into an RDF triple. Those restrictions are the

following:

A subject can only be an IRI or a blank node.

A predicate can only be an IRI.

An object can only be an IRI, literal or a blank node.

IRIs and literals represent something in the world, called a resource, which can be anything
physical or abstract. Blank nodes also represent something, but in an anonymous way, serving
as an artifact to allow establishing relationships between other entities. These types of terms
will be discussed in more detail in the following.

<https://www.wikidata.org/wiki/Q48524>
<http://www.wikidata.org/prop/direct/P275> _:b1 .

_:b1 <http://www.w3.org/2000/01/rdf-schema#label> "BSD-3 and others"@en .

Figure 2.6: RDF example with IRIs, blanks and literals

9

2.3.1. IRI
Internationalized Resource Identifier, abbreviated IRI, is a protocol element that com-

plements the URI element (Universal Resource Identifier) [19]. A URI serves its purpose
well in the English language, but becomes insufficient for use with the other vast amount of
languages that exist, as it does not support characters from other alphabets.

In this aspect, one might say that IRI extends URI because every URI is also an IRI and
not the other way necessarily. But the RFC specification explicitly calls it a complement to
emphasize that it is not a new version of URI, but a different protocol element. This is done
to avoid any compatibility issues with systems already using URIs.

Both IRIs and URIs have the purpose of identifying resources or entities. More than this,
it’s desirable that every IRI is unique on a global basis for a single resource. Ultimately, this
is in the hands of each system claiming to be using IRIs to comply with the norm.

For example, the IRI https://www.wikidata.org/wiki/Q48524 in figure 2.6 identifies Chro-
mium.

2.3.2. Literal
Literals are values such as strings, numbers and dates with, optionally, a special syntax

that enriches them with metadata specifying their type and language.
A literal term consists of three parts, of which the two first are required followed by an

optional part. Those are, respectively, a lexical form, a datatype IRI, and a language tag.
The datatype IRI, although it is required, can be omitted in an explicit representation of
the literal, in which case we tacitly assume that it is a string, with its datatype IRI being
specifically http://www.w3.org/2001/XMLSchema#string.

The language tag can be defined if and only if the datatype IRI is exactly http://www.
w3.org/1999/02/22-rdf-syntax-ns#langString, in which case the datatype IRI can also be
omitted in concrete representations if the language tag is present.

One example of a literal would be the label “BSD-3 and others”@en from the example in
figure 2.6.

2.3.3. Blank
The W3C Recommendation establishes that, in the Concepts and Abstract Syntax docu-

ment, blank nodes are local identifiers that depend on the concrete implementation of the
RDF system, and it doesn’t impose any rules on them except being disjoint from IRIs and
literals. The document also mentions that new IRIs can replace blank nodes.

The situation that blank nodes can be anything creates a technical problem of manageabi-
lity within systems. The W3C recommendation about the SPARQL query language comes to
the rescue in this context, dictating that blank nodes should start with “_:” followed by so-
me string. Also, SPARQL allows for using blank nodes implicitly as the term that completes
some defined triple.

One example is _:b1 in figure 2.6, where it is used to refer to a copyright license having
label “BSD-3 and others”@en. Note that this blank node doesn’t necessarily exist, it was
invented to serve as an example here.

10

https://www.wikidata.org/wiki/Q48524
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString

2.4. SPARQL
SPARQL is a recursive acronym, meaning SPARQL Protocol And RDF Query Language.

This language is the standard way of querying RDF databases and is also adopted in this
work.

The W3C Recommendation document (https://www.w3.org/TR/rdf-sparql-query/) ser-
ves as a good reference and description of SPARQL. Also, other resources go much further in
detail and theory for the interested reader [20] [21]. Here are highlighted the most relevant
parts of the W3C Recommendation for the topic of this thesis.

In figure 2.7, there is a simple query that collects all the web browsers. Specifically, it
will search for all RDF triples having as object <https://www.wikidata.org/wiki/Q6368>, as
predicate <https://www.wikidata.org/wiki/Property:P31> and as object any other resource.
For each of those matching triples, it will select its subject and put it into a table.

The ?browser is a variable that binds to each term matching the triple pattern in the
dataset. Variables are always strings starting with a ?.

In the same figure 2.7, we have some extra notation, wdt:P31 is a shortcut for <https:
//www.wikidata.org/wiki/Property:P31> and wd:Q6368 is a shortcut for <https://www.
wikidata.org/wiki/Q6368>. We also have a SERVICE section, which instructs the query sys-
tem to use labels in the English language. Thanks to this, the query system gives us the extra
binding ?browserLabel, having an English human-readable representation for ?browser.

SELECT DISTINCT ?browserLabel WHERE {
?browser wdt:P31 wd:Q6368 .
SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en".
}

}

Figure 2.7: SPARQL query example: Find all distinct web browser names.

Table 2.1: Results table example

?browserLabel
SeaMonkey
Avant Browser
IBM WebExplorer
Windows Internet Explorer 7
...

After processing this query one would get a table as in table 2.1.

11

https://www.wikidata.org/wiki/Q6368
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q6368
https://www.wikidata.org/wiki/Q6368

2.4.1. Basic Graph Pattern

SELECT DISTINCT ?browserLabel ?operatingSystemLabel WHERE {
?browser wdt:P31 wd:Q6368 . # web browsers
?browser wdt:P277 wd:Q2407 . # programmed in C++
?browser wdt:P306 ?operatingSystem . # find operating systems supported
SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en".
}

}

Figure 2.8: SPARQL query with three triples-BGP

A triple pattern is an extension of an RDF triple, where members of the triple can be
variables, for example, the triple in the figure 2.7 is a triple pattern because it contains the
variable ?browser.

A basic graph pattern, abbreviated BGP, is a set of those triples, for example, the WHERE
clause in the figure 2.8 denotes a BGP of three triple patterns.

A binding is a map from variables to RDF resources. A binding satisfies a BGP if applying
the binding to the BGP gives a subgraph that exists in the dataset.

We can think about result tables as a representation of a multiset of bindings where their
order might matter.

The query in figure 2.8 is asking to match all the bindings with variables {?browser,
?operatingSystem} that satisfy the BGP and then project those into bindings with varia-
bles {?browser, ?operatingSystem}. For the SELECT statement, we discard ?browser and
?operatingSystem, and instead use ?browserLabel and ?operatingSystemLabel, which are
given by the SERVICE instruction.

As three triple patterns share the same variable ?browser, the query evaluation has to
perform an inner join over them at some point. If they weren’t sharing a variable, the query
evaluation would have to make a Cartesian product.

2.4.2. OPTIONAL
SPARQL allows to include values that might match, but if they aren’t available, it won’t

affect the whole pattern, and they will be represented by null values if necessary. The OP-
TIONAL clause allows doing this. The syntax is shown in figure 2.9.

pattern OPTIONAL { pattern }

Figure 2.9: OPTIONAL syntax

The way to process this operation is by a left outer join between the patterns using their
shared variables.

12

As an example, the query of figure 2.10 will return results as shown in the table 2.2.

SELECT DISTINCT ?browserLabel ?operatingSystemLabel ?inception WHERE {
?browser wdt:P31 wd:Q6368 .
?browser wdt:P277 wd:Q2407 .
?browser wdt:P306 ?operatingSystem .
OPTIONAL {

?browser wdt:P571 ?inception .
}
SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en".
}

}

Figure 2.10: Example of a SPARQL query with OPTIONAL clause

Table 2.2: Some results for optional query

browserLabel operatingSystemLabel inception
“SeaMonkey” Gnu/Linux 30 January 2006
“Dooble” Microsoft Windows 1 January 2009
“Opera” macOS 10 April 1995

2.4.3. UNION
The UNION clause allows including alternatives from two patterns, where those two pat-

terns will be evaluated and added to the results. The syntax is the following:

pattern UNION pattern

Figure 2.11: UNION syntax

As an example, the query of figure 2.12 will return the table 2.3.

13

SELECT DISTINCT ?browserLabel ?operatingSystem WHERE {
{
BIND("GNU/Linux" AS ?operatingSystem)
?browser wdt:P31 wd:Q6368 . # Web browser
?browser wdt:P277 wd:Q2407 . # C++
?browser wdt:P306 wd:Q3251801 . # Linux
}
UNION
{
BIND("Windows" AS ?operatingSystem)
?browser wdt:P31 wd:Q6368 . # Web browser
?browser wdt:P277 wd:Q2407 . # C++
?browser wdt:P306 wd:Q1406 . # Windows
}
SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en".
}

}

Figure 2.12: SPARQL query using UNION

Table 2.3: Results table example for UNION query

browserLabel operatingSystem
Chromium GNU/Linux
Chromium Windows
Internet Explorer Windows

Results from table 2.3 are formed from running two union parts separately and then
concatenating them into a single table.

2.4.4. FILTER
A query result can be refined by the means of filters. These consist of several boolean

functions which can use a wider variety of functions to test bindings values. When the test
evaluates to TRUE the binding is accepted or discarded otherwise.

For example, in figure 2.13 we have a query that filters the results to only the ones that
have inception with a year greater or equal than 2010.

14

SELECT DISTINCT ?browserLabel ?operatingSystemLabel ?inception WHERE {
?browser wdt:P31 wd:Q6368 .
?browser wdt:P277 wd:Q2407 .
?browser wdt:P306 ?operatingSystem .
?browser wdt:P571 ?inception .
FILTER (YEAR(?inception) >= 2010)
SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en".
}

}

Figure 2.13: SPARQL query with a filter

2.5. Wikidata
In this section, we briefly describe the dataset used for experiments in this work.
Wikidata’s dataset choice serves two purposes; one is to solve the scalability problem that

Wikidata has and the other to show the usefulness of the tools developed here which could
be utilized in similar contexts.

Wikidata is a community-driven central storage of data for its sibling projects, such as
Wikipedia. This centralization allows Wikipedia to have a multilingual source of information
that remains consistent in all of the languages it supports. The information held in this
project pretends to be secondary or even tertiary, meaning that its purpose is collecting it
from other more relevant sources instead of producing it. This makes it a service that will
always contain objectionable information due to its openly collaborative nature, but valuable
nonetheless for its easy accessibility [22].

Establishing the relationships between items is a fundamental issue for Wikidata, because
manual analysis and management are infeasible in this case due to the huge amount of data.

15

Figure 2.14: Wikidata edits from July 2020 to July 2022 [23]

In figure 2.14, we can see the number of edits between 2020 and 2022, which gives us an
idea about what to expect on the frequency of updates, so we can build a system capable of
supporting it.

Our chosen dataset is from the year 2021 and in a .nt file format, where each triple is in
one line, and it has 5.7 billion triples. It takes 684 GB of disk space. In the Jena indexed
format it takes 769 GB of disk space.

2.6. Compact and dynamic k2-tree
The k2-tree, also named quad-tree, is a data structure that allows representing a highly

sparse matrix of zeros and ones in space proportional to the number of ones. The matrix in
the figure 2.15 will serve to show how the k2-tree can represent it.

Subjects

Objects

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Figure 2.15: Example of a sparse matrix. Suppose black boxes are ones and
white boxes are zeros.

Now consider figure 2.16. Each path from the root to a leaf describes a position on the
matrix. If we take one of those paths and traverse it downwards to a leaf from the root, we

16

can notice that for every step, we are choosing a child based on the position of this point
within the matrix. The act of picking a child, in terms of the represented matrix, is equivalent
to choose one of the four equal-sized sub-regions of the matrix. We recursively continue doing
this in the next steps with a smaller region until we find that the next region is of size 1 × 1,
which means that we reached a leaf and deciphered the point.

For this to work as expected, the tree in question should be cardinal, meaning that each
branch has to be labeled, and some tree branches might not go into a child. In this case,
there are four branches, one per region. Let’s describe regions as TL, BL, TR, BR (top-left,
bottom-left, top-right, bottom-right) and assign them to a branch number, from now on, TL:
0, BL: 1, TR: 2, BR: 3. The codes within each node in figure 2.16 describe the path taken
from the root until that point using the branch numbers for the regions selected. If the sides
of the matrix aren’t a power of two, we virtually pad them with zeros until the next power
of two such that both sides are the same size. In the example figure, this padding would be
until reaching a side size of 24.

0

00

0

0

0

0

3

0

1

3

1

2
3

3

3

3

3

000

0000

003

0030

01

013

0131

02

023

0233

03

033

0333

1

0

2

10

100

1002

3

2

12

123

1232

0 2

1

0

3

21

210

2103

2

2

1

(0,0) (2,2) (2,7) (7,3) (7,7) (1,8) (7,10) (9,5)

Figure 2.16: k2-tree represention of the matrix in figure 2.15

2.6.1. Compact and dynamic k2-tree

A compact representation of the k2-tree allows the usage of less space and, at the same
time, can be queried without having to decompress the complete structure.

Here we use an existing compact data structure [24], described as follows. Considering any
node in the k2-tree, we will represent it by which of the {0, 1, 2, 3} children it has. Taking,
for example, the root node in the figure 2.16, we can see that it has the children {0, 1, 2} and
not the child 3, therefore its 4-bit representation will be 1110. More generally, the i-th bit (i
in {0, 1, 2, 3}) is turned on if and only if the considered node has an i-th child, counting from
the leftmost bit to the rightmost.

1001 1000 1000

1110 1111 1010 0100 1000 0001

1111 1001 0001 0100 0001 0001 0001 0001 1010 1000 0010 0001 0010

Figure 2.17: Compact representation of the k2-tree with a blocks’ tree

To organize nodes of the tree into bit sequences, we start by adding the root’s four bits
into the start of a resulting sequence. Then, we recursively add the four bits from its children

17

from the leftmost to the rightmost. We do this by adding the first child’s subtree entirely
before continuing with the other children. Viewed from another angle, following the resulting
bit sequence from left to right sequentially is the same as traversing the k2-tree in a pre-order
depth-first-search traversal.

Having that, to perform visits to leaves in constant time, we introduce the notion of a tree
of blocks, in which we denote blocks as segments of 4-bit nodes that will be the nodes in this
tree of blocks. Each of these blocks might have zero or more children having as source one
of the block’s 4-bit nodes. We call those 4-bit source nodes frontier nodes and their children
are other blocks within the tree of blocks.

