
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

IMPLEMENTACIÓN DE ESTRUCTURA COMPRIMIDA SIMPLIFICADA PARA
INDEXAR TEXTO BASADA EN GRAMÁTICAS

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

CRISTÓBAL ENRIQUE FUENTES ALVARADO

PROFESOR GUÍA:
GONZALO NAVARRO

MIEMBROS DE LA COMISIÓN:
JUAN MANUEL BARRIOS

CLAUDIO GUTIÉRREZ
GONZALO NAVARRO

SANTIAGO DE CHILE
2025



Resumen

El presente trabajo documenta la implementación de una estructura propuesta en el
libro Compact Data Structures, A Practical Approach para la búsqueda de los índices de las
ocurrencias de patrones en un texto.

La estructura es una representación comprimida del texto orientada a textos repetitivos,
que representan el texto usando una gramática libre del contexto y permiten la búsqueda de
patrones en tiempo sublineal.

El trabajo comprende también las mediciones de la implementación en términos de ro-
bustez y consistencia con la propuesta y sus predicciones teóricas del comportamiento de la
estructura y su función de búsqueda de patrones en términos tanto temporales como espa-
ciales.

La estructura implementada fue analizada en los aspectos relevantes de robustez y con-
sistencia con el análisis teórico y según esto se tomaron conclusiones respecto a los logros
del trabajo realizado, la utilidad de la estructura en un contexto real y las posibles mejoras
a los tiempos de búsqueda en ámbitos de eficiencia y compresión efectiva en textos reales
repetitivos.
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Capítulo 1

Introducción

El estudio de las estructuras de datos compactas es crucial en la actualidad, dado que
la cantidad de información generada crece a un ritmo exponencial[22][21], superando am-
pliamente la capacidad de almacenamiento y procesamiento de los sistemas computacionales
modernos. Este desequilibrio subraya la necesidad de técnicas eficientes que permitan mane-
jar grandes volúmenes de datos utilizando menos espacio, sin comprometer significativamente
tiempos de acceso y procesamiento. Desde los campos de Big Data y Business Analytics hasta
las áreas de aprendizaje de máquinas es relevante la capacidad de procesar cantidades gigan-
tescas de información de forma eficiente y rápida en un entorno arquitectónico que limita el
espacio de memoria que a estas se les tiene permitido.

Desde los años 50, dentro del estudio de la teoría de la información y de la mano de Claude
Shannon, se han desarrollado algoritmos de compresión de datos que permiten reducir el es-
pacio de almacenamiento o el tiempo de transmisión, sin pérdida de la información contenida
en los datos. Posteriormente, surgieron las estructuras de datos compactas, que permiten ac-
ceder a los datos comprimidos directamente, sin necesidad de descomprimirlos previamente.
En cuanto a lo que compete el presente trabajo es menester mirar a un tiempo más cercano
al presente: hitos importantes como el trabajo de Cook, Rosenfeld y Aronson [5] en 1976
sentaron las bases para que Kieffer y Yang publicaran en el 2000 Grammar-Based Codes: A
New Class of Universal Lossless Source Codes [11] donde la compresión de texto en base a
reglas de gramática simple se acerca a la entropía estadística de la fuente. Tabei, Takabatake
y Sakamoto en 2013 utilizaron árboles para representar la gramática compacta[23]. Claude y
Navarro en 2012 propusieron una estructura para la búsqueda de patrones en textos basados
en gramática[3]. De esta última se desprende una versión simplificada descrita en Compact
Data Structures [15, Capítulo 10.5.6] que concierne al trabajo a realizar en esta memoria.

La elección de cuál algoritmo y/o estructura utilizar depende primariamente de lo qué se
desee hacer con el texto a comprimir. Si consideramos la búsqueda de patrones sobre textos
de un largo cualquiera como la operación deseada entonces pasa a tomar más relevancia en
la decisión de la elección el desempeño de los algoritmos y estructuras según los parámetros
de los patrones y los textos de búsqueda. En muchos casos, distintas estructuras presenta
desempeños similares en el análisis teórico, sin embargo, implementaciones muestran empí-
ricamente que algunas se comportan mejor en función de ciertas características los datos.
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Por esto, es necesario aseverar según las características de los datos que se desea procesar
qué estructuras son mejores para cada una de las operaciones que se requieran, y para eso es
esencial desarrollar implementaciones para las estructuras hasta ahora solo teorizadas.

La estructura comprimida simplificada para indexar texto basada en gramáticas ofrece
una solución al problema de identificar todas las ocurrencias de un patrón de texto en un
texto dado. Aunque no es la única estructura diseñada para abordar este desafío[4], presenta
ventajas y desventajas que dependen de las características específicas del texto y del patrón
de búsqueda. Su principal atractivo radica en la simplicidad de sus componentes (secuencias
comprimibles, secuencias con permutaciones [15, 1, Capítulo 6.1], y grillas representadas
mediante Wavelet Trees [15, 1, Capítulo 10.1]), lo que sugiere un posible buen desempeño. Sin
embargo, el análisis teórico de su eficiencia en términos de tiempo y espacio no es suficiente
para determinar su viabilidad práctica. Es necesario implementar la estructura y realizar
evaluaciones empíricas comparativas que permitan determinar cuantitativamente si resulta
más adecuada que otras soluciones de complejidad similar.

Del análisis de resultados fue posible concluir el correcto funcionamiento de la solución,
su congruencia con la predicción teórica de su comportamiento, su utilidad con respecto a
una solución estándar de búsqueda y posibles mejoras a la implementación.

1.1. Objetivos

Objetivo General

El objetivo del trabajo presente consistió en programar una buena, esto es, optimizada
y congruente al espacio y tiempo teórico de la estructura, implementación de lo descrito en
el libro Compact Data Structures (Indexed Searching in Grammar-Compressed Text)[15, 1,
Capítulo 10.5.6]. Utilizando pruebas de robustez y tiempo, fue posible un análisis empírico
en función de los parámetros de entrada, obteniéndose conclusiones sobre el desempeño de
la estructura. Fue posible comparar su desempeño con los algoritmos y estructuras actuales
(y sus implementaciones) para la búsqueda de patrones en texto.

Objetivos Específicos

1. Implementación la estructura de forma correcta. Esto incluye la implementación de
cada una de las estructuras que componen la solución propuesta.

2. Implementación de pruebas de robustez y consistencia de la estructura.

3. Implementación de pruebas de desempeño espacial y temporal de la implementación.

4. Análisis de los resultados de las pruebas para obtener conclusiones respecto al desem-
peño empírico de la estructura.
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1.2. Metodología

Para llevar a cabo este trabajo de investigación y cumplir con los objetivos planteados,
se siguieron los pasos descritos a continuación:

1. Revisión bibliográfica y conceptualización de la solución: Se realizó un análisis detalla-
do de la estructura comprimida basada en gramáticas descrita en el libro Compact
Data Structures, específicamente el capítulo sobre Indexed Searching in Grammar-
Compressed Text. Esta revisión incluyó la comprensión de las técnicas utilizadas, los
algoritmos propuestos y sus posibles aplicaciones. Además, se investigaron estructuras
y algoritmos actuales para la búsqueda de patrones en texto como punto de compa-
ración. Se estudió la bibliografía pertinente a los conceptos teóricos utilizados en el
trabajo presente y

2. Diseño de la implementación: Se definió una arquitectura modular para la implemen-
tación de la estructura propuesta. Esto incluyó la elección de patrones de diseño ade-
cuados, la división del trabajo en componentes individuales y los algoritmos necesarios
para crear la instancia de la estructura y la búsqueda.

3. Implementación de la estructura propuesta: Cada componente identificado fue imple-
mentado de forma incremental, priorizando los componentes independientes, y luego
aquellos dependientes de los primeros, escribiendo al mismo tiempo pruebas unitarias
para cada una de estas estructuras con el fin de garantizar la corrección de las opera-
ciones, garantizando que cada módulo fuera funcional antes de la integración de cada
parte necesaria para el funcionamiento del buscador de patrones.

4. Diseño y ejecución de pruebas de validación: Se desarrollaron casos de prueba enfocados
en evaluar la robustez y consistencia de la estructura. Estas pruebas incluyeron esce-
narios con datos sintéticos y reales para validar que los resultados de las operaciones
fueran correctos y se comportaran según lo esperado.

5. Pruebas de desempeño: Para evaluar el desempeño espacial y temporal de la estructura,
se realizaron pruebas con conjuntos de datos de diferentes tamaños y características.
Estas pruebas incluyeron mediciones de tiempo de búsqueda de patrones por cantidad
de ocurrencias y largo de patrones, además de mediciones del uso de memoria. Los
resultados se compararon con implementaciones existentes de estructuras similares.

6. Análisis de resultados: Se analizaron los datos obtenidos de las pruebas de desempeño,
comparando los resultados de la estructura propuesta con las alternativas existentes.
Este análisis permitió identificar fortalezas, debilidades y posibles mejoras para la es-
tructura implementada.

7. Documentación y presentación de resultados: Finalmente, los hallazgos fueron docu-
mentados de manera estructurada, destacando las conclusiones principales y propor-
cionando recomendaciones basadas en los resultados del análisis en el trabajo presente.
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Capítulo 2

Marco Teórico

2.1. Entropía

En problemas de compresión, la entropía indica el límite teórico mínimo para codificar un
mensaje sin perder información. Una noción básica de entropía es el mínimo número de bits
requeridos por identificadores, llamados códigos, si se asigna un código único a cada elemento
de un conjunto U y todos los códigos tienen el mismo largo de bits. Esto corresponde a la
entropía del peor caso de U y se denota H(U) y es equivalente a:

H(U) = log |U|

Donde log es el logaritmo en base 2.

La entropía es una medida de incertidumbre o desorden en un sistema. En el contexto de
la teoría de la información, se utiliza para cuantificar la cantidad promedio de información que
se obtiene al observar un evento aleatorio. Formalmente, la entropía H(X) de una variable
aleatoria X con un conjunto de posibles valores {x1, x2, . . . , xn} y probabilidades asociadas
P (X = xi), se define como:

H(X) = −
n∑

i=1

P (X = xi) log(P (X = xi)).

Equivalente a:

H(X) =
n∑

i=1

P (X = xi)
1

log(P (X = xi))

La fórmula muestra que mientras más predecible es una secuencia de elementos, menos
bits son necesarios para codificarla.
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2.1.1. Entropía de orden cero

Si una secuencia B de largo n contiene m 1s, (asumiendo que hay más 1s que 0s) se puede
asumir que P (X = 1) = m

n
. Entones la entropía de orden cero es:

H(B) = H0(
m

n
) =

m

n
log

n

m
+

n−m

n
log

n

n−m

En términos prácticos, la entropía de orden cero tiene el siguiente significado: si se intenta
comprimir la secuencia B usando códigos fijos C1 para los 1s y C0 para los 0s, entonces el
tamaño total no puede ser menos que nH0 bits.

2.1.2. Entropía de orden n

La entropía de orden n, Hn, considera las dependencias entre los símbolos de una se-
cuencia, hasta el orden n. Mide la incertidumbre promedio de un símbolo si se conocen los n
símbolos anteriores:

Hn = −
∑

x1,...xn+1

P (x1, . . . xn) log(P (xn|x1, . . . xn))

Donde P (x1, . . . xn) es la probabilidad de ver la secuencia x1 . . . xn, y P (xn|x1, . . . xn) es la
probabilidad de ver el símbolo xn si se acabad de ver la secuencia mencionada.

En general, la entropía de mayor orden es menor o igual a la de menor orden, ya que se
tienen en cuenta las dependencias que reducen la incertidumbre de la secuencia. Por ejemplo,
en el lenguaje español, si se tiene la secuencia ció es muy probable que la siguiente letra es
n. En aplicaciones de compresión de datos, esto implica que se puede obtener una mayor
compresión en lenguajes donde hay secuencias muy repetitivas (como lo son textos reales).

2.2. Gramáticas

En el contexto de la computación, una gramática es un conjunto de reglas que describen la
estructura de un lenguaje. Una gramática formal G se define como un cuádruplo (N,Σ, P, S),
donde:

• N : Es un conjunto de símbolos no terminales.

• Σ: Es un conjunto de símbolos terminales.

• P : Es un conjunto de producciones o reglas de reescritura.

• S: Es el símbolo inicial.
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En el trabajo presente, se trabajó con gramáticas ”binarias”, esto es, gramáticas donde
las reglas de P son de la forma:

Ai → BiCi

Donde Ai es un símbolo no terminal y Bi y Ci pueden ser terminales o no terminales. Bi es
referido como la expansión izquierda de Ai y Ci la expansión derecha.

2.3. Memoización

La memoización es una técnica de optimización utilizada para acelerar algoritmos me-
diante el almacenamiento de los resultados de cálculos costosos y su reutilización cuando
sea necesario. Se emplea frecuentemente en problemas de programación dinámica, donde los
subproblemas se resuelven de manera repetitiva. Al reducir el número de recomputaciones,
la memoización mejora significativamente la eficiencia temporal, a cambio de utilizar espacio
extra.

2.4. Notación O Grande

La notación O grande es una herramienta utilizada para describir la complejidad asintó-
tica de algoritmos. Representa el peor caso del tiempo de ejecución o el uso de recursos como
una función del tamaño de entrada n. Formalmente, un algoritmo tiene complejidad O(f(n))
si existen constantes positivas c y n0 tales que:

T (n) ≤ c · f(n), ∀n ≥ n0.

