UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION

IMPLEMENTACION DE ESTRUCTURA COMPRIMIDA SIMPLIFICADA PARA
INDEXAR TEXTO BASADA EN GRAMATICAS

MEMORIA PARA OPTAR AL TITULO DE
INGENIERO CIVIL EN COMPUTACION

CRISTOBAL ENRIQUE FUENTES ALVARADO

PROFESOR GUIA:
GONZALO NAVARRO

MIEMBROS DE LA COMISION:
JUAN MANUEL BARRIOS
CLAUDIO GUTIERREZ
GONZALO NAVARRO

SANTIAGO DE CHILE
2025

Resumen

El presente trabajo documenta la implementaciéon de una estructura propuesta en el
libro Compact Data Structures, A Practical Approach para la busqueda de los indices de las
ocurrencias de patrones en un texto.

La estructura es una representacion comprimida del texto orientada a textos repetitivos,
que representan el texto usando una gramatica libre del contexto y permiten la bisqueda de
patrones en tiempo sublineal.

El trabajo comprende también las mediciones de la implementacion en términos de ro-
bustez y consistencia con la propuesta y sus predicciones tedricas del comportamiento de la
estructura y su funcién de busqueda de patrones en términos tanto temporales como espa-
ciales.

La estructura implementada fue analizada en los aspectos relevantes de robustez y con-
sistencia con el andlisis tedrico y segun esto se tomaron conclusiones respecto a los logros
del trabajo realizado, la utilidad de la estructura en un contexto real y las posibles mejoras
a los tiempos de busqueda en ambitos de eficiencia y compresion efectiva en textos reales
repetitivos.

ii

A Gloria.

Tabla de Contenido

1. Introduccion
1.1. Objetivos

1.2, Metodologia

2. Marco Teérico

2.1. Emntropia

2.1.1. Entropiadeordencero

2.1.2. Entropiadeordenn
2.2, Gramaticas
2.3. Memoizaciono
2.4. Notacion O Grande
2.5. Busqueda Linealo

2.6. Compresion Basada en Gramaticas

3. Estado del Arte

3.1. Representacion de texto como gramética
3.1.1. Sequitur
3.1.2. Re-Pair o

3.2. Compresion de gramdaticao
3.2.1. Dos arboles LOUDS
3.2.2. Indice comprimido basado en gramdtica
3.2.3. Grilla con arboles Wavelet

iii

10

10

11

11

3.3. Implementaciones existentes

3.3.1. SDSL - Succinct Data Structure Library

. Trabajo realizado

4.1. Descripcion General de la estructurao

4.2. Diseno de la implementaciéon
4.3. Re-Pair

4.3.1. Generar reglas extras
4.4. Normalizar secuencia

4.5. Secuencia utilizando permutaciones

4.5.1. Permutaciones
4.5.2. Secuencia
4.6. Reordenar secuencia
4.6.1. Memoizaciéon
4.7. Ejemplo practico
4.8, Grilla
4.8.1. Matrices Wavelet

4.8.2. Preparar puntos para grilla

4.9. Calcular largo de las expansiones de las reglas

4.10. Busqueda de patrones
4.10.1. Ocurrencias primarias . . .

4.10.2. Ocurrencias secundarias . .

. Evaluacién

5.1. Unit Testing
5.2. Analisis empirico

5.2.1. Espacio

v

12

12

13
13
14
14
15
15
16
16
16
17
20
21
23
23
23
24
25
26

29

32

5.3. Anadlisis en textos altamente repetitivoso

5.4. Analisis comparativo con la solucion lineal de busqueda sin compresion . . .

5.5. Analisis comparativo con indice comprimido basado en gramatica

6. Conclusiones
6.1. Conclusiones generales . . .

6.1.1. Objetivo general . .

6.2. Cumplimiento de objetivos especificos

6.3. Trabajo futuro
6.3.1. Memoizar
6.3.2. Sobre la secuencia R

6.3.3. Potencial paralelismo

Bibliografia

Apéndice A. Anexo

43

46

48
48
48
49
49
49
20
20

52

53

Indice de Tablas

5.1. Propiedades de cada colecciéno 41

5.2. Tiempos de busqueda en textos reales de largo n de patrones aleatorios de
largo m, con occ ocurrencias en promedio y con r la cantidad de reglas . . . 44

5.3. Tiempos de busqueda en texto repetitivo con n el largo del texto original, r
la cantidad de reglas, m el largo del patréon. L. 45

5.4. Tiempos de biisqueda en secuencia de ADN de largo 100.000, occ es la cantidad
de ocurrencias del patrén Lo 46

5.5. Propiedades de cada colecciéno 46

vi

Indice de Ilustraciones

4.1.

4.2.

4.3.

4.4.

4.5.
4.6.
4.7.
4.8.

5.1.

5.2.

5.3.

0.4.

5.5.

5.6.

Diagrama UML de la implementacién

Secuencia R y expansion de las reglas R;, junto con secuencia [, el largo de
cada expansion L

Arbol sintéctico para abrabracadabrabra

DAG para abrabracadabrabra, las conexiones que corresponden a reglas que
aparecen como lados izquierdos son grises, y las derechas son negras

Grilla . . .
Grilla . . . o
Busqueda en el DAG paranodo Ry
Busqueda en el DAG paranodo Ry
Tiempo de construccion de la estructura en funciéon del niimero de reglas,
comparado a tiempo teérico O(n +rlogrlogn)

Tiempo de busqueda en funcién del nimero de ocurrencias para un patrén de
largo dos L

Tiempo de busqueda en funcién del nimero de ocurrencias para un patrén de
largo dos con prediccién tedrica usando promedio de n y 7, con tiempo tedrico
O((m +logn)mlogrloglogr + occlognlogr).

Tiempos de bisquedas en ms (milisegundos) en funcién del nimero de ocu-
rrencias para un patréon de largo 2.

Tiempos de bisquedas en ms (milisegundos) en funcién del nimero de ocu-
rrencias para un patrén de largo 2 (Continuacién) L.

Tiempos por ocurrencia en ps (microsegundos) de busquedas en funcién del
numero de ocurrencias para distintas colecciones repetitivas. Ambos ejes estan
es escala logaritmica

vii

14

21

22

22
24
26
29

30

37

38

39

40

41

42

5.7. Tiempos por ocurrencia en s (microsegundos) de bisquedas de patrones alea-

5.8.

torios de largo fijo 10 en funcién del nimero de ocurrencias en la coleccién
einstein.en. El eje X estd en escala logaritmica .

Tiempos de bisqueda en ps (microsegundos) de bisquedas de patrones alea-
torios en funcién del ntimero de ocurrencias en la coleccion einstein.en para
la estructura implementada y el indice comprimido con g-index/2. .

viii

43

47

Capitulo 1

Introduccion

El estudio de las estructuras de datos compactas es crucial en la actualidad, dado que
la cantidad de informacién generada crece a un ritmo exponencial[22][21], superando am-
pliamente la capacidad de almacenamiento y procesamiento de los sistemas computacionales
modernos. Este desequilibrio subraya la necesidad de técnicas eficientes que permitan mane-
jar grandes volimenes de datos utilizando menos espacio, sin comprometer significativamente
tiempos de acceso y procesamiento. Desde los campos de Big Data y Business Analytics hasta
las areas de aprendizaje de maquinas es relevante la capacidad de procesar cantidades gigan-
tescas de informacion de forma eficiente y rdpida en un entorno arquitecténico que limita el
espacio de memoria que a estas se les tiene permitido.

Desde los anios 50, dentro del estudio de la teoria de la informacion y de la mano de Claude
Shannon, se han desarrollado algoritmos de compresion de datos que permiten reducir el es-
pacio de almacenamiento o el tiempo de transmision, sin pérdida de la informacién contenida
en los datos. Posteriormente, surgieron las estructuras de datos compactas, que permiten ac-
ceder a los datos comprimidos directamente, sin necesidad de descomprimirlos previamente.
En cuanto a lo que compete el presente trabajo es menester mirar a un tiempo mas cercano
al presente: hitos importantes como el trabajo de Cook, Rosenfeld y Aronson [5] en 1976
sentaron las bases para que Kieffer y Yang publicaran en el 2000 Grammar-Based Codes: A
New Class of Universal Lossless Source Codes [11] donde la compresién de texto en base a
reglas de gramética simple se acerca a la entropia estadistica de la fuente. Tabei, Takabatake
y Sakamoto en 2013 utilizaron arboles para representar la gramética compactal[23]. Claude y
Navarro en 2012 propusieron una estructura para la buisqueda de patrones en textos basados
en gramatical3]. De esta ultima se desprende una version simplificada descrita en Compact
Data Structures [15, Capitulo 10.5.6] que concierne al trabajo a realizar en esta memoria.

La eleccion de cual algoritmo y/o estructura utilizar depende primariamente de lo qué se
desee hacer con el texto a comprimir. Si consideramos la bisqueda de patrones sobre textos
de un largo cualquiera como la operacién deseada entonces pasa a tomar més relevancia en
la decision de la eleccion el desempeno de los algoritmos y estructuras segin los parametros
de los patrones y los textos de busqueda. En muchos casos, distintas estructuras presenta
desempenos similares en el analisis tedrico, sin embargo, implementaciones muestran empi-
ricamente que algunas se comportan mejor en funciéon de ciertas caracteristicas los datos.

Por esto, es necesario aseverar segin las caracteristicas de los datos que se desea procesar
qué estructuras son mejores para cada una de las operaciones que se requieran, y para eso es
esencial desarrollar implementaciones para las estructuras hasta ahora solo teorizadas.

La estructura comprimida simplificada para indexar texto basada en gramaticas ofrece
una solucién al problema de identificar todas las ocurrencias de un patrén de texto en un
texto dado. Aunque no es la tnica estructura disefiada para abordar este desafio|4], presenta
ventajas y desventajas que dependen de las caracteristicas especificas del texto y del patron
de busqueda. Su principal atractivo radica en la simplicidad de sus componentes (secuencias
comprimibles, secuencias con permutaciones [15, 1, Capitulo 6.1], y grillas representadas
mediante Wavelet Trees [15, 1, Capitulo 10.1]), lo que sugiere un posible buen desempeno. Sin
embargo, el analisis tedrico de su eficiencia en términos de tiempo y espacio no es suficiente
para determinar su viabilidad préactica. Es necesario implementar la estructura y realizar
evaluaciones empiricas comparativas que permitan determinar cuantitativamente si resulta
mas adecuada que otras soluciones de complejidad similar.

Del analisis de resultados fue posible concluir el correcto funcionamiento de la solucién,
su congruencia con la predicciéon tedrica de su comportamiento, su utilidad con respecto a
una solucién estandar de bisqueda y posibles mejoras a la implementacion.

1.1. Objetivos

Objetivo General

El objetivo del trabajo presente consistiéo en programar una buena, esto es, optimizada
y congruente al espacio y tiempo tedrico de la estructura, implementacion de lo descrito en
el libro Compact Data Structures (Indexed Searching in Grammar-Compressed Text)[15, 1,
Capitulo 10.5.6]. Utilizando pruebas de robustez y tiempo, fue posible un andlisis empirico
en funcién de los parametros de entrada, obteniéndose conclusiones sobre el desempeno de
la estructura. Fue posible comparar su desempeno con los algoritmos y estructuras actuales
(v sus implementaciones) para la bisqueda de patrones en texto.

Objetivos Especificos

1. Implementacién la estructura de forma correcta. Esto incluye la implementacién de
cada una de las estructuras que componen la soluciéon propuesta.

2. Implementacion de pruebas de robustez y consistencia de la estructura.
3. Implementacion de pruebas de desempeno espacial y temporal de la implementacion.

4. Analisis de los resultados de las pruebas para obtener conclusiones respecto al desem-
peno empirico de la estructura.

1.2. Metodologia

Para llevar a cabo este trabajo de investigacién y cumplir con los objetivos planteados,
se siguieron los pasos descritos a continuacion:

1. Revision bibliogréafica y conceptualizacion de la solucion: Se realizd un andlisis detalla-
do de la estructura comprimida basada en gramaticas descrita en el libro Compact
Data Structures, especificamente el capitulo sobre Indexed Searching in Grammar-
Compressed Text. Esta revision incluyé la comprension de las técnicas utilizadas, los
algoritmos propuestos y sus posibles aplicaciones. Ademas, se investigaron estructuras
y algoritmos actuales para la busqueda de patrones en texto como punto de compa-
racion. Se estudio la bibliografia pertinente a los conceptos teodricos utilizados en el
trabajo presente y

2. Diseno de la implementacion: Se definié una arquitectura modular para la implemen-
tacion de la estructura propuesta. Esto incluy6 la eleccion de patrones de diseno ade-
cuados, la division del trabajo en componentes individuales y los algoritmos necesarios
para crear la instancia de la estructura y la busqueda.

3. Implementacion de la estructura propuesta: Cada componente identificado fue imple-
mentado de forma incremental, priorizando los componentes independientes, y luego
aquellos dependientes de los primeros, escribiendo al mismo tiempo pruebas unitarias
para cada una de estas estructuras con el fin de garantizar la correccién de las opera-
ciones, garantizando que cada modulo fuera funcional antes de la integracion de cada
parte necesaria para el funcionamiento del buscador de patrones.

4. Diseno y ejecucién de pruebas de validacion: Se desarrollaron casos de prueba enfocados
en evaluar la robustez y consistencia de la estructura. Estas pruebas incluyeron esce-
narios con datos sintéticos y reales para validar que los resultados de las operaciones
fueran correctos y se comportaran segun lo esperado.

5. Pruebas de desempenio: Para evaluar el desempeno espacial y temporal de la estructura,
se realizaron pruebas con conjuntos de datos de diferentes tamanos y caracteristicas.
Estas pruebas incluyeron mediciones de tiempo de bisqueda de patrones por cantidad
de ocurrencias y largo de patrones, ademés de mediciones del uso de memoria. Los
resultados se compararon con implementaciones existentes de estructuras similares.

6. Analisis de resultados: Se analizaron los datos obtenidos de las pruebas de desempeno,
comparando los resultados de la estructura propuesta con las alternativas existentes.
Este analisis permitio identificar fortalezas, debilidades y posibles mejoras para la es-
tructura implementada.

7. Documentacién y presentacion de resultados: Finalmente, los hallazgos fueron docu-
mentados de manera estructurada, destacando las conclusiones principales y propor-
cionando recomendaciones basadas en los resultados del analisis en el trabajo presente.

Capitulo 2

Marco Teoérico

2.1. Entropia

En problemas de compresion, la entropia indica el limite teérico minimo para codificar un
mensaje sin perder informacién. Una nocién bésica de entropia es el minimo nimero de bits
requeridos por identificadores, llamados codigos, si se asigna un cédigo tnico a cada elemento
de un conjunto U y todos los cddigos tienen el mismo largo de bits. Esto corresponde a la
entropia del peor caso de U y se denota H(U) y es equivalente a:

H(U) = log |U|
Donde log es el logaritmo en base 2.

La entropia es una medida de incertidumbre o desorden en un sistema. En el contexto de
la teoria de la informacion, se utiliza para cuantificar la cantidad promedio de informaciéon que
se obtiene al observar un evento aleatorio. Formalmente, la entropia H(X) de una variable
aleatoria X con un conjunto de posibles valores {xy, s, ..., z,} y probabilidades asociadas
P(X = x;), se define como:

H(X) = — ZP(X = ;) log(P(X = z;)).

Equivalente a:

- 1
M) = 2 PX = =)

La férmula muestra que mientras mas predecible es una secuencia de elementos, menos
bits son necesarios para codificarla.

2.1.1. Entropia de orden cero

Si una secuencia B de largo n contiene m 1s, (asumiendo que hay més 1s que 0s) se puede
asumir que P(X = 1) = ™. Entones la entropia de orden cero es:
n—m n

H(B) = Ho(2) = Dlog - + log
n n m n n—m

En términos practicos, la entropia de orden cero tiene el siguiente significado: si se intenta
comprimir la secuencia B usando codigos fijos € para los 1s y Cj para los 0s, entonces el
tamano total no puede ser menos que nH, bits.