To build this tree, we predetermine a maximum block size. When, at some point, we
surpass that size, we perform a split algorithm that generates two new blocks. One is the
parent block, which points via a new frontier node to the other block.

This tree of blocks is a dynamic structure because we can insert points to it or delete
them without rebuilding it again, which is usual for other compact data structures that have
to possess the data in advance before building them.

2.6.2. Practical Variation: Regular tree on top
The operations on the tree of blocks can be enhanced by using a regular tree with pointers

on the first levels and starting from a given depth, switching to the tree of blocks, such that
in this regular tree the leaves are actually our trees of blocks. This way, we are reducing
bitwise operations by replacing a portion of blocks with pointer dereferencing, which tends
to be faster than the former.

Regular Tree Part

Block Trees Part

Figure 2.18: Mixed Tree variant with Regular Tree on top and blocks trees
as leaves

18

3. K2-Tree Serialization

One of the main ideas of this work is to use the previously described k2-tree as storage for
an in-memory index that can be used for a caching system. Each predicate can be represented
together with all its (subject, object) pairs in a single k2-tree. To be able to make operations
with one k2-tree, we need to have it loaded into memory. Then, it is possible to do things
like scanning all objects for a given subject or the other way around, and scan all (subject,
object) pairs for a given index. We can also make insertions and deletions for an input
(subject, object) pair.

In this work, the mixed k2-tree variant was enriched with some additional features to
make it more usable for the purposes of the caching system. These include a serialization
algorithm that allows us to store the index in persistent storage, so we don’t have to wait
for the index to be built more than once. Instead, we can load it from the serialized data
once we have it. Also, lazy scanning algorithms were implemented, giving us the ability to
serve results partially from the k2-tree without having to materialize everything at once in
memory. Furthermore, an alternative memory allocation strategy was conceived to overcome
the big overhead that can be incurred by a high number of small allocations.

Building an index with massive amounts of data is expensive and we want to avoid doing
it as much as possible. To achieve this, we serialize the data to store it in secondary memory
and use it afterwards from there, instead of trying to build the index each time we need
it. This way we only have to build the index from scratch once, in a preprocessing phase.
Deserializing the index from disk is much less expensive than building it.

We are going to serialize the mixed tree with the regular tree on top, as that is the one we
are going to be using in this work. Nonetheless, that tree and the block’s tree serialization
can be viewed independently, so let’s begin with the block’s tree serialization.

3.1. Block’s Tree Serialization
For each block, we don’t have to explicitly serialize the pointers to other blocks. This is

based on the fact that we can infer which are the children of a given block by the number
of children it has, the ordering in which we put the blocks and also that we are going to
deserialize a tree fully always. This allows us to store these indices in less space than if
we load them in primary memory, where we have to create the frontier pointers, but in
consequence the deserialization is much faster because there is less data to scan from disk.

We recursively place blocks in a post-order sequence, that is, we will have all the children
of a node to the left of their parent, which is followed by its right siblings. This way, the
leftmost leaf would be placed first in the sequence and the root would be placed last.

19

pa b c...

...

...

...

R

R

p

a b c

...

...l

l

Figure 3.1: Block’s tree serialization

In figure 3.1 we can see the tree of blocks on top and the serialization order below. The
tree of blocks shown here is an abstraction to illustrate the serialization procedure, having
in consideration that these nodes represent blocks such as the ones in figure 2.17, where the
edges are the ones connecting frontier nodes (from the k2-tree) to other blocks. There is the
leftmost leaf l first and the root R last. Furthermore, there is an internal node p which is laid
after all of its children subtrees, which are put from left to right in the same order they are
as a child of p. Lastly, notice that in a tree of blocks, there is no defined number of children
per node and the order among siblings does matter.

Children
amount(C)

Container
size (S)

Frontier
preorders

Block
topology

2 bytes 2 bytes 2 bytes 2C bytes

Nodes
amount(N)

4S bytes

Figure 3.2: Block’s serialization

As for the serialization of each block, we save three 2-byte integers first, the number of
nodes, the number of children and the size of the block’s container. Furthermore, we have
to store the sequence of preorders corresponding to frontier nodes and the block’s topology.
This placement can be seen in figure 3.2.

When we want to deserialize the block’s tree we can perform the following procedure:

Begin by putting blocks from the sequence in figure 3.1 into a linked list, starting from
the left. Each block has to be deserialized from a structure as shown in figure 3.2 from
the sequence. The linked list will contain deserialized blocks.

Each time a block is going to be put into the linked list, we check for its number of
children. If that is greater than zero, then we consume that amount of children from the
list starting from the rightmost one. This consumption adds those blocks as children of
the one currently being processed in a reverse ordering.

When we are done with this, we will only have the root of the block’s tree loaded into the
linked list and the deserialization will be complete for this block’s tree.

20

For example, consider the matrix from figure 2.15. We already have its k2-tree block
representation in figure 2.17. We label each of the blocks A, B, C and D. Following the
serialization mechanism above we can serialize it as in figure 3.3.

A

B C

D

Number of
nodes: 6

Serialization of A

D B C A

Layout of serialized blocks

Number of
children: 2
(B and C)

Frontier
nodes: [1,2]

Container size:
1 (32 bit
integer)

Block
topology: A

(bitwise
representation)

Number of
nodes: 8

Serialization of B

Number of
children: 1

(D)

Frontier
nodes: [1]

Container size:
1 (32 bit
integer)

Block
topology: B

(bitwise
representation)

Number of
nodes: 5

Serialization of C

Number of
children: 0

Frontier
nodes: []

Container size:
1 (32 bit
integer)

Block
topology: C

(bitwise
representation)

Number of
nodes: 5

Serialization of D

Number of
children: 0

Frontier
nodes: []

Container size:
1 (32 bit
integer)

Block
topology: D

(bitwise
representation)

Figure 3.3: Example block-tree serialization. First we label each one of the
blocks for convenience. Then, for each block we apply the serialization me-
chanism. Note that in each block, the last part of the serialization is the
block topology or bit sequence describing the block. We chose to describe
it in this figure for convenience, instead of writing the full bit sequence.
Finally, we concatenate all the parts as described by the serialization algo-
rithm.

The benefits of this serialization are:

It is even more compact than the deserialized index, as its structure allows ommiting any
pointers that reference other blocks. This also implies a good performance in deseriali-
zation, as less data needs to be retrieved from disk.

It can be traversed sequentially in disk, avoiding any disk random accesses.

It offers good performance as the bit sequences needed by the index are already in the
serialization, the deserialization consists of putting the same bit sequences in memory
and materializing the pointers.

21

3.2. Mixed tree serialization
For the mixed tree we are going to use the previous block’s tree serialization when dealing

with the block’s tree part, but first let’s see how we are going to serialize the top levels before
that.

We are going to save the top levels in a bitwise representation, in the same fashion as we
do it with blocks of bits. First, we create a container, which will contain 4-byte integers where
we will put 4-bit nodes, telling us which children they have. To materialize this container, we
have to count how many nodes there are; we do this simply by traversing the top-level tree
once beforehand.

Next, we traverse again the top-level tree in depth-first-search order and turning on the
ith bit of a node if its ith child exists. Once we are done with a node, we continue with its
children recursively from left to right. With this, we end up with a Depth-first unary degree
sequence (DFUDS) bitwise representation of the top-level tree, which we are going to use
next.

Number of
points

Tree
depth

Cut
depth

Max nodes
per block

Container
size (L)

Top level tree
representation

All block's trees
concatenated
in preorder

8 bytes 4 bytes 4 bytes 4 bytes 4 bytes 4L bytes
Unknown size
 at this level

Figure 3.4: Mixed tree serialization

We serialize that data as figure 3.4 indicates; the top-level tree representation is the bitwise
representation we just mentioned. The concatenated block’s trees in preorder are the trees
found at leaves in the mixed tree if we traverse it with a depth-first-search preorder. Each
one is serialized as described in section 3.1.

Each part represents the following:

Number of points: This is the total number of points encoded in the mixed tree. This is
going to be useful to keep if we want to ask the index how many points it has stored,
without having to traverse it fully, which can be expensive.

Tree depth: The total depth of the mixed tree. This is fundamental if we want to make
queries over the index, as it helps us to identify the leaves of the full tree, not just the
top-level part. Then we can know when have found a point, for example.

Cut depth: This is necessary for the mixed tree, as it tells us when we reach leaves in
the top level part and start treating them as trees of blocks.

Max nodes per block: This is necessary for updating the k2-tree as it tells us when should
we split a block into two blocks, when surpassing this amount in a block.

Container size: This number will tell us how many 4-bytes we have to read in the top
level tree representation next.

Top level tree representation: We will use this bits sequence to rebuild the mixed tree.

All block’s trees concatenated in preorder: It is as we just mentioned. It is important
not to confuse this with the ordering of their blocks, which are laid in post-order within

22

a tree serialization. What is in preorder here are each full tree serialization with respect
to each other.

If we want to deserialize the mixed tree, first we are going to read the data until the
top-level tree representation, inclusive. Next, as we have a bitwise representation of the top-
level tree loaded in primary memory, we are going to traverse it from left to right with a
recursive function which will keep track of the depth it is within the sequence. What we do
exactly is to check each 4-bit sequence separately as it represents a node in the mixed tree,
and by doing that we can know which children it has. The leftmost bit which is turned on
will represent the next 4-bit node in the sequence, the second leftmost is somewhere to the
right after scanning the first subtree fully and so on. This way, as the leftmost 4-bit node
represents the root of the mixed tree, scanning recursively those bits from left to right will
actually traverse the full sequence of bits from left to right. At each step of the recursion we
will also be building the nodes of the mixed tree.

As we are keeping track of the current depth, we can know when we are reaching a
leaf, corresponding to a tree of blocks, if that depth becomes the cut depth. Whenever that
happens, we read a tree of blocks from the serialized data, as explained in section 3.1 and
putting its root as a leaf in the mixed tree we are currently creating.

When we are done with the last node in the sequence of bits we are traversing, we have
the mixed tree fully rebuilt.

23

4. Caching System

In this part, we describe how the caching system works.
The data cached are k2-tree indices that were created beforehand and stored in secondary

memory. In each replacement step, some indices might be loaded to RAM, in order to build
a response for the user.

The caching system is accessed from a triple database manager, which when executing
a query and requiring to retrieve matches from a triple pattern, it fetches those matching
values from the cache first if they are available, or from its own storage otherwise.

Triples Database
Manager

SPARQL
Query

Triple pattern
resolution

Cache Internal
Indexes

If predicate is
available

Otherwise

Figure 4.1: Cache general flow

In figure 4.1, we have a very broad representation of the system where the idea is to use
the cache as much as possible.

We use our custom-modified implementation of Apache Jena [25] as an RDF store, also
referred to as a fork. The modifications that we made to Jena were to make possible the
use of the cache for BGP evaluations, and also to notify the caching system for RDF-triple
updates.

Apart from this, we implemented an adapter Java server program [26] that uses the fork
as a library dependency and receives user queries via a network connection with another
Java client program that reads queries from a file for our experiments. The adapter server
makes possible communication with the k2-tree caching system via a TCP/IP persistent
bidirectional connection, where the messages are binary data encoded with Google’s Protocol
Buffers library.

The k2-tree caching system [27] implemented in this work is in C++, it manages the
TCP/IP server connection, and the lifecycle of all k2-trees, and it implements join algorithms
and serialization.

The k2-tree data structure [28] implemented in this work is in C. This is used as a library
in the caching system, and it implements lazy scanning algorithms for rows and columns,

24

and also lazy full scanning of k2-trees. It supports insertion and deletion of points.
The C++ caching system is also aware of the Protocol Buffers encoding, because the

library generates code that allows it for several well-known programming languages.

4.1. NodeIds pre-processing
One of Jena’s storage engines to choose from is TDB, which represents resources as No-

deIds. These are eight-byte values that TDB uses for performing query evaluation. We use
them as coordinates for the k2-trees.

Our modified Jena gives us the ability to extract all the triples stored in NodeIds format,
which we dump into a file in binary format. Next, we apply a custom external sorting al-
gorithm on this file, which orders the triples by their predicate. This arrangement allows us
to index a single k2-tree at a time, optimizing the memory usage, and also avoiding random
access of distinct k2-trees when traversing the triples file.

4.2. NodeIds streaming
When Jena receives a SPARQL query string, it first transforms it into an Abstract Syntax

Tree (AST). We traverse this AST and collect the predicates into a set. We send this set to
the cache, asking which of those predicates it has available. The caching system will check
which of those are loaded in its table of loaded predicates. At the same time, it will lock them
to prevent them from being removed from memory while streaming data from those specific
k2-trees. Next, it will send Jena a subset of the set given to it, containing the predicates that
the cache can currently access.

Then, Jena will evaluate the query as usual until the step in which it has to retrieve a triple
pattern from somewhere. We check if this triple pattern has a variable predicate or not. If it
has a variable predicate, we obtain the triples from TDB. If it is constant, we check whether
it is within the set of available predicates we got from the cache. If it is not there, then we
retrieve the triples from TDB. Otherwise, we ask the caching system to stream the triples
matching the pattern. To do this procedure fast, we retrieve batches of matching triples from
the cache. When a batch gets fully consumed by Jena, we continue retrieving them until
there are no more triples matching the pattern.

25

(Jena-TDB)

Sparql Query

Parsing

Evaluation

Algebra AST

For each triple pattern of structure
?s P ?o, ?s P O, or S P ?o

If P is available in cache,
retrieve pattern from it Cache

Else, retrieve pattern
matches from TDB

Stream matching triples
back to Jena

Use triples in query evaluation
as usual in Jena

Ask which predicates are
available in the cache

Return list with available
predicates and lock them to
avoid their replacement

Figure 4.2: Diagram of interactions between Jena and the cache, where Jena
first parses a query and receives results from the cache.

In figure 4.2, we have a diagram that shows the steps since receiving a query, consider
triple patterns for resolution in the cache and evaluating the query.

4.3. Mapping NodeIds to internal IDs
For using the NodeIds as coordinates in the k2-trees, we could simply use the 8-byte values

as they come from the Jena side. This means that we would have to use k2-trees of height
64 to cover the full range of values that 8-byte coordinates need. In practice, datasets can
have a massive number of NodeIds. For example, the Wikidata snapshot this work is based
on has around 1.1 billion NodeIds.

