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Abstract

This thesis deals with the efficient representation and exploitation of trajectories of
objects that move in space without any type of restriction (airplanes, birds, boats,
etc.). Currently, this is a very relevant problem due to the proliferation of GPS
devices, which makes it possible to collect a large number of trajectories. However,
until now there is no efficient way to properly store and exploit them.

In this thesis, we propose eight structures that meet two fundamental objectives.
First, they are capable of storing space-time data, describing the trajectories, in a
reduced space, so that their exploitation takes advantage of the memory hierarchy.

Second, those structures allow exploiting the information by object queries, given
an object, they retrieve the position or trajectory of that object along that time; or
space-time range queries, given a region of space and a time interval, the objects
that are within the region at that time are obtained. It should be noted that
state-of-the-art solutions are only capable of efficiently answering one of the two
types of queries.

All of these data structures have a common nexus, they all use two elements:
snapshots and logs. Each snapshot works as a spatial index that periodically indexes
the absolute position of each object or the Minimum Bounding Rectangle (MBR) of
its trajectory. They serve to speed up the spatio-temporal range queries. We have
implemented two types of snapshots: based on k2-trees or R-trees.

With respect to the log, it represents the trajectory (sequence of movements) of
each object. It is the main element of the structures, and facilitates the resolution
of object and spatio-temporal range queries. Four strategies have been implemented
to represent the log in a compressed form: ScdcCT, GraCT, ContaCT and RCT.

With the combination of these two elements we build eight different structures for
the representation of trajectories. All of them have been implemented and evaluated
experimentally, showing that they reduce the space required by traditional methods
by up to two orders of magnitude. Furthermore, they are all competitive in solving
object queries as well as spatial-temporal ones.
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Resumen

Esta tesis aborda la representación y explotación eficiente de trayectorias de objetos
que se mueven en el espacio sin ningún tipo de restricción (aviones, pájaros, barcos,
etc.). En la actualidad, este es un problema muy relevante debido a la proliferación
de dispositivos GPS, lo que permite coleccionar una gran cantidad de trayectorias.
Sin embargo, hasta ahora no existe un modo eficiente para almacenarlas y explotarlas
adecuadamente.

Esta tesis propone ocho estructuras que cumplen con dos objetivos fundamentales.
En primer lugar, son capaces de almacenar en espacio reducido los datos espacio-
temporales, que describen las trayectorias, de modo que su explotación saque partido
a la jerarquía de memoria.

En segundo lugar, las estructuras permiten explotar la información realizando
consultas sobre objetos, dado el objeto se calcula su posición o trayectoria durante
un intervalo de tiempo; o consultas de rango espacio-temporal, dada una región del
espacio y un intervalo de tiempo se obtienen los objetos que estaban dentro de la
región en ese tiempo. Hay que destacar que las soluciones del estado del arte solo
son capaces de responder eficientemente uno de los dos tipos de consultas.

Todas estas estructuras de datos tienen un nexo común, todas ellas usan dos
elementos: snapshots y logs. Cada snapshot funciona como un índice espacial que
periódicamente indexa la posición absoluta de cada objeto o el Minimum Bounding
Rectangle (MBR) de su trayectoria. Sirven para agilizar las consultas de rango
espacio-temporal. Hemos implementado dos tipos de snapshot: basadas en k2-trees
o en R-trees.

Con respecto al log, éste representa la trayectoria (secuencia de movimientos) de
cada objeto. Es el principal elemento de nuestras estructuras, y facilita la resolución
de consultas de objeto y de rango espacio-temporal. Se han implementado cuatro
estrategias para representar el log de forma comprimida: ScdcCT, GraCT, ContaCT
y RCT.

Con la combinación de estos dos elementos construimos ocho estructuras diferentes
para la representación de trayectorias. Todas ellas han sido implementadas y
evaluadas experimentalmente, donde reducen hasta dos órdenes de magnitud el
espacio que requieren los métodos tradicionales. Además, todas ellas son competitivas
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resolviendo tanto consultas de objeto como de rango espacio-temporal.



