
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

DATA STRUCTURES AND ALGORITHMS FOR ANALYZING DNA SEQUENCES IN
COMPRESSED SPACE

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN COMPUTACIÓN

DIEGO ALEJANDRO DÍAZ DOMÍNGUEZ

PROFESOR GUÍA:
GONZALO NAVARRO
PROFESOR COGUÍA:

TRAVIS GAGIE

MIEMBROS DE LA COMISIÓN:
NADIA PISANTI

DIEGO ARROYUELO
JUAN ASENJO

Este trabajo ha sido parcialmente financiado por Beca ANID 21171332, Financiamiento
Basal FB0001, Proyecto Fondecyt 1-171058, Proyecto Fondecyt 1-170048, Proyecto

Fondecyt 1-200038 y Centro de Biotecnología y Bioingeniería (CeBiB)

SANTIAGO DE CHILE
OCTUBRE 2021

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN COMPUTACIÓN
POR: DIEGO ALEJANDRO DÍAZ DOMÍNGUEZ
FECHA: OCTUBRE 2021
PROF. GUÍA: GONZALO NAVARRO Y TRAVIS GAGIE

DATA STRUCTURES AND ALGORITHMS FOR ANALYZING DNA SEQUENCES IN
COMPRESSED SPACE

Los avances en las tecnologías de secuenciación del ADN han generado que hoy en día
tengamos una gran cantidad de colecciones genómicas disponibles para analizar. El reto con
estas colecciones es almacenar y procesar los datos sin agotar los recursos computacionales.
Muchos autores han abordado este desafío utilizando estructuras de datos compactas y al-
goritmos que explotan las largas repeticiones de ADN en estos datasets. Estas técnicas han
demostrado ser eficaces para reducir los elevados costes computacionales. Sin embargo, se
han centrado principalmente en genomas ensamblados. Su uso en datos de secuenciación
sin procesar (también conocidos como lecturas) es un tema menos estudiado. El diseño
de nuevas estructuras de datos compactas y métodos de compresión para lecturas es una
necesidad imperante, dado que estas colecciones genómicas son las más masivas y las más
comunes.

Esta tesis presenta una infraestructura algorítmica diseñada principalmente para mani-
pular colecciones de lecturas en espacio sucinto o comprimido. Nuestro objetivo principal es
reducir los altos costos de extraer información biológica a partir de lecturas.

Comenzamos introduciendo un nuevo compresor de gramáticas llamado LMSg, el cual
está destinado a almacenar lecturas. Nuestro método demuestra ser rápido, altamente pa-
ralelizable y con tasas de compresión competitivas con las de compresores populares. Nuestra
siguiente contribución es un algoritmo llamado infBWT, el cual calcula la BWT extendida
de una colección de lecturas codificadas con la gramática LMSg. El algoritmo utiliza las
características particulares de la gramática LMSg y las corridas de símbolos iguales en la
BWT para acelerar los cálculos. La BWT extendida es un elemento esencial en muchos
autoíndices sucintos que podríamos utilizar para extraer información. Nuestros experimentos
muestran que infBWT se hace más eficiente a medida que las lecturas se vuelven más massivas
y repetitivas.

Nuestra tercera contribución es un índice sucinto para lecturas cuyo objetivo es extraer
información biológica. Esta representación, llamada rBOSS, codifica las lecturas en un grafo
compacto de de Bruijn (BOSS) y luego extiende el grafo con una nueva estructura de datos
propuesta en esta tesis: el árbol de sobrelape. Además, mostramos que es posible combinar la
idea del árbol de sobrelape con la BWT extendida para producir un autoíndice que codifica
más información que rBOSS. Demostramos el uso práctico de rBOSS implementando un
algoritmo para ensamblar las lecturas en un genoma.

Proponemos un índice sucinto alternativo para lecturas, también pensado para realizar
análisis. Este índice se basa en los grafos de de Bruijn coloreados. Esta representación
construye un grafo de de Bruijn a partir de las lecturas y asigna un color específico a cada
camino etiquetado con una lectura. Nuestra contribución es un algoritmo codicioso que reduce

i

el uso de espacio coloreando parcialmente el grafo y dando los mismos colores a diferentes
lecturas cuando es posible. Este enfoque disminuye el número de colores que el índice debe
almacenar. Además, diseñamos dos algoritmos sobre el índice, uno extrae las lecturas del
grafo y el otro ensambla el genoma de las lecturas.

Nuestra última contribución es un algoritmo práctico para producir una gramática local-
mente consistente a partir de un texto. Las propiedades particulares de nuestra gramática nos
permiten obtener una variación del índice de gramáticas que mejora la complejidad de tiempo
para localizar patrones largos, manteniendo altas tasas de compresión. Una característica
importante de nuestro algoritmo es que, a diferencia de otras gramáticas con propiedades de
consistencia local, no requerimos almacenar estructuras de datos adicionales, como permuta-
ciones, para mantener la consistencia. Esta contribución está pensada para ser utilizada en
el futuro para indexar colecciones de genomas completos, más que de lecturas.

ii

Abstract

Rapid advances in DNA sequencing technologies have generated an unprecedented amount
of genomic collections available for analysis. The challenge with these collections is to store
and process the data without exhausting the computational resources. Many authors have
addressed the problem by using compact data structures and algorithms that exploit the long
DNA repetitions of the datasets. These techniques have proved to be efficient in reducing the
high computational costs. However, they have been focused mainly on assembled genomes.
Their use on raw sequencing datasets (a.k.a reads) is a less studied topic. Designing new
compact data structures and compression-aware methods for reads is a pressing need as they
are the most massive and common kind of genomic dataset one can find.

This thesis develops an algorithmic infrastructure designed primarily for manipulating
read collections in succinct or compressed space. Our goal is to lower the computational
costs of extracting biological information from reads.

We start by introducing a new grammar compressor called LMSg aimed at storing reads.
Our method proves to be fast, highly parallelizable, and with compression ratios competitive
with those of state-of-the-art compressors. Our next contribution is a compression-aware
algorithm called infBWT that computes the extended BWT (eBWT) of a read collection
encoded as an LMSg grammar. The algorithm uses the features of the LMSg grammar
and the equal-symbol runs in the eBWT to boost the computations. The eBWT is an
essential element in many succinct self-indexes that we could use to extract information.
Our experiments show that infBWT gets more efficient as the input dataset becomes more
massive and repetitive.

Our third contribution is a succinct index for reads tailored to extracting biological infor-
mation. This representation, called rBOSS, encodes the input reads in a compact de Bruijn
graph (BOSS) and augments the graph with a new data structure proposed in this thesis; the
overlap tree. Further, we show that it is possible to combine the idea of the overlap tree with
the eBWT to produce a more powerful self-index than rBOSS. We demonstrate the practical
use of rBOSS by implementing an algorithm to assemble the reads into a genome.

We propose an alternative succinct index for reads, also tailored for analyses. This index
relies on colored de Bruijn graphs. This representation builds a de Bruijn graph from the
reads and assigns a specific color to every path spelling a read. Our contribution is a greedy
algorithm that reduces space usage by partially coloring the graph and giving the same colors
to different reads when possible. This approach decreases the number of colors the index has
to store. Additionally, we design two algorithms on top of the index: one extracts the reads
from the graph, and the other assembles the reads’ genome.

Our last contribution is a practical algorithm for producing a locally consistent grammar
from a string collection. The particular properties of our grammar allow us to obtain a
variation of the grammar index that improves the time complexity for locating long patterns
while maintaining high compression ratios. An important feature of our algorithm is that,
unlike other grammars with local consistency properties, we do not require to store additional
data structures, like permutations, to maintain consistency. This contribution is intended to
be used in the future for indexing collections of complete genomes, rather than reads.

iii

iv

Dedicado a mi familia, de ahora y siempre

v

vi

Agradecimientos

Mi tiempo en el doctorado finalmente llega a su fin. Fue una etapa enriquecedora, donde
conocí gente nueva y aprendí a cómo realizar investigación en el área de las ciencias de la
computación. Sin embargo, siento que sólo logré entender una pequeña porción de todos
los temas que se pueden estudiar. Esta sensación, por su puesto, no es algo negativo. Al
contrario, me motiva aún más a seguir avanzando en mi carrera científica.

Mis años en el programa estuvieron marcados por hitos importantes, como lo son la
pandemia de COVID-19 y el estallido social en Chile. Puede que no haya una relación
directa entre estos eventos y mi doctorado, pero sí influenciaron el desarrollo de mi tesis.
Siempre recordaré lo que significó sobrellevar estos temas con mi investigación.

Me gustaría comenzar agradeciendo a mis tutores Gonzalo Navarro y Travis Gagie. Ellos
fueron un pilar fundamental en el desarrollo de mi trabajo. El profesor Gonzalo me dio
la libertad para investigar las cosas que a mi me interesaban. Siempre estuvo dispuesto a
colaborar conmigo, y se tomó el tiempo para revisar mis documentos de manera exhaustiva.
Travis, por otro lado, constantemente me puso en contacto con otros investigadores alrededor
del mundo, interesados en los mismos temas que yo, y siempre me considero para colaborar.
Además, siempre estuvo preocupado de ponerme al corriente de las últimas novedades en
algoritmos y estructuras de datos compactas para Genómica.

También quisiera agradecer a los miembros de la comisión de mi tesis, Nadia Pisanti, Diego
Arroyuelo y Juan Asenjo, por tomarse el tiempo de leer mi documento y hacer comentarios
útiles. Estos comentarios ayudaron a mejorar bastante la versión final del escrito.

Otro pilar importante para el desarrollo del doctorado fue mi Familia. Ellos fueron la
contención emocional que me permitió finalizar este proceso. Quisiera agradecer a María
Ignacia, mi esposa, por vivir esta etapa conmigo. María también realizó estudios de post-
grado, así que entiende mejor que nadie lo que significa. Su apoyo, compresión y cariño
fueron indispensables. También quisiera agradecer a Sandra, Mauricio y Esteban, mis padres
y hermano, respectivamente, por su paciencia y por ayudarme en todo lo que necesité.

Finalmente quisiera agradecer al Departamento de Ciencias de la Computación de la
Universidad de Chile (DCC), al Centro de Biotecnología y Bioingeniería (CeBiB) y a Agencia
Nacional de Investigación y Desarrollo (ANID) por financiarme durante este tiempo. Ellos
me dieron la estabilidad económica que me permitió realizar mi investigación sin tener que
preocuparme de nada más.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis statement . 3

1.2.1 Contributions . 4
1.3 Structure of the Thesis . 6
1.4 Software . 6
1.5 Notation . 7

2 Basic Concepts 8
2.1 Data Compression . 8

2.1.1 Entropy . 8
2.1.2 Encoding Sequences . 10
2.1.3 Direct Access to Variable-Length Codes 12

2.2 Compact Data Structures . 13
2.2.1 Bit vectors . 13
2.2.2 Wavelet Trees . 15
2.2.3 Succinct Trees . 19

2.3 Hashing . 22
2.3.1 Hash Tables . 22
2.3.2 Rolling Hashing . 25
2.3.3 Bloom Filters . 26
2.3.4 Document Similarity . 27

3 Indexing and Compressing Text 29
3.1 Classical Indexes . 29

3.1.1 Suffix Array . 30
3.1.2 Suffix Tree . 31

3.2 Text Compression . 32
3.2.1 The Burrows-Wheeler Transform . 33
3.2.2 Grammars . 36
3.2.3 Other Compression Methods . 39

3.3 Self-Indexes . 40
3.3.1 FM-Index . 41
3.3.2 Bidirectional FM-Index . 42
3.3.3 The r-index . 43

ix

3.3.4 The Grammar Index . 45
3.4 BWT Indexes for Labeled Directed Graphs 50

3.4.1 Labeled Tries . 51
3.4.2 Directed Acyclic Graphs . 53

3.5 Algorithms for building the SA and the BWT 55
3.5.1 Pre�x-Free Parsing . 55
3.5.2 Induced Su�x Sorting . 57

4 Computational Genomics 59
4.1 DNA Sequences . 59
4.2 DNA Sequencing . 60

4.2.1 Sequencing File Format . 61
4.3 The de novo Assembly Problem . 62

4.3.1 The de Bruijn Framework . 64
4.3.2 The Overlap Graph Framework . 68

4.4 Reference Genomes . 69
4.5 Pangenomes . 70

5 Grammar-Compressed Reads 73
5.1 Motivation . 73
5.2 De�nitions . 75
5.3 The LMSg Algorithm . 75

5.3.1 LMSg is for String Collections . 75
5.3.2 Simplifying the Grammar . 76
5.3.3 Analysis of LMSg . 77
5.3.4 E�cient Dictionary Construction . 78

5.4 Recompressing the Grammar . 79
5.5 Encoding the Grammar . 79
5.6 Experiments . 82
5.7 Results and Discussion . 83

6 Computing the eBWT 85
6.1 Encoding Information with Circular Strings 85
6.2 De�nitions . 87
6.3 Overview of infBWT . 87
6.4 Reconstructing the Alphabets . 88

6.4.1 Finding the Nonterminals in the Parse Tree 88
6.4.2 Giving Ranks to the Labels . 89
6.4.3 Time Complexity for the Alphabet Reconstruction 91

6.5 Computing the eBWT of the Compressed Text 92
6.6 Inducing the eBWT . 93
6.7 Implicit Occurrences of the LMS Phrases . 99
6.8 Inducing the BWT in Run-Length Compressed Space 100

6.8.1 Practical Considerations of nextBWT 101
6.9 Experiments . 102
6.10 Results and Discussion . 103

x

7 An Index for Navigating the Layout of Reads 105
7.1 De�nitions . 106
7.2 The Layout Query . 107
7.3 Computing Overlaps in a vo-dBG . 108
7.4 The Overlap Tree and rBOSS . 111
7.5 Simulating Bidirectionality . 113
7.6 Implementing the Layout Query . 115
7.7 The Layout Query and the BWT of the Reads 117
7.8 Genome Assembly . 118
7.9 Experiments . 120

7.9.1 Space and Construction Time . 121
7.9.2 Time for the Primitives . 121
7.9.3 Genome Assembly . 123

8 Succinct Colored de Bruijn Graphs 125
8.1 De�nitions . 126
8.2 Coloring a dBG of Reads . 127

8.2.1 Partial Coloring . 127
8.2.2 Unsafe Coloring . 127
8.2.3 Safe and Greedy Coloring . 128
8.2.4 Ambiguous Sequences . 131

8.3 Compressing the Colored dBG . 131
8.4 Reconstructing Unambiguous Sequences . 132
8.5 Assembling Contigs . 132
8.6 Experiments . 134
8.7 Results . 136

9 Practical Locally Consistent Grammar 138
9.1 De�nitions . 140
9.2 A Grammar Self-Index based on LMS Parsing 140

9.2.1 LMS parsing . 140
9.2.2 Computing the cuts during the pattern matching 141

9.3 Experiments . 142
9.4 Results and Discussion . 143
9.5 Locally Consistent Grammars and Pangenomes 145

10 Conclusion and Further Work 147
10.1 Summary of contributions . 147
10.2 Further Work . 149

xi

List of Tables

2.1 Succinct tree functions . 20

3.1 Queries supported by BWT graph indexes 51

4.1 Sequencing technologies . 61

5.1 Random access . 83

6.1 Input datasets . 102

7.1 Primitives for rBOSS . 117
7.2 Experiments on rBOSS primitives . 122

8.1 Experiments on the colored dBG index . 136
8.2 Experiments on coloring a dBG . 137

9.1 Input datasets . 144

xii

List of Figures

1.1 General outline of the thesis . 4

2.1 Hu�man codes . 10
2.2 Wavelet tree . 16
2.3 Hu�man-shaped wavelet tree . 19
2.4 Succinct trees . 21

3.1 Su�x tree and array . 30
3.2 Burrows-Wheeler transform . 33
3.3 Grammar compression . 37
3.4 Grammar index . 49

4.1 DNA and sequencing . 60
4.2 A read collection . 62
4.3 FASTQ entry . 63
4.4 The dBG framework . 65
4.5 Succinct dBG . 66
4.6 The overlap graph framework . 69
4.7 Pangenome . 71

5.1 Running example ofLMSg . 77
5.2 RS nonterminal . 80
5.3 Grammar tree . 81
5.4 LPGperformance . 82

6.1 The eBWT of a collection of reads . 86
6.2 Example of alphabet reconstruction . 89
6.3 Sorting example to computeR2 . 90
6.4 Example ofnextBWT . 96
6.5 The merge ofQ and Q¬ in nextBWT . 98
6.6 nextBWT in run-length compressed space 101
6.7 Performance infBWT . 104

7.1 The layout query . 108
7.2 rBOSS data structure . 112
7.3 Computing foverlapsusing bidirectionality 114
7.4 The layout query in rBOSS . 116
7.5 Maximal paths . 120

xiii

7.6 Index size statistics for rBOSS . 121
7.7 Experiments on the construction of rBOSS 122
7.8 Experiments on genome assembly with rBOSS 123
7.9 Empirical contig comparison . 124

8.1 Unsafe paths in a colored graph . 128
8.2 Example of our succinct colored dBG . 129
8.3 Assembling with our colored dBG . 134

9.1 Experiments on grammar indexes . 145
9.2 Increasing the query length for pattern matching 146

xiv

Chapter 1

Introduction

This chapter describes the scope and structure of the thesis. Section 1.1 introduces the
concept of DNA strings and explains how this subject motivates our work. It also discusses
the current solutions and open problems to process this type of strings. Section 1.2 gives a
detailed description of our contributions to the �eld. Finally, Section 1.3 explains how this
thesis' content is distributed across the di�erent chapters.

1.1 Motivation

DNA datasets are string collections that encode the relative order of nucleotides in molecules
of Deoxyribonucleic Acid(DNA). The analysis in silico of their sequences allows uncovering
complex biological signals that are di�cult to detect with other approaches. The rapid
development of sequencing1 technologies [79] has dramatically dropped the cost of producing
these datasets while increasing the performance of sequencers2 [88]. Thus, decoding several
hundred or even thousand individual genomes has become a feasible task [165, 41]. These
factors have made storing and processing genomic data a signi�cant computational challenge.

A sequencing experiment yields a collection with millions of short strings calledreads.
The length of these strings varies depending on the technology used to produce them. They
can range from a couple of hundred characters up to several thousand. Still, the reads do
not represent the source DNA's full sequence; they are only small overlapping fragments. To
obtain the �nal product, we have to further process the reads on the computer.

There are two families of computational methods for processing reads, those that are
reference-free and those that are reference-based. In the former, we connect the reads via
su�x-pre�x overlaps, and then we collapse the strings to form a group of consensus sequences.
This process is known as DNAassembly. In the latter approach, we align the reads against
a known reference built from a closely related genomic source. This reference can be, for
instance, the genome of another individual from the same species that was previously assem-
bled. In this case, instead of searching for consensus sequences, we look for mismatches in

1The process of spelling the nucleotides from a DNA molecule.
2The machine that carry outs the sequencing process.

1

the alignments as these di�erencesmight represent genetic variations.

Assembling reads entails several di�culties; the most notable ones are (i) the quadratic
number of su�x-pre�x overlap computations, (ii) how to represent the overlaps in the com-
puter, and (iii) how to detect sequencing errors3. These problems have been addressed over
the years by using algorithms and appropriate data structures for strings (e.g., [47, 97, 186,
77, 48, 192]), but genomic projects have become so massive that these solutions are no longer
practical.

To put the problem's challenge in perspective,The 100K Genomes Project[60], for in-
stance, aims to sequence 100,000 individuals from Great Britain a�ected by rare diseases
or cancer. The raw sequencing data this project is expected to produce is at least one
petabyte4. They aim to gather enough genetic information to enable the so-called precision
medicine [67] in the country. Another equally ambitious sequencing initiative isThe Darwin
Tree of Life [145], whose goal is to sequence 70,000 organisms from di�erent species in Britain
and Ireland. We also have our own local initiative, the1000 Chilean Genomesproject [40],
which aims to sequence the genome of 1000 Chilean individuals and 1000 genomes of endemic
species. Other similar e�orts are being actively developed all over the world (see for instance
[144, 87, 86, 42, 30]).

Bioinformatic tools resort to lossy5 representations such as thede Bruijn graph [191, 39,
116, 119, 5] to cope with the high computational costs of assembling large volumes of reads.
Still, these solutions yield fragmented and incomplete genomes as they lose information.
Further, they also require large amounts of computational resources when the input is huge.
For instance, in recent studies [58, 59] on a read collection of 323GB, the popular assemblers
SOAPdenovo2[119] andSPAdes[5] required about 800GB of working memory (RAM) and
more than one day of CPU time.

These problems have motivated the development ofcompact data structures[135] andself-
indexes[137] for processing large volumes of genomic data [113, 24, 21, 184, 102]. Compact
data structures are lossless representations that maintain the data using the least possible
space, but at the same time, they allow us to access and query the data e�ciently. On the
other hand, self-indexes are text (e.g., DNA sequences) representations that rely on compact
data structures and that do both encode the original text and support queries. The advantage
of self-indexes is that they do not require the original input to extract the text or perform
the queries. Additionally, their space usage is at most proportional to the size of the original
text (i.e., they are succinct). Recent self-indexes [35, 70] use even less space than the original
text and grow sublinearly with its size by exploiting its repetitions.

The FM-index [64, 62] is the most popular self-index in Genomics. Its main feature is that
the cost of �nding matches between an input pattern and the indexed text depends on the
pattern size. Bioinformatic tools such asbowtie [107] orbwa[113] use this fact and encode
the reference genome with the FM-index so that the cost of aligning a read on it depends on

3When a symbol is misspelled during the sequencing.
4The human genome has about three billion characters (3.1 GB), and the sequencing process yields at

least three to four times that number of characters for a single individual.
5Representing the data in less space at the cost of losing information.

2

the read's length, not on the genome's length. This scheme is bene�cial for reference-based
genomic analyses that require processing millions of short reads.

The negative aspect of the methods that rely on alignments is that novel genetic variations
are usually masked due to biases in the reference. Researchers have proposed to solve this
problem by usingpangenomes[56]. A pangenome is a string representation that encodes the
genomes of several individuals of the same species. Aligning reads to such a data structure
can yield more accurate results as this is a more realistic model for DNA [74]. To support the
alignment, some authors have adapted the FM-index to encode pangenomes [102, 131]. These
indexes use the fact that the genomes composing a pangenome are highly similar, and hence,
exploiting their repetitiveness to compress their sequences will yield a small representation.
As a consequence, the index's space and the time complexity for aligning reads depend
more on the genetic di�erences among the individuals than the total number of characters
in the pangenome. The development of these indexes is also an important milestone as it
demonstrated that some bioinformatic tasks could also be carried out in compressed space.

Although pangenomes increase genomic analyses' accuracy, reference-free methods are
still preferred as they are not biased. Besides, in situations where there is no previous
knowledge about the sequenced organism, it is the only option. Given the FM-index's success
in reference-based approaches, it is natural to wonder what kind of compact data structures
and self-indexes are suitable to process reads in compressed space when there is no reference.
The problem is not trivial; read collections are more massive than full genomes, and exploiting
long DNA's repetitions is no longer an option as the sequencing breaks and scatters them into
the reads. Although these aspects are challenging, compacting reads could help cope with
the computer bottlenecks generated when processing massive genomic data. Considering how
fast sequencing technologies are developing and how much they are diversifying to answer
di�erent biological questions, there is a pressure to design a new algorithmic infrastructure
aimed to process read multisets in compressed space.

The overall aim of this thesis is to develop an algorithmic infrastructure, or toolbox, to
analyze string collections of DNA sequencing reads in compressed space. The software will
work with any type of read collection, but will be more e�cient on those produced from
Illumina, the most popular sequencing platform.

1.2 Thesis statement

We propose a framework of data structures and algorithms to manipulate collections of
reads in compressed or succinct space. The proposed tools will exploit the natural repetitive
patterns in DNA to reduce the high computational costs of analyzing sequencing experiments.

We divide our contributions into three main parts: �rst, a �exible compressed represen-
tation for storing reads; second, two succinct self-indexes for reads with support for string
queries; and third, a dictionary-based self-index with potential applications to pangenomic
analyses and read alignment.

We envision a work�ow in which the data is always manipulated in compact form. First,
the sequencing company compresses the reads using our compressor, and then delivers them

3

Figure 1.1: General outline of the thesis. The titles in gray to the left of the vertical line
are the distinct computational topics covered in this thesis. The black titles to the right of
the vertical line are the contribution of the thesis. An arrow between two contributionsA
and B is drawn if the output of A can be used as input forB . Gray arrows are relationships
that were not developed in the thesis, but are considered for future work. Gray titles to the
right of the vertical line are topics that are closely related with the contributions and are also
considered for future work. The dashed vertical arrows between genomic self-indexes and
genomic analyses are contributions that work in a reference-based setting, while solid arrows
are contributions that work in a reference-free setting.

in compressed form. The �nal user receives the compressed data, and without fully decom-
pressing it, transforms it in one of the succinct self-indexes we designed in this thesis. Finally,
the user uses one of the genomic algorithms implemented on top of our self-indexes to extract
biological information. Alternatively, the user can align the reads into a pangenomic data
structure built on top of our dictionary-based self-index.

1.2.1 Contributions

Compressed representation for reads

We propose a new grammar compressor [96] for collections of sequencing reads. This new
method is fast, achieves good compression ratios, and has a low memory footprint com-
pared to other similar algorithms. Also, the grammar resulting from our method enables
the computation of the BWT of the reads [44] in compressed space. The BWT is the main
component in Wheeler graphs [69], a versatile family of graphs that supports several e�-
cient string queries. In the context of genomics, Wheeler graphs could be helpful to extract
biological information from the reads in succinct space. However, the BWT is di�cult to
compute when the input is massive as in the case of reads. Our algorithm for constructing
the BWT exploits the repetitions captured by the grammar to make the construction process

4

more e�cient.

Succinct data structures for genomic analyses

To obtain information for sequencing data e�ciently, we need to index the reads with a
succinct data structure that supports the navigation of their layout. More speci�cally, given
the sequence of a readS, we can obtain the sequence of all the other reads that overlapS.
This functionality is general enough to implement most genomic analyses.

We propose two succinct self-indexes that supports the navigation of the reads' layout;
both rely on Wheeler graphs. The �rst one, which we called rBOSS, is an extension BOSS [24],
a BWT-based encoding for de Bruijn graphs (dBGs) [46]. The main feature of rBOSS is that
it allows us to compute su�x-pre�x overlaps of less thank characters between dBG nodes,
wherek is the order of the dBG. We demonstrate the usefulness of rBOSS by implementing
a simple genome assembler on top of it.

Our second self-index encodes a colored dBG [89] constructed from a read collection. It
also builds on BOSS, but it takes a di�erent approach. We give a speci�c colorc to every
read S, and then we assignc to the nodes in the dBG path labeled withS (there is only
one path that meets this condition). We reduce space usage by assigning the same colors to
di�erent reads whose paths do not share nodes. The advantage of this setting is that if we
reach a branching node during a graph traversal, we decide which edge to follow according
the colors we have previously seen in the traversal. Most genomic analyses require traversing
the dBG to extract information, but they stop when they reach branching nodes as it is not
always possible to make safe assumptions about them. We also demonstrate the usefulness
of our colored dBG by implementing a simple genome assembler on top it.

A grammar self-index

We propose a new grammar self-index with support for pattern matching. Our data structure
uses less space than the classical FM-index as it exploits the DNA repetitions. On the other
hand, it is faster for pattern matching than the regular grammar self-index when the pattern
is long (hundreds of characters).

We build the index's grammar using locally consistent parsing [162]. This technique
consists in partitioning a text such that the occurrences of the same pattern yield almost the
same partition into blocks. The only blocks that might di�er are those at the ends of the
pattern's occurrences, where the context changes. When we perform pattern matching over
this index, we preprocess the input stringP using the same parsing algorithm we used for
building the index's grammar. As the parsing is locally consistent, most of theP's blocks
should exist in the grammar ifP exists in the text. This property makes the search in the
index more straightforward.

We believe that further development on grammar self-indexes with locally consistent prop-
erties can yield e�cient pangenomic representations that support approximated alignments
for long reads. This idea will become relevant in the next years due to the rapid develop-
ment of recent DNA sequencing technologies such as Nanopore [180] and PacBio [17]. These
technologies are increasing the read lengths at the time they improve the sequence accuracy.

5

1.3 Structure of the Thesis

We divide this work into ten chapters:

ˆ Chapter 1 is the introductory part of the thesis.

ˆ Chapter 2 describes the fundamental aspects of information theory and compact data
structures.

ˆ In Chapter 3, we review the state of the art in text compression and indexing. We also
describe how these ideas extend to labeled graphs. These concepts, along with those of
Chapter 2, are the basis on which our contributions are built.

ˆ Chapter 4 addresses the main concepts in Computational Genomics. We brie�y explain
the di�erent types of DNA strings and how they are obtained. We also give a general
description of the computational approaches used in Bioinformatics to transform read
collections into biological information. Finally, we introduce the concept of reference
genomes and pangenomes and review some common techniques to align reads against
them.

ˆ In Chapter 5, we present our �rst contribution, the grammar algorithm to compress
reads. We also describe a succinct grammar representation that we use later to compute
the BWT of the reads.

ˆ In Chapter 6, we develop an algorithmic framework for producing the extended BWT
(eBWT) of the reads from the grammar representation of Chapter 5.

ˆ Chapter 7 introduces our �rst self-index for navigating the reads' layout, the one we
called rBOSS. We also present the genome assembler we built on top of rBOSS.

ˆ Chapter 8 explains our second self-index for navigating the read's layout, the colored
dBG. Similarly to what we did in the previous chapter, we explain the basic ideas to
perform genome assembly on top of the colored dBG.

ˆ Chapter 9 introduces a grammar self-index with local consistency properties. The
grammar algorithm used for this self-index is based on the grammar algorithm we
described on Chapter 5. In Chapter 9, we also brie�y describe how locally consistent
grammars can be useful in the future for aligning long reads in pangenomic sequences.

ˆ The �nal chapter discusses our results and future work directions.

1.4 Software

All the algorithms and data structures developed in this thesis were written inC++and on
top of the SDSL-lite library [76]. This library implements many compact data structures
proposed in the literature. Still, we wrote our own versions of some of them as theSDSL-lite
not always had the implementations we required, or it had them not in the way we needed
them. We gather our implementations in a small library of compact data structures. The
list of github repositories are listed below:

ˆ CDT, a small library of compact data structures:
https://bitbucket.org/DiegoDiazDominguez/compact-data-structures/src/master

ˆ LPG, a grammar compressor for reads:
https://bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2

6

ˆ infBWT, computing the eBWT from grammar-compressed reads:
https://bitbucket.org/DiegoDiazDominguez/lms_grammar/src/bwt_imp2

ˆ rBOSS, a self-index for navigating the reads:
https://bitbucket.org/DiegoDiazDominguez/eboss-dt/src/master

ˆ cdBG, a succinct colored dBG for reads:
https://bitbucket.org/DiegoDiazDominguez/colored_bos/src/master

ˆ LPG grid, a locally consistent grammar self-index:
https://github.com/ddiazdom/LPG/tree/LPG_grid

1.5 Notation

Logarithms Many time and space complexities in this thesis involve logarithms of base2.
We refer to them just aslog. For instance, we writelog2 n aslogn. When the logarithm base
is di�erent from 2, say x, we explicitly write it as logx .

Computation model We use the word RAM model of computation. In this model, we
asume the data is stored in random-access memory and manipulated in words ofw � � � logn�
bits, where n is the input size. These words can store values within the range� 0, 2w � 1� ,
which we can manipulate in constant time. We also assume we can perform logical and
arithmetic operations over the words in constant time.

7

Chapter 2

Basic Concepts

In this chapter, we explain the basic ideas to understand our contributions. We start in
Section 2.1 by brie�y explaining some introductory concepts about data compression. In
Section 2.2, we describe the most important compact data structures on which most of our
contributions rely. Finally, in Section 2.3, we describe the concept of hashing and show
some of its applications. Hashing is an essential tool for constructing the data structures we
propose in the thesis. Besides, it is widely used in Bionformatics. In particular, the hashing
applications of Sections 2.3.2, 2.3.3 and 2.3.4 serve as a base to understand the ideas behind
the state-of-the-art tools to align reads to reference genomes, which we review in Section 4.

2.1 Data Compression

Data compression deals with representing the information in fewer bits. This concept is
central in this thesis as we are dealing with high volumes of data. We now present the basic
concepts of data compression on which most of the ideas developed in the following chapters
are based.

2.1.1 Entropy

The most basic tool for measuring compression is theworst case entropy, here denotedH W C .
Assume we have a set� of symbols and give equal-size unique codes ofl bits to its elements.
H W C is a measure that tells us which is the minimum value forl so we can unambiguously
recognize the symbols of� when read from a bitstream. This value is

H W C � � � � log¶� ¶.