Even if it had a hundred billion, a height of 64 for the k2-tree is way more than we need; a
height of 37 is enough to cover that number. The problem of adding an extra level of height is
that it adds an extra 4-bit node in the block structure of the trees, which makes the scanning
and insertion performances worse by a considerable amount, and also adds up on the size of
the trees.

To optimize around this in this work, static and dynamic map structures were implemented
within the C++ k2-tree caching system. The static structure is an array of increasingly sorted
NodeIds, in which we use the position in the array as a coordinate in the k2-tree, we also refer
to the k2-tree coordinate as an internal ID. The dynamic structure maps between NodeIds and
a sequence of consecutive integers that is the continuation of the static structure positions.

...

Figure 4.3: Static sequence. If i < j then ni < nj . Each stored value is a
NodeId and each position is an internal ID

In figure 4.3, we have a representation of the static structure. As mentioned before, each
number occupies up to 8 bytes and elements are sorted in increasing order, which allows

26

finding an internal ID by a given NodeId in time-complexity O(log N) with a binary search
algorithm. More importantly, it allows translating from internal ID to NodeId in time O(1).
This O(1) translation is the most used one, because results stored in the k2-tree caching
system use internal IDs.

...

...

...

...

...

...

...

...

Figure 4.4: Dynamic mapping. No restrictions. Each value on the left side
is an internal ID and each value on the right side is a NodeId

In figure 4.4, we have a representation of the dynamic structure, where M is the number
of elements added to the dynamic structure and N is the number of elements in the static
structure. We want to use this structure when new resources are added to Jena as part of
RDF triples, but they get entered after the indexing by k2-trees. By doing this, we avoid
having to modify the static array structure and also avoid rebuilding the k2-trees indices,
which would be very slow to do each time there was a new update. In a sense, this dynamic
mapping can be thought of as a helper structure that delays reindexing.

The dynamic structure, by nature, is much bigger than the static structure, so ideally
we would want to have most of the NodeIds in the static structure, rather than in the
dynamic structure. It is also more expensive performance-wise than the array, because the
array has a O(1) time-complexity for mapping internal IDs to NodeIds, while the dynamic
structure in the best case would need to be implemented with a hash table to achieve this
time complexity for the average case, rather than every time. In this work, we decided to
optimize the dynamic structure by space, rather than speed, so we used C++’s STL map,
which typically is implemented by a red-black tree, giving us O(log M) lookup time. Also,
note that to achieve the bidirectional mapping, we not only have one map, but two, one for
each direction.

Transforming data from the dynamic structure to the static structure is expensive, because
doing so also requires that reindexing happens on all the k2-trees, since the static structure
depends on the ascending order of the NodeIds, and adding new elements to it means affecting
the original positions of the existing NodeIds (there is no guaranteed ordering for newly added
NodeIds), making the existing k2-trees corrupt.

Full reindexing of Wikidata using k2-trees takes around 4.8–12.8 hours (see Table 7.3),
depending on the chosen configuration for the indices, so it is reasonable doing it if it doesn’t
happen too often. We don’t need to do it too often if the dynamic structure grows at a
sufficiently low rate.

This hybrid mapping depends on the number of new resources added within a time window

27

being low enough that we don’t end up reindexing almost all the time. The number of edits
in Wikidata over a 2-year period shows that there are on average about 18 million edits per
month [23].

Each edit can have several triples added, meaning that several resources are added. In
this work, we don’t have a real estimation of number of triples per edit, but as any user
can add something, we could use an upper bound estimation by using something like 10
triples per edit, and assuming that each resource in a triple is new, with the exception of
predicates, which are much rarely added. In total, for our estimation, it would be 20 resources
per edit, which implies 360 million new resources each month. Each NodeId in the dynamic
map requires 32 bytes, and 8 bytes in the static one, so in a worst-case scenario there would
be 11.52 GiB worth of NodeIds in the dynamic structure. Then if the server has enough
RAM, it is reasonable to do the reindexing once a month or once a week if needed. Clearly,
this upper bound estimation is loose, since the snapshot used in this thesis has 1.1 billion
distinct resources, for several years worth of data.

One concerning issue with this approach is that full reindexing needs to co-exist with
new incoming data, and also the problem of maintaining availability while this processing is
occurring. These problems are not being solved by this thesis, they are rather left for future
work.

4.3.1. From Jena NodeIds to internal IDs
Given a Jena 8-byte NodeId, its internal representation can be stored either in the array

structure or the map structure; we look for it in both if needed. First, we look in the array
structure by doing a binary search. If it’s there we return the position found as the internal
ID. If it’s not there, we look it up in the map. The array scan has time complexity O(log N),
where N is the number of elements in the static structure and the number of resources known
until indexing time. On the other hand, the map scan has time complexity O(log M), where
M is the current number of NodeIds in the map structure and the number of resources added
after indexing time. This last time complexity is considering we are using as a map a red-black
tree.

4.3.2. From internal IDs to Jena NodeIds
In case we want to map from internal IDs to Jena NodeIds, as we know the size of the

static array, we can compare the ID with that size and if the position is below the size, we can
be certain that the NodeId is stored in there. To get the NodeId, the only needed operation
is to fetch it from the array, using the internal ID as the position. If the value is greater or
equal than the size, it could be inside the dynamic map, so we perform a map lookup. The
array fetch takes O(1), while the map lookup takes O(log M).

4.3.3. Efficiency of translation
In this system, NodeIds are translated to internal IDs to fetch data matching a triple

pattern. On the other hand, internal IDs are translated to NodeIds in order to get the results
in the original set of IDs. The second kind happens much more often, because for each query
we might have a huge amount of results that need to be translated, while the first kind
depends on the query size. This means that it is very convenient having a O(1) solution to

28

translate from internal IDs to NodeIds, which we have more or less if the array structure
is much bigger than the map structure. All of this means reindexing not only helps with
memory usage, but also with the overall performance of the system.

4.4. Replacement Strategy
One essential part of any caching system is its replacement strategy, which chooses what

objects are going to be discarded or kept in order to stay within the memory boundaries
previously established and at the same time trying to minimize the number of cache misses
the system gets.

We built a mechanism in which any replacement strategy can be added, based on a priority
queue. This priority queue is actually a C++ STL set, which is a red-black tree in most
systems, but could vary according to the C++ implementation of the system running our
caching system. We can use the STL set as a priority queue, because it is guaranteed to have
its elements in order, given by an ordering function which we can provide by comparing the
result of applying a cost function to keys, offered by the concrete replacement strategy. Also,
the main reason to choose this structure is that we can remove its elements in O(log|P |)
time, with P the set of predicates, whereas the actual priority queue from the STL doesn’t
support erasing elements by their key.

One tricky issue of the STL’s set is that when a cost function assigns the same cost to
two different keys, it will regard them as the same and as the set keeps uniqueness among
its elements, it wouldn’t add two different keys with the same cost value. However, we can
bypass this by checking if they have the same cost value and are different, in which case we
use as a second comparison function the comparison between key values.

In this work, we try one strategy for replacement, least recently used or LRU.

4.4.1. Least Recently Used
To implement LRU, we have to provide a cost function for the keys. Also, this strategy

should be notified when a key is hit, in order to update the cost functions.
We keep a map from keys to a value, which we call the LRU value. In addition, we keep

two variables, named low and high, where low will be the lowest of LRU values held in the
map and high the highest plus one. The low variable represents the element with the lowest
priority and next to be removed, in this context, it is the least recently used element. On the
other hand, high represents the element with the highest priority and the most recently used
element.

Each time we are notified about a key being hit, we check if it exists within the map; if
it does, we check if it corresponds to low, in which case we reassign low to the next smaller
element and remove the key from the map, followed by reinserting it with the value of high
and then incrementing high. In case it didn’t exist in the map, we skip the steps of updating
low and only inserting the key into the map with the value of high and incrementing high.

We don’t touch low just yet at this point, this is deferred until we remove a k2-tree
from memory, which happens on a different flow in which the system determines that the
next k2-tree would exceed capacity and in that case it would start freeing up memory from
lower-priority elements and updating low at the same time.

The cost function of a key will be its LRU value minus low. Which would avoid any
overflows if we simply used the LRU value.

29

K²-Tree 1 K²-Tree 2 K²-Tree 3 K²-Tree 4 K²-Tree 5

K²-Tree 6

Cache miss
To be added as most recently used

Discard to make
space for K²-Tree 6

Figure 4.5: LRU replacement algorithm

In figure 4.5, we have a visual representation of what happens in the LRU replacement.
Here we have a scenario in which adding k2-tree 6 would exceed the capacity of the cache,
so we start freeing up elements with lower priority. In this case, freeing up the k2-tree space
is not enough to be under capacity after adding k2-tree 6, so we need to keep going on the
deletion of trees with low priorities, that is why we also discard k2-tree 2, so after adding
k2-tree 6 we would be occupying space below the capacity given to the cache.

30

5. Query processing

The data cached are k2-tree indices that were created beforehand and stored in secondary
memory. In each replacement step some indices might be loaded to RAM, in order to use
them to build a response for the user.

The flow of the processing starts with a query tree, given by the user of the system, that
describes steps to execute the original SPARQL query. All of this is done by Jena; extra
processing in this work is done on a basic graph pattern level, which is a sequence of triple
patterns that can imply joins or products between the triple patterns.

Initially in this work, the idea was to delegate the BGP evaluation to Jena, but that meant
too much overhead for the message sending, which is done by TCP/IP sockets, because in
many occassions during intermediate BGP evaluation there is only one triple that has to
be fetched from k2-tree cache. Due to this issue, it was decided to perform BGP evaluation
within the k2-tree cache, which decreases the network messages overhead significantly; with
this there are fewer messages to send between Jena and the k2-tree caching system.

Here we describe the way we process BGPs in order to use the k2-tree indices. The triple
pattern ordering within the BGP can have a high impact on the query performance, so we
decided not to change the ordering given by Jena and with this, we can use a good enough
query optimizer and also avoid introducing an extra source of variability in the experiments.

To avoid complete materialization of intermediate results in a way that occupies a large
size of memory, so we can build iterators that can produce results on demand, we need to
lazily scan the k2-trees and to allow this we implemented two lazy scanning algorithms to
traverse the trees. The first is a band scanner and the second is a full scanner.

In a BGP, several operations could be necessary to perform, depending on what kind of
triples we get. We recognize them as one variable Cartesian product, two variable Cartesian
product, inner join, one variable intersection and two variable intersection and implemented
them as part of the BGP Iterator.

In the following, we describe in detail the scanners, the operations and the algorithm that
uses them.

5.1. Band Scanner
This scanner consists of traversing a band of a k2-tree, which is a generic name given

here that refers to either a row or a column in the matrix representation of a k2-tree. The
scanning is done lazily, in this case meaning that we can get one result and halt the processing
completely until we want to get the next result.

31

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

(3, 7, 10)

Figure 5.1: Band scan of column 7

For simplicity let’s assume first that this is a column scanner. In this case, we are given a
column ID, which is identifying a subject, and also we are given a predicate ID that identifies
a k2-tree we currently have loaded in RAM. The task is to scan the column for the column ID
given, such that at each step, the scanner will report the next row ID, identifying an object
within that column and that has not been previously reported.

We start this algorithm from the root of the tree. As we have four options of nodes we
could descend to, we have to choose which ones to go in, depending on the column ID. As
every one of the four nodes represents a quadrant in the k2-tree we have to select those
where the given column lays in. For the column scanner, we notice that there are always
two quadrants to consider, either both the TL and BL or both the TR and BR (top-left,
bottom-left, top-right, bottom-right respectively).

Top Left
(TL), 0

Top Right
(TR), 2

Bottom Left
(BL), 1

Bottom Right
(BR), 3

Figure 5.2: K2-tree quadrants

For the quadrants selection, we make use of the matrix representation. If the column ID
given is less than half of the matrix’s column size, then it must be that the column for this ID
is in the two left quadrants, alternatively, if it is greater than the half of the matrix’s column
size, it has to be in the two right quadrants. We proceed recursively with this idea, until we
reach the leaves of the k2-tree, where at each next depth, the matrix representation column
size is reduced by half and the column ID to check becomes the previous one, modulo half
the previous column size. When we reach a leaf, we will have a 2 × 2 matrix, described by a

32

4-bit sequence. In the case of the column scan, we have to check the first and second bit if
the current column ID is 0 or the third and fourth bit if it is 1.

n/2

n/2

n/2

n/2
c c mod (n/2)

n/4

n/4

n/4

n/4

c mod (n/2)
n/4

n/4

n/4

n/4

Figure 5.3: Reducing search space while scanning

In figure 5.3, we can see how the search space is reduced by half at each step while applying
modulo to the coordinate being scanned. We always suppose that these matrices have sides
of length being a power of 2, that is, there is a positive integer m such that n = 2m for n in
the figure. Also, take into consideration that whenever we find an empty quadrant, there is
no path to follow from there in the k2-tree, then we are not really scanning the full space,
which is one of the reasons of why the k2-tree is convenient.

As we have to report row ids, at each step of the recursion, when going down a quadran-
t/node, we increase a variable by half the size of the side of the corresponding matrix only if
the quadrant selected is in the right.

For the row scanner, the procedure is similar, with roles reversed; instead of caring about
the left or right quadrants, we choose between top and bottom quadrants. Instead of adding
half the size of the side of the matrix when choosing a right quadrant, we do it when choosing
a bottom quadrant.

As for achieving laziness, we keep the recursion states inside our own stack instead of
delegating that part to a recursion by function calling. Also, we implement next and hasNext
functions and we explicitly call the first next, storing its result, in order to have a result for
the first call to hasNext. With this procedure, a call to next will stop the tree traversing when
we have a new resulting row ID in case of the column scanner or column ID in the case of
the row scanner.

5.2. Full Scanner
This scanner will output every pair of points stored in a k2-tree in a lazy manner, similarly

to Band Scanner, implementing next and hasNext functions.

33

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

{(0,0), (1,8), (2,2), (2,7),
(7,3), (7,7), (7,10), (9,5)}

Figure 5.4: Full scan example

The procedure is even simpler than Band Scanner. At each step we descend into all of
the quadrants, keeping two variables; the first will hold a column ID result and the second
a row ID result once we process a leaf. We will add half the size of the current matrix side
to the first variable if going through a right quadrant and add the same value to the second
variable if whatever quadrant was chosen is also a bottom quadrant.