Resumo

Esta tese trata sobre a representación e explotación eficiente de traxectorias de
obxectos que se moven no espazo sen ningún tipo de restrición (avións, paxaros,
buques, etc.). Na actualidade, este é un problema moi relevante debido á proliferación
de dispositivos GPS, o que fai posible a recollida dun gran número de traxectorias.
Non obstante, ata o de agora non existe un xeito eficiente de almacenalos e explotalos.

Esta tese propón oito estruturas que cumpren dous obxectivos fundamentais. En
primeiro lugar, son capaces de almacenar datos espazo-temporais, que describen
as traxectorias, nun espazo reducido, de xeito que a súa explotación aproveita a
xerarquía da memoria.

En segundo lugar, as estruturas permiten explotar a información realizando
consultas de obxectos, dado o obxecto calcúlase a súa posición ou traxectoria nun
período de tempo; ou consultas de rango espazo-temporal, dada unha rexión de
espazo e un intervalo de tempo, obtéñense os obxectos que estaban dentro da rexión
nese momento. Cómpre salientar que as solucións do estado do arte só son capaces
de responder eficientemente a un dos dous tipos de consultas.

Todas estas estruturas de datos teñen unha ligazón común, empregan dous
elementos: snapshots e logs. Cada snapshot funciona como un índice espacial que
indexa periodicamente a posición absoluta de cada obxecto ou o Minimum Bounding
Rectangle (MBR) da súa traxectoria. Serven para acelerar as consultas de rango
espazo-temporal. Implementamos dous tipos de snapshot: baseadas en k2-trees ou
en R-trees.

Con respecto ao log, este representa a traxectoria (secuencia de movementos) de
cada obxecto. É o principal elemento das nosas estruturas, e facilita a resolución
de consultas sobre obxectos e de rango espacio-temporal. Implementáronse catro
estratexias para representar o log nunha forma comprimida: ScdcCT, GraCT,
ContaCT e RCT.

Coa combinación destes dous elementos construímos oito estruturas diferentes
para a representación de traxectorias. Todas elas foron implementadas e avaliadas
experimentalmente, onde reducen ata dúas ordes de magnitude o espazo requirido
polos métodos tradicionais. Ademais, todas elas son competitivas para resolver tanto
consultas de obxectos como espazo-temporais.
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Chapter 1

Introduction

This chapter summarizes the contents of this thesis, and we introduce the motivation
of the structures designed for representing moving object trajectories. Section 1.1
gives the motivation and a brief introduction to state of the art. Section 1.2
introduces our method to represent trajectories and the common elements between
our structures. Besides, it brie�y explains the queries that we are interested in solving
and their classi�cation in two types. Finally, Section 1.3 presents the organization
of this thesis in the di�erent chapters.

1.1 Motivation

More than two decades after it emerged, the �eld of moving object databases is
still an active area of research. During the last years, the number of devices that
track information about the position of di�erent kinds of objects has increased
considerably. For example, nowadays, we can collect a large amount of data from
the GPS positions of large sets of cars, ships, planes, smartphones, and wearable
devices. Consequently, in the last years, the size of the datasets of moving object
trajectories has sharply increased.

Those datasets open up a wealth of new possibilities to obtain knowledge from
moving object trajectories, which can be useful in di�erent types of applications
like tra�c management, analyzing human movement, tracking animal behavior,
security and surveillance, military battle�eld, and others [ GLW08]. Due to the
sharply increasing sizes of these datasets, the treatment and storing of moving object
data becomes a challenge.

A trajectory, which does not consider a road network, is a path followed by a
moving object through space as a function of time. Due to storage requirements and
the limitations of the devices used to acquire the object positions, the continuous
movement of an object is usually approximated with discrete samples of spatio-

1
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temporal location points: the more samples taken, the more accurate the trajectory.
However, high sampling rates result in large amounts of data, which increases storage,
transmission, and processing needs. Even when storage, network, and processing
capacity grows rapidly, the collected data grows even faster, and thus it is necessary
to aim for reduced trajectory representations [ZZ11].