Esto permite comparar el comportamiento relativo de diferentes algoritmos independiente-
mente de los detalles específicos de implementación o las constantes multiplicativas.

2.5. Búsqueda Lineal

La búsqueda lineal es un algoritmo simple para localizar un elemento en una lista. Con-
siste en recorrer secuencialmente la lista desde el principio hasta el final, comparando cada
elemento con el valor buscado. Si el elemento se encuentra, el algoritmo retorna su posición;
en caso contrario, indica que no está presente. La complejidad temporal de este método cuan-
do se busca un único elemento en un conjunto de elementos es O(n), donde n es el número
de elementos en la lista. Para el caso de búsqueda de un patrón de largo m en una secuencia
de largo n, la complejidad es O(nm) en el peor caso.
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2.6. Compresión Basada en Gramáticas

La compresión basada en gramáticas es una técnica para reducir el tamaño de datos
generando una representación compacta en forma de gramática. En lugar de almacenar ex-
plícitamente los datos, se almacena un conjunto de reglas que permiten reconstruirlos. Esto
es particularmente útil para datos con patrones repetitivos, ya que la gramática compacta
captura dichas repeticiones de manera eficiente.
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Capítulo 3

Estado del Arte

3.1. Representación de texto como gramática

En su artículo Grammar-Based Codes: A New Class of Universal Lossless Source Codes
John C. Kieffer y En-hui Yang estudiaron el código basado en gramática[11], un tipo de
codificación sin pérdida de información, el cual, en respuesta a cualquier cadena de datos
de entrada x sobre un alfabeto finito fijo, selecciona una gramática libre de contexto Gx

que representa a x en el sentido de que x es la única cadena o string generada por Gx. La
compresión sin perdida de x corresponde, indirectamente, a la compresión de estas reglas de
gramática. Demostraron que, bajo ciertas restricciones, un código basado en gramática es un
código universal, esto es, logra comprimir independiente de la fuente finita de generación de
información a algo cercano a la compresión óptima, sobre un alfabeto finito.

Encontrar la gramática más pequeña que representa a un texto cualquiera x es un proble-
ma NP-completo [2][20], y además esta gramática nunca es más pequeña que una codificación
con LZ77[24] (con una ventana ilimitada) lo que motiva y justifica encontrar y utilizar heurís-
ticas como Re-Pair [12] y Sequitur[16] que en la práctica compriman el texto a una cantidad
de reglas cercanas al óptimo de forma rápida. A pesar de ser estrictamente inferior a LZ77,
una de estas heurísticas, Re-Pair, se comporta bien en la práctica, tanto en textos clásicos
como repetitivos.

3.1.1. Sequitur

El algoritmo Sequitur [16] funciona escaneando la secuencia de símbolos, agregando cada
nuevo símbolo a una regla gramatical S y generando una lista con todos los pares que ha
leído. Cuando un par es leído por segunda vez, se genera un símbolo no terminal, esto es,
una regla que genera el par en la gramática, para reemplazar ambas ocurrencias en regla
S y en todas la reglas donde aparezca. En otras palabras, se debe cumplir que cada par
aparece solo una vez en S. El proceso se repite hasta que no hayan más pares repetidos. Si
al finalizar el proceso, existen símbolos no terminales que sólo aparecen una vez a la derecha
de la gramática, entonces deben ser reemplazados por los símbolos que generan. Esto ayuda
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a reducir la cantidad de reglas.

Por ejemplo, sea la secuencia abracabracabra. Se avanza linealmente por esta secuencia
agregando cada símbolo a la regla generadora S:

Gramática
S → a
S → ab
S → abr
S → abra
S → abrac
S → abraca
S → abracab Se repite el par ab !!
S → AracA
A → ab
S → AracAr
A → ab
S → AracAra Se repite el par ra !!
A → ab
S → ABcAB Se repite el par AB !!
A → ab
B → ra
S → CcC
A → ab
B → ra
C → AB
S → CcCc Se repite el par Cc !!
A → ab
B → ra
C → AB
S → DD
A → ab
B → ra
C → AB
D → Cc
S → DDa
A → ab
B → ra
C → AB
D → Cc

Gramática
S → DDab Se repite el par ab !!
A → ab
B → ra
C → AB
D → Cc
S → DDA
A → ab
B → ra
C → AB
D → Cc
S → DDAr
A → ab
B → ra
C → AB
D → Cc
S → DDAra Se repite el par ra !!
A → ab
B → ra
C → AB
D → Cc
S → DDAB Se repite el par AB !!
A → ab
B → ra
C → AB
D → Cc
S → DDC A y B aparecen solo una
A → ab vez a la derecha de
B → ra las reglas, por lo tanto
C → AB se eliminan
D → Cc
S → DDC Gramática final
C → abra
D → Cc

3.1.2. Re-Pair

El algoritmo Re-Pair [12] (Recursive Pairing) es una heurística de construcción de gra-
máticas a partir de un texto. Es utilizado en el trabajo presente para comprimir la secuencia
de entrada de caracteres basado en los patrones repetitivos que aparecen en esta. La idea
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básica detrás del algoritmo Re-Pair es encontrar pares de substrings repetidos en el texto
y reemplazarlas con símbolos no terminales. Al aplicar este proceso de manera iterativa,
se genera una representación gramatical comprimida que se puede utilizar para reconstruir
el texto original. El método para comprimir consiste en recorrer el texto reemplazando los
dos caracteres más comunes por un símbolo no terminal, generando una regla de gramática,
remplazar los caracteres por el nuevo símbolo en la secuencia y repetir este proceso, hasta
obtener un texto comprimido y una serie de reglas.

Re-Pair logra construir una gramática razonablemente óptima en tiempo O(n), siendo n
el largo se la secuencia.

3.2. Compresión de gramática

El trabajo presentado consiste en la implementación una estructura basada en una repre-
sentación sucinta de grilla para comprimir la gramática que genera el texto de entrada. En
la siguiente sección se profundiza la representación de la gramática utilizando estructuras de
árboles.

3.2.1. Dos árboles LOUDS

Dada una gramática R (obtenida, en este ejemplo, con Re-Pair) que genera un texto T, se
tiene la regla S→ C, donde C es el texto T luego de haberse hecho los remplazos por símbolos
por Re-Pair. Para saber exactamente qué porción de C se debe expandir para obtener un T
[i .. j] es útil guardar un vector de bits disperso que indica en qué posición de T aparece cada
símbolo de C. Este vector solo necesita soportar la operación Rank en tiempo constante. Ya
sabidos qué símbolos se deben expandir, lo único que se necesita es saber a qué expande cada
símbolo no terminal (los símbolos terminales aparecen en C).

Tabei, Takabatake y Sakamoto introdujeron compresión de una gramática utilizando
estructuras de árboles[23]. La idea es representar el grafo dirigido acíclico generado por la
gramática donde cada regla A → BC induce una arista ”izquierda” desde A a B y otra
”derecha” de A a C. Tomando solo las aristas izquierdas, se puede interpretar una arista A
→ B como si B fuese el padre de A, obteniendo así un conjunto de árboles, ya que cada nodo
puede tener a lo más un padre (símbolos terminales no tienen reglas y cada no terminal A
tiene exactamente una regla con un término izquierdo B). Se añade una raíz como padre de
todos los nodos sin padres, y se llama al árbol resultante TL. Similarmente, se forma un árbol
TR con las aristas derechas. Así, dada una no terminal A → BC, B es el padre de A en TL y
C es el padre de A en TR.

Como son necesarias solo las operaciones de arboles parent, root, childrank, nodemap, y
nodeselect, una estructura de árbol LOUDS es ideal.

El árbol Level-Order Unary Degree Sequence (LOUDS) es una estructura que codifica
los nodos del árbol en orden nivel, es decir, se recorren los nodos que están a la misma
profundidad primero de izquierda a derecha antes de seguir al siguiente nivel. Cada nodo

10



se describe en una secuencia de bits con un código unario 1c0 donde c es la cantidad de
hijos. Las distintas operaciones requeridas son combinaciones de operaciones Rank, Select y
Predecessor Zero sobre la secuencia de bits.

3.2.2. Índice comprimido basado en gramática

Claude, Navarro y Pacheco[4] implementaron una estructura que permite almacenar y
consultar texto de manera eficiente, especialmente en colecciones de texto altamente repetiti-
vas. Esta estructura permite tanto la extracción de subcadenas como la búsqueda de patrones
directamente sobre una representación comprimida del texto. El texto es representado como
la gramática libre de contexto que genera al texto, y esta gramática es a su vez representada
como un árbol.

Las búsquedas de patrones de texto corresponde a ocurrencias primarias en el árbol (vistas
como múltiples nodos en el árbol gramatical) y ocurrencias secundarias en las hojas.

La estructura utiliza G log n+ o(G logG) bits de espacio y la búsqueda de patrones toma
tiempo O((m2 + occ) logG), donde G es el tamaño de la gramática definido como la suma
de las longitudes del lado derecho de las reglas.

3.2.3. Grilla con árboles Wavelet

En el trabajo presente, las r reglas de la gramática son representadas en una grilla de r
× r, de forma que cada regla A → BC corresponde a un punto en la grilla en la posición
C,B (columna correspondiente a C, fila correspondiente a B). La idea es que las columnas de
la grilla corresponden a la parte C de cada regla, ordenadas según el valor lexicográfico del
string al que se expande C, mientras que las filas corresponden a B, ordenadas por el valor
lexicográfico del string invertido al que expande B. La grilla se representa utilizando árboles
Wavelet[15, Capítulo 10.1].

La idea es que todas las operaciones que se necesitan sobre esta grilla para la gramática
son equivalentes a operaciones sobre otra grilla donde por cada punto de Xi, Yi de la primera,
hay un punto i, Yi en la segunda. Esto cerciora que solo haya un punto por columna, con lo
cual la grilla se puede representar con una secuencia de los Yis. Esta secuencia es a su vez
representada usando un árbol Wavelet.

La representación con árbol Wavelet consiste en lo siguiente: dado una secuencia S[1,σ] de
símbolos sobre el alfabeto Σ = [1, σ], se crea un nodo que corresponde a una secuencia de
bits B[1,σ] de largo igual a la secuencia S[1,σ] donde por cada carácter de la secuencia original
se coloca un 0 en la secuencia de bits si el carácter corresponde a un símbolo en [1, dσ/2e] o
1 si pertenece a [dσ/2e+ 1, σ].

El nodo de S[1,σ], esto es, la secuencia de bits correspondiente a S[1,σ] obtenida del paso
anterior, indica en qué mitad del alfabeto de la secuencia S[1,σ] se encuentra cada carácter de
esta. Esto particiona virtualmente la secuencia original en dos partes: la secuencia S[1,dσ/2e]
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de los caracteres de S[1,σ] que pertenecen a la primera mitad del alfabeto, y la secuencia
S[dσ/2e+1,σ] de los caracteres que pertenecen a la segunda mitad. Para estas dos secuencias, se
crean nodos de la misma forma en que se hizo para la secuencia original. El nodo resultante
correspondiente a la secuencia S[1,dσ/2e] se agrega como hijo izquierdo del nodo de S[1,σ], y el
nodo correspondiente a S[dσ/2e+1,σ] como hijo derecho.

El proceso de seguir dividiendo el alfabeto en dos se repite hasta llegar a secuencias
mono-simbólicas. Las operaciones de Rank y Select sobre la secuencia original corresponden
a recorrer el árbol haciendo operaciones Rank y Select sobre las secuencias de bits.

3.3. Implementaciones existentes

3.3.1. SDSL - Succinct Data Structure Library

La librería SDSL para C++ escrita por Simon Gog[10] es la más completa y profesional
de las librerías dedicadas a estructuras de datos sucintas. La librería implementa estructuras
sucintas relevantes para el trabajo realizado como lo son vectores de enteros, vectores de bits
y soporte para operaciones Access, Rank y Select sobre ellos.

Implementaciones de arboles wavelet de distintas formas (balanceados, formas de Huff-
man, etc.) están presentes en la librería, pero la estructura en particular usada en propuesta
del capítulo 10[15] utiliza matrices wavelet, que debieron ser implementadas como parte del
trabajo realizado.

Otras librerías

La implementación original de Re-Pair en C[13] por R. Wan en C está basada en la
propuesta del artículo original[12] y es la implementación usada en el trabajo presente. Otras
implementaciones existen, incluyendo una hecha por G. Navarro[14].
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Capítulo 4

Trabajo realizado

El trabajo realizado consistió en implementar y evaluar de forma empírica la estructu-
ra comprimida simplificada para indexar texto basada en gramáticas simple propuesta en
el libro Compact Data Structures,(Indexed Searching in Grammar-Compressed Text) [15,
Capítulo 10.5.6]. La implementación se encuentra disponible en el repositorio SimpleTextIn-
dexingBasedOnGrammar [8].

4.1. Descripción General de la estructura

La idea principal de la estructura es representar un diccionario R de r reglas A → BC
correspondiente a la gramática generada sobre un texto T usando el algoritmo Re-Pair como
una grilla G y una secuencia R de símbolos que permite encontrar ocurrencias de patrones
de texto en el texto original.

La secuencia R corresponde a la sucesión de reglas generadas por Re-Pair expresadas como
sus lados derechos, además de las reglas añadidas por la estructura con el fin de eliminar la
secuencia C generada por Re-Pair.

La grilla en tanto corresponde a una grilla de r × r dimensiones con r puntos que co-
rresponden a las r reglas predispuestos en la grilla de uan forma particular (explicada en las
siguientes secciones) que permite obtener rangos de reglas que contienen ciertos patrones.