5.3. One Variable Cartesian Product
We need to apply a one-variable Cartesian product when encountering a triple pattern

having only one variable that doesn’t appear before, most commonly referred as not being
bound. Suppose at this point, we have a partial result binding; then, to continue building
the binding, we will perform a band scan of the k2-tree represented by the predicate given in
the triple and using as band ID the other term which is not bound in the triple.

SELECT * {
?a Predicate1 Object1 . # Triple Pattern 1
?b Predicate2 Object2 . # Triple Pattern 2

}

Figure 5.5: Triple pattern with one variable ?b not appearing before.

In this case, for each previous partial binding given and each value in the band, we will
produce a new partial binding.

Consider the case of the query in figure 5.5. First we have the pattern 1, which we will
use to perform a row band scan on the k2-tree associated with predicate Predicate1 on the
band ID we can obtain from Object1. This band scan will get us values for ?a. As we have a
second triple pattern to deal with and we haven’t other source of values for ?b, we have to
make a Cartesian product between the values we get from pattern 1 and the values we get
from pattern 2. For ?b, we will do the same thing we did to obtain values for ?a using the
pattern 2, as it also has a single variable. With this, for each value we get for ?a from the
pattern 1, we have to get a value for ?b from pattern 2.

34

Triple Pattern 1 Triple Pattern 2

Subject1
Subject2
Subject3

?a

Subject4
Subject5

?b
Solutions Solutions

Cross product

Triple Pattern 1 Triple Pattern 2

Subject1
Subject2
Subject3

?a

Subject4
Subject5

?b
Solutions Solutions

Cross product next state

next()

produces

?a ?b
Subject1 Subject4

next()

produces

?a ?b
Subject1 Subject5

Triple Pattern 1 Triple Pattern 2

Subject1
Subject2
Subject3

?a

Subject4
Subject5

?b
Solutions Solutions

Cross product next state

next()

produces

?a ?b
Subject2 Subject4

Figure 5.6: Iterator only having Cartesian product

In figure 5.6 we can see what happens when having a BGP iterator with only a Cartesian
product operation between two triple patterns, which would happen with a query like the
one in figure 5.5. First, there are two band scanners in play, the one for pattern 1 in the left
and other for pattern 2 in the right. Both start from the beginning of their scanning, but
the first only advances once we scanned fully the second and when that happens, the second
scanner is reset.

This was a simple case when only having one other triple pattern as source of previous
bindings, but in general we can have any number of triple patterns before, of all kinds. We
can even have zero other previous bindings, in which case, we simply perform a band scan
and output those values.

35

5.4. Two Variable Cartesian Product
We require a two variable Cartesian product when we have a triple pattern with two

variables which are not bound. As before, we have a partial binding and now we perform a
full scan, which will produce a column and row ids in each step. For each one of those pairs,
we produce a new partial binding.

SELECT * {
?a Predicate1 Object1 . # Triple Pattern 1
?b Predicate2 ?c . # Triple Pattern 2

}

Figure 5.7: Triple pattern with two variables ?b and ?c not appearing before.

Take for example figure 5.7, where this time we have a triple pattern with two variables
not appearing before.

Triple Pattern 1 Triple Pattern 2

Subject1
Subject2
Subject3

?a

Subject4
Subject5

?b
Solutions Solutions

Object3
Object4

?c

Cross product

next()

produces

?a ?b ?c
Subject1 Subject4 Object3

Triple Pattern 1 Triple Pattern 2

Subject1
Subject2
Subject3

?a

Subject4
Subject5

?b
Solutions Solutions

Object3
Object4

?c

Cross product last state

next()

produces

?a ?b ?c
Subject3 Subject5 Object4

...

Figure 5.8: Iterator only having Cartesian product with two variable in a
triple pattern

In figure 5.8 we can visualize how each call to next would affect the iterator and produce
new bindings while scanning one band on the first triple pattern and scanning a full k2-tree
on the second triple.

In the same way as the case with only having one variable in a pattern, this generalizes
to any number of patterns coming before, even zero, in which case the bindings would only
feed from a full scanning of a k2-tree.

36

5.5. Index nested-loop join
The index nested-loop join; sometimes referred to as inner join, is used when we have a

triple pattern with two variables, one of them is bound by previous triple patterns and the
other is not.

Suppose, for simplicity, that the subject is bound and the object is not, like in figure 5.9.
We are receiving a partial binding where the subject variable has a value, so we perform a
column band scan on the k2-tree represented by the predicate given and with the subject ID
of the partial binding as our band ID. For each row ID retrieved from the scanner we will
produce a new partial binding.

SELECT * {
?b P1 D1 . # Triple Pattern 1
?b P2 ?c . # Triple Pattern 2

}

Figure 5.9: Triple pattern with two variables ?b and ?c and ?b also appears
before.

37

B1B1 B2 B3B2

C1

C2

C3

C4

C5

P2P1

D1

Causes band scan on P2
over band B1

next()

produces

?b P1 D1 ?b P2 ?c

?b ?c
B1 C1

B1B1 B2 B3B2

C1

C2

C3

C4

C5

P2P1

D1

Causes band scan on P2
over band B2

next()

produces

?b ?c
B2 C2

B1B1 B2 B3B2

C1

C2

C3

C4

C5

P2P1

D1

Keeps scanning B2,
as there are more points
to retrieve

next()

produces

?b ?c
B2 C3

Figure 5.10: Inner join with a single triple pattern as left source

For example, in figure 5.10 we can see that the left triple pattern ?b P1 D1 is being used
to perform a row band scan over the row D1 and each of its values will bind to ?b in the
second triple pattern. This temporary binding will allow us to perform a band scan for each
new value coming from the left. Each time we extract a value from a band on the right we
will be able to produce more bindings which satisfy the given query, until we reach the last
value coming from the left and for that value there are no more values on the right.

This procedure can be generalized to any number of triple patterns on the left, of all
kinds, as long as we have a triple pattern on the right with two variables in both subject
and predicate and also one of them appears before. In case there were no triple patterns on
the left, this wouldn’t be an inner join, instead it would be a Cartesian product with two
variables.

Notice the difference between this and two variable Cartesian product; here we do a scan
based on a previous binding, whereas in the Cartesian product we only use information given
by the triple pattern.

5.6. One Variable Intersection
Here we receive a triple pattern with only one variable, which is previously bounded.

Suppose that the subject is the only variable. Then we only have to check if a pair with

38

known column ID and known row ID (given by the pattern) are in the k2-tree associated to
the predicate in the triple pattern given. For this purpose we just ask directly to the k2-tree
using the has operation.

SELECT * {
?a P1 B1 . # Triple Pattern 1
?a P2 C1 . # Triple Pattern 2

}

Figure 5.11: Triple pattern with one variable ?a which appears before.

For example, to process the query from figure 5.11, we first perform a band scan on the
first triple pattern and feed those ?a values to the has operation, such that if hasP 2(?a, C1)
is true, we keep the concrete value for ?a as a resulting solution and if it is false, we discard
it. The described procedure can be visualized in figure 5.12.

We can also generalize this for any amount of triple patterns on the left, except zero,
which would yield bindings with more variables and the triple pattern of interest for the
intersection must have its only variable bound to those bindings.

P1

B1

A1 A2 A3 P1

C1

A1 A2 A3

P1

B1

A1 A2 A3 P1

C1

A1 A2 A3

P1

B1

A1 A2 A3 P1

C1

A1 A2 A3

When in A1 on the left
check directly for
(A1,C1) on the right. As
it is there, accept A1.

Now (A2, C1) is not
on the right, then we
discard A2

next()

produces

?a
A1

next()

produces

?a
A3

Internally we skip left values
until reaching a value that satisfies
the intersection and can return it

(A3, C1) appears on the
right, then we accept A3

Figure 5.12: Intersection by using a band scan on the left and has on the
k2-tree on the right

39

5.7. Two Variable Intersection
Now we have a triple pattern with two variables, one in the subject and the other in the

object. This time both are bound and we perform a has operation in the k2-tree as in the
one variable intersection case.

This is essentially the same as in one variable intersection, the only difference will be that
instead of assigning one variable in the right to values coming from the left, we will assign
two, one for subject and one for predicate and then apply has to accept or discard bindings.

5.8. Iterator algorithm
We implement next and hasNext operations for the iterator, as any iterator must have.

These are implemented per the previous operations depending on the particular case. This
whole idea is also known as a physical plan.

This and all the following iterators will output a binding when calling next over them. We
represent those bindings as arrays of IDs, where each iterator has an array of variables in the
same corresponding order of the results it will return, allowing us to map variables to values.

First, we perform a setup step, where we identify which are the variables that we will
output and in what order they will appear in the variables array. We create with this a
buffer, with the same size as the variables array, in which we will construct a binding. Also,
in the setup step, we create the operations we previously defined, depending on the BGP
input and put them in a sequence to be executed at each step.

BGPOp1 BGPOpK...BGP ?x1 ?xN...

Extract unique variables
from BGP

For each triple pattern create a corresponding
operation, let's call them abstractly BGPOps
depending on their variables and if they are in the
triple patterns before, as we discussed.

Each BGPOp will feed intermediate bindings
to their right operation and BGPOpK will
give us our final binding which we will return
with calls to next()

We will return bindings as tuples of size
N, with their order corresponding to
their variable in this array

Figure 5.13: BGP Iterator setup

When calling next over the iterator, we traverse the operations sequence from left to right
and when reaching the last one and retrieving a result from it we will have a complete binding
for this BGP iterator which we will output in this call and advancing the necessary pointers
to prepare the result for the next call. When the last operation has exhausted its results,
we go back one step in the operations sequence, call next on that one and reset the last
operation. The same can be done for any of the intermediate operations when they have no
more elements, going backwards and resetting all of the following operations accordingly. The
iterator will have no more results once all the operations in the sequence have reached their
end.

40

Op1 Op2 Op3 Op4 Op5 Op6 Op7 Op8

In practice, each Op will do something with a temporary
array which will hold the final result, such as reading it to
perform a band scan over one of its values

...

Figure 5.14: BGP Iterator Operations

In order to be able to answer the first hasNext call, we perform a first next call just
after setup and store its result, such that each time we call next afterwards we will have
the requested result stored, which will be returned once we compute the next result if there
is one. In the case there was no result, the first call to next would produce a null result
internally and hasNext would be false.

41

6. Updates

Updates are one of the trickiest parts of this system but are essential for keeping part of
the cached data up-to-date as the database receives update requests. For one, we have to
make the updates in both Jena and also in the k2-tree cache. We also have to make sure that
any future results that we get from Jena can also be received from the cache and vice versa.
As our cache is an in-memory structure pre-computed and stored on disk for initialization,
there is the need to modify the data stored on disk for future initializations, apart from
changing the in-memory structure during live updates.

SPARQL update

User

Query parsing Resulting triples

Cache update message

Update Jena indices

Jena

Cache

Produces
request

Receives the SPARQL
update through server
listening for requests

Jena parses the query, scans indices
as needed and produces triples to be

inserted or removed

Sends message via
network request

Figure 6.1: Updates in Jena

In figure 6.1, there is a diagram of the processing steps occurring in Jena during an update.
First, the user sends an update message to an endpoint connected to Jena. As this message
is in a SPARQL format, it is processed by Jena and converted to triples to be inserted or
removed. Then, the updated is applied to the B+tree indices in Jena. Finally, the triples are
wrapped in messages to be inserted or deleted in the cache. The step added in this work is
the last one.

42

Append-only disk log

Update request Cache Manager Writes to

Received by

Outdated -tree disk serialization

In-memory -tree

Periodic sync Restore older data

Restore fresh data

Cleaned up after sync

Figure 6.2: Updating the cache

In figure 6.2, we can see the full update flow on the cache side. First, the cache receives an
update request from Jena and with that it updates a disk write-ahead log and the affected in-
memory k2-trees. Apart from this live update flow, there is a bulk processing flow to update
the outdated k2-trees disk serialization which at the same time cleans up the append-only
log. The remaining step of restoring fresh data into the in-memory structure occurs after it
has been restored from disk and there is some newer data in the cache.

6.1. Live updates
The first step in an update is that the user makes an update request, in the language

of SPARQL, which is sent to Jena. This update request is then processed by Jena and
transformed into two sets, one for insertions and one for deletions. This pair of sets goes into
two paths, one is the internal Jena storage and the other is the caching system.

The caching system can receive new updates at any time, so it has to be prepared to
process them quickly and to be ready for the next update each time. This becomes possible
due to making only the minimal necessary and less expensive processing on each request and
delaying any costly operations into later bulk processing stages.

The less expensive processing tasks are mainly two. One is to update the in-memory tree
structure, which is regarded as relatively cheap due to only consisting of memory operations.
And the other is writing the same updates to an append-only disk log. This disk log serves
as a recovery backup, so we write to it before writing to the in-memory structure.

6.2. Initialization
If we are loading a k2-tree, once we have loaded the tree from the compact structure in

disk to RAM, we process the updates log, and make the insertions in the k2-tree currently
being initialized.

In the situation that we are pre-loading every tree on startup, we only process the log
once after the pre-load.

If we are in cache-replacement mode, we have to process the log each time we load a
k2-tree, as it may contain data that did not get a chance to be synchronized with the disk
serialization of the k2-tree.

43

6.3. Re-indexing
If the updates log has grown too much, we can perform a full reindexing of the dataset and

that would empty the log and recreate all the compact data structures stored in-disk. This has
to be done during maintenance time because the cache will have to be offline. To alleviate this
issue, two cache instances can be running at the same time, and for maintenance, we could
index only one at a time. Another measure that can be taken is to make the synchronization
for each k2-tree separately instead of the full dataset at once.

In this thesis, we do not go into further depth on the study of re-indexing.

6.4. Deletions
Deletions are handled analogously to insertions. In the append-only log, we differentiate

them from insertions with a flag, and on the k2-tree we call the delete function instead of the
insert function. Everything else is the same.