One traditional way to store trajectories is to use some disk storage, such as
conventional record-based �les. However, accessing to disk is a costly operation that
di�culties querying and handling the data in an e�cient way. The performance of
accessing the data can be improved with one or more indexes to speed up queries
over the stored data. This approach holds the bulk of the data on disk, while the
index structures reside in main memory, at least partially. Other methods combine
the data and the index in a single structure, though part still resides on disk. Even
then, the handling and querying the data is not e�cient. Thus new techniques for
storage and e�cient processing are necessary [ZZ11]. For this reason this thesis
proposes new data structures that compress the trajectory representation and avoids
access to disk.

With the increasing gap in the access time of main memory versus disk,
compressing the trajectories in order to query them in main memory is an attractive
option. Traditional methods for compressing trajectories include line generalization
(or simpli�cation) techniques, keeping only some of the trajectory points, and
discarding the rest. This approach results in some loss of information on the real
trajectory. A lossless strategy to obtain compression is the use ofdelta compression,
where each new position is stored as the di�erence with the previous one. This
idea exploits the fact that consecutive positions are expected to be closer to each
other, and that smaller numbers can be stored using fewer bits. Extracting a whole
trajectory with this arrangement is easy. E�ciently accessing the position of an
object at a given time, instead, requires sampling some absolute positions at regular
time intervals, which introduces a space/time tradeo�. Some recent proposals
following this trend [ CMWM10 , WZX + 14] build on delta compression, coupled with
an encoding that favors small numbers. The optimal codes for delta compression
can be obtained with a statistical encoder that exploits frequency bias (typically,
smaller numbers are more frequent).

Therefore, the underlying queries that a system managing collections of
trajectories should answer are: recovering the position of an object at a speci�c
time instant and recovering information about a part of its path during some time
(object queries). They are useful to obtain the trajectory of a taxi along the time or
its position at a desired time instant. However, some applications need to support
other kind of queries. The most classical queries arerange spatio-temporal queries,
which return those objects that hold some spatio-temporal constraints (e.g., objects
within a region during a period o time, objects closest to a point at a speci�c time
instant). Following with the example of taxis, they are useful to locate the closest
taxi to a position or identify the taxis within a spatial area.



1.2. Contributions 3

Consequently, another issue is how to index the trajectory data to answer range
spatio-temporal queries, which are not just retrieving a whole trajectory or �nding
the position of an object at a given time instant. Many indexes have been proposed
since the 90's to handle a rich set of queries on trajectory data. Most indexes were
modi�cations of the R-tree [Gut84], which augmented another dimension to deal
with the time. None of those works, however, compresses the data. Instead, they
are designed to work on disk, which is much slower than the main memory.

A new family of data structures called compact data structures combines, in a
single representation, a compressed representation of the data with the mechanisms
that provide direct access to any given datum, or even complex queries [Nav16].
These structures keep the data compressed all the time, without ever needing to
decompress it. In addition to the obvious space savings, compact data structures
allow more massive datasets to be managed in main memory, much faster processing
of datasets that can �t entirely in main memory thanks to compression, and improved
performance of distributed deployments.

In many cases, the compact data structure is coupled with indexes that speed
up the retrieval of information, enabling query times comparable to, and often
better than, traditional setups. The mechanism by which data is simultaneously
compressed and indexed is commonly known asself-indexing and is particularly
useful in situations where storage space is a problem.

For this reasons, this thesis aims to study and design new compact data structures
and algorithms to represent collections of trajectories of objects that are moving
in the space without any constraint and without assuming the existence of an
underlying network. Our methods show excellent performance in space/time in
comparison with classical spatio-temporal indexes.

1.2 Contributions

1.2.1 Compact representation of trajectories

This thesis focuses on a central problem, storing trajectories of objects moving freely
in the space in a compact representation, and e�ciently retrieving and querying their
data. Therefore, our contribution consists of the design, analysis, implementation,
and experimental evaluation of di�erent compact data structures. All of them have
particular properties, thus it makes necessary to design di�erent algorithms to solve
the proposed query types (object and range).

All of our structures are composed of two elements:snapshotsand logs. The
snapshots store spatial information of the objects at regular time instants and, the
log stores the relative movements of each object, where each relative movement
corresponds with the displacement of the object from one time instant to the next
one.