2.1.2. Entropia de orden n

La entropia de orden n, H,, considera las dependencias entre los simbolos de una se-
cuencia, hasta el orden n. Mide la incertidumbre promedio de un simbolo si se conocen los n
simbolos anteriores:

H, = — Z P(zy,...2,)1og(P(zy|x1,. .. 2p))
T1,.--Tn+1
Donde P(xy,...x,) es la probabilidad de ver la secuencia zj ...x,, vy P(x,|z1,...x,) es la

probabilidad de ver el simbolo x,, si se acabad de ver la secuencia mencionada.

En general, la entropia de mayor orden es menor o igual a la de menor orden, ya que se
tienen en cuenta las dependencias que reducen la incertidumbre de la secuencia. Por ejemplo,
en el lenguaje espanol, si se tiene la secuencia cio es muy probable que la siguiente letra es
n. En aplicaciones de compresion de datos, esto implica que se puede obtener una mayor
compresion en lenguajes donde hay secuencias muy repetitivas (como lo son textos reales).

2.2. Gramaticas

En el contexto de la computacion, una gramatica es un conjunto de reglas que describen la
estructura de un lenguaje. Una gramatica formal G se define como un cuddruplo (N, %, P, S),
donde:

e N: Es un conjunto de simbolos no terminales.

>: Es un conjunto de simbolos terminales.

P: Es un conjunto de producciones o reglas de reescritura.

S: Es el simbolo inicial.

En el trabajo presente, se trabajé con gramaticas ”binarias”, esto es, gramaticas donde
las reglas de P son de la forma:

Donde A; es un simbolo no terminal y B; y C; pueden ser terminales o no terminales. B; es
referido como la expansion izquierda de A; y C; la expansion derecha.

2.3. Memoizacion

La memoizacion es una técnica de optimizacion utilizada para acelerar algoritmos me-
diante el almacenamiento de los resultados de calculos costosos y su reutilizacién cuando
sea necesario. Se emplea frecuentemente en problemas de programacién dindmica, donde los
subproblemas se resuelven de manera repetitiva. Al reducir el nimero de recomputaciones,
la memoizacién mejora significativamente la eficiencia temporal, a cambio de utilizar espacio
extra.

2.4. Notacion O Grande

La notacién O grande es una herramienta utilizada para describir la complejidad asinto-
tica de algoritmos. Representa el peor caso del tiempo de ejecucion o el uso de recursos como
una funcion del tamano de entrada n. Formalmente, un algoritmo tiene complejidad O(f(n))
si existen constantes positivas ¢ y ng tales que:

T(n) <c-f(n), Yn>mno.

Esto permite comparar el comportamiento relativo de diferentes algoritmos independiente-
mente de los detalles especificos de implementacion o las constantes multiplicativas.

2.5. Busqueda Lineal

La busqueda lineal es un algoritmo simple para localizar un elemento en una lista. Con-
siste en recorrer secuencialmente la lista desde el principio hasta el final, comparando cada
elemento con el valor buscado. Si el elemento se encuentra, el algoritmo retorna su posicion;
en caso contrario, indica que no esta presente. La complejidad temporal de este método cuan-
do se busca un dnico elemento en un conjunto de elementos es O(n), donde n es el niimero
de elementos en la lista. Para el caso de bisqueda de un patréon de largo m en una secuencia
de largo n, la complejidad es O(nm) en el peor caso.

2.6. Compresion Basada en Gramaticas

La compresiéon basada en gramaticas es una técnica para reducir el tamano de datos
generando una representacién compacta en forma de graméatica. En lugar de almacenar ex-
plicitamente los datos, se almacena un conjunto de reglas que permiten reconstruirlos. Esto
es particularmente ttil para datos con patrones repetitivos, ya que la graméatica compacta
captura dichas repeticiones de manera eficiente.

Capitulo 3

Estado del Arte

3.1. Representacion de texto como gramatica

En su articulo Grammar-Based Codes: A New Class of Universal Lossless Source Codes
John C. Kieffer y En-hui Yang estudiaron el c6digo basado en gramética[ll], un tipo de
codificacion sin pérdida de informacion, el cual, en respuesta a cualquier cadena de datos
de entrada z sobre un alfabeto finito fijo, selecciona una gramatica libre de contexto G,
que representa a x en el sentido de que x es la tnica cadena o string generada por G,. La
compresion sin perdida de x corresponde, indirectamente, a la compresion de estas reglas de
gramatica. Demostraron que, bajo ciertas restricciones, un c6digo basado en gramética es un
c6digo universal, esto es, logra comprimir independiente de la fuente finita de generacion de
informacion a algo cercano a la compresién 6ptima, sobre un alfabeto finito.

Encontrar la gramatica mas pequena que representa a un texto cualquiera x es un proble-
ma NP-completo [2][20], y ademads esta gramdtica nunca es mas pequena que una codificaciéon
con LZ77]24] (con una ventana ilimitada) lo que motiva y justifica encontrar y utilizar heurfs-
ticas como Re-Pair[12] y Sequitur[16] que en la practica compriman el texto a una cantidad
de reglas cercanas al 6ptimo de forma rapida. A pesar de ser estrictamente inferior a LZ77,
una de estas heuristicas, Re-Pair, se comporta bien en la practica, tanto en textos clasicos
como repetitivos.

3.1.1. Sequitur

El algoritmo Sequitur[16] funciona escaneando la secuencia de simbolos, agregando cada
nuevo simbolo a una regla gramatical S y generando una lista con todos los pares que ha
leido. Cuando un par es leido por segunda vez, se genera un simbolo no terminal, esto es,
una regla que genera el par en la gramética, para reemplazar ambas ocurrencias en regla
S y en todas la reglas donde aparezca. En otras palabras, se debe cumplir que cada par
aparece solo una vez en S. El proceso se repite hasta que no hayan mas pares repetidos. Si
al finalizar el proceso, existen simbolos no terminales que solo aparecen una vez a la derecha
de la gramatica, entonces deben ser reemplazados por los simbolos que generan. Esto ayuda

a reducir la cantidad de reglas.

Por ejemplo, sea la secuencia abracabracabra. Se avanza linealmente por esta secuencia
agregando cada simbolo a la regla generadora S:

Gramatica -
S Gramatica
ST b S — DDab | Se repite el par ab !!
S — abr A= ab
S — abra B =
S — abrac ¢ AB
S — abraca D= Ce
S — abracab | Se repite el par ab !! i_} DDA
— ab
S — AracA
B —ra
A — ab C — AB
S — AracAr
D — Cc
A — ab
: S — DDAr
S — AracAra | Se repite el par ra !!
A , A — ab
- 2 5 _ INERl B —ra
S — ABcAB | Se repite el par AB !! C - AB
g — ab D — Cec
—ra S — DDAra | Se repite el par ra !!
i—> CcC A — ab
— ab B —ra
B — za C — AB
C— AB . ! D — Cc
i — CcCe | Se repite el par Cc ! S DDAB | Se repite el par AB !l
— ab A — ab
B —ra B —ra
C— AB C — AB
S — DD D — Cec
A — ab S — DDC A y B aparecen solo una
B — TAa A — ab vez a la derecha de
C— AB B —ra las reglas, por lo tanto
D — Cc C — AB se eliminan
S — DDa D — Ce
A — ab S — DDC | Gramética final
B —ra C — abra
D — Cec
3.1.2. Re-Pair

El algoritmo Re-Pair[12] (Recursive Pairing) es una heuristica de construccién de gra-
maticas a partir de un texto. Es utilizado en el trabajo presente para comprimir la secuencia
de entrada de caracteres basado en los patrones repetitivos que aparecen en esta. La idea

basica detras del algoritmo Re-Pair es encontrar pares de substrings repetidos en el texto
y reemplazarlas con simbolos no terminales. Al aplicar este proceso de manera iterativa,
se genera una representacion gramatical comprimida que se puede utilizar para reconstruir
el texto original. El método para comprimir consiste en recorrer el texto reemplazando los
dos caracteres mas comunes por un simbolo no terminal, generando una regla de gramaética,
remplazar los caracteres por el nuevo simbolo en la secuencia y repetir este proceso, hasta
obtener un texto comprimido y una serie de reglas.

Re-Pair logra construir una gramatica razonablemente 6ptima en tiempo O(n), siendo n
el largo se la secuencia.

3.2. Compresién de gramatica

El trabajo presentado consiste en la implementacién una estructura basada en una repre-
sentacion sucinta de grilla para comprimir la gramatica que genera el texto de entrada. En
la siguiente seccion se profundiza la representacion de la gramatica utilizando estructuras de
arboles.

3.2.1. Dos arboles LOUDS

Dada una gramética R (obtenida, en este ejemplo, con Re-Pair) que genera un texto T, se
tiene la regla S — C, donde C es el texto T luego de haberse hecho los remplazos por simbolos
por Re-Pair. Para saber exactamente qué porcion de C se debe expandir para obtener un T
i ..]] es 1til guardar un vector de bits disperso que indica en qué posicién de T aparece cada
simbolo de C. Este vector solo necesita soportar la operaciéon Rank en tiempo constante. Ya
sabidos qué simbolos se deben expandir, lo tinico que se necesita es saber a qué expande cada
simbolo no terminal (los simbolos terminales aparecen en C).

Tabei, Takabatake y Sakamoto introdujeron compresiéon de una gramatica utilizando
estructuras de arboles[23]. La idea es representar el grafo dirigido aciclico generado por la
gramatica donde cada regla A — BC induce una arista "izquierda” desde A a B y otra
"derecha” de A a C. Tomando solo las aristas izquierdas, se puede interpretar una arista A
— B como si B fuese el padre de A, obteniendo asi un conjunto de arboles, ya que cada nodo
puede tener a lo méas un padre (simbolos terminales no tienen reglas y cada no terminal A
tiene exactamente una regla con un término izquierdo B). Se afiade una raiz como padre de
todos los nodos sin padres, y se llama al arbol resultante 77,. Similarmente, se forma un arbol
Tr con las aristas derechas. Asi, dada una no terminal A — BC, B es el padre de A en T}, y
C es el padre de A en Tk.

Como son necesarias solo las operaciones de arboles parent, root, childrank, nodemap, y
nodeselect, una estructura de arbol LOUDS es ideal.

El arbol Level-Order Unary Degree Sequence (LOUDS) es una estructura que codifica
los nodos del arbol en orden nivel, es decir, se recorren los nodos que estan a la misma
profundidad primero de izquierda a derecha antes de seguir al siguiente nivel. Cada nodo

10

se describe en una secuencia de bits con un cédigo unario 1°0 donde ¢ es la cantidad de
hijos. Las distintas operaciones requeridas son combinaciones de operaciones Rank, Select y
Predecessor Zero sobre la secuencia de bits.

3.2.2. Indice comprimido basado en gramética

Claude, Navarro y Pacheco[4] implementaron una estructura que permite almacenar y
consultar texto de manera eficiente, especialmente en colecciones de texto altamente repetiti-
vas. Esta estructura permite tanto la extraccién de subcadenas como la btisqueda de patrones
directamente sobre una representaciéon comprimida del texto. El texto es representado como
la gramatica libre de contexto que genera al texto, y esta gramatica es a su vez representada
como un arbol.

Las busquedas de patrones de texto corresponde a ocurrencias primarias en el arbol (vistas
como miultiples nodos en el arbol gramatical) y ocurrencias secundarias en las hojas.

La estructura utiliza G logn + o(G log G) bits de espacio y la busqueda de patrones toma
tiempo O((m? + occ) log G), donde G es el tamarfio de la gramatica definido como la suma
de las longitudes del lado derecho de las reglas.

3.2.3. Grilla con arboles Wawvelet

En el trabajo presente, las r reglas de la gramatica son representadas en una grilla de r
x 1, de forma que cada regla A — BC corresponde a un punto en la grilla en la posicién
C,B (columna correspondiente a C, fila correspondiente a B). La idea es que las columnas de
la grilla corresponden a la parte C de cada regla, ordenadas segin el valor lexicografico del
string al que se expande C, mientras que las filas corresponden a B, ordenadas por el valor
lexicografico del string invertido al que expande B. La grilla se representa utilizando arboles
Wavelet[15, Capitulo 10.1].

La idea es que todas las operaciones que se necesitan sobre esta grilla para la gramatica
son equivalentes a operaciones sobre otra grilla donde por cada punto de X;,Y; de la primera,
hay un punto 7, Y; en la segunda. Esto cerciora que solo haya un punto por columna, con lo
cual la grilla se puede representar con una secuencia de los Y;s. Esta secuencia es a su vez
representada usando un arbol Wawvelet.

La representacion con drbol Wavelet consiste en lo siguiente: dado una secuencia Sj; ,) de
simbolos sobre el alfabeto 3 = [1, 0], se crea un nodo que corresponde a una secuencia de
bits By) de largo igual a la secuencia S}; ,) donde por cada cardcter de la secuencia original
se coloca un 0 en la secuencia de bits si el cardcter corresponde a un simbolo en [1, [o/2]] o
1 si pertenece a [[o/2] + 1,0].

El nodo de S o), esto es, la secuencia de bits correspondiente a Sp; 5 obtenida del paso
anterior, indica en qué mitad del alfabeto de la secuencia S|; , se encuentra cada cardcter de
esta. Esto particiona virtualmente la secuencia original en dos partes: la secuencia Sy, /2]

11

de los caracteres de S, que pertenecen a la primera mitad del alfabeto, y la secuencia
S{[s/2]+1,0] de los caracteres que pertenecen a la segunda mitad. Para estas dos secuencias, se
crean nodos de la misma forma en que se hizo para la secuencia original. El nodo resultante
correspondiente a la secuencia Sy [,/27) se agrega como hijo izquierdo del nodo de Sjj 4, y el
nodo correspondiente a Sif/2)+41,0] como hijo derecho.

El proceso de seguir dividiendo el alfabeto en dos se repite hasta llegar a secuencias
mono-simbdlicas. Las operaciones de Rank y Select sobre la secuencia original corresponden
a recorrer el arbol haciendo operaciones Rank y Select sobre las secuencias de bits.

3.3. Implementaciones existentes

3.3.1. SDSL - Succinct Data Structure Library

La libreria SDSL para C++ escrita por Simon Gog[10] es la mas completa y profesional
de las librerias dedicadas a estructuras de datos sucintas. La libreria implementa estructuras
sucintas relevantes para el trabajo realizado como lo son vectores de enteros, vectores de bits
y soporte para operaciones Access, Rank y Select sobre ellos.

Implementaciones de arboles wavelet de distintas formas (balanceados, formas de Huff-
man, etc.) estan presentes en la libreria, pero la estructura en particular usada en propuesta
del capitulo 10[15] utiliza matrices wavelet, que debieron ser implementadas como parte del
trabajo realizado.

Otras librerias

La implementacién original de Re-Pair en C[13] por R. Wan en C estd basada en la
propuesta del articulo original[12] y es la implementacién usada en el trabajo presente. Otras
implementaciones existen, incluyendo una hecha por G. Navarro[14].

12

Capitulo 4

Trabajo realizado

El trabajo realizado consistié en implementar y evaluar de forma empirica la estructu-
ra comprimida simplificada para indexar texto basada en gramaticas simple propuesta en
el libro Compact Data Structures,(Indexed Searching in Grammar-Compressed Text) [15,
Capitulo 10.5.6]. La implementacién se encuentra disponible en el repositorio Simple TextIn-
dexingBasedOnGrammar [8].

4.1. Descripcion General de la estructura

La idea principal de la estructura es representar un diccionario R de r reglas A — BC
correspondiente a la graméatica generada sobre un texto 7' usando el algoritmo Re-Pair como
una grilla Gy una secuencia R de simbolos que permite encontrar ocurrencias de patrones
de texto en el texto original.