6.5. Performance considerations
The writes to a disk log can be expensive but is a price we have to pay to have some con-

sistency and reliability guarantees. On the more positive side, the append-only configuration
is as fast as it gets when writing to disk. Compared to B+tree writes, it will be much faster,
because the fragmentation of the append-only file will occur only when the file system deci-
des to do it. B+trees have to explicitly make random access patterns on the disk to perform
updates.

On the other hand, the kind of databases that would use this system have often much
more reads than writes, so the trade-off to make writes slower than reads should end up being
worthwhile overall.

Regarding the processing of the write log, there are optimizations that are applied.
Firstly, we compact the log with some pre-defined frequency or condition. This is beneficial

because with this we glue together several updates to the same tree and the switching between
trees for doing insertions has some extra cost.

Secondly, we index the offsets of the file where each predicate has insertions. As there are
typically a low number of predicates, this shouldn’t come with much cost, and mixed with
our first optimization it should the reduce number of random accesses significantly.

And our last optimization was to compress the updates to a single tree, which is done with
the same k2-tree data structure than the one used for the caching system. This reduces the
overall size of the file, so file reads are potentially much less expensive.

44

7. Experiments

In this chapter, we explore some of the experiments done in this work. There are several
questions that we want to address:

First, we want to know about the space occupied both in memory and on disk by the
k2-tree indices. The space occupied in memory determines how much data we can hold in
memory at a time. On the other hand, the space occupied in disk storage is of concern because
it helps determining the speed at which we can retrieve the indices from disk into memory.

Related to the previous point, we want to understand how long does it take to load
up k2-tree indices from disk into memory. If it can happen quickly, it means that using a
replacement strategy with a predetermined capacity in which we can load a subset of all of
the indices becomes more feasible.

Regarding the query evaluation, we want to measure how efficiently the queries can be
evaluated with the entire graph cached in memory, which skips the cache replacement com-
pletely and tries to use the k2-trees as much as possible. Apart from this, we want to see how
well Jena behaves without the caching system complementing it and compare both cases. If
the caching system has better performance than Jena alone, it could be worthwhile using it.

We also want to study the impact of using a replacement strategy on query performance,
as we have to spend time loading indices from disk, it is expected that it takes longer time
than loading everything beforehand, but it is important to know how much longer it would
take, because if it is a low enough time it may show more value as a solution for caching as
it would require reduced memory needs.

Lastly, we want to study the impact on update time as apart from updating the Jena
database, we also need to update the cache storage.

7.1. Experiments configuration
7.1.1. Dataset

Our chosen dataset for experimenting is Wikidata. It contains a huge size of data and in
that regard, it helps to showcase why this work is relevant, as we are using a compact data
structure that can represent a large size of data in a very lightweight form. Apart from the
size, Wikidata is not a laboratory dataset, but rather a real one that is used in production,
which adds value to our experiments. We used a Wikidata complete (truthy) snapshot from
May 2020.

We also use another synthetic dataset generated with the WatDiv tool [29]. This tool
generates a dataset and different types of queries. Even though this is not the best way to
analyze the system introduced in this thesis, it gives us some rough idea on how the system

45

performs in a somewhat random scenario, and it has the advantage of being validated by
other researchers.

7.1.2. Queries and Updates
For queries, we selected a public log of queries [30] that is anonymized from 2017. This

makes sense to use because together with the chosen dataset we can simulate the real scenario.
For updates, we took another Wikidata snapshot from 2021 and extracted the difference

of RDF triples between that and the 2020 snapshot. We extracted a random sample of triples
from this difference that can be used for experiments.

7.1.3. K2-tree

Regarding the k2-tree indices, we chose several configurations and identify them with the
syntax N-C-H, where N is the maximum number of nodes per block, C is the cut-depth, and
H is the height of the trees. Recalling from section 2.6, N indicates how much data we put
into the bit sequence that encodes a portion of the k2-tree, so this number lets us control the
compression level at the expense of computing cost on the bit sequence. C indicates the depth
at which we start using the block structure in the structure explained in the sub-section 2.6.2.
H is the height of the represented k2-tree, considering both the pointer structure on top and
the block structure at the bottom.

7.1.4. Hardware Specs
The hardware specs are:

CPU: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz with 2 sockets and 16 cores per
socket, totaling 32 cores. 4x32KB L1 Cache, 4x1MB L2 Cache, 11MB L3 Cache.

Memory: 748 GiB RAM

Storage: 21.7 TiB disk space HDD

Operating System: Devuan GNU/Linux 3 (beowulf). Devuan is a Debian fork

7.2. Index statistics
In this section, we cover some of the statistics that give some context for the next sections.

It is worth mentioning here that the number of indices is 8547, each represented by a predicate,
and this applies to all the next statistics.

7.2.1. Number of triples
In table 7.1, we show some statistics about the number of triples. The number of triples is

shared among all k2-tree configurations. The most interesting part here is that most indices
don’t have such a large number of triples as the largest index

46

Table 7.1: Number of triples per k2-tree index

Number of triples
Avg 670,058
P50 506
P95 107,655
P99 1,426,449
Max 2,430,879,380
Sum 5,726,991,458

In table 7.2, we show the top indices in the number of triples for the 128-0-32 confi-
guration. As it can be expected, the number of triples seems to correlate with sizes. It is
interesting to see that this is not necessarily a rule, for example the fifth item in this table
<http://www.wikidata.org/prop/direct/P2860> has less triples than some of the indices,
but it has a larger size than those. This can be explained by differences in the structure of
the k2-trees, sparse structures should have more size than dense structures when the number
of triples is the same.

Regarding size and retrieval time correlation, it looks like it is more direct than between
number and size; the bigger sizes should take more time to retrieve from the disk.

Table 7.2: Index statistics for top indices in the number of RDF triples with
the 128-0-32 configuration

Triples number [millions] Size in memory [MB] Size in disk [MB] Retrieval time [ms] Resource
2430 5429 3608 32213 <http://schema.org/description>
483 1190 794 7078 <http://www.w3.org/2000/01/rdf-schema#label>
483 1190 795 7428 <http://www.w3.org/2004/02/skos/core#prefLabel>
483 1190 795 6965 <http://schema.org/name>
217 2103 1406 12270 <http://www.wikidata.org/prop/direct/P2860>
189 590 401 3452 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
135 1482 990 8744 <http://www.wikidata.org/prop/direct/P2093>
99 215 142 1281 <http://www.w3.org/2004/02/skos/core#altLabel>
96 924 619 5432 <http://schema.org/dateModified>
96 651 438 3789 <http://schema.org/about>
96 979 655 5825 <http://schema.org/version>
94 491 333 2926 <http://www.wikidata.org/prop/direct/P31>
40 357 241 2132 <http://www.wikidata.org/prop/direct/P1476>

We will focus on index build time, index size, and index retrieval time in the next parts.

7.2.2. Index build time
We consider configurations with 128, 256, 512 and 1024 max nodes per block. For cut

depth we tried only 0 and 10, and for all scenarios we use k2-tree total depth of 32.

47

Table 7.3: Index build times for different configurations

Configuration (N-C-H) Build Time (hours)
128-0-32 6.5
256-0-32 7.1
512-0-32 10.4
1024-0-32 12.8
128-10-32 4.8
256-10-32 5.1
512-10-32 5.4
1024-10-32 6.7

The table 7.3 has the build times for each configuration. Note that build times are reduced
considerably for the cut depth (C) of 10, compared to the cut depth of 0. This is because the
superior part of the trees are just pointers which need much less processing than the compact
part during insertions, specially when there are tree splits that are very expensive for the
block trees. In contrast, the cut depth of 0 doesn’t have a superior part containing a tree of
pointers, it is completely a block tree.

Another thing to notice from the table 7.3 is that with higher values of max nodes per
block (N), the more time it takes to build the indices. This can be explained by the tradeoff
between compression and peformance in which larger blocks means more compression by
having more data in bitwise representation and less pointers.

7.2.3. Index size
In this subsection, we study the index size, both in memory and in disk.

7.2.3.1. Size in memory

Here we have measurements for the size that the indices take once they are loaded in
memory. In figure 7.1 we took several k2-tree configurations, measured their size in memory,
and aggregated them by average and percentiles 50, 95 and 99. This was done by recursively
scanning k2-trees and measuring the sizes of each block, pointer and metadata for every tree,
and then summing them.

Figure 7.1: Index size in-memory for several configurations in MB

48

Apart from the averages and percentiles that help us understand behavior in most cases,
it can be relevant to have some idea of the indices that have more data. In figure 7.2, we
computed the maximum sizes for each configuration. If we focus on the 128-0-32 configuration,
this implies that we would need to have at least nearly 5GB of capacity to allow all indices to
be included in the cache-replacement flow, otherwise it would start ignoring indices of that
size.

Figure 7.2: Index size in-memory for several configurations, max size in GB

In figure 7.3, we have the sum of sizes for each configuration. This can help us decide if
we want to load all indices in memory or not.

Both figure 7.2 and 7.3 gives us some idea of the compression level based on the N and C
parameters. The N parameter indicates the block size, as it gets higher we are representing
more edges in a tree by the blocks’ bit-sequence, as opposed to using regular memory pointers
of 8-bytes (in 64-bit processors). As we increase the C value, we are increasing the size of the
pointer tree on top of the block trees, which explains the size increase.

Figure 7.3: Index size in-memory for several configurations, total size in GB

7.2.3.2. Size in disk

Here we show some measurements to sizes of indices on disk. In figure 7.4, the measure-
ments are classified by k2-tree configuration, and for each one, we take average and percentiles
50, 95 and 99.

Interestingly, these occupy 25-50 % less space in disk than in memory, the main reason
for this is that in the disk serialization we omit the explicit representation of pointers, and
instead used an implicit representation based on the ordering of blocks.

49

Figure 7.4: Index size in-disk for several configurations in MB

In figure 7.4, we measure the maximum size a k2-tree can occupy for each configuration on
disk. When comparing with figure 7.2 we can see the difference in size can be quite drastic due
to pointers for referencing in memory. Also, the difference tends to decrease when increasing
the N parameter that affects block sizes.

Figure 7.5: Index size in-disk for several configurations, max size in GB

In figure 7.6 we have the total size in disk occupied by all k2-trees for each configuration
measured. Following the same idea as above, when compared with figure 7.3 we can notice
an even more drastic difference when it is loaded in memory, specially for lower N values.

Figure 7.6: Index size in-disk for several configurations, total size in GB

7.2.4. Index loading

In this subsection, we measured the time it took to pick a k2-tree index from disk and
loading it into memory so it is ready to be used.

In figure 7.7, following the same idea as for size measurements, we measured the loading
times in average and percentiles 50, 95 and 99. Seeing that P99 is under 200 ms in all cases
shows that we are generally loading indices very quickly, and indicates that the use of a
replacement strategy such as LRU should not have much impact on performance when it
needs to load indices.

50

Figure 7.7: Index loading times for several configurations, times in millise-
conds

In figure 7.8, we have measurements for the maximum loading time. If we take a look
at the 128-0-32 configuration and the same time look at the table 7.2, we can see that
the value from the bar graph shows the loading time for the index represented by resource
<http://schema.org/description>, which at the same time is the index with more triples and
with more size both in memory and disk. 30 seconds of loading time can be a big problem
in production scenarios, so these big indices probably need to be dealt with differently from
the rest, for example if it is an index that has high usage demand it might be desirable to
have it loaded at all times, outside of the LRU flow, or in the contrary case, to never load it.

Figure 7.8: Index loading times for several configurations, max times in
seconds

7.3. Querying
For measuring query performance by time, we considered as our dataset a Wikidata

snapshot which is indexed with the k2-trees and another dataset of real user queries on
Wikidata from [30]. Some queries were filtered out so we could measure the effect of the ca-
che more accurately without too many variables to be considered. For this, it was necessary
to remove any queries that would use the NodeId to resources map inside Jena, for example,
FILTER or GROUP queries that need to inspect the real resources. We also removed some
other queries with operators like SERVICE, GRAPH and path queries for simplicity.

Each of the queries was wrapped with a COUNT operator, so we don’t materialize results
or use the resources dictionary in Jena.

51

http://schema.org/description

Figure 7.9: Boxplot with raw time results for 19628 queries. 1) Jena: without
using our caching system. 2) Cache: Using the caching system without re-
placement, loading everything on memory before the first query is executed.
3) Cache 10G LRU: caching system with 10GB capacity using LRU repla-
cement. 4) Cache 1G LRU: 1GB of capacity

To evaluate more queries we also put a timeout of 30 seconds. This is realistic because
more expensive queries will be stopped like this in most services.

In the figure 7.9 we can see that most queries in all scenarios considered are near the 0
seconds by looking at the orange horizontal bars, where the 25 % to 75 % percentiles are.
Here we considered 19628 user queries.

The boxplot doesn’t say much comparatively, but at least it says that most results take
very little time and the caching system doesn’t make things significantly worse on the average
query.

52

Figure 7.10: Boxplot with log10() time results in milliseconds for 19628 que-
ries. 1) Jena: without using our caching system. 2) Cache: Using the caching
system without replacement, loading everything on memory before the first
query is executed. 3) Cache 10G LRU: caching system with 10GB capacity
using LRU replacement. 4) Cache 1G LRU: 1GB of capacity

In figure 7.10, we took log10() to the times in milliseconds by using the same data as in
figure 7.9, here we can visualize more clearly that most queries take a few milliseconds to
process in all configurations.

Since we want to analyze cases where the caching system will make a difference for worse
or better, we take a different approach for analyzing results. First, we join the result sets of
Jena only and Cache without replacement by matching the same query. The result table of
this is such that each row contains times for both cases on the same query.

Now, we take the two disjoint sets, one in which Jena alone wins and the other one where
the cache wins.

Next, we take differences in time for each set, where the left side is the time of the loser
and the right side is the time of the winner, so the difference is always positive (winner is
lesser time).

Having these differences, we compute the percentiles and this will result in two curves,
one representing the cache winning and the other one Jena alone winning.

53

Figure 7.11: Percentiles of time differences where the cache wins over Jena.
The cache wins 2976 times

Figure 7.12: Percentiles of time differences where Jena wins over the cache.
Jena wins 16401 times

Figures 7.11 and 7.12 show the results for this. Here we can see that at around percentile
72 % we start having some real improvement by using the cache, while Jena alone keeps the
same near 0 seconds of improvement over the cache. This means that 28 % of the winning
results for the cache have significant improvement, that is 830 results.