Thus, we can store a sequence ofn symbols in n log¶� ¶ bits of space. In our case, DNA
strings have an alphabet of four letters, {a,c, g, t }, so we require codes of*log 40 � 2 bits.
These codes are00, 01, 10 and 11. Notice that this is much more succinct than the 8-bit
cells used in modern computers to represent plain characters. Still,H W C is not the limit for
data compression, we can do better.

When not all the elements in� are equally likely to appear in a sequence, we can assign

8

variable-length codes to decrease the average code lengths. Ininformation theory, the min-
imum possible value for that average is known as theShannon entropy. Suppose that each
u " � is produced from an in�nite source with probablypu, then the Shannon entropy is
computed as

H �r pux� � =
u" �

pu log
1
pu

.

This value is also known as thestatistical entropy. In general, giving shorter identi�ers to
the more probable symbols and longer ones to the less probable decreases the average length
of the codes. In fact, the formula above suggests that the optimal length foru is log 1

pu
. The

more skewed are the symbols' probabilities, the smaller is the value ofH �r pux� . When all
the elements have equal probability 1

¶� ¶
, the statistical entropy is log¶� ¶. In this scenario,

the set � is considered to beincompressible, and the best option is to use equal-sized codes.

One can generalize the concept of entropy and consider that the probability of emittingu
is not independent but conditioned by the lastk elements generated by the source. In this
case, we have that the entropy is:

H �r pu¶Cx� � =
C" � k

PC =
u" �

pu¶C log
1

pu¶C
,

whereC are the distinct strings of lengthk formed with the elements of� , PC is the global
probability for the source to emit C, and pu¶C is the probability of u given that the last k
previous characters emitted by the source form the wordC.

We can extend the concept ofH to compute the entropy of a �nite sequenceS� 1,n� " � .
This measure is known as thezeroth order empirical entropyof S, and we compute it as

H 0� S� � =
u" �

nu
n log

n
nu

,

wherenu is the frequency ofu in S. The value nu

n
is an estimate of the probabilitypu for the

hypothetical source that producedS to emit u. As with H , the value ofH 0� S� decreases as
the symbol frequencies inS become skewed. In the memoryless model of statistical entropy,
nH 0� S� is the lower bound to storeS. However, in some circumstances, we can do better.

Similarly as with the generalization of the Shannon entropy, we can assume that the
probability of each characterS� i � , with i " � k � 1,n� , depends on the previousk elements.
This concept is known as thekth order empirical entropyof S:

H k � S� � =
C" � k

nC
n H 0� SC � ,

where SC is the string formed by concatenating the symbols that followsC in S and nC is
the length of SC . In this formula, a symbol u " � can have multiple frequencies depending
on which distinct sequencesC of length k precede it onS. We can give multiple codes to
u depending on those sequencesC. Consequently, the lower bound for storingS becomes
nH k � S� . Further, if the symbols ofS are better predicted by knowing the previousk elements,
then H k � S� is smaller thanH 0� S� , thus reaching better compression.

9

Figure 2.1: Example of a Hu�man tree for the DNA string on the top. Numbers inside the
leaves are the symbol frequencies. The �nal codes for� are shown on the right side of the
�gure.

2.1.2 Encoding Sequences

An encoding is an injective function C � � � r 0, 1x˜ that assigns a distinct sequence of bits
C� c� to every symbolc " � . To encode a stringS� 1,n� over the alphabet� with C, we scanS
from right to left and append everyC� S� i �� to a new bitmap B. In general, we are interested
in a function C that (i) reduces the length ofB , but at the same time, (ii) allows decoding
the original symbols ofS. In Section 2.1.1, we already showed that we could achieve (i) if
the codes inC are of variable length. For (ii), the codes must also beunambiguous. More
speci�cally, there is no ambiguity in decoding the symbols ofS while reading B from left
to right. It is also helpful for codes inC to be instantaneous, meaning that we have enough
information to determine c as soon as we �nish reading the bits inC� c� . Instantaneous codes
are alsopre�x-free ; no code is a pre�x of another code. The advantage of pre�x-free codes
(and instantaneous codes) is that they do not depend on their context to be decoded. In
what follows, we describe some basic encoding techniques.

Hu�man

Hu�man coding [84] is a popular technique to generate an optimal set of variable-length
codes for� . Its main features are that it produces a pre�x-free set of codes and that the
average length of these codes almost reaches the statistical entropy. By giving Hu�man codes
to the symbols ofS, we can compress the sequence to less thann� H 0� S� � 1� bits of space.
This coding scheme achieves zeroth-order compression by exploiting the unbalance in the
frequencies ofS's symbols. More precisely, it gives longer codes to less frequent symbols and
shorter codes to more frequent ones.

The algorithm to produce Hu�man codes generates a binary tree from� . In this tree,
there are¶� ¶ distinct leaves, one for each symbol. The path from the tree's root to each of
the leaves represents the binary code for the leaf's label. We obtain that code by traversing
the path from the root to the leaf. When visiting an internal node, if the path continues
through the left child, then we append a0 to the code. In the other case, with the path
continuing through the right child, we append a1.

10

The algorithm starts by de�ning ¶� ¶trees, one per distinct symbol in the alphabet. At the
beginning, these trees have only one node, a leaf labeled with their corresponding symbol.
Each tree also has a weight, which is the sum of the frequencies of its leaf labels. The
algorithm's main idea is to pick the two trees with the smallest weightsx and y, and merge
them as the children of a new node with weightx � y. The process continues until only one
tree remains. Figure 2.1 shows an example of a tree resulting from the Hu�man algorithm.

When storing S using Hu�man codes, we require to maintain the tree to extract the
original symbols from the bitstreamB. The decoding process is simple; we initialize a �nger
at the root of the Hu�man tree. If B � 1� � 0, then we move the �nger to the left child of the
root, otherwise we move the �nger to the right child. If we reach an internal node, then we
move one bit forward inB and repeat the process. If, on the other hand, we reach a leaf,
then we spell its label, as we have �nished decoding a symbol. Subsequently, we move to the
next position of B and move the �nger back to the root to start the decoding of the next
symbol ofS.

The main drawback of Hu�man coding is that the space overhead of representing the tree
can be considerable when� is large. A solution for this problem is to produce acanonical
Hu�man tree [169, 114]. In this tree, the leaf depths are nondecreasing when read from left to
right. This topology enables a more e�cient decoding and a more compact representation for
the tree that requires¶� ¶log � � O� logn� bits of space (see Section 2.6.3 in Navarro [135]).

Gamma and Delta

Delta (�) and Gamma (
) are techniques aimed to encode positive integers [135]. They work
well when S is mainly composed of small values (we assume� is an alphabet of integers).
Unlike Hu�man, � and
 codes do not depend on the sequence, so it is unnecessary to
maintain additional data structures to retrieve the original symbols. Both schemes store
c " � attached with the length l � ¶c¶ of its binary representation. Still, they di�er in how
they representl . In
 -codes, the formula is

 � c� � 0l � 11 � � c� l � 1,

where� c� l � 1 are the l � 1 least signi�cant bits of c. We computel by counting the number of
0s from left to right until �nding a 1 bit. This representation uses2¶c¶� 1 � 2� logc$� 1 �
O� logc� bits of space. As the code's length is stored in unary,
 -codes are suitable when the
values inS are small. For� -codes, the formal expression is:

� � c� �
 � l � � � c� l � 1.

Reading the symbolc from � � c� requires to �rst extract l from the nested
 � l � code. This
representation useslogc � O� log logc� bits of space, so it is suitable when the symbols inS
are not so small. In general, storingS with � -codes will be more e�cient than using
 -codes
if the symbols in S are equal or greater than32. Both
 and � codes produce pre�x-free
codes for� .

11

2.1.3 Direct Access to Variable-Length Codes

The problem with the variable-length codes we described in the previous section is that they
do not allow direct access to the symbols. AccessingS� i � requires us to decode the whole
pre�x S� 1, i � 1� �rst.

A standard solution to support direct access is to sample positions inB at regular intervals
of S. We select a parameterk and logically partition S into *n©k0 consecutive blocks. We
create an extra arrayP� 1,*n©k0� to store the sampled pointers. For every blockj in the
partition, we store the bit position in B of its �rst element S�� j � 1� k � 1� in P� j � . Thus,
if we want to accessS� i � , we have to compute its corresponding blockb � *i©k0, and then
start to decode symbols inB from index P� b� until reaching the position that storesS� i � .
This process decodesi � � b � 1� �k & k symbols to retrieveS� i � , so the time complexity for
the direct access ofS� i � is O� k� time. We can achieve constant time by using a second level
of pointers. We de�ne an extra arrayP¬� 1,n� and store in P¬� i � the o�set in B from the
starting position of S��* i©k0� 1� k � 1� and the starting position ofS� i � . In this way, we can
obtain the position in B for S� i � as P�* i©k0� � P¬� i � .

Elias-Fano [61, 57] is a variable-length encoding that provides a more sophisticated solu-
tion for direct access by storing the code lengths apart from the codes. Suppose we represent
S in the bit vector B by using a variable-length representation of any kind. In addition toB ,
we create another bit vectorM � 1,¶B¶� in which we setM � j � � 1 i� B � j � is the leftmost bit
of a code. To accessS� i � , we look inM for the i th and � i � 1� th bits set. These indexes will
give us the range inB for S� i � . An advantage of e�ciently delimiting all the codes is that
they do not need to be pre�x-free, so they can be shorter. In particular, for storing small
integers, we can encodec in B using ¶c¶ bits, which makes the scheme similar to
 -codes,
where instead of storing the lengthl as a pre�x of c, we storel in M .

For the particular case of Elias-Fano encoding, we usepartial sums to support direct
access. Given a listL of integers, a partial sums data structure answers the queries:

ˆ sum� L, i � : cumulative sums of symbols up to positionL� i �

ˆ search� L, j � : minimum index i in L such that sum� L, i � ' j

We augment the bit array M in the Elias-Fano encoding with partial sums so that ob-
taining the range in B for S� i � reduces to computesearch� M , i � , seach� M , i � 1� � 1.

We implement the partial sums data structure by sampling the cumulative sums of the
bits in M . We choose a parameterk and create an arrayP� 0,� n©k$� of sampled sums. In
every P� j � , with j " � 0, � n©k$�, we store the value obtained by adding the bits in the pre�x
M � 1, jk � . If we want to know answersum� M , i � , we have to perform the operation

P�� i©k$� �
i

=
u� � i ©k$k� 1

M � u� ,

which takesO� k� time. Answering search� M , j � requires us to perform a binary search over
P to �nd the position a such that P� a� & j $ P� a � 1� . Once we �nd it, we linearly scanM

12

from index ak until �nding a position i such that

P� a� �
i

=
u� ak� 1

L� u� ' j .

The whole process takesO� log¶P¶� k� time.

Another option is to augmentM with the selectdata structure (Section 2.2.1) so the cost
of obtaining the range inB for S� i � reduces toO� 1� .

2.2 Compact Data Structures

As its name suggests,compact data structures(CDS) are representations that maintain the
data in a compact way, although this is not their only feature; they can also access and query
the data e�ciently. In many circumstances, their performance is competitive with classical
textbook data structures. These characteristics make them a good alternative when dealing
with massive collections.

2.2.1 Bit vectors

The bit vector is the basis for most of the CDSs. It consists of an arrayB � 1,n� where the
only possible values are1 or 0.

Compressed bit vectors

As with regular sequences, we can compress bit vectors when the number of1s is much smaller
than the number of0s, or vice-versa. A popular succinct representation that exploits this fact
is RRR [156]. This method partitionsB into blocks of �xed sizeband classify the blocks into
classes. If a block inB hasc 1s, then its class isc. Further, it gives identi�ers to the blocks
within the same classc. Every identi�er in c denotes a speci�c way to arrangec 1s within b
bits. RRR encodes everyi th block B �� i � 1� b� 1, ib� as a pair � ci , oi � , whereci is its class
and oi is its identi�er. This pair enables the retrieval of the original blockB �� i � 1� b� 1, ib� .
RRR stores the classes ofB in an array C� 1,*n©b0� such that C� i � � ci . It also creates
an array O� 1,*n©b0� storing the identi�ers in the same way. Note the number of identi�ers
for a classc is upper-bounded bylc � � b

c
� , and whenc is close tob, lc is small. This also

happens whenc is very small compared tob. If the number of 1s and0s is not even, then it is
more likely to have blocks whose identi�ers require few bits. This fact makesO be composed
mainly of small numbers. RRR exploits this fact and encodesO using variable-length codes
to thus achieve compression. The space usage of this representation isnH 0� B � � o� n� bits.

When the di�erence between the number of1s and0s is considerable inB , we can use more
suitable encodings. In particular, if there are much fewer1s than 0s, we can replaceB with an
integer arrayP storing the positions ofB where the bits are set. As the resultingP is strictly
increasing, we can encode its values as positive consecutive di�erences. More speci�cally, we
replace everyP� i � with P� i � � P� i � 1� , except forP� 1� that remains unchanged. We then
store the di�erences using� -codes (Section 2.1.2). This representation also uses space close
to nH 0� B � bits.

13

In the next section, we brie�y describe how to support the most important queries for
bit vectors, rank and select. The methods we will explain assume the input bit vector is
uncompressed.

Rank

The operation rank1� B , i � returns the number of 1s up to position i in B . The solution
for answering this query is rather similar to the idea of partial sums (Section 2.1.3); we
choose a parameterk and logically divide B into blocks of s � wk bits (w is width of the
machine word). Subsequently, we create an arrayR� 0,� n©s$� in which every R� j � , with
j " � 1, � n©s$�, stores the sum of1s in the pre�x B � 1, js � . We also setR� 0� � 0. We can
now solverank� B , i � by �rst retrieving the precomputed sum up to i¬ � � i©s$s from R�� i©s$�,
then counting the 1s in B � i¬� 1, i � , and �nally adding both results.

To achieve constant time, we divide every blockR� j � into k mini blocks of w bits each,
and store their accumulative sums in another arrayR¬� 0, � n©w$�. More speci�cally, every
R¬� u� , with u " � 1, � n©w$�, contains the number of1s in B � 1,uw� minus R�� uw©s$�. As
before, we setR¬� 0� � 0. Note that the values in R¬ are never greater thans. The �nal
equation to solverank is:

rank� B , i � � R�� i©s$� � R¬�� i©w$� � popcount� B , � i©w$w � 1, i � ,

where popcountreturns the number of bits set in the rangeB�� i©w$w � 1, i � . Many pro-
gramming languages natively support this function, and it is considered constant-time in
practice as there are e�cient implementations for it. Still, it receives as input an integer, not
a bit vector. Using the two-level scheme that includesR and R¬, we have that the segment
B �� i©w$w � 1, i � spans at mostw bits, which �ts one computer word. We can extract that
segment and store it in a machine word to pass it topopcount, and thus the rank operation
takes O� 1� .

The cost of R and R¬ is � n©s� w � � n©w� logs � n©k � n log� wk�©w bits. By choosing
k � w, that space becomesO� n log� w�©w� � O� n log logn©logn� � o� n� bits. If we also
consider then bits of B , then the total space to supportrank is n � o� n� bits.

Select

The operation select1� B , r � returns the position in B storing the r th 1 from left to right.
We can think of this function as the inverse ofrank. The method we will explain to support
selecttakesO� log logn� time and useso� n� bits on top of B . It is slower than the rank data
structure we described in the previous section, and uses more space in practice. Still, it has
a reasonable performance in most applications.

Let m be the number of bits set inB . We start by de�ning a parameter s and an array
S� 0,*m©s0�. We use s to sample oneselectanswer everys 1s in B . Thus, S� p� , with
p " � 0,*m©s0 � 1� , stores the position inB for the bit 1 with rank ps � 1. We initialize
S�* m©s0� � n � 1 as a border case.

We also create a bit vectorV � 1,*m©s0� to mark the di�erent blocks of B covered by the
positions stored inS. More speci�cally, we setV � p� � 1 if the range B� S� p� , S� p � 1� � 1�

14

spans more thans log2 n bits (long block), and setV � p� � 0 otherwise (short block). After
building V, we giverank1 support to it. In addition, we create a vectorI � 1,rank1� V , *m©s0�s�
to store the selectanswers for the long blocks. Thus, ifV � p� � 1, we explicitly store the s
selectpositions ofB � S� p� , S� p� 1� � 1� in the rangeI �� p¬� 1� s� 1,p¬s� , wherep¬ � rank1� V , p� .
The last two elements of theselectdata structure are the arraysR and R¬ of Section 2.2.1.
To obtain the desired complexities, we set the sampling rate ofR to s � log2 n log logn and
the sampling rate ofR¬ to logn log logn.

We implement the select� B , r � algorithm as follows; we �rst obtain the blockp � *r©s0.
If V � p� � 1, then r falls in a long block. Therefore, we obtain its position inB directly from
I �� p¬ � 1� s � �� r � 1� mod s� � 1� . When V� p� � 0, we need to search inB the answer,
but we speed up the process usingS, R, and R¬. We �rst limit the search space inB to the
rangeb � S�* r©s0� 1� , e � S�* r©s0� � 1. Subsequently, we perform a binary search over the
range R�� b©s$, � e©s$� to �nd the maximum position j such that R� j � $ r . After that, we
perform a second binary search over the range inR¬ that matches the blockR� j � to �nd the
maximum position j ¬ such that R� j � � R¬� j ¬� $ r . Finally, we perform a linear scan over the
segment ofB that matches the cellR¬� j ¬� and we advance until we reach theselectanswer.

By using the thresholds log2 n to classify the blocks ofB , we ensure that the space usage
of I stays within o� n� bits. Every long block usess*logn0 bits to store the selectanswers
and there are no more thann©�s log2 n� long blocks. Therefore, the space usage ofI is
s*logn0 n©�s log2 n� � n©logn � o� n� bits. Additionally, with the sampling rates of R, R¬,
their space usage stayso� n� bits.

The expensive part ofselectis when r falls within a short block as we have to search it
in B . Still, with the sampling rates of S,R and R¬, we ensureO� log logn� time for that
operation. Note a short block inB spans no more thans log2 n bits, and the sampling rate
of R is s. Therefore, the binary search overR inspects no more thanlog2 n consecutive cells,
which takesO� log logn� time. The binary search overR¬also takesO� log logn� time because
a block of R spanslogn cells ofR¬. The �nal linear scan over B should take logn log logn
time as this is the number of bits a cell inR¬ spans. Still, we can speed up the process to
O� log logn� if we advance inB by popcounting on chunks oflogn bits. Thus, the �nal time
complexity for selectis O� log logn� time.

We can obtainO� 1� time for selectand maintain the space complexity ino� n� bits. The
general idea is to subdivide the short blocks ofB into miniblocks, classify the miniblocks into
short and long, and then store theselectanswers for the long ones. In practice, however, this
approach uses a lot of extra space.

2.2.2 Wavelet Trees

In Section 2.1.2, we already described how to compress strings using variable-length codes.
However, these representations cannot answer queries other than extracting the original sym-
bols. This section describes a CDS called thewavelet tree[80], which also enables rank and
select functionality on the sequence, and more.

Let S� 1,n� be a string over the alphabet� . The algorithm for building a wavelet tree
T for S is as follows; we divide� in two classes,� l � � 1,*� ©20� and � r � �* � ©20 � 1, � � .

15

Figure 2.2: Wavelet treeT for the string attcggattaggcttagggct of Figure 2.1. Values in
gray on top of the internal nodes are the original sequence symbols, and they are not stored
explicitly in the wavelet tree. The binary strings to the right are the codes of the symbols, of
length log� . The dashed boxes represent the path traversed for operationaccess� T, 7� � a.
The shaded boxes show the path for operationrankt � T, 16� � 6.

Subsequently, we create a binary vectorB � 1,¶S¶� in which we setB � i � � 0 if S� i � belongs to
� l or 1 otherwise. Then, we splitS into two strings; Sl and Sr . The string Sl will store the
symbols inS that belong to � l and the string Sr will store the symbols in� r . We maintain
the relative order that the characters inSl and Sr originally had in S. Finally, we create a
root for T associated withB and with two children. The left and right children of the root
are recursively created from the pairs� Sl , � l � and � Sr , � r � , respectively. The base case of
the recursion is when the alphabet has only one symbola " � , in which case we create a
leaf labeled witha. After building T, we augment the bit vectors of its internal nodes with
rank and selectdata structures. These data structures include queries for both bits,1 and 0.
Once the construction algorithm �nishes, we can discardS. Figure 2.2 shows an example of
a wavelet tree.

The most basic queries we can answer with the wavelet tree are:

ˆ access� T, i � : retrieves the symbol at positionS� i �

ˆ ranka� T, i � : number of symbolsa up in the pre�x S� 1, i �

ˆ selecta� T, r � : position j where therth symbol a lies in S

For answeringaccess� T, i � , we start a top-down traversal ofT. Let B be the bit vector
stored in the root v of T. If B � i � � 0, then we update the index asi � rank0� B , i � and move
to the left children of the root. On the other hand, if B � i � � 1, then we update the index
to i � rank1� B , 1� and move to the right child instead. From either child, sayv¬, we apply
the same procedure as withv, using its bit vector and the recently updated indexi . The
traversal of T stops when we reach a leafu, in which case we return its label. The dashed
boxes of Figure 2.2 shows an example ofaccess� T, i � .

The procedure for answeringranka� T, i � is somewhat similar to that ofaccess. The main
di�erence is that the nodes we visit inT depend on the binary code ofa, not of S� i � . Suppose
during the traversal ofT we reach an internal nodev at depth h. If the hth most signi�cant
bit of a is 0, we move to the left child ofv and computei � rank0� Bv, i � , whereBv is the bit

16

vector of v. In the other case, when thehth most signi�cant bit of a is 1, we move to the
right child of v and computei � rank1� Bv, i � instead. Once we reach a leaf, we returni as
the rank of a. The shaded boxes of Figure 2.2 depict the idea forranka� T, i � .

The operation selecta� B , r � requires a bottom-up traversal ofT. We descend overT to
�nd the leaf v labeled with a. Once we �nd v, we move to its parentp. If v is the left child
of p, then we performr � select0� Bp, r � , whereBp is the bit vector of p. On the other hand,
if v is the right child of p, we performr � select1� Bp, r � . After updating r , we setv � p and
apply the same idea over the new nodev. We �nish when we reach the root ofT. We return
the last value ofr as the answer forselecta� T, r � .

The time complexity ofaccess, ranka and selecta is O� log� � . This complexity is dominated
by the number of steps it takes to reach a leaf ofT from its root or vice-versa. That number
is *log� 0, the height of the tree. On the other side, therank and selectqueries we perform
when visiting nodes can take constant time if we use proper data structures, as we explained
in Section 2.2.1.

The representation ofT is composed of three elements; the bit vectors, therankand select
data structures and the tree topology. Note that the bit vector lengths in the same tree level
add up to exactly n bits as they represent a recursive partition of� . Thus, the complete
set of bit vectors in T add up to n*log� 0 bits. On the other hand, therank and selectdata
structures we use for querying them requireo� n log� � bits, and the topology ofT requires
another O� w� � bits if we encode it using a pointer-based representation. As a consequence,
the total space of the wavelet tree isn log� � o� n log� � � O� w� � bits.

Connection with Geometric Data Structures

We can also use the wavelet tree to encode a grid of points. We regardT� x� � y in the
wavelet treeT as a point in the coordinate� x, y� . This scheme requires the grid to have one
point per column as we cannot store di�erenty coordinates in the samex position in T. We
solve this problem by storing the points of the same column consecutively inT. In other
words, if there are points in the grid with coordinates� x, y1� , � x, y2� , : : : , � x, yk � , then we
have a rangeT� i , i � k� � y1, y2, : : : , yk . We augmentT with a bit vector B that delimits the
boundaries between points that belong to di�erent columns. If a column hasc ' 0 points,
we append the pattern10c to B . We augmentB with rank and selectdata structures so we
can map positions inT to columns.

We use the properties of the wavelet tree to answer the following queries on the grid:

ˆ rangecount� T, xs, xe, ys, ye� : number of pairs � x i , yi � " T such that xs & x i & xe,
ys & yi & ye

ˆ rangereport� T, xs, xe, ys, ye� : list with the pairs � x i , yi � of rangecount

We can answerrangecountin O� log� � time, and rangereportin O�� 1 � occ� log� � time.
These functions are also useful in the context of sequences. For instance, we can use
rangecount� T, i , j , a, b� to obtain the number of symbolss " � in T� i , j � with a & s & b.

17

Compressed Wavelet Trees

We can further compress a wavelet tree by giving a Hu�man shape [122] to its topology. This
technique is e�ective when the alphabet is small. In this version, we �rst run the Hu�man
algorithm on the symbols ofS and their frequencies (Section 2.1.2) to obtain variable-length
codes for the symbols. The idea is to use these codes to produce the shape ofT. Suppose
that during the wavelet tree's construction we have to build the bit vectorBv of a nodev
with depth h from an input sequenceSv. If the hth bit from left to right in the Hu�man code
of Sv � i � is 0, then we setBv � i � � 0, and setBv � i � � 1 otherwise. As before, we splitSv into
two sequences,Sl

v and Sr
v , but this time we use the value of thehth bit in the Hu�man code

of Sv � i � to decide if that symbol belongs toSl
v or Sr

v . After �nishing v, we build its left and
right subtrees from sequencesSl

v and Sr
v , respectively. We stop expanding a subtree when

the alphabet ofSv has only one symbola, in which case we create a leaf labeled witha.

Unlike the regular wavelet tree algorithm, the symbols in the alphabet ofSv are not equally
distributed in Sl

v and Sr
v as the Hu�man codes are of variable length. This di�erence implies

that we can create a leaf at any depth ofT. In fact, the tree depth of a leaf encoding a
symbol a " � with a Hu�man code of length ¶hc� a�¶ � h is h � 1.

Reaching the leaf ofT labeled with a requires us visiting¶hc� a�¶ internal nodes. The bit
vector of each of these internal nodes uses one bit per occurrence ofa in S. Therefore, T
usesna¶hc� a�¶ bits for a, where na is the number of occurrences ofa in S. If we consider
all the characters in� , then we have that the total number of bits spent by the bit vectors
of T is � ana¶hc� a�¶ $ n� H 0� S� � 1� , exactly the length in bits of the Hu�man-compressed
sequence. Recall from Section 2.1.2 that the Hu�man algorithm reduces the average length
of the codes to the statistical entropy ofS. If we also consider the space usage of therank
and selectdata structures along with the topology ofT, then the total space usage of this
wavelet tree representation isn� H 0� S� � 1�� 1 � o� 1�� � O� �w � bits.

The algorithms for access, ranka and selecta remain the same. However, querying more
frequent symbols in a Hu�man-shaped wavelet tree is faster than in the regular version. As
explained before, the time complexity ofaccess, ranka and selecta is dominated by the length
of the path we traverse onT to reach the leaf labeled witha. In a regular wavelet tree, that
path is always of lengthlog� , regardless of the symbol. In a Hu�man-shaped wavelet tree,
however, the paths of more frequent symbols are shorter than those that are less frequent.
Querying the less frequent symbols, instead, can be slower.

When using a Hu�man-shaped tree is not an option, we can still compressT by storing
the bit vectors of the internal nodes with the RRR representation (Section 2.2.1). This
scheme reduces the overall space usage tonH 0� S� � o� n log� � � O� �w � bits. The use of
RRR does not change the tree's shape, so the query complexities remain the same1 as in the
uncompressed version of the wavelet tree.

1Performing rank in a bit vector compressed with RRR takesO� 1� time.

18

Figure 2.3: Hu�man-shaped wavelet treeT for the string attcggattaggcttagggct of Fig-
ure 2.1. The binary strings to the right of the tree are the Hu�man codes of the string's
symbols.

2.2.3 Succinct Trees

A tree is a hierarchical data abstraction. It consists of a set ofn nodes andn � 1 edges.
Every node has exactly one predecessor (i.e., the parent) and one or more successors (the
children). The only node with no predecessor is the root. When a node has no children is
called a leaf, and when two or more nodes share the same parent they are siblings.

Trees are widespread in computer science as they adapt well to multiple situations. How-
ever, they can potentially use a lot of memory, especially when the information they encode
is massive. A simple pointer-based representation, for instance, requires at leastn logn bits
of space only to store the topology. This problem has motivated the development of succinct
data structures for trees. The techniques developed for this topic are among the most suc-
cessful CDSs. Nowadays, we have static2 encodings that can store a tree in2n � o� n� bits of
space and answer many navigational queries in constant time.

In this section, we brie�y describe three of such succinct encodings for ordinal trees;
LOUDS, Balanced Parentheses (BP) and DFUDS. In Table 2.1 we describe the main navi-
gational functions we use in later chapters.

LOUDS

The acronym LOUDS stands forLevel-Order Unary Degree Sequence. In this encoding, we
regard T as bit vector B � 1, 2n � 1� . The �rst two positions of B contain the pattern 10
to avoid border cases. We store the nodes ofT in level-order so that if a nodev has c
children, then we append the sequence1c0 to B. This bit pattern is called the description

2They do not allow the insertion, deletion or modi�cation of any node or edge in the tree.

19

Function Description

root Root of the tree
fchild� v� First child of v, if it exists
lchild� v� Last child of v, if it exists
nsibling� v� Next sibling of v, if it exists
psibling� v� Previous siblingv, if it exists
parent� v� Parent of v, if it exists
isleaf� v� Whether v is a leaf
leafrank� v� ˜ Number of leaves preceedingv, plus 1 if v is a leaf
leafselect� r � ˜ r th leaf on the tree
internalrank� v� ˜ Number of internal nodes preceedingv, plus 1 if v is an internal node
internalselect� r � ˜ r th internal node in the tree
nodemap� v� An identi�er i in � 1,n� for v
nodeselect� i � The nodev with identi�er i
children� v� Number of children ofv
child� v, r � The r th child of v from left to right, if it exists
label� v� The label of v

Table 2.1: Basic navigational operations supported in LOUDS, BP, and DFUDS. The de�-
nition of the functions with an ˜ vary depending on the tree encoding. For BP and DFUDS,
leafrank� v� and internalrank� v� return the number of leaves and internal nodes preceding
v in pre-oder (respectively), while in LOUDS they are numbered inlevel-oder. Similarly,
internalselect� r � and leafselect� r � return the r th node in pre-order when the tree is in BP or
DFUDS, and in level-order when it is in LOUDS.

of v. We identify v with the index where its description starts inB . The LOUDS encoding
produces one0 per distinct node and one1 per distinct edge. These bits plus the two bits
at the beginning ofB add up to 2n � 1 total bits. Figure 2.4B depicts an example of this
representation.

If we augment B with the rank and selectdata structures of Section 2.2.1, then we can
answer several navigational queries in constant time.

In general, LOUDS is considered the most simple encoding. It is the one that uses the
least space, but also is the most limited in terms of navigational queries. Still, it supports
all the operations listed in Table 2.1.

Balanced Parentheses

We can also succinctly storeT as a sequence ofbalanced parentheses(BP) encoded as a bit
vector B � 1, 2n� . Every nodev in T is represented by a pair of parentheses(..) that enclose
the encoding of the subtree rooted atv. We identify each node ofT with the position in B
of its open parenthesis. We build the BP representation by traversingT in pre-order. When
we enter the subtree of a nodev we append an opening parenthesis(to B . Then, when we
exit the subtree, we append a closing parenthesis) . Figure 2.4C shows an example of BP.

The BP representation supports more navigational queries than LOUDS, but in practice

20

Figure 2.4: Succinct tree encodings. (A) Ordinal tree. The numbers in gray to the right of
the nodes are their pre-orders, while the numbers in black to the left are their level-orders.
(B) LOUDS representation for the tree of (A). The numbers in gray on top indicate where
are located the nodes in the encoding (using their level-orders). (C) BP representation of
the tree of (A). The numbers in gray on top indicate where are located the nodes in this
encoding (using their preorder position). (D) DFUDS representation of the tree of (A).

it is a bit slower and uses more space. BP resorts to a set of primitives over a data structure
called range min-max tree [138]. A simple implementation of this range min-max tree adds
o� n� bits on top of B , and its primitives take O� logn� time. Consequently, the operations in
BP that rely on this data structure also takeO� logn� time. Other more sophisticated solu-
tions [43] that build on range min-max trees reduce the time complexity of the navigational
queries in BP toO� log logn� and still require o� n� bits.

DFUDS

The words DFUDS meansDepth-First Unary Degree. To build this encoding, we initialize
an empty bit vector B and append the sequence110 to it to avoid border cases. Then, we
start a pre-order traversal overT, and for every nodev, we append the pattern1c0 to B,
wherec is the number of children ofv. Similarly to the other representations, the �nal space
usage forB is 2n � 2 bits.