We propose di�erent data structures for snapshots and logs. For each combination



4 Chapter 1. Introduction

of those elements, we implement the corresponding algorithms. In the case of the
snapshots we propose two structures:

ˆ Snapshots based onk2-trees, which represents the areas where there are objects
by using a k2-tree. With the help of an additional array, we can discern the
objects within each area. The compression of that kind of snapshot exploits
the clustering and empty areas of objects.

ˆ Snapshots based on R-trees, each snapshot uses a compressed version of an
R-tree, a classical spatial index. It stores, for each individual object, the
rectangular area that contains the trajectory of the object along a speci�c
interval of time.

Concerning the log, we design four di�erent techniques:

ˆ ScdcCT exploits the fact that short movements are more frequent than large
displacements by compressing the log with(s; c)-Dense Codes [BFNP07], that
has low redundancy over the zero-order empirical entropy of the sequence.

ˆ GraCT considers the log as a sequence of integers, and it is compressed
with a grammar-based compressor called Re-Pair [LM00] that exploits the
repetitiveness of patterns between all the objects.

ˆ ContaCT is based on a structure forpartial-sums, and its primary goal is to
compute the position at a time instant in constant time at the cost of using
additional space with respect to the previous log structures.

ˆ RCT was designed for the compression of highly repetitive trajectories and tries
to represent all of them with relative compression, that is, all the trajectories
are composed of parts from an arti�cial trajectory, which contains the most
common movements of the objects.

As we developed two data structures for snapshots and four for logs, we �nally
have eight di�erent techniques. For each of them, we evaluate its compression
e�ectiveness. All our structures obtain a compression ratio of around 5%�25%,
with respect to to the minimum binary representation of the trajectory data, as we
describe in Chapter 9.

1.2.2 Solving queries e�ciently

The eight structures presented in this thesis can solve di�erent queries e�ciently.
As we explain above, we can distinguish two kinds of queries:object queriesand
spatio-temporal range queries. The �rst type of queries is focused on retrieving
information about the location or trajectory of a speci�c object. Instead, the second
type of queries compute the objects within a region during an interval of time. Below,
we present more details about the implemented queries.
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1.2.2.1 Object queries

There are three di�erent ways to obtain information about the location or trajectory
of an object:

ˆ Search Object : given an object identi�er id and a time instant tq, this query
computes the position of that object at the queried time instant tq.

ˆ Search Trajectory : like the previous query, it calculates the consecutive
positions of an object during an interval of time [ts; te]. That is, it produces
the sequence of positions traversed by the object during the queried interval
of time.

ˆ Minimum Bounding Rectangle (MBR) : given a range of time[ts; te] and
an object, it computes the smallest rectangle that contains the trajectory of
the object from ts to te.

1.2.2.2 Spatio-temporal range queries

The result of this type of queries is a list of objects. Unlike in object queries, where
the object is always a parameter of the query. The �rst two spatio-temporal range
queries obtain the objects within a region, and the last one identi�es those that are
the closest ones with respect to a point.

ˆ Time Slice : this query returns those objects within a given regionr q at a
given time instant tq.

ˆ Time Interval : it is an extension of time slice that expands tq to an interval
of time [ts; te]. Hence, it returns those objects within r q in any time instant
belonging to [ts; te].

ˆ K-Nearest Neighbors : given a point pq in the space and a time instant tq,
it returns the k closest objects topq at tq.

1.3 Structure of the Thesis

The structure of the thesis is as follows. First, in Chapter 2, we present some basic
concepts about data compression and compact data structures. In Chapter 3, we
show the previous work in the �eld of moving objects. After that we explain our
contributions with the following chapters:

ˆ Chapter 4 introduces the general idea of our contributions, that is, the method
common to all of our structures and its elements: snapshots and logs.
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ˆ Chapter 5 de�nes the components of our structures: snapshots and logs; and a
set of operations that can be solved in each one of those components. Several
algorithms to solve queries about trajectories, spatio-temporal queries, and
retrieving the closest objects to a point are described.

ˆ Chapter 6 presents the two di�erent kinds of snapshots and the algorithms to
retrieve the information stored within them, which are the basis to solve some
queries.

ˆ Chapter 7 describes the four di�erent structures for the representation. This
chapter also presents the algorithms that the logs need to support the queries.

ˆ Chapter 8 explains how to represent real trajectories by using our structures.
It also describes the necessary modi�cations of our structures in order to
represent the missed information that su�er real datasets.