When approaching percentile 92 %, some queries start showing better performance with
Jena alone, while we keep having queries where the Cache wins. This means that 8 % of
winning results for Jena have significant improvement, that is 1306 results.

54

Figure 7.13: Boxplot for times above one second. Jena vs Cache fully pre-
loaded (no LRU).

In figure 7.13, we filtered results to those that took above one second. The median is
higher for the cache as it can be seen. One thing we noticed from this is that if we remove the
timeouts the median becomes lower than Jena’s. There are 657 timeouts for the Cache, while
there are 467 for Jena. This can be explained by queries favoring the locality of CPU cache
offered by B+trees, while for the k2-trees that locality is somewhat lost due to decompression
requirements, which tends to be more accentuated when there are joins that need to traverse
the same tree paths multiple times.

In this case, we didn’t consider the cache with replacement, because that can only be
worse than the cache with all preloaded indices.

7.3.1. Timed out queries
It is also interesting to study queries that timed out in any of the two cases. For this, we

select those and run them again, but this time with a timeout set to five minutes.
We also include a different cache configuration for the analysis. Our default go-to con-

figuration is 128 nodes per block, pointer three (mixed) of depth 0 and covering a NodeId
space up to 232 possible coordinates. The new configuration we are testing here is similar,
with the same values, except the pointer three is of depth 10. We identify it here as “Cache
128-10-32”.

Figure 7.14: Boxplot comparison using a timeout of 5 minutes for previously
timed-out queries at 30 seconds. Number of queries: 560.

55

In figure 7.14, we measure the times of all previously timed-out queries. In this case, we
still have time outs which are, 214 for default cache configuration, 201 for the 128-10-32
configuration and 74 for Jena alone. Those are all gathered at the 300-second mark in the
boxplot.

Figure 7.15: Percentile comparison using time-out of 5 minutes for pre-
viously timed-out queries at 30 seconds. Cache 128-0-32 has 163 winning
results

Figure 7.16: Percentile comparison using time-out of 5 minutes for pre-
viously timed-out queries at 30 seconds. Jena has 355 winning results.

Figure 7.17: Percentile comparison using time-out of 5 minutes for pre-
viously timed-out queries at 30 seconds. Cache 128-10-32 has 171 winning
results.

Figure 7.18: Percentile comparison using time-out of 5 minutes for pre-
viously timed-out queries at 30 seconds. Jena has 347 winning results.

To compare on a query-by-query basis we measured time differences percentiles as before,
and also added a plot for the new cache configuration.

56

For these plots to make sense it is relevant to consider the number of values each curve has.
These curves quantify how many of the winning cases achieve considerable speed-up when
compared to the other scenario. Both cases are similar, so we focus on one. In figures 7.15
and 7.16, we see that the Jena curve has a smoother increase in the time difference, which
means that if we consider all cases it is winning ordered increasingly by their time difference
to the cache result, we can see improvements early on. This is opposed to the cache curve,
which has a sudden increase near the percentile 75 %, or said differently, 25 % of the cases in
which it is winning it achieves very considerable performance over Jena. The same applies to
figures 7.17 and 7.18, where we can see a slight improvement in the cache over Jena.

7.3.2. Few queries run in cold boot
One explanation for why B+trees are so often winning is that the Jena implementation

caches good portions of their blocks in memory. So in the next experiment, we run a few of
the queries where Jena won against the cache, but this time with cold storage. We take the
top 10 results where Jena was better when compared to the cache results in the query to
query time difference comparison.

The results show that Jena can be done with these 10 queries almost immediately. When
examining the queries that are being run, we noticed that every one of them has a LIMIT
instruction with a small number. This explains a lot of the wins for Jena. The cache was
configured to compute the minimum of resulting rows between all results and 10 million rows
before sending any results back to Jena. Jena is stopping much earlier than that.

We could solve this by trying to adjust the number of rows computed before partially
reporting results from the caching system, but this also can be tricky to determine. Too low
of a value can add more network overhead, since it would require sending more messages to
send the full response.

Instead, we choose to run the same queries without the LIMIT restriction and compare
with that.

Figure 7.19: Running the 10 worst queries for the caching system in Jena,
modified so that the LIMIT instruction is removed. Each run is done after
a cold boot of Jena.

Figure 7.19 has the time results for running Jena against the worst 10 queries for the
Cache, which all timed out. These were also run in a cold boot, which means the server was
started every time for each of the query runs.

Even with that, we get better results with Jena. Given all of this, we move our focus to

57

study queries one by one.

7.3.3. Some queries with better performance with Jena

SELECT (COUNT(*) AS ?count) WHERE {
SELECT ?var1 ?var2 ?var3 ?var4
WHERE {

BIND (<http://www.wikidata.org/entity/Q2095> AS ?var5).
?var1 <http://www.wikidata.org/prop/direct/P360> ?var5 .
?var3 <http://www.wikidata.org/prop/direct/P361> ?var1 .
OPTIONAL {

?var1 <http://www.w3.org/2000/01/rdf-schema#label> ?var2 .
}
OPTIONAL {

?var3 <http://www.w3.org/2000/01/rdf-schema#label> ?var4 .
}

}}

Figure 7.20: P360 has 214k points, P361 has 3.1M points, label has 483M

In figure 7.20 we have a query with two OPTIONAL. It turns out that each OPTIONAL
content is processed independently of other BGP sections and in this case it would be executed
many times with different ?var1 and ?var3 bindings. This is good, but the problem with our
setting is that each time it goes to execute one OPTIONAL section, with each binding, it
has to incur in a network request. In this particular scenario the #label predicate takes part
in the two OPTIONALs, and as this is one of the biggest indices it can also add considerable
cost to the query execution.

SELECT (COUNT(*) AS ?count) WHERE {
SELECT *
WHERE {

?var1 <http://www.wikidata.org/prop/direct/P31>
<http://www.wikidata.org/entity/Q2464485> ;

<http://www.w3.org/2000/01/rdf-schema#label> ?var2Label .
OPTIONAL {
?var1 <http://www.wikidata.org/prop/direct/P580> ?var3 .
}
OPTIONAL {
?var1 <http://www.wikidata.org/prop/direct/P582> ?var4 .
}

}}

Figure 7.21: P31 has 94.7M points, label has 483M points, P580 has 605K
points, P582 has 534K points

58

In figure 7.21 we have a similar situation, in which the OPTIONAL content itself has
many less points, but still this can be pretty expensive on the cache, because it would incur
in many network requests.

SELECT (COUNT(*) AS ?count) WHERE {
SELECT *
WHERE {

?var1 <http://www.wikidata.org/prop/direct/P351> ?var2 ;
<http://www.wikidata.org/prop/direct/P352> ?var3 .

}}

Figure 7.22: P351 has 768K points, P352 has 620K points

In figure 7.22 we don’t have that many points, but surprisingly Jena won anyway. This
time everything should run on the cache without too many network requests. In this case, we
have a full predicate index scan, followed by a scan with one variable triple pattern. Jena has
some advantage here because it has much more freedom for which indices to choose. Recall
that Jena has SPO, POS, and OSP indices. For each one of the ?var1 it sees on P351 it
can choose to scan SPO, and the good thing about SPO index is that all ?var3 results will
be found physically one after the other. The other good thing there is about this is that, as
these are small predicates, Jena will probably load them once into memory completely, and
then apply the remaining of the work there, instead of fetching it from disk each time. The
cache, on the other hand, has to make one band scan on the P352 predicate index for each of
the points in P351. This means a 768K times 620K operation, which will be quite expensive.

SELECT (COUNT(*) AS ?count) WHERE {
SELECT ?var1Label ?var2Label ?var3Label ?var4Label
WHERE {

<http://www.wikidata.org/entity/Q238231>
<http://www.w3.org/2000/01/rdf-schema#label> ?var1Label .

<http://www.wikidata.org/entity/Q17278>
<http://www.w3.org/2000/01/rdf-schema#label> ?var2Label .

<http://www.wikidata.org/entity/Q843905>
<http://www.w3.org/2000/01/rdf-schema#label> ?var3Label .

<http://www.wikidata.org/entity/Q4115331>
<http://www.w3.org/2000/01/rdf-schema#label> ?var4Label .

}}

Figure 7.23: label has 483M points

In figure 7.23 we have a query that only has the #label predicate, multiple times. For
Jena, this can be easy because it has to scan SPO index 4 times, with only object variables

59

each time, and then make a Cartesian product of those. If the contents of each of the 4 results
are small, it can have them all in memory, and the most expensive part would be to make a
few disk random accesses for each of the 4 results. Once the results are loaded into memory, it
only needs to multiply the sizes of each part, because this is a COUNT operation, it doesn’t
have to materialize anything. But even if it is not that smart, and the count is relatively
small, it won’t have much trouble in finding the result, because after the initial fetching from
disk, it should only make sequential access memory operations when the 4 parts it operates
are sufficiently small.

In the cache, on the other hand, we are always making random access in-memory ope-
rations. So the real comparison will not be disk versus memory, but few disk accesses with
sequential memory access versus all random memory access.

7.3.4. Some queries with better performance with k2-trees

SELECT (COUNT(*) AS ?count) WHERE {
SELECT *
WHERE {

?var1 <http://www.wikidata.org/prop/direct/P31>
<http://www.wikidata.org/entity/Q5> .

?var1 <http://www.wikidata.org/prop/direct/P735>
<http://www.wikidata.org/entity/Q923> .

}
}

Figure 7.24: P31 has 94.7M points, P735 has 5.8M points

In figure 7.24, we have a query with two predicates where their k2-tree indices are quite
big. Based on a Jena’s typical optimization that applies for both the cache and Jena, in
which it tends to start with parts that would yield less results (so it can process less data to
achieve the same result), the cache will make one band scan over the index for P735, and for
each result, it will make a point scan on P31. Jena, on the other hand, will probably use the
POS index for getting ?var1 values on P735-Q923 and with that, it has to go to some of the
three indices to see if the triples with P31-Q5 are there. This takes long probably because it
doesn’t have any other way than do this by incurring in lots of disk random accesses to find
if the triple exists.

60

SELECT (COUNT(*) AS ?count) WHERE {
SELECT ?var1
WHERE {

?var1 <http://www.wikidata.org/prop/direct/P31>
<http://www.wikidata.org/entity/Q5> .

?var1 <http://www.wikidata.org/prop/direct/P4072>
?var2 .

}}

Figure 7.25: P31 has 94.7M points, P4072 has 205 points

In figure 7.25, we have something similar than before, but this time P4072 has only 205
points. In this case, it is not completely clear what processors are doing. One way would be
to scan ?var1 values from the P31-Q5 portion, and then evaluate those on P4072. Other way
would be to completely scan P4072, and then evaluate ?var1 values from there in P31-Q5.
The second alternative seems to be the right answer for both the cache and Jena, because
the left side of the join has fewer elements, but it also means having to make in the order of
205 disk random accesses for Jena. So there is the possibility that Jena would do better by
choosing the first alternative to make fewer disk random accesses, but it is not being smart
enough to consider that.

The cache seems to do better because it is only having to make those random accesses in
memory.

SELECT (COUNT(*) AS ?count) WHERE {
SELECT *
WHERE {

?var1 <http://www.wikidata.org/prop/direct/P31>
<http://www.wikidata.org/entity/Q5> .

?var1 <http://www.w3.org/2000/01/rdf-schema#label>
?var2 .

?var1 <http://www.wikidata.org/prop/direct/P17>
<http://www.wikidata.org/entity/Q298> .

}}

Figure 7.26: P31 has 94.7M points, label has 483M points, P17 has 13.8M
points

In figure 7.26, we have many operations over quite big indices. In this case, it seems to be
less surprising that the k2-trees win, because Jena would be forced to do a large number of
random disk accesses.

7.3.5. Network request optimization
Based on the results from subsection 7.3.3, where all BGP processing was being done in

the cache, and incurring in too many network requests due to some queries having several

61

BGP being processed, we make an optimization to retrieve only the first BGP from the cache
so that there is only one BGP request to cache per query (there can still be more than one
request to retrieve a large result in several parts on the same BGP). This optimization will
help with queries having OPTIONALs and other categories needing more than one BGP per
query.

Figure 7.27: Result comparison for Cache and Jena with network request
optimization

In figure 7.27, we can see the result of this optimization. While it doesn’t seem much
different, it reduced the median for the Cache significantly. In figure 7.14 the median was 130
seconds and with the optimization it became 48 seconds. Also, the number of times that the
cache is winning now is 234 against the 292 where Jena wins. Previously, we had 163 queries
where the cache was winning and 355 where Jena was winning. Note that the sum of queries
is different in each scenario because in the optimized scenario some queries are not timing
out with the optimized cache usage, while before they were timing out in both cases.

7.3.6. Selective usage of the cache
Due to the cache not being the best solution at all times, we also implement a solution

which uses the cache only when it can yield the same result faster than Jena. Our approach
was to begin running the BGP evaluation both in the cache and Jena, we detect which one
is able to give some results faster and cancel the slower engine, while waiting for the faster
one to complete.

This should be effective because we are not wasting much on doing the initial speed
evaluation to select the processing engine, it requires a few results while running two engines
at the same time. The initial results are a good indication of which one will be faster to
complete, because it completes one full step of iteration of the processing, where Jena might
have done some random accesses to the disk or the cache some expensive operation.

The solution also adds some cost to the cache because we now need to make its operations
cancellable, so we don’t make any unnecessary processing, which means asking with some
frequency if the query has been canceled in a critical section of the code. As we make this

62

frequency manageable, we can reduce this cost so it becomes barely noticeable. At the same
time, a cancellation message is needed to be sent from Jena to the Cache.

Figure 7.28: Result comparison for Jena, Selective and Cache

In figure 7.28, we have measurements that included the selective usage of the cache. The
aggregated visualization shows that the selective results are worse than Jena, but it decreased
the number of timeouts, Jena has 101 timeouts, while the selective strategy has 95 timeouts.
For this experiment, we took a very conservative approach of selecting the cache, such that we
only need one result of Jena first to choose Jena, but 100 results from the Cache before any of
Jena. This can cause a discarding of a faster execution on the Cache, due to picking the Jena
engine too soon. The slightly worse results can be explained by the cost of synchronization
during the selection phase. Also, this time for each case we are using 533 queries.