In DFUDS, the children information of every nodev is stored close tov in B , like in
LOUDS. This feature simpli�es the computation of primary functions likechildren, child, and

21

childrank, which are slower to answer in BP in practice. On the other hand, the disposition
of the nodes in pre-order allows DFUDS to use the range min-max tree to support more
queries than LOUDS. We could consider DFUDS as a hybrid encoding that combines the
best aspects of both LOUDS and BP.

2.3 Hashing

2.3.1 Hash Tables

A hash tableis an associative container that maps a setK of keys to values. There is a value
for every key k " K in the table. Keys are unique, but the values of distinct keys can be
equal. The keys and the values can be of any type, like strings, integers, or �oats. The basic
operations a hash table can support are:

ˆ insert� k, v� : insert key k associated with valuev
ˆ delete� k� : delete keyk and its value
ˆ �nd � k� : returns true if key k exists as key in the hash table
ˆ retrieve� k� : returns the value associated with keyk

We can implement a hash table by �rst choosing a parameterm and then building an
array A� 1,m� along with a hash functionh � U � � 1,m� . The universeU contains all the
possible keys we can see inK, and h maps its elements to slots inA. The idea is to store the
value of k in A� h� k�� . Ideally, each pair of distinct keysk, k¬ " U should map to di�erent
positions ofA. However, this is not always the case. Whenh� k� � h� k¬� , we have acollision.

When the set K is unknown, and U's size is greater thanm, ensuring no collisions is
impossible. Nevertheless, we can select a good hash function to reduce their probability.
Intuitively, a �good function� ensures that each key is equally likely to map to any of the
slots of A. A typical approach to achieve this property is by randomly selecting a hash
function that does not depend on the keys ofK. This concept is calleduniversal hashing.

Let H be a set of hash functions that map the keys inU to � 1,m� . Such set is said to be
universal if by randomly picking a functionh " H , it holds Pr� h� x� � h� y�� & m� 1 for any
x, y. A simple universal setH ab (or family) for integers is that of

hab� x� � �� ax � b� mod p� mod m,

where 0 $ a $ p, 0 & b $ p, and p is a prime number as large as the range of keys. The
family is conformed by all the possible values ofa and b.

There are several techniques to resolve collisions. Here we brie�y review the most popular
ones.

Chaining

Every slot A� j � points to a linked list that contains all the pairs � k, v� with h� k� � j . When
there is no key in the hash table mapped toA� j � , its pointer is null. During the insertion of
� k, v� into the hash table, we create a new linked listL and store� k, v� in its head if A� h� k��

22

is null. In addition, we store inA� h� k�� a pointer to L 's head. On the other hand, ifA� h� x��
already stores a pointer to some linked listL , we create a new entry inL for � k, v� , provided
k is not already in the list.

The performance of the hash table will depend on the length of the linked lists; ifk maps
to a slot A� j � with collisions, then we have to comparek against the keys in listL to which
A� j � points. Let us denote with n the total number of elements in all the liked lists and
� � n©m the load factor of the hash table. Assuming we selected a hash function that
uniformly maps the keys to the slots, the average time for scanning the linked lists is� . If
the hash computation takes constant time, then the average case for operating the table is
O� 1 � � � . That value can beO� 1� if n is proportional to m.

Open Addressing

In open addressing, we store the pairs� k, v� in the hash table, not in linked lists. When a
collision occurs, we repeatedly probe other positions in the table until �nding an available
slot. The probing mechanism must be reproducible in the sense that we have to replicate
the same sequence of visited positions when searching for the key again. Therefore, the slots
we probe must depend on the key value. The advantage of open addressing compared to
chaining is that we do not require extra pointers. It is also potentially more cache-friendly if
the probing makes the colliding keys to be stored contiguously in the table.

The procedure for inserting a pair� k, v� is simple. Let h� k, i � be a hash function with
probing step i . We compute �rst j � h� k, 0� . If A� j � is already occupied, then we compute
j ¬ � h� k, 1� and check if positionA� j ¬� is available. We continue increasingi until �nding
an empty slot. In other types of hashing schemes that use open addressing, if the slot fork
is already occupied, we do not �nd another one. Instead, we swap� k, v� with the pair in its
slot and �nd a new slot for the evicted pair. The condition for swapping pairs might vary
depending on the technique.

If we consider that each possible probed cell is equally probable, then the expected number
of probes when searching for a key is1©�1� � � , where� is the load factor (note that it must
hold � $ 1 with open addressing). If we �x � to some threshold, then searching for a key
in the hash table takesO� 1� time. For instance, if the load factor is0.9, then the expected
number of probes is1©�1 � 0.9� � 10. It is customary to maintain the load factor in about
0.5 so the expected number of visited slots is just2. When the table exceeds this load factor,
we increase the table size and rehash all its elements.

There are di�erent ways of de�ning the probing step. Here we brie�y review the classical
methods.

Linear Probing We de�ne an auxiliary hash functionh¬ � U � � 1,m� , and perform

h� k, i � � � h¬� k� � i � mod m.

Linear probing is simple to implement and makes the probing cache-friendly. Nevertheless,
it tends to create long runs of occupied slots, thus requiring smaller� values (i.e., bigger
tables) to maintain the same amount of probes. Let us see the e�ect of maintaining a high

23

value for � ; the expected number of probes in linear probing is

1
2 � 1 � �

1
1 � �

2

� .

If we set � to 0.5, we expect to perform2.5 probes, which is not so far from the random
assumption (2 probes). However, if we set� to 0.9, the expected number of probes increases
to 50.5, which is much more than in the random assumption (10 probes).

Quadratic Probing In quadratic probing, the slots are computed as

h� k, i � � � h¬� k� � x � i � y � i 2� mod m,

where h¬ is an auxiliary function and x and y are constant values. The performance of
quadratic probing is usually better than linear probing, butx, y and m must be constrained.
Besides, the keys also tend to group in runs in the table, although in a milder way.

Double Hashing Double hashingselects two auxiliary functionsh1� k� and h2� k� , and
obtains the hash value as

h� k, i � � � h1� k� � i � h2� k�� mod m.

The performance of double hashing is better than quadratic and linear probing. Its main
feature is that both the initial key's slot and the subsequent probed positions depend only
on k. Thus, even if two keys collide on the same initial slot, there is a high chance that their
probing steps will be di�erent. This property reduces the table's clustering, and hence, the
search time.

Robin Hood Hashing In Robin Hood hashing[29] each cell in the hash table, in addition
to the key-value pair, stores an o�set that indicates how far is the key from its original slot.
Let i be the probing step in the insertion of� k, v� , and let A� j � be the slot of the probing
step. Further, let � k¬, v¬� be the pair stored inA� j � and o the o�set for k¬. If i %o, then k
is farther away from its original slot than k¬. In such a case, we swap the elements; we store
� k, v� in A� j � with o�set o � i and �nd a new position for � k¬, v¬� from probing stepi � o� 1.
As we �nd a new position for the pair, we continuously swap the key to be inserted when
we reach a slot with an o�set smaller thani . Although it maintains the same average search
time, Robin Hood probing reduces the variance, as it tends to equalize the search costs of
the di�erent keys.

Cuckoo Hashing In Cuckoo hashing[149] we select two independent hash functionsh1

and h2, and two hash tables3, H1 and H2, with the same number of slots. We useh1 for
assigning slots inH1 and h2 for assigning slots inH2. When inserting a new pair� k, v�
into the data structure, we store it in whichever of its slots,H1� h1� k�� or H2� h2� k�� , is
empty. If both are occupied, we swap� k, v� with the pair in one of its slots. Suppose we

3Some variants consider one table subdivided into two segments.

24

arbitrarily chose to swap� k, v� with H1� h1� k�� � � k¬, v¬� . Now we insert� k¬, v¬� in its other
slot H2� h2� k¬�� , and if that slot is also occupied, then we swap� k¬, v¬� with the pair there
and repeat the process for the evicted pair. We continue until we �nd an available slot. It is
customary to select a threshold for the number of times we can swap pairs in the hash tables.
When we exceed that threshold, we trigger a rehashing process for all the keys. One of the
advantages of cuckoo probing is that the lookup operation guaranteesO� 1� worst-case as
every key has at most two places where can be stored in the hash table. The disadvantage,
on the other hand, is that it is not cache-friendly. The inspection of the two slots of a key
produces two cache misses.

2.3.2 Rolling Hashing

Rolling hashing [91] is a linear-time technique to compute integer values (or �ngerprints)
for the substrings of lengthp in a string S� 1,n� . It was originally developed for pattern
matching, but it also generalizes to other related problems, as we will see in Section 3.5.1.

We �rst choose a parameterp & n and de�ne a polynomial hash function

h�…s1, s2, : : : , sp� 1, sp‹� � �
p

=
i � 1

sp� i � 1x i � 1� mod q,

whereq is a prime number andx is an arbitrary integer greater than one. This function maps
a string of lengthp to an integer value in the range� 0,q� 1� . We produce the �ngerprints in
O� n� time by evaluating h on the n � p� 1 substring of lengthp in S, but without evaluating
the complete polynomialn � p� 1 times. We begin the process by computingh� S� 1,p�� using
Horner's rule. Subsequently, we slide a window of lengthp over S to obtain �ngerprints for
the rest of substrings of lengthp. We compute the value of a windowS� i , j � , with j � i � 1 � p,
by updating the �ngerprint of the previous window S� i � 1, j � 1� . For this purpose, we use
the formula

h� S� i , j �� � �� h� S� i � 1, j � 1�� � S� i � 1� xp� 1� x � S� j �� mod q,

whereh� S� i � 1, j � 1�� is the �ngerprint of S� i � 1, j � 1� . Notice this formula is equivalent
to h� S� i , j �� , but we are not evaluating the complete polynomial, as we anticipated. The
advantage of rolling hashing is that, after obtainingh� S� 1,p�� in � � p� time, we perform
n � p � 1 constant-time updates to calculate the �ngerprints of the other substrings ofS.

Extending rolling hashing for pattern matching is simple. LetP� 1,p� be the pattern we
have to search for inS. We choose a polynomial function for strings of lengthp and a prime
number q to build the hash function h. Subsequently, we compute the �ngerprint forP as
f P � h� P� 1,p�� , and then we start to roll h over S using the mechanism described in the
previous paragraph. Every time we reach a substringS� i , j � such that h� S� i , j �� � f p, we
report i as a match ifS� i , j � equalsP.

Checking S� i , j � against P when they have the same �ngerprint is necessary ash can
return the same value for di�erent strings (i.e., a collision). This situation occurs when the
evaluation of S� i , j � and P in the polynomial of h yield two values (saya and b) that are
congruent moduloq (a � b mod q). On the other hand, if S� i , j � and P have di�erent

25

�ngerprints, we are sure they do not have the same sequence, so the check is unnecessary.
When h distributes randomly on � 0,q � 1� , the expected number of times we compareP
against a substringS� i , j � during the scan ofS is upper bounded byv � n©q, wherev is the
number of true matches ofP and n©q is the expected number of unsuccessful matches. Thus,
the pattern matching algorithm runs in O� n � p� v � n©q�� time.

We can reduce the probability for two sequences to have the same �ngerprint by choosing
a large enough random prime numberq. Also, a good decision is to selectx and q such that
the product xq �ts in a computer word.

2.3.3 Bloom Filters

A bloom �lter [18] is a lossy probabilistic data structure that encodes a setQ in succinct space.
The most basic operations it supports are inserting an elementq into Q and checking if an
input q¬ is already present. The �elds where this data structure has applications are manifold,
from Genomics to networks and databases. In the particular case of Genomics, it has been
used to compute the q-grams (also known as kmers) of DNA sequences [179, 177, 151].

Bloom �lters are fast and space-e�cient, so they are a good choice when the setQ is
massive, and the memory requirements of traditional hash tables are too high. Nevertheless,
they have the disadvantage of being lossy. When the data structure tells us that a given
elementq does not belong toQ, the result is always correct. However, when it tells us that
q does belong, there is a slight chance that this is not true. In other words, we have false
positives.

A bloom �lter has two components; a bit vector B � 1,m� and a set ofx hash functions
H � rh1, h2, : : : , hx� 1, hxx that map an elementq to x integer values within the range� 1,m� .
To insert q " Q into the data structure, we �rst hash it with each function hi " H , and then
set everyB � hi � q�� to 1. Later, if we need to check ifq is in the �lter, we evaluate it with all
the H 's functions again, and return true if every cellB � hi � q�� is set to 1, or false otherwise.
The false-positive problem arises when theB 's cells associated withq were independently set
to 1 by other elements ofQ, but q itself has not been inserted yet. Thus, if we test forq, the
data structure will report it as present when it is not. Notice also that deletingq from the
bloom �lter is not safe as the positions inB for di�erent elements of Q might overlap. As a
consequence, if we �ip the bits ofq in B to 0, we might accidentally delete another element
of the �lter.

The only parameters for building the bloom �lter are m, the size ofB , and H. The
probability of false positives will depend on the values we chose for these parameters. If we
assume that the hash functions are independent and that they uniformly map the positions
in B , then the probability for B � i � to be 0 after inserting n elements into the �lter is

� 1 �
1
m

nx

.

To account for the probability of false positives during the membership test, we need to

26

consider the chance ofx independent positions inB to be set to1. This value is

� 1 � � 1 �
1
m

nx

x

.

The formula above is approximately� 1 � e� nx ©m � x . A typical method for reducing the
probability of false positive is to chosex � ln� n� � m©n di�erent hash functions as this number
minimizes the formula.

2.3.4 Document Similarity

Andrei Broder [26] proposed an space-e�cient method to compute the similarity between
two documentsA and B. This technique, popularly known asMinHash, has been widely
used in the detection of highly similar web pages, images, and genomic analyses [148, 99].

Before explaining the method, we give some de�nitions. Let us denoteK � X , k� the set of
all the distinct substrings of lengthk in a documentX , wherek is a parameter. The distance
betweenA and B is then computed as

J � A, B � �
¶K � A, k� = K � B , k�¶
¶K � A, k� < K � B , k�¶

.

This value is the Jaccard coe�cient for two sets. Broder, however, showed that we can
obtain an unbiased estimate ofJ � A, B � if we use a random sample ofK � A, k� and K � B , k� .
This observation is particularly useful when we need to compute the distance between huge
documents under memory constraints.

He uses a concept called thesketchof a documentX . Assume we give numeric identi�ers
to the elements inK � X , k� from a totally ordered universeU of size¶� k¶. In addition, we
need a permutation� � U � U chosen uniformly at random. The sketch ofX , denoted
here asS� X , s, k� , is then the set with the s smallest elements of� � K � X , k�� , wheres is a
parameter. Once we compute the sketch ofA and B, we can estimateJ � A, B � as

¶S� A, s, k� = S� B , s, k�¶
¶S� A, s, k� < S� B , s, k�¶

.

Intuitively, S� X , s, k� are the s smallest permuted identi�ers of thek-substrings in X .
Still, when k is too large, the numeric identi�ers forU might not �t the computer word. We
can solve this problem by using a hash functionh that maps the k-substrings to a range
� 1, 2l � 1� where l is a suitable length smaller or equal than the machine word's length. A
good choice in this case would be to use the rolling hashing idea of Section 2.3.2 to compute
the new identi�ers. We need to carefully select the parameters for the hash function so that
the number of collisions does not a�ect the outcome of the Jaccard estimation.

Other Methods

Winnowing [166] andMinimizers [158] are other similar techniques for computing document
similarity. Winnowing was developed to identify plagiarism while Minimizers to compute

27

su�x-pre�x overlaps between DNA sequences. Although these algorithms serve di�erent
purposes, they perform almost the same steps. In both cases, we receive an input document
(or sequence)X and parametersk and w. The idea is to scan the text from left to right
and select thek-substring with the smallest identi�er in each window ofw consecutivek-
substrings. The distinct sequences selected by the algorithm are called the minimizers ofX .
As before, we use a random hash function to assign identi�ers to thek-substrings ofX . For
each minimizer, we store its sequence and a list with its occurrences inX .

Winnowing and Minimizers produce a text sampling with the following properties; �rst,
every pair of sampled substrings are at mostw characters apart. Second, if two di�erent
substrings of length at leastk � w � 1 are equal, then they must have at least one sampled
k-sequence in common. In recent years, the Minimizers technique has gained popularity in
Bioinformatics as a fast preprocessing step for comparing long DNA strings [13, 154, 90, 112].
The rationale is that if two strings are somehow similar, they must share at least some
minimizers. In Section 4.4, we review some of these methods.

28

Chapter 3

Indexing and Compressing Text

This chapter reviews the state-of-the-art techniques to index and compresstexts. We consider
a text to be a string S� 1,n� over alphabet � � � 1, � � that carries information. Indexing
consists of augmentingS with extra data structures so we can extract that information
e�ciently. In situations where S is large, and the space overhead of the index is considerable,
we can use asuccinct self-index. This data structure maintains S in compressed form and
answers the queries by operating over the text without decompressing it. We can further
extend self-indexes to store labeled graphs, another way of encoding text. Labeled graphs
are helpful for genomic applications as they are a more accurate DNA representation.

We begin this chapter by describing the classical text indexes (Section 3.1). In Section 3.2,
we review the most popular techniques for compressing text. In Section 3.3, we explain how to
combine text compression and indexing to develop self-indexes. Section 3.4 extends the ideas
of self-indexing to represent labeled graphs. Finally, in Section 3.5, we review algorithms
for indexing text that exploit repetitions. These concepts are fundamental for the ideas we
develop in the following chapters.

For convenience, we usually consider the last symbolS� n� � $ to be lexicographically
smaller than any other character inS.

3.1 Classical Indexes

Text indexing consists of building a data structureI S (a.k.a., the index) from S to perform
queries. This technique is useful when the input document is large and performing linear
searches is too slow for practical purposes. Unfortunately, most text indexes are static; if we
modify the document, the index becomes invalid, and we have to build it from scratch.

The most basic operationsI S can answer are:

ˆ count� I S, P� : number of occurrences of the patternP in S

ˆ locate� I S, P� : report every j " � 1,¶S¶� ¶P¶� 1� such that S� j , j � ¶P¶ � 1� is an
occurrence ofP

29

Figure 3.1: Classical text indexes for a stringS. The su�x tree (ST) and the su�x array
(SA). The dashed lines map a branch in theST with its corresponding position in theSA.

In this section, we describe two basic techniques for text indexing; thesu�x array and
the su�x tree . Most of the other indexing approaches we describe in later sections try to
resemble their functionality while reducing the space usage.

3.1.1 Su�x Array

The su�x array [78, 125] is an array SA� 1,n� that stores the positions of the su�xes ofS
according their lexicographical order. Thus, it holds thatS� SA� 1� , n� is lexicographically
smaller than S� SA� 2� , n� , S� SA� 2� , n� is smaller thanS� SA� 3� , n� , and so on. An example
of this structure is shown in Figure 3.1.

A key property of the su�x array is that if a pattern P occurs several times inS, then
the su�xes pre�xed by P form a contiguous range inSA. We �nd this range by performing
two binary searches overSA. In the �rst one, we obtain the position SA� x� such that su�x
S� SA� x� ..� is pre�xed by P, and the su�x S� SA� x � 1� ..� is not. In the second binary search,
we obtain the positiony ' x such that S� SA� y� ..� is pre�xed by P, and S� SA� y � 1� ..� is not.
The resulting segmentSA� x, y� will contain all the su�xes of S pre�xed by P. Note that every
time we visit a new positionSA� i � during the binary search, we need to compareP against the
pre�x of length ¶P¶ in S� SA� i � ..� . Therefore, each binary search takesO�¶P¶logn� time.
Once we obtainSA� x, y� , answeringcount reduces to returningy � x � 1, and answering
locate reduces to reporting the indexes inSA� x, y� . The time complexity of count is thus
O�¶P¶logn� , and the time complexity oflocateis O�¶P¶logn� occ� , whereoccis the number
of occurrences ofP in S.

30

3.1.2 Su�x Tree

Consider a trie T built with the su�xes of S. For every S� i , n� , there is a path U �
v1, v2, : : : , vk of length k � n � i � 2 in T, wherev1 is the root and vk is a leaf (there is one
leaf for every su�x of S). Further, each edge� vj , vj � 1� in U is labeled with a symbol in� ,
and concatenating the edge labels fromv1 to vk producesS� i , n� . We build T such that if
two or more su�xes of S have the samej -pre�x, then their paths in the trie share the �rst
j � 1 nodes. This feature produces a cardinal treeT; edges originating from the same internal
node cannot have the same labels.

We can compactT as follows. For every pathU � vi , : : : , vj wherevi and vj are the only
nodes with more than one children, we remove the subpathU¬ � vi � 1, : : : , vj � 1 and connect
vi with vj by an edge� vi , vj � labeled with the concatenation of the labels inU¬. The result
of this procedure is a compact trieT¬ of n leaves and less thann internal nodes called the
su�x tree of S [188].

Let l � v� be the string spelled by the path inT¬ starting in the root and ending in v. One
of the main features of the su�x tree is that the sequence inX � l � v� spelled by every
internal node v is right maximal; the frequency ofX in S is greater than the frequency of
any of its right extensionsXa, with a " � . Further, the children of the internal nodes are
sorted according the lexicographical order of the edge labels. Therefore, the distinct su�xes
of S are also encoded in lexicographical order. Finally, every leafvi in the su�x tree stores
the index i of its corresponding su�x l � vi � � S� i , n� . An example of a su�x tree is shown
in Figure 3.1A.

We can extend the su�x tree to index a string collectionS � rS1, S2, : : : , Smx instead of
just S. This variation is known as thegeneralized su�x tree [14]. The main di�erence is that
every leafvi now stores a list of positions, not just one value. Each element in the list ofvi is
a pair � j , x� that indicates that l � vi � is the su�x Sj � x..� in Sj " S. For the construction of
the index, we use the stringS � S1$S2$: : : Sm$ that represents the concatenation ofS. The
$ characters mark the boundaries between the strings, and are lexicographically smaller than
any other symbol in� . We can use any standard algorithm for buildingT¬ from S [182]. The
only caveat is that if the label of an edge� u, v� in T¬ contains a$ symbol, v becomes a leaf.

It is easy to see that we can answercountand locatefor a pattern P in O�¶P¶log� � occ�
time usingT¬. We have to �nd the nodev with the lowest tree depth such thatl � v� is pre�xed
by P, and then visit the leaves under the subtree ofv to access the occurrences ofP in S.
To �nd v, we start a descent overT¬ from the root. Every time we reach a new internal node
v¬, we perform a binary search over the labels of the edges that connectv¬ with its children.
The aim is to �nd the child u such the edge� v¬, u� is pre�xed by symbol P�¶label� v¬�¶ � 1� .
We continue the tree descent throughu if l � u� is a pre�x of P or if P is a pre�x of l � u� .
In the latter case, we stop the descent asu is indeedv. We visit no more than ¶P¶ internal
nodes, and the binary search in each of them takesO� log� � time (every node has at most
� children). Further, there are occ leaves underv, and we have to visit no more thanocc
internal nodes to reach them asT¬ is compacted.

We can augment the su�x tree with extra edges to support string queries other thancount
and locate. A su�x link � u, v� from node u to node v occurs if l � u� � aA and l� v� � A,

31

whereA is a string anda " � . Conversely, aWeiner link � u, v, a� from u to v, and labeled
with a " � , exists if l � u� � A and l� v� � aA. Additionally, a Weiner link is said to be
implicit if aA exists in S but it is not right maximal. That is, there is no node v¬ in T¬ such
that l � v¬� � aA.

An important drawback with the su�x tree is its high space consumption. It requires
� � n logn� bits on top of S, and in practice uses about10 times the size ofS [103]. In the
following sections, we review representations to encode fully-functional su�x trees in succinct
space.

3.2 Text Compression

In Section 2.1, we explained how to compress strings when their symbol frequencies are
uneven. Still, that is not the only way. We can also reduce space usage when the input text
is repetitive. That is, it is composed of highly similar strings. The general idea is that if
we havek repetitive documents, we store one of them explicitly as a reference and store the
others as edits of the reference.

Repetitiveness is another prominent feature of DNA collections. The concatenation of
thousands of individual genomes might require several TBs, but their di�erences are usually
less than 1%. We can then reduce space usage signi�cantly if we exploit the repetitions.
Genomic projects do not store individual genomes explicitly. Instead, they produce one
reference genome and store the others as edits, using the same idea we explained in the
previous paragraph.

One might think that if a text is repetitive, it is also statistically compressible. Never-
theless, this is not the case. Consider, for instance, an incompressible textS� 1,n� where all
the symbols have the same frequency. The statistical entropyH 0� S� equals the worst-case
entropy, soS requiresn log� bits of space. Now consider the stringsS¬ � St that represents
the concatenation oft copies ofS. The relative symbol frequencies are the same in bothS
and S¬, so it holds H 0� S� � H 0� S¬� � log� . As a consequence,S¬ requires tn log� bits of
space. On the other hand, we can storeS¬ as a tuple� t, S� to indicate that the string is the
concatenation oft copies ofS. This arrangement uses slightly more space thann log� bits,
but it uses much less thantn log� when t and n are large.

Another relevant topic closely related to repetitive text is that ofkernels [71]. A kernel is
an abstract set of atomic elements that we can use to represent the text. A simple analogy
for this concept is that if we regard the text as a LEGO construction, then its kernel is the
set of LEGO pieces. When the text is repetitive, we can produce it with a few concatenations
of strings from a small kernel. We can exploit this fact and use the kernel not just to reduce
space usage but also to boost string analyses. For instance, it has been shown in the past
that this idea can speed up pattern matching in large genomic databases [167, 187, 45].

We will describe now two compression schemes that capture the repetitive patterns in the
text. We use them in later chapters of the thesis to process DNA sequences.

As in the previous section, we consider the stringS� 1,n� over the alphabet� � � 1, � � to

32

Figure 3.2: Matrix M with the cyclic shifts of the string attcggattaggcttagggct of Fig-
ure 2.1. TheF and L columns are shown in black. The column to the left ofF depicts its
representation as theC array. The dashed lines to the right ofL show two LF steps.

be the input text. The symbol $ � � � 1� is used as a terminator symbol, and it is mapped to
the smallest character in� .

3.2.1 The Burrows-Wheeler Transform

The Burrows-Wheeler transform(BWT) [27] is a reversiblestring transformation. The tra-
ditional way of explaining it is as follows: we generate then cyclic shifts ofS and put them
in lexicographical order in a matrixM (every row is a speci�c shift). The BWT of S is then
the array L resulting from extracting the last column ofM . Another way to understand the
BWT is in terms of the su�x array. Each L� i � � S� SA� i � � 1� is the symbol that precedes
the su�x S� SA� i � , n� . For technical reasons,S is considered to be circular, which means
that L � 1� � S� n� .

To reverse the BWT, we use the so-calledLF function. Given an input position L� j � that
maps some symbolS� i � , LF� j � � j ¬ returns the index j ¬ such that L � j ¬� � S� i � 1� maps the
preceding symbol ofS� i � . This procedure allows us to spell the sequence ofS in reverse text
order (from right to left) directly from L; we iteratively apply LF from L� 1� , the symbol to
the left of S� n� � $, and stop when we reachL� j � � $.

To implement LF, we require the �rst column ofM , popularly denoted asF . We logically
divide F into � runs of symbols, orbuckets, where all the rows inM starting with b " �
belong to bucketb. We representF as an arrayC� 1,� � , where C� b� stores the number of

33

rows in M that are lexicographically smaller than any row of bucketb. Now we can compute
LF� j � � j ¬ as C� a� � ranka� L , j � � j ¬, where a is the symbol at L � j � . The formula works
because the occurrences ofa in the BWT are sorted according the lexicographical rank of
their right contexts. Hence, ifL � j � � a has rankr , then S� i , n� is the rth su�x pre�xed with
a in S. To obtain the rank j ¬ of S� i , n� among the other su�xes of S, we addr and C� a� .
Due to the de�nition of the BWT, we know that L � j ¬� is the symbol that precedesS� i , n� in
the text.

If necessary, we can also implement the inverse functionLF� 1. In other words, given the
position L� j � � S� i � , LF� 1� j � � j ¬ returns the index j ¬ such that L � j ¬� maps S� i � 1� . We
implement LF� 1 as selecta� L , j � C� a�� , wherea is the bucket ofF whereL� j � lies [109].

If we use the wavelet tree of Section 2.2.2, then we can encodeL using n� H 0� L � � 1�� 1 �
o� 1�� � O� �w � bits of space, and support the operationsranka and selecta in O� log� � time.

High-Order Compression

The lexicographical sorting of the cyclic shifts causes the symbols inS with similar right
contexts to be grouped inL. All the characters that precede the occurrences of a patternP
of length k (for any k) will be stored in one single blockL� i , j � . If the same character always
precedesP in S, then L� i , j � will be an equal-symbol run. If not,L � i , j � probably contains
few distinct symbols anyway.

We can use run-length encoding to compressL as it has few equal-symbol runs compared
to S. Still, this is not the only way of reducing space usage. Note that , becauseL� i , j � has
few distinct symbols, itsH 0 value is small. We can exploit this fact and partitionL so that
every distinct block L� i , j � stores the preceding symbols of a speci�c patternP " � k . Thus,
by independently applying zeroth-order compression to eachL� i , j � , we can storeS into its
kth-order entropy.

Note the de�nition of L � i , j � is similar to that of the string SC in the formula of H k � S�
in Section 2.1.1 (P and C have the same meaning in this context). The only di�erence is
that L � i , j � has the left contexts ofP while SC has the right contexts. We can modify the
H k formula to make it symmetric1; it does not matter if we consider the symbols to the
left or right of P; we obtain an equivalent entropy value. This result demonstrates that by
compressing eachL� i , j � to its zeroth-order entropy, we achieve high-order compression for
S. Recall from Section 2.1.1 that we can obtain space close tonH k � S� if we give di�erent
codes to the symbols depending on the distinct sequences of lengthk that precede them on
S.

We can still support rank in O� log� � time if we include a table with the precomputed
ranks of the symbols before every block. It is also necessary to include a bitmap that
marks the starting positions of the blocks inL. By choosing ak small enough such that
k � 1 $ � log� n, for any constant 0 $ � $ 1, the space usage of this scheme can be as little
as nH k � S� � o�� Hk � S� � 1� n� bits [127].

1See Section 11.3.2 in the bookCompact Data Structures: A Practical Approach [135] to see how to obtain
a symmetric formula for H k .

34

The BWT of a String Collection

Ferragina and Venturini [66] were one of the �rst to consider the BWT of a string collection.
Given a multiset S � rS1, S2, : : : , Smx of lexicographically sorted string, they buildL from
S � S1$1S2$2 : : : Sm$m#, the concatenation ofS. The symbols$ and # are special characters
lexicographically smaller (respectively, greater) than any symbol in� .

The lexicographical ordering ofS allows us to simulate inL circular scans of the strings.
More speci�cally, given that we know the positionL� j � storing the preceding symbol of
$i � 1Si , we can jump in O� 1� time to the position L� j ¬� storing the preceding symbol of
$i Si � 1. The indexesj and j ¬are within the range� 1,m� as both precede$ characters. Recall
that $ is the smallest value in� and there arem copies of it in S. The key observation of
Ferragina and Venturini was that the lexicographical sorting ofS produces$i � 1Si and $i Si � 1

to be contiguous in the su�x array of S. Therefore, it holdsj ¬ � j � 1.

Mantaci et al. [126] proposed a BWT variation regardingS as a multiset of primitive
strings. That is, no Si " S can be obtained by concatenating two or more copies of another
Sj " S. Their scheme yields a transform of circular strings; ifL � j � maps to Si � 1� , then
L� LF� j �� maps to the end ofSi . This feature makesSi to be independent of the other
elements inS, meaning that we cannot reach a character ofSi by continuously applying LF
from a BWT position that maps a character ofSi � 1.

To build L, they consider a special string ordering called$! . Before explaining this
concept, we need to give some basic de�nitions. LetX k be a stringX concatenatedk times
(i.e., X k is a power ofX), and let X ! be the in�nite concatenation of X . Additionally,
root� X � � W denotes a unique primitive word that we can use to rewriteX � W k . The
operator exp� X � � k is the exponent ofW. We also lift the operator $ lex to refer to the
lexicographical order of the strings.

Given two string A and B over the alphabet� ˜ , the $! order is described as

A V! B ¿ w
exp� A� & exp� B � if root� A� � root� B �

Aw $ lex B w otherwise.

Mantaci et al. build a list C with all the cyclic shifts of S and sort the list in $! order.
Subsequently, they produceL by concatenating the last symbols in the sorted cyclic shifts
without changing their relative orders. To recognize the string boundaries inL, they also
include a sparse bit vector that marks everyL� j � mapping to the �rst symbol of a string.
They called the resultingL the extendedBWT (eBWT). Recently, Bannai et al. [6] proposed
a linear-time algorithm for building the bijective BWT that can be used to compute the
eBWT in linear time.