ˆ Chapter 9 presents the experimental evaluation of our eight structures over
di�erent datasets, varying di�erent parameters. Besides, their scalability is
studied, and they are compared with a classical spatio-temporal index.

ˆ Chapter 10 discusses the conclusions and some future works for our
contribution.



Chapter 2

Basic Concepts

This thesis proposes new compact data structures for the representation of extensive
collections of trajectories of objects that are moving freely in the space. In this
chapter, we introduce concepts of di�erent �elds for a better understanding of our
contributions. In Section 2.1, we present several basic notions of information theory
and data compression. Section 2.2 introduces several compact data structures used
in this thesis.

2.1 Information Theory and Data Compression

2.1.1 Basic concepts on Information Theory

Information Theory is a �eld of Computer Science that focuses on studying the
quanti�cation of information to transmit messages through communication channels
e�ciently. The bases of Information Theory were proposed by Shannon [Sha48],
providing many useful concepts. In that work, one of the most relevant ideas for
this thesis is how to compute the minimum amount of space required to encode a
message. This allows us to determine the repetitiveness of the message and discern
which techniques can be applied over these data.

Assume that we have an in�nite source of information that emits symbolsx 2 X
with a probability p(x). This can be mathematically modeled as a discrete random
variable X that takes values in X with probability mass function p(x) = P r f X = xg.
The amount of information associated with an outcomex 2 X is de�ned by the
formula I X (x) = lg 1

p(x ) .1 In other words, an outcome o�ers more information than
one with a higher probability. For example, whether p(x) = 1 there is no information,
because the source is emittingx continuously as it is expected by its probability.

1Note that we denote log2 as lg

7
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Related to this concept of information is the entropy. Shannon[Sha48] de�ned it
as a function H(X ) or H that measures the amount of information or uncertainty
that is expected from a random variableX , and can be computed as:

H(X ) =
X

x 2X

p(x) lg
1

p(x)
(2.1)

Whether the information is not proportioned by an in�nite source, Shannon
de�nes a notion of entropy for �nite sequences calledzero-order empirical entropy.
Let us de�ne a sequenceS[1; n] over an alphabet � = [1 : : : � ], where each symbols
appearsns times in S. The zero-order empirical entropy of S is computed as:

H 0(S) =
X

1� s� �

ns

n
lg

n
ns

: (2.2)

It measures the uncertainty about S by considering only the probability of
occurrence of each symbol. In most of the cases, encodingS with H 0 bits per symbol
is good enough.

An encoding function C for a random variable X maps every symbol inX to D � ,
where D is an alphabet of cardinality D and D � is the set of �nite-length strings
composed by symbols fromD. Therefore, any symbolx 2 X can be encoded by
the encoding or code C and the result codeword is C(x), which is composed by
target symbolsfrom the target alphabetD. We can distinguish two types of encoding
depending on the lengths of thecodewords: �xed-length and variable-length. In the
�rst case, every codeword has the same length:jC(x)j = jC(y)j 8 x; y 2 X , where
jxj denotes the length ofx. Instead, in variable-length codes, each symbol can be
encoded with di�erent lengths. Notice that two di�erent symbols x 6= y x; y 2 X
are univocally decodable whenC(x) 6= C(y), otherwise decoding a codeword could
be ambiguous.

A direct extension of C is C � , which transforms a �nite string of symbols
messageinto a �nite string of target symbols. The encoded string can be computed
by appending the individual codewords of each source symbol:C � (x1; x2; : : : ; xn ) =
C(x1)C(x2) : : : C(xn ). The original message can be recovered by decoding each
codeword. However, for someencoding schemes, detecting each codeword's end can
be di�cult and need to read a large portion of the message. Those encodings which
allow decoding a codewordC(x) after reading its last bit are known as instantaneous
or pre�x-free encodings. Formally, an encoding scheme ispre�x-free if there is no
code C(x) that is a pre�x of other code C(y). It is important to notice that if
C is pre�x-free , C � (x1; x2; : : : ; xn ) is univocally decodable. Also, for all univocally
decodableencoding, we can �nd a pre�x-free code with the same average length,
hence both occupies the same but thepre�x-free is easier to decode. Those codes
which are pre�x-free and get the minimum average length are known asoptimal
codes. A lower bound on average length can be computed by the entropy, given the
source symbols and their probabilities.
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High-order models take into account a context of a �xed-sizek, which is the k
preceding values of a symbolx. Those models are known ask-order models, and
they measure the information of a symbol by considering thek preceding symbols.
For example, in natural language, if one knows the previous words, it is easier to
guess the next word. Based on this idea, Shannon proposes thek-order empirical
entropy, as:

H k (S) =
X

C = s1 :::s k

jScj
n

H 0(Sc): (2.3)

being SC a string composed by joining the symbols that follows each occurrence
of the context C = s1 : : : sk in S.

2.1.2 Data Compression: basic concepts

Facing the necessity to represent large datasets in less space, emerges thedata
compression, which tries to improve their manipulation, storage, and transmission.

2.1.2.1 Classi�cation of compression techniques

Compression techniques transform an input message into a compressed version by a
phase ofencoding. The original message can be recovered from the encoded version
by a stage ofdecoding. Depending on the result of decoding the encoded message,
we can classify compression techniques into two categories.

ˆ Lossy compression techniques , after performing the encoding process, the
encoded message is not able to retrieve the original message. In that phase,
some information of the input message is lost, which implies that the decoded
result will be very similar to the original message but not the same. Lossy
compression is advantageous in areas where an approximate version of the
original message is enough. For example, there are widely used to compress
video or images, where human eyes cannot detect those small di�erences.

ˆ Lossless compression techniques , from the encoded message, we can
retrieve the original one. Some �elds that do not allow the loss of any
information. Hence lossy compression techniques cannot be used. For example,
in text compression, these techniques are largely used, because if the message
undergoes any modi�cation may become meaningless. In this thesis, we focus
only on this kind of techniques.

Another way of categorizing the compression techniques is according to how the
encoding process is realized. We can distinguish two families:

ˆ Statistical techniques assign codewords to the source symbols according
to their frequency. Shorter codewords will correspond to the more frequent
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source symbols. Some well-known statistical techniques are Hu�man codes
[Huf52], arithmetics codes [Abr63, WNC87, MNW95], or the family of Dense
Codes [dMNZBY00, BFNP05, BFNP10].

ˆ Dictionary techniques , by considering the input as a string of source
symbols, these techniques create a dictionary of substrings and replace their
appearances in the source �le with pointers to their corresponding entry in
the dictionary. Those techniques reduce the space by representing several
symbols by one codeword. TheLempel-Ziv family[ZL77, ZL78, KPZ10] are
the most famous dictionary techniques. By using a sliding window of �xed-
size, they replace substrings by pointers to previous occurrences of identical
substrings. Also, there is a more structured way of compression based on
dictionaries, namely grammar compression, which is more suitable for random
access, pattern matching, etc. Those techniques compress a sequence S into a
single sequence C and a context-free grammar G. With C and G, the original
sequence S can be obtained without losing information. One of the most
well-known grammar-based compressors is Re-Pair [LM00].

2.1.3 Encoding Integer Numbers

We can classify the di�erent methods for encoding integer numbers into two groups:
small and large integers. The most well-known techniques for representing small
integers are unary-codes,� -codes, and� -codes:

ˆ Unary codes are a variable-length encoding for extremely small integers.
Basically, the encoding represents an integerx as 0-bits repeatedx � 1 times
followed by a 1-bit, that is, unary (x) = 0 x � 11. Therefore, junary (x)j = x,
and as a consequence the number 0 cannot be represented.

ˆ Gamma codes ( ) are only convenient when x is small.  -code encodes
the length of x in unary code followed by the number x without its most
signi�cant bit. That is,  (x) = unary (jxj)[x]j x j� 1, where [x]j x j� 1 is the binary
representation without the highest bit.

ˆ Delta-codes (� ) are useful whenx is too large for being represented with
 -codes. It is very similar to  -codes, and it is de�ned as:� (x) =  (jxj)[x]j x j� 1.
That is, the length of x is encoded with  -codes instead of unary codes.