La búsqueda de patrones corresponde a primero encontrar en la grilla el área de esta
que contiene los puntos correspondientes a reglas que expresan al patrón, que corresponde
a la búsqueda primaria, para entonces obtener las posiciones de las ocurrencias como los
desfases de cada uno de estos puntos con respecto respecto al símbolo inicial de la gramática
extendida, llamada búsqueda secundaria de ocurrencias.

Las partes particulares y el detalle del proceso de búsqueda se explican en el presente
texto, en las siguientes secciones.
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4.2. Diseño de la implementación

Se implementó una clase facade llamada PatternSearcher que procesa la entrada e ins-
tancia las clases ARSSequence (secuencia representada por permutaciones) y Grid (grilla
representada por matrices wavelet), además de los otros miembros necesarios (como primi-
tivas, vectores de bit, etc.). PatternSearcher expone, además de su constructor, un único
método search que corresponde a la búsqueda de patrones.

El diagrama UML 4.1 muestra el diseño general de la implementación.

Figura 4.1: Diagrama UML de la implementación

4.3. Re-Pair

La implementación de Re-Pair de Shirou Maruyama[13] que utiliza las estrcuturas pro-
puestas en la publicación original de Larsson & Moffat[12]. Esta versión retorna una estruc-
tura que contiene un arreglo de reglas, además de la secuencia C que corresponde a aquella
que se obtiene una vez se aplican todas los reemplazos de las reglas en el texto original T, y
otros valores como la cantidad de reglas y el largo del texto (Véase A.1). Las reglas corres-
ponden a pares de enteros sin signo, donde los valores son menores a 256 si corresponden a
una terminal o mayores si corresponden a una no terminal. Acceder a la posición 256 + i del
arreglo entrega la regla i.
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4.3.1. Generar reglas extras

Con objetivo de eliminar la secuencia C para derivar el texto T exclusivamente a partir
de las reglas se crearon nuevas reglas N1 → C[1]C[2], N2 → C[3]C[4], N3 → C[5]C[6], etc,
reemplazándolas en C : N1N2N3...Nd|C|/2e. Luego se hizo lo mismo con este nuevo C, creando
nuevas reglas N

′
1 → N1N2, N

′
2 → N3N4 y así sucesiva y recursivamente hasta obtener una

única no terminal S de la cual se puede derivar el texto original (Véase A.2).

Sea r = |R| el número de reglas, y sea Ai → BiCi ∀ 0 ≤ i < r, el conjunto R es
representado por la secuencia de enteros R = B0C0B1C1...Br−1Cr−1. Nótese que la secuencia
es auto-referencial: sea Ri → BiCi, esta regla aparece en la secuencia en las posiciones 2i y
2i + 1, y reglas que deriven en Ri tendrán uno de sus dos símbolos B o C con un valor 256
+ i.

Tómese en cuenta que en el trabajo presente cuando se habla de los lados izquierdo y
derecho de una regla Ri, estos se refieren, respectivamente, a Bi y Ci. También, cuando se
hable de la compresión del texto a gramática, se hace referencia a la combinación de los
procesos de comprimir por Re-Pair seguido de la expansión de reglas con el fin de eliminar
C.

La representación de la secuencia R, según las instrucciones del libro, utiliza permuta-
ciones, y el detalle se explica más adelante, pero para hacer esta representación es necesario
primero normalizar la secuencia de forma que los elementos en esta partan de 0 y sean con-
tinuos, es decir, el alfabeto de la secuencia no tiene saltos, y el mayor elemento es igual a la
suma de las cantidades de terminales y no terminales menos 1.

4.4. Normalizar secuencia

Se creó un vector de bits b (utilizando la librería SDSL[9]) de tamaño 256. La idea fue
marcar con 1 las posiciones correspondientes a los símbolos terminales que aparecen en el
texto T, que son los símbolos terminales que aparecen en R. Esto conllevó a la restricción de
que el texto debe tener formato donde cada carácter utiliza solo 1 byte (por ejemplo, UTF-
8). Añadiendo suporte para Select1(i) (reportar la posición del i-ésimo uno en el vector) y
Rank1(i) (reportar la cantidad de unos hasta la posición i) sobre el vector se puede obtener
el símbolo original de la secuencia normalizada. Se guardan entonces los resultados de select
y rank sobre el vector de bits, y estos dos vectores de largo 256 con elementos de tamaño 8
bits son los que se usarán en la estructura.

La secuencia normalizada ahora tiene símbolos entre 0 y la suma de las cantidades de
terminales y no terminales menos 1. Elementos en la secuencia menores a la cantidad de
terminales corresponden a símbolos terminales, mientras los demás corresponden a no termi-
nales. La regla Ri aparece en las posiciones i y i+1 correspondiente a Bi y Ci respectivamente.
Reglas que expanden a Ri son las reglas Rj donde alguno de sus Bj o Cj tienen como valor
i+ número de terminales. El número de terminales es equivalente a rank1(b, |R|). (Véase A.3)

Nótese que normalizar la secuencia es necesario solo para la implementación específica de
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Re-Pair utilizada. En contraste, la versión de Re-Pair de Navarro[14] normaliza automática-
mente las reglas, entregando la secuencia C, la secuencia R de reglas, un valor numérico que
indica la cantidad de símbolos terminales en el alfabeto usado en el texto y una secuencia
numérica para obtener el símbolo original en el texto a partir del símbolo en la secuencia
normalizada, exactamente como la implementación del trabajo presente.

4.5. Secuencia utilizando permutaciones

Se implementó la estructura descrita en el libro [15, Capítulo 6.1] para representar secuen-
cias de números utilizando permutaciones. Esta estructura permite las operaciones Access y
Rank en tiempo O(log log σ), donde σ es el tamaño del alfabeto que compone la secuencia,
y la operación Select en tiempo O(1). Esta última es importante pues es utilizada de forma
frecuente en la búsqueda de ocurrencias secundarias en las reglas, lo cual será explicado más
adelante.

4.5.1. Permutaciones

Una permutación π de [1,n] es un reordenamiento de valores entre 1 y n. Descrita en el
capítulo 5.1 [15], la estructura que compete al trabajo realizado permite la operación π−1(i),
esto es, la permutación inversa de i: encontrar un j tal que π(j) = i en tiempo O(t), donde
t es un parámetro de la estructura.

La idea de la estructura es aprovechar el concepto de descomposición en ciclos de la
permutación. Si se aplica una permutación sobre un valor inicial se obtiene un segundo valor,
y luego se aplica sobre este valor la permutación, y así sucesivamente, se terminará llegando
al valor inicial. Este recorrido de valores se llama ciclo, y una permutación puede tener uno
o más ciclos.

Para calcular la permutación inversa de i se aplica la permutación recursivamente hasta
tener un j cuya permutación es i. Esto requiere recorrer todo el ciclo que contiene a i. Sin
embargo, si se guardan atajos de tamaño t, con la idea de que si el elemento sobre el cual
se está aplicando la permutación durante el recorrido del ciclo tiene un atajo, se toma ese
atajo, saltándose una gran parte de los pasos recursivos, asegurando encontrar el inverso en
no más de t pasos.

Esta estructura se implemento satisfactoriamente utilizando los vectores de bit de la
librería SDSL[9] (Véase encabezado A.4).

4.5.2. Secuencia

Dada la secuencia S de tamaño n sobre un alfabeto Σ, se divide esta, conceptualmente,
en dn/σe pedazos Si = S[i . . . i+ σ). Para resolver access, rank y select se utilizan σ vectores
de bit Ac, con c ∈ Σ, donde Ac = 1rankc(S0,σ)01rankc(S1,σ) . . . 01rankc(Sdn/σe−1,σ). En esencia, Ac
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indica de forma unaria las ocurrencias del símbolo c en casa pedazo de S. Con esto, las
operaciones a nivel de los pedazos son:

Para todas k = bi/σc.

access(S, i) = access(Sk, i mod σ)

Para rank, se debe calcular la cantidad de unos que aparecen en los pedazos anteriores al que
corresponde a i:

rankc(S, i) =

{
rankc(Sk, i mod σ) si k = 0,

rankc(Sk, i mod σ) + select0(Ac, k)− k si k > 0

Para select se debe encontrar el pedazo al que pertenece el i buscado, luego la respuesta es
la suma de la posición donde parte este pedazo y select sobre el pedazo, menos la posición
del último cero antes del pedazo.

selectc(S, j) = (s− j + 1) · σ + selectc(Ss−j+1, s− pred0(Ac, s)) donde s = select1(Ac, j)

Las operaciones dentro de cada pedazo C requieren representar estos como la permutación
inducida por su índice invertido. Sea Lc la secuencia de las posiciones de los símbolos c en
el pedazo C. Considérese la permutación π = L0L1L2L3...Lσ−1 y las lista D que marca las
posiciones donde empieza cada lista en π, D = 0|L0|10|L1| . . . 0|Lσ−1|

Utilizando la estructura anteriormente implementada se pueden resolver las operaciones
dentro de los pedazos. Por ejemplo:

access(C, i) = select0(D, j)− j, donde j = π−1(i)

Esta estructura se implementó correctamente (Véase el encabezado A.5)

4.6. Reordenar secuencia

La secuencia R obtenida a partir de las reglas una vez completado el proceso de norma-
lización es tal que estas reglas aparecen en el orden en que fueron creadas por el algoritmo
Re-Pair y extendidas con el fin de eliminar la secuencia C. Lo que se quiere es que las re-
glas Ri → BiCi aparezcan ordenadas de forma creciente según el valor lexicográfico de la
expansión inversa del lado izquierdo (Bi).

La función de la librería estándar de C++ sort puede ordenar la secuencia mientras se
le otorgue una forma de expandir las reglas, pero esto no es suficiente pues se necesita que
la secuencia de reglas mantenga la propiedad de auto-referencia, es decir, que cada regla Ri

aparezca en las posiciones 2i y 2i+1 y que referencias a esta regla tenga el valor i+ σ. Para
lograr esto, se creó un vector de enteros que guarda los índices de cada regla.
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Listing 4.1: Vector de índices
1 int_vector reverseIndexMap(n_non_terminals);
2 for (int i = 0; i < n_non_terminals; i++) {
3 reverseIndexMap[i] = i;
4 }

Luego se ordenó utilizando una función que compara las expansiones de los lados izquierdo
de la regla apuntada por el índice, de forma inversa.

Listing 4.2: sort
1 sort(
2 reverseIndexMap.begin(),
3 reverseIndexMap.end(),
4 [&](int a, int b) {
5 return compareRulesLazy(arsSequence , a, b, n_terminals ,

select, true);
6 }
7 );

La función de comparación es una función perezosa que entrega el siguiente símbolo de la
expansión pedida a demanda, esto evita tener que expandir el lado requerido por completo,
lo cual, en un texto largo con miles de reglas, puede llevar demasiado tiempo. Para esto se
utilizaron generadores:

Listing 4.3: Comparación perezosa
1 Generator <char> expandRuleSideLazy(
2 ARSSequence& arrs, int i, int nt,
3 std::vector<char>& sl, bool left = false)
4 {
5 int lr_i = left? i: i+1;
6 if (arrs[lr_i] < nt) {
7 co_yield sl[arrs[lr_i] + 1];
8 } else {
9 auto gen = expandRuleLazy(arrs, 2*(arrs[lr_i]-nt), nt, sl,

left);
10 for (char c : gen) {
11 co_yield c;
12 }
13 }
14 }
15 bool compareRulesLazy(ARSSequence& arrs, int i, int j, int nt,

std::vector<char>& sl, bool rev = false)
16 {
17 auto gen_i = expandRuleSideLazy(arrs, 2 * i, nt, sl, rev);
18 auto gen_j = expandRuleSideLazy(arrs, 2 * j, nt, sl, rev);
19 auto it_i = gen_i.begin();
20 auto it_j = gen_j.begin();
21 while (it_i != gen_i.end() && it_j != gen_j.end()) {
22 char char_i = *it_i;

18



23 char char_j = *it_j;
24 if (char_i != char_j) {
25 return char_i < char_j;
26 }
27 ++it_i;
28 ++it_j;
29 }
30 // If one sequence is shorter, the shorter one is considered "less"
31 return (it_i == gen_i.end()) && (it_j != gen_j.end());
32 }

Con esto, el vector reverseIndexMap (rim) ahora contiene los índices de las reglas de forma
tal que:

∀i, j expansion-reversa(Brim[i]) < expansion-reversa(Brim[i])←→ i < j

Se creó un vector del mismo tamaño que R y se colocaron en este las reglas en el orden que
aparecen en reverseIndexMap, pero actualizando los valores B y C:

Listing 4.4: Nueva secuencia R
1 vector<int> distance_of_find(reverseIndexMap.size(), 0);
2 for (int i = 0; i < reverseIndexMap.size(); i++) {
3 distance_of_find[reverseIndexMap[i]] = i;
4 }
5 int_vector <> sortedSequenceR = int_vector(n_non_terminals * 2 + 1, 0);
6 for (u_int i = 0; i < reverseIndexMap.size(); i++) {
7 int a_i = reverseIndexMap[i];
8 int b_i = normalized_sequenceR[a_i*2];
9 int c_i = normalized_sequenceR[a_i*2+1];

10 int n_b_i, n_c_i;
11 if (b_i < n_terminals) {
12 n_b_i = b_i;
13 } else {
14 n_b_i = distance_of_find[b_i - n_terminals] + n_terminals;
15 }
16 if (c_i < n_terminals) {
17 n_c_i = c_i;
18 } else {
19 n_c_i = distance_of_find[c_i - n_terminals] + n_terminals;
20 }
21 sortedSequenceR[i*2] = n_b_i;
22 sortedSequenceR[i*2+1] = n_c_i;
23 }
24 int S_i = distance(reverseIndexMap.begin(),

find(reverseIndexMap.begin(), reverseIndexMap.end(),
n_non_terminals -1));

25 sortedSequenceR[n_non_terminals*2] = S_i;
26 R = ARSSequence(sortedSequenceR , max_normalized + 1 + 1);
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La última linea guarda el índice de la regla inicial (anteriormente, la regla inicial era aquella
expresada por los dos últimos valores en R, ahora debe guardarse su posición).