La secuencia R corresponde a la sucesion de reglas generadas por Re-Pair expresadas como
sus lados derechos, ademas de las reglas anadidas por la estructura con el fin de eliminar la
secuencia C' generada por Re-Pair.

La grilla en tanto corresponde a una grilla de r X r dimensiones con r puntos que co-
rresponden a las r reglas predispuestos en la grilla de uan forma particular (explicada en las
siguientes secciones) que permite obtener rangos de reglas que contienen ciertos patrones.

La busqueda de patrones corresponde a primero encontrar en la grilla el area de esta
que contiene los puntos correspondientes a reglas que expresan al patréon, que corresponde
a la busqueda primaria, para entonces obtener las posiciones de las ocurrencias como los
desfases de cada uno de estos puntos con respecto respecto al simbolo inicial de la graméatica
extendida, llamada busqueda secundaria de ocurrencias.

Las partes particulares y el detalle del proceso de bisqueda se explican en el presente
texto, en las siguientes secciones.

13

4.2. Diseno de la implementacion

Se implement6 una clase facade llamada PatternSearcher que procesa la entrada e ins-
tancia las clases A RSSequence (secuencia representada por permutaciones) y Grid (grilla
representada por matrices wavelet), ademés de los otros miembros necesarios (como primi-
tivas, vectores de bit, etc.). PatternSearcher expone, ademés de su constructor, un tnico
método search que corresponde a la busqueda de patrones.

El diagrama UML 4.1 muestra el disefio general de la implementacion.

Figura 4.1: Diagrama UML de la implementaciéon

i ™
PatternSearcher ARSSequence Permutation
G: Grid A: vector<bit_vector> o
R: ARSSequence D: vector<bit_vector> g'_- i'n”tt—:;ét[‘;’rr;;
S: u_int 1 pi: vector<Permutation> 1. b: bit_\rector
| = int_vector<> @—— sigma: int e
nt: u_int n: int ——
] . v permute(i:int): in
search(occurrences:vector<int>, rank(index:int): int reverse(i:int): int
pattern:string): void select(index:int): int
access(index:int): int
? | | | |
Grid
i ™
cu int WaveletMatrix
rr1:. L:‘_iitht sigma: int
P . Z: int_vector<>
wt: WaveletMatrix .—1 bm: vector<bit_vector>
report(x_1:int, x_2:int, y_1:int, y_2:int): access(izint):int
vector<Point> rank(i:int):int
count(x_1:int, x_2:int, y_1:int, y_2:int):
int e J
access(c:int):int

4.3. Re-Pair

La implementacion de Re-Pair de Shirou Maruyama[13] que utiliza las estrcuturas pro-
puestas en la publicacién original de Larsson & Moffat[12]. Esta version retorna una estruc-
tura que contiene un arreglo de reglas, ademéas de la secuencia C' que corresponde a aquella
que se obtiene una vez se aplican todas los reemplazos de las reglas en el texto original T,y
otros valores como la cantidad de reglas y el largo del texto (Véase A.1). Las reglas corres-
ponden a pares de enteros sin signo, donde los valores son menores a 256 si corresponden a
una terminal o mayores si corresponden a una no terminal. Acceder a la posicion 256 + i del
arreglo entrega la regla 7.

14

4.3.1. Generar reglas extras

Con objetivo de eliminar la secuencia C para derivar el texto T exclusivamente a partir
de las reglas se crearon nuevas reglas Ny — C[1]C[2], Ny — C[3|C[4], N3 — C[5]C[6], etc,
reemplazandolas en C: N1 NyN3...Njic|/21. Luego se hizo lo mismo con este nuevo C, creando
nuevas reglas N; — NNy, N, — N3N, y asi sucesiva y recursivamente hasta obtener una
tnica no terminal S de la cual se puede derivar el texto original (Véase A.2).

Sea r = |R| el nimero de reglas, y sea A; — B;C; ¥ 0 < i < r, el conjunto R es
representado por la secuencia de enteros R = ByCoB1C1...B,_1C,_1. Notese que la secuencia
es auto-referencial: sea R; — B;C};, esta regla aparece en la secuencia en las posiciones 27 y
21 + 1, y reglas que deriven en R; tendran uno de sus dos simbolos B o C con un valor 256
+ 1.

Tomese en cuenta que en el trabajo presente cuando se habla de los lados izquierdo y
derecho de una regla R;, estos se refieren, respectivamente, a B; y C;. También, cuando se
hable de la compresion del texto a gramatica, se hace referencia a la combinacién de los
procesos de comprimir por Re-Pair seguido de la expansion de reglas con el fin de eliminar

C.

La representacion de la secuencia R, segin las instrucciones del libro, utiliza permuta-
ciones, y el detalle se explica mas adelante, pero para hacer esta representacion es necesario
primero normalizar la secuencia de forma que los elementos en esta partan de 0 y sean con-
tinuos, es decir, el alfabeto de la secuencia no tiene saltos, y el mayor elemento es igual a la
suma de las cantidades de terminales y no terminales menos 1.

4.4. Normalizar secuencia

Se cre6 un vector de bits b (utilizando la libreria SDSL[9]) de tamafio 256. La idea fue
marcar con 1 las posiciones correspondientes a los simbolos terminales que aparecen en el
texto T, que son los simbolos terminales que aparecen en R. Esto conllevd a la restriccion de
que el texto debe tener formato donde cada cardcter utiliza solo 1 byte (por ejemplo, UTF-
8). Anadiendo suporte para Select;(i) (reportar la posicion del i-ésimo uno en el vector) y
Rank,(7) (reportar la cantidad de unos hasta la posicién ¢) sobre el vector se puede obtener
el simbolo original de la secuencia normalizada. Se guardan entonces los resultados de select
y rank sobre el vector de bits, y estos dos vectores de largo 256 con elementos de tamano 8
bits son los que se usaran en la estructura.

La secuencia normalizada ahora tiene simbolos entre 0 y la suma de las cantidades de
terminales y no terminales menos 1. Elementos en la secuencia menores a la cantidad de
terminales corresponden a simbolos terminales, mientras los demas corresponden a no termi-
nales. La regla R; aparece en las posiciones i y 141 correspondiente a B; y C; respectivamente.
Reglas que expanden a R; son las reglas I?; donde alguno de sus B; o C; tienen como valor
i+ ntimero de terminales. El nimero de terminales es equivalente a rank; (b, |R|). (Véase A.3)

Notese que normalizar la secuencia es necesario solo para la implementacion especifica de

15

Re-Pair utilizada. En contraste, la versién de Re-Pair de Navarro[14] normaliza automatica-
mente las reglas, entregando la secuencia C, la secuencia R de reglas, un valor numérico que
indica la cantidad de simbolos terminales en el alfabeto usado en el texto y una secuencia
numérica para obtener el simbolo original en el texto a partir del simbolo en la secuencia
normalizada, exactamente como la implementacién del trabajo presente.

4.5. Secuencia utilizando permutaciones

Se implement6 la estructura descrita en el libro [15, Capitulo 6.1] para representar secuen-
cias de nimeros utilizando permutaciones. Esta estructura permite las operaciones Access y
Rank en tiempo O(log log o), donde o es el tamano del alfabeto que compone la secuencia,
y la operacién Select en tiempo O(1). Esta tltima es importante pues es utilizada de forma
frecuente en la bisqueda de ocurrencias secundarias en las reglas, lo cual sera explicado mas
adelante.

4.5.1. Permutaciones

Una permutacién = de [1,n] es un reordenamiento de valores entre 1 y n. Descrita en el
capitulo 5.1 [15], la estructura que compete al trabajo realizado permite la operaciéon 7= (4),
esto es, la permutacién inversa de i: encontrar un j tal que 7(j) =4 en tiempo O(t), donde
t es un parametro de la estructura.

La idea de la estructura es aprovechar el concepto de descomposicién en ciclos de la
permutacion. Si se aplica una permutacion sobre un valor inicial se obtiene un segundo valor,
y luego se aplica sobre este valor la permutacion, y asi sucesivamente, se terminara llegando
al valor inicial. Este recorrido de valores se llama ciclo, y una permutaciéon puede tener uno
0 mas ciclos.

Para calcular la permutacion inversa de ¢ se aplica la permutacién recursivamente hasta
tener un j cuya permutacion es i. Esto requiere recorrer todo el ciclo que contiene a i. Sin
embargo, si se guardan atajos de tamaifio ¢, con la idea de que si el elemento sobre el cual
se esta aplicando la permutacion durante el recorrido del ciclo tiene un atajo, se toma ese
atajo, saltandose una gran parte de los pasos recursivos, asegurando encontrar el inverso en
no mas de t pasos.

Esta estructura se implemento satisfactoriamente utilizando los vectores de bit de la
libreria SDSL[9] (Véase encabezado A.4).

4.5.2. Secuencia

Dada la secuencia S de tamaifio n sobre un alfabeto Y, se divide esta, conceptualmente,
en [n/o| pedazos S; = S[i...i+ o). Para resolver access, rank y select se utilizan o vectores
de bit A, con ¢ € ¥, donde A, = 179ke(So.0)g1ranke(S1.0) 1ranke(Sin/o1-1:9) En esencia, A,

16

indica de forma unaria las ocurrencias del simbolo ¢ en casa pedazo de S. Con esto, las
operaciones a nivel de los pedazos son:

Para todas k = |i/o].

access(S, 1) = access(Sk, i mod o)

Para rank, se debe calcular la cantidad de unos que aparecen en los pedazos anteriores al que
corresponde a :

, rank.(Sk, 1 mod o) si k=0,
rank.(S,1) = . .
rank.(Sg, i mod o) + selecty(Ac, k) —k sik >0
Para select se debe encontrar el pedazo al que pertenece el ¢ buscado, luego la respuesta es
la suma de la posicion donde parte este pedazo y select sobre el pedazo, menos la posicion
del tltimo cero antes del pedazo.

select.(S,j) = (s —j+1) -0+ select.(Ss_j+1,5 — predy(A., s)) donde s = select; (A, J)

Las operaciones dentro de cada pedazo C requieren representar estos como la permutacion
inducida por su indice invertido. Sea L. la secuencia de las posiciones de los simbolos ¢ en
el pedazo C. Considérese la permutacién m = LoLyLoL3...L, 1 y las lista D que marca las
posiciones donde empieza cada lista en 7, D = 0lLol1glial - glLe-1l

Utilizando la estructura anteriormente implementada se pueden resolver las operaciones
dentro de los pedazos. Por ejemplo:

access(C, i) = selecty(D, j) — j, donde j = 771 (i)

Esta estructura se implementé correctamente (Véase el encabezado A.5)

4.6. Reordenar secuencia

La secuencia R obtenida a partir de las reglas una vez completado el proceso de norma-
lizacién es tal que estas reglas aparecen en el orden en que fueron creadas por el algoritmo
Re-Pair y extendidas con el fin de eliminar la secuencia C. Lo que se quiere es que las re-
glas R; — B;C; aparezcan ordenadas de forma creciente segin el valor lexicografico de la
expansion inversa del lado izquierdo (B;).

La funcién de la libreria estandar de C++ sort puede ordenar la secuencia mientras se
le otorgue una forma de expandir las reglas, pero esto no es suficiente pues se necesita que
la secuencia de reglas mantenga la propiedad de auto-referencia, es decir, que cada regla R;
aparezca en las posiciones 2i y 2i + 1 y que referencias a esta regla tenga el valor ¢ + 0. Para
lograr esto, se cred un vector de enteros que guarda los indices de cada regla.

17

Listing 4.1: Vector de indices

(|int_vector reverseIndexMap(n_non_terminals);
o/for (int i = 0; i < n_non_terminals; i++) {
3 reverseIndexMap[i] = 1i;

Luego se ordend utilizando una funcién que compara las expansiones de los lados izquierdo
de la regla apuntada por el indice, de forma inversa.

Listing 4.2: sort

sort (

2 reverselIndexMap.begin(),

3 reverseIndexMap.end (),

4 [&] (int a, int b) {

5 return compareRulesLazy(arsSequence, a, b, n_terminals,

select, true);

710

La funcién de comparacién es una funciéon perezosa que entrega el siguiente simbolo de la
expansion pedida a demanda, esto evita tener que expandir el lado requerido por completo,
lo cual, en un texto largo con miles de reglas, puede llevar demasiado tiempo. Para esto se
utilizaron generadores:

Listing 4.3: Comparacién perezosa

Generator<char> expandRuleSideLazy (
2 ARSSequence& arrs, int i, int nt,
3 std::vector<char>& sl, bool left = false)

5 int 1lr_i = left? i: i+1;

6 if (arrs[lr_i] < nt) {

7 co_yield sllarrs[lr_i] + 1];

8 } else {

9 auto gen = expandRulelazy(arrs, 2*(arrs[lr_i]l-nt), nt, sl,
left);

10 for (char ¢ : gen) {

11 co_yield c;

| ¥
15| bool compareRulesLazy (ARSSequence& arrs, int i, int j, int nt,
std::vector<char>& sl, bool rev = false)

16 {

17 auto gen_i
18 auto gen_j
19 auto it_i = gen_i.begin();

20 auto it_j = gen_j.begin();

1 while (it_i != gen_i.end() && it_j != gen_j.end()) {
22 char char_i = *xit_1i;

expandRuleSidelLazy(arrs, 2 * i, nt, sl, rev);
expandRuleSidelLazy(arrs, 2 * j, nt, sl, rev);

18

char char_j = *it_j;
if (char_i !'= char_j) A
return char_i < char_j;

}
++it_1i;
++it_j;
}
// If one sequence is shorter, the shorter one is considered "less"
return (it_i == gen_i.end()) && (it_j != gen_j.end());
}
Con esto, el vector reverselndexMap (rim) ahora contiene los indices de las reglas de forma
tal que:

Vi, j expansion-reversa(Byinpy)) < expansion-reversa(Bymp) «— i < j

Se cre6 un vector del mismo tamafnio que R y se colocaron en este las reglas en el orden que
aparecen en reverselndexMap, pero actualizando los valores B y C"

Listing 4.4: Nueva secuencia R

vector<int> distance_of_find(reverseIndexMap.size(), 0);

for (int i = 0; i < reverseIndexMap.size(); i++) {
distance_of_find[reverseIndexMapl[i]] = 1ij;
}
int_vector<> sortedSequenceR = int_vector(n_non_terminals * 2 + 1, 0);
for (u_int i = 0; i < reverselndexMap.size(); i++) {
int a_i = reverseIndexMapl[i];
int b_i = normalized_sequenceR[a_ix*2];
int c_i = normalized_sequenceR[a_ix*2+1];

int n_b_i, n_c_1i;
if (b_i < n_terminals) {
n_b_i = b_ij;

} else {
n_b_i = distance_of_find[b_i - n_terminals] + n_terminals;
}
if (c_i < n_terminals) {
n_c_i = c_i;
} else {
n_c_i = distance_of_find[c_i - n_terminals] + n_terminals;
}
sortedSequenceR[i*2] = n_b_i;
sortedSequenceR [i*2+1] = n_c_i;
}
int S_i = distance(reverseIndexMap.begin(),
find(reverseIndexMap.begin(), reverseIndexMap.end(),
n_non_terminals-1));
5| sortedSequenceR[n_non_terminals#*2] = S_ij;
R = ARSSequence(sortedSequenceR, max_normalized + 1 + 1);

19

N

26

La tultima linea guarda el indice de la regla inicial (anteriormente, la regla inicial era aquella
expresada por los dos ultimos valores en R, ahora debe guardarse su posicion).

Se cred también un vector similar a reverselndexMap, llamado indexMap que guarda los

indices de las reglas en el arreglo anteriormente ordenado, ordenadas por el valor lexicografico
de la expansién (no inversa) del lado derecho de cada regla. Este vector se utilizard para crear
la grilla.