The algorithm of Bauer et al. [7] produces a relaxed BWT, usually denoted as the BCR
BWT. In their variation, the order in L for symbols preceded by equal su�xes ofS depends
on the disposition of these su�xes in the collection. For instance, suppose there are three
su�xes aAx , bAy and cA$z in S, with a, b, c " � and x $ y $ z. The three of them end
with the same sequenceA$. In the BCR BWT, we will have a range in L� i , j � � � a, b, c� .
This property does not necessarily holds in the other variations. In the BWT of Ferragina

35

and Venturini, the order of a, b and c will depend on the stringSx� 1, Sy� 1, and Sz� 1, and in
the eBWT, the order will depend onS!

x , S!
y , and S!

z . This relaxation in the model allowed
Bauer et al. to develop semi-external algorithms to construct the BCR BWT e�ciently.
These algorithms buildL incrementally. They start by de�ning a partial version of L for
the characters that precede the su�xes of length 1 inS. Then, in every iteration i , they
insert into L the symbols that precede the su�xes of sizei . Other analogous ideas were also
developed [111, 117, 118, 20].

Bauer et al. [7] also postulated that we could reduce the number of equal-symbol runs in
the BCR BWT if we sort S in colexicographical order2 �rst. Similarly, Bentley et al. [12]
proposed a linear-time algorithm for sortingS that reduces the number of BWT runs by
an
 � log� m� factor. A more recent work [68] explored the idea of guiding the ordering of
S using a known reference string. Their experimental results showed that we could achieve
15% of extra compression with this approach in genomic data.

3.2.2 Grammars

A context-free grammar(CFG), or just grammar, is a tuple G � rV , �, R , Sx that describes
rewriting rules producing a set of strings in� ˜ . In this tuple, V is the alphabet ofnonter-
minal symbols,� is the alphabet ofterminal symbols,R is a list of productions that maps
nonterminals to strings over� < V, and S " V is the start symbol of G. The nonterminals
rewrite as strings, while terminal symbols cannot be replaced. The rules inR are represented
as A � B , whereA " V is the nonterminal andB is a string over the alphabet� < V that
replacesA. The set of string in � ˜ we can obtain by recursively rewriting nonterminals is
the language generated byG, L � G� . The parse treeof a string S " L � G� is a labeled ordinal
tree that represents the recursive nonterminal replacements leading toS. The root is labeled
with S, the leaves are labeled with terminals spelling outS left to right, and the internal
nodes are labeled with nonterminals: the children ofA are, left to right, the symbols ofB
for some ruleA � B " R.

The aim in grammar compressionis to encode an input stringS� 1,n� by �nding a small
grammarG whose language isL � G� � rSx. In this grammar, there is exactly one ruleA � B
per A " V; we call exp� A� " � ˜ the only string of terminals derived fromA, and then
S � exp� S� . The size G � ¶G¶ of the grammar is the sum of the lengths of the right-hand
sides of the rules. Then we signi�cantly compressS if we manage to build a grammar of size
G 8 ¶S¶ that generates onlyS.

In general, it is convenient to enforce some properties inG to avoid redundancies:

ˆ Each nonterminal is the left-hand side in only one rule

ˆ Right-hand sides inR cannot be empty strings

ˆ Every nonterminal must appear at some point in the derivation ofS

ˆ Distinct nonterminals produce di�erent strings in � ˜

ˆ Every nonterminal appears at least twice in the right-hand sides ofR

ˆ There is no pairXY " � < V occurring more than once in the right-hand sides ofR

2Sort the strings in lexicographical order from right to left.

36

Figure 3.3: The CFG resulting from running RePair on the stringS � attcggattaggattagg .
(A) The parse tree of the grammar. Gray nodes and edges are the pruned elements of the
grammar tree built in a pre-order traversal of the parse tree. (B) The set of rulesR and the
start symbol S.

Kie�er et al. [96] called the grammars that satisfy these propertiesirreducible. They also
showed that irreducible grammars reach thekth order entropy of a source. Similarly, Ochoa
and Navarro [143] demonstrated that the same holds for thekth order empirical entropy of
individual strings. Grammars not just achieve compression under the statistical model, they
also capture the repetitiveness of the text; the size ofG is much smaller thann when S is
repetitive [136].

There are important trade-o�s between grammars and other compression methods. For
instance, it is a well-known fact that obtaining the smallest grammarG˜ that producesS is
NP-complete [178, 32], while computing the BWT or Lempel-Ziv parse (see Section 3.2.3)
of S takes linear time [141, 159, 178]. Besides, the sizeG˜ of G˜ is never smaller than the
number of Lempel-Ziv phrases inS. On the other hand, there is no clear dominance between
grammars and the BWT;G˜ can be smaller or larger thanr , the number of BWT runs [136].

Despite the drawbacks, grammars are still interesting because they support direct access to
S with a logarithmic penalty [15] and within O� G logn� bits. In contrast, with the Lempel-
Ziv scheme, we can support direct access inO� z� time [101], wherez is the number of phrases.
In the case of the BWT, we can obtain e�cient direct access, but it is still unknown if we
can do it using space proportional tor .

Another important advantage of grammars is that there are good heuristics that perform
well in practice for build them, RePair [108] being the most popular one. The RePair al-
gorithm consists of recursively replacing the most frequent pair of symbols inS. Let ab be
the most frequent pair at some point during the algorithm's execution. We create a new
rule B � ab and replace the occurrences ofab in S with B. Then, we extract the new most
frequent symbol pair inS and repeat the same procedure. The algorithm stops when all the
pairs in S have frequency one. RePair achieves linear time by maintaining the pairs in a max
priority queue, so the most repeated pair is always at the top after each update ofS.

37

RePair produces grammars of size comparable to the Lempel-Ziv77 parse (LZ77) [193]
in most of the cases. Nevertheless, RePair has a high cost in practice, which limits its use
in big datasets. Although it runs in linear time and space, its working memory footprint
is too high. Competitor tools like p7zip [150], which is based on LZ77, achieve slightly
better compression ratios and require a negligible amount of working memory. To solve the
problem, Gagie et al. [72] proposed a variation of RePair that preprocessesS �rst to catch
long repetitive blocks. Their experimental results showed that they use between7% and
11% of the working memory of RePair, while maintaining competitive compression ratios.
Other more recent grammar algorithms [142] are faster and require less working memory
than RePair, but produce bigger grammars. Still, they are faster at decompressing the text.

A run-length context-free grammar (RLCFG) [139] is an extension of CFGs that allows
rules of the typeX � B c, whereB c represents in constant space the concatenation ofc %2
copies of symbolB " V < � . A RLCFG usually compresses better than a regular CFG. For
instance, in the stringS � Ac, the smallest CFG has sizeG˜ � � � logn� , whereas a RLCFG
can reach sizeG˜

RLCF G � O� 1� . Of course, the general case isG˜
RLCF G & G˜ .

Locally Consistent Grammars

A type of grammar relevant for this thesis is that generated from alocally consistent parsing
[162, 128]. This procedure consists of partitioning a textS� 1,n� in a way such that the
identical substrings are largely parsed in the same form. More speci�cally, a parsing is locally
consistent if there are two integersa, b (which may depend onn) such that, for every pair of
equal substringsS� j , j � u� � S� j ¬, j ¬� u� , only their �rst a and their last bphrase boundaries
can di�er. In general, a locally consistent parsing algorithm puts a phrase boundary inS
wherever some speci�c symbol combination arises. In our case, the �rst and last phrases
of S� j , j � u� might be formed in a di�erent way than those in S� j ¬, j ¬ � u� because they
might be preceded or followed by di�erent symbols. Note that this approach di�ers from
other parsing algorithms such as Lempel-Ziv or RePair, which use global information onS
to de�ne its partition.

We build a locally consistent grammarby applying successive rounds of locally consistent
parsing overS� 1,n� . In every round i , we capture the distinct phrases in the input textSi

(S1 � S) and create new nonterminals rewriting to them. We then build a new textSi � 1 by
replacing the phrases inSi with their corresponding nonterminal symbols. This new textSi � 1

is the input for the next round. The algorithm stops whenSi can no longer be partitioned.
If the phrases in everySi are of length at least2, then the string Si � 1 is at most half the
length of Si , and thus the number of parsing rounds isO� logn� and the total running time
is of the same order as for parsingS.

The algorithm described above produces a balanced grammarG, which is probably bigger
than the one we obtain with RePair. In exchange, if a patternP appears more than once
in T, then the parse subtrees containing its occurrences will be almost identical, di�ering
only in a few nodes at the ends of every tree level. The internal part of the subtrees remains
unchanged regardlessP's context. This can be exploited to speed up pattern matching.

Recently, Christiansen et al. [34] proposed a locally consistent RLCFG of sizeG �
O�
 log� n©
 �� , where
 is the size of the smallest attractor ofS [95]. In their algorithm,

38

the parsing rounds have two steps. In the �rst one, they create new nonterminal rules with
the equal-symbol runs ofSi . These rules are of the formA � al . Then, they produce a new
string Ŝi by replacing the runs with their generating nonterminals. In the second round step,
they de�ne a random permutation � � �̂ i � � 1,¶�̂ i ¶� for the symbols in the alphabet�̂ i of
Ŝi , and use this permutation to partition Ŝi : each phrase ends in a local minimum, which is
a position Ŝi � j � such that � � Ŝi � j � 1�� %� � Ŝi � j �� $ � � Ŝi � j � 1�� .

The Grammar Tree

Another relevant concept is thegrammar tree of G [36] (also referred to as the partial parse-
tree by Rytter [161]). This representation is a pruned version of the parse tree. We build it
as follows; we start a walk over the parse tree in some speci�c order. Every time we reach a
internal nodev whose labelX " V has not been seen before in the traversal, we create a new
internal node in the grammar tree labeled withX. On the other hand, if X has been seen
before, we create a leaf labeled withX instead, and skip the subtree ofv from the traversal.
When we reach a leafv in the parse tree, we also create a leaf in the grammar tree. The
resulting grammar tree contains exactlyG � 1 nodes and¶R¶ internal nodes. The example
of Figure 3.3A depicts the idea.

Random Access

When storing S as a grammar, we are also interested in supporting random access to any
S� i � in compressed space. Recall that this feature is one of the main advantages of grammars
over other dictionary-based approaches. A simple way to achieve random access is by storing
the accumulative sums of nonterminals. Let¶A¶be the length ofexp� A� . Then, for each rule
X � A1 : : : Ak " R , we store the sequencel0 � 0, l1 � l0 � ¶A1¶, : : : , lk � lk� 1 � ¶Ak¶. Also,
we de�ne a predecessor data structure that, given the sequencel0, l1, : : : , lk of a rule and a
position i , returns the elementj such that l j � 1 $ i & l j . We extract S� i � from the grammar
by �rst obtaining the position j for i in S � C. Then, we updatei � i � l j � 1 and recursively
apply the same idea using the rule ofC� j � and i as inputs. We continue the recursion until
reaching a terminal symbol, which is the answer forS� i � .

When the grammar is balanced (i.e., its height isO� logn�), we require O� logn� pre-
decessor operations. Besides, with the data structure of Belazzougui and Navarro [11], we
can answer these predecessor queries inO� log logw n� . In this way, accessingS� i � takes us
O� logn log logw n� time. If the right-hands of R are of constant length, then we can reduce
the predecessor queries toO� 1� , reaching thusO� logn� time to accessS� i � . Bille et al. [15]
recently demonstrated that we can obtainO� logn� time to extract S� i � from any type of
grammar, not necessarily balanced. They also showed how to extract any substringS� i , j �
in O� j � i � logn� time. Ganardi et al. [73] recently showed that we can transform any
grammar of sizeG into a balanced grammar of sizeO� G� , where the right-hand sides ofR
are of length two.

3.2.3 Other Compression Methods

There are other methods apart from Grammars and the BWT to compress repetitive text.
Among them, Lempel-Ziv (LZ) is maybe the most popular. This algorithm greedily partitions
S into a sequence of phrases. More precisely, LZ parsesS from left to right, and given the

39

unprocessed su�x S� i , n� , it �nds the longest pre�x S� i , j � whose sequence also appears at
some positionS� i¬, j ¬� beforeS� i � (i.e., i¬ $ i). Subsequently, it de�nes a new parse phrase
S� i , j � 1� , and continues the processing from su�xS� j � 2,n� . The substring S� i¬, j ¬� is
referred to as the source ofS� i , j � 1� . The resulting parse is stored as a list of triplets
� i¬, j � 1 � i , S� j � 1�� . If this list has z elements, then the space usage of the representation
is O� z logn� bits. When the text is repetitive, the phrases cover long segments ofS, so z is
much smaller thann. LZ has several variants, but LZ77 [193] and LZ78 [194] are the best
known ones. In LZ77, the sourceS� i¬, j ¬� has to start within the l symbols previous toS� i � ,
wherel is a parameter . In LZ78, the source must also be a phrase. In the other variants, the
source can cross one or more previously created phrases. LZ78 is the variant that compresses
the least, but allows us to extract any substringS� i , j � in optimal time O� j � i � 1� .

Another method for text compression is the Compact Directed Acyclic Word Graph
(CDAWG) [19]. This data structure is an automaton obtained by merging all the identi-
cal subtrees in the su�x tree of S. As the text becomes more repetitive, the number of these
identical subtrees increases, so the CDAWG becomes smaller. The size of the CDAWG is
usually denoted ase, and represents the sum of its arcs and its edges. Still, CDAWGs are
not as powerful as the other compression methods. In some string families, it holds thate is
� � n� times larger thanz or r [9] and � � n©logn� larger than G [8].

3.3 Self-Indexes

A self-indexis a versatile data structure that (i) stores a textS� 1,n� in compressed form, (ii)
supports pattern matching onS in time sublinear 3 in n, and (iii) allows random access toS's
substrings. These representations, in addition to answeringcount and locate (Section 3.1),
also support the query:

ˆ display� I S, i , j � : extract the sequenceS� i , j � from the self-indexI S

Self-indexes are an excellent alternative when the space overhead of the su�x array or
su�x tree is too high for practical purposes. This situation occurs, for example, when we
need to index massive string collections. In particular, self-indexes have thrived in genomic
applications that require locating small DNA sequences within large genome databases.

Popular self-indexes exploit the unbalance in symbol frequencies or regularities in the
text's su�x array to reduce space usage. In the �rst case, their compression performance is
usually assessed in terms of the empiricalH k entropy. Recall from Section 2.1.1 that this
value is a lower bound for the average number of bits we require to represent the symbols in
S if we usekth order statistical compression. This framework, although useful for many text
collections, is not suitable whenS is repetitive (see Section 3.2). Other self-indexes, explicitly
designed for repetitive collections, achieve better compression. They factorize the text using
dictionary-based methods such as Lempel-Ziv or CFGs, or exploit the equal-symbol runs in
the text's BWT. Nevertheless, their pattern matching functionalities are usually slower than
those of entropy-based self-indexes.

3O�� mc � occ� log� n� , where c and � are constants%0, m is the pattern length and occ is the number of
occurrences of the pattern.

40

In this section, we review the most successful self-index that relies on statistical entropy.
Besides, we review other self-indexes tailored to repetitive strings with potential applications
in modern genomic analyses.

3.3.1 FM-Index

The FM-Index [65] is a self-index that representsS in terms of the arrays L and C of
Section 2.2. The �rst one isS's BWT while the second stores inC� i � , with i " � 1, � � , the
number of symbols inS smaller than i . We saw in Section 2.2 that we can encodeL and S in
n� H 0� L � � 1�� 1 � o� 1�� � O� �w � bits of space so that reconstructingS takes usO� n log� �
time.

This representation also allows us to count the number of occurrences of a patternP� 1,m�
in S in O� m log� � time (the operation count� I S, P� of Section 3.1). The procedure is called
backwardsearch� I S, P� . Recall from Section 3.1 that the su�xes in S pre�xed by P form
a consecutive rangeSA� s, e� , and its corresponding segmentL� s, e� stores the preceding
symbols ofP in S. Let us denoteSA� sj , ej � the range that contains the su�xes ofS pre�xed
by P� j , m� , with j " � 1,m� . The backward search builds on the observation that if we
already knowSA� sj , ej � , then we can compute the rangeSA� sj � 1, ej � 1� directly from L� sj , ej � .
The procedure starts by obtaining the rangeSA� sm , em � , with sm � C� P� m�� � 1 and
em � C� P� m� � 1� . Then, for every su�x P� j , m� , with j j m, we obtain the range
SA� sj � 1, ej � 1� from L� sj , ej � with the formula:

sj � 1 � C� P� j � 1�� � rankP � j � 1� � L , sj � 1� � 1

ej � 1 � C� P� j � 1�� � rankP � j � 1� � L , ej � .

We refer to this operation as abackwardsearchstep. After applying m � 1 steps, the
resulting range � s1, e1� is indeedSA� s, e� . Finally, we report e � s � 1 as the number of
occurrences ofP in S. Obtaining � sm , em � takes constant time, and computing each pair
� sj , ej � takes O� log� � time if we encodeL as a wavelet tree (Section 2.2.2). Thus, the
total time for backwardsearch� I S, P� is O� m log� � time. Notice that this function does not
explicitly require the su�x array of S.

If we also require to supportlocate� I S, P� , then we can augmentL and C with the su�x
array of S. In this way, this operation reduces to performbackwardsearch� I S, P� and then
report the positions inSA� s, e� . The whole operation is thus implemented inO� m log� � occ�
time. However, then logn extra bits of the su�x array can be too expensive. A common
technique to reduce the space overhead is to sampleSA at regular text intervals.

We de�ne a sampling ratel and collect all the su�x array values that satisfy SA� i � mod l �
0. We store such samples in another vectorA� 1,*n©l0� without changing their relative orders.
In addition, we de�ne a bit vector B � 1,n� that marks the sampled positions of theSA. That
is, B � j � � 1 if SA� j � mod l � 0. The representation forS now becomesC, L, A and B.

Now displaying the text positions inSA� s, e� is a bit di�erent. Let j be a value in the
range � s, e� . If B � j � � 1, then we report SA� j � � A� rank1� B , j �� . If, on the other hand,
B � j � � 0, then SA� j � was not sampled, so we have to infer it. Starting fromL� j � , we perform

41

LF iteratively until �nding a position j ¬ such that B � j ¬� � 1. Assume we foundj ¬ after k LF
operations, then we reportSA� j � � A� rank1� B , j ¬�� � k. As we sampled a su�x array value
every l text positions, and LF enumerates the symbols in reverse text order, �ndingSA� j �
takes usO� l log� � time. One can setl � log1� � n©log� for any given constant� %0 so that
the sampled values require� n©l� logn � o� n log� � bits and computing a non-sampled value
takes O� log1� � n� time.

The last operation we need to support isdisplay� I S, i , j � . We implement it by �rst retriev-
ing the position SA� j ¬� � j � 1 for S� j � 1,n� , then applying LFj � i � 1� j ¬� , and �nally reporting
the reversed sequence of symbols we accessed inL during the LF calls. The problem with
this idea is that we do not knowj ¬. To solve it, we augment the FM-index with theinverse
su�x array . This data structure is a vectorSA� 1� 1,n� that tells us for every su�x S� u, n�
its lexicographical ranku¬. In other words, SA� 1� u� � u¬ implies that SA� u¬� � u. We reduce
the space requirements by maintaining a sampled version ofSA� 1. We chose a sampling
rate l and create an arrayA � 1� 1,*n©l0� to store the SA� 1 values of the text positions that
are multiples of l . As a special case, we can storeA � 1�* n©l0� for S� n� , although it is not
necessary as this su�x is always mapped toSA� 1� . To get j ¬, we �rst obtain the su�x array
position x � A � 1�*� j � 1�©l0� for the smallest su�x to the right of S� j � 1,n� that was
sampled. If j � 1 is multiple of l (or n), then j ¬ is x. If not, then we apply no more thanl LF
steps fromL� x� to get j ¬. Thus, answeringdisplay� S, i , j � takes usO�� j � i � l � log� � time.

The complete FM-index is composed by the data structuresL, C, B , A and A � 1. If we
use the same sampling rate forA and A � 1, then its total space usage isn� H 0� L � � 1�� 1 �
o� 1�� � O� �w � � O�� n©l� logn� bits.

3.3.2 Bidirectional FM-Index

A limitation of the FM-Index is that it is asymmetric. Given the rangeSA� s, e� of su�xes
pre�xed with P, we can easily obtain, in one backward search step, the su�x array range
for aP, with a " � . On the other hand, if we require the su�x array range for patternPa,
computing it from SA� s, e� is not that simple.

A common solution for this limitation is to have a bidirectional FM-index [104]. This
variation considers two BWTs. The �rst one, L, is for S, and other, �L , is for the reversed
version ofS, denoted as�S. To simplify the explanations, we will refer to the stringaP as a
left extension ofP, and the string Pa as a right extension.

When performing a backward search step in the bidirectional FM-index, we maintain both
BWTs synchronized. IfL � s, e� has the symbols that precedeP in S, �L � p, q� has the symbols
that precede �P in �S. Put another way, �L � p, q� has the symbols that followP in S. These
two ranges have the same sizes as the number of occurrences ofP in S is the same as the
number occurrences of�P in �S.

Assume we perform a backward step over� L � s, e� , �L � p, q�� using c " � . The new pair of
ranges� L � s¬, e¬� , �L � p¬, q¬�� store the symbols that precedecP in S and �Pc in �S, respectively.
Note that � p¬, q¬� is fully contained within � p, q� as the frequency of �Pc in �S is equal or
smaller than the frequency of�P, and both patterns share the same pre�x. Further, we know
that the right extensions of �P in �S are equivalent to the left extensions ofP in S. Hence,

42

to maintain the BWTs synchronized, we perform a backward search step overL� s, e� to get
L � s¬, e¬� , and then use the operationrangecount� L , s, e, 1,c � 1� of Section 2.2.2 to count the
k symbols in L� s, e� that are lexicographically smaller thanc. Using this information, we
compute the rangep¬ � p � k and q¬ � p¬� e¬� s¬ for �L .

The operation above describes a synchronized left extensioncP. If we want a right ex-
tension Pc, we have to perform the opposite procedure; compute� p¬, q¬� with a backward
search step on�L � p, q� , and then computek � rangecount� �L , p, q, c� to set s¬ � s � k and
e¬ � s¬� q¬� p¬.

There is an interesting connection between the bidirectional FM-index and the su�x tree
of S; spelling a pre�x �S� 1, j � usingLF over �L is equivalent to spelling the pathX in the su�x
tree of S labeled with S� n � j � 1,n� . Using this observation, we can simulate a traversal
over S's su�x tree directly from �L. In doing so, we map speci�c ranges in�L to speci�c
su�x tree nodes. Let P be a pre�x in the label of X and let �L � p, q� be the range storing the
symbols that precede�P in �S. If �L � p, q� contains more than one distinct symbol, then there
is an internal nodev in the su�x tree of S labeled with P, whose subtree containsp � q � 1
leaves. In contrast, if �L � p, q� is an equal-symbol run, then there is no internal node labeled
with P as it is not right maximal.

Using arraysL and �L we can simulate some navigational operations over the su�x tree.
For instance, we can obtain the Weiner links ofv using backward search steps overL� i , j � .
Suppose we perform a backward search step inL� i , j � using one of its distinct symbols, say
c " � . If the resulting rangeL� i¬, j ¬� is an equal-symbol run, it represents an implicit Weiner
link (see Section 3.1.2). On the other hand, if� i¬, j ¬� has more than one distinct symbol,
then it maps a nodev¬such as that an explicit Weiner link� v, v¬� labeled with c exists in the
su�x tree of S.

We can access thekth child of v from �L� p, q� . Assumec is the kth smallest symbol
appearing in �L � p, q� . We apply a backward search step over�L � p, q� using c and continue
performing backward search steps until �nding a range�L � p¬, q¬� with more than one distinct
symbol. If we maintain synchronizedL and L¬ in every step, then the resultingL� i¬, j ¬� maps
the kth child of v.

Computing the su�x link � v, v¬� of v is also possible, but we must augmentL with
additional data structures. Using the operationsLF� 1� i � � i¬ and LF� 1� j � � j ¬, we obtain
a subrange� i¬, j ¬� within the range of v¬ in L, which we use to answer the su�x link query.
The problem, however, is that we need the topology of the su�x tree to expand� i¬, j ¬� to the
range ofv¬. There is a similar problem when computing the parent ofv.

3.3.3 The r-index

The r -index [70] is a variation of the FM-index that requires space proportional to the
number of equal-symbol runs in the BWT ofS. This number is usually denoted asr , and
serves as an ad-hoc measure to assess the repetitiveness of a text. IfS is indeed repetitive,
then its value for r is small compared ton. Although the FM-index representsS within its
statistical entropy (Section 3.3.1), this scheme is insensitive to the redundancy on the text
(see Section 3.2). Hence, it grows linearly withn regardless the kind of new data we append

43

to S. In contrast, an r -index grows with the amount of new information onS. This means
that if we add new sequences toS that are identical or highly similar to those already in the
text, then the index's space usage will grow slowly.

The r -index is composed of two data structures; a run-length compressed version of the
BWT with rank support [122] and a sampled su�x array that stores one value per BWT
run. We �rst describe the run-length compressed BWT, and then explain how to perform
backwardsearchon it. We refer to this data structure as the RLBWT of S. We then explain
the sampling technique for the su�x array and how to report the text positions within the
SA range reported bybackwardsearch.

The �rst element of the RLBWT is a vector L¬� 1,r � storing the �rst symbol of every equal-
symbol run of L, without changing the relative order of the runs. Another arrayC¬� 1, � �
stores in C¬� i � the number of symbols inL¬ that are lexicographically smaller thani . We
also create an arrayR� 1,r � to store information about the run lengths. Every rangeR� a, b� ,
with a � C¬� s� � 1 and b � C¬� s � 1� , is associated with the runs of symbols " � . More
speci�cally, position R� u� , with a & u & b, has the cumulative lengths of the �rstu � a � 1
runs of s in L. The last component of the RLBWT is a predecessor data structure. The
operation pred� j � � � j ¬, p� receives as input a positionj " � 1,n� and returns a pair where
j ¬& j is the position of the leftmost symbol in the run ofL � j � and p the rank of that run in
L.

We now can simulate the operationranks� L , j � over the RLBWT as follows; we �rst call
the operation pred� j � � � j ¬, p� . The output tells us that L � j � lies within the pth BWT run,
and that the leftmost symbol in that run is L� j ¬� . Subsequently, we obtain the number of
runs for s in L¬� 1,p � 1� as x � ranks� L¬, p � 1� . Using x, we obtain the real rank ofs in
L� 1, j � as l � R� C¬� s� � x� . Additionally, when s � L¬� p� , we add� j � j ¬� 1� to l to consider
the � j � j ¬� 1� occurrences ofs betweenL� j ¬� and L� j � . Finally, we return l as the answer
for ranks� L , j � .

The time complexity for the function described above is dominated by thepred� j � and
ranks� L¬, s� operations. Gagie et al. [70] use the predecessor data structure of Belazzougui
and Navarro [11] to supportpred� j � in O� log logw � n©r �� time and O� r logn� space, where
w is the machine word's length in bits. Besides, they use an alternative representation forL¬

that supports rank in O� log logw � � time. Thus, the time complexity for ranks� L , j � becomes
O� log logw � � � n©r �� .

Now that we can simulate the operationranks� L , j � in the RLBWT, we can implement
backwardsearch� I S, P� in O� m log logw � � � n©r �� time, where I S is the r -index and P is an
input pattern of length m. This result implies that we can also implementcount� I S, P� in
the same time and withinO� r logn� bits of space.

Supporting locate� S, P� in O� r logn� space is a bit more complicated but not impossible.
We start by creating an array A� 1,r � to complementR. A� j � stores the su�x array value
for the last entry of the run referenced byR� j � . Now, for answeringlocate� S, P� , we modify
the backwardsearchalgorithm so that when we obtain the rangeSA� s, e� for P, we also know
SA� e� . Assume we already have the boundaries� sj , ej � for P� j , m� and its corresponding
value SA� ej � . We now have to perform a backward search step to obtain the information of

44

P� j � 1,m� . To computeSA� ej � 1� , we useL� sj , ej � and the new arrayA. If L � ej � is equal to
P� j � 1� , then SA� ej � 1� � SA� ej � � 1. If, on the other hand,L � ej � di�ers from P� j � 1� , then
we need to �nd in L� sj , ej � the position y with the last occurrence ofP� j � 1� . We knowL� y�
is the last element in a BWT run so itsSA value is inA. We infer y using the same mechanism
for supporting ranks� L , j � in the RLBWT; y � C¬� P� j � 1�� � rankP � j � 1� � L¬, pred� ej � .j ¬� 1� .
Finally, the value for SA� ej � is A� y� � 1.

The last aspect to address forlocateis how to obtain the other su�x array values within
the rangeSA� s, e� 1� . Gagie et al. [70] made the following observation; letL � j � and L� j � 1�
be two consecutive symbols that belong to the same run. The equalitySA� j � 1� � SA� j � �
SA� LF� j � 1�� � SA� LF� j �� holds as long as theLF operations forj and j � 1 redirect us to
positions in the BWT that also belong to the same run. Put di�erently, let j and i � j � 1
be two consecutive positions inL. Suppose we iteratively applyj � LF� j � k and i � LF� i � k ,
wherek is the number of steps needed forL � j � and L� i � to belong to di�erent BWT runs. In
each of these steps, the values ofj and i changed, but they remained contiguous (j � i � 1).
Therefore, the di�erenced � SA� i � � SA� j � stayed the same in all of them. However, after
the kth LF step, L � j � and L� i � are positioned in di�erent runs, so applyingLF� j � and LF� i �
will yield two values j and i that are no longer contiguous in the BWT. This di�erence means
that d � SA� i � � SA� j � now is a di�erent subtraction. Note that, from all the k distinct
values assigned toj during the LF steps, onlyLFk � j � (the last one) represents a run head in
L.

We exploit the ideas described in the previous paragraph as follows; we create another
predecessor data structure that returns for everySA� j � the previous text positionSA� j ¬� �
SA� j � � k such that S� SA� j ¬� � 1� is a run head in the BWT. In addition, for everySA� j ¬�
encoded in the predecessor data structure, we store the di�erence with its previous su�x
array value asd� SA� j ¬�� � SA� j ¬� 1� � SA� j ¬� . Now suppose we already knowSA� j � , with
j " � s, e� . For computing SA� j � 1� , we search forSA� j ¬� in the predecessor data structure
and then report SA� j � 1� � SA� j � � d� SA� j ¬�� . During the computation of anSA value, the
time complexity is dominated by the predecessor operation, which takesO� log logw � n©r ��
time if we use the data structure of Belazzougui and Navarro [11]. Thus, reporting the values
in SA� s, e� takes O�� e � s � 1� log logw n©r � time.

As a conclusion,locatein the r -index takesO� m log logm � � � n©r � � � e� s� 1� log logw n©r �
time, and O� r logn� space.

3.3.4 The Grammar Index

A regular grammar index [36, 37] consists of a CFG generating onlyS (Section 3.2.2) and a
geometric data structure [31] used to perform e�cient matching onS. This data structure
is an interesting alternative to ther -index. Although both are sensitive to text repetitions,
the r -index usually requires more space. Experimental results [37] showed that, on repetitive
collections, the grammar index uses about64%of the r -index's space. In less repetitive col-
lections, this percentage reduces to53%. Another recent work [38] showed that, on microbial
genomes with a small number of BWT runs (n©r � 51.2), the grammar index requires73%
of the r -index's space. However, in microbial organisms wherer is higher (7.5 & n©r & 40),
this percentage decreases to37%� 49%. These results show that ther -index's space usage

45

grows faster than the grammar index's space usage as the text repetitiveness drops. How-
ever, performing pattern matching in the grammar index is slower than in the FM-index
(experimental results of Cobas et al. [38] showed that it is about four times slower than the
r -index).

Before explaining this data structure, it is convenient to recall some notation from Sec-
tion 3.2.2. Let G � � V , �, R , S� be a CFG that only producesS. The symbol G is the size
of G and the symbolg � ¶R¶ is the total number of nonterminals. In addition, the grammar
tree of G is denoted asT¬. The internal node ofT¬ encoding the �rst preorder occurrence of
a nonterminal X in the parse tree is called thelocus of X.

The grammar index is composed of two elements; a succinct representation ofT¬ and a
succinct representation of the geometric data structure. We useT¬ to generate a partition
over S, and then we index the resulting phrases in the geometric data structure to support
pattern matching. The leaves inT¬ induce the partition as follows; let v be a leaf in T¬

generated from a nodev¬ in the parse tree ofG. The substring S� i , j � whose symbols match
the leaves under the subtree ofv¬ is the phrase induced byv.