Se creó también un vector similar a reverseIndexMap, llamado indexMap que guarda los
índices de las reglas en el arreglo anteriormente ordenado, ordenadas por el valor lexicográfico
de la expansión (no inversa) del lado derecho de cada regla. Este vector se utilizará para crear
la grilla.

4.6.1. Memoización

Es posible aplicar la técnica de memoización para reducir el tiempo de la función de
comparación, al guardar los valores de las expansiones de las reglas:

Listing 4.5: Nueva secuencia R
1 vector<int> distance_of_find(reverseIndexMap.size(), 0);
2 for (int i = 0; i < reverseIndexMap.size(); i++) {
3 distance_of_find[reverseIndexMap[i]] = i;
4 }
5 int_vector <> sortedSequenceR = int_vector(n_non_terminals * 2 + 1, 0);
6 for (u_int i = 0; i < reverseIndexMap.size(); i++) {
7 int a_i = reverseIndexMap[i];
8 int b_i = normalized_sequenceR[a_i*2];
9 int c_i = normalized_sequenceR[a_i*2+1];

10 int n_b_i, n_c_i;
11 if (b_i < n_terminals) {
12 n_b_i = b_i;
13 } else {
14 n_b_i = distance_of_find[b_i - n_terminals] + n_terminals;
15 }
16 if (c_i < n_terminals) {
17 n_c_i = c_i;
18 } else {
19 n_c_i = distance_of_find[c_i - n_terminals] + n_terminals;
20 }
21 sortedSequenceR[i*2] = n_b_i;
22 sortedSequenceR[i*2+1] = n_c_i;
23 }
24 int S_i = distance(reverseIndexMap.begin(),

find(reverseIndexMap.begin(), reverseIndexMap.end(),
n_non_terminals -1));

25 sortedSequenceR[n_non_terminals*2] = S_i;
26 R = ARSSequence(sortedSequenceR , max_normalized + 1 + 1);

Esto sin embargo requiere mucho espacio extra y no comprime el texto, por lo que no
es parte de la estructura, sin embargo posibles casos de utilidad son discutidos al final del
trabajo.
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4.7. Ejemplo práctico

Considérese el texto T = abrabracadabrabra y su versión normalizada:

T = 0 1 4 0 1 4 0 2 0 3 0 1 4 0 1 4 0

Considérese también la gramática representada por la secuencia R, normalizada y reordenada:

R = 0 9 8 11 5 9 7 10 1 12 2 0 3 7 4 0

Donde la regla inicial es R1 = 8 11.

Sea s(i) = select1(b, i + 1) (b es el vector de bits obtenido durante la normalización de
la secuencia) y σ el tamaño del alfabeto de terminales (en este caso, con Σ = [0, 1, 2, 3, 4]
se tiene σ = 5), la figura 4.2 ilustra la expansión de las reglas, con R1 la regla inicial que
expande al texto original.

R = 0 9 8 11 5 9 7 10 1 12 2 0 3 7 4 0
(R = aR4 R3R6 R0R4 R2R5 bR7 ca dR2 ra)

R0 → 0 9⇐⇒ s(0) R9−σ ⇐⇒ a R4 ⇐⇒ a bra
R1 → 8 11 ⇐⇒ R8−σ R11−σ ⇐⇒ R3 R6 ⇐⇒ abrabraca dabrabra
R2 → 5 9 ⇐⇒ R5−σ R9−σ ⇐⇒ R0 R4 ⇐⇒ abra bra
R3 → 7 10 ⇐⇒ R7−σ R10−σ ⇐⇒ R2 R5 ⇐⇒ abrabra ca
R4 → 1 12 ⇐⇒ s(1) R12−σ ⇐⇒ b R7 ⇐⇒ b ra
R5 → 2 0 ⇐⇒ s(2) s(0)⇐⇒ c a
R6 → 3 7 ⇐⇒ s(3) R7−σ ⇐⇒ d R2 ⇐⇒ d abrabra
R7 → 4 0⇐⇒ s(4) s(0)⇐⇒ r a

l = 4 17 7 9 3 2 8 2

Figura 4.2: Secuencia R y expansión de las reglas Ri, junto con secuencia l, el largo de cada
expansión

Como se aprecia al expandir cada regla, estas están ordenadas de forma ascendente por
el valor lexicográfico de la expansión invertida del lado izquierdo (en negrita).

Es posible visualizar esta gramática como un árbol sintáctico o parsing tree (Véase figura
4.3) que se obtiene de recorrer R desde la regla inicial R1. Esta figura permite visualizar la
idea de Gramática Balanceada: en una gramática balanceada, la altura del árbol sintáctico
es del orden O(log n), con n es el largo del texto original, es decir, existe una constante c tal
que la altura es ≤ c log n para todos los textos de largo n.

Para que la gramática representada por R sea balanceada es menester que la imple-
mentación de Re-Pair genere una gramática balanceada, luego la expansión de las reglas es
balanceada naturalmente.

Otra visualización de la gramática que será de utilidad para visualizar la búsqueda de
patrones es la de un grafo acíclico dirigido o DAG (del inglés Directed Acyclic Graph) (Fígura
4.4).
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Figura 4.3: Árbol sintáctico para abrabracadabrabra

El DAG se forma de la siguiente forma. Cada regla tiene un único nodo correspondiente
en el grafo. Cada vez que una regla Ri aparece ya sea como lado izquierdo o derecho de otra
regla Rj, esto induce una conexión desde el nodo Ri al nodo Rj. El único nodo sin conexiones
salientes corresponde a la regla inicial, en este caso, R1.

R1

R3 R6

R2 R5 d

R0

R4

c

R7b

r a

Figura 4.4: DAG para abrabracadabrabra, las conexiones que corresponden a reglas que apa-
recen como lados izquierdos son grises, y las derechas son negras
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4.8. Grilla

Compact Data Structures[15] describe en su décimo capítulo la estructura de grilla en
base a árboles wavelet (más precisamente, las estructuras utilizan matrices wavelet, pero los
algoritmos descritos en el libro utilizan árboles). Para esto primero se ordenan los puntos de
entrada por la coordenada x. Luego, cada punto (xi, yi) es representado en la grilla por el
punto (i, yi). El mapeo entre los puntos originales y los nuevos se guarda en un vector de
bits, sin embargo, esto es innecesario para el caso presente debido a que los valores xi son
únicos y continuos, con lo cual al ordenar los puntos por x, (xi, yi) = (i, yi). Una vez se tienen
los puntos ordenados, si se consideran ahora solo los valores yi de cada punto, se tiene una
secuencia S. Es a partir de esta secuencia que se crea la matriz wavelet[15, Capítulo 6.2.5].

4.8.1. Matrices Wavelet

La idea de la matriz wavelet es concatenar todos los vectores de bits en un mismo nivel
para deshacerse de la topología de árbol. La forma particular en que son concatenados los
vectores busca evitar espacios vacíos que aparecen en el árbol (pues no todos los caminos
raíz-hoja tienen el mismo largo) es la siguiente: se colocan primero los vectores de bits co-
rrespondientes a hijos izquierdos del nivel anterior y luego los hijos derechos. Por ejemplo,
para la secuencia ”tobeornottobethatisthequestion”:

S1 : tobeornottobethatisthequestion
B1 : 110011011110010010110011011010 z1 = 13

S2 : benbehaiheein toorottottstqusto
B2 : 0010010110011 10000110111101110 z2 = 14

S3 : bebeaee oorooqo nhihin tttttstust
B3 : 0101011 0010000 100001 0000000100 z3 = 22

S4 : bba ooooqo hihi tttttstst eeee r nn u
B4 : 110 000010 0101 111110101 z4 = 10

S5 : a ooooo hh ss bb q ii ttttttt

Donde zl es un valor pre-calculado equivalente a Rank0(Bl, n).

La estructura y sus operaciones se implementaron correctamente (Véase A.6) siguiendo
las instrucciones del capítulo 6.2.5 de Compact Data Structures[15]. Con esto, se implementó
la estructura de grilla usando matrices wavelet[15, Capítulo 10.1] (Véase A.7).

4.8.2. Preparar puntos para grilla

Cada regla Ri → BiCi se guarda en la grilla en un punto con coordenadas (Bi, Ci). Las
filas de la grilla están ordenadas por orden lexicográfico del reverso de la expansión de Bi (esto

23



ya se hizo). Las columnas en tanto están ordenadas por orden lexicográfico de la expansión
de Ci. Para lograr esto se usó el vector indexMap descrito previamente:

1 std::vector<Point> points(n_non_terminals);
2 u_int j, k;
3 for (u_int i = 0; i < indexMap.size(); i++) {
4 k = std::distance(indexMap.begin(), std::find(indexMap.begin(),

indexMap.end(), i));
5 points[i] = Point(k, i);
6 }

Estos puntos se usaron para inicializar la grilla (La implementación de la grilla usa valores
indexados desde 1, por lo que hay que sumar 1 a los valores de los puntos antes de usarlos).

Por ejemplo, las reglas generadas por ”abrabracadabrabra”(Véase la fígura 4.2), conforman
la siguiente grilla:
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a
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abrabra
b
c
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R5
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R6

R0
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R1

R4

0 1 2 3 4 5 6 7

Figura 4.5: Grilla

Si se lee la grilla fila por fila aparecen las reglas en este orden: R0, R1, R2, ...R7, es decir,
en el orden preexistente, pues ya fueron ordenadas por orden lexicográfico de la expansión
reversa del lado izquierdo (mostrado en la figura a la izquierda de cada fila). Si se leen las
reglas columna a columna, el orden es R5, R7, R6, R0, R2, R3, R1, R4, pues las columnas están
ordenadas por orden lexicográfico de la expansión del lado derecho (mostrado arriba de la
grilla sobre cada columna correspondiente).

4.9. Calcular largo de las expansiones de las reglas

Es menester, para poder responder consultas de búsqueda de patrones, pre-calcular los
valores de los largos de las expansiones de cada regla. El detalle se ve más adelante, pero
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en resumen, si una ocurrencia de un patrón sucede en una regla que aparece como el lado
derecho Ci de otra regla, el índice del patrón estará desfasado lBi

con respecto al índice de
la regla padre, donde lBi

es el largo de la expansión de la regla Bi que es el lado izquierdo de
la regla Ri.

1 l = int_vector(n_non_terminals , 0); // largos de cada regla
2 for (int i = 0; i < n_non_terminals; i++) {
3 l[i] = ruleLength(i);
4 }

Como las reglas son referenciadas por otras reglas (y dependiendo de lo repetitivo del
texto, son referenciadas más de una vez), con el fin de evitar calcular el largo para una
misma regla cada vez que esta es parte de la expansión de otra, se usó memoización (en este
caso, la misma lista de largos funciona como la memoria).

1 int PatternSearcher::ruleLength(int_vector <> *l, int i) {
2 if (l[i] != 0) { //memoization
3 return l[i];
4 }
5 int left, right;
6 if (R[i*2] < nt) {
7 left = 1;
8 } else {
9 left = ruleLength(R[i*2] - nt);

10 }
11 if (R[i*2+1] < nt) {
12 right = 1;
13 } else {
14 right = ruleLength(R[i*2+1] - nt);
15 }
16 l[i] = left + right;
17 return l[i];
18 }

4.10. Búsqueda de patrones

La búsqueda de patrones aprovecha la grilla para encontrar las reglas en las que aparece
el patrón de texto buscado. La idea es la siguiente: si el patrón P a buscar aparece en el texto,
entonces existe al menos una división del patrón P en dos strings P< y P> que son prefijo
y sufijo del patrón respectivamente y que concatenados forman el patrón P , tales que P< es
sufijo de la expansión izquierda de una regla Ri y P> es prefijo de la expansión derecha de
la misma regla. Si se tienen todas las reglas que cumplen esta condición, basta con recorrer
virtualmente el árbol sintáctico o parsing tree hasta el símbolo inicial, y entregar la posición
donde parte P< tomando en cuenta los desfases con respecto al nodo padre.

La idea entonces es, primero, y por cada división P< y P> del patrón, encontrar todas la
reglas que expresan el patrón de la forma descrita (ocurrencias primarias), y luego, por cada
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una de estas reglas encontradas, hacer accesos en R hasta encontrar todas las posiciones de
esta regla en el símbolo inicial (ocurrencias secundarias). El detalle se ve en las siguientes
secciones.

4.10.1. Ocurrencias primarias

Para cada posible división del patrón P en dos strings, uno prefijo y otro sufijo P< y P>,
se buscan las reglas cuya expansión izquierda es P< y derecha P>.

Como las filas están ordenadas por orden lexicográfico de la expansión reversa del lado
izquierdo de estas, las reglas que cuyo lado izquierdo terminan en P< forman un rango de
filas en la grilla. De forma análoga, las columnas están ordenadas de forma lexicográfica
por la expansión del lado derecho, por lo que las reglas con lado derecho que empieza con
P> forman un rango de columnas. Esto significa que se puede encontrar el rango de filas y
columnas (y por lo tanto, el cuadrante donde se encuentran las reglas que cumplen con la
condición buscada) usando búsqueda binaria.