4.6.1. Memoizacion

Es posible aplicar la técnica de memoizaciéon para reducir el tiempo de la funcién de

comparacion, al guardar los valores de las expansiones de las reglas:

Listing 4.5: Nueva secuencia R

vector<int> distance_of_find(reverselIndexMap.size(), 0);

)|}

for (int i = 0; i < reverselIndexMap.size(); i++) {
distance_of_find[reverseIndexMap[i]] = i;
}
5| int_vector<> sortedSequenceR = int_vector(n_non_terminals * 2 + 1, 0);
|for (u_int i = 0; i < reverselndexMap.size(); i++) {
int a_i = reverseIndexMapl[i];
int b_i = normalized_sequenceR[a_ix*2];
int c¢c_i = normalized_sequenceR[a_i*2+1];

int n_b_i, n_c_1i;
if (b_i < n_terminals) {
n b _i=Db_ij;

} else {
n_b_i = distance_of_find[b_i - n_terminals] + n_terminals;
}
if (c_i < n_terminals) {
n_c_i = c_ij;
} else {
n_c_i = distance_of_find[c_i - n_terminals] + n_terminals;
}
sortedSequenceR[i*2] = n_b_i;
sortedSequenceR[i*2+1] = n_c_1i;
int S_i = distance(reverseIndexMap.begin(),
find(reverseIndexMap.begin(), reverseIndexMap.end(),
n_non_terminals-1));
5| sortedSequenceR[n_non_terminals*2] = S_ij;
R = ARSSequence(sortedSequenceR, max_normalized + 1 + 1);

Esto sin embargo requiere mucho espacio extra y no comprime el texto, por lo que no

es parte de la estructura, sin embargo posibles casos de utilidad son discutidos al final del
trabajo.

20

4.7. Ejemplo practico

Considérese el texto T' = abrabracadabrabra y su versiéon normalizada:
T7=01401402030140140
Considérese también la gramatica representada por la secuencia R, normalizada y reordenada:
R=0981159710112203740
Donde la regla inicial es Ry = 8 11.

Sea s(i) = selecty(b,i + 1) (b es el vector de bits obtenido durante la normalizacién de
la secuencia) y o el tamano del alfabeto de terminales (en este caso, con ¥ = [0, 1, 2, 3, 4]
se tiene 0 = 5), la figura 4.2 ilustra la expansion de las reglas, con R; la regla inicial que
expande al texto original.

R=0981159710112203740
(R:CLR4 R3R6 RQR4 R2R5 bR7 ca dRQ ra)

Ry - 09<«=s(0) Ry_, < a Ry <= abra

R, — 811 <— Rg_, Rii_, <= R3 R¢ <= abrabraca dabrabra
Ry —459 «<— Rs_, Ry_y <— Ry Ry — abra bra

Ry — 710 <— R;_, Riyp_o < Ry Rs <= abrabra ca

Ry —112 <:>8(1> Ris o <— b R, < bra

Ry —20 < 5s(2)s(0)«<=ca

R¢ — 37 < s(3) Ri_, <= d Ry <= d abrabra

R; - 40<=5(4) s(0)<=ra

[=417793282

Figura 4.2: Secuencia R y expansiéon de las reglas R;, junto con secuencia [, el largo de cada
expansion

Como se aprecia al expandir cada regla, estas estan ordenadas de forma ascendente por
el valor lexicografico de la expansiéon invertida del lado izquierdo (en negrita).

Es posible visualizar esta gramética como un arbol sintactico o parsing tree (Véase figura
4.3) que se obtiene de recorrer R desde la regla inicial R;. Esta figura permite visualizar la
idea de Gramatica Balanceada: en una gramatica balanceada, la altura del arbol sintactico
es del orden O(logn), con n es el largo del texto original, es decir, existe una constante ¢ tal
que la altura es < clogn para todos los textos de largo n.

Para que la gramatica representada por R sea balanceada es menester que la imple-
mentacién de Re-Pair genere una gramatica balanceada, luego la expansion de las reglas es
balanceada naturalmente.

Otra visualizacién de la gramatica que sera de utilidad para visualizar la busqueda de
patrones es la de un grafo aciclico dirigido o DAG (del inglés Directed Acyclic Graph) (Figura
4.4).

21

@ @@ @

r a r a

Figura 4.3: Arbol sintéctico para abrabracadabrabra

El DAG se forma de la siguiente forma. Cada regla tiene un tinico nodo correspondiente
en el grafo. Cada vez que una regla R; aparece ya sea como lado izquierdo o derecho de otra
regla R;, esto induce una conexién desde el nodo R; al nodo R;. El inico nodo sin conexiones
salientes corresponde a la regla inicial, en este caso, R;.

Figura 4.4: DAG para abrabracadabrabra, las conexiones que corresponden a reglas que apa-
recen como lados izquierdos son grises, y las derechas son negras

22

4.8. Grilla

Compact Data Structures[15] describe en su décimo capitulo la estructura de grilla en
base a arboles wavelet (mas precisamente, las estructuras utilizan matrices wavelet, pero los
algoritmos descritos en el libro utilizan arboles). Para esto primero se ordenan los puntos de
entrada por la coordenada z. Luego, cada punto (x;,y;) es representado en la grilla por el
punto (7,y;). El mapeo entre los puntos originales y los nuevos se guarda en un vector de
bits, sin embargo, esto es innecesario para el caso presente debido a que los valores x; son
tnicos y continuos, con lo cual al ordenar los puntos por z, (x;,y;) = (i, ;). Una vez se tienen
los puntos ordenados, si se consideran ahora solo los valores y; de cada punto, se tiene una
secuencia S. Es a partir de esta secuencia que se crea la matriz wavelet[15, Capitulo 6.2.5].

4.8.1. Matrices Wavelet

La idea de la matriz wavelet es concatenar todos los vectores de bits en un mismo nivel
para deshacerse de la topologia de arbol. La forma particular en que son concatenados los
vectores busca evitar espacios vacios que aparecen en el arbol (pues no todos los caminos
raiz-hoja tienen el mismo largo) es la siguiente: se colocan primero los vectores de bits co-
rrespondientes a hijos izquierdos del nivel anterior y luego los hijos derechos. Por ejemplo,
para la secuencia "tobeornottobethatisthequestion”:

S1 : tobeornottobethatisthequestion
By @ 110011011110010010110011011010 z1 =13

Sy : benbehaiheein toorottottstqusto
By : 0010010110011 10000110111101110 29 = 14

S3 : bebeaee oorooqo nhihin tttttstust
Bs : 0101011 0010000 100001 0000000100 z3 = 22

Sy : bba ooooqo hihi tttttstst eeee r nn u
B, : 110 000010 0101 111110101 zqg = 10

Ss : a o0oooo hh ss bb q ii ttttttt

Donde z; es un valor pre-calculado equivalente a Ranky(B;,n).

La estructura y sus operaciones se implementaron correctamente (Véase A.6) siguiendo
las instrucciones del capitulo 6.2.5 de Compact Data Structures[15]. Con esto, se implement6
la estructura de grilla usando matrices wavelet[15, Capitulo 10.1] (Véase A.7).

4.8.2. Preparar puntos para grilla

Cada regla R; — B;C; se guarda en la grilla en un punto con coordenadas (B;, C;). Las
filas de la grilla estan ordenadas por orden lexicografico del reverso de la expansién de B; (esto

23

w

ya se hizo). Las columnas en tanto estdn ordenadas por orden lexicografico de la expansién
de C;. Para lograr esto se usé el vector indexMap descrito previamente:

std::vector<Point> points(n_non_terminals);

u_int j, k;

for (u_int i = 0; i < indexMap.size(); i++) {

k = std::distance(indexMap.begin(), std::find(indexMap.begin(),
indexMap.end (), 1i));

points[i] = Point(k, i);

Estos puntos se usaron para inicializar la grilla (La implementacién de la grilla usa valores
indexados desde 1, por lo que hay que sumar 1 a los valores de los puntos antes de usarlos).

Por ejemplo, las reglas generadas por ”abrabracadabrabra” (Véase la figura 4.2), conforman
la siguiente grilla:

abrara
dabrabra
ra

=5 bra
bra
ca

a

=

abrabraca
abra Ry
abrabra R
b Ry
¢ Rs
d Rg
r R

01 2 3 45 6 7
Figura 4.5: Grilla

Si se lee la grilla fila por fila aparecen las reglas en este orden: Ry, R, R, ... Rz, es decir,
en el orden preexistente, pues ya fueron ordenadas por orden lexicografico de la expansién
reversa del lado izquierdo (mostrado en la figura a la izquierda de cada fila). Si se leen las
reglas columna a columna, el orden es Rs, R7, Rg, Ry, R, R3, Ry, R4, pues las columnas estan
ordenadas por orden lexicografico de la expansion del lado derecho (mostrado arriba de la
grilla sobre cada columna correspondiente).

4.9. Calcular largo de las expansiones de las reglas

Es menester, para poder responder consultas de btisqueda de patrones, pre-calcular los
valores de los largos de las expansiones de cada regla. El detalle se ve mas adelante, pero

24

en resumen, si una ocurrencia de un patrén sucede en una regla que aparece como el lado
derecho C; de otra regla, el indice del patrén estara desfasado [p, con respecto al indice de
la regla padre, donde [p, es el largo de la expansién de la regla B; que es el lado izquierdo de
la regla R;.

1 = int_vector(n_non_terminals, 0); // largos de cada regla
for (int i = 0; i < n_non_terminals; i++) {
1[i] = ruleLength(i);

Como las reglas son referenciadas por otras reglas (y dependiendo de lo repetitivo del
texto, son referenciadas mds de una vez), con el fin de evitar calcular el largo para una
misma regla cada vez que esta es parte de la expansion de otra, se usé memoizacion (en este
caso, la misma lista de largos funciona como la memoria).

int PatternSearcher::rulelength(int_vector<> *1, int i) {
if (1[i] !'= 0) { //memoization
return 1[i];
3
int left, right;
if (R[i*2] < nt) {

left = 1;
} else {
left = rulelLength(R[i*2] - nt);
}
if (R[i*2+1] < nt) {
right = 1;
} else {
right = rulelength(R[i*2+1] - nt);
3

1[i] = left + right;
return 1[i];

4.10. Busqueda de patrones

La busqueda de patrones aprovecha la grilla para encontrar las reglas en las que aparece
el patron de texto buscado. La idea es la siguiente: si el patron P a buscar aparece en el texto,
entonces existe al menos una divisién del patron P en dos strings P- y P~ que son prefijo
y sufijo del patréon respectivamente y que concatenados forman el patron P, tales que P- es
sufijo de la expansion izquierda de una regla R; y P- es prefijo de la expansion derecha de
la misma regla. Si se tienen todas las reglas que cumplen esta condicion, basta con recorrer
virtualmente el arbol sintactico o parsing tree hasta el simbolo inicial, y entregar la posicion
donde parte P tomando en cuenta los desfases con respecto al nodo padre.

La idea entonces es, primero, y por cada division P. y P- del patréon, encontrar todas la
reglas que expresan el patron de la forma descrita (ocurrencias primarias), y luego, por cada

25

una de estas reglas encontradas, hacer accesos en R hasta encontrar todas las posiciones de
esta regla en el simbolo inicial (ocurrencias secundarias). El detalle se ve en las siguientes
secciones.

4.10.1. Ocurrencias primarias

Para cada posible divisién del patrén P en dos strings, uno prefijo y otro sufijo P. y P,
se buscan las reglas cuya expansion izquierda es P~ y derecha P..

Como las filas estan ordenadas por orden lexicografico de la expansién reversa del lado
izquierdo de estas, las reglas que cuyo lado izquierdo terminan en P. forman un rango de
filas en la grilla. De forma analoga, las columnas estan ordenadas de forma lexicografica
por la expansion del lado derecho, por lo que las reglas con lado derecho que empieza con
P. forman un rango de columnas. Esto significa que se puede encontrar el rango de filas y
columnas (y por lo tanto, el cuadrante donde se encuentran las reglas que cumplen con la
condicién buscada) usando busqueda binaria.

Por ejemplo, sea el patron de busqueda P = ab sobre el texto abrabracadabrabra, se tienen
los posibles (y en este caso unicos) P- = ay P~ = b. Las reglas que tienen como sufijo en su
extension izquierda a P. = a estén en el rango de filas [0, 1,2, 3] (en azul en la figura 4.6),
mientras que las reglas que tienen como prefijo en el lado derecho a P> = b estan en el rango
de columnas [3,4] (en rojo en la figura 4.6).

dabrabra
ra

=

abrabraca

abra

abrabra
b Ry
c Rs
d Rg
r R

01 2 3 45 6 7

Figura 4.6: Grilla

Las reglas Ry y Ry se encuentran en el cuadrante definido por los dos rangos encontrados.
Estas reglas pueden obtenerse mediante la operacion report de la grilla. El siguiente paso es
determinar los indices de las reglas en el texto original (Véase seccién 4.10.2).

26

1

Implementacion

La busqueda de las reglas que contienen el patrén consiste en primero dividir este en dos
sub-strings (P, Ps), segtin una variable ¢ (el largo de P.). Por cada t entre 1 y el largo del
patréon menos uno, se deben encontrar s, (primera fila del rango de filas), e, (iltima fila del
rango), s, (primera columna del rango de columnas) y e, (iltima columna del rango).

u_int m = P.size();

u_int t;

for (¢t = 1; t < m; t++) {
string P_left = P.substr(0, t); // P_<
string P_right = P.substr(t, m-t); // P_>
uint s_x, e_x, S_y, e_y;

Para buscar los rangos s, €5, sy, €, , se utilizé busqueda binaria, como se ve en 4.6, donde
se muestra la busqueda binaria para s,. En este caso, la fila tiene el mismo identificador que
la regla (linea 5) gracias a la disposicién de los puntos usados en la grilla.

Listing 4.6: Btisqueda binaria para s,

int left = 0, right = G.getRows() - 1;

int result -1;

slwhile (left <= right) {

int mid = left + (right - left) / 2;

int r_i = mid;
int compare = compareRuleWithPatternlLazy(R, r_i, nt, sl, P_left,
true) ;
if (compare >= 0) {
if (compare == 0)
result = mid;
right = mid - 1;
} else {
left = mid + 1;
}
}
s|if (result == -1) continue;
s_y = result + 1;

En el caso de las columnas, la linea 5 de 4.6 debe cambiar, el indice de la regla corresponde
al valor del punto en la columna:

int r_i = G.access(mid+1)-1; // rule index

Donde G.access entrega el valor del inico punto en la columna de entrada.

Para encontrar el final de cada rango, lo inico que cambia en la btisqueda binaria es como
se mueven los limites de la bisqueda (left y right):

if (compare <= 0) {
if (compare == 0) A{

27

3 result = mid;

1 }

5 left = mid + 1; // instead of mid - 1
6 } else {

7 right = mid - 1; // instead of mid + 1

La funcion compareRule WithPatternLazy compara el patréon con la expansion ya sea iz-
quierda o derecha de una regla, como se ve en 4.7.

Listing 4.7: Ocurrencias

i|template <typename Iterator>
>|int compareRuleWithPatternLazyImpl (
ARSSequence& arrs, int i, int nt, std::vector<char>& sl, Iterator
pattern_begin, Iterator pattern_end,
1 bool rev = false)
51
6 auto gen = expandRuleSidelazy(arrs, 2*i, nt, sl, rev);
7 auto it = gen.begin();
8 while (it != gen.end() && pattern_begin != pattern_end) {
9 char c = *xit;
10 char p = *pattern_begin;
11 if (¢ < p) return -1;
12 if (¢ > p) return 1;
13 ++it;
14 ++pattern_begin;
15 }
16 if (it == gen.end() && pattern_begin != pattern_end) return -1;
17 return O;
18] }
v|int compareRuleWithPatternLazy (ARSSequence& arrs, int i, int nt,
std::vector<char>& sl, std::string pattern, bool rev = false)
20 {
21 if (rev) {
22 return compareRuleWithPatternLazyImpl (arrs, i, nt, sl,
pattern.rbegin(), pattern.rend(), rev);
23 } else {
24 return compareRuleWithPatternlLazyImpl (arrs, i, nt, sl,
pattern.begin(), pattern.end(), rev);
25 }
26 }

Esta operacion utiliza las funciones de expansién perezosa descritas en la seccion 4.6, en
el fragmento 4.3.