The Grammar Representation

In order to useT¬ in the grammar index, its associated grammarG must have the following
properties:

1. For every terminala " � , there is a nonterminal ruleXa � a

2. Each nonterminal appears at least in two distinct left-hand sides inR. The only
exceptions areS and the nonterminals of property 1

3. There is no rule inR whose left-hand side is empty or a single nonterminal symbol

4. If X $ Y, then the reverse sequence ofexp� X� is lexicographically smaller than the
reverse sequence ofexp� Y�

When building T¬, we encode all the nonterminals of property 1 as leaves, including those
that are the �rst preorder occurrence in the parse tree. Once we produceT¬, we encode its
topology using DFUDS (Section 2.2.3). We store its node labels in an arrayX � 1,G� , where
eachX � j � , with j " � 1,G� , is the label of the node with preorderj � 1 (we skip the root).
We representX using the data structure of Belazzougui and Navarro [11] that supports
selecta� X , k� in O� log logg� time, where a " � 1,g� is a symbol in X and k is its rank. In
addition, we create a bitmapC¬� 1,g� in which we mark the nonterminals of property 1.
Finally, we create a bit mapL¬� 1,n� and setL¬� j � � 1 if a partition phrase starts at position
S� j � .

Using this representation, we can simulate a traversal over the parse tree ofG. We start
from any internal node ofT¬we want to expand and traverse its subtree top-down as long as we
visit internal nodes. When we reach a leafv, we �rst obtain its label Y � X � preorder� v� � 1� .
If C¬� l � � 1, then Y encodes the terminal symbolrank1� C¬, l � , so we report it. If, on the other
hand, C¬� l � � 0, then we obtain the locusv¬ of Y, and recursively complete the traversal
from v¬ before continuing the main traversal. We compute the locus' preorder �rst asp �
selectY� X , 1� in O� log logg� time, and then usenodeselect� p� to get v¬.

46

The procedure described above enables the expansionF � exp� X� of any nonterminal X
in O�¶F ¶� traversal steps. However, we still have alog logg penalty when computing a locus
from a grammar tree leaf. Claude et al. [37] showed that we can augment the representation of
T¬with O� G� extra bits so that we can move from a leaf to a locus in constant time. They also
showed that we can augment the representation ofT¬with another � g� � � log� � � log� � O� g�
bits to decompress the �rst or lastl symbols ofF in O� l©� � time.

The bit vector L¬ allows us to map in constant time any nodev in T¬ to the position in S
of the �rst (from left to right) induced phrase under its subtree. This operation, denoted as
p� v� , is computed asselect1� L¬, leafrank� v� � 1� .

Geometric Data Structure

We �rst de�ne two string sets; the �rst one, Y, will have g strings, and the second,X , will
haveG � g � � strings. The sets are built as follows; letA � B1 : : : Bt " R be a nonterminal
rule and let v be the locus forA in T¬. For every i " � 1,t� , we insert the reverse sequence of
exp� Bi � into Y. Additionally, for every proper su�x Bi : : : Bt , with i " � 2,t� , we insert the
string exp� Bi : : : Bt � into X . We build a matrix M of g � � G � g � � � cells and useY and X
to label its rows and columns, respectively. Every rowj is labeled with the string in Y with
lexicographical rankj . Equivalently, every column j ¬ is labeled with the string in X with
lexicographical rankj ¬. The cell of M in the intersection of the row labeled with the reverse
of exp� Bi � and the column labeled withexp� Bi � 1� : : : exp� Bt � stores the identi�er of the child
number i � 1 of v from left to right.

In order to support pattern matching, we require to implement the following operations:

1. For any givenm, extract the �rst m symbols of a row labell " Y

2. For any givenm, extract the �rst m symbols of a column labell¬" X

3. Given a segment� x1, y1, x2, y2� in M , report the k pairs � x, y� , with x1 & x & x2 and
y1 & y & y2 such that the cell � x, y� is not empty

The nonterminal symbols ofG are the lexicographical ranks of their reversed string ex-
pansions. A convenient consequence of this property is that each rowj in M is labeled with
the nonterminal j . Hence, it is not necessarily to storeY explicitly. We can map the non-
terminal j to its locus in T¬, and from that locus, obtain its string expansion in linear time
(operation 1 above). Another important observation is that every column inM has only one
used cell. If a column is labeled with the stringF � exp� Bi � 1� : : : exp� Bt � , then its used cell
contains the locus inT¬ for the occurrence ofBi � 1 that belongs to the sequenceBi � 1 : : : Bt .
From that locus, we can easily decompressF in linear time (operation 2 above). Thus, it is
not necessary to store the labels ofX either.

If we use the representation of Chan et al. [31] to encodeM , we can extract the cell value
for a column in O� 1� time and perform operation 3 inO�� k � 1�� 1 � logg©log logG� time.
This data structure has a space complexity of� G � g � � �� logg � logG� � o� G logg� bits.

47

Pattern Matching

To search for a patternP� 1,m� in the grammar index, we classify its occurrences in two
types. Primary occurrences span two or more phrases in the partition ofS while secondary
occurrences are fully contained within a phrase. The strategy to locateP in S consists
of using M to �nd the loci in T¬ of the lowest nonterminals whose subtrees have primary
occurrences ofP. Once we �nd them, we locate the secondary occurrences ofP by visiting
the leaves ofT¬ labeled with them or with their ancestors.

Let S� i , j � be a primary occurrence ofP intersecting k di�erent phrases in the partition
of S. These phrases were induced from a group of leaves that appear consecutively inT¬. We
need to �nd their least common ancestorv because the string expansion of the label ofv is
a substring in S that contains P. Note that in every primary occurrence ofP, the sequence
of intersected phrases is always di�erent, and so is the least common ancestor. We need to
�nd all such ancestor nodes to report all the primary occurrences ofP.

Finding Primary Occurrences in the Grid

For every possible partition point1 & u $ m, we cut the pattern into two halvesP� 1,u� and
P� u � 1,m� . The idea is to �nd the range of rows� y1, y2� in M whose labels are su�xed
by P� 1,u� and the range� x1, x2� of columns pre�xed by P� u � 1,m� . The non-empty cells
within the grid segment � x1, y1, x2, y2� indicate the nodes inT¬ with primary occurrences of
P. We perform two binary searches to locate this segment; one for the reverse ofP� 1,u� in
the pre�xes of Y, and another forP� u � 1,m� in the pre�xes of X . When comparingP� 1,u�
against the row labels, we extract the lastu characters of a string inY in O� u©� � time using
operation 1 of the geometric data structure. Similarly, when comparingP� u � 1,m� against
the column labels, we extract the �rst m � u � 2 symbols of a string ofX in O�� m � u�©� �
time using operation 2. Thus, we obtain� x1, y1, x2, y2� in O�� m©� � logG� time. We need to
repeat this procedure with them � 1 distinct cuts of P. Therefore, the �nal time complexity
to get the grid segments with primary occurrences raises toO�� m2©� � logG� . We can reduce
this time to O�� m2©� � log logn� by augmenting the index withO� G� extra bits implementing
sampled Patricia trees [129]. Still, the binary search remains quadratic onm. Once we get
the grid segments, we retrieve the values in their non-empty cells using operation 3 of the
geometric data structure. Thus, the time complexity to �nd the loci inT¬of the occprimary
occurrences ofP is O�� m2©� � log logn � � m � occ�� 1 � logg©log logG�� .

Reporting Primary and Secondary Occurrences

Let v be one of grid values for the cutPl �Pr . So far, we know that the string expansion
F � exp� label� v�� is pre�xed by Pr . We can easily obtain the position inS of F using
the operation p� v� . Thus, the location of the primary occurrence ofP associated tov is
p� v� � ¶Pl¶� 1. The next step is to report the secondary occurrences ofv. Note that the string
expansions of the nonterminals labeling the ancestors ofparent� v� also haveP as a substring.
Therefore, the setX of leaves inT¬ labeled with these nonterminals expand to phrases that
contain secondary occurrences ofP. This idea recursively applies for the ancestors of the
leaves inX . Let u be one of the ancestors ofv; we compute its associated nonterminalY.
Then, for every leafu¬ in T¬ labeled with Y, we report the positionp� v� � ¶Pl¶� p� u¬� � p� u�
in S as a secondary occurrence ofP. Besides, every time we reach a new leafu¬, we also

48

Figure 3.4: A grammar index built from a CFG G that only generates the stringS �
attcggattaggattagg . The grammar treeT¬ for G is depicted on the right side of the �gure.
T¬ is the same as shown in Figure 3.3. The matrixM with the indexed rules ofG is shown
on the left side of the �gure. The strings in the rows belong to the setY, and the vertical
strings belong to the setX . A cell M � i , j � is labeled with the nonterminal symbol of the rule
from which the string Y� i � �X � j � was expanded. The �gure also illustrates the procedure to
locate the occurrences of a patternP � att in S. The vertical line in P is a cut we try
on M . The gray cells in theM are the rows and columns reported by the binary searches
associated with the halves of the cut. The gray arrow fromM to T¬ represents the mapping
of a primary occurrence ofP to its locus in T¬. The dashed arrows inT¬ are the leaves we
visit to report the secondary occurrences ofP.

have to inspect the nonterminals of its ancestors, and �nd the leaves labeled with them. The
complete algorithm processes all the grid point of each cut ofP. Given the representation of
Claude et al. [37], we can report theoccsecondary occurrences ofP in O� occ� 1©� � log logg��
time. This is because the grammar was preprocessed so that every nonterminal has another
occurrence as a leaf inT¬, and thus the work done on the ancestors of each occurrence
amortizes to some other occurrence ofP.

The Resulting Index

The grammar index described by Claude et al. [37] uses at mostG logn � 2G logg� �g logg�
o� G logg� � O� G� bits of space for any constant0 $ � & 1, and can �nd the occoccurrences of
a pattern P� 1,m� in S in time O� m2 log logn � � m � occ� logg©log logg� . We can adjust� so
that the upper bounds becomeG logn � � 2� � � G logg bits for space andO�� m2 � occ� logG�
time for pattern matching. Figure 3.4 shows an example of the grammar index.

Improving the Pattern Matching

Christiansen et al. [34] showed that, if we build the grammar index of Claude et al. [37] using
their locally consistent grammar (Section 3.2.2), then we require to test onlyO� logm� cuts
of P to �nd its primary occurrences in G. Their idea consists in preprocessingP at query

49

time with the same algorithm they used to buildG. In every round i , they build the parse
P i � 1 by querying a hash table that maps the phrases inP i to nonterminals in the grammar.
The pre�x P i � 1,a� and the su�x P i � b, ¶P i ¶� that do not represent complete phrases do not
have symbols inP i � 1; analogously withP̂ i � 1, â� . The preprocessing yields a listQ with the
positions in P that limit incomplete parsing phrases. More speci�cally, every positionq " Q
is either the rightmost symbol underP i � a� or P̂ i � â� in P's parse tree, or the leftmost symbol
under P i � b� . The elements inQ denote the cuts we try in the geometric data structure. As
there areO� 1� incomplete phrases per parsing leveli , there areO� logm� cuts in total.

The time obtained [34] isO� m � � occ� 1� log� n� for any constant � %0, but the index is
complicated and likely much larger than the regular one.

3.4 BWT Indexes for Labeled Directed Graphs

Using the BWT framework we can produce succinct indexes for labeled directed graphs. A
relevant advantage of this approach is that it does not require us to store the graph topology
explicitly, only the labels plus some auxiliary bit vectors of length proportional to the number
of edges. In BWT-based indexes for graphs, the time of the navigational operations have a
log� slowdown factor as they build on theLF operation. In addition, we can search for the
occurrences of a patternP� 1,m� in the graph paths inO� m log� � time usingbackwardsearch.
These features have made BWT-based indexes popular in Genomics. Recall that the DNA
alphabet is very small, so thelog� factor is negligible in practice for genomic data. Before
explaining the ideas, we give some relevant de�nitions.

Let G � � V , E, � � be a directed labeled graph. V is the set nodes,E is the set of
edges, and� � � 1, � � is the alphabet of edge labels. The direction of every edge� u, v� " E
is from node u to node v. The operator l � u, v� " � denotes the label of� u, v� and the
operator T represents the ordering between the symbols in� . A path in G is a sequence
of nodesvi , vi � 1, : : : , vi � k such that the edges� vi , vi � 1� , � vi � 1, vi � 2� , : : : , � vi � k� 1, vi � k � exist in
E. Indexing G using the BWT framework described in previous sections requiresG to be a
Wheeler graph[69]:

De�nition 1 G is a Wheeler graph if there is an ordering of the nodes such that nodes with
in-degree0 precede those with positive in-degree and, for any pair of edges� u, v� and � u¬, v¬� ,
labeled with a and a¬ respectively, the following monotonicity properties hold:

a T a¬ � v $ v¬

� a � a¬� 0 � u $ u¬� � v & v¬.

De�nition 2 G is path coherent if there is a total order of nodes such that for any consecutive
range� i , j � of nodes and a stringS, the nodes reachable from those in� i , j � in ¶S¶ steps by
following edges whose labels formS when concatenated, themselves form another range
� i¬, j ¬� .

If G is a Wheeler graph, then it is path coherent (Lemma 3 [69]). This feature is relevant

50

Function Description Time
Complexity

outdegree� v� number of outgoing edges ofv O� 1�
indegree� v� number of incoming edges ofv O� 1�
outneighbor� v, k� kth outgoing neighbor ofv in the graph ordering log�
inneighbor� v, k� kth incoming neighbor ofv in the graph ordering log�
�nd � P� 1,m�� report all paths in G pre�xed by P O� m log� �

Table 3.1: Queries supported by BWT graph indexes

to support queries overG using the LF and backwardsearchoperations. The problem is that
determining if G belongs to the Wheeler class is NP-complete for any edge label alphabet
of size � % 2 [75]. Although the formal characterization of a Wheeler graph is relatively
new [69], the idea is not. Several BWT-based indexes in the literature [172, 63, 24] are
representations for graphs that belong to the Wheeler class. We brie�y describe two such
indexes: forlabeled tries[63] and directed acyclic graphs[175]. They are the basis for the
genomic representations we develop in later chapters. Table 3.1 summarizes the common
queries they support and their time complexities.

3.4.1 Labeled Tries

Let T � � V , E, � � be a cardinal labeled trie, where every nodev " V is labeled with a
symbol l � v� " � . The special character# is the smallest one in� , and only labels the root
of T, denoted asr ¬. Each edge� u, v� " E is directed from the child nodeu to its parent v.
We use the operator�l � v� to refer to the string resulting from the concatenation of the labels
in the path vi , vi � 1, : : : , vi � k , where vi � v and vi � k � r ¬. We call �l � v� the extended labelof
v. Note that, unlike Wheeler graphs, the labels ofT are in its nodes, not in its edges. In
the particular case ofT, this di�erence does not have a relevant e�ect on the model. We
can assume that a node's label is associated with the edge that connects the node with its
parent.

To build a BWT index for T, we proceed as follows; we de�ne an empty listQ and start
a preorder traversal overT. For every edge� u, v� " E we visit, we append the triplet
� l � u� , �l � v� , int � into Q. The �eld int is a bit �ag set to 0 if u is a leaf or set to1 otherwise.
Once we scanT, we stably sortQ according the lexicographical order of the second compo-
nents. After the sorting, the information of every internal nodev now lies in a speci�c range
Q� i , j � of c � j � i � 1 consecutive triplets, wherec is the number of children ofv. We create
a bit vector B � 1,¶Q¶� in which we setB � j � � 1 for every di�erent range Q� i , j � . We also
create a bit vectorI � 1,¶Q¶� to concatenate theint �ags and a list L � 1,¶Q¶� to concatenate
the labels in the �rst components ofQ. In both lists I and L, we insert the elements in the
same order as they appear inQ. Similarly as with the matrix M in the BWT, we do not
need to explicitly store the second components ofQ (the extended node labels). Instead, we
create a vectorC� 1,� � , where eachC� c� stores the number of distinct extended labels that
are lexicographically smaller than symbolc. The BWT index of T (denoted XBW-transform
in [63]) is thus conformed byB, I , L and C.

51

We identify every internal nodev " V of T in the XBW-transform using the pair � i , j �
that represents the location ofv in the index. Recall that L � i , j � has the labels of its incoming
edges, andI � i , j � marks which of its children are leaves. We assume that we always know
the range� i , j � for v when performing queries in the XBW-transform. Notice the leaves do
not have an associated pair� i , j � as they do not have incoming edges. This di�erence is
not a problem in practice. The most relevant queries for a leafu are accessing its label and
moving to one of its siblings or to its parent. If we know the range� i , j � of u's parent, we
obtain its label by inspectingL� i , j � . Similarly, if we know that L � i¬� is the label ofu, then
we obtain the range� i , j � of its parent usingB. We need to �nd the greatesti¬$ i such that
B � i¬� 1� � 1 and the smallestj ' i¬ such that B � j � � 1.

Implementing the function outdegree� v� is not necessary as all the nodes have only one
outgoing edge, the parent. On the other hand, the functionindegree� v� is just j � i � 1.

As anticipated, moving top-down inT is implemented using a variation of theLF function.
Suppose we know the rangeL� i , j � of the internal nodev, and we want to know the range
� i¬, j ¬� of the kth child of v, for k & j � i � 1. This child, say u, is encoded at position
q � i � k � 1, and its label isl � u� � L � q� � c. If I � q� � 0, we return an invalid range� 0, 0� to
indicate u is a leaf. If not, then we compute its corresponding range� i¬, j ¬� with the formula:

b � C� c� � rankc� L , q�

i¬ � select1� B , b� 1� � 1

j ¬ � select1� B , b� .

The valueb is the lexicographical rank of�l � u� � c��l � v� among the other extended labels of
T. It indicates that the information of u is stored in thebth range of L. Thus, we compute
the boundaries ofu in L using the select1 operations overb. This top-down navigation is
equivalent to the function inneighbor� v, k� of Table 3.1.

Now let us perform the inverse procedure; moving from the index position� i¬, j ¬� of u to the
index position � i , j � of its parent v. The idea is as follows; we �rst obtain the lexicographical
rank of the extended path ofu as r � rank1� B , j ¬� . We perform a binary search overC
to �nd the position c � l � u� such that C� c� $ r & C� c � 1� . We then compute the value
b¬ � rank1� B , j ¬� � C� c� , which is the lexicographical rank of�l � u� among the other extended
paths ofT pre�xed by c. Subsequently, we get the BWT positionq � i � k � 1 � selectc� L , b¬� .
The value of k means that u is the kth child of its parent. From q, we obtain the greatest
i & q such that B � i � 1� � 1 and the smallestj ' q such that B � j � � 1. The summary of the
steps is as follows;

b¬ � rank1� B , j ¬� � C� c�

q � select1� L , b¬�

b � rank1� B , q�

i � select1� B , b� 1� � 1

j � select1� B , b� .

We adapt the backwardsearchprocedure to implement the function�nd � P� 1,m�� of Ta-

52

ble 3.1. Let L � s, e� be the range in the backward search step for su�xP� x, m� . We start
with the range L� 1,¶V¶� for x � m � 1 and then, for x � m, : : : , 1, compute the new range
L� s¬, e¬� for P� x � 1,m� , with p � P� x � 1� , as:

s¬ � C� p� � rankp� L , s � 1� � 1

e¬ � C� p� � rankp� L , e�

s¬ � select1� B , s¬� 1� � 1

e¬ � select1� B , e¬� .

As in previous BWT indexes, we storeL as a wavelet tree (Section 2.3) to supportrankc

and selectc in O� log� � time. In addition, we augmentB with rank1 and select1 data structures
to traverse T. Thus, the total space usage of the BWT-based index forT is 2n � n� H 0 �
1�� 1 � o� 1�� � O� w� � bits of space, wheren � ¶V¶. This space is small compared to the
O� n logn � n log� � bits of a pointer-based representation.

3.4.2 Directed Acyclic Graphs

In a labeled trie, navigational queries are simple as all the nodes have only one parent (i.e.,
they have out-degree one). In contrast, in a labeled directed acyclic graph (DAG), the
nodes can have more than one outgoing edge, which invalidates theLF formula. We solve
this problem by adding a bitmap that encodes the out-degree of the nodes. We follow the
nomenclature of Mäkinen et al. [120] to explain the idea.

Let G � � V , E, � � be a labeled DAG, where each edge� u, v� " E is directed from u
to v, and it is labeled with a symbol in � � � 1, � � . We assumeG has a source nodes
and a sink nodet. Let l � v1, v2, : : : , vk � be the concatenation of the edge labels in the path
v1, v2, : : : , vk of G. The operator �l � v� denotes all the path labelsr l � v1, v2, : : : , vk � ¶ v1 �
v, vk � t, � vi , vi � 1� " E , i " � 1,k � 1�x . For G to be indexed using the Wheeler framework,
it must meet the following properties:

ˆ The outgoing edges ofs are labeled with $ � � , the greatest symbol in� . We also
assumet has an arti�cial outgoing edge labeled with# � 1, the smallest symbol in� .

ˆ The nodes arereverse deterministic; the incoming edges of everyv " V have distinct
labels.

ˆ The nodes arestrongly distinguishable; all the strings in �l � v� are pre�xed by some
(maximal) string Pv " � 1, � � � and there is no other nodex " V such that Pv is also a
pre�x in �l � x� . We refer to Pv as the distinguishable pre�x ofv.

A DAG G¬may not meet these conditions, but we can modify it so that it does. We make
G¬reverse deterministic using the classical powerset construction algorithm for determinizing
�nite automata (see Section 9.6.3 in Mäkinen et al. [120]). Additionally, we can adapt the
pre�x-doubling technique for su�x array construction to make G¬ strongly distinguishable
(see Section 6 of Sirén et al. [175]). We now describe the procedure to build the BWT-index
for G.

We create a list Q with all the possible pairs � l � u, v� , Pv � of G, where u is one of the
incoming nodes ofv. We stably sort Q according the lexicographical rank of the strings

53

in the second component of the pairs. As in the previous section, the sort step places the
information of v in a contiguous rangeQ� i , j � . We create a bit vectorB � 1,¶Q¶� to mark the
last elementB � j � � 1 of every distinct v " V . In addition, we create another bit vectorO
that will encode the nodes' out-degrees. For each distinguishable pre�xPv we see inQ (from
left to right), we append the sequence of bits10o� 1 to O, whereo is the out-degree ofv in G.
Finally, we create the arrayL� 1,¶Q¶� with the �rst components of Q and the array C� 1,� � .
In this case,C� c� stores the number of edges labeled with symbols lexicographically smaller
than symbol c. The �nal BWT-index for G is composed ofB , O, L and C.

The navigational queries for the BWT index ofG are rather similar to those of Sec-
tion 3.4.1. We implementindegree� v� in constant time asj � i � 1. We can also implement
outdegree� v� in constant time using the formula select1� O, bv � 1� � select1� O, bv � , where
bv � rank1� B , j � is the lexicographical rank ofPv among the distinguishable pre�xes ofG.
To implement inneighbor� v, k� � u, we slightly modify the LF operation. Let u be the kth
incoming node ofv encoded at positionq � i � k � 1, and with label l � u, v� � L � q� � c. We
obtain the range� i¬, j ¬� for u with the following formula:

bu � rank1� O, C� c� � rankc� L , q��

i¬ � select1� B , bu � 1� � 1

j ¬ � select1� B , bu � .

Note that C� c� � rankc� L , q� does not necessarily gives us the lexicographical rank of
Pu � cPv. If u has out-degreeo, then there is some range inL, where there areo consecutive
occurrences ofc, and all of them lead us tou. To �nd the correct lexicographical rank bu

of Pu, we use the operationrank1� O, C� c� � rankc� L , q�� . The rest of the formula above is
equivalent to moving top-down in the XBW-transform.

The operation outneighbor� u, k� � v is a bit more elaborate. Suppose we know foru
the lexicographical rankbu of Pu and its rangeL� i¬, j ¬� . We �rst perform a binary search
over C to �nd the symbol c such that C� c� $ i¬ & C� c � 1� (i.e., the pre�x of Pu � cPv).
Subsequently, we perform the successive steps:

x � select1� O, b¬� � k � 1 � C� c�

bv � rank1� B , selectc� L , x��

i � select1� B , bv � 1� � 1

j � select1� B , bv � .

The operationselectc� L , x� gives us the positionq in L storing the label of edge� u, v� . After
computing q, we obtain the lexicographical rankbv of Pv, and then � i , j � .

The implementation of �nd � P� 1,m�� in the DAG index is almost equal to that of the
labeled trie. The only di�erence is that now we have to consider the arrayO. Suppose the
previous backward search step yielded the rangeL� s¬, e¬� , and now we have to compute the

54

next step using symbolc. The successive steps are:

s¬ � C� c� � rankc� L , s¬� 1� � 1

e¬ � C� c� � rankc� L , e¬�

s¬ � select1� B , rank1� O, s¬� � 1� � 1

e¬ � select1� B , rank1� O, e¬�� .

3.5 Algorithms for building the SA and the BWT

The design of algorithms for building the su�x array and the BWT is a relevant topic
in stringology as these structures are the main components in several succinct self-indexes.
There are several methods proposed in the literature that are e�cient in terms of time or space
(see, for instance, [98, 147, 10, 132]). However, the hidden constants in their complexities
are too high for practical applications on massive collections.

A recent trend in the computation of the BWT is to exploit the text redundancies [22,
93, 94]. The general idea consists of factorizingS to create a dictionary D of phrases.
Subsequently, we sortD in some speci�c order and then extrapolate the results to the whole
text. If the text is repetitive enough, then D should be small, and computing the BWT
should be e�cient.

In Section 3.5.1, we describe an algorithm for building the BWT that uses this approach.
Section 3.5.2 describes a general-purpose linear-time algorithm for computing the BWT and
the su�x array that can also be adapted to use this idea. This latter method is relevant for
the thesis as it has applications in the compression of sequencing reads and the production
of locally consistent grammars (Section 3.2.2).

3.5.1 Pre�x-Free Parsing

Pre�x-free parsing (PFP) [22] is a linear-time procedure that transforms an input textS� 1,n�
into a sequenceP of overlapping pre�x-free phrases. The setD with the distinct phrases is
referred to as thedictionary while P is referred to as theparse of S. Consecutive phrases
in P overlap by x characters, wherex is an input parameter. The strings in the dictionary
are sorted in lexicographical order, and the phrases inP are replaced by their ranks in the
dictionary. We now describe how to buildD and P, and then we explain how to use them
to boost the computation of the BWT.

To perform PFP, we �rst create a new input stringS¬ � #S$x , where# and $ are symbols
lexicographically smaller than any character inS. These values are appended toS to avoid
border cases. Subsequently, we choose a hash function for strings of lengthx and a prime
numberp. We roll the hash overS¬(Section 2.3.2), and every time we �nd a substringS¬� i , j �
of length x whose �ngerprint modulo p equals0, we consider it as atrigger of a new phrase.
If S¬� i¬, j ¬� , with i¬, j ¬$ i , was the previous trigger inS¬, then the new phrase inP is S¬� i¬, j � .
As we move on throughS¬, we also hash the phrases to buildD. Once we �nish the scan, we
sort D in lexicographical order and replace the phrases inS¬ with their ranks in D.

Let Z " D be a phrase and letA � Z � u..� be a string of length%x that only occurs as

55

a proper su�x in Z . If Z has z occurrences inS, then the su�xes of S pre�xed by A form
a rangeSA� i , j � of length z in the su�x array. Further, as A only appears inZ , the BWT
rangeL� i , j � is an equal-symbol run of lengthj � i � 1 for Z � u� 1� . Using this observation, we
can infer several segments of the BWT ofS directly from D. Still, there are some situations
we cannot handle. For instance, ifA were a non-proper su�x of Z (i.e., Z � A), we could
not access its preceding symbol fromZ, and hence, we could not know the symbol forL � i , j � .

Another situation we cannot handle just withD is when a string that appears as a su�x
in two or more dictionary phrases has di�erent left contexts. SupposeA is a su�x in two
phrasesU and Y and the symbols that precedeA in U and Y (au and ay, respectively) are
di�erent. If U occursou times in S and Y occursoy times, then the su�xes of S pre�xed by
A form a rangeSA� i , j � of length ou � oy. Although we know that the correspondingL� i , j �
contains ou copies ofau and oy copies ofay, we cannot infer their relative orders.

We handle those situations usingP's BWT. Recall that every distinct symbol b in P
represents a speci�c dictionary phraseB " D. Hence, the disposition of the occurrences of
b in P's BWT also represents the relative order of the occurrences ofB in S¬ when sorted
according the lexicographical ranks of the su�xes that follow them. Now let us return to the
example in the previous paragraph. In one scan ofP's BWT, we obtain the relative order
of the occurrences ofU and Y to get the relative order of symbolsau and ay in L � i , j � . We
know brie�y discuss how to implement these ideas in an algorithm for computing the BWT
L.

We �rst obtain the PFP of S¬. Subsequently, we sort the distinct su�xes inD of length
%x in lexicographical order. For every su�x A in D of length %x, we create a pair� f , a� .
The valuef is the cumulative frequency of the phrases whereA occurs, anda is the preceding
symbol of A in those phrases. WhenA is not a proper su�x or has more than one distinct
left context in D, we replacea with a placeholder# that we will �ll later. We store the pairs
in a list L¬, sorted according to the lexicographical ranks of the su�xes from which they were
generated. More speci�cally, ifA has rank r among the distinct su�xes of length %x, then
� f , a� is the rth pair in L¬.

Let us denoteLP the BWT of P to di�erentiate it from L. We can induce a partition
over LP so that the bth block stores the preceding symbols of the su�xes inP pre�xed by
b " � 1,¶D¶�. This partition allows us to �ll the placeholders in L. Let LP � i , j � be the BWT
range storing the symbols precedingb in P. We create an empty listLb and start a scan over
LP � i , j � from left to right. For every symbol LP � k� , with k " � i , j � , we retrieve its associated
phraseF " D and appendF 's last symbol to Lb. After scanning LP � i , j � , we mapb to its
phraseB " D and retrieve the rankr of B among the distinct su�xes in D of length %x.
Finally, we replace ther th pair in L¬ with Lb. Notice that the pair that Lb replaced inL¬

had a placeholder. We can run-length compressLb so it matches the format of the pairs in
L¬.

We �ll the remaining placeholder positions inL¬with another linear scan ofLP �although
we could use the same scan of the previous paragraph. We �rst create a listLA for every
distinct proper su�x A of D with two or more di�erent left contexts. We also need a mech-
anism to keep track of the occurrences ofA in the distinct dictionary phrases. Subsequently,
we scanLP from the left; if the phraseF " D that maps the current characterLP � i � has an

56

occurrence ofA � F � j ..� , then we append the symbolF � j � 1� to LA . The important aspect
of this scan is to maintain the BWT order of the symbols we insert intoLA . After we �nish
the scan, we replaceA's pair � f , #� in L¬ with LA . As before, we can run-length compress
LA to match the format. The resulting list L¬ is a partially run-length compressed version of
S's BWT.

The space and time complexity of this BWT algorithm is proportional to the size ofD
and P. If S is repetitive enough, then one would expect these values to be small. Of course,
the parse size does not depend only on the text. It also depends on the values we choose for
x and p.

3.5.2 Induced Su�x Sorting

Induced su�x sorting (ISS) [98] is a technique that computes the lexicographical ranks of a
subset of su�xes in S and then uses the result toinduce the order of the rest. This method
is the underlying procedure in several algorithms that build the su�x array [141, 140, 117]
and the BWT [147, 22] in linear time. The ISS idea introduced by the su�x array algorithm
SA-IS[141] is of interest to this thesis. The authors give the following de�nitions:

De�nition 3 A character S� i � is called L-type if S� i � %S� i � 1� or if S� i � � S� i � 1� and
S� i � 1� also L-type. On the other hand,S� i � is said to be S-type ifS� i � $ S� i � 1� or if
S� i � � S� i � 1� and S� i � 1� is also S-type. By default, symbolS� n� , the one with $, is
S-type.

De�nition 4 A character S� i � , with i " � 1,n� , is called leftmost S-type, or LMS-type, if
S� i � is S-type andS� i � 1� is L-type.

De�nition 5 A LMS substring is (i) a substringS� i , j � with both S� i � and S� j � being LMS
characters, and there is no other LMS character in the substring, fori j j ; or (ii) the sentinel
itself.

SA-ISis a recursive approach. In every recursion leveli , we �rst scan the input text Si ,
with S1 � S, from right to left to classify its su�xes as L-type, S-type or LMS-type. As we
move through the text, we record the positions of the LMS substrings. Then, we sort the
LMS substrings using ISS as follows; we create an arrayA i � 1,n� and logically divide it into
� i buckets, one for the su�xes starting with each symbol in� i � � 1, � i � (the alphabet of
Si). Each bucket is, in turn, divided in two sub-buckets, the �rst one, the L-bucket, is for
the su�xes pre�xed by L-type characters and the second one, the S-bucket, is for the su�xes
pre�xed by S-type characters. Then, we perform the following operations:

1. We insert the positions of the LMS substrings at the end of the S-buckets inA i . In
every one of these buckets, we maintain the order of the LMS strings as they appear in
Si . The S-bucket of an LMS stringSi � j , j ¬� is that of the bucket of symbolSi � j � .