Por ejemplo, sea el patrón de búsqueda P = ab sobre el texto abrabracadabrabra, se tienen
los posibles (y en este caso únicos) P< = a y P> = b. Las reglas que tienen como sufijo en su
extensión izquierda a P< = a están en el rango de filas [0, 1, 2, 3] (en ázul en la figura 4.6),
mientras que las reglas que tienen como prefijo en el lado derecho a P> = b están en el rango
de columnas [3, 4] (en rojo en la figura 4.6).
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Figura 4.6: Grilla

Las reglas R0 y R2 se encuentran en el cuadrante definido por los dos rangos encontrados.
Estas reglas pueden obtenerse mediante la operación report de la grilla. El siguiente paso es
determinar los índices de las reglas en el texto original (Véase sección 4.10.2).
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Implementación

La búsqueda de las reglas que contienen el patrón consiste en primero dividir este en dos
sub-strings (P<, P>), según una variable t (el largo de P<). Por cada t entre 1 y el largo del
patrón menos uno, se deben encontrar sy (primera fila del rango de filas), ey (última fila del
rango), sx (primera columna del rango de columnas) y ex (última columna del rango).

1 u_int m = P.size();
2 u_int t;
3 for (t = 1; t < m; t++) {
4 string P_left = P.substr(0, t); // P_<
5 string P_right = P.substr(t, m-t); // P_>
6 uint s_x, e_x, s_y, e_y;

Para buscar los rangos sx, ex, sy, ey , se utilizó búsqueda binaria, como se ve en 4.6, donde
se muestra la búsqueda binaria para sy. En este caso, la fila tiene el mismo identificador que
la regla (línea 5) gracias a la disposición de los puntos usados en la grilla.

Listing 4.6: Búsqueda binaria para sy

1 int left = 0, right = G.getRows() - 1;
2 int result = -1;
3 while (left <= right) {
4 int mid = left + (right - left) / 2;
5 int r_i = mid;
6 int compare = compareRuleWithPatternLazy(R, r_i, nt, sl, P_left,

true);
7 if (compare >= 0) {
8 if (compare == 0)
9 result = mid;

10 right = mid - 1;
11 } else {
12 left = mid + 1;
13 }
14 }
15 if (result == -1) continue;
16 s_y = result + 1;

En el caso de las columnas, la línea 5 de 4.6 debe cambiar, el índice de la regla corresponde
al valor del punto en la columna:

1 int r_i = G.access(mid+1)-1; // rule index

Donde G.access entrega el valor del único punto en la columna de entrada.

Para encontrar el final de cada rango, lo único que cambia en la búsqueda binaria es como
se mueven los límites de la búsqueda (left y right):

1 if (compare <= 0) {
2 if (compare == 0) {
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3 result = mid;
4 }
5 left = mid + 1; // instead of mid - 1
6 } else {
7 right = mid - 1; // instead of mid + 1
8 }

La función compareRuleWithPatternLazy compara el patrón con la expansión ya sea iz-
quierda o derecha de una regla, como se ve en 4.7.

Listing 4.7: Ocurrencias
1 template <typename Iterator>
2 int compareRuleWithPatternLazyImpl(
3 ARSSequence& arrs, int i, int nt, std::vector<char>& sl, Iterator

pattern_begin , Iterator pattern_end ,
4 bool rev = false)
5 {
6 auto gen = expandRuleSideLazy(arrs, 2*i, nt, sl, rev);
7 auto it = gen.begin();
8 while (it != gen.end() && pattern_begin != pattern_end) {
9 char c = *it;

10 char p = *pattern_begin;
11 if (c < p) return -1;
12 if (c > p) return 1;
13 ++it;
14 ++pattern_begin;
15 }
16 if (it == gen.end() && pattern_begin != pattern_end) return -1;
17 return 0;
18 }
19 int compareRuleWithPatternLazy(ARSSequence& arrs, int i, int nt,

std::vector<char>& sl, std::string pattern, bool rev = false)
20 {
21 if (rev) {
22 return compareRuleWithPatternLazyImpl(arrs, i, nt, sl,

pattern.rbegin(), pattern.rend(), rev);
23 } else {
24 return compareRuleWithPatternLazyImpl(arrs, i, nt, sl,

pattern.begin(), pattern.end(), rev);
25 }
26 }

Esta operación utiliza las funciones de expansión perezosa descritas en la sección 4.6, en
el fragmento 4.3.

Una vez encontrados los rangos, se deben encontrar las ocurrencias de las reglas que se
encuentran en este:

1 vector<Point> points = G.report(s_x, e_x, s_y, e_y);
2 for (Point p: points) {
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3 int r_i = p.second -1; // rule index
4 if ((u_int)R[r_i*2] < nt) {
5 secondaries(occurences , R, S, r_i, nt, l, 0);
6 } else {
7 secondaries(occurences , R, S, r_i, nt, l, l[R[r_i*2] - nt]-t);
8 }
9 }

El desfase inicial es cero si el lado izquierdo es una terminal, en el caso contrario el desfase
es la diferencia entre el largo de la expansión del lado izquierdo y el largo de P<.

4.10.2. Ocurrencias secundarias

Determinar las posiciones de las reglas encontradas en el símbolo inicial corresponde
a recorrer virtualmente el DAG desde los nodos correspondientes a cada regla encontrada
en la búsqueda de ocurrencias primarias hasta el nodo correspondiente al símbolo inicial,
acumulando el desfase de cada nodo en el camino: si la regla es el hijo derecho del nodo
destino, su desfase respecto a este es igual al largo de la expansión de la correspondiente
regla izquierda.

La idea es recorrer todos los caminos posibles hasta el nodo inicial, y entregar los desfases
para cada recorrido.

R1

R3 R6

R2 R5 d

R0

R4

c

R7b

r a

Figura 4.7: Búsqueda en el DAG para nodo R0

Siguiendo el ejemplo de la sección anterior, se necesita ahora encontrar las ocurrencias de
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las reglas R0 y R2 en el texto, considerando el desfase inicial del patrón P = ab con respecto
a cada regla.

La figura 4.7 muestra el recorrido por el DAG que corresponde a la búsqueda de ocurren-
cias secundarias para el patrón P = ab expresado en R0 = a bra. Los dos caminos posibles
(en rojo y ázul) llegan cada uno a R1 con distintos desfases. El camino rojo llega con un des-
fase acumulado de 0 (el desfase inicial es 0 pues el patrón coincide con el inicio de la regla),
lo que indica que el patrón (expresado por la regla R0) aparece en la posición 0 del texto
(indexado desde cero). El camino azul acumula un desfase igual a l[d] + l[R3] = 1 + 9 = 10
(Véase figura 4.2 para los valores de l), con lo que el patrón (en la regla R0) aparece también
en la posición 10 del texto.

Considere ahora la búsqueda para la regla R2. La fígura 4.8 muestra los recorridos reali-
zados por la búsqueda.

R1

R3 R6

R2 R5 d

R0

R4

c

R7b

r a

Figura 4.8: Búsqueda en el DAG para nodo R2

El camino rojo llega con un desfase acumulado de 3 (el desfase inicial del patrón P =
ab respecto a la regla R2 = abra bra), mientras que el camino azul llega con un desfase
3 + l[d] + l[R3] = 3 + 1 + 9 = 13. Con esto se concluye que el patrón aparece (expresado en
la regla R2) en las posiciones 3 y 14. En total, sumando a las ocurrencias encontradas para
R0, el patrón aparece en las posiciones 0, 3, 10 y 14 del texto.

En este ejemplo, solo se necesitó encontrar un cuadrante, pues solo existía un par (P<,
P>) para dividir ab, pero un patrón más largo tiene múltiples divisiones, por lo que para
cada par (P<, P>) que tengan un cuadrante en la grilla válido se debe hacer el proceso de
encontrar las ocurrencias secundarias.
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Implementación

La búsqueda de ocurrencias secundarias en la implementación consiste en acceder R de
forma recursiva. La idea es la siguiente, en cada recursión, para una regla Rk y un desfase
acumulado se buscan todas las ocurrencias de la regla en R (la cantidad de ocurrencias es
dada por r = rank(R,Rk), y cada ocurrencia j ≤ r está en i = select(R,Rk, j)), y por cada
una de estas, si la ocurrencia corresponde a un hijo derecho (es decir, si la posición i de
la j-ésima Rk en R es impar) entonces se agrega al desfase acumulado el largo de la regla
en la posición i − 1. Seguido de esto se llama la búsqueda de ocurrencias secundarias para
la regla Ri/2 que es la que contiene esta ocurrencia específica j de Rk en R, es decir, es el
nodo padre en el árbol sintáctico, con el desfase acumulado. La implementación de esto se
ve en el fragmento 4.8. Cada vez que se llega al símbolo inicial S el desfase será distinto,
correspondiente a cada índice del patrón buscado en el texto.

Listing 4.8: Ocurrencias
1 void secondaries(vector<int> *occs, ARSSequence R, u_int S,
2 u_int A_i, u_int nt, int_vector <> l, u_int offset=0,
3 bool terminal = false) {
4 if (!terminal && A_i == S) {
5 occs->push_back(offset); return;
6 }
7 int c = terminal? A_i: A_i + nt; // nt = number of terminals
8 for (int j=1; j <= R.rank(c, R.size()); j++) {
9 int k = R.select(c, j);

10 int D_i = k / 2;
11 int offset_prime = offset;
12 if (k % 2 == 1) { // if A_i is right side
13 if (R[k-1] < nt) offset_prime++;
14 else offset_prime += l[R[k-1] - nt];
15 }
16 secondaries(occs, R, S, D_i, nt, l, offset_prime , false);
17 }
18 };

En el fragmento de código 4.8 se observa cómo se recorre la secuencia R. La operación
rank devuelve la cantidad de ocurrencias de la regla indicada por el parámetro Ai. que puede
corresponder al índice de una regla o a un símbolo terminal, dependiendo del valor del flag
terminal. Por cada ocurrencia, se utiliza select para obtener la posición correspondiente.

Si el texto original es repetitivo, pueden existir muchas ocurrencias de una misma regla,
lo que hace que select sea la operación más utilizada. Es por esta razón que la secuencia se
representa mediante permutaciones, lo que permite realizar select en tiempo O(1). Durante
el proceso recursivo, el desfase se acumula en la variable offset. La recursión termina cuando
Ai es el símbolo inicial S, en cuyo caso el desfase acumulado hasta entonces se añade a las
ocurrencias.

31



Capítulo 5

Evaluación

Para evaluar la solución se deben considerar dos aspectos de la implementación: el fun-
cionamiento correcto del código en términos de entrada y salidas de datos en cada una de sus
partes (unidades) y la consistencia del programa con las proyecciones de tiempo y espacio
teóricos.

5.1. Unit Testing

Para probar el funcionamiento del programa se utilizó la librería Catch2[18], que permite
fácilmente crear pruebas unitarias (Unit Testing en Inglés). Las unidades en este caso son las
distintas clases creadas para representar las estructuras necesarias para el programa: Permu-
tation (véase A.4: permutación con vectores de bits y atajos), ARSSequence (véase A.5:
Secuencias utilizando permutaciones), WaveletMatrix (véase A.6: secuencia representada
como matriz wavelet utilizando vectores de bit), Grid (véase A.7: grilla utilizando matriz
wavelet y PatternSearcher (véase A.8: buscador de patrones utilizando grilla y secuencia).

Como ejemplo, considérese la clase buscadora de patrones, se puede hacer pruebas que
corroboren los resultados de la búsqueda:

Listing 5.1: Test de búsqueda
1 TEST_CASE("PatternSearcher","[pattern]") {
2 REQUIRE_FALSE(g_fileName.empty());
3 string input_filename = g_fileName;
4 FILE *input = fopen(input_filename.c_str(), "rb");
5 string filecontent = "";
6 char c;
7 while (fread(&c, 1, 1, input) == 1) {
8 filecontent += c;
9 }

10 fclose(input);
11 PatternSearcher PS(input_filename);
12 for (int i = 0; i < 50; i++) {
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13 string pattern = filecontent.substr(rand() %
(filecontent.size() - 10), rand() % 10 + 1);

14 cout << i << ": Searching for pattern: \"" << pattern << "\""
<< endl;

15 vector<int> occurences;
16 PS.search(&occurences , pattern);
17 sort(occurences.begin(), occurences.end());
18 vector<int> expected_occurences = findOccurrences(filecontent ,

pattern);
19 REQUIRE(occurences == expected_occurences);
20 }
21 }
22 vector<int> findOccurrences(const string& filecontent ,
23 const string& pattern) {
24 vector<int> occurrences;
25 for (size_t i = 0; i < filecontent.size(); i++) {
26 if (filecontent.substr(i, pattern.length()) == pattern) {
27 occurrences.push_back(i);
28 }
29 }
30 return occurrences;
31 }

La prueba mostrada cerciora que el método utilizado search encuentre los índices de las
ocurrencias del patrón generado aleatoriamente a partir del contenido del texto de entrada,
comparándolos con los resultados arrojados por una función de búsqueda sobre el contendido
(visto como un string) que utiliza funciones estándar en C++ para encontrar, en tiempo
O(n), las ocurrencias.