Una vez encontrados los rangos, se deben encontrar las ocurrencias de las reglas que se
encuentran en este:

|vector<Point> points = G.report(s_x, e_x, s_y, e_y);
o|for (Point p: points) {

28

int r_i = p.second-1; // rule index
if ((u_int)R[r_i*2] < nt) {
secondaries (occurences, R, S, r_i, nt, 1, 0);
} else {
secondaries (occurences, R, S, r_i, nt, 1, 1[R[r_i*2] - nt]l-t);

El desfase inicial es cero si el lado izquierdo es una terminal, en el caso contrario el desfase
es la diferencia entre el largo de la expansion del lado izquierdo y el largo de P-.

4.10.2. Ocurrencias secundarias

Determinar las posiciones de las reglas encontradas en el simbolo inicial corresponde
a recorrer virtualmente el DAG desde los nodos correspondientes a cada regla encontrada
en la busqueda de ocurrencias primarias hasta el nodo correspondiente al simbolo inicial,
acumulando el desfase de cada nodo en el camino: si la regla es el hijo derecho del nodo
destino, su desfase respecto a este es igual al largo de la expansion de la correspondiente
regla izquierda.

La idea es recorrer todos los caminos posibles hasta el nodo inicial, y entregar los desfases

para cada recorrido.

Figura 4.7: Busqueda en el DAG para nodo R,

Siguiendo el ejemplo de la seccién anterior, se necesita ahora encontrar las ocurrencias de

29

las reglas Ry v Rs en el texto, considerando el desfase inicial del patron P = ab con respecto
a cada regla.

La figura 4.7 muestra el recorrido por el DAG que corresponde a la buiisqueda de ocurren-
cias secundarias para el patréon P = ab expresado en Ry = a bra. Los dos caminos posibles
(en rojo y azul) llegan cada uno a R; con distintos desfases. El camino rojo llega con un des-
fase acumulado de 0 (el desfase inicial es 0 pues el patrén coincide con el inicio de la regla),
lo que indica que el patrén (expresado por la regla Ry) aparece en la posiciéon 0 del texto
(indexado desde cero). El camino azul acumula un desfase igual a l[d] + [[R3] =1+ 9 = 10
(Véase figura 4.2 para los valores de 1), con lo que el patron (en la regla Ry) aparece también
en la posicion 10 del texto.

Considere ahora la busqueda para la regla R,. La figura 4.8 muestra los recorridos reali-
zados por la busqueda.

Figura 4.8: Busqueda en el DAG para nodo Rs

El camino rojo llega con un desfase acumulado de 3 (el desfase inicial del patrén P =
ab respecto a la regla Ry = abra bra), mientras que el camino azul llega con un desfase
3+ 1[d] +1[Rs]) =3+ 149 = 13. Con esto se concluye que el patron aparece (expresado en
la regla Rs) en las posiciones 3 y 14. En total, sumando a las ocurrencias encontradas para
Ry, el patron aparece en las posiciones 0, 3, 10 y 14 del texto.

En este ejemplo, solo se necesité encontrar un cuadrante, pues solo existia un par (P,
P.) para dividir ab, pero un patrén més largo tiene miltiples divisiones, por lo que para
cada par (P-, P-) que tengan un cuadrante en la grilla valido se debe hacer el proceso de
encontrar las ocurrencias secundarias.

30

Implementacion

La busqueda de ocurrencias secundarias en la implementacion consiste en acceder R de
forma recursiva. La idea es la siguiente, en cada recursién, para una regla Ry y un desfase
acumulado se buscan todas las ocurrencias de la regla en R (la cantidad de ocurrencias es
dada por r = rank(R, Ry), y cada ocurrencia j < r estd en i = select(R, Ry, 7)), y por cada
una de estas, si la ocurrencia corresponde a un hijo derecho (es decir, si la posicién i de
la j-ésima Ry en R es impar) entonces se agrega al desfase acumulado el largo de la regla
en la posicion ¢ — 1. Seguido de esto se llama la busqueda de ocurrencias secundarias para
la regla R;/ que es la que contiene esta ocurrencia especifica j de Ry en R, es decir, es el
nodo padre en el arbol sintactico, con el desfase acumulado. La implementacién de esto se
ve en el fragmento 4.8. Cada vez que se llega al simbolo inicial S el desfase sera distinto,
correspondiente a cada indice del patrén buscado en el texto.

Listing 4.8: Ocurrencias

void secondaries(vector<int> *occs, ARSSequence R, u_int S,
u_int A_i, u_int nt, int_vector<> 1, u_int offset=0,

bool terminal = false) {
if ('terminal && A_i == S) {
occs->push_back(offset); return;
}
int ¢ = terminal? A_i: A_i + nt; // nt = number of terminals

for (int j=1; j <= R.rank(c, R.size()); j++) {
int k R.select(c, j);
int Di = k / 2;
int offset_prime = offset;
if (k % 2 == 1) { // if A_i is right side
if (R[k-1] < nt) offset_prime++;
else offset_prime += 1[R[k-1] - nt];

}

secondaries(occs, R, S, D_i, nt, 1, offset_prime, false);

En el fragmento de codigo 4.8 se observa cémo se recorre la secuencia R. La operacion
rank devuelve la cantidad de ocurrencias de la regla indicada por el parametro A;. que puede
corresponder al indice de una regla o a un simbolo terminal, dependiendo del valor del flag
terminal. Por cada ocurrencia, se utiliza select para obtener la posiciéon correspondiente.

Si el texto original es repetitivo, pueden existir muchas ocurrencias de una misma regla,
lo que hace que select sea la operacion mas utilizada. Es por esta razon que la secuencia se
representa mediante permutaciones, lo que permite realizar select en tiempo O(1). Durante
el proceso recursivo, el desfase se acumula en la variable offset. La recursion termina cuando
A; es el stmbolo inicial S, en cuyo caso el desfase acumulado hasta entonces se anade a las
ocurrencias.

31

N

Capitulo 5

Evaluacion

Para evaluar la solucion se deben considerar dos aspectos de la implementaciéon: el fun-
cionamiento correcto del codigo en términos de entrada y salidas de datos en cada una de sus
partes (unidades) y la consistencia del programa con las proyecciones de tiempo y espacio
tedricos.

5.1. Unit Testing

Para probar el funcionamiento del programa se utilizé la librerfa Catch2[18], que permite
facilmente crear pruebas unitarias (Unit Testing en Inglés). Las unidades en este caso son las
distintas clases creadas para representar las estructuras necesarias para el programa: Permu-
tation (véase A.4: permutacion con vectores de bits y atajos), ARSSequence (véase A.5:
Secuencias utilizando permutaciones), WaveletMatriz (véase A.6: secuencia representada
como matriz wavelet utilizando vectores de bit), Grid (véase A.7: grilla utilizando matriz
wavelet y PatternSearcher (véase A.8: buscador de patrones utilizando grilla y secuencia).

Como ejemplo, considérese la clase buscadora de patrones, se puede hacer pruebas que
corroboren los resultados de la busqueda:

Listing 5.1: Test de busqueda

TEST_CASE("PatternSearcher","[pattern]") {
REQUIRE_FALSE(g_fileName.empty());
string input_filename = g_fileName;
FILE *input = fopen(input_filename.c_str(), "rb");
string filecontent = "";
char c;
while (fread(&c, 1, 1, input) == 1) {

filecontent += c;
}
fclose(input);
PatternSearcher PS(input_filename) ;
for (int i = 0; i < B0; i++) {

32

13

string pattern = filecontent.substr(rand() %
(filecontent.size() - 10), rand() % 10 + 1);

cout << i << ": Searching for pattern: \"" << pattern << "\""
<< endl;

vector<int> occurences;

PS.search(&occurences, pattern);

sort (occurences.begin(), occurences.end());

vector<int> expected_occurences = findOccurrences(filecontent,
pattern);
REQUIRE (occurences == expected_occurences) ;

}
vector<int> findOccurrences(const string& filecontent,
const string& pattern) {
vector<int> occurrences;
for (size_t i = 0; i < filecontent.size(); i++) {
if (filecontent.substr(i, pattern.length()) == pattern) {
occurrences.push_back(i);
}
}

return occurrences;

La prueba mostrada cerciora que el método utilizado search encuentre los indices de las
ocurrencias del patron generado aleatoriamente a partir del contenido del texto de entrada,
comparandolos con los resultados arrojados por una funcién de btisqueda sobre el contendido
(visto como un string) que utiliza funciones estdndar en C++ para encontrar, en tiempo
O(n), las ocurrencias.

5.2. Analisis empirico

5.2.1. Espacio

El espacio total de la estructura corresponde a la suma de los valores del espacio de la
grilla G, el espacio de la secuencia R, el espacio de la secuencia [, los vectores que mapean
los simbolos normalizados a los originales y el simbolo inicial:

SPACE(PS) =32+ rlogn + 2 x 8 x 256 + SPACE(G) + SPACE(R)

El espacio de la grilla G es igual al espacio de la matriz wavelet WM y los valores para
guardar la cantidad de columnas, filas y puntos:

SPACE(G) =3 x 32 + SPACE(WM)

El espacio de la matriz wavelet WM corresponde al valor de o, el vector de z; de largo
log o y el vector de largo log o de vectores de bits de largo n. En este caso, como la matriz

33

se construye sobre la secuencia formada por los indices de las reglas, ¢ y n son ambos la
cantidad de reglas:

SPACE(WM) =32+ 32logr + SIZE(BV)logr

El vector de bits tiene, en el peor caso, un tamano de 1,5n, con lo que el tamano total de

la matriz queda:
SPACE(WM) =32+ 32logr + 1,5rlogr

Con esto, el espacio de la grilla G queda:
SPACE(G) =3 x 32+ 32+ 32logr + 1,5rlogr

SPACE(G) =96 + 32logr + 1,5rlogr

El espacio usado por una secuencia R de largo n sobre un alfabeto o representada por
permutaciones es igual a la suma de los A; y D; que hacen un total de 4n + o(n) mas las
permutaciones que usan un espacio total de nlogo + no(logo). Como R se construye sobre
la secuencia de largo 2r y el alfabeto corresponde a la suma del alfabeto del texto o y la
cantidad de reglas r, sobrestimando los ordenes o queda el espacio como:

SPACE(R) = 10r + 2rlog (r + o)

El espacio total en bits de la estructura es entonces:

SPACE(PS) = 4224 + rlogn + +32logr + 1,5rlog r + 10r 4 2rlog (r + o) (5.1)

34

Construccion

El proceso de construccion de la estructura, segin los propuesto en el libro, utiliza ex-
tras O(c + n) bits. En la implementacion, el tamafio extra usado aparece en el proceso de
construccion de la matriz:

Listing 5.2: Construccion de matriz

void WaveletMatrix::build(vector<u32>& S, u32 n, u32 sigma) {
vector<u32> S_hat(n);
bit_vector M(n, 0);
bit_vector M_hat(n, 0);
u32 m = sigma;
for (u32 1 = 0;
u32 z_1 = 0;
bit_vector B_1l(m, 0);
for (u32 i = 0; i < n; i++) {
if (S[i] <= (m - M[i] + 1) / 2) {

1 <= ceil(log2(sigma))-1; 1++) {

B_1[i] = 0;
Z_1++;

} else {
B_1[i] = 1;

S[i] = S[i] - (m - M[i] + 1) / 2;

}

bm.push_back (ppbv(B_1));
z.push_back(z_1);

if (1 < ceil(log2(sigma)) - 1) {

u32 p_1 = -1; // max value + 1 = 0
u32 p_r = z[1] - 1;

u32 p;

int n_. = n;

for (u32 i = 0; i < n_; i++) {
u32 b = bm[1][i];
if (b == 0) {

p_l ++;
p = p_L;
} else {
p_T ++;
P = p_1;
}
S_hat[p] = S[il;
if (m % == b) {
M_hat [p] = b;
} else {
M_hat[p] = M[i];
}
if ((m+1)/2==2 && M_hat[p] == 1) {
n = n-1;;
}

35

}
swap (S, S_hat);
swap (M, M_hat);
m = (m+1)/2;
}
}
S.clear ();
S.shrink _to_fit();

Esto ocupa, efectivamente, 2n bits para los vectores de bit y O(n) bits para la secuencia
auxiliar, lo que indica que la implementacion es consistente con lo esperado segtin el analisis.

Si se utiliza memoizacion para expandir las reglas al momento de comparar y ordenar la
secuencia, se requiere, en el peor caso, O(2n) bytes (jno bits!) de memoria extra, considerando
un arbol sintactico binario balanceado de n nodos. Incluso en el mejor caso, la memoria de la
memoizacion requiere al menos n bytes. Es posible mejorar esto guardando las expansiones
de las reglas que mads se repiten en el arbol (por ejemplo, las que otrora apareciesen en la
secuencia C' generada por Re-Pair), y memoizar sélo prefijos de las reglas de cierto tamano.
En este caso es quizas posible utilizar otras estructuras como un trie o un suffiz-tree en vez
del mapa int a string utilizado como memoria.

5.2.2. Tiempo
Construccion

En teoria, la construccion de una estructura grilla usando matrices wavelet con n puntos
y ¢ columnas demora tiempo O(c+nlogn)[15, Capitulo 10.6]. Esto se debe a que primero se
deben ordenar los puntos por la coordenada x, y luego se recorren estos para inicializar los
vectores de bits.

En el caso particular de la busqueda de patrones, no es necesario ordenar los puntos. En
efecto, la clase buscadora primero ejecuta Re-Pair sobre el texto de largo n (tiempo O(n)),
después la normalizacion (tiempo O(n)), para luego ordenar la secuencia R de reglas por
orden lexicografico de la expansion reversa del lado izquierdo (O(r log r) comparaciones donde
expandir toma, en promedio, O(logn)). Los puntos son entonces creados de forma que las
columnas estén ordenadas por el valor lexicografico del lado derecho (tiempo O(rlogrlogn)).

Todo lo anterior significa que la grilla entonces toma tiempo O(r), que sumado al tiempo
necesario para ordenar la secuencia R, conlleva a un tiempo total de:

O(n + rlogrlogn) (5.2)

Con n el largo del texto y r la cantidad de reglas.

Se pudo medir el tiempo de construccién de la implementacion utilizando textos reales,

36

obtenidos del sitio Project Gutenberg|7]. Para cada texto, se ejecut6 la construccién de la
clase buscadora de patrones varias veces, y se obtuvo el promedio de todas estas medidas.
Los resultados se pueden ver en la figura 5.1, donde se comparan con la prediccién tedrica
calculada 5.2.

Figura 5.1: Tiempo de construccién de la estructura en funciéon del nimero de reglas, com-
parado a tiempo teérico O(n + rlogrlogn)

Tiempo de Construccion segin nimero de reglas

—=—- Tiempo de construccién .
120000 4. —=—- Prediccidén tedrica con ajuste de 1/260 Le? e
’.f Ed
f’ -
d
td
100000 - T
e -~
e ‘,’,
W 80000 - S
E ,o’ -'"
["J ’f
8_ ”d' ,",
£ 60000 o
- #
@ ,‘”, ‘_r,
|_ f” d'”
40000 - = =
’I “.-P
,“'J_, -
20000 - R
Pl
L=z
f‘ﬁ‘e’
o ===
T T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000 200000

Numero de reglas

La implementacién demuestra comportarse exactamente como lo predicho por la formula
obtenida del analisis teorico.