2. We scanA i from left to right and for every j such that Si � A i � j � � 1� is L-type, we
insert the index A i � j � � 1 in the leftmost available position of the L-bucket of symbol

57

Si � A i � j � � 1� . After the scan, the elements in all the S-buckets are discarded.

3. We scanA i from right to left and for every j such that Si � A i � j � � 1� is S-type, we insert
the index A i � j � � 1 in the rightmost available position of the S-bucket ofSi � A i � j � � 1� .

This procedure sorts the LMS substrings in a way that is slightly di�erent from lexi-
cographic ordering. In particular, if an LMS substringS� a, b� is a pre�x of another LMS
substring S� a¬, b¬� , then S� a, b� gets higher order. However, the higher rank ofS� a, b� implies
that the su�x S� a..� is lexicographically greater than the su�x S� a¬..� . The cause of this
property is explained in Section 2 of Ko and Aluru [98].

After �nishing the procedure, we still have to calculate the relative order of the su�xes
that start with the same LMS substring. For that purpose, we create a new stringSi � 1 in
which we replace the LMS substrings with their lexicographical ranks and use this new string
as input for another recursive calli � 1 of SA-IS. The base case for the recursion is when
all the su�xes in A i are pre�xed by di�erent symbols, in which case we returnA i without
further processing.

When the � i � 1� th recursive call ends, the su�xes of Si pre�xed by the same LMS
substrings are completely sorted inA i � 1. Therefore, we are ready to induce the order of the
rest of the su�xes. For doing so, we resetA i and repeat the same ISS procedure. The only
di�erence is that in step 1 we put the LMS-substrings at end of the S-buckets ofA i arranged
as they appear inA i � 1. Step 2 and 3 are executed without changes. Once we complete all
the recursive calls, the su�x array of S is in A1.

Steps1, 2 and 3 take time proportional to the size ofSi . In addition, every time we enter
a new recursion stepi � 1, the length of its input text Si � 1 is at most half the size ofSi . This
feature implies that, if we consider all theSi from all the recursive steps, their lengths do not
sum more than2n characters. As a consequence, the running time ofSA-ISis O� n� . On the
other hand, the array A i dominates the space complexity. As every cell requireslogn bits,
and all the A i arrays do not sum more than2n cells, the working space ofSA-ISis O� n logn�
bits.

58

Chapter 4

Computational Genomics

Computational Genomicsis an interdisciplinary �eld that uses computational and statistical
methods to study how genome sequences control biological processes. In recent years, it has
become an essential means for biological discovery due to the abundance of collections of
DNA strings. Still, a remaining problem is how to e�ciently manipulate those collections in
the computer. In most cases, they are too massive to use conventional algorithms and data
structures. In this chapter, we review the main techniques used in Computational Genomics
to process DNA strings.

4.1 DNA Sequences

A DNA sequenceS is a string over the alphabet� � r a, c, t , g, nx (which we map to� 2, � �).
The symbols in� represent the distinctnucleotidesthat conform DNA. The only exception
is n, which usually denotes an unknown nucleotide. DNA isdouble stranded, meaning that
there are two possible sequences for the same molecule, one for each strand. However, these
sequences are complementary; every time we see ana at some position in one strand, we see
a t at the same position in the other, and vice-versa. The same applies forc and g. The
DNA strands have di�erent orientations, and so have their sequences. One sequence is read
from left to right (the forward strand), and the other is read from right to left (the reverse
strand). For simplicity, we store the sequence of one strand in the computer, as we can easily
infer the other from the information we already have. An example of a DNA sequence is
shown in Figure 4.1A.

Formally, the DNA complement is a permutation � � 2, � � that reorders the symbols in
� exchanginga with t and c with g. The reverse complementof S, denoted Src , is a
string transformation that reversesS and then replaces every symbolS� i � by its complement
� � S� i �� . For technical convenience we add to� the so-calleddummy symbol $, which is
always mapped to1.

59

Figure 4.1: DNA strings and sequencing. (A) Schematic representation of a double-stranded
DNA molecule. Forward strand (upper sequence) is read from left to right, while the reverse
strand (lower sequence) is read from right to left, and corresponds to the reverse comple-
ment of the forward. (B) Sequencing experiment of the DNA molecule of Figure (A). Gray
sequences are the reads. The layout is inferred via su�x-pre�x overlaps between the reads.

4.2 DNA Sequencing

Sequencingconsists of determining the order of the nucleotides in a DNA sample. Although
several methods have been proposed over the years for this task [157], the most successful
ones have beennext generation sequencing(NGS) techniques [168]. They are cheap, fast,
and produce high-quality data. There are several NGS platforms, but the most popular one
is Illumina [85]. This method breaks the source DNA into smaller fragments and introduces
them into a machine (a.k.a., the sequencer) that reads their nucleotides in parallel. The
collection of fragments is usually known as thelibrary. There are two types of libraries,
single-end, and paired-end. In the former, the sequencer produces one string per fragment.
In the latter, it creates two; one for the left end and the other for the reverse complement of
the right end. The strings obtained from the fragments are referred to as thereads.

A major problem with NGS sequencers is that they cannot process long molecules. The
number of nucleotides they can scan from a single fragment ranges from a few dozens up
to a few hundred. Still, complex genomes, such as those of mammals, are several billion
nucleotides long. NGS technologies solve this problem by producing overlapping read collec-
tions. More precisely, they use multiple copies of the source DNA for the library construction,
break those copies at random, and sequence the resulting fragments. Then it is necessary to
assemblethe reads to infer the sequence of the source DNA. The idea of producing overlap-
ping reads is also helpful to deal with sequencing errors, i.e., when the sequencer emits an
incorrect nucleotide. If a read has an error, we can �x it using the overlapping reads that
contain the correct information.

In recent years, a new generation of sequencing technologies has emerged as an alternative
to NGS, the so-calledthird-generation platforms [185]. They produce much longer reads
than NGS, although their throughput is smaller and their accuracy is still lower. However,
these limitations should be solved soon. Recently, the company PacBio [17] presented its
Hi-Fi protocol [190], which produces long reads comparable in accuracy to Illumina's. On
the other hand, the company Nanopore [180] o�ers small and a�ordable sequencers that can
yield volumes of data even more signi�cant than those of Illumina and with much longer
reads. Although the accuracy of Nanopore is still not as good as that of Illumina or PacBio
Hi-Fi. Table 4.1 describes the most popular sequencing technologies nowadays.

60

Platform Instrument Accuracy
Median

read length
Maximum

read length
Throughput

per run
Run
time

Illumina
MiSeq 99.9% 2 � 300B 2 � 300B 15 GB Up to 55 h

NextSeq 99.9% 2 � 150B 2 � 150B 120 GB Up to 30 h
NovaSeq 99.9% 2 � 250B 2 � 250B 6 TB Up to 44 h

PacBio Sequel II 88% - 99.9% 45KB - 190KB 300 KB 20�50 GB Up to 96 h

Nanopore
MinION 97.5% - 98.3% Variable Variable Up to 42 GB Up to 72 h
GridION 97.5% - 98.3% Variable Variable Up to 210 GB Up to 72 h

PromethION 97.5% - 98.3% Variable Variable Up to 11.7 TB Up to 72 h

Table 4.1: Comparative table with the di�erent sequencing technologies. The accuracy is
reported as the percentage of nucleotides in the source DNA with a high probability of being
correctly sequenced (Phred score). PacBio reads with 99.9% of accuracy are those produced
with the Hi-Fi protocol. Throughput and read lengths are reported in bytes (B), megabytes
(MB), gigabytes (GB) or terabytes (TB). The data in this table was extracted from the
o�cial webpages of Illumina, PacBio and Nanopore.

DNA sequencing is not a linear problem. In most of the cases, the source DNA is a set of
molecules that have highly similar sequences. The origins of these molecules are varied, for
example, the many cells from which the DNA was extracted1, the di�erent copies of the same
chromosome2, or individual genomes of the same species that were sequenced all together.
In such cases, the desired result is not a string, but an labeled directed acyclic graph (DAG)
representing the highly similar sequences as paths in a graph. Figure 4.2A depicts the idea.

It is hard to tell if a variation is real or if it is a sequencing error just by looking at
the reads, but some heuristics can be applied to make an educated guess. However, other
di�culties cannot be addressed only by using string queries. An example of these di�culties
are the gaps in the coverage, i.e., places in the source DNA that are not covered by any read.
From a biological point of view, the repetitiveness is also a problem; if a given substring in
the source DNA is along repeatbigger than any read, then it is not always possible to decide
which is the correct ordering of sequences surrounding it.

4.2.1 Sequencing File Format

Reads are typically stored asFASTQ�les. This format uses four lines per read. The �rst line
is the identi�er of the read. The second line is the DNA sequence inASCII code. The third
line is a separator, denoted by+, and the fourth line is a string encoding the sequencing
qualities (Phred score) of the nucleotides spanned by the read. This string is also encoded
in ASCII. When the library is paired-end, the reads of the same pair are consecutive in the
�le. Figure 4.3 shows a typical entry of aFASTQ�le.

1DNA mutates at random and independently in every cell.
2Polyploid genomes contain two or more copies of the same chromosome.

61

Figure 4.2: A paired-end library. (A) A segment of the source DNA of the reads represented
as a labeled DAG. Dotted circles denote variable positions. (B) Read collection generated
from an NGS experiment. Every arrow represents a read. Dashed lines connect reads that
belong to the same pair. Gray pairs were obtained from the the forward strand of the source
DNA, so we have to transform the right read into its reverse complement. Conversely, black
pairs were generated from the the reverse strand, so we transform the left read and invert
the pair order; the left read becomes the right read and vice-versa. The gray rectangle in the
layout shows how the DAG of (A) looks like in the reads.

4.3 The de novo Assembly Problem

The typical analogy for thede novoassembly problem is that of a puzzle in which the reads
are the pieces, and the source DNA is the picture we have to reconstruct. The process consists
of estimating the disposition of reads across the genome (a.k.a., thelayout), and then obtain
the sequence of the source DNA by collapsing the reads (Figure 4.1B depicts the idea). The
classical way of calculating the layout is by computing su�x-pre�x overlaps. To be precise,
for every readSi , we �nd other reads in the collection with pre�xes that match the su�xes
of Si . We do not have any prior information about the possible genomic location ofSi , so we
have to compare its sequence against the sequence of all3 the other reads. This task requires
a quadratic number of su�x-pre�x alignments, making the layout's calculation expensive in
practice. We also have to consider the reverse complements of the reads when computing
the overlaps. Recall that we do not know their original strands. This problem doubles the
number of alignments we have to perform, making the process even more challenging.

The de novo assembly problem is usually centered in the reconstruction of genomes. Al-
though this de�nition is not strict; we can also assemble the set of transcripts being expressed
in a cell (transcriptome) or the collection of microbial genomes that live in the same envi-
ronment (metagenome). In practice, however, the algorithmic techniques do not vary much.
For simplicity, we further explain the de novo assembly problem in terms ofdiploid genomes4

3When the read collection is paired-end, we can discard the overlaps betweenSi and its pair.
4Each chromosome in the genome has two copies.

62

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATC
+
!�*((((***+))%%%++)(%%

Figure 4.3: Read entry inFASTQformat.

as this is the case of humans.

Given the limitations of sequencing technologies (see Section 4.2), it is impossible to
reproduce the reads' exact layout. This problem prevents the complete reconstruction of the
source DNA. Most of the programs for assembling reads (a.k.a.,assemblers) produce strings
representing only segments of the chromosomes, the so-calledcontigs. Several aspects limit
the size of the contigs. The most important ones are lack of sequencing coverage, sequencing
errors, and the repetitive regions of the genome. Reads with sequencing errors are more
prone to be misplaced in the layout, while reads produced from repetitive genomic regions
have several equally probable positions where to be placed. When the assemblers detect
these problems, they just cut the contigs to avoid producing sequences that do not exist in
the genome.

Contigs can be further extended tosca�olds using the paired-end information of the reads.
The rationale is simple: suppose several reads that belong to contigA are paired with several
other reads that belong to contigB . In this situation, we can place contigsA and B in one
sca�old as it is highly probable that their sequences lie close to each other in the genome.
Sca�olds are the best result most NGS assemblers can achieve. One can further join sca�olds
into chromosomes using extra molecular information, but assemblers usually do not carry out
this procedure. The �nal genome is a collectionR with one string per distinct chromosome.
R can also have other smaller sequences representing contigs or sca�olds that could not be
assigned to any place.

Some genomic analyses require to produce di�erent strings for the copies of the same
chromosome as their nucleotide di�erences represent important biological information. Still,
obtaining such sca�olds is impossible using NGS data alone, the reads are too short. More re-
cent assemblers [189] use third-generation sequencing data to produce near-complete genomes
and identify sca�olds that belong to di�erent copies of a same chromosome.

We introduce some notation before continuing with the explanations. LetSi and Sj

be two any strings. The operatorSi h o Sj denotes anoverlap between theo-su�x of Si

and the o-pre�x of Sj . The consensusstring of Si h o Sj is the sequenceSi �Sj � p � 1..� .
Similarly, Q � S1 h o1 S2 : : : h or � 1 Sr is a sequence ofr consecutive overlaps, and the operator
c� Q� � S1�S2� o1 � 1..� : : : Sr � or � 1 � 1..� refers to its consensus string.

A genome graphG � � V , E� is a directed graph in which every node is labeled with a
string that appears in the reads. The operatorl � v� refers to the label of nodev " V. A
directed edge� u, v� " E from nodeu to nodev exists if there is an overlapl � u� h o l � v� such
that o is equal or greater to some parameterm. Let P � v1, v2, : : : , vp be a path in G from
node v1 to node vp. The label l � P� of P is the consensus string obtained from the overlap
sequencel� v1� h o1 l � v2� : : : l� vp� 1� h op� 1 l � vp� .

63

We spell contigs fromG by �nding paths whose labels areprobableto exist in the chro-
mosomes. Recently, Tomescu et al. [181] formalized the concept of �probable�. They de�ne
a genome reconstruction as a stringl � P� whose pathP completely coversG5. In their edge-
centric description ofG, P visits all the edges. In the node-centric version, it visits all the
nodes. Note that, in both cases, we can produce several genome reconstructions fromG, but
not all of them are real genome segments. Now, letP¬ be a path in G. Its label l � P¬� is said
to be safe (or probable to occur in the chromosomes), if it appears as a substring in all the
genome reconstructions ofG. The most basic type of safe string is the label of a unary path;
all the nodes in the path, except the �rst one and last one, have one in-neighbor and one
out-neighbor. However, there are other graph structures that also produce safe strings.

Tomescu et al. proposed the concept ofomnitigs as a way to characterize all the paths of
G whose labels are safe. In the edge-centric model,P¬ � v1, v2, : : : , vp is an omnitig if for any
1 $ i & j $ p, there is no proper path fromvj to vi with �rst edge di�erent from � vj , vj � 1�
and last edge di�erent from � vi � 1, vi � (De�nition 5 of [181]). This de�nition can be easily
extended to the node-centric model. Thus, ifP¬ is an omnitig, then l� P¬� is safe.

There are two types of genome graphs in literature;de Bruijn graph (dBG) [46] andoverlap
graph (OG) [133]. Assemblers relying on dBGs ([191, 28, 171, 5]) consume less computational
resources than those using overlap graphs. However, they produce more fragmented genomes.
Assemblers that use OGs ([134, 192]), on the other hand, although they consume more
resources, produce longer and more accurate contigs. In the following, we discuss these two
frameworks.

4.3.1 The de Bruijn Framework

A dBG of order k of a string collection S � rS1, S2, : : : , Sqx is a labeled directed graph
G � � V , E� where every nodev " V is labeled by a distinct substring ofS of length k � 1. A
directed edge� v, u� " E exists if the string l � v� h k� 2 l � u� appears as a substring in at least
one element ofS. The label of � v, u� is the last symbol ofl � u� . Figure 4.4 shows an example
of a dBG.

To build G, we scanS and store into a setH the distinct substrings of lenghtk (a.k.a.,
kmers). Then, we create a node inG for every distinct substring of length k � 1 in H .
Finally, for each kmerK " H , we create an edge� v, u� in G between the nodev labeled with
K � 1,k � 1� and the nodeu labeled with K � 2,k� .

There is an interesting link between the dBG and the reads' layout. Suppose a group
of readsS1, S2, : : : , Sr in S form an overlap sequenceQ � S1 h o1 S2 : : : h or � 1 Sr with every
oi ' k � 1. In that case, G will have a path P � v1, v2, : : : , vr ¬ such that l � P� � c� Q� .
Further, if the � k � 1� mers in c� Q� do not appear in the other reads ofS, then P is a unary
path. This last feature allows us to unequivocally spellA from G without having to compute
su�x-pre�x overlaps between the reads ofQ.

The dBG is simple to construct, and allows us to spell contigs without computing su�x-

5Their de�nition considers a circular genome composed of one chromosome. These types of genomes are
naturally found in microorganisms.

64

Figure 4.4: The dBG framework. (A) A set of reads disposed according the layout. (B)
Example of a dBG with orderk � 3 produced from the reads of (A).

pre�x overlaps between the reads ofS. Still, it has some important disadvantages. If some
of the � k � 1� mers appearing inc� Q� also appear in other reads ofS, then P gets entangled
with other paths of G, and it is no longer possible to unequivocally obtainc� Q� . Besides, if
there are other reads inS overlapping strings inQ by less thank � 1 characters, the paths
in G spelling those reads will not be connected toP. Changing the dBG order mitigates the
problem, but there is no one single value fork that captures all the valid overlaps ofS. If we
use a small order, then the graph becomes too tangled, but if we use a high order, the graph
becomes too disconnected.

Despite the limitations, dBGs are still a popular solution in Bioinformatics. Their use has
been extended from de novo assembly to other genomic tasks such as correction of sequencing
errors [164], detection of genetic variations [89] or measurement of gene expression [25].

The BOSS Representation

BOSS [24] is a succinct encoding for dBGs that builds on the idea of Wheeler graphs (Sec-
tion 3.4). In BOSS, the nodes are represented as rows in a matrix ofk � 1 columns, and are
sorted in colexicographical order. All the edge labels (one-symbol) of the graph are stored in
a unique sequenceL sorted by the BOSS order of the source nodes. This ordering produces
the labels of the outgoing edges of each node to fall within a contiguous range inL. A
bit vector B of sizee � ¶L¶ marks the last outgoing symbol inL of every node. We also
include a bit vector I � 1,e� that encodes in unary the in-degree of the nodes6. This in-degree
information is stored in I according the BOSS order of the nodes. Finally, an arrayC� 1,� �
stores in C� i � the number of edge labels lexicographically smaller thani . The complete
index is composed of the vectorsL, C, B , and I . Their combined spaces add up to a total
of 2e � e� H 0� E � � 1�� 1 � o� 1�� � O� �w � bits.

Pre�xes in S of sized $ k are arti�cially represented in BOSS as strings of lengthk padded
at the left with k � d symbols$. Equivalently, su�xes of size d $ k are represented as strings
of length k padded at the right with k � d symbols$. Strings formed only by symbols$ are
also called dummy. The introduction of these extra strings yields a dBGG¬ � � V ¬, E ¬� with
the same order asG, but with more edges and labels.

6The original data structure of Bowe et al [24] does not includeI . Instead, they mark the edges inL
leading us to the same node.

65

Figure 4.5: Succinct de Bruijn graph. (A) A dBGG¬with order k � 4 for the string collection
{ attc , ttcg , atta }. G¬ includes the dummy strings. (B) BOSS representation forG¬. (C)
Implementation of the functionoutneighbor� 15, 2� in BOSS using the algorithm forinneighbor
in the BWT-index for DAGs (Section 3.4.2). The same operation is depicted in (B) with a
dashed arrow, and in (A) with dashed circles.

We identify every nodev " V ¬ in BOSS using the colexicographical order of its label. We
use the identi�er of v to obtain the rangeL� i , j � storing the labels of its outgoing edges. If the
identi�er of v in BOSS isr , then its range inL is i � select1� B , r � 1� � 1, j � select1� B , r � .
We can navigateG¬ with a log� slowdown factor if we use the functions of Table 3.1. Their
implementation is similar to that described in Section 3.4.2 for DAGs, but we have to invert
their algorithms as the node ordering in BOSS is from right to left (colexicographical), while
in the index for DAGs is from left to right (lexicographical). More precisely, the function
outneighborin BOSS is implemented asinneighborin the BWT-index for DAGs. Equivalently,
inneighborin BOSS isoutneighborin DAGs. The same occurs with functionsoutdegreeand
indegree. Note the bit vector I in BOSS serves the same purpose as the bit vectorO in the
BWT-index for DAGs.

For convenience, we also consider the following functions:

ˆ label2node� P� 1,k � 1�� : nodev labeled with P, if exists

ˆ nodelabel� v� : label of nodev

ˆ edgesymbol� v, k� : symbol of thekth outgoing edge ofv

The function label2nodeis an adaptation of�nd in DAGs (see Table 3.1). We implement
nodelabelby performing a backward traversal ofG¬ starting from v. The aim is to �nd any
node v¬ reachable fromv in k � 1 applications of the function inneighbor. We append the
labels of the edges we visit in the traversal into a listA, and once we reachv¬, we invert A's
sequence to return it as the label ofv. Finally, to answer edgesymbol, we obtain the range
L� i , j � of v and return the symbolL � i � k � 1� .

66

Variable-Order dBG

Lin et al. [115] generalized the concept of the dBG as a way to deal with the limitations
imposed byk when assembling genomes. In their representation, called the manifold dBG,
the node labels have arbitrary lengths, and two nodesv and u are connected by an edge
� v, u� if the sequencel� v� h o l � u� exists in S. In this case,o can be of any length, not just
k � 2 like in the regular dBG. The value foro can be even0, which means that the string
l � v� � l � u� appears in some string ofS.

Computing the node labels for the manifold dBG requires us to have the su�x tree ofS,
which makes the representation less practical as the su�x tree contains enough information
to perform genome assembly.

Boucher et al. [21] proposed an alternative generalization for the dBG that does not require
the su�x tree. They noticed that the BOSS data structure implicitly stores all the dBGs
of order k¬ $ k. More precisely, if we only consider the lastk¬ � 1 columns of the BOSS
matrix, then we will induce a partition where every range� i , j � of rows with the samek¬� 1
label encodes a nodev in the dBG of order k¬$ k. The outgoing edges ofv are the distinct
symbols in the segmentL� select1� B , i � 1� � 1,select1� B , j �� .

To allow changing the order of the dBG, Boucher et al. augmented BOSS with thelongest
common su�x (LCS) array. The LCS array stores, for every node of orderk, the size of the
longest su�x shared with its predecessor node in the BOSS matrix. They called this new
index the variable-order BOSS (VO-BOSS).

ˆ shorter � v, k¬¬� : node whose label is thek¬¬-su�x of v's label

ˆ longer � v, k¬¬� : list U with all the nodes whose labels have lengthk¬¬$ k and are su�xed
by v's label

ˆ maxlen� v, a� : a node at orderk whose label is su�xed by v's label, and that has an
outgoing edge labeleda

By using a wavelet tree (Section 2.2.2), the LCS can be stored inn logk � o� n logk�
bits, the function shorter(� i , j � , k¬) can be answered inO� logk� time and the function
longer(� i , j � , k¬) in O�¶U¶logk� time. The function maxlen(� i , j � , a) is implemented using
the arrays B and L, and hence it is answered inO� log� � time.

Colored dBG

The colored dBG enriches the edges of the graph with colors. This idea was introduced by
Iqbal et al. [89]. Their version builds a union dBGG from several string collections and
assigns the colorj to the edges that encode kmers appearing in thej th collection. The
compacted version of the colored dBG [130], called VARI, represents the topology ofG using
the BOSS index and the colors using a binary matrixC, where the cellC� i , j � is set to 1 if
the kmer represented by thei th edge in the ordering of BOSS is assigned colorj . The rows
of C are then stored using the compressed representation for bit vectors of [156] or using
Elias-Fano encoding [61, 57, 146] if the rows are very sparse. Other compacted versions of
the colored dBG have also been proposed by Almodaresi et al. [3, 4, 2] and Holley et al. [81].

67

We can also build a dBG from a string collection and assign each edge� u, v� c distinct
colors, wherec is the number of strings containing the kmer encoded by� u, v� . This setting
is handy for genome assembly. Suppose we have a colored dBG for a collection of reads.
We can consider the edge colors to build contigs so that if we traverse a path colored with
a and reach a branching node, we continue through the outgoing edge colored witha (if
exists). The problem, however, is that the number of columns inC grows with the size of
the collection. For reads, this feature implies that a colored dBG could require millions of
colors, which increases the space usage too much for practical purposes.

Alipanahi et al. [1] noticed that we could reduce the columns inC by using the same
colors in those strings that have no common kmers. This new problem was named the
CDBG-recoloring, and formally stated as follows; given a collectionS of strings and its dBG
G, �nd the minimum number of colors such that i) every string Si " S is assigned one
color and ii) strings having two or more kmers in common inG cannot have the same color.
Alipanahi et al. also showed that the decision version ofCDBG-Recoloring is NP-complete.
They proposed a simple greedy heuristic that, in practice, signi�cantly reduces the number
of colors.

4.3.2 The Overlap Graph Framework

An overlap graphG � � V , E� of a string setS � rS1, S2, : : : , Sqx is a directed graph where
every nodev " V stores the label of some stringl � v� � Sj " S. A directed edge� u, v� " E
from u to v exists if there is an overlapl� u� h o l � v� , where o is above some thresholdm.
Additionally, the edge � u, v¬� is consideredtransitive if there is another nodev such that
the sequence of valid overlapsl � u� h ou l � v� h ov l � v¬� exists, otherwise� u, v¬� is considered
irreducible. Overlap graphs where all transitive connections are removed are calledstring
graphs[133], orirreducible overlap graphs[120].

Succinct Construction of the Overlap Graph

We now explain how to e�ciently construct the overlap graphG of S using the FM-index (Sec-
tion 3.3.1). As the original DNA strand of the reads is unknown in a NGS experiment7, we
also have to consider the collectionSrc with the reverse complements of the strings inS. This
de�nition implies that Src also hasm strings. Thus, for building G, we use the collection
S˜ � S < Src as input.

The �rst step is to create a string S � S1$1S2$2 : : : S2q$2q representing the concatenation
of the strings inS˜ . We assume for the sake of explanation that the strings inS are sorted in
lexicographical order, although this condition is not necessary. We compute the BWT ofS
and store it as a vectorL with rankand selectsupport. We can use, for instance, the wavelet
tree of Section 2.2.2 to encodeL. We also need the arrayC� 1,� � with the frequencies ofS's
symbols. We refer toL and C as a partial FM-index as we do not include the su�x array
nor the inverse su�x array.

Before computing the edges ofG, we de�ne a minimum thresholdo such that any su�x-
pre�x overlap less thano characters long is not considered for buildingG.

7There are some speci�c protocols where we can know the strand, but they are not intended for assembly.

68

Figure 4.6: The overlap graph framework. Example of an overlap graph produced from the
reads of Figure 4.4A. Dashed edges represent transitive connections. This example has no
minimum threshold for the overlaps.

We proceed as follows for eachSi " S˜ ; we �rst call the function backwardsearchwith Si

as input. Let P � Si � j ..� be the su�x in the current backward search step andL� sj , ej � its
associated BWT range. IfL � sj , ej � contains $ symbols and¶P¶ ' o, we perform an extra
backward search step inL� sj , ej � with symbol $. Note that $ symbols in L� sj , ej � denote
the strings in S˜ with P as a pre�x and overlapping the¶P¶-su�x of Si . Also note that if a
su�x S� j ¬..� starts with $i , then the value u " � 1, 2m� of SA� u� � j ¬ is the lexicographical
rank of Si � 1. Hence, the rangeL� s¬, e¬� , with 1 & s¬ & e¬ & 2m, we obtain with the extra
backward search step stores the lexicographical ranks of the reads overlapping the¶P¶-su�x
of Si . Recall that the rank of a read is also its identi�er as they are sorted lexicographically
in S. Once we computeL� s¬, e¬� , we report every read whose identi�er isu " � s¬, e¬� as
overlapping Si . After reporting the overlaps, we continue with the regular backward search
steps fromL� sj , ej � . Using this approach, we obtain all the strings ofS˜ that have an exact
overlap with Si . Mäkinen et al. [120] modi�ed this procedure to compute the irreducible
overlap graph instead of the overlap graph.

The main problem with this algorithm for building G is that computing the BWT of S˜

can be computationally prohibitive given the high volumes of data in sequencing experiments.
Besides, computing exact overlaps is not realistic as reads usually have sequencing errors.

4.4 Reference Genomes

A reference genomeis a string collection produced from the assembly of a particular indi-
vidual's genome. The purpose of a reference is to have a template to compare other closely-
related genomes (usually from the same species). When a new individual is sequenced, we
align (or map) its reads against the reference to assign them a genomic location. Subse-
quently, we search for di�erences (mismatches, insertions, or deletions) in the alignments as
they can be potential genetic variations. We must, however, be careful not to confuse real
genetic variations with misalignments or sequencing errors. In this regard, the main tools to
avoid false positives are the sequencing coverage and the sequencing qualities.

Popular tools to align reads (a.k.a.,aligners) such asbowtie [105] or bwa [113] build
an FM-index (Section 3.3.1) of the reference genome and its reverse complement sequences,
and assign genomic locations to the reads using a modi�ed version ofbackwardsearch. This

69

version supports inexact matches; the read and its genomic location are allowed to di�er
(mismatches or gaps) in up tok di�erent positions, wherek is a parameter. The idea worked
well beacuse NGS experiments produced short reads ($70 characters) with few sequencing
errors. However, this approach rapidly became obsolete as NGS technologies improved their
read lengths. To enable the alignment of longer reads (between 100 and 1,000,000 characters),
posterior aligners [106, 113] adopted aseed-and-extendapproach. Given an input readS, this
method usesbackwardsearchto �nd exact matches between substrings ofS and substrings of
the reference genome (the seeding phase), and then extend those matches using the Smith-
Waterman [176] dynamic programming algorithm (the extension phase). This idea also
proved to be more sensitive to perform alignments that require to split the reads into di�erent
genomic locations.

With the emergence of third-generation sequencing technologies (Section 4.2), seed-and-
extend aligners were adapted for datasets with a high number of ultra-long reads (%100,000
characters), and with higher sequencing error rates. For instance,minimap2[112] replaces the
FM-index with a hash table storing the positions of the minimizers in the reference genome
(Section 2.3.4). Later,minimap2 computes exact matches between the input readS and
the reference genome by obtaining the minimizers ofS and looking for them in the hash
table. The algorithm then extends the exact matches using colinear chaining, or dynamic
programming if necessary. The advantage of this scheme is that the seeding phase is much
easier to compute as we only need to perform lookups in the hash table. In contrast, the
backwardsearchapproach used by the previous aligners can be expensive if the substrings ofS
for which we search for exact matches are long. This scenario is highly probable, considering
third-generation reads are ultra-long.

The mashmapaligner of Jain et al. [90] combines the ideas of sketching and minimizers
(Section 2.3.4) to quickly �nd approximate alignments between a collectionS of long reads
and the reference genomeG. Given an input Sj " S, their algorithm �nds all the substrings
Gi of length Sj in the reference genomes such that the Jaccard distanceJ � Sj , Gi � is above
some prede�ned threshold. WhenS is huge, computing all theJ � Sj , Gi � distances is expen-
sive. Jain et al. solve the problem by using the winnowed-minhash estimateJ � Sj , Gi � for
J � Sj , Gi � , which it is cheaper to obtain. This estimate is similar to that of Minhash (Sec-
tion 2.3.4), but instead of using the sketches ofSj and Gi , it uses the sketches ofW� Sj � and
W� Gi � , which are the set of minimizers forSj and Gi , respectively. Similarly to minimap2,
mashmapalso indexes the minimizers ofG. This index allows them to quickly �lter the Gi

substrings that are unlikely to have a match withSj . Experimental results showed that
mashmapis space and time e�cient and that it maintains sensitivity even when the reads
have high error rates ($20%). It is also much faster than methods that rely on the FM-index
and dynamic programming approaches. However, it does not support gapped alignments.

4.5 Pangenomes

An important problem with reference genomes is that they bias the genomic analyses. When
the resequenced individuals have insertions or deletions in their genomes that are not in the
reference, the aligner gets confused and mistakenly considers these variations to be sequenc-
ing errors. A possible solution to deal with the bias is to build a pangenome, a generalization
in which the reference is not one genome but a set of individual genomes of the same species.

70

Figure 4.7: A pangenome obtained from the string collectionracatattggtg , acaacgtggtg ,
acaacgtgatg , acaacgtggtg x. The textures depict the paths in the DAG spelling the di�erent
strings.