5.2. Análisis empírico

5.2.1. Espacio

El espacio total de la estructura corresponde a la suma de los valores del espacio de la
grilla G, el espacio de la secuencia R, el espacio de la secuencia l, los vectores que mapean
los símbolos normalizados a los originales y el símbolo inicial:

SPACE(PS) = 32 + r log n+ 2× 8× 256 + SPACE(G) + SPACE(R)

El espacio de la grilla G es igual al espacio de la matriz wavelet WM y los valores para
guardar la cantidad de columnas, filas y puntos:

SPACE(G) = 3× 32 + SPACE(WM)

El espacio de la matriz wavelet WM corresponde al valor de σ, el vector de zl de largo
log σ y el vector de largo log σ de vectores de bits de largo n. En este caso, como la matriz

33



se construye sobre la secuencia formada por los índices de las reglas, σ y n son ambos la
cantidad de reglas:

SPACE(WM) = 32 + 32 log r + SIZE(BV ) log r

El vector de bits tiene, en el peor caso, un tamaño de 1,5n, con lo que el tamaño total de
la matriz queda:

SPACE(WM) = 32 + 32 log r + 1,5r log r

Con esto, el espacio de la grilla G queda:

SPACE(G) = 3× 32 + 32 + 32 log r + 1,5r log r

SPACE(G) = 96 + 32 log r + 1,5r log r

El espacio usado por una secuencia R de largo n sobre un alfabeto σ representada por
permutaciones es igual a la suma de los Ai y Di que hacen un total de 4n + o(n) más las
permutaciones que usan un espacio total de n log σ + no(log σ). Como R se construye sobre
la secuencia de largo 2r y el alfabeto corresponde a la suma del alfabeto del texto σ y la
cantidad de reglas r, sobrestimando los ordenes o queda el espacio como:

SPACE(R) = 10r + 2r log (r + σ)

El espacio total en bits de la estructura es entonces:

SPACE(PS) = 4224 + r log n++32 log r + 1,5r log r + 10r + 2r log (r + σ) (5.1)
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Construcción

El proceso de construcción de la estructura, según los propuesto en el libro, utiliza ex-
tras O(c + n) bits. En la implementación, el tamaño extra usado aparece en el proceso de
construcción de la matriz:

Listing 5.2: Construccion de matriz
1 void WaveletMatrix::build(vector<u32>& S, u32 n, u32 sigma) {
2 vector<u32> S_hat(n);
3 bit_vector M(n, 0);
4 bit_vector M_hat(n, 0);
5 u32 m = sigma;
6 for (u32 l = 0; l <= ceil(log2(sigma))-1; l++) {
7 u32 z_l = 0;
8 bit_vector B_l(n, 0);
9 for (u32 i = 0; i < n; i++) {

10 if (S[i] <= (m - M[i] + 1) / 2) {
11 B_l[i] = 0;
12 z_l++;
13 } else {
14 B_l[i] = 1;
15 S[i] = S[i] - (m - M[i] + 1) / 2;
16 }
17 }
18 bm.push_back(ppbv(B_l));
19 z.push_back(z_l);
20 if (l < ceil(log2(sigma)) - 1) {
21 u32 p_l = -1; // max value + 1 = 0
22 u32 p_r = z[l] - 1;
23 u32 p;
24 int n_ = n;
25 for (u32 i = 0; i < n_; i++) {
26 u32 b = bm[l][i];
27 if (b == 0) {
28 p_l ++;
29 p = p_l;
30 } else {
31 p_r ++;
32 p = p_r;
33 }
34 S_hat[p] = S[i];
35 if (m % 2 == b) {
36 M_hat[p] = b;
37 } else {
38 M_hat[p] = M[i];
39 }
40 if ((m+1)/2==2 && M_hat[p] == 1) {
41 n = n-1;;
42 }
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43 }
44 swap(S, S_hat);
45 swap(M, M_hat);
46 m = (m+1)/2;
47 }
48 }
49 S.clear();
50 S.shrink_to_fit();
51 }

Esto ocupa, efectivamente, 2n bits para los vectores de bit y O(n) bits para la secuencia
auxiliar, lo que indica que la implementación es consistente con lo esperado según el análisis.

Si se utiliza memoización para expandir las reglas al momento de comparar y ordenar la
secuencia, se requiere, en el peor caso,O(2n) bytes (¡no bits!) de memoria extra, considerando
un árbol sintáctico binario balanceado de n nodos. Incluso en el mejor caso, la memoria de la
memoización requiere al menos n bytes. Es posible mejorar esto guardando las expansiones
de las reglas que más se repiten en el árbol (por ejemplo, las que otrora apareciesen en la
secuencia C generada por Re-Pair), y memoizar sólo prefijos de las reglas de cierto tamaño.
En este caso es quizás posible utilizar otras estructuras como un trie o un suffix-tree en vez
del mapa int a string utilizado como memoria.

5.2.2. Tiempo

Construcción

En teoría, la construcción de una estructura grilla usando matrices wavelet con n puntos
y c columnas demora tiempo O(c+n log n)[15, Capítulo 10.6]. Esto se debe a que primero se
deben ordenar los puntos por la coordenada x, y luego se recorren estos para inicializar los
vectores de bits.

En el caso particular de la búsqueda de patrones, no es necesario ordenar los puntos. En
efecto, la clase buscadora primero ejecuta Re-Pair sobre el texto de largo n (tiempo O(n)),
después la normalización (tiempo O(n)), para luego ordenar la secuencia R de reglas por
orden lexicográfico de la expansión reversa del lado izquierdo (O(r log r) comparaciones donde
expandir toma, en promedio, O(log n)). Los puntos son entonces creados de forma que las
columnas estén ordenadas por el valor lexicográfico del lado derecho (tiempo O(r log r log n)).

Todo lo anterior significa que la grilla entonces toma tiempo O(r), que sumado al tiempo
necesario para ordenar la secuencia R, conlleva a un tiempo total de:

O(n+ r log r log n) (5.2)

Con n el largo del texto y r la cantidad de reglas.

Se pudo medir el tiempo de construcción de la implementación utilizando textos reales,
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obtenidos del sitio Project Gutenberg[7]. Para cada texto, se ejecutó la construcción de la
clase buscadora de patrones varias veces, y se obtuvo el promedio de todas estas medidas.
Los resultados se pueden ver en la figura 5.1, donde se comparan con la predicción teórica
calculada 5.2.

Figura 5.1: Tiempo de construcción de la estructura en función del número de reglas, com-
parado a tiempo teórico O(n+ r log r log n)

La implementación demuestra comportarse exactamente como lo predicho por la fórmula
obtenida del análisis teórico.

ES posible, con memoización, reducir el tiempo de construcción significativamente. Como
las primeras reglas corresponden a las reglas creadas por Re-Pair, estas se expanden primero
y se guardan. Luego, el resto de las reglas corresponden a las reglas extras creadas para
reducir la secuencia C, y por lo tanto utilizan todas la memoización de forma consecutiva.
Sin embargo, esta técnica utiliza significativa memora extra, y no logra comprimir el texto.

Búsqueda

El costo de tiempo teórico para reportar occ ocurrencias de un patrón P de largo m en
el texto T de largo n es:

O((m+ log n)m log r log log r + occ log n log log r)

Esto se debe a que en una gramática balanceada, el árbol sintáctico tiene altura log n, y
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la operación de acceso en la secuencia representada por permutaciones (R) tiene un tiempo
O(log log r). De aquí que el primer sumando en la expresión teórica corresponde a expandir
m símbolos de una regla ((m+log n) log log r), por cada comparación en la búsqueda binaria
(log r), por cada división de sufijo y prefijo del patrón (m). El segundo sumando en tanto co-
rresponde a recorrer virtualmente hasta la raíz el árbol sintáctico (log n), por cada ocurrencia
encontrada (occ), haciendo accesos en R (log log r).

Para medir el tiempo de búsqueda de la implementación en función de los parámetros, se
crearon textos que permitiesen mantener fijos algunos de estos y variar el parámetro relevante.

El tiempo en función de la cantidad de ocurrencias requiere mantener fijo el largo de
los patrones de búsqueda (además de los otros parámetros). Una solución simple fue usar
los bigramas (secuencias de largo 2) más comunes en Inglés[17] como los patrones a buscar.
Luego se buscan las ocurrencias de estos patrones en varios textos en inglés. Los gráfico de
estas medición para cada texto real utilizado correspondes a la figuras de la tablas 5.4 y
5.5. El gráfico 5.2 muestra la combinación de todas las mediciones y la tendencia combinada
polinomial de primer grado.

La figura 5.3 ilustra el tiempo teórico para fines de cerciorar el mismo crecimiento, uti-
lizando valores promedios de n y r. La justificación para esto es que, aunque el tiempo de
búsqueda es función de n y r, además de occ, es posible un análisis más simple considerando
r y n como funciones lineales de occ en textos reales, donde independiente del largo el texto
no se vuelve menos o más predictivo, y la ”densidad”de ocurrencias se mantiene igual.

Figura 5.2: Tiempo de búsqueda en función del número de ocurrencias para un patrón de
largo dos

38



Figura 5.3: Tiempo de búsqueda en función del número de ocurrencias para un patrón de
largo dos con predicción teórica usando promedio de n y r, con tiempo teórico O((m +
log n)m log r log log r + occ log n log r).

El tiempo de búsqueda corresponde a la suma de los tiempos de búsqueda binaria de
rangos en la grilla, el costo temporal de reportar las reglas dentro de estos rangos y los
tiempos de búsqueda de ocurrencias para cada regla reportada.

La búsqueda binaria demora en el peor caso m log c, pues la comparación puede requerir
expandir la regla entera hasta el largo del patrón (m), y la regla puede corresponder a la
regla inicial que expande al texto inicial de largo n. En la práctica, con un texto real, la
gran mayoría de las comparaciones terminan en el primer símbolo de la expansión. Esto es
fácil de ver: como la distribución de los primeros símbolos de las expansiones de las reglas
es aproximadamente uniforme (en realidad, es la distribución según las frecuencias de los
símbolos en el lenguaje específico) las comparaciones perezosas retornarán falso en el primer
símbolo.

En un texto altamente repetitivo, las expansiones serán más largas, sin embargo, la canti-
dad de reglas es mucho menor que la de un texto real. Esto significa que no sólo la búsqueda
binaria se hace sobre un espacio menor, el reporte de ocurrencias se hace sobre un árbol más
corto (si se considera la búsqueda de ocurrencias como el recorrido del árbol sintáctico hasta
la raíz).

Las pruebas de medición de tiempo muestran resultados consistentes a lo esperado en
todos los casos, por lo cual se puede concluir que la implementación es correcta.
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Figura 5.4: Tiempos de búsquedas en ms (milisegundos) en función del número de ocurrencias
para un patrón de largo 2
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Figura 5.5: Tiempos de búsquedas en ms (milisegundos) en función del número de ocurrencias
para un patrón de largo 2 (Continuación)

5.3. Análisis en textos altamente repetitivos

Las colecciones de textos reales altamente repetitivos de Pizza & Chili Corpus[1] sirven
como entradas para pruebas del mismo tipo a las utilizadas por el índice comprimido basado
en gramática[4] y son por lo tanto una buena forma de analizar la competitividad de la
estructura utilizada. El tamaño de los textos varía desde 45 MiB (world_leaders) a 446 MiB
(einstein.en), con variados grados de repetición, como se ve en la tabla 5.1. En la misma
tabla aparece el espacio de la estructura para cada set de datos como bps (bits por símbolo).

Colección Largo Reglas bps
world_leaders 46968181 307066 0.848511
Escherichia_Coli 112689515 3619577 4.55733
influenza 154808555 1557878 1.40496
kernel 257961616 1129349 0.619162
coreutils 205281778 1994376 1.36035
para 429265758 4222046 1.41742
cere 461286644 3212008 0.986939
einstein.en 467626544 163417 0.0475765

Tabla 5.1: Propiedades de cada colección

Para cada colección se hicieron búsquedas de patrones aleatorios de ciertos largos y
se midieron los tiempos de búsqueda por ocurrencia. La figura 5.6 muestra los resultados
obtenidos, ilustrados en un gráfico donde las escalas de ambos ejes son logarítmicas, y el
eje Y corresponde a los tiempos por ocurrencia (en teoría, O((m + log n)m log r log log r +
occ log n log log r)/occ), mientras que el eje X corresponde a la cantidad occ de ocurrencias
detectadas.

La estructura toma tiempos menores por ocurrencia mientras más ocurrencias del patrón
se encuentren en el texto. Patrones de menos largo aparecen con más incidencia en los textos
y por lo tanto el proceso de dividir el patrón en todos sus posible sufijos y prefijos es más
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Figura 5.6: Tiempos por ocurrencia en µs (microsegundos) de búsquedas en función del
número de ocurrencias para distintas colecciones repetitivas. Ambos ejes están es escala
logarítmica
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Figura 5.7: Tiempos por ocurrencia en µs (microsegundos) de búsquedas de patrones aleato-
rios de largo fijo 10 en función del número de ocurrencias en la colección einstein.en. El eje
X está en escala logarítmica

corto.

En colecciones altamente repetitivas como einstein.en logra tiempos de búsqueda por
ocurrencia bajo 5 µs cuando la cantidad de ocurrencias es del orden de 104 o mayor. En
world_leaders el tiempo por ocurrencia se estabiliza en 9 a 10 µs. En otras colecciones el
tiempo por ocurrencia es menos estable: en influenza altas ocurrencias tienen tiempo por
ocurrencia entre 5 a 30 µs.