ES posible, con memoizacion, reducir el tiempo de construccion significativamente. Como
las primeras reglas corresponden a las reglas creadas por Re-Pair, estas se expanden primero
y se guardan. Luego, el resto de las reglas corresponden a las reglas extras creadas para
reducir la secuencia C) y por lo tanto utilizan todas la memoizaciéon de forma consecutiva.
Sin embargo, esta técnica utiliza significativa memora extra, y no logra comprimir el texto.

Biasqueda

El costo de tiempo tedrico para reportar occ ocurrencias de un patrén P de largo m en
el texto T de largo n es:

O((m +logn)mlogrloglogr + occlognloglogr)
Esto se debe a que en una gramatica balanceada, el arbol sintactico tiene altura logn, y

37

la operacién de acceso en la secuencia representada por permutaciones (R) tiene un tiempo
O(loglogr). De aqui que el primer sumando en la expresién tedrica corresponde a expandir
m simbolos de una regla ((m+logn)loglogr), por cada comparacién en la bisqueda binaria
(log), por cada divisién de sufijo y prefijo del patrén (m). El segundo sumando en tanto co-
rresponde a recorrer virtualmente hasta la raiz el arbol sintactico (logn), por cada ocurrencia
encontrada (occ), haciendo accesos en R (loglogr).

Para medir el tiempo de busqueda de la implementacion en funciéon de los parametros, se
crearon textos que permitiesen mantener fijos algunos de estos y variar el pardmetro relevante.

El tiempo en funciéon de la cantidad de ocurrencias requiere mantener fijo el largo de
los patrones de busqueda (ademds de los otros parametros). Una solucién simple fue usar
los bigramas (secuencias de largo 2) mas comunes en Inglés[17] como los patrones a buscar.
Luego se buscan las ocurrencias de estos patrones en varios textos en inglés. Los grafico de
estas medicion para cada texto real utilizado correspondes a la figuras de la tablas 5.4 y
5.5. El grafico 5.2 muestra la combinaciéon de todas las mediciones y la tendencia combinada
polinomial de primer grado.

La figura 5.3 ilustra el tiempo tedrico para fines de cerciorar el mismo crecimiento, uti-
lizando valores promedios de n y r. La justificacion para esto es que, aunque el tiempo de
busqueda es funcién de n y r, ademas de occ, es posible un andlisis més simple considerando
r y n como funciones lineales de occ en textos reales, donde independiente del largo el texto
no se vuelve menos o mas predictivo, y la "densidad”de ocurrencias se mantiene igual.

Figura 5.2: Tiempo de busqueda en funcién del niimero de ocurrencias para un patrén de
largo dos

Tiempo de busqueda vs. Ocurrencias

4001 @ n=3317
n=43579
© n=66532
® n=108526
n=154452
300 4+ @ n=186998
n=237418
n=274500
n=290801
n=1224377
200 4 ——- Tendencia: 0.02x + -0.87

350 4

250

Tiempo (ms)

150 4

100 A

e 2

T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500
Ocurrencias

38

Figura 5.3: Tiempo de busqueda en funcién del niimero de ocurrencias para un patréon de
largo dos con prediccién tedrica usando promedio de n y r, con tiempo teérico O((m +
log n)mlogrloglogr + occlognlogr).

Tiempo de busqueda vs. Ocurrencias

® n=3317
n=43579
® n=66532
801 @ n=108526
n=154452
® n=186998
n=237418
n=274500
n=290801
n=1224377
——- Tendencia: 0.02x + -0.87
——- Tiempo tedrico /1000

[=)]
(=]
|

Tiempo (ms)
=Y
(=]

20

0 500 1000 1500 2000 2500 3000
Ocurrencias

El tiempo de busqueda corresponde a la suma de los tiempos de busqueda binaria de
rangos en la grilla, el costo temporal de reportar las reglas dentro de estos rangos y los
tiempos de busqueda de ocurrencias para cada regla reportada.

La busqueda binaria demora en el peor caso mlogc, pues la comparacién puede requerir
expandir la regla entera hasta el largo del patrén (m), y la regla puede corresponder a la
regla inicial que expande al texto inicial de largo n. En la préactica, con un texto real, la
gran mayoria de las comparaciones terminan en el primer simbolo de la expansion. Esto es
facil de ver: como la distribucién de los primeros simbolos de las expansiones de las reglas
es aproximadamente uniforme (en realidad, es la distribucién segin las frecuencias de los
simbolos en el lenguaje especifico) las comparaciones perezosas retornaran falso en el primer
simbolo.

En un texto altamente repetitivo, las expansiones seran mas largas, sin embargo, la canti-
dad de reglas es mucho menor que la de un texto real. Esto significa que no sélo la busqueda
binaria se hace sobre un espacio menor, el reporte de ocurrencias se hace sobre un arbol méas
corto (si se considera la bisqueda de ocurrencias como el recorrido del arbol sintactico hasta
la raiz).

Las pruebas de medicién de tiempo muestran resultados consistentes a lo esperado en
todos los casos, por lo cual se puede concluir que la implementacion es correcta.

39

Figura 5.4: Tiempos de bisquedas en ms (milisegundos) en funcién del niimero de ocurrencias
para un patrén de largo 2

Tiempo de bisqueda vs. Ocurrencias

. Tiempo de busqueda vs. Ocurrencias
® n=3317 . T
=43579 'y
— n= ® 164 © 0
n=3317 (tendency) — n=43579 (tendency)
16
@ °
/‘ 14
°
14 - 12
°
@
E s ®
=10
° P] ®
e 3 @ °
12 L 3
=4 [
° ® ° . . |® 8 e .
® °e o ®
° ° @
®
10 g N
e
4
0.8
10 20 30 40 50 60 200 400 600 800 1000
Ocurrencias Ocurrencias
Tiempo de busqueda vs. Ocurrencias Tiempo de busqueda vs. Ocurrencias
T T T
® n=66532 . ® n=108526
20.0 4 — n=66532 (tendency) ® 401 n=108526 (tendency) ?
17.5 ®
30
15.0 - =
e)
E 25
12.5 ® 3 o *
/ ° g p ‘
F 20 '}
10.0 -~ °
L] . / °
15
7.5
10
5.0
5
200 400 600 800 1000 1200 500 1000 1500 2000 2500
Ocurrencias Ocurrencias
Tiempo de blsqueda vs. Ocurrencias Tiempo de busqueda vs. Ocurrencias
T T T T
01 o n=154452 ° ® n=186998 Py
—— n=154452 (tendency) 70 1 — n=186998 (tendency)
-
60
60
50
50
= = ®
@ o
£a]
2 S 40
£ b £
= =
30) ® o e
o 30
°
20 g °
L]
e o 0y 20
°
10 ®
10
] 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500
Ocurrencias Ocurrencias
Tiempo de busqueda vs. Ocurrencias ; Tiempo de blsqueda vs. Ocurrencias
® n=237418 . ° ni274500 . /
— n=237418 (tendency) —— n=274500 (tendency)
o 100
80
80
_ O
T 60
g L]
2 . -
5 L ° 60 5
= ®
40 L] FJ ®
) 0 8
e . °
°® 8
]
20 ®)
L]
20
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 6000
Ocurrencias Ocurrencias

140 4

120 4

100 4

80

60

40

Figura 5.5: Tiempos de bisquedas en ms (milisegundos) en funcién del niimero de ocurrencias
para un patrén de largo 2 (Continuacién)

Tiempo de busqueda vs. Ocurrencias Tiempo de busqueda vs. Ocurrencias

® n=29%0801 ® n=1224377
—— n=290801 (tendency) —— n=1224377 (tendency)

1000 2000 3000 4000 5000 6000 7000 8000 5000 10000 15000 20000 25000 30000

Ocurrencias Ocurrencias

5.3. Anadlisis en textos altamente repetitivos

Las colecciones de textos reales altamente repetitivos de Pizza & Chili Corpus[l] sirven
como entradas para pruebas del mismo tipo a las utilizadas por el indice comprimido basado
en gramatical4] y son por lo tanto una buena forma de analizar la competitividad de la
estructura utilizada. El tamano de los textos varia desde 45 MiB (world_leaders) a 446 MiB
(einstein.en), con variados grados de repeticién, como se ve en la tabla 5.1. En la misma
tabla aparece el espacio de la estructura para cada set de datos como bps (bits por simbolo).

Coleccién Largo Reglas bps
world leaders 46968181 | 307066 | 0.848511
Escherichia Coli | 112689515 | 3619577 | 4.55733
influenza 154808555 | 1557878 | 1.40496
kernel 257961616 | 1129349 | 0.619162
coreutils 205281778 | 1994376 | 1.36035
para 429265758 | 4222046 | 1.41742
cere 461286644 | 3212008 | 0.986939
einstein.en 467626544 | 163417 | 0.0475765

Tabla 5.1: Propiedades de cada coleccion

Para cada coleccion se hicieron busquedas de patrones aleatorios de ciertos largos y
se midieron los tiempos de btsqueda por ocurrencia. La figura 5.6 muestra los resultados
obtenidos, ilustrados en un grafico donde las escalas de ambos ejes son logaritmicas, y el
eje Y corresponde a los tiempos por ocurrencia (en teoria, O((m + logn)mlogrloglogr +
occlog nloglogr)/occ), mientras que el eje X corresponde a la cantidad occ de ocurrencias
detectadas.

La estructura toma tiempos menores por ocurrencia mientras mas ocurrencias del patron
se encuentren en el texto. Patrones de menos largo aparecen con mas incidencia en los textos
y por lo tanto el proceso de dividir el patrén en todos sus posible sufijos y prefijos es mas

41

Figura 5.6: Tiempos por ocurrencia en ps (microsegundos) de busquedas en funcién del

numero de ocurrencias para distintas colecciones repetitivas. Ambos ejes

estan es escala

’, .
logaritmica
world_leaders Escherichia_Coli
50001 o © world_leaders ' ® Escherichia_Coli
1 °
3000 P)
2000
5000 | ' °
i
1000 o e 3 3000 8
700 ° o9
500 ° . 2000 PSS
400 - L]
300 1 ﬂe)
200 o @ 3 1000 1
1 ® L)
fo‘ 700 e
® °
100 | ?® & 500 °
754 % B 400 0o’ ®
e o® (]
50 300 1 &€ .0
40 r e %
30 4 ° 200 4 . e ®
25 4 o
20 v s ¢ * o .-h. .o
15 ® °,
80 o3, 2 .‘ i P 100 . °
104 °® 8 sty 75 4 &
100 10! 102 103 104 10% 108 107 10® 10! 10? 103 10* 105
Ocurrencias Ocurrencias
coreutils kernel
Y ® coreutils ® ® kemnel
5000 5000
3000 e °8 3000 4
°
2000 - POt P 2000 4 e
° ° .
1000 § 1000 4 3
700 4 ®] °
20 ! o~ : 700 A
]] o
200 e ¢ o R . 2001 ol
i °
300 &% e ® ° 300 o
200 o ®
%o o 200 .
° °
® °
100 4 ee® % .~ ° € o & os. %
75 4 o, % 8 ° (] 100 4 ® EY
o ¢ ® 75 4 o e
50 ° @0 U
404 - ® o 50 o ® ©
304 ° 40 %% °
254 @ %(% 1 LR @ s
204 1 ° % oo
] 204 o0 oo °
15 e] ° ® e °© @ ° °
104 ° ° °
10° 10! 10? 10° 104 10 106 107 10° 10t 102 10° 10* 10° 106
Ocurrencias Ocurrencias
para cere
4 [} ara ® cere
3000 ®ae p: °
2000 o 5000 1
° 3000 o®
1000 ‘s o 2000 4 s
%% °
700 *n L]
1000 {
500 1 o &
400 4 700 o' []
300 4 500 1)
400 4
°
200 ® 300 1
°
® ° 200
«? ° ‘e
i ®
100 s, .‘.. 7 ® . 100 P
754
o,] '\h °
. L S d 8 75 *° .. ‘v
° 50 4 ° “ ®
20 1 % e 20 01 e °®
30 4 30 4
25 4 ° 551
204 : 20 4 !
15 4 15
T T T T T T T T T T T T T T T
10 102 10° 104 10° 108 107 10° 10! 102 103 104 109 108 107
Ocurrencias Ocurrencias
influenza einstein.en.txt
[] o influenza 40 1 [} @ einstein.en.txt
5000 | 304
8
3000 ° 254
2000 °®
— 20 %
£} H
1000 =
= o
700 2 151 ®
500 - g
400 4 5 (13
300 - s °
200 g 104 e o
g. L]
100 3 *--08 o
754 [e ®28 ©
504 ool ‘ 8,
201 - & s
°
321 e o 5 ®
°
20 o* h'.a\ e ® t
15 ® o0 , ° %ofodo, o o0 .
104 . 42 L]
T T T T T T T T T T N
10! 102 103 104 105 106 102 10° 104 10° 108
Ocurrencias Ocurrencias

Figura 5.7: Tiempos por ocurrencia en pus (microsegundos) de biisquedas de patrones aleato-
rios de largo fijo 10 en funcién del nimero de ocurrencias en la coleccién einstein.en. El eje
X esta en escala logaritmica

Tiempo por ocurrencias para patrones de largo 10

® einstein.en.txt
20.0 4 @ n=467626544
r=163417

17.5 1

Tiempo por ocurrencia (us)
G
o

L 4

7.5 A

®eo

o ®

L]

[]

}ﬁgp@@m »
5.0 g o, O

- 9@.00,\@ ° 9 @ o @ »
o ® %

2.5 4

T
103 10% 105
Ocurrencias

corto.

En colecciones altamente repetitivas como einstein.en logra tiempos de busqueda por
ocurrencia bajo 5 us cuando la cantidad de ocurrencias es del orden de 10* o mayor. En
world__leaders el tiempo por ocurrencia se estabiliza en 9 a 10 us. En otras colecciones el
tiempo por ocurrencia es menos estable: en influenza altas ocurrencias tienen tiempo por
ocurrencia entre 5 a 30 us.