7.4. Updates
For the updates, we have two kinds of experiments. The first is about random updates,

where we only work with k2-trees in the C++ layer. The second experiment involves Wikidata
snapshots and experimenting with the complete Jena/cache system.

7.4.1. Random updates

In the random updates experiments, we select several configurations of k2-trees. For each
one of the N-C-H configurations, we run four different experiments based on cluster size. The
cluster size indicates how many points around a randomly selected point are being inserted.
The chosen cluster sizes are 1, 256, 1024 and 4096.

Each experiment first inserts a million points in a k2-tree, there are only two time mea-
surements, one before the first point is inserted and the second one after the last point is
inserted. With this, an average time is calculated for the insertion of a single point. After all
insertions are done, the sequence of inserted points is used to delete all the elements, and the
average deletion time is computed in the same way.

63

Figure 7.29: Average insertion time per point for different configurations of
k2-trees and cluster size.

Figure 7.30: Average deletion time per point for different configurations of
k2-trees and cluster size.

In figure 7.29, we have the results of the experiments only for insertions. Here it is clear
that as we increase the cluster size, the insertion time becomes higher for each group of
N-C-H configurations. This can be explained by the increase of block splits during insertions
when the points are more condensed. There is also a clear improvement when using a value
of 10 for C, compared to when using 0. This justifies the use of a pointer tree on top of block
trees.

Similarly to the insertion results, in figure 7.30 we have the results for deletions. In this
case, the cluster size increase doesn’t seem to affect the deletion speed significantly when
looking at the sizes 256, 1024 and 4096, but there does seem to be a big difference between
cluster size 1 and all the other sizes. The small differences are explained by the fact that the
merge block operation is less expensive than the split block operation (there is no need to
find a frontier node) and therefore it is less sensitive to cluster size differences. On the other
hand, for cluster size 1 the chance of the merge block operation is reduced. Other thing to
be noticed is that the configuration 1024-0-32 does seem to be more expensive in all cluster
size results, and dramatically more so than 1024-10-32. This is not so easy to explain, but
it indicates that some undesirable behavior is being triggered with that configuration.

7.4.2. Wikidata insertion experiment
For measuring insertion time, we consider two Wikidata snapshots taken at different times

and extract randomly 10000 triples that are in the newest one that are not in the oldest one.
Then, we make 5000 insertions on each case: Jena alone, and Jena with the cache.

64

The insertions in this case are made in the form of SPARQL insertions, where each triple
to be added is wrapped in a SPARQL insertion statement.

Figure 7.31: Insertions time. Each case was tested with 5000 triple insertions

In figure 7.31, we have a boxplot comparison of Jena running insertions by itself and Jena
together with cache running insertions.

7.5. WatDiv experiments
In the WatDiv experimentation we chose only one k2-tree configuration, 128-10-32. There

are 1,091,437,702 triples, which stored in disk amounts for 8 GB and in memory for 12 GB.

Figure 7.32: Index sizes of WatDiv

In figure 7.32, we have index sizes by some percentiles and by their average. We show both
size in disk and size in memory for comparison. As it is expected, size in disk is lower by a
significant amount, which can be seen on the third barplot in the figure. Note that the y-axis
is shown in the log10() of the sizes, which allows us to visualize the P50 and P95 better at
the same time.

65

Figure 7.33: Retrieval times for WatDiv

In figure 7.33, we repeated the visualization from the sizes for the retrieval times. This
one shows that we can load most indices in less than a second, and up until the median, the
times are below 32ms.

WatDiv offers several query templates that are used to generate queries, we worked with
the query templates C1, C2, F1, F3, F4, L1, L4, S1, S2, S4, S5. The other templates from
WatDiv were tried in experiments, but they caused technical difficulties such as query parsing
errors from Jena or timeouts for all engines, so they were skipped. Each template generates
a single query that is repeated 10 times in our experiments.

Figure 7.34: Results from the WatDiv dataset experimentation, categorized
by query templates and engines

In figure 7.34, we have the results from running the queries categorized by the query
template and engine. This time Jena wins in all cases, in contrast with the results from
Wikidata where there were some winning cases for the Cache.

66

SELECT ?v0 ?v4 ?v6 ?v7 WHERE {
?v0 <http://schema.org/caption> ?v1 . # T1: 249213 results
?v0 <http://schema.org/text> ?v2 . # T2: 752007
?v0 <http://schema.org/contentRating> ?v3 . # T3: 750734
?v0 <http://purl.org/stuff/rev#hasReview> ?v4 . # T4: 14779456
?v4 <http://purl.org/stuff/rev#title> ?v5 . # T5: 4501138
?v4 <http://purl.org/stuff/rev#reviewer> ?v6 . # T6: 15000000
?v7 <http://schema.org/actor> ?v6 . # T7: 1670842
?v7 <http://schema.org/language> ?v8 . # T8: 626305

}

Figure 7.35: C1 query

In figure 7.35, we have the C1 query. In this query, we added a comment with the number
of results for each triple pattern, before any joins are made. This is not completely accurate
for understanding the query cost, since many times, with the help of indices, the query engine
has to scan only a subset of the triples for query evaluation, but it helps on having a rough
estimate of the minimum cost.

For the query C1, we consider an example query plan from Jena/TDB, which might not
necessarily be the real query plan. It could take the first triple pattern T1 and scan all the
triples having as predicate <http://schema.org/caption>, which are 249213 triples to get
from the POS index. Supposing that as a next step the optimizer will pick the triple pattern
T3: “?v0 <http://schema.org/contentRating> ?v3 .”, for each ?v0 from the first scan, it could
pick the SPO index to find the key (?v0, <http://schema.org/contentRating>) and get all
the objects having that key. All of those objects should be stored physically in consecutive
order within the B+tree. The number of objects to find are in the worst case 249213. The
process goes on, and as all the triple patterns are connected by some variable, each index
scan does a random access search using a key and it is followed by a sequential search until
reaching the last triple pattern.

Now we do the same exercise for the k2-tree engine, for which we established in the
implementation that the same query plan as Jena was to be followed. For the first step, there
is a scan of all triples having predicate <http://schema.org/caption>, which means finding
the k2-tree index in constant time using the predicate’s NodeId in a simple lookup to a hash
table and then getting all triples with the full scan operation from the index. There are 249213
triples to be scanned, same as before, and each of those triples needs to be reconstructed
from a compressed representation which involves several random accesses for each triple. For
each triple from the full scan on T1, there is a band scan on the k2-tree index corresponding
to <http://schema.org/contentRating> from the triple pattern T3.

The point of these examples is that there is an advantage for the B+trees over the k2-
trees in terms of query evaluation performance, which is that the triples in the B+trees
that are needed for the query are more readily available than the k2-trees. The triples don’t
need to be reconstructed and they are all stored sequentially. Another advantage is that the
B+trees don’t need be fetched from disk all the time, it may be that large chunks of them are
temporarily residing in memory. The disadvantage of the B+trees over the k2-trees is that
they take considerably more space, and in order to beat them, they need to occupy much
more memory than the k2-trees, which can be restrictive in many cases.

67

http://schema.org/caption
http://schema.org/contentRating
http://schema.org/contentRating
http://schema.org/caption
http://schema.org/contentRating

T1 T2 T3 T4 T5 T6 T7 T8

?v0 ?v4

?v6 ?v8

(a) C1

T1 T2 T3 T4 T8 T9 T10

T7T6T5

?v0

?v2

?v4

?v3

?v8?v7

(b) C2

T1 T2 T5 T3 T4 T6
?v0 ?v3

(c)
F1

T1 T2 T3 T6 T4 T5
?v0 ?v5

(d)
F3

T1T2 T3 T4 T5 T9 T6 T7 T8

?v0 ?v1

(e) F4

T1 T3 T2
?v2?v0

(f)
L1

T1 T2
?v0

(g)
L4

T1 T9...

?v0

(h)
S1

T1 T4...

?v0

(i)
S2,S4,S5

Figure 7.36: Triple pattern graph representation for each of the WatDiv
queries. Multiple triple patterns sharing a variable are within the same
circle, and its variable name is at the top of each circle. Edges between two
triples are also representing that a variable is shared between them, where
the corresponding variable is the label accompanying the edge.

In figure 7.36, we consider the triple pattern graph representation for each query. In the
sub-figure 7.36.a, the triple patterns T1...T4 are sharing the variable ?v0, T4...T6 share ?v4,
T6-T7 share ?v6, and T7-T8 share ?v8. This representation helps in understanding the com-
plexity of each query. For example, the sub-figure 7.36.b, which has the graph representation
for query C2, shows us quickly that the query C2 has more shared variables than any other,
and it also has more triple patterns. This complexity of query C2 helps with explaining why
it is the more expensive query as we measured in the figure 7.34.

The other subfigures from 7.36.c to 7.36.i show varying degrees of complexity for the
remaining queries.

7.6. Analysis
Based on the results, we can see that in most queries there is no big performance penalty

from using the k2-tree cache. There is a small overhead that comes from network request
messages that have to be passed between Jena and the cache.

The goal of this project is to improve query processing times, so we focus on a smaller set
of queries that made the difference. We use figures 7.11 and 7.12 to understand the difference
on a query-by-query basis, where it can be seen that there are a considerable number of
cases where the cache wins significantly, but more in which Jena wins significantly. This
goes against our expectations, since the Cache system uses only in-memory structures when
replacement is turned off, as opposed to Jena, that has B+tree indices that are on disk.

68

When seeing what is going on under the hood, it is no longer that surprising that Jena
could win many times. Jena uses memory mapped files for accessing the blocks in a B+tree,
and its buffer for this purpose can be quite big. Memory mapped files are in big part managed
by the operating system and have their own caching mechanism. We have to also take into
consideration that B+trees store their results in big sequential segments that keep values by
their key, which means that triple pattern results are all stored in a physically sequential
portion of the B+tree and the values are uncompressed. Sequential access in disk is quite
fast, where in some rare cases it should be able to outperform complex random accesses on
memory, but more than that, due to the OS having readily available those big chunks of
B+tree blocks cached in memory, it can beat the random access used by k2-trees, because
sequential access is the fastest kind on RAM due to improved hit rate on L1-L3 CPU caches.

Apart from the good access patterns that Jena can do, we saw in subsection 7.3.3 that there
are some types of queries that are not well optimized for the cache usage, such as OPTIONALs
that can make it harder on the cache results due to the communication mechanism between
Jena and the cache that becomes expensive if it is overutilized. We successfully mitigated
this problem in subsection 7.3.5 by allowing at most one BGP extraction from the cache per
query, but Jena kept winning regardless of this optimization.

We also noticed there that for some queries the B+tree caching can occur within the
processing of the same query, which means a massive optimization over the naive B+tree
processing on disk and also outperforming our cache processing. The case in which the B+tree
is better due to the caching of B+tree blocks is not very deterministic, in the sense that Jena
has no much control over the caching mechanism operated by the OS. This nice performance
of Jena comes as a big cost of high memory usage, in our experiments we needed to set its
max heap size to 256 GB to avoid out of memory errors from the Java runtime. At the same
time, for the Cache we could load the entire k2-tree indexed data in about 32GB, which is not
a requirement, since we can use less than that by using the cache replacement mechanism.
During query evaluation, our cache system doesn’t need to use much extra memory, because
it can stream results partially before finishing the evaluation.

We saw in subsection 7.3.4 that the caching system with k2-trees can improve query
responses significantly for some types of queries. These queries are typically ones that would
inevitably cause a high number of random disk access patterns when using only Jena and its
local caching mechanism wouldn’t help much in mitigating that cost.

As we noticed that some queries are still better in Jena, while some improve with the
usage of the cache, we introduced a selective mechanism in subsection 7.3.6 that can start
running both kinds against a query so a choice can be made early to select the best processing
engine and then continue with the work with that. In that experiment we didn’t see much
improvement with the selection algorithm, but previous results showing that the cache can
have a very good impact indicate that it was due to the conservative way of choosing an engine
that mostly preferred Jena. So it should be possible to have better results by improving the
selection mechanism.

For the insertions results our main concern was to not increase costs, and we achieved this
according to the results in figure 7.31. The reason for which we don’t aim to improve Jena
insertion times is because in this system we still have to insert things into the B+tree, because
we are making a caching system that can improve response times in some occassions, not a
replacement for B+trees. Hence the cost of updates to the cache will always be additional to
those of updating Jena’s persistent storage.

In section 7.5, we ran experiments on a WatDiv dataset. Even if it is a synthetic data-

69

set, it helps in validating our previous results. This time the results were more consistent
in favor of Jena’s performance, but at the same time, the number of types of queries was
very low in comparison to the types we used for Wikidata, which by nature were hard to
categorize, since those were real user queries and added much more variation to the experi-
mentation.

70

8. Conclusion

In this work, we studied the application of k2-trees as a storage mechanism for caching
of RDF triples in memory. The main outcome from it is that this can be beneficial for
query performance, but it has the chance of being worse in some cases. This is explained
by the possibility of data managed by B+trees being many times cached in memory and
enabling more in-memory sequential access of data that is readily available, without requiring
decompression. Also, the required B+tree data in disk is very commonly stored sequentially,
which makes its access fairly cheap during disk reads.

There were cases that we identified that had poor performance with the usage of cache,
which were explained by a few reasons. One of the reasons was about some queries causing
a large number of unnecessary messages between Jena and the caching system, this was
mitigated at the expense of using the cache BGP evaluation at most once per query. The
second reason is about not enough optimizations that could benefit from L1-L3 CPU caches
which Jena takes advantage of when data is loaded into memory. Also, Jena has more index
types available to choose, while the cache has only one kind of index. If Jena selects the
indices by optimizing for sequential disk accesses over random access, there is a good chance
that it will be faster than some expensive patterns made within the cache, for which there is
only one choice.

One of the main parts of this work was to be able to do updates on the caching system.
The main concern was to support the updates without adding to the cost on the system
noticeably. The goal was accomplished by applying some of the ideas that are commonly
seen in modern database systems, such as a write-ahead log that was fine-tuned to our
system and bulk operations that run periodically offline in the background. These ideas give
reliability to the caching system, because the online updates to the in-memory structure are
only temporary and serialization of the k2-trees becomes infeasible for each update, as it is
an expensive operation.