We can regard a pangenome as a regular string collection. However, a more accurate model
is a labeled directed acyclic graph (DAG) representing the collapse of all the strings in the
collection. We have one subgraph per chromosome in the species, and the chromosomal dif-
ferences (insertions, deletions, mismatches) between the individuals are encoded as �bubbles�
in the subgraphs. An example is shown in Figure 4.7.

The idea of a pangenomic index with support for pattern matching was �rst considered
by Schneeberger et al. [167] and Mäkinen et al. [123], and then by Sirén et al. [174], Huang
et al. [83], and Danek et al. [45]. Still, the �rst succinct index that regarded the pangenome
as a DAG was introduced by Sirén et al. [175]. They proposed a method to transform the
DAG into a Wheeler graph to encode it with the BWT framework (Section 3.4). In addition
to being succinct, the BWT framework also enables the computation of all the paths in the
DAG labeled with a pattern P� 1,m� in O� m log� � time (Section 3.4).

One of the main features of the DAG approach is that pattern matching can report
occurrences ofP even if it does not exist in the collection (i.e., a false positive). This
situation happens because paths encoding di�erent strings of the pangenome are entangled
in the DAG, and traversing these entangled paths might spell chimeric strings8. This feature
is an advantage or a disadvantage depending on the context. In biology, a recombination
event occurs when homologous chromosomes from di�erent individuals get combined to form
a new one. Therefore,P may not be a false positive but a new recombination event that
has not been seen in the pangenome. Still, it is not easy to di�erentiate false positives from
recombination events just with the graph topology. Sirén et al. 2020 [173] tried to address
this di�culty by augmenting the pangenomic index [175] with the positional BWT [54], a
data structure that enables the detection of path shifts. Similarly, Mäkinen et al. [121]
proposed the founder graph, a pangenomic representation that facilitates the detection of
recombination events. The founder graph can also be represented using the BWT framework.

Other representations consider the pangenome to be the concatenation of several indi-
vidual genomes, not a DAG. They exploit the fact that individuals of the same species are
highly similar, so their genomes are repetitive. This text redundancy enables the develop-
ment of indexes that use little space. For instance, the implementation of the hybrid index

8The concatenation of subsequences from di�erent strings of the pangenome.

71

by Valenzuela et al. [183] parses the text with the Lempel-Ziv algorithm (Section 3.2.3) to
create a kernel sequence (Section 3.2), which is later stored using the BWT framework. This
data structure achieves high compression ratios in practice but limits the maximum length
of the reads that can be aligned. On the other hand, Kuhnle et al. [102] uses the r-index
(Section 3.3.3) to encode the pangenome. They use the PFP procedure (Section 3.5.1) to
reduce the computational resources when building the pangenome's BWT for the r-index.
Their experimental results showed that they require less than 10% of the working memory
of bowtie 's when indexing. Further, although the hybrid index uses less space, the r-index
o�ers the best space/time trade-o�s for pangenomes [38].

A limitation of the r-index, and BWT-based data structures in general, is that the align-
ment of reads is practical only when they are short and have few or no sequencing errors.
How to e�ciently support the inexact alignment of long strings is still an open question. In
this regard, some authors [23, 160] have considered the problem of e�ciently �ndingmaxi-
mal exact matches(MEM) between a pattern and a string collection encoded as an r-index.
These ideas could enable the implementation of a pattern-matching procedure on top of the
r-index that uses the seed-and-extend approach ofbowtie or bwa.

72

Chapter 5

Grammar-Compressed Reads

In this chapter, we describe a new grammar compressor for storing DNA sequencing reads.
The novelty of this representation is that it can be used to compute the eBWT (Section 3.2.1)
of the reads directly from the grammar. Our motivation is to perform in succinct space
genomic analyses that require complex string queries not yet supported by dictionary-based
self-indexes. Our approach is to maintain the collection of reads as a grammar as long as
they are not used. However, when an analysis is required, we quickly compute their eBWT
without fully decompressing the text.

5.1 Motivation

As explained in Section 3.2.2, the bene�ts of using grammars for encoding text are that we
can achieve high compression ratios when the input is repetitive, and that we can directly
access any substring with only an additive logarithmic time penalty [16]. We consider these
features the starting point to develop an algorithmic framework to process high volumes of
DNA sequencing data in little space.

Still, the functionality o�ered by grammar-based self-indexes is still limited compared to
the complex sequence analyses required in computational biology scenarios [120]. In this
regard, the su�x tree is one of the few data structures that supports su�ciently elaborated
queries as to process genomic experiments. However, its space usage is several times the
size of the input, making it impractical for big collections. We can reduce the costs by
using the FM-index. In that way, we can compress the reads to their zeroth order empirical
entropy without losing the su�x tree functionality. The problem, however, is that sequencing
experiments are so massive that even the FM-index's space usage can be prohibitive. The
ideal solution would be then to have a data structure that compresses the data by exploiting
the DNA repetitions, but at the same time, supports string queries similar to those of the
su�x tree.

The so-called run-length BWT (RLBWT) [124, 70] is a possible alternative. This compres-
sion scheme exploits the fact that, on highly repetitive text collections, the BWT consists of
a small number of long runs of the same letter (see Section 3.2.1). It can then enable complex

73

sequence analyses in little space. Still, on read collections, the RLBWT does not compress
signi�cantly [53]. Grammars and Lempel-Ziv are still preferred for permanent storage as
they obtain better space reductions in practice.

There are several genomic tools in the literature that rely on the BWT of the reads [170,
155, 53]. If we put aside the cost of computing the BWT, the idea is compelling as it
enables an e�cient reference-free processing of the data. This feature is desirable because
reference genomes bias the results (see Section 4.4). In reality, however, we still have the
problem of constructing the BWT [92]. Although there are algorithms that run in linear
time [147, 82], in practice they still require signi�cant storage and processing resources. As
an alternative, we can use e�cient external algorithms [44, 55, 20] for building BWT variants
for string collections, but they are mostly intended for short reads. More recent in-memory
approaches [22] reduce the costs by factorizing the repetitions of the text, but they are aimed
at collections of assembled genomes, and do not work well on reads. All these limitations
make reference-free methods still di�cult to implement.

All the limitations mentioned above leave us with the following tradeo�. On one side,
we have the RLBWT, which is expensive to compute and whose compression ratio is not
that good on reads. However, it still allows us to process genomic data in succinct space
and perform reference-free analyses. On the other, we have dictionary-based methods like
Grammars or Lempel-Ziv; they achieve much better compression ratios than the RLBWT,
but their self-indexes are not versatile enough as to process genomic data. Considering this
scenario, we propose an intermediate solution; a grammar encoding tailored for reads from
which we can compute the eBWT. Our algorithm for producing the eBWT uses the repetitive
patterns captured by the grammar to boost the computations. As far as we know, this idea
has been implemented only from Lempel-Ziv compression and is considerably slow [153]. As
discussed, the Lempel-Ziv format does not enable, on the other hand, direct access to the
reads for other purposes. With our approach, we maintain a low memory footprint when the
reads are not used, but if an analysis is required, we obtain the RLBWT in a e�cient way.

We call our grammar compressor algorithmLMSg. Similar to the work of Nunes et al. [142],
our method builds on theSA-ISalgorithm (Section 3.5.2). However, our approach considers
some extra modi�cations to compress the text even further and facilitate the computation
of the eBWT. We encode the �nal grammar using a variation of the grammar tree (Sec-
tion 3.2.2). We implemented the ideas described in this chapter in aC++tool called LPG.

Our experiments in real data showed that the space reduction we achieve withLPGis
competitive with Lempel-Ziv-based methods and better than BWT-based approaches (FM-
index and RLFM-index). Compared to other popular grammars, such as BigRePair, we
achieve 12% extra compression in DNA and require less working space and time. Besides,
the working memory LPGrequires for building the grammar is 50%�60% the space of the
input, which is far less than most grammar construction algorithms. A preliminary version
of this work [52] was presented at the21st Data Compression Conference(DCC'21).

74

5.2 De�nitions

Let the string collection S � rS1, S2, : : : , Smx be a multiset of m reads over the alpha-
bet � � r a, c, g, n, t x, where the longest string has lengthk. We consider the string
S � S1$1S2$2 : : : Sm$m to be the concatenation of the reads separated by a dummy sym-
bol $ smaller than any character in� . The size ofS is n. Let G � rV , �, S, Rx be a
context-free grammar that only producesS. V is the set of nonterminals,� is the alphabet
of terminals, S is the start symbol and R is the set of rules. Additionally, we denote the
number of rules asg � ¶R¶. The grammar sizeG is de�ned as the sum of the lengths of the
right-hand sides ofR. We refer to the string C on the right-hand side of the rule ofS as
the compressed stringof G, and its size is denoted asc � ¶C¶. We use the string ordering
that the SA-ISalgorithm induces over the LMS substrings (Section 3.5.2). It is similar to
lexicographical ordering. The only di�erence is that when a stringA is a pre�x of another
string B, A gets higher order. We lift the operatorTLMS to refer to this special ordering.
We also use the functionexp� X� to refer to the string in � ˜ resulting from the recursive
expansion of nonterminalX " V.

5.3 The LMSg Algorithm

LMSgis an iterative algorithm that producesG in several rounds of parsing. In every roundi ,
we classify the symbols ofSi (S1 � S) as L-type, S-type or LMS-type to generate a partition
over Si (see de�nitions in Section 3.5.2). Each block (or phrase) in the partition starts in a
position S� j � such that S� j � 1� is LMS-type and ends in the smallest positionj ¬ %j such
that S� j ¬� is also LMS-type. We refer to these blocks asLMS phrases. We create a dictionary
D i with all the distinct phrases ofSi . Then, we create a new ruleX � F for every F " D i ,
where X is the greatest symbol on� < V before roundi plus the TLMS order of F among
the other phrases in the dictionary. After generating the new rules fromD i , we create the
parseSi � 1 by replacing the LMS phrases inSi with their TLMS orders, and perform another
parsing round i � 1 using Si � 1 as input. LMSg ends in the parsing roundi¬ where all the
phrases ofD i have frequency one inSi , in which case we create the ruleS � Si for the start
symbol ofG.

Note that for every new ruleX � F we create fromD i , the sequence of its right-hand
side does not contain grammar values, but symbols inSi . We solve this problem by keeping
track of the nonterminals assigned to the symbols in the alphabet ofSi . More speci�cally, if
S� j � � r is the TLMS order of the phraseR " D i � 1, then the nonterminal for r is the one that
was assigned toR in the previous parsing roundi � 1. We use this information to replace
every F � u� with its nonterminal when we create the ruleX � F . We do the same when we
create the rule forS. This modi�cation maintains the grammar consistency.

Our procedure is similar to that of Nunes et al. [142]. Still, we go further and try to reduce
the grammar size without losing information for computing the eBWT ofS.

5.3.1 LMSg is for String Collections

LMSgis oblivious to the number of documents encoded in the input text. It might produce, for
instance, a nonterminalE " V expanding to a substringSx � u..� $x : : : $y� 1Sy that represents

75

an incomplete stringSx � u..� of S concatenated with one or more other strings. This type of
nonterminals makes the construction of the eBWT more di�cult. An important aspect of
our BWT algorithm is to assign ranks to the symbols inV based on their string expansions.
However, in the case ofE, its expansion is not a valid substring in the circular1 rotations of
S, so the rank forE has no meaning in our model. We avoid nonterminals likeE by enforcing
the following property on G:

De�nition 6 G is string independenti� every nonterminal E " V expands to a substring
E � exp� E� of S that meets either of the following conditions:

1. E � Sx � a, b� is an internal substring of someSx " S (i.e., E is not a su�x in Sx)

2. E � Sx � a..� $x is a su�x of Sx concatenated with a$ symbol

We ensure the conditions of De�nition 6 by performing an extra step in every parsing
round i . Suppose that during the scan ofSi , we reach an LMS phraseF whose recursive
expansion yields a string in the formABC . A is a su�x of some Sx$x , B is either an empty
string or the concatenationSx� 1$x� 1 : : : Sx� p$x� p, and C is a pre�x of Sx� p� 1$x� p� 1. We create
a new phrase with the pre�x ofF expanding toA. If B is not empty, then we produce a new
phrase with every segmentF � a¬, b¬� that expands to some substringSx¬$x¬ of B . Finally, we
create the last phrase with the su�x of F expanding to C. We record these new elements
into D i afterward. The new phrases whose recursive expansions end with a$ symbol are
called border phrases.

Every parsing round i of LMSg now also considers an input bit vectorB i that tells us
which symbols in the alphabet ofSi recursively expand to su�xes of S. This bit vector
facilitates the detection of LMS phrases spanning two or more strings ofS. Once we produce
Si � 1, we create its associated bit vectorB i � 1 to pass it as input for the next round.

5.3.2 Simplifying the Grammar

While parsing Si , we discard the phrases that are not useful for either compressing or pro-
ducing the eBWT of S. We insert the symbols in these phrases directly intoD i to transfer
them to subsequent parsing rounds, hoping they will be encapsulated within more useful
contexts. We discard a substring in two cases; (i) all its symbols appear only once inSi or
(ii) its length is less than two.

After �nishing a parsing round, we sort the phrases ofD i in TLMS order and scanD i

from left to right to create the new nonterminal rules. If a phraseF has length % 1 (a
non-transferred symbol), we proceed in the same way as in Section 5.3. However, when a
phraseF has length one (transferred symbol), we update the nonterminalF " R previously
assigned to it. The new value isp � b, where p is the size ofR before iteration i and b is
the TLMS order of F in D i . This update requires us to change the left-hand side ofF's rule
and the occurrences ofF in the right-hand sides ofR. The use of transferred symbols also
changes the stop condition forLMSg; the algorithm ends the parsing rounds when all the
phrases of length%1 in D i have frequency one.

1Recall that the eBWT considers the string in S to be circular.

76

Figure 5.1: (A) Running example ofLMSg. The symbols in gray belowS1 are character
types (L-type=L, S-type=S, LMS-type= S*). Dashed vertical lines mark the limits between
the strings in S. Every horizontal line on top ofS1 spans one of the phrases generated in the
parsing round 1 ofLMSg. The rest of the parsing rounds are depicted on top ofS1. Light
gray symbols have frequency one inSi . Dashed edges indicate symbols that were transferred
to the next parsing round. The gray character at the top of everySi � j � denotes its su�x
type and the gray number to the left is its assigned nonterminal inG. (B) The grammar G
resulting from the parsing rounds of (A). The sizeG of the grammar is38, the number g of
nonterminal is 13, and the lengthc of the compressed string is5. For clarity, the nonterminal
values were not collapsed.

The nonterminals produced byLMSgcould be non-consecutive due to the transfer of sym-
bols. We need to collapse their values to produce a more compact grammar representation.
For that purpose, we scanR and change every left-hand symbol with the smallest unused
symbol in V. As we do the replacements, we keep track of the changes to update the refer-
ences of the characters on the right-hand sides ofR. Figure 5.1 shows a complete running
example ofLMSg.

5.3.3 Analysis of LMSg

We now present the upper bound for constructingG usingLMSgand S as input. We describe
our result with the following theorem.

Theorem 1 The LMSg algorithm runs in O� n logk� time, wherek is the longest string on
S.

Proof. SA-IS, the method on whichLMSgrelies upon, runs inO� n� time because the length
of everySi � 1 is at most half the size of the previousSi . In this way, the algorithm processes
less than2n symbols in total. However, in our case, we cannot ensure that property because
we transfer symbols from one parsing round to the next one, meaning that the length ofSi � 1

77

can be more thanSi ©2. This drawback implies that the parsing of everySi takesO� n� time.

We know that LMSg incurs in at most logk parsing rounds as every new phrase we
produce fromSi spans at least two symbols, and the length of the recursive expansion of a
new phrase is never longer thank, the longest string in S. We enforce the latter property
with the string independence of De�nition 6. On the other hand, the transferred symbols of
Si that belonged to the same discarded phrase maintain their lexicographical relationships.
Hence, if encapsulated in later parsing rounds, they will belong to the same phrase. Also,
if a substring Si � a, b� whose recursive expansion matches a substringSj $j , with Sj " S, is
composed only of unique symbols, it will not be further compressed. Instead, its symbols
will continue to be transferred until LMSg stops (see, for instance, substringS3� 2, 4� � 215
of Figure 5.1). As a consequence,LMSg runs in O� n logk� time.

5.3.4 E�cient Dictionary Construction

In every parsing roundi of LMSg, we use a hash table to record the distinct LMS phrases of
the dictionary D i . Each phraseF is the key and its associated value is a boolean �ag that
indicates if F is repeated inSi . When the text is repetitive, the �rst parsing round (i � 1)
produces a small dictionary so the hash table will not require much space. Still, as we move
on to the next rounds, the number of distinct phrases quickly increases inSi , so the working
memory for building D i becomes considerable.

We can reduce the computing time by buildingD i in parallel during the parsing round.
We cut Si into p di�erent chunks, where p is the number of working threads, and obtain the
LMS phrases in parallel in every chunk. We collapse the phrases recorded by the threads
afterward to get D i . Still, having one hash table per thread would be expensive for the
parsing roundsi %1, so it is not an option. In contrast, having only one hash table that is
concurrently accessed by the threads decreases the e�ciency due to synchronization issues.

We deal with the e�ciency problems by creating a semi-external bit-compressed hash table
to construct D i in parallel and using an amount of working memory de�ned by the user. We
start by de�ning a bu�er B of b bits, whereb is a parameter. Subsequently, we divideB into
p blocks ofu � � b©p$ bits. Additionally, we subdivide every blockB j , with j " � 1,p� , into
two halves. The left halfB l

j stores the hash tableTj of the j th working thread and the right
half B r

j is a bu�er that stores the hashed pairs ofTj . We implement Tj using Robin Hood
probing (Section 2.3.1) to work at high load factors (we use0.8). Every cell Tj � u� uses8
bytes; the �rst 2 bytes in the cell encode the distance to the real hashing position of the key
associated withTj � u� . The last 6 bytes store the bit indexq in B r

j , where the key-value pair
of Tj � u� is stored. In B r

j � q� , we encode the information as follows; the �rst4 bytes contain
the length l of the key. The next x � l � log� i bits store the key sequence, where� i is the
alphabet of Si , and the last bit is the value associated with the key, i.e., the boolean �ag
that indicates if the LMS phrase is repeated or not.

When inserting a new key-value pair� F , b� into Tj , we store it in the rightmost available
position of B b

j . If inserting � F , b� producesB r
j to exceed its capacity ofu©2 bits, then we

dump B r
j into the disk and reset the complete blockB j . Similarly, when the load factor of

Tj exceeds the threshold of0.8, we also dumpB r
j to disk and resetB j . Alternatively, we can

78

check if B r
j still contains free space to shift the boundary betweenB l

j and B r
j to the right

and give more bits toB a
j . In that way, we can increase the size ofTj . This mechanism will

avoid the disk dump, but it will trigger a rehashing.

Once we �nish the parallel partition of Si , we collapse the dumped data of thep working
threads in one single hash table, which later will becomeD i . Note that in the parsing round
i � 1, the hash tables will contain almost the same phrases. In the worst case, eachTj will
be a full copy ofD i , but as the dictionary is small at this level, the number of disk dumps
will be close to zero. In later parsing roundsi %1, D i can be large, but it is less probable
for the distinct Tj to share keys as the phrase frequencies inSi are likely to be small. This
feature will reduce the data dumps triggered due to redundancy in the hash tables. Working
at high load factors in the hash tables and maintaining the data in bit-compressed form in
B b

j also help us to reduce the number of data dumps.

5.4 Recompressing the Grammar

After running LMSg, we recursively create new rules from themaximal su�xes of size two or
more that appear repeated in the right-hand sides ofR. We refer to these new nonterminals
as RS (repeated su�x). Figure 5.2 depicts the idea. The concept of maximal su�xes is
similar as in the su�x tree. We consider a stringF to be maximal if it appearsc %1 times
as a su�x in the right-hand sides of R, and for any b " � < V, its left extensionbF appears
c¬$ c times as a su�x. The RS nonterminals are helpful to reduce the sizeG of the grammar,
but they are also convenient for computing the eBWT ofS as we will see in Chapter 6.

To create the RS nonterminals, we record in a hash table the distinct su�xes of length two
in the right-hand sides ofR, and create new rules with those that have frequency more than
one. We replace the occurrences of the repeated su�xes with their new nonterminal symbols
and continue hashing su�xes of length two until no new rule can be created. Subsequently,
we remove the RS rules whose left-hand symbol occurs only once in the right-hand sides of
R. The only problem with this idea is that the strings inR are not so repetitive, so we might
end recording a lot of sporadic pairs that are later discarded because they are unique. We
can reduce the number of unnecessary pairs in the hash table by including a simple condition;
both symbols of the su�x must be repeated inR. We can mark every repeated nonterminal
with a bit map prior the creation of the RS rules.

It might happen that the complete sequenceF of an LMSg rule X � F appears as a
proper su�x in one or more right-hand sides. In such situation, we do not create a new rule
but reuse the value ofX to replace those proper su�xes. When this happens, we considerX
to have adual context as it occurs as anLMSg nonterminal but also as an RS nonterminal.
Figure 5.2 shows an example of this situation.

5.5 Encoding the Grammar

We use thegrammar tree data structure proposed by Claude et al. [36] (denoted here asP)
to store G. We make, however, some modi�cations to later compute the eBWT ofS in a
more e�cient way.

79

Figure 5.2: Example of RS nonterminals. (A) The parse tree of two distinct nonterminals
30 and 40 produced by the LMSg algorithm. Gray symbols denote the su�xes that are
repeated in the right-hand sides ofR. (B) The parse tree of (A) now with the RS rules
included. SymbolsX and Y are new RS nonterminals while40 is an LMSgnonterminal with
dual context as it also appears as a su�x under the subtree of30.

We createP in one level-order traversal of the parse tree ofG. The procedure is as follows;
every time we visit a new nodev in the parse tree, we check �rst if its labelX " V has dual
context. If it does, andv is an RS occurrence, then we create a new leafv¬in P. Subsequently,
we check if there is already an internal node inP for X. If there is one, we assign its label to
v¬; we leave it unlabeled otherwise. WhenX has dual context, butv is an LMSgoccurrence,
we createv¬ as an internal node. In this case, the label forv¬ is x � � , wherex is the number
of internal nodes in level-order inP up to v¬. We also label all the previous leaves ofP that
represent occurrences of this nonterminal. WhenX does not have dual context, butv is the
�rst node we visit in the traversal that is labeled with it, we createv¬ as an internal node
and label it with x � � . When v is not the �rst node for X we see, we createv¬ as a leaf and
label it with the value we used for the internal node inP that encodes the �rst occurrence
of X. Finally, when v represents a terminal symbolb, we createv¬ as a leaf labeled withb.
The parent of v¬ in P is the internal node that maps to the parent ofv in the parse tree.
Additionally, when we createv¬ as a leaf, we discard the subtree rooted atv from the rest of
the parse tree traversal.

We encode the topology ofP in a bit vector K using LOUDS (Section 2.2.3). Addition-
ally, we store the leaf labels in a vectorZ using the data structure for canonical Hu�man
codes of Schwartz and Kallick [169]. We augmentZ with sampled pointers for direct access
(Section 2.1.3). Figure 5.3 depicts the resulting grammar tree for the running example of
Figure 5.1.

The grammar tree construction algorithm ensures that ifX has several occurrences on the
right-hand sides ofR, only one of them is stored as an internal node inP. The others are
stored as leaves. We refer to this internal node as thelocus of X in P, and the locus's label
as the identi�er of X. Our algorithm also ensures that ifX has dual context, then its locus
in P will always be anLMSg occurrence. We use this property during the construction of
the eBWT in Chapter 6.

Theorem 2 The grammar tree representation forP requires2G � o� G� � � G � g�� H 0� Z � �
1� � � g � � � log� g � � � � �w bits of space, whereZ is the vector containing the Hu�man
codes of the grammar tree labels.

80

Figure 5.3: (A) The grammar tree of Figure 5.1B. Numbers on top of the internal nodes are
the original nonterminals of the grammar. Symbol15 is an RS nonterminal. Dashed arrows
simulate a traversal over the parse tree ofG to decompress the wordta from S1� 14, 15�
(Figure 5.1). (B) LOUDS encoding for (A). The bit stream stores the shape of the tree.
Gray numbers on top are the bit indexes. Gray numbers below the stream are the internal
ranks of the nodes. The integer vector below the stream contains the leaf labels. Dashed
arrows mark the same decompression path as in (A), but using the LOUDS functions.

Proof. P hasG� 1 nodes andg internal nodes. As the bit arrayK is a LOUDS representation
of the topology ofP, it uses2G � o� G� bits. On the other hand, the vectorZ contains the
labels of theG� g leaves ofP, whose values are over the alphabet� 1,g� � � . The bit array with
the Hu�man codes ofZ uses� G� g�� H 0� Z � � 1� bits, and the other auxiliary data structures in
the representation of Schwartz and Kallic require� g� � � log� g� � � � O� log2� G� g�� extra bits.
The sampled pointers forZ use*� G� g�©k0w bits, wherek is a parameter. Assuming the word
machinew is large enough so that any value forG �ts on it, we can choosek � w2 to obtain
a space complexity for the sampled pointers of� G � g�©w $ � G � g�© log� G � g� � o� G � g�
bits. Finally, the �w bits stand for the integer array that maps the alphabet of terminals in
G to the original symbols inS.

Theorem 3 Accessing the label of a grammar tree nodev in the representation of Theorem 2
takes O� k2 log� G � g�� time, wherek2 is the sampling rate ofZ .

Proof. When v is an internal node, computing its label takesO� 1� time as we obtain it
using the LOUDS operationinternalrank� v� � � . When v is a leaf, we extract its label from
Z� leafrank� v�� . Decoding a symbol inZ takes usO� log� G � g�� time as the longest length a
Hu�man code can have inZ is O� log� G � g�� bits. The reason is thatZ hasG � g symbols,
and thus the Hu�man codes we obtain from this vector cannot have frequency less than
1©�G � g� . As we chose a sampling rate ofk2 for the sampled pointers, accessing a position
in Z requires us to decode at mostk2 symbols, which gives us the �nal time complexity of
O� k2 log� G � g�� .

81

Figure 5.4: Performance of the di�erent compressors. The compression ratio is measured as
the size of the plain text divided by the size of the �nal compressed representation, so higher
is better.

For simulating in P a top-bottom traversal of the parse tree ofG we use the constant-
time navigational function child de�ned for LOUDS, but also an extra functionlabel� v� that
returns the label of a nodev.

The traversal of the parse tree is as follows, we navigateP top-down using the child
operation as long as the nodes we visit are internal nodes. When we reach a leafu, if label� u� &
� , then we stop the traversal because we have reached a terminal symbol. If that is not the
case, then we continue the traversal from the subtree rooted atv � internalselect� K , label� v� �
� � . See Figure 5.3.

5.6 Experiments

We implemented our grammar compressor as a tool calledLPG(https://bitbucket.org/
DiegoDiazDominguez/lms_grammar/src/bwt_imp2). The software is written in C++and
uses theSDSL-lite library [76]. We compared the performance ofLPGagainst BigRepair [72]
(BR), 7-zip [150] (7Z) and the FM-index [65]. BigRepair is a space-e�cient variation of
RePair for large repetitive collections. We encoded the BigRepair grammars with the recent
representation of Gagie et al. [163], which allows fast random accession to substrings of the
text. For the FM-Index, we considered both the regular version (denoted asFM) and the run-
length compressed version (denoted asRLFM). The BWTs for the FM-indexes were calculated
using egap [55]. When parallelization was possible, we ran the experiments with 10 threads.

We used as input �ve distinct collections of reads produced from di�erent human individu-
als. This data was obtained from the Human Genome Diversity Project2. The datasets were
identi�ed with the number of individuals they contained. Their sizes in GB were 1=12.77,
2=23.43, 3=34.30, 4=45.89 and 5=57.37. All the reads were 152 characters long and had
an alphabet of six symbols (a,c,g,t,n,$). The instance of BRwith collection 5 returned
an error and therefore it was not included in the analyses. For dataset 1, we allowedBRto
use at most 72 GB (6x the input size) of working memory. However, with the rest of the
collections we had to increase that value to 275.36 GB as the program was taking too long
to �nish. The performance of the compressors is shown in Figure 5.4.

2https://www.internationalgenome.org/data-portal/data-collection/hgdp .

82

Random access

Input LPG BR RLFM FM

0.05 0.5 1 0.05 0.5 1

1 104.30 98.67 804.11 116.71 78.45 682.40 104.92 71.16
2 111.35 101.59 788.37 115.91 77.86 692.62 104.09 70.85
3 124.04 98.56 784.40 116.96 77.85 682.09 104.66 71.18
4 128.58 104.72 821.12 118.71 81.01 681.80 104.65 71.62

Table 5.1: Random access. Average time in� secs to randomly access a read. The columns of
RLFMand FMindicate the di�erent sampling rates (0.05, 0.5, and 1) we used in those instances
for randomly accessing the reads.

We measured the time for randomly accessing the reads from the compressed represen-
tations. We sampled reads at regular text intervals in the FM-index instances (RLFMand
FM) to support fast access. For every sampled string, we stored the BWT position of its last
character. We selected three sampling rates;0.05, 0.5, and 1. We store one BWT position
every 20 reads with the �rst sampling rate; one position every two strings with the second
one, and we stored the BWT positions for all the reads with the last one. We excluded7Z
from this experiment as its current implementation does not support random access.

We augmented theLPGinstances with a bit vectorB � 1,c� that marks in P the nodes at
depth one that recursively expand to string su�xes. We augmentedB with selectstructures
to access the substrings ofC that map complete reads. We also encoded the leaf labels of
P using arrays oflogr -bit cells instead of Hu�man-compressing them. This representation
allowed us to access the grammar tree labels inO� 1� time. The results of the random access
experiments are depicted in Table 5.1.

5.7 Results and Discussion

The average compression ratio ofLPGwas 4.65. This result was better than the one obtained
by BRand RLFM(2.96 and 2.54, respectively), but worse than that of7Z (6.47). Although 7Z
outperformed the other methods at reducing the space, the di�erence decreased as the inputs
grew and became more repetitive. For instance, the gap in the compression ratio between7Z
and LPGfor collection 1 was 2.44, while for collection 5 it was 1.37. The poor performance
of BRmay be because its preprocessing step (Pre�x-Free Parsing) did not capture well the
repetitiveness in the reads.BRproduced, on average,36%more grammar rules thanLPG. On
the other hand, the small compression ratios obtained byRLFMcan be due to the number of
BWT runs. In reads, this value is usually not as small as in other text families. The run heads
represented, on average, 23% of our inputs. Regarding the memory peaks, the consumption
of 7Z was negligible (0.7 GB). In contrast,LPGrequired a much more considerable amount
of working space (about 58% of the input size). Still, this value was far less than that of
BRand RLBWT, which used 7 and 3 times the input size, respectively. In elapsed time,LPG
outperformed all the other methods. The instance ofBRwith collection 2 took much more
time compared to collections 3 and 4 (63.18 hours versus 15.31 and 26.08 hours, respectively).
We assume this behavior is a bug in the implementation.

83

The average time for accessing a random string inLPGwas117.06� secs. This result was
competitive with the performance ofBR(100.89� secs, on average). The outcome ofRLFM
and FMvaried according to the sampling rate we used. In general,FMoutperformedRLFMin
all the experiments. We expected this result asRLFMneeds to carry out additional operations
to solve the rank queries over the run-length compressed representation of the BWT.

Interestingly, FMand RLFMbecame competitive withLPGand BRonly when we sampled
more than 50% of the reads.FMand RLFMwere the fastest methods in those instances where
we stored pointers for all the reads (columns 6 and 9 of Table 5.1). However, with a sampling
rate of 0.05, the average performance ofFMand RLFMdecreased dramatically, becoming the
slowest methods (see columns 4 and 7 of Table 5.1).

The extra space overhead required to support random access was small in all the cases.
For LPG, we used 16.80% of the original size of the grammar tree data structure. The space
overhead forFMand RLFMvaried according to the sampling. However, it was smaller than in
LPGin all the cases. Using the sampling rate of 0.05, the space overhead in the FM-indexes
ranged from 0.30% to 0.42%. Using the sampling of 0.5 ranged from 2.96% to 4.23%, and
with the sampling rate of 1, it ranged from 5.91% to 8.47%.

84

Chapter 6

Computing the eBWT

This chapter describes a new algorithm calledinfBWT to compute the eBWT of a string
collection from the grammar representation of Chapter 5. As explained earlier, the purpose
of that grammar is to store massive collections of raw sequencing data (reads) using little
space. Producing the eBWT, on the other hand, enables the e�cient extraction of biolog-
ical information in succinct space. Further information on these ideas can be found in the
introduction of Chapter 5.