Se analiz6 el caso para patrones aleatorios de largo fijo m = 10 sobre la coleccion eins-
tein.en. Los resultados se muestran en la figura 5.7 donde la busqueda alcanza tiempos
estables de 5 us por ocurrencia para patrones con ocurrencias superiores a 103,

5.4. Analisis comparativo con la solucién lineal de bs-
queda sin compresion

El reporte de ocurrencia de patrones utilizando un algoritmo lineal en un texto sin com-
primir tiene un tiempo de busqueda en el peor caso de O(nm), con n el largo del texto y
m el largo del patrén. En un texto real sin embargo, el tiempo es més cercano a O(n), pues
la gran mayoria de las comparaciones terminan en el primer simbolo, es decir, el tiempo es

43

relativamente independiente al largo del patron.

n r m | occ | t(ms) estructura | t(ms) lineal | t(ms) tedrico
111299 | 26149 5 14 4.34 10.85 10.08
111299 | 26149 10 1 4.36 10.76 10.17
111299 | 26149 20 1 5.41 15.76 10.49
111299 | 26149 30 1 6.14 15.74 10.98
111299 | 26149 40 1 7.11 15.77 11.61
111299 | 26149 50 1 7.85 15.88 12.41
111299 | 26149 70 1 9.81 16.16 14.46
111299 | 26149 | 100 | 1 11.72 15.72 18.72
290801 | 54170 5 93 7.88 28.77 10.17
290801 | 54170 10 3 6.37 28.68 10.20
290801 | 54170 20 1 7.18 42.79 10.56
290801 | 54170 30 1 8.15 41.55 11.10
290801 | 54170 | 40 1 9.24 42.41 11.81
290801 | 54170 50 1 10.25 42.17 12.70
290801 | 54170 70 1 12.41 41.76 14.98
290801 | 54170 | 100 | 1 15.33 41.75 19.71
704731 | 119734 | 5 | 640 21.11 69.06 10.79
704731 | 119734 | 10 | 216 12.15 68.66 10.46
704731 | 119734 | 20 | 75 10.71 99.65 10.72
704731 | 119734 | 30 1 9.41 99.67 11.24
704731 | 119734 | 40 1 10.68 99.75 12.04
704731 | 119734 | 30 1 11.78 99.69 13.02
704731 | 119734 | 70 1 13.63 99.64 15.56
704731 | 119734 | 100 | 1 16.94 99.26 20.80
1224377 | 191364 | 5 | 329 17.24 118.98 10.48
1224377 | 191364 | 10 | 10 9.06 118.91 10.25
1224377 | 191364 | 20 1 9.48 172.84 10.69
1224377 | 191364 | 30 1 10.55 172.58 11.33
1224377 | 191364 | 40 1 11.90 173.20 12.18
1224377 | 191364 | 50 1 13.23 173.08 13.22
1224377 | 191364 | 70 1 16.16 172.97 15.92
1224377 | 191364 | 100 | 1 19.24 172.31 21.47
2205984 | 333238 | 5 | 409 31.03 221.59 10.61
2205984 | 333238 | 10 | 11 10.39 222.08 10.28
2205984 | 333238 | 20 1 11.35 327.83 10.74
2205984 | 333238 | 30 1 11.98 320.78 11.43
2205984 | 333238 | 40 1 13.65 323.65 12.34
2205984 | 333238 | 50 1 14.92 323.42 13.46
2205984 | 333238 | 70 1 17.48 317.41 16.34
2205984 | 333238 | 100 | 1 22.68 326.57 22.27

Tabla 5.2: Tiempos de biisqueda en textos reales de largo n de patrones aleatorios de largo
m, con occ ocurrencias en promedio y con r la cantidad de reglas

44

El costo temporal tedérico de la estructura en reportar occ ocurrencias, considerando r
como el nimero de reglas al comprimir el texto por gramatica es:

O((m + logn)mlogrloglogr + occlognloglogr)

Para que lo anterior sea menor al tiempo de buisqueda lineal, con un patrén de largo m < logn

se debe cumplir que:
n

)

oce = of log nloglogr

Los valores de occ y r seran pequenos si el texto es repetitivo y las ocurrencias del patron
de busqueda son pocas. Este es el caso para textos reales como se aprecia en la tabla 5.2. Con
largos de patrones suficientemente largos, las ocurrencias en textos reales tienden a ser unicas.
La naturaleza de los textos reales hace que la "densidad”de repetitividad sea relativamente
constante, y por lo tanto, la cantidad de ocurrencias de patrones crece mas lento que el largo
del texto. Esto implica que el algoritmo termina venciendo con mas holgura a la bisqueda
lineal mientras mas largo sea el texto, al menos en el contexto de textos reales como lo son
las novelas, los ensayos, etc.

Con r pequerio la grilla es pequena y por lo tanto las buisquedas de rango son mas cortas,
ademas el arbol sintéctico es mas pequeno y por lo tanto las buisquedas de ocurrencias hasta
la raiz son mas cortas. Con occ pequeno la cantidad de btisquedas de ocurrencias son menores.
Las ocurrencias occ suelen ser proporcionales, tomando patrones aleatorios de un largo fijo,

a qué tan repetitivo es el texto, es decir, en general, occ oc L.

Para ejemplificar lo anterior, considere el siguiente texto 7"
"aaaaaaaaaabaaaaaaaaaab...aaaaaaaaaab\n..."

Esto es, un texto de muchas lineas donde cada linea corresponde a la repeticion de un
patron de cierta cantidad de a seguidas de una b. El texto es muy repetitivo, como se aprecia
en la tabla 5.3 por la pequena cantidad de reglas, y si se buscan patrones de la forma a’b\n
que son los mas raros, el buscador de la estructura es mas rapido que la busqueda lineal:

n r | m | occ | t(ms) estructura | t(ms) lineal | t(ms) tedrico
69120 | 22 | 5 | 720 1.89 6.80 10.31
69120 | 22 | 10 | 720 2.59 6.85 10.32
69120 | 22 | 20 | 720 3.73 10.12 10.37
69120 | 22 | 30 | 720 3.65 9.97 10.44
69120 | 22 | 40 | 720 3.45 9.85 10.54
69120 | 22 | 50 | 720 4.90 9.83 10.65
69120 | 22 | 70 | 720 6.25 9.91 10.96

Tabla 5.3: Tiempos de bisqueda en texto repetitivo con n el largo del texto original, r la
cantidad de reglas, m el largo del patron.

Considérese un ejemplo mas realista. Se tiene una secuencia de ADN como un texto
donde el alfabeto es A, T, G, C. Estas secuencias son sumamente largas, y buscar una cadena
especifica en esta usando una busqueda lineal puede ser muy lento, en especial si se requiere

45

repetir el proceso varias veces con distintos patrones de pocas ocurrencias. En este caso, la
estructura tiene un tiempo de buisqueda mas corto que la busqueda lineal, como se aprecia
en la tabla 5.4.

n r m | occ | t(ms) estructura | t(ms) lineal | t(ms) tedrico
1000000 | 182668 | 5 | 975 83.17 98.23 11.21
1000000 | 182668 | 10 2 10.49 98.78 10.24
1000000 | 182668 | 20 1 9.79 142.39 10.68
1000000 | 182668 | 30 1 11.17 142.58 11.32
1000000 | 182668 | 40 1 12.77 141.67 12.16
1000000 | 182668 | 50 1 14.05 141.11 13.19
1000000 | 182668 | 70 1 16.73 140.73 15.87
1000000 | 182668 | 100 | 1 20.58 140.75 21.39

Tabla 5.4: Tiempos de busqueda en secuencia de ADN de largo 100.000, occ es la cantidad
de ocurrencias del patréon

5.5. Analisis comparativo con indice comprimido basa-

do en gramatica

El indice comprimido basado en gramatica[4] es una estructura de datos que permite
buscar patrones en un texto comprimido por gramatica libre de contexto generada por este,
representada esta a su vez como un arbol. La figura 5.8 muestra los tiempos de biisqueda de
patrones aleatorios en textos reales con la estructura propuesta en este trabajo y la estructura
del indice comprimido basado en gramética. La tabla 5.5 en tanto muestra la cantidad de
bits por simbolo de cada coleccién para ambas estructuras.

Coleccion bps Estructura | bps Indice g-index/2 | bps Indice g-ingex /32
world leaders 0.848511 0.814413 0.642726
Escherichia Coli 4.55733

influenza 1.40496 1.29044 1.02916

kernel 0.619162 0.562662 0.444946
coreutils 1.36035

para 1.41742

cere 0.986939 0.9352 0.748654
einstein.en 0.0475765 0.0456824 0.0355039

Tabla 5.5: Propiedades de cada coleccién

46

Figura 5.8: Tiempos de bisqueda en us (microsegundos) de busquedas de patrones aleatorios
en funciéon del nimero de ocurrencias en la coleccién einstein.en para la estructura imple-
mentada y el indice comprimido con g-index/2.

Tiempo por ocurrencia (us) vs Nimero de ocurrencias

— indice
50 1 Estructura
40 -
30
25 -
— 20
[
=
= 151
‘G
c
£ 10
= 1
[®)
[=]
1=
[=]
a)
2 s
£
g o
3_
2
T T T T T T T T T T T L T T T T
102 103 104 10° 108

Ocurrencias

47

Capitulo 6

Conclusiones

6.1. Conclusiones generales

6.1.1. Objetivo general

Finalizado este trabajo, se puede concluir con suficiente certeza que los objetivos propues-
tos, esto es, la correcta implementacion de la estructura y el andlisis empirico de su funcio-
namiento, fueron completados satisfactoriamente. La estructura se comporta en la préactica
como lo teorizado.

En textos reales, la estructura comprimida simplificada para indexar texto basada en
gramatica logra el reporte de las posiciones de las ocurrencias de patrones de bisqueda
en tiempos més cortos que la biisqueda lineal de patrones (O((m + logn)mlogrloglogr +
occlognloglogr) versus O(nm)). El espacio usado es de orden similar al texto original, pues
a pesar de que se comprime a una cantidad r de reglas que es menor al largo n del texto, estas
reglas requieren mas memoria para ser guardadas (logr bits por cada regla). Sin embargo,
textos suficientemente repetitivo logra una compresion significativa, y se benefician de una
velocidad de reporte de ocurrencias atin mayor.

En particular, si la cantidad de ocurrencias del patréon es muy pequena en comparacion
al tamano del texto, y el texto en si es suficientemente repetitivo, la bisqueda es ordenes
de magnitud mas rapida que una busqueda lineal. Textos altamente repetitivo son también
comprimidos de forma significativa, por ejemplo, los textos correspondientes a las colecciones
repetitivas analizados en 5.3

Los tiempos de buisqueda por patrén mejoran enormemente con la cantidad de ocurrencias
de un patrén, y esto es consistente con lo esperado. Con respecto al estado del arte, en
las colecciones repetitivas evaluadas, los tiempos de biisqueda por ocurrencia son mayores
(alrededor de 4 microsegundos més) que los tiempos por ocurrencia de el indice comprimido
basado en gramatical4]. Futuras optimizaciones en la implementaciéon podrian mejorar este
aspecto y equiparar los tiempos de bisqueda de la estructura.

48

6.2. Cumplimiento de objetivos especificos

1. Implementacion la estructura de forma correcta: La implementacion de la estructura fue
realizada de forma correcta lo que permitio el correcto analisis del comportamiento de
esta tanto en la construccion como en la bisqueda de patrones. Se implementaron cada
una de las partes de la estructura de forma modular y se realizaron pruebas unitarias
para garantizar la correccion de las operaciones.

2. Implementaciéon de pruebas de robustez y consistencia de la estructura: Se implementa-
ron pruebas de robustez y consistencia de la estructura, las cuales permitieron validar
su correcto funcionamiento y su congruencia con el analisis tedrico. Pruebas unitarias
y de integracion fueron realizadas para garantizar la correccion de las operaciones y la
funcionalidad de la estructura.

3. Implementacion de pruebas de desempeno espacial y temporal de la implementacién:
Se realizaron pruebas de desempeno espacial y temporal de la implementacion, las
cuales permitieron evaluar su eficiencia en términos de tiempo y espacio. A partir de
estas pruebas se obtuvieron datos cuantitativos sobre el desempeno de la estructura
y se pudo visualizar a través de graficos y tablas la efectividad de la estructura en la
busqueda de patrones.

4. Analisis de los resultados de las pruebas para obtener conclusiones respecto al desem-
petio: Se analizaron los resultados de las pruebas para obtener conclusiones respecto
al desempeno empirico de la estructura, identificando sus fortalezas y debilidades. Con
esto se obtuvo una vision clara de la utilidad de la estructura en un contexto real y
las posibles mejoras a los tiempos de bisqueda en ambitos de eficiencia y compresion
efectiva en textos reales y/o repetitivos.

6.3. Trabajo futuro

6.3.1. Memoizar

No obstante las virtudes de la estructura, esta requiere un tiempo de construccién no
menospreciable. Si se utiliza extra memoria es posible aplicar memoizacién (regla — ex-
pansién) para acelerar el proceso de ordenamiento de las reglas por sus expansiones y asi
disminuir el tiempo de comparacion y por consiguiente construccion, pero esto requiera me-
moria extra durante el proceso equivalente al mismo texto, es decir, O(nlogo) bits, con lo
cual no hay compresion.

Se puede limitar la memoizacion a solo las reglas originalmente creadas por Re-Pair y
aprovechar que la estructura del arbol gramatical esta balanceada desde el nivel correspon-
diente a los sub-arboles que salen de tomar pares de simbolos de la secuencia C.

Es posible también aplicar memoizacion en la busqueda de ocurrencias secundarias, lo
cual reduciria enormemente el tiempo de bisqueda de patrones. Esto requeriria, en el peor
caso, memoria de ejecucién extra O(rlogr), pero evitaria re-calcular las ocurrencias de cada

49

regla en el simbolo inicial. Si se considera la biisqueda de ocurrencias como recorrer el arbol
sintactico desde cada nodo equivalente a la regla, este proceso de memoizacién permite evitar
recorrer los mismos nodos mas de una vez.

6.3.2. Sobre la secuencia R

La estructura expande la secuencia R obtenida de Re-Pair con el fin de eliminar la
secuencia C. Esto implica extender R con extras O(|C]) reglas. Es posible hacer este proceso
de extender R de una forma puramente virtual, manteniendo C'y R originales. En efecto, el
proceso de extender R es equivalente a construir un arbol binario con C' como las hojas del
arbol. Con esto, si el programa requiere una regla especifica de la secuencia virtual R’ como
R expandida, es facil saber la posicién de esta regla en este arbol virtual, y con eso, se puede
saber con exactitud el rango en C' que corresponde a la regla (si la regla corresponde a las
creadas en la expansion).

La expresion para obtener el rango de C' que le corresponde a una regla R; no es simple
pero se puede obtener, pues la estructura del arbol virtual es conocida: Las reglas se crean
a partir de C' tomando, en cada iteracion, pares de simbolos de izquierda a derecha, reem-
plazandolos por un nuevo simbolo, dejando simbolos sin par para la siguiente iteracion, y asi
hasta reducir C' a un solo simbolo. Asi, en casos donde el largo de C' no es una potencia de
2 las posiciones de las reglas son atun calculables.

Cuando la estructura implementada requiera reordenar R’ por su expansion izquierda
invertida por orden lexicografico, basta con traducir este reordenamiento a la secuencia R
original y C.

Lo anterior permite expandir estas reglas extras en tiempo O(h;), donde h; es la altura
de la regla en el arbol, lo que implica que expandir todas estas reglas extras, utilizando la
técnica descrita, tiene un costo total de tiempo O(n) y espacio equivalente a la expansién de
las reglas originales O(n).

Si se aflade memoizacién sobre las reglas originales, expandir cualquier regla extra toma
tiempo constante por cada regla que pertenece al rango en C' correspondiente.

6.3.3. Potencial paralelismo

Es posible también utilizar multiples threads o multihilos en ciertas partes del programa
en donde el paralelismo podria mejorar considerablemente la bisqueda. La simplicidad de la
estructura facilita el paralelismo en, por ejemplo, los dos ordenamientos de las reglas por sus
expansiones, las multiples divisiones del patrén en sus sufijos y prefijos, las cuatro busquedas
binarias para encontrar los rangos de estas divisiones, y las miltiples btisquedas para cada
ocurrencia encontrada en la grilla. En teoria, y con suficientes hilos, se puede eliminar el
largo del patrén y las ocurrencias. como factores en los tiempos de bisqueda. Utilizando solo
4 hilos, el tiempo de busqueda puede ser reducido significativamente, logrando, en teoria,
compararse al tiempo de bisqueda del indice comprimido basado en gramatical4].

20

Bibliografia

1]

[10]

[11]

Manuel Baena, Travis Gagie, Gonzalo Navarro, et al. Pizza & chili highly repetitive
corpus. https://pizzachili.dcc.uchile.cl/repcorpus/real/, 2009. A collection
of highly repetitive text datasets for benchmarking pattern search algorithms and com-
pressed data structures.

Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit
Sahai, and Abhi Shelat. The smallest grammar problem. IEEE Transactions on Infor-
mation Theory, 51(7):2554-2576, 2005.

Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes.
In Proc. 19th International Symposium on String Processing and Information Retrieval
(SPIRE), volume 7608 of Lecture Notes in Computer Science, pages 180-192, 2012.

Francisco Claude, Gonzalo Navarro, and Alejandro Pacheco. Grammar-compressed in-
dexes with logarithmic search time. https://arxiv.org/abs/2004.01032, 2020.