As in any software solution, in using this caching system we are subjected to some tradeoffs.
First, there is the extra layer of indirection that needs data passing through the network.
Even for a local network, there can be some small impact on response times. This is not a big
cost to pay for having much better response times. Also, there is the extra management cost
and extra complexity that can mean more bugs to solve. Apart from these, there is a cost on
resources like memory, but we can control this by using a replacement of indices and reducing
the memory footprint while paying for the disk accesses to retrieve the indices into memory,
and while yielding fairly good results. We also saw that using Jena is very expensive in terms
of memory usage, so if it is affordable to sacrifice performance in favor of less memory usage,
a solution like the k2-tree indices could be a good enough alternative.

71

8.1. Future work
8.1.1. Move some processing to the cache side

As we saw before, there are some types of queries that are less performant, in Jena because
they are done in a mixed way between the Jena side and the cache side, and the messaging
is done via network calls. For example OPTIONAL queries.

An optimization of our system would be to move more of the processing to the cache side.
Using the OPTIONAL queries example, we could move a bigger part of the query to the
cache and implement the OPTIONAL queries on the cache side.

This was found to be an issue late in this work and fixing it was deemed out-of-scope, as
it is rather complicated to make the change, and should be done with more urgency on a
production-level system.

8.1.2. Optimize queries, specialized to the cache
In this work, we used Jena’s optimization for queries. The issue is that what might be good

for Jena is not necessarily good for the cache or any other system. The cache uses a different
approach to processing queries than Jena, so its optimization should be tuned differently. For
simplicity, we chose to stick with Jena’s optimization, but more than that we wanted to see
that under the same conditions, it was going to be possible to have better results. In a real
scenario what matters the most is the performance and having dedicated optimizations that
work best for the cache would be an interesting topic for future work.

8.1.3. Optimize the selection of the processing engine
In subsection 7.3.6, we saw that the selection between Jena and the cache was slightly

worse than just using Jena for everything, in the aggregated results. This indicates that the
selection itself might not be making the best choice at all times, in that case, it almost always
prefers selecting Jena first. This should be possible to fix by considering more data points
before making a selection. The problem is that it gets more complicated as we select more
data points, and possibly more expensive, because it would need more time to have both
engines running at the same time.

8.1.4. Choosing B+tree when results are in memory
One big improvement over the strategy used in this work could be to identify if wanted

results are cached in memory with B+trees, and in that case, select the B+tree processing
over the k2-tree one. This can be tricky to achieve, as we mentioned earlier, whether some
blocks are in memory or not, is controlled by the operating system memory mapped files
implementation. Maybe what can be done is something similar on the application side, but
it can be complicated to achieve a similar performance.

8.1.5. Optimizations around concurrent requests
In this work, we only optimized for one request at a time. We implemented some support

for concurrency with locks, but it is probably not enough if we wanted to move this to a

72

production-level. For example, it should be possible to provide locking support at sub-tree
levels due to some encapsulation of data given by frontier nodes in the k2-tree structure.

8.1.6. Optimizations to reduce in-memory random access in favor
of in-memory sequential access

One of the issues of the caching system when compared to Jena is that Jena takes ad-
vantage of L1-L3 CPU cache accesses when data is loaded into memory, because B+trees
store their data in big sequential blocks that get loaded into memory as physically sequential
buffers. The k2-trees also take advantage of CPU caches, due to blocks also being stored in
sequential buffers, but they have two main drawbacks regarding this; one is that there are a
lot of blocks, so even if a block is cached in CPU caches, there are a lot more to process and
they are not necessarily near to each other in memory. The other drawback is that the values
to be retrieved are not directly accessible, instead we need to compute them by traversing
the blocks, and in some cases when having to travel through frontier nodes we lose the L1-L3
cache benefit.

To mitigate the issues with k2-tree access we could simulate the B+trees behavior by
adding another layer of caching with much less capacity that could store concrete values
sequentially in-memory. This layer would be meant only for hot memory areas and could
grant us the benefit of compact data easily accesible through k2-trees and very fast sequential
in-memory access patterns.

A disadvantage of doing this is that it makes the system much more complex and hard to
manage, we would have to worry about more synchronization to be made.

8.1.7. Replacement strategy optimizations
As we mentioned in subsection 7.2.4, regarding the maximum index load times, there are

some very few indices that can take 30s to 60s to load, probably even just one index in the
Wikidata case. But this alone can have a big impact on performance if the LRU replacement
ends up evicting and loading many times that index, so considering this, it might be needed
to make some exceptions in the logic so these rare cases are handled differently and don’t
impact performance that much, for example to never load them or if loaded never evict them.

There can be other optimizations or other replacement strategies that we did not consider
and could apply better to the k2-tree cache scenario.

8.1.8. Resources dictionary
One point of improvement can be finding a better performant resource dictionary. That

has a huge potential in terms of reducing response times for Jena. This is orthogonal to the
work presented here, since nothing about that was modified.

73

8. Bibliography

[1] I. Robinson, J. Webber, and E. Eifrem, Graph databases: new opportunities for connected
data. O’Reilly Media, Inc., 2015.

[2] T. J. Berners-Lee, “Information management: A proposal,” tech. rep., 1989.
[3] W. W. W. Consortium et al., “Sparql 1.1 overview,” 2013.
[4] T. P. G. D. Group, “What is postgresql?.” https://www.postgresql.org/docs/14/intro-

whatis.html, 1996-2022.
[5] D. Brickley, R. Guha, and B. McBride, “RDF Schema 1.1.” W3C Recommendation, Feb.

2014. https://www.w3.org/TR/rdf-schema/.
[6] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt, “Getting the Most

Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph,” in The
Semantic Web – ISWC 2018 – 17th International Semantic Web Conference, Monterey,
CA, USA, October 8–12, 2018, Proceedings, Part II, pp. 376–394, 2018.

[7] W. Ali, M. Saleem, B. Yao, A. Hogan, and A. N. Ngomo, “A survey of RDF stores &
SPARQL engines for querying knowledge graphs,” VLDB J., vol. 31, no. 3, pp. 1–26,
2022.

[8] D. Battré, “Caching of intermediate results in dht-based rdf stores,” International Jour-
nal of Metadata, Semantics and Ontologies, vol. 3, no. 1, pp. 84–93, 2008.

[9] M. Martin, J. Unbehauen, and S. Auer, “Improving the performance of semantic web
applications with sparql query caching,” in The Semantic Web: Research and Applica-
tions: 7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece,
May 30–June 3, 2010, Proceedings, Part II 7, pp. 304–318, Springer, 2010.

[10] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris, “Graph-aware, workload-adaptive
sparql query caching,” in Proceedings of the 2015 ACM SIGMOD International Confe-
rence on Management of Data, pp. 1777–1792, 2015.

[11] J. Lorey and F. Naumann, “Caching and prefetching strategies for sparql queries,” in The
Semantic Web: ESWC 2013 Satellite Events: ESWC 2013 Satellite Events, Montpellier,
France, May 26-30, 2013, Revised Selected Papers 10, pp. 46–65, Springer, 2013.

[12] W. E. Zhang, Q. Z. Sheng, K. Taylor, and Y. Qin, “Identifying and caching hot triples
for efficient rdf query processing,” in Database Systems for Advanced Applications: 20th
International Conference, DASFAA 2015, Hanoi, Vietnam, April 20-23, 2015, Procee-
dings, Part II 20, pp. 259–274, Springer, 2015.

[13] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific American,
vol. 284, no. 5, pp. 34–43, 2001.

74

https://www.postgresql.org/docs/14/intro-whatis.html
https://www.postgresql.org/docs/14/intro-whatis.html
https://www.w3.org/TR/rdf-schema/

[14] T. B. Lee, “Semantic web road map,” Sept. 1998.
[15] R. W. Group, “Resource description framework.” https://www.w3.org/RDF/, 2014.
[16] S. W. Group, “Resource description framework.” https://www.w3.org/TR/sparql11-

query/, 2014.
[17] J. Cardoso, “The semantic web vision: Where are we?,” IEEE Intelligent Systems, vol. 22,

no. 5, pp. 84–88, 2007.
[18] W3C, “RDF 1.1 Concepts and Abstract Syntax,” Feb. 2014.
[19] M. J. Dürst and M. Suignard, “Internationalized Resource Identifiers (IRIs).” RFC 3987,

Jan. 2005.
[20] A. Hogan, “Web of data,” in The Web of Data, pp. 15–57, Springer, 2020.
[21] J. Salas and A. Hogan, “Semantics and canonicalisation of sparql 1.1,” Semantic Web,

vol. 13, no. 5, pp. 829–893, 2022.
[22] D. Vrandečić and M. Krötzsch, “Wikidata: A Free Collaborative Knowledgebase,” Com-

mun. ACM, vol. 57, p. 78–85, Sept. 2014.
[23] Wikimedia.org, “Wikidata edits histogram.” https://stats.wikimedia.org/#/wikidata.

org/contributing/edits/normal|table|2020-07-01~2022-09-01|~total|monthly, Sept.
2022.

[24] D. Arroyuelo, G. de Bernardo, T. Gagie, and G. Navarro, Faster Dynamic Compressed
d-ary Relations, pp. 419–433. 10 2019.

[25] A. J. Contributors, “Fork of Apache Jena 4.3.0.” https://github.com/CristobalM/jena.
[26] C. Miranda, “RDFEWK2C - Java adapter server for Jena and Cache communication.”

https://github.com/CristobalM/RDFEWK2C.
[27] C. Miranda, “RDFCacheK2 - Dynamic and compact k2-tree caching system.” https:

//github.com/CristobalM/RDFCacheK2.
[28] C. Miranda, “c-k2tree-dyn - Implementation of dynamic and compact k2-tree.” https:

//github.com/CristobalM/c-k2tree-dyn.
[29] M. T. O. G. Aluç, O. Hartig and K. Daudjee, “Diversified Stress Testing of RDF

Data Management Systems..” In Proc. The Semantic Web - ISWC 2014 - 13th In-
ternational Semantic Web Conference, 2014, pages 197-212. WatDiv available from
http://dsg.uwaterloo.ca/watdiv/.

[30] I. C. F. C. Logic, “Wikidata sparql logs.” https://iccl.inf.tu-dresden.de/web/Wikidata_
SPARQL_Logs/en, July 2022.

75

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://stats.wikimedia.org/#/wikidata.org/contributing/edits/normal|table|2020-07-01~2022-09-01|~total|monthly
https://stats.wikimedia.org/#/wikidata.org/contributing/edits/normal|table|2020-07-01~2022-09-01|~total|monthly
https://github.com/CristobalM/jena
https://github.com/CristobalM/RDFEWK2C
https://github.com/CristobalM/RDFCacheK2
https://github.com/CristobalM/RDFCacheK2
https://github.com/CristobalM/c-k2tree-dyn
https://github.com/CristobalM/c-k2tree-dyn
http://dsg.uwaterloo.ca/watdiv/
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

	Abstract
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Objectives
	1.2 Research questions

	2 Background
	2.1 State of the art
	2.1.1 Caching of intermediate results for Distributed Hash Table RDF Stores
	2.1.2 Improving the performance of semantic web applications with SPARQL query caching
	2.1.3 Graph-Aware, Workload-Adaptive SPARQL Query Caching
	2.1.4 Caching and Prefetching Strategies for SPARQL Queries
	2.1.5 Identifying and Caching Hot Triples for Efficient RDF Query Processing
	2.1.6 This work

	2.2 Semantic Web
	2.3 Resource Description Framework
	2.3.1 IRI
	2.3.2 Literal
	2.3.3 Blank

	2.4 SPARQL
	2.4.1 Basic Graph Pattern
	2.4.2 OPTIONAL
	2.4.3 UNION
	2.4.4 FILTER

	2.5 Wikidata
	2.6 Compact and dynamic k2-tree
	2.6.1 Compact and dynamic k2-tree
	2.6.2 Practical Variation: Regular tree on top

	3 K2-Tree Serialization
	3.1 Block's Tree Serialization
	3.2 Mixed tree serialization

	4 Caching System
	4.1 NodeIds pre-processing
	4.2 NodeIds streaming
	4.3 Mapping NodeIds to internal IDs
	4.3.1 From Jena NodeIds to internal IDs
	4.3.2 From internal IDs to Jena NodeIds
	4.3.3 Efficiency of translation

	4.4 Replacement Strategy
	4.4.1 Least Recently Used

	5 Query processing
	5.1 Band Scanner
	5.2 Full Scanner
	5.3 One Variable Cartesian Product
	5.4 Two Variable Cartesian Product
	5.5 Index nested-loop join
	5.6 One Variable Intersection
	5.7 Two Variable Intersection
	5.8 Iterator algorithm

	6 Updates
	6.1 Live updates
	6.2 Initialization
	6.3 Re-indexing
	6.4 Deletions
	6.5 Performance considerations

	7 Experiments
	7.1 Experiments configuration
	7.1.1 Dataset
	7.1.2 Queries and Updates
	7.1.3 K2-tree
	7.1.4 Hardware Specs

	7.2 Index statistics
	7.2.1 Number of triples
	7.2.2 Index build time
	7.2.3 Index size
	7.2.3.1 Size in memory
	7.2.3.2 Size in disk

	7.2.4 Index loading

	7.3 Querying
	7.3.1 Timed out queries
	7.3.2 Few queries run in cold boot
	7.3.3 Some queries with better performance with Jena
	7.3.4 Some queries with better performance with k2-trees
	7.3.5 Network request optimization
	7.3.6 Selective usage of the cache

	7.4 Updates
	7.4.1 Random updates
	7.4.2 Wikidata insertion experiment

	7.5 WatDiv experiments
	7.6 Analysis

	8 Conclusion
	8.1 Future work
	8.1.1 Move some processing to the cache side
	8.1.2 Optimize queries, specialized to the cache
	8.1.3 Optimize the selection of the processing engine
	8.1.4 Choosing B+tree when results are in memory
	8.1.5 Optimizations around concurrent requests
	8.1.6 Optimizations to reduce in-memory random access in favor of in-memory sequential access
	8.1.7 Replacement strategy optimizations
	8.1.8 Resources dictionary

	Bibliography