Se analizó el caso para patrones aleatorios de largo fijo m = 10 sobre la colección eins-
tein.en. Los resultados se muestran en la figura 5.7 donde la búsqueda alcanza tiempos
estables de 5 µs por ocurrencia para patrones con ocurrencias superiores a 103.

5.4. Análisis comparativo con la solución lineal de bús-
queda sin compresión

El reporte de ocurrencia de patrones utilizando un algoritmo lineal en un texto sin com-
primir tiene un tiempo de búsqueda en el peor caso de O(nm), con n el largo del texto y
m el largo del patrón. En un texto real sin embargo, el tiempo es más cercano a O(n), pues
la gran mayoría de las comparaciones terminan en el primer símbolo, es decir, el tiempo es
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relativamente independiente al largo del patrón.

n r m occ t(ms) estructura t(ms) lineal t(ms) teórico
111299 26149 5 14 4.34 10.85 10.08
111299 26149 10 1 4.36 10.76 10.17
111299 26149 20 1 5.41 15.76 10.49
111299 26149 30 1 6.14 15.74 10.98
111299 26149 40 1 7.11 15.77 11.61
111299 26149 50 1 7.85 15.88 12.41
111299 26149 70 1 9.81 16.16 14.46
111299 26149 100 1 11.72 15.72 18.72
290801 54170 5 93 7.88 28.77 10.17
290801 54170 10 3 6.37 28.68 10.20
290801 54170 20 1 7.18 42.79 10.56
290801 54170 30 1 8.15 41.55 11.10
290801 54170 40 1 9.24 42.41 11.81
290801 54170 50 1 10.25 42.17 12.70
290801 54170 70 1 12.41 41.76 14.98
290801 54170 100 1 15.33 41.75 19.71
704731 119734 5 640 21.11 69.06 10.79
704731 119734 10 216 12.15 68.66 10.46
704731 119734 20 75 10.71 99.65 10.72
704731 119734 30 1 9.41 99.67 11.24
704731 119734 40 1 10.68 99.75 12.04
704731 119734 50 1 11.78 99.69 13.02
704731 119734 70 1 13.63 99.64 15.56
704731 119734 100 1 16.94 99.26 20.80
1224377 191364 5 329 17.24 118.98 10.48
1224377 191364 10 10 9.06 118.91 10.25
1224377 191364 20 1 9.48 172.84 10.69
1224377 191364 30 1 10.55 172.58 11.33
1224377 191364 40 1 11.90 173.20 12.18
1224377 191364 50 1 13.23 173.08 13.22
1224377 191364 70 1 16.16 172.97 15.92
1224377 191364 100 1 19.24 172.31 21.47
2205984 333238 5 409 31.03 221.59 10.61
2205984 333238 10 11 10.39 222.08 10.28
2205984 333238 20 1 11.35 327.83 10.74
2205984 333238 30 1 11.98 320.78 11.43
2205984 333238 40 1 13.65 323.65 12.34
2205984 333238 50 1 14.92 323.42 13.46
2205984 333238 70 1 17.48 317.41 16.34
2205984 333238 100 1 22.68 326.57 22.27

Tabla 5.2: Tiempos de búsqueda en textos reales de largo n de patrones aleatorios de largo
m, con occ ocurrencias en promedio y con r la cantidad de reglas
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El costo temporal teórico de la estructura en reportar occ ocurrencias, considerando r
como el número de reglas al comprimir el texto por gramática es:

O((m+ log n)m log r log log r + occ log n log log r)

Para que lo anterior sea menor al tiempo de búsqueda lineal, con un patrón de largo m < log n
se debe cumplir que:

occ = o(
n

log n log log r
)

Los valores de occ y r serán pequeños si el texto es repetitivo y las ocurrencias del patrón
de búsqueda son pocas. Este es el caso para textos reales como se aprecia en la tabla 5.2. Con
largos de patrones suficientemente largos, las ocurrencias en textos reales tienden a ser únicas.
La naturaleza de los textos reales hace que la ”densidad”de repetitividad sea relativamente
constante, y por lo tanto, la cantidad de ocurrencias de patrones crece más lento que el largo
del texto. Esto implica que el algoritmo termina venciendo con más holgura a la búsqueda
lineal mientras más largo sea el texto, al menos en el contexto de textos reales como lo son
las novelas, los ensayos, etc.

Con r pequeño la grilla es pequeña y por lo tanto las búsquedas de rango son más cortas,
además el árbol sintáctico es más pequeño y por lo tanto las búsquedas de ocurrencias hasta
la raíz son más cortas. Con occ pequeño la cantidad de búsquedas de ocurrencias son menores.
Las ocurrencias occ suelen ser proporcionales, tomando patrones aleatorios de un largo fijo,
a qué tan repetitivo es el texto, es decir, en general, occ ∝ r−1.

Para ejemplificar lo anterior, considere el siguiente texto T :

"aaaaaaaaaabaaaaaaaaaab...aaaaaaaaaab\n..."

Esto es, un texto de muchas líneas donde cada línea corresponde a la repetición de un
patrón de cierta cantidad de a seguidas de una b. El texto es muy repetitivo, como se aprecia
en la tabla 5.3 por la pequeña cantidad de reglas, y si se buscan patrones de la forma aib\n
que son los más raros, el buscador de la estructura es más rápido que la búsqueda lineal:

n r m occ t(ms) estructura t(ms) lineal t(ms) teórico
69120 22 5 720 1.89 6.80 10.31
69120 22 10 720 2.59 6.85 10.32
69120 22 20 720 3.73 10.12 10.37
69120 22 30 720 3.65 9.97 10.44
69120 22 40 720 3.45 9.85 10.54
69120 22 50 720 4.90 9.83 10.65
69120 22 70 720 6.25 9.91 10.96

Tabla 5.3: Tiempos de búsqueda en texto repetitivo con n el largo del texto original, r la
cantidad de reglas, m el largo del patrón.

Considérese un ejemplo más realista. Se tiene una secuencia de ADN como un texto
donde el alfabeto es A, T,G,C. Estas secuencias son sumamente largas, y buscar una cadena
específica en esta usando una búsqueda lineal puede ser muy lento, en especial si se requiere
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repetir el proceso varias veces con distintos patrones de pocas ocurrencias. En este caso, la
estructura tiene un tiempo de búsqueda más corto que la búsqueda lineal, como se aprecia
en la tabla 5.4.

n r m occ t(ms) estructura t(ms) lineal t(ms) teórico
1000000 182668 5 975 83.17 98.23 11.21
1000000 182668 10 2 10.49 98.78 10.24
1000000 182668 20 1 9.79 142.39 10.68
1000000 182668 30 1 11.17 142.58 11.32
1000000 182668 40 1 12.77 141.67 12.16
1000000 182668 50 1 14.05 141.11 13.19
1000000 182668 70 1 16.73 140.73 15.87
1000000 182668 100 1 20.58 140.75 21.39

Tabla 5.4: Tiempos de búsqueda en secuencia de ADN de largo 100.000, occ es la cantidad
de ocurrencias del patrón

5.5. Análisis comparativo con índice comprimido basa-
do en gramática

El índice comprimido basado en gramática[4] es una estructura de datos que permite
buscar patrones en un texto comprimido por gramática libre de contexto generada por este,
representada esta a su vez como un árbol. La figura 5.8 muestra los tiempos de búsqueda de
patrones aleatorios en textos reales con la estructura propuesta en este trabajo y la estructura
del índice comprimido basado en gramática. La tabla 5.5 en tanto muestra la cantidad de
bits por símbolo de cada colección para ambas estructuras.

Colección bps Estructura bps Índice g-index/2 bps Índice g-ingex/32
world_leaders 0.848511 0.814413 0.642726
Escherichia_Coli 4.55733
influenza 1.40496 1.29044 1.02916
kernel 0.619162 0.562662 0.444946
coreutils 1.36035
para 1.41742
cere 0.986939 0.9352 0.748654
einstein.en 0.0475765 0.0456824 0.0355039

Tabla 5.5: Propiedades de cada colección
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Figura 5.8: Tiempos de búsqueda en µs (microsegundos) de búsquedas de patrones aleatorios
en función del número de ocurrencias en la colección einstein.en para la estructura imple-
mentada y el índice comprimido con g-index/2.
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Capítulo 6

Conclusiones

6.1. Conclusiones generales

6.1.1. Objetivo general

Finalizado este trabajo, se puede concluir con suficiente certeza que los objetivos propues-
tos, esto es, la correcta implementación de la estructura y el análisis empírico de su funcio-
namiento, fueron completados satisfactoriamente. La estructura se comporta en la práctica
como lo teorizado.

En textos reales, la estructura comprimida simplificada para indexar texto basada en
gramática logra el reporte de las posiciones de las ocurrencias de patrones de búsqueda
en tiempos más cortos que la búsqueda lineal de patrones (O((m + log n)m log r log log r +
occ log n log log r) versus O(nm)). El espacio usado es de orden similar al texto original, pues
a pesar de que se comprime a una cantidad r de reglas que es menor al largo n del texto, estas
reglas requieren más memoria para ser guardadas (log r bits por cada regla). Sin embargo,
textos suficientemente repetitivo logra una compresión significativa, y se benefician de una
velocidad de reporte de ocurrencias aún mayor.

En particular, si la cantidad de ocurrencias del patrón es muy pequeña en comparación
al tamaño del texto, y el texto en sí es suficientemente repetitivo, la búsqueda es ordenes
de magnitud más rápida que una búsqueda lineal. Textos altamente repetitivo son también
comprimidos de forma significativa, por ejemplo, los textos correspondientes a las colecciones
repetitivas analizados en 5.3

Los tiempos de búsqueda por patrón mejoran enormemente con la cantidad de ocurrencias
de un patrón, y esto es consistente con lo esperado. Con respecto al estado del arte, en
las colecciones repetitivas evaluadas, los tiempos de búsqueda por ocurrencia son mayores
(alrededor de 4 microsegundos más) que los tiempos por ocurrencia de el índice comprimido
basado en gramática[4]. Futuras optimizaciones en la implementación podrían mejorar este
aspecto y equiparar los tiempos de búsqueda de la estructura.

48



6.2. Cumplimiento de objetivos específicos
1. Implementación la estructura de forma correcta: La implementación de la estructura fue

realizada de forma correcta lo que permitió el correcto análisis del comportamiento de
esta tanto en la construcción como en la búsqueda de patrones. Se implementaron cada
una de las partes de la estructura de forma modular y se realizaron pruebas unitarias
para garantizar la corrección de las operaciones.

2. Implementación de pruebas de robustez y consistencia de la estructura: Se implementa-
ron pruebas de robustez y consistencia de la estructura, las cuales permitieron validar
su correcto funcionamiento y su congruencia con el análisis teórico. Pruebas unitarias
y de integración fueron realizadas para garantizar la corrección de las operaciones y la
funcionalidad de la estructura.

3. Implementación de pruebas de desempeño espacial y temporal de la implementación:
Se realizaron pruebas de desempeño espacial y temporal de la implementación, las
cuales permitieron evaluar su eficiencia en términos de tiempo y espacio. A partir de
estas pruebas se obtuvieron datos cuantitativos sobre el desempeño de la estructura
y se pudo visualizar a través de gráficos y tablas la efectividad de la estructura en la
búsqueda de patrones.

4. Análisis de los resultados de las pruebas para obtener conclusiones respecto al desem-
peño: Se analizaron los resultados de las pruebas para obtener conclusiones respecto
al desempeño empírico de la estructura, identificando sus fortalezas y debilidades. Con
esto se obtuvo una visión clara de la utilidad de la estructura en un contexto real y
las posibles mejoras a los tiempos de búsqueda en ámbitos de eficiencia y compresión
efectiva en textos reales y/o repetitivos.

6.3. Trabajo futuro

6.3.1. Memoizar

No obstante las virtudes de la estructura, esta requiere un tiempo de construcción no
menospreciable. Si se utiliza extra memoria es posible aplicar memoización (regla −→ ex-
pansión) para acelerar el proceso de ordenamiento de las reglas por sus expansiones y así
disminuir el tiempo de comparación y por consiguiente construcción, pero esto requiera me-
moria extra durante el proceso equivalente al mismo texto, es decir, O(n log σ) bits, con lo
cual no hay compresión.

Se puede limitar la memoización a sólo las reglas originalmente creadas por Re-Pair y
aprovechar que la estructura del árbol gramatical está balanceada desde el nivel correspon-
diente a los sub-árboles que salen de tomar pares de símbolos de la secuencia C.

Es posible también aplicar memoización en la búsqueda de ocurrencias secundarias, lo
cual reduciría enormemente el tiempo de búsqueda de patrones. Esto requeriría, en el peor
caso, memoria de ejecución extra O(r log r), pero evitaría re-calcular las ocurrencias de cada
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regla en el símbolo inicial. Si se considera la búsqueda de ocurrencias como recorrer el árbol
sintáctico desde cada nodo equivalente a la regla, este proceso de memoización permite evitar
recorrer los mismos nodos más de una vez.

6.3.2. Sobre la secuencia R

La estructura expande la secuencia R obtenida de Re-Pair con el fin de eliminar la
secuencia C. Esto implica extender R con extras O(|C|) reglas. Es posible hacer este proceso
de extender R de una forma puramente virtual, manteniendo C y R originales. En efecto, el
proceso de extender R es equivalente a construir un árbol binario con C como las hojas del
árbol. Con esto, si el programa requiere una regla específica de la secuencia virtual R′ como
R expandida, es fácil saber la posición de esta regla en este árbol virtual, y con eso, se puede
saber con exactitud el rango en C que corresponde a la regla (si la regla corresponde a las
creadas en la expansión).