Craig M. Cook, Azriel Rosenfeld, and Alan R. Aronson. Grammatical inference by hill
climbing. Information Sciences, 10(2):59-80, 1976.

Robert M. Corless, David J. Jeffrey, and Donald E. Knuth. A sequence of series for the
lambert W function. In International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC "97, Mawi, Hawaii, USA, July 21-23, 1997, pages 197-204, 1997.

Michael Hart (Founder). Project gutenberg, a library of over 70,000 free ebooks. https:
//www.gutenberg.org/. Ultimo acceso: 2024, 5 de Diciembre.

Cristébal Fuentes. Simple text indexing based on grammar. https://github.com/
solzhen/SimpleTextIndexingBasedOnGrammar, 2024. Accessed: 2024-12-15.

Simon Gog. Succinct data structure library (sdsl-lite). https://github. com/simongog/
sdsl-lite. Ultimo acceso: 2024, 20 de Noviembre.

Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practi-
ce: Plug and play with succinct data structures. In 13th International Symposium on
Ezxperimental Algorithms, (SEA 2014), pages 326-337, 2014.

J.C. Kieffer and En-Hui Yang. Grammar-based codes: a new class of universal lossless
source codes. IEEE Transactions on Information Theory, 46(3):737-754, 2000.

o1

https://pizzachili.dcc.uchile.cl/repcorpus/real/
https://arxiv.org/abs/2004.01032
https://www.gutenberg.org/
https://www.gutenberg.org/
https://github.com/solzhen/SimpleTextIndexingBasedOnGrammar
https://github.com/solzhen/SimpleTextIndexingBasedOnGrammar
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

22]

[23]

[24]

Niklas Larsson and Alistair Moffat. Off-line dictionary-based compression. I[IEEFE
Transactions on Computers, 49(11):1196-1210, 2000.

Shirou Maruyama. A grammar-based compressor by most-frequent-first substitution.
https://code.google.com/archive/p/re-pair/. Ultimo acceso: 2024, 1 de Agosto.

Gonzalo Navarro. Re-pair compression and decompression (2010). https://users.dcc.
uchile.cl/~gnavarro/software/index.html. Ultimo acceso: 2024, 20 de Noviembre.

Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge Uni-
versity Press, 2016.

Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in se-
quences: A linear-time algorithm. Journal of Artificial Intelligence Research, T:67-82,
1997.

Peter Norvig. English letter frequency counts: Mayzner revisited or etaoin srhldcu.
http://norvig.com/mayzner.html. Ultimo acceso: 2024, 5 de Diciembre.

Catch Org. Catch2. https://github.com/catchorg/Catch2. Ultimo acceso: 2024, 20
de Noviembre.

The Raven. FEdgar Allan Poe. Harper & Brothers, 1884.

Wojciech Rytter. Application of lempel-ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science, 302(1-3):211-222, 2003.

We Are Social. Informe digital global, abril 2024. https://wearesocial.com/es/blog/
2024/04/informe-digital-global-abril-2024/, 2024. Accessed: December 17, 2024.

Statista. Volume of data/information created, captured, copied, and consumed world-
wide from 2010 to 2023, with forecasts from 2024 to 2028 (in zettabytes). https:
//www.statista.com/statistics/871513/worldwide-data-created/, 2024. Acces-
sed: December 17, 2024.

Yuto Tabei, Yasuo Takabatake, and Hideo Sakamoto. A succinct grammar compression.
In Proc. 24th Annual Symposium on Combinatorial Pattern Matching (CPM), volume
7922 of Lecture Notes in Computer Science, pages 235246, 2013.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337-343, 1977.

52

https://code.google.com/archive/p/re-pair/
https://users.dcc.uchile.cl/~gnavarro/software/index.html
https://users.dcc.uchile.cl/~gnavarro/software/index.html
http://norvig.com/mayzner.html
https://github.com/catchorg/Catch2
https://wearesocial.com/es/blog/2024/04/informe-digital-global-abril-2024/
https://wearesocial.com/es/blog/2024/04/informe-digital-global-abril-2024/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

V]

Apéndice A
Anexo

Listing A.1: Llamando Re-Pair

FILE *input;

DICT x*dict;

input = fopen(input_filename.c_str(), "rb");
dict = RunRepair (input);

fclose(input) ;

RULE *rules = dict->rule; // set or rules

CODE *comp_seq = dict->comp_seq; // sequence C

Listing A.2: Anadir mas reglas hasta eliminar C

while (dict->seq_len > 1) {
for (u_int i = 0; i < dict->seq_len; i = i+2) {
if (i == dict->seq_len - 1) { // odd case
comp_seq[i/2] = comp_seqlil;

}
else {
RULE new_rule;
new_rule.left = comp_seql[i];
new_rule.right = comp_seql[i+1];
rules[dict->num_rules] = new_rule; // append new rule
comp_seq[i/2] = dict->num_rules; // update sequence C
dict->num_rules++;
}
}
dict->seq_len = dict->seq_len % 2 == 0 7 dict->seq_len / 2

dict->seq_len / 2 + 1;

Listing A.3: Normalizar Secuencia

bit_vector bbbb(257, 0); // bit vector to mark which symbols are in
the alphabet used by text

int_vector<> sequenceR((dict->num_rules - 257) * 2, 0, sizeof (CODE)
8);

53

39

10

for (u_int i = 0; i < sequenceR.size(); i = i + 2) {
sequenceR[i] = rules[i/2 + 257].left;
sequenceR[i + 1] = rules[i/2 + 257].right;
if (sequenceR[i] <= 256) {
bbbb [sequenceR[i]] = 1;
}
if (sequenceR[i + 1] <= 256) {
bbbb [sequenceR[i + 1]] = 1;
}

o }

rank_support_v<1> rank_bbbb (&bbbb) ;
select_support_mcl<l, 1> select_bbbb (&bbbb);

5| vector<char> rank (257, 0);

vector<char> select (257, 0);
for (int i = 0; i < 257; i++) {
rank[i] = rank_bbbb(i);

if (i==0) continue;
select[i] = select_bbbb(i);
}

>lu_int max_terminal = 0;

for (u_int i = 1; i <= rank_bbbb(257); i++) {
if (select_bbbb(i) > max_terminal) {
max_terminal = select_bbbb(i);

¥

int_vector<> normalized_sequenceR(sequenceR.size(), 0, sizeof (CODE)
8);

int sz = sequenceR.size();

int r;

int max_normalized = 0; // maximum symbol in the normalized alphabet
for (int i = 0; i < sz; i++) {

if (sequenceR[i] < 256)
r = rank_bbbb(sequenceR[i] + 1) - 1;
else

r sequenceR[i] - 257 + rank_bbbb (257);
normalized_sequenceR[i] = r;
if (r > max_normalized) {

max_normalized = r;

Listing A.4: Permutaciones utilizando vectores de bit

typedef struct abv {
bit_vector b;
rank_support_v<0> rank;
select_support_mcl<l, 1> sel_1;
select_support_mcl<0, 1> sel_O;
} abv; // rank, selects vector
typedef struct dbv {

o4

N

bit_vector b;

select_support_mcl<l, 1> sel_1;

select_support_mcl<0, 1> sel_O;
} dbv; // selects vector

class Permutation {
friend class PowerPermutation;

s|protected:

int rank_b(int i);

int_vector<> pi; // permutation

int_vector<> S; // shortcuts

brv b; // bit vector to mark shortcuts
public:

Permutation() ;

int t; // parameter t

/// @brief Sole constructor, it does not check if pi is a
permutation

/// Q@param pi vector of integers (initially, 8 bit long integers)

/// @param t parameter t length of the shortcuts

Permutation(int_vector<> pi, int t);

/// @brief Return the position of the element i after applying the
permutation

int operator[](int 1i);

int permute(int i) { return this->operator[]J(i); };

/// @brief Return the inverse of the permutation,

/// that is, the position j such that permutation (j) = i
/// @param i

/// @return

int inverse(int 1i);

Listing A.5: Secuencia utilizando permutaciones

class ARSSequence {
private:
vector<abv> A;
vector<dbv> D;
vector<Permutation> pi;
int sigma; int n;

int select_1_D(int k, int i);
int select_O_D(int k, int i);
int select_O_A(int k, int i);

int select_1_A(int k, int i);
int rank A(int c, int i);
int pred_O_A(int c, int s);
public:
/// @brief Builds structure to support rank, select and access

95

18

19

20

21

22

23

24

queries

/// @param S integer vector representing the sequence

/// @param sigma size of alphabet [0 . . . sigma)

ARSSequence (int_vector<> S, int sigma);

/// @brief Access query

/// @param i position in the sequence

/// @return The symbol at position i

int access(int i);

int operator [](int i) { return access(i); };

/// @brief Rank query

/// @param c symbol in the alphabet

/// @param i position in the sequence

/// @return The number of occurrences of c¢ in the sequence up to
and including position i

int rank(int c, int 1i);

/// @brief Select query

/// @param c symbol in the alphabet

/// @param i the i-th occurrence of c¢ in the sequence

/// @return The position of the i-th occurrence of c in the
sequence

/// @note Position returned is O-indexed, while parameter i is
1-indexed as ordinal numbers are.

int select(int c, int j);

u_int size() { return n; }

Listing A.6: Matriz Wavelet

class WaveletMatrix {
private:
u32 sigma; // highest symbol in the alphabet
vector<u32> z; // right child pointer
void build(vector<u32>& S, u32 n, u32 sigma);
u32 select(u32 1, u32 p, u32 a, u32 b, u32 c, u32 j);
vector<ppbv> bm; // bit matrix seen as vector of preprocessed bit
vectors
public:
/// @brief A wavelet matrix using bit_vectors over an alphabet [1,
sigmal]
/// @param s 4-byte long unsigned integer vector
/// @param sigma highest numerical symbol
WaveletMatrix (vector<u32>& s, u32 sigma);
WaveletMatrix () ;
/// @brief Access the number in the i-th zero-indexed
/// position of the original sequence.
/// @param i positive O-indexed position.
/// @return The number or NULL if out of bounds
u32 access(u32 i);
/// @brief Counts the occurences of number c¢ up until yet
excluding the given zero-indexed position i

o6

24

25

26

/// @param i the zero-indexed position

/// @param c the number

/// @return the number of occurences until position i

u32 rank(u32 c, u32 i);

/// @brief Returns the O-indexed position of the j-th occurence of
the number c

/// @param c a number

/// @param j a positive number

/// Qreturn the position or the size of the sequence if not found,
or -1 if ¢ is not in the sequence

u32 select(u32 c, u32 j);

void printself ();

ppbv operator [](u32 level);

u32 offset(u32 level);

u32 size() { return bm[0].size(); }

Listing A.7: Grilla

class Grid A{
private:

u32 c; // number of columns
u32 r; // number of rows
u32 n; // nubmer of points
WaveletMatrix wt; // Wavelet tree
u32 count(u32 x_1, u32 x_2, u32 y_1, u32 y_2, u32 1, u32 a, u32 b);
vector<Point> report(u32 x_1, u32 x_2, u32 y_1, u32 y_2, u32 1,
u32 a, u32 b);
u32 outputx (u32 level, u32 x);
u32 outputy(u32 level, u32 a, u32 b, u32 i);

public:

/// @brief Construct a grid from a binary file

/// @param fn Filename of the binary file

/// @note The binary file should contain the dimensions of the
grid first

/// (columns, rows), followed by the points as pairs of integers.
Every integer

/// in the file should be a 4-byte long unsigned integer
(uint32_t).

/// The coordinates should be O-indexed.

Grid(const string& fn);

Grid(std::vector<Point>& points, u32 columns, u32 rows);

/// @brief Count the number of points in the grid that are within
the rectangle

/// @param x_1 1-indexed column range start

/// @param x_2 1l-indexed column range end

/// @param y_1 1-indexed row range start

/// G@param y_2 1-indexed row range end

/// @return The number of points in the grid that are

/// within the rectangle as an integer

27

19

u32 count(u3d2 x_1, u32 x_2, u32 y_1, u32 y_2);
/// @brief Report the points in the grid that are within the

rectangle
/// @param x_1 1-indexed column range start
/// @param x_2 1-indexed column range end
/// Q@param y_1 1-indexed row range start
/// @param y_2 1-indexed row range end

/// @return A vector of points that are within the rectangle

vector<Point> report(u32 x_1, u32 x_2, u32 y_1, u32 y_2);

void printself ();

u32 getColumns() { return c; }

u32 getRows() { return r; }

WaveletMatrix getWaveletMatrix() { return wt; }

/// @brief Access the number in the i-th 1-indexed position

/// @param i

/// Q@return

u32 access(u32 i) {return wt.access(i-1);};

/// @brief Returns the 1-indexed position of the j-th occurrence
of ¢

/// @param j

/// @param c

/// @return

u32 select(u32 j, u32 c) {return wt.select(j, c);};

Listing A.8: Buscador de patrones

class PatternSearcher {

private:
Grid G; // Grid
ARSSequence R; // ARS sequence
u_int S; // Initial symbol
int_vector<> 1; // Lengths of the expansion of the rules
uint nt; // Number of terminals
vector<char> sl; // select vector for normalized alphabet
vector<char> rk; // rank vector for normalized alphabet
string expandRule(int i, unordered_map<int, string>& memo);
string expandRightSideRule(int i, unordered_map<int, string>

&memo) ;

string expandLeftSideRule(int i, unordered_map<int, string>& memo) ;

int rulelLength(int 1i);

Generator<char> expandRuleLazy(int i, bool rev = false);
Generator<char> expandRuleSideLazy(int i, bool left = false);
bool compareRulesLazy(int i, int j, bool rev = false);

template <typename Iterator>
int compareRuleWithPatternLazyImpl (int i, Iterator

pattern_begin, Iterator pattern_end, bool rev = false);
int compareRuleWithPatternLazy(int i, string pattern, bool rev =
false);

void secondaries(vector<int> *occurences, u_int A_i, u_int

o8

offset=0, bool terminal = false);

public:

PatternSearcher () {};

/// @brief Construct a pattern searcher from a text file
/// @param input_filename

PatternSearcher (string input_filename) ;

/// @brief Report all occurences of a pattern in the text
/// @param occurences Vector to store the occurences

/// @param P Pattern to search

void search(vector<int> *occurences, string P);

int numRules() { return R.size() / 2; 2

29

	Introducción
	Objetivos
	Metodología

	Marco Teórico
	Entropía
	Entropía de orden cero
	Entropía de orden n

	Gramáticas
	Memoización
	Notación O Grande
	Búsqueda Lineal
	Compresión Basada en Gramáticas

	Estado del Arte
	Representación de texto como gramática
	Sequitur
	Re-Pair

	Compresión de gramática
	Dos árboles LOUDS
	Índice comprimido basado en gramática
	Grilla con árboles Wavelet

	Implementaciones existentes
	SDSL - Succinct Data Structure Library

	Trabajo realizado
	Descripción General de la estructura
	Diseño de la implementación
	Re-Pair
	Generar reglas extras

	Normalizar secuencia
	Secuencia utilizando permutaciones
	Permutaciones
	Secuencia

	Reordenar secuencia
	Memoización

	Ejemplo práctico
	Grilla
	Matrices Wavelet
	Preparar puntos para grilla

	Calcular largo de las expansiones de las reglas
	Búsqueda de patrones
	Ocurrencias primarias
	Ocurrencias secundarias

	Evaluación
	Unit Testing
	Análisis empírico
	Espacio
	Tiempo

	Análisis en textos altamente repetitivos
	Análisis comparativo con la solución lineal de búsqueda sin compresión
	Análisis comparativo con índice comprimido basado en gramática

	Conclusiones
	Conclusiones generales
	Objetivo general

	Cumplimiento de objetivos específicos
	Trabajo futuro
	Memoizar
	Sobre la secuencia R
	Potencial paralelismo

	Bibliografía
	Apéndice Anexo