Our algorithm infBWT exploits the repetitive text patterns captured by the grammar
rules to reduce the working memory and CPU time. Thus, the amount of resources it
consumes depends more on the new information we add to the collection than on its size. For
instance, if the input grammar encodes two copies of the same sequencing experiment, then
the requirements ofinfBWT increase by a factor smaller than two compared to a grammar
encoding only one copy. This feature can be helpful in the processing of massive DNA
experiments as they usually contain several genomes of the same species, which are almost
identical.

We implemented infBWT as a module ofLPG, the C++implementation of the grammar
compressor of Chapter 5. The name of the module isG2BWT. Our experiments on real datasets
showed that G2BWTis competitive with the state-of-the-art algorithms that build the BWT
for string collections, and that it can be the most e�cient when the input is massive and
with high DNA coverage.

6.1 Encoding Information with Circular Strings

We choose to build the eBWT as the strings in this representation are considered to be
circular. This feature allows us to encode the paired-end information of the reads for free
(see Section 4.2). Concretely, given we know a BWT position for a character in a readSl , we
can infer the sequence of its pairSr by performing LF steps. This idea also apply backwards;
we can obtain Sl provided we know a BWT position for Sr . Most genomic pipelines use
the pairing information to resolve ambiguities in the DNA sequence. For instance, when
assembling a genome using the overlap graph framework (Section 4.3), we might discard

85

Figure 6.1: Example of an eBWT. (A) Paired-end reads {tct , aga} and { aag, tcc }. (B)
The circular encodings for the reads of (A), which include their reverse complements. (C)
The eBWT for the circular strings of (B). The vertical gray characters are the left contexts
of the BWT symbols. The gray numbers below the BWT are theLF steps we perform to
obtain the sequences ofSl � aag and its reverse complementSrc

l � ctt . This operation is
also depicted with a dashed line in the right circle of (B).

overlaps between reads that belong to the same pair as, in some cases, we know they are too
far away in the genome as to have an overlap. In the BCR BWT (Section 3.2.1), the strings
are not circular so we need an extra array to store the links explicitly.

During the construction of the eBWT, we consider every pair� Sl , Sr � to be one circular
string Sl$Sr $. We can also consider the extra pair� Src

r , Src
l � with the reverse complements

of � Sl , Sr � . The four string are thus encoded as one circular stringSl$Sr $Src
r $Src

l $. By
including the reverse complements in the BWT we can know which other strings in the
collection overlap them. This information is necessary as, in most of the cases, we do not
know the relative strands of the reads from di�erent pairs. An example of the resulting BWT
is depicted in Figure 6.1.

We note our version of the eBWT is slightly di�erent from the one described in Sec-
tion 3.2.1. The main di�erence is that we are including$ symbols to delimit boundaries
between strings, while the original version uses a bit vector for the same purpose. The$
symbols come from the grammar of the reads, and it was not clear to us how to get rid of
them as we construct the BWT.

86

Algorithm 1 Overview of infBWT
1: proc infBWT(P) V returns the eBWT of S˜

2: Compute the alphabets of the parses and store them in disk
3: Load � h � � Lh, Rh, f i � from disk
4: Compute the eBWT B h of C from � h and P
5: for i � h to 2 do
6: Load � i � 1 � � L i � 1, Ri � 1, f i � 1� from disk
7: Induce B i � 1 using B i , � i , � i � 1 and P
8: Discard B i and � i

9: i � i � 1
10: return B 1

6.2 De�nitions

Let S � rS1 : : : Smx be a collection ofm paired-end reads. The strings inS are over the
alphabet � � r a, c, g, n, t x. For simplicity, we map � to the range� 2,¶� ¶� 1� , and leave the
character$ � 1 as a separator symbol. We assume that for each odd positionj " � 1,m � 1� ,
the strings Sj , Sj � 1 " S represent reads of the same pair. We also de�ne a setS˜ that
encodes the read pairs ofS and their reverse complements together. Each elementSx " S˜

is a circular string of the form Sl$Sr $Src
r $Src

l $, where Sl , Sr " S are the reads of the same
pair and Src

l and Src
r are their reverse complements, respectively. We also de�ne the string

S � S1S2 : : : Sm©2 that represents the concatenation of the elements inS˜ . We do not insert
extra separator symbols inS as we know that every four$ characters we have a string of
S˜ . The total length of S is denoted asn. Let G � rV , �, S, Rx be the grammar resulting
from running the algorithm of Chapter 5 overS. G is the grammar size,g is the number of
nonterminals andC is the string that represents the compressed version ofS. The length
of C is denoted asc. We also considerP to be the grammar tree ofG obtained with the
algorithm of Section 5.5. Leth be the number of parsing roundsLMSg performed to build
G, and let Si be the input text for round i . We denote asD i the set of phrases generated
during the partition of Si in the execution ofLMSg. The operator TLMS denotes the LMS
ordering of the strings (Section 3.5.2).

6.3 Overview of infBWT

We divide the algorithm in three main steps. In step one, we reconstruct the alphabet� i of
every Si . We represent� i using three components;L i , Ri and f i . The set L i " � 1, � � g�
stores the identi�ers in P (see Section 5.5) for the nonterminals assigned to the symbols in
Si , the set Ri " � 1,¶L i ¶� encodes the alphabet ofSi , and the function f i � L i � Ri maps
an identi�er in L i to its symbol in Ri . In step two of infBWT, we compute the eBWT ofC
using the alphabet� h. We consider the circularity of the strings compressed inC to arrange
the symbols inB h. Finally, in step three, we perform an iterative process in which we induce
the eBWT B i of Si from the already computed transformB i � 1 and the alphabets� i � 1 and
� i . Once we �nish the iterations, we returnB 1 as the eBWT ofS˜ . Algorithm 1 depicts the
whole idea.

87

6.4 Reconstructing the Alphabets

We propose an iterative approach to reconstruct the alphabets of the parses. We proceed as
follows in every iteration i ; we �nd the loci in P of the nonterminals that map symbols in
Si (see Section 5.3), and insert their identi�er inL i . Subsequently, we assign ranks to the
elements inL i and store them inRi . The computation of these ranks requires the previous
triplet � L i � 1, Ri � 1, f i � 1� . Once we buildRi , we use the new triplet� i � � L i , Ri , f i � as input
for the next iteration i � 1. Our procedure requires a total ofh iterations, one for each parsing
round of LMSg.

We implement the function f i by encodingL i as a bit vector L � 1,r � � � , where L� l �
is set to 1 if l " L i and 0 otherwise. Additionally, we augmentL with constant-time rank
support (Section 2.2.1), so thatrank� L, l � is the number of1s in L� 1, l � . We store at position
Ri � rank� L, l �� the rank associated tol.

6.4.1 Finding the Nonterminals in the Parse Tree

For deciding whether a node label inP belongs toL i , we use the following lemmas:

Observation 1 Let X � F " R be a nonterminal rule generated by theLMSg algorithm.
Assume all the su�xes ofF up to position 1 $ k & ¶F ¶� 1 appear in more than one right-hand
side in R. After creating the RS rules inG (Section 5.4), every internal nodev in the parse
tree labeled withX will have its last ¶F ¶� k � 1 children recursively encapsulated from right
to left inside RS nonterminals. This encapsulation pattern will generate a stair-like shape in
the children of v (Figure 5.2B depicts the stair-like shape).

By using the stair-like pattern described in Observation 1, we can recognize occurrences
of LMSg nonterminals just by looking at the topology of the parse tree ofG.

Lemma 1 An internal node v of P is the locus of a nonterminal produced in the iteration
i of LMSg if its leftmost child is labeled with a symboll " L i � 1 and either v if the leftmost
child of its parent or the left sibling of v is labeled with a symboll¬Š L i � 1.

Proof. A nonterminal v whose �rst child has a labell " L i � 1 is either anLMSgnonterminal
of the iteration i or an RS nonterminal. If it is RS, then, due to the stair-like pattern, the
label of its left sibling must be inL i � 1, otherwisev is LMSg.

Building L i requires us to scan the internal nodes ofP one by one to check Lemma 1. We
can mark the internal nodes that were already visited during the reconstruction of previous
alphabets to avoid checking them again. Our grammar tree algorithm of Section 5.5 ensures
that if a nonterminal has a dual context, then its locus inP is always aLMSg occurrence.
In this way, building L i requires only visiting the internal nodes ofP, not its leaves.

88

Figure 6.2: Example of alphabet reconstruction. (A) The grammar treeP of Figure 5.3.
(B) The four dictionaries (L i , Ri) obtained from P. The mapping functionsf i were omitted.
The labels of every setL i , with i %1, are sorted in level order. TheRi lists store the ranks
of the labels inTLMS order. (C) Partial decompressions forL3. The symbols ofL3 (left side)
are arranged according to their ranks inR3. Their partial decompressions are shown on the
right side.

6.4.2 Giving Ranks to the Labels

Once we compute the labels inL i , we need a mechanism to assign them ranks (the values in
Ri). For that end, we regardL i � 1 as a set of logical leaves in the parse tree ofG. If during
the decompression of an internal nodev � internalselect� l � � � , with l " L i , (Section 5.5) we
reach a nodev¬ with label� v¬� " L i � 1, then we do not visit its subtree but spell its symbol
f i � 1� label� v¬�� " Ri � 1. We concatenate all the characters inf i � 1 spelled during the traversal
of v's subtree in one single string. We refer to this string as thepartial decompressionof l ,
or just pdi � l � . Note that the set of partial decompressions obtained fromL i is actually D i � 1;
the dictionary of phrases generated during the partition ofSi � 1 (see Section 5.3). We sort
D i in TLMS order so that if pdi � l � has ordero in D i , then the associated value ofl in Ri is o.
Figure 6.2 shows the distinct alphabets we obtain from the grammar tree of Figure 5.3, and
Example 1 shows how to implementpdi .

Example 1 Partial decompressionpd3(7) of symbol 7 " L3 in Figure 6.2. The symbol7
identi�es a nonterminal whose locus inP is the internal nodev � internalselect(7 - � � . We
simulate in P a pre-order traversal over the subtree rooted atv in the parse tree and we �nd
that the grammar tree labels12,13 and 14 of its children belong toL2. We replace their
values with their ranks inR2 and insert them to the partial decompression of7. The resulting
string is 7 8 2. When the label l for pdi identi�es a transferred symbol (Section 5.3.2), it is
not necessary to traverse the subtree. For instance,8 appears in bothL3 and L2, so pd3(8)
is just 4, its rank in R2.

In practice, we sort the string in D i � 1 along with their distinct proper su�xes of length
%1. The reason for this decision will be clear in Section 6.6. Maintaining all those strings

89

Figure 6.3: Sorting example to computeR2. (A) The same grammar tree of Figure 5.3. (B)
Array U2 storing the grammar pointers for the distinct su�xes of length % 1 in D1. The
gray dashed lines map the grammar pointers inU2 to their corresponding positions inP.
The vertical strings aboveU2 are the partial decompressions obtained from those pointers.
(C) Array U2 after sorting the grammar pointers according theTLMS order of their partial
decompressions. The gray dashed rectangles are the distinct buckets ofU2. The number
below U2 are the labels inL2 for the parent nodes of the grammar pointers.

in plain form during the sorting might require a lot of working memory. On the other hand,
decompressing them on demand fromP each time we access them can be slow. We came up
with a practical parallel solution to solve the problem.

First, we create an arrayU i storing pointers to nodes inP. These nodes encode the
distinct su�xes in D i � 1 of length %1. If we want to access the non-proper su�x of a phrase
F " D i � 1, we use the leftmost child of the internal nodev from which we partially decompress
F . In other words, the pointer ischild� internalselect� l � � � , 1� , with l " L i and pdi � l � � F .
The next case is when a proper su�xF ¬ � F � j ..� is unique inD i � 1. In that situation, we use
the child v¬ of v from which we can partially decompressF ¬. Finally, in the caseF ¬ appears
in di�erent strings of D i � 1, we use the leftmost child of the internal nodev¬ from which we
can obtain F ¬. Note that v¬ is the locus of an RS nonterminal by de�nition, so there is only
one possible position for that node inP. We store in U i the level orders of these nodes to
reduce the space usage. We refer to them asgrammar pointers. We will use them again in
Section 6.6.

We use counting sort to reorder the grammar pointers inU i according the �rst symbol of
their partial decompressions. The idea is to partition the array into buckets; all the grammar
pointers whose partial decompressions are pre�xed with the same symbolb " � i � 1 appear
together in the bth bucket of U i . This presorting is fast as we can obtain the symbolb

90

associated toU i � j � in constant-time as f i � 1� label� nodeselect� U i � j ���� . Once we �nish the
counting sort, we sort the distinct buckets ofU i in parallel using quicksort. When we sort a
bucket, we decompress the strings on demand fromP, except the pivot which we maintain
in plain form. There is an overhead in decompressing the nodes on demand, but we amortize
it by quick-sorting the distinct buckets in parallel. Figure 6.3 shows en example of the whole
process.

6.4.3 Time Complexity for the Alphabet Reconstruction

We now give time and space upper bounds for reconstructing the alphabets of theh di�erent
parsesSi generated during the execution ofLMSg (Line 2 of Algorithm 1). These upper
bounds consider the procedures described in Sections 6.4.1 and 6.4.2. We summarize our
results with the following theorem.

Theorem 4 The time complexity for reconstructing the alphabets of the parsing rounds of
LMSgis O�� g� Gf � h� time, wheref is longest right-hand side rule in the grammar ofP and
h is the number of parsing rounds ofLMSg. This task requiresO� Gh logG� bits of working
space on top ofP.

Proof. Let us �rst analyze the time complexity for constructing one alphabet� i . The �rst
step is to visit the internal nodes ofP to check which of them have labels inL i . We use
the LOUDS function internalselectto move from one internal node to the next inO� 1� time.
Additionally, checking if a node meets Lemma 1 requires us to perform a constant number of
operations. Therefore, asP hasg� 1 internal nodes, the construction ofL i takesO� g� time.
The next step is constructingRi . Our approach considers all thedistinct su�xes of length
%1 in D i � 1. There cannot be more thanG of such su�xes in D i � 1 as each one corresponds to
a distinct symbol in the right-hand sides ofP 's grammar. On the other hand, these cannot
be more thanf symbols long as this value is the maximum length a right-hand side can have.
Thus, the number of symbols we have to process to produceRi is O� Gf � . To obtain the
desired time complexity, we can use the sorting algorithm for strings described in Lemma
8.7 of Mäkinen et al. [120]. Given a string collectionW � rW1, : : : , Wnx over the alphabet
� � � 1, � � , and with a total of N symbols, this algorithm sortsW in O� � � N � time and
usesO� N logN � bits of working space. In our case, the alphabet of the su�xes isg, and N
is Gh, so the complexities for sorting the su�xes becomeO� g � Gh� time and O� Gh logG�
bits of working space.

We have to reconstructL i and Ri h times, one for every parsing round ofLMSg. Con-
sequently, the time complexity for reconstructing all the alphabets isO�� g � Gf � h� time.
After computing � L i , Ri � , we can discard all the auxiliary data structures to obtain the next
pair � L i � 1, Ri � 1� . In this way, the space complexity for reconstructing the alphabets remains
in O� Gh logG� bits.

We use quicksort to produceRi instead of the algorithm described in Mäkinen et al. as
it is faster in practice and does not require auxiliary data structures. With this change,
the space complexity to produce the alphabets decreases toO� G logG� bits on top of P,
which stands for the arrayU i with the grammar pointers. Quicksort incurs in no more than

91

G logG comparisons on average to sort theO� G� su�xes encoded in U i . In each of these
comparisons, we need to partially decompress a phrase fromP. If we replace the Hu�man
representation ofP 's labels (arrayZ of Section 5.5) with an array using �xed-length cells of
log� g � � � bits, then we can access the grammar tree labels inO� 1� time. This modi�cation
allows us to partially decompress a phraseF from P in O�¶F ¶� time and thus speed up the
su�x comparisons during the execution of quicksort.

Note that the analyses for reconstructing the alphabets are rather pessimistic. Assuming
that the number of distinct su�xes in D i � 1 is G implies that this dictionary stores all the
right-hand sides ofP 's grammar. Further, assuming that every dictionary hasG distinct
su�xes implies that all the right-hand sides of the grammar were generated in the �rst
parsing round ofLMSg, and later were transferred to subsequent parsing rounds, which is
not possible. However, we could not �nd better upper bounds. The alphabet reconstruction
depends ont � < h

1 ¶D i ¶. It is unclear which is the maximum number of distinct phrases we
can generate in a parsing round (value for¶D i ¶). On the other hand, it is also unclear which
is maximum value fort as the dictionaries are not disjoint. It is a value inG $ t $ Gh.

6.5 Computing the eBWT of the Compressed Text

Unlike the regular BWT, the position of eachC� j � in our version of the eBWT does not de-
pend on the whole su�x C� j � 1..� , but on the string S¬ � C� j � 1, j � p¬� C� j � p, j � .
This sequence is a circular permutation of the compressed version of some stringSx �
Sl$Sr $Src

r $Src
l $ " S˜ encoded in the rangeC� j � p, j � p¬� . Computing S¬ from P is simple

as G is string independent (see De�nition 6). This feature means that if we recursively ex-
pand every symbol ofS¬ and concatenate the result, then we obtain the exact sequence of
Sx . We do not have to deal with border cases in which the pre�x ofSx is a proper su�x in
the recursive expansion ofC� j � p� or cases in which a su�x of Sx is a proper pre�x in the
recursive expansion ofC� j � p¬� .

For constructing the eBWT of C we require P and the alphabet � h � � Lh, Rh, f h � .
Given the de�nition of P, we can easily obtain the root childv encoding C� j � as v �
nodeselect� j � 1� . Once we retrievev, we obtain C� j � with f h � label� v�� . For accessing the
circular string S¬ from C� j � , we de�ne the function cright. This procedure receives as input a
position j " � 1,c� and returns another positionj ¬" � 1,c� such that C� j ¬� is the circular right
context of C� j � . We usecright as the underlying operator for another function,ccomp. This
method compares lexicographically two circular permutations located at di�erent positions
of C. Similarly, we de�ne a function cleft that returns the circular left context of C� j � . We
usecleft to get the eBWT symbols once we sort the circular permutations. To support these
operations, we consider the border casesC� u¬� 1� � C� u� and C� u � 1� � C� u¬� for every
Sx " S˜ . These exceptions require us to include a bit vectorE� 1,c� that marks asE� j � � 1
every j th root child of P such that j mod 4� 0 and its recursive expansion is su�xed by$.
The functions cleft, cright and ccompare described in Algorithm 2.

We start the computation of the eBWT of C by creating a tableA� 1,c� with ¶Rh¶ lexi-
cographical buckets. Then, we scan the children of the root ofP from left to right, and for
every nodev, we store its child rank in the leftmost available cell of bucketf h � label� v�� in A.
This process yields a partial sorting of circular permutations ofC; every bucketb contains

92

Algorithm 2 Functions to simulate circularity over C
Require: A bitmap E� 1,¶C¶� marking the symbols ofC expanding to phrases su�xed by

$.
1: proc cright(j) V returns a j ¬ such that C� j ¬� is the circular right context of C� j �
2: if E � j � then
3: j � j � 1
4: while U� j � is falsedo
5: j � j � 1
6: return j � 1

7: proc cleft(j) V returns a j ¬ such that C� j ¬� is the circular left context of C� j �
8: if U� j � 1� then
9: while U� j � is falsedo

10: j � j � 1
11: return j
12: else
13: return j � 1

14: proc ccomp(a,b) V circular lexicographical comparison ofC� a� and C� b�
15: r1 � f h � label� nodeselect� a � 1���
16: r2 � f h � label� nodeselect� b� 1���
17: while r1 j r2 do
18: a � cright� a� , b � cright� b�
19: r1 � f h � label� nodeselect� a � 1���
20: r2 � f h � label� nodeselect� b� 1���
21: return r1 $ r2

the permutations that start with symbol b. To �nish the sorting, we apply a local quicksort
in every bucket usingccompas the comparison function (something similar to what we did
in Section 6.4.2). Finally, we produceB h by scanningA from left to right and appending
every symbolf h � label� nodeselect� cleft� A� j �� � 1��� with j " � 1,¶A¶�.

6.6 Inducing the eBWT

This section describes a method callednextBWT, which induces the extendedB i � 1 of the
parseSi � 1 from the already computed eBWTB i of the parseSi (Line 7 of Algorithm 1). For
this task, we consider an extra functionf i

inv that maps a symbolB i � j � " Ri to its respective
label l " L i . We use this new function to partially decompress the phraseF � pdi � l � �
Si � 1� u, u¬� " D i � 1 associated withB i � j � (l � f i

inv � B � j ��). The general idea ofnextBWT is to
decompress all the phrases inSi � 1 from B i and place their symbols inB i � 1. We note that, in
most of the cases, the su�xF � u � 1..� gives us enough right context to placeF � u� in B i � 1.
When this information is not su�cient, we complete the operation by using the (circular)
partial ordering of B i .

93

Lemma 2 Let A and B be distinct strings of lengthsa, b % 1 (respectively) that appear
as su�xes in two or more phrases ofD i � 1. Additionally, let Si � 1� o, o � a � 1� � A and
Si � 1� p, p� b� 1� � B be any pair of occurrences of these strings as su�xes in phrases ofSi � 1.
Assume these occurrences ofA and B are pre�xes in two substringsSi � 1� o, j � and Si � 1� p, j ¬�
(respectively) that recursively expand to di�erent su�xes of S˜ . If A TLMS B, then Si � o, j �
is lexicographically smaller thanSi � p, j ¬� .

Proof. Clearly, if A and B are not one a pre�x of the other, then theirTLMS order is that of
the expanded strings,Si � 1� o, j � and Si � 1� p, j ¬� . The problem arises when one string is pre�x
of the other.

This situation does not happen if one of them is a border phrase (Section 5.3.1) or a
transferred symbol (Section 5.3.2). Border phrases never occur as pre�xes of other phrases
because their last symbols always recursively expand to strings in� su�xed by a $, and due
to the string independence ofG, this character cannot lie within a phrase. In the case of
transferred symbols, they have frequency one inSi � 1.

The only scenario in whichA can be a pre�x ofB (or vice-versa) is when both are su�xes
of LMS phrases (Section 5.3). Still, we can obtain theirTLMS orders by inspecting the su�x
classi�cation of their symbols. Let a stringD over the alphabet� 0, 1� be the description of
an LMS phraseF . If F � j � is L-type, then D� j � � 1 and if F � j � is S-type or LMS-type,
then D� j � � 0. Now consider the setU with the descriptions of all the LMS phrases ofD i � 1.
As the pattern LS � 10 only appears as a su�x in the descriptions,U is a pre�x-free set.
Therefore, if A is a pre�x of B or vice-versa, then we can still decide their orders as long as
both have length more than one.

Now let us go back to the partial decompressionF extracted from B i � j � . We can use
Lemma 2 to obtain theTLMS order of every distinct su�x F � u � 1..� of length %1 and thus
estimate an range for position forF � u� in B i � 1. In particular, if F � u � 1..� has rankb among
the other su�xes in D i � 1, then F � u� belongs to thebth block of B i � 1, where a block is a
contiguous segment ofB i � 1 containing symbols that are followed inSi � 1 by the same su�x
F � u � 1..� . In the following, we re�ne this idea to complete the induction ofB i � 1.

The problem with the method described above is that we cannot obtain theTLMS order
for the last su�x s � F �¶F ¶� as it does not have the minimum length%1 for Lemma 2. We
solve this limitation by building an FM-index of B i . Thus, in addition to obtaining F , we
also compute the partial decompressionF ¬ from B i � LF� 1� j �� , the (circular) right context of
B i � j � . Our purpose is to obtain the right extensionsF ¬so we get enough information to �nd
the range for symbolF �¶F ¶� 1� in B i � 1. We refer to sF ¬ as anarti�cial string because it
does not necessarily exist inG due to the sequences' circularity. The FM-index also helps us
to �nd the symbols that precedeF in Si � 1. We obtain the phraseF ¬¬from B i � LF� j �� and
we place the last symbol ofF ¬¬in the bth block of B i � 1, whereb is the TLMS order of F .

Now we have all the necessary elements to describe how to assign everyF � u� " Ri � 1

extracted from B i to a speci�c block in B i � 1. We consider a new setD i � 1
ext that contains all

the distinct su�xes of length %1 in D i � 1, the transferred symbols inD i � 1, and the arti�cial
strings obtained fromB i . We useD i � 1

ext to induce a partition over B i � 1; every block in this

94

partition stores the symbols that are followed inSi � 1 by the same phraseA " D i � 1
ext . Thus, if

F � u� is followed byA in Si � 1, then it belongs to thebth block of B i � 1, whereb is the TLMS

order ofA in D i � 1
ext . The only thing left to compute is the relative order of the symbols within

the blocks ofB i � 1. We note we can induce these orders fromB i .

Lemma 3 Let B i � j � and B i � j ¬� be two BWT symbols at di�erent positions j and j ¬, with
j $ j ¬, and whosepdi phrases areF and F ¬, respectively. Also letPj and Pj ¬ be su�xes of
F and F ¬ with the same sequenceP " D i � 1

ext . The occurrencePj is lexicographically smaller
than Pj ¬.

Proof. As Pj and Pj ¬ are equal, their relative orders depend on the lexicographical ranks of
the phrases to the (circular) right ofF and F ¬ in Si � 1. As B i � j � appears before (from left to
right) than B i � j ¬� , the right context of Pj is lexicographically smaller than the right context
of Pj ¬.

If we generalize Lemma 3 tox ' 1 occurrences ofP, then we can use the following lemma
for building the block of B i � 1 associated withP:

Lemma 4 Let P " D i � 1
ext be a string with x occurrences as a su�x in the phrases ofSi � 1.

Let J � j 1, j 2, : : : , j x be a strictly increasing list of integers. EveryB i � j o� , with j o " J , is
a position where the partial decompressionpdi � B i � j o�� is su�xed by P. Assume we scanJ
from left to right, and for every j o, we extract the symbol inSi � 1 that precedes the occurrence
B i � j o� of P. The resulting list of symbols matches the block inB i � 1 for P.

Proof. Because of Lemma 3, we know that the su�x ofSi � 1 pre�xed by the occurrence
B i � j o� of P is lexicographically smaller than the su�x pre�xed by the occurrenceB i � j o� 1� .
This holds for everyj o, with o " � 1,x � 1� . In other words, the su�xes of Si � 1 pre�xed by P
are already sorted in lexicographical order inJ . Now suppose we access the occurrences of
P in Si � 1 in the same order they are encoded inJ and append their preceding symbols into
a list OP . The sequence of the resulting listOP will match a range ofB i � 1. That range will
be thebth block in the partition induced by D i � 1

ext , whereb is the TLMS order of P among the
strings in D i � 1

ext .

We use Lemma 4 to build all the distinct blocks ofB i � 1 in one linear scan ofB i . Then, we
use Lemma 2 to sort the blocks according their right contexts. More speci�cally, suppose the
symbols in blockB i � 1� o, o¬� are followed by the same stringA " D i � 1

ext . If A hasTLMS order b
in the set, then B i � 1� o, o¬� is the bth block of B i � 1. Note that the number of strings we sort
to get B i � 1 is small compared to its size. We use one string per block ofB i � 1, regardless of
the block length. On the other hand, it is not necessary to maintain these strings in plain
form as we can access them fromP. In the following, we will see that most of these right
context strings were already sorted in a previous step ofinfBWT, so the whole process of
building B i � 1 is not exhaustive.

We implement nextBWT as follows; we create two empty listQ and Q¬. Then, we start

95

Figure 6.4: Example ofnextBWT. (A) The parse S2 of Figure 5.1. The dashed vertical lines
are the boundaries between the original strings. The numbers belowS2 are the nonterminals
in P assigned to each symbol. The dashed arrow indicates the circular left context ofS2� 4� .
(B) The eBWT B 2 of S2. The dashed rectangles are the su�x array buckets. Columnf 2

inv

contains the labels inL2 for the symbols inB 2. The strings in columnpd2 are the phrases in
D i � 1 (partial decompressions) obtained fromB 2. The symbols in columnLF are the circular
left contexts in S1 for the strings in f 2

inv . The dashed arrow indicates anLF step for B i � 1� .
(C) The information we retrieve the scan ofB 2. Each curly bracket contains the information
from one position ofB 2. These curly brackets are read from top to bottom and from left to
right. The symbol to the left of a curly bracket is the labell " L i for the symbol in B 2. The
tuples to the right are the elements we append toQ or Q¬. They gray values below some
nodes ofP are their level-orders, and correspond to the grammar pointers we insert intoQ
or Q¬. The dashed arrows indicate the steps to get the circular right context with anLF step.

a scan ofB i from left to right. For every B i � j � , we obtain �rst the partial decompression
F ¬ from B i � LF� j �� and insert the pair � F ¬�¶F ¬¶�, p� to Q, where p is the grammar pointer
(Section 6.4.2) from which we obtain the sequence ofF � pd� l � , with l � f i

inv � B i � j �� . Then,
for every su�x F � u � 1..� of length % 1, we insert the pair � F � u� , p� to Q, where p is
the grammar pointer for the sequenceF � u � 1..� . After consuming F , we obtain the label
l¬ � f i

inv � B i � LFi � 1� j ��� " L i that identi�es in P the nonterminal assigned toB i � LF� 1� j �� .
Finally, we insert the triplet � F �¶F ¶� 1� , F �¶F ¶�, p� to Q¬, wherep is the grammar pointer
from which we obtain the sequence ofpdi � l¬� . Figure 6.4 shows the related concepts.

After the scan of B i , the next step is to mergeQ and Q¬ to produce B i � 1. The idea is
simple; we stably sortQ by the TLMS order of the partial decompressions (second component).
Subsequently, we stably sortQ¬ by the TLMS order of the arti�cial strings (second and third
components). Finally, we combine the �rst components ofQ and Q¬ in B i � 1. This last step

96

	Introduction
	Motivation
	Thesis statement
	Contributions

	Structure of the Thesis
	Software
	Notation

	Basic Concepts
	Data Compression
	Entropy
	Encoding Sequences
	Direct Access to Variable-Length Codes

	Compact Data Structures
	Bit vectors
	Wavelet Trees
	Succinct Trees

	Hashing
	Hash Tables
	Rolling Hashing
	Bloom Filters
	Document Similarity

	Indexing and Compressing Text
	Classical Indexes
	Suffix Array
	Suffix Tree

	Text Compression
	The Burrows-Wheeler Transform
	Grammars
	Other Compression Methods

	Self-Indexes
	FM-Index
	Bidirectional FM-Index
	The r-index
	The Grammar Index

	BWT Indexes for Labeled Directed Graphs
	Labeled Tries
	Directed Acyclic Graphs

	Algorithms for building the SA and the BWT
	Prefix-Free Parsing
	Induced Suffix Sorting

	Computational Genomics
	DNA Sequences
	DNA Sequencing
	Sequencing File Format

	The de novo Assembly Problem
	The de Bruijn Framework
	The Overlap Graph Framework

	Reference Genomes
	Pangenomes

	Grammar-Compressed Reads
	Motivation
	Definitions
	The LMSg Algorithm
	LMSg is for String Collections
	Simplifying the Grammar
	Analysis of LMSg
	Efficient Dictionary Construction

	Recompressing the Grammar
	Encoding the Grammar
	Experiments
	Results and Discussion

	Computing the eBWT
	Encoding Information with Circular Strings
	Definitions
	Overview of infBWT
	Reconstructing the Alphabets
	Finding the Nonterminals in the Parse Tree
	Giving Ranks to the Labels
	Time Complexity for the Alphabet Reconstruction

	Computing the eBWT of the Compressed Text
	Inducing the eBWT
	Implicit Occurrences of the LMS Phrases
	Inducing the BWT in Run-Length Compressed Space
	Practical Considerations of nextBWT

	Experiments
	Results and Discussion

	An Index for Navigating the Layout of Reads
	Definitions
	The Layout Query
	Computing Overlaps in a vo-dBG
	The Overlap Tree and rBOSS
	Simulating Bidirectionality
	Implementing the Layout Query
	The Layout Query and the BWT of the Reads
	Genome Assembly
	Experiments
	Space and Construction Time
	Time for the Primitives
	Genome Assembly

	Succinct Colored de Bruijn Graphs
	Definitions
	Coloring a dBG of Reads
	Partial Coloring
	Unsafe Coloring
	Safe and Greedy Coloring
	Ambiguous Sequences

	Compressing the Colored dBG
	Reconstructing Unambiguous Sequences
	Assembling Contigs
	Experiments
	Results

	Practical Locally Consistent Grammar
	Definitions
	A Grammar Self-Index based on LMS Parsing
	LMS parsing
	Computing the cuts during the pattern matching

	Experiments
	Results and Discussion
	Locally Consistent Grammars and Pangenomes

	Conclusion and Further Work
	Summary of contributions
	Further Work