La expresión para obtener el rango de C que le corresponde a una regla Ri no es simple
pero se puede obtener, pues la estructura del árbol virtual es conocida: Las reglas se crean
a partir de C tomando, en cada iteración, pares de símbolos de izquierda a derecha, reem-
plazándolos por un nuevo símbolo, dejando símbolos sin par para la siguiente iteración, y así
hasta reducir C a un solo símbolo. Así, en casos donde el largo de C no es una potencia de
2 las posiciones de las reglas son aún calculables.

Cuando la estructura implementada requiera reordenar R′ por su expansión izquierda
invertida por orden lexicográfico, basta con traducir este reordenamiento a la secuencia R
original y C.

Lo anterior permite expandir estas reglas extras en tiempo O(hi), donde hi es la altura
de la regla en el árbol, lo que implica que expandir todas estas reglas extras, utilizando la
técnica descrita, tiene un costo total de tiempo O(n) y espacio equivalente a la expansión de
las reglas originales O(n).

Si se añade memoización sobre las reglas originales, expandir cualquier regla extra toma
tiempo constante por cada regla que pertenece al rango en C correspondiente.

6.3.3. Potencial paralelismo

Es posible también utilizar múltiples threads o multihilos en ciertas partes del programa
en donde el paralelismo podría mejorar considerablemente la búsqueda. La simplicidad de la
estructura facilita el paralelismo en, por ejemplo, los dos ordenamientos de las reglas por sus
expansiones, las múltiples divisiones del patrón en sus sufijos y prefijos, las cuatro búsquedas
binarias para encontrar los rangos de estas divisiones, y las múltiples búsquedas para cada
ocurrencia encontrada en la grilla. En teoría, y con suficientes hilos, se puede eliminar el
largo del patrón y las ocurrencias. como factores en los tiempos de búsqueda. Utilizando solo
4 hilos, el tiempo de búsqueda puede ser reducido significativamente, logrando, en teoría,
compararse al tiempo de búsqueda del índice comprimido basado en gramática[4].
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Apéndice A

Anexo

Listing A.1: Llamando Re-Pair
1 FILE *input;
2 DICT *dict;
3 input = fopen(input_filename.c_str(), "rb");
4 dict = RunRepair(input);
5 fclose(input);
6 RULE *rules = dict->rule; // set or rules
7 CODE *comp_seq = dict->comp_seq; // sequence C

Listing A.2: Añadir más reglas hasta eliminar C
1 while (dict->seq_len > 1) {
2 for (u_int i = 0; i < dict->seq_len; i = i+2) {
3 if (i == dict->seq_len - 1) { // odd case
4 comp_seq[i/2] = comp_seq[i];
5 }
6 else {
7 RULE new_rule;
8 new_rule.left = comp_seq[i];
9 new_rule.right = comp_seq[i+1];

10 rules[dict->num_rules] = new_rule; // append new rule
11 comp_seq[i/2] = dict->num_rules; // update sequence C
12 dict->num_rules++;
13 }
14 }
15 dict->seq_len = dict->seq_len % 2 == 0 ? dict->seq_len / 2 :

dict->seq_len / 2 + 1;
16 }

Listing A.3: Normalizar Secuencia
1 bit_vector bbbb(257, 0); // bit vector to mark which symbols are in

the alphabet used by text
2 int_vector <> sequenceR((dict->num_rules - 257) * 2, 0, sizeof(CODE) *

8);
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3 for (u_int i = 0; i < sequenceR.size(); i = i + 2) {
4 sequenceR[i] = rules[i/2 + 257].left;
5 sequenceR[i + 1] = rules[i/2 + 257].right;
6 if (sequenceR[i] <= 256) {
7 bbbb[sequenceR[i]] = 1;
8 }
9 if (sequenceR[i + 1] <= 256) {

10 bbbb[sequenceR[i + 1]] = 1;
11 }
12 }
13 rank_support_v <1> rank_bbbb(&bbbb);
14 select_support_mcl <1, 1> select_bbbb(&bbbb);
15 vector<char> rank(257, 0);
16 vector<char> select(257, 0);
17 for (int i = 0; i < 257; i++) {
18 rank[i] = rank_bbbb(i);
19 if (i==0) continue;
20 select[i] = select_bbbb(i);
21 }
22 u_int max_terminal = 0;
23 for (u_int i = 1; i <= rank_bbbb(257); i++) {
24 if (select_bbbb(i) > max_terminal) {
25 max_terminal = select_bbbb(i);
26 }
27 }
28 int_vector <> normalized_sequenceR(sequenceR.size(), 0, sizeof(CODE) *

8);
29 int sz = sequenceR.size();
30 int r;
31 int max_normalized = 0; // maximum symbol in the normalized alphabet
32 for (int i = 0; i < sz; i++) {
33 if (sequenceR[i] < 256)
34 r = rank_bbbb(sequenceR[i] + 1) - 1;
35 else
36 r = sequenceR[i] - 257 + rank_bbbb(257);
37 normalized_sequenceR[i] = r;
38 if (r > max_normalized) {
39 max_normalized = r;
40 }
41 }

Listing A.4: Permutaciones utilizando vectores de bit
1 typedef struct abv {
2 bit_vector b;
3 rank_support_v <0> rank;
4 select_support_mcl <1, 1> sel_1;
5 select_support_mcl <0, 1> sel_0;
6 } abv; // rank, selects vector
7 typedef struct dbv {
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8 bit_vector b;
9 select_support_mcl <1, 1> sel_1;

10 select_support_mcl <0, 1> sel_0;
11 } dbv; // selects vector
12

13 class Permutation {
14 friend class PowerPermutation;
15 protected:
16 int rank_b(int i);
17 int_vector <> pi; // permutation
18 int_vector <> S; // shortcuts
19 brv b; // bit vector to mark shortcuts
20 public:
21 Permutation();
22 int t; // parameter t
23

24 /// @brief Sole constructor , it does not check if pi is a
permutation

25 /// @param pi vector of integers (initially , 8 bit long integers)
26 /// @param t parameter t length of the shortcuts
27 Permutation(int_vector <> pi, int t);
28

29 /// @brief Return the position of the element i after applying the
permutation

30 int operator[](int i);
31 int permute(int i) { return this->operator[](i); };
32

33 /// @brief Return the inverse of the permutation ,
34 /// that is, the position j such that permutation ( j ) = i
35 /// @param i
36 /// @return
37 int inverse(int i);
38 };

Listing A.5: Secuencia utilizando permutaciones
1 class ARSSequence {
2 private:
3 vector<abv> A;
4 vector<dbv> D;
5 vector<Permutation > pi;
6 int sigma; int n;
7 int select_1_D(int k, int i);
8 int select_0_D(int k, int i);
9 int select_0_A(int k, int i);

10 int select_1_A(int k, int i);
11 int rank_A(int c, int i);
12 int pred_0_A(int c, int s);
13 public:
14 /// @brief Builds structure to support rank, select and access
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queries
15 /// @param S integer vector representing the sequence
16 /// @param sigma size of alphabet [0 . . . sigma)
17 ARSSequence(int_vector <> S, int sigma);
18 /// @brief Access query
19 /// @param i position in the sequence
20 /// @return The symbol at position i
21 int access(int i);
22 int operator[](int i) { return access(i); };
23 /// @brief Rank query
24 /// @param c symbol in the alphabet
25 /// @param i position in the sequence
26 /// @return The number of occurrences of c in the sequence up to

and including position i
27 int rank(int c, int i);
28 /// @brief Select query
29 /// @param c symbol in the alphabet
30 /// @param i the i-th occurrence of c in the sequence
31 /// @return The position of the i-th occurrence of c in the

sequence
32 /// @note Position returned is 0-indexed, while parameter i is

1-indexed as ordinal numbers are.
33 int select(int c, int j);
34 u_int size() { return n; }
35 };

Listing A.6: Matriz Wavelet
1 class WaveletMatrix {
2 private:
3 u32 sigma; // highest symbol in the alphabet
4 vector<u32> z; // right child pointer
5 void build(vector<u32>& S, u32 n, u32 sigma);
6 u32 select(u32 l, u32 p, u32 a, u32 b, u32 c, u32 j);
7 vector<ppbv> bm; // bit matrix seen as vector of preprocessed bit

vectors
8 public:
9 /// @brief A wavelet matrix using bit_vectors over an alphabet [1,

sigma]
10 /// @param s 4-byte long unsigned integer vector
11 /// @param sigma highest numerical symbol
12 WaveletMatrix(vector<u32>& s, u32 sigma);
13 WaveletMatrix();
14 /// @brief Access the number in the i-th zero-indexed
15 /// position of the original sequence.
16 /// @param i positive 0-indexed position.
17 /// @return The number or NULL if out of bounds
18 u32 access(u32 i);
19 /// @brief Counts the occurences of number c up until yet

excluding the given zero-indexed position i
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20 /// @param i the zero-indexed position
21 /// @param c the number
22 /// @return the number of occurences until position i
23 u32 rank(u32 c, u32 i);
24 /// @brief Returns the 0-indexed position of the j-th occurence of

the number c
25 /// @param c a number
26 /// @param j a positive number
27 /// @return the position or the size of the sequence if not found,

or -1 if c is not in the sequence
28 u32 select(u32 c, u32 j);
29 void printself();
30 ppbv operator[](u32 level);
31 u32 offset(u32 level);
32 u32 size() { return bm[0].size(); }
33 };

Listing A.7: Grilla
1 class Grid {
2 private:
3 u32 c; // number of columns
4 u32 r; // number of rows
5 u32 n; // nubmer of points
6 WaveletMatrix wt; // Wavelet tree
7 u32 count(u32 x_1, u32 x_2, u32 y_1, u32 y_2, u32 l, u32 a, u32 b);
8 vector<Point> report(u32 x_1, u32 x_2, u32 y_1, u32 y_2, u32 l,

u32 a, u32 b);
9 u32 outputx(u32 level, u32 x);

10 u32 outputy(u32 level, u32 a, u32 b, u32 i);
11 public:
12 /// @brief Construct a grid from a binary file
13 /// @param fn Filename of the binary file
14 /// @note The binary file should contain the dimensions of the

grid first
15 /// (columns, rows), followed by the points as pairs of integers.

Every integer
16 /// in the file should be a 4-byte long unsigned integer

(uint32_t).
17 /// The coordinates should be 0-indexed.
18 Grid(const string& fn);
19 Grid(std::vector<Point>& points, u32 columns, u32 rows);
20 /// @brief Count the number of points in the grid that are within

the rectangle
21 /// @param x_1 1-indexed column range start
22 /// @param x_2 1-indexed column range end
23 /// @param y_1 1-indexed row range start
24 /// @param y_2 1-indexed row range end
25 /// @return The number of points in the grid that are
26 /// within the rectangle as an integer

57



27 u32 count(u32 x_1, u32 x_2, u32 y_1, u32 y_2);
28 /// @brief Report the points in the grid that are within the

rectangle
29 /// @param x_1 1-indexed column range start
30 /// @param x_2 1-indexed column range end
31 /// @param y_1 1-indexed row range start
32 /// @param y_2 1-indexed row range end
33 /// @return A vector of points that are within the rectangle
34 vector<Point> report(u32 x_1, u32 x_2, u32 y_1, u32 y_2);
35 void printself();
36 u32 getColumns() { return c; }
37 u32 getRows() { return r; }
38 WaveletMatrix getWaveletMatrix() { return wt; }
39 /// @brief Access the number in the i-th 1-indexed position
40 /// @param i
41 /// @return
42 u32 access(u32 i) {return wt.access(i-1);};
43 /// @brief Returns the 1-indexed position of the j-th occurrence

of c
44 /// @param j
45 /// @param c
46 /// @return
47 u32 select(u32 j, u32 c) {return wt.select(j, c);};
48 };

Listing A.8: Buscador de patrones
1 class PatternSearcher {
2 private:
3 Grid G; // Grid
4 ARSSequence R; // ARS sequence
5 u_int S; // Initial symbol
6 int_vector <> l; // Lengths of the expansion of the rules
7 uint nt; // Number of terminals
8 vector<char> sl; // select vector for normalized alphabet
9 vector<char> rk; // rank vector for normalized alphabet

10 string expandRule( int i, unordered_map <int, string >& memo);
11 string expandRightSideRule(int i, unordered_map <int, string>

&memo);
12 string expandLeftSideRule(int i, unordered_map <int, string >& memo);
13 int ruleLength(int i);
14 Generator <char> expandRuleLazy( int i, bool rev = false);
15 Generator <char> expandRuleSideLazy( int i, bool left = false);
16 bool compareRulesLazy(int i, int j, bool rev = false);
17 template <typename Iterator>
18 int compareRuleWithPatternLazyImpl ( int i, Iterator

pattern_begin , Iterator pattern_end , bool rev = false);
19 int compareRuleWithPatternLazy(int i, string pattern, bool rev =

false);
20 void secondaries(vector<int> *occurences , u_int A_i, u_int
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offset=0, bool terminal = false);
21 public:
22 PatternSearcher(){};
23 /// @brief Construct a pattern searcher from a text file
24 /// @param input_filename
25 PatternSearcher(string input_filename);
26 /// @brief Report all occurences of a pattern in the text
27 /// @param occurences Vector to store the occurences
28 /// @param P Pattern to search
29 void search(vector<int> *occurences , string P);
30 int numRules() { return R.size() / 2; }
31 };
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