On the other hand, when the integer is too large, there are some more e�cient
techniques than � -codes. These techniques aim to improve space e�ciency and fast
decoding. An example of these techniques is VByte-codes [WZ99].

The aim of VByte-codes is not only to be space-e�cient but also to obtain fast
decoding. In this case, it speeds up the decoding phase by obtaining a byte-aligned
variable-length solution. It means that each valuex is split into byte-length chunks.
Therefore, VByte-codes dividex into chunks of 7 bits. Each value is stored in the
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lowest bits of a chunk. The highest bit of the byte speci�es with 1-bit or 0-bit, when
the byte stores the binary representation of the last chunk or does not, respectively.
That is, V Byte(x) = b1b2 : : : bk where k = djxj=7e and bi stores the bits of x at
positions [7 � i; : : : 7 � (i + 1) � 1] padding to the left with 0-bit or 1-bit if i < k or
i = k, respectively. This code can be extended to a string of integersX = x1x2 : : : xn

as V Byte� (X ) = V Byte(x1)V Byte(x2) : : : V Byte(xn ).

2.1.4 Statistical compressors

2.1.4.1 Hu�man codes

Hu�man proposed an algorithm [Huf52] that builds a pre�x-free code of minimum
average length. These codes are known asHu�man codes. Its main idea is to assign
codewords whose length is proportional to each symbol's frequency by associating
short codewords to symbols with high probability and large codewords to those with
less probability. With this approach, the length of the output stream of bits for a
random variable X is betweennH(S) and nH(S) + 1 , that is, it requires at most
one extra bit per symbol with respect to the entropy.

To obtain the Hu�man codes, during the encoding, the algorithm builds a tree
that contains pre�x-free codes for each symbol. Classical Hu�man tree is a full
binary tree, where each node can contain zero or two child nodes, and each leaf
corresponds to a codeword. Every node is labeled with a weight that represents the
sum of the probabilities of its children leaves. Their position in the tree depends on
that label; a higher level node is heavier than one node at a lower level.

The Hu�man algorithm starts with a list containing n leaf nodes, one per source
symbol, whose labels correspond to the probability of the symbol. That list is sorted
by probability. The algorithm takes the two nodes with the smallest probability
and creates their parent node. The parent stores the sum of the probabilities of its
children. Then, the two smallest nodes are removed from the list, and their parent
is added. The process is repeated until there is just one node in the list. This last
node is the root of the Hu�man tree, and thus, its label is 1. Whether the nodes
are sorted by probability, building a Hu�man tree takes O(n) time [MNW95]. After
building the tree, each codeword is obtained with a top down traversal from the
root until the leaf that contains the encoded symbol. The binary representation of
the codeword depends on the path from the root to the leaf. Each branch on the
left corresponds with a 0-bit, otherwise adds a 1-bit.

For example, in Figure 2.1, the left half shows the construction of the Classical
Hu�man tree for an alphabet f a; b; c; d; eg, and the right half illustrates the labeling
and assignment of the codewords for each symbol. During the construction of the
tree, the list of symbols is kept sorted by their probabilities. In Step 3, we could
choose to joina and b in a subtree with frequency 0:65. However, we have chosen
b and its right subtree. Notice that, depending on the selected alternative, the
Hu�man code changes, which is not a rare case. Usually, several Hu�man trees can
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Figure 2.1: Example of Hu�man code.

be built over the same sequence. Consequently, to the codewords of a message, the
compressed �le needs to include information about the alphabet and the shape of
the Hu�man tree; otherwise, the message could not be decompressed. During the
decompression stage, the algorithm reads each bit and traverses the Hu�man tree
until reaching a leaf. Whether the algorithm is in an internal node and the read bit
is a 0-bit, the algorithm follows the left branch, otherwise, the right branch. When
the traversal reaches a leaf, a source symbol is obtained, and it is output. Then, the
traversal starts again from the root.

2.1.4.2 Canonical Hu�man

Given a set of source symbols and their probabilities, di�erent Hu�man trees can
be built, and thus di�erent codes can be generated. Although Hu�man's algorithm
computes the codewords for each source symbol, only their lengths are relevant.
This means that once those lengths are known, codewords can be assigned in several
ways. Among all of them, the canonical Hu�man code [SK64] is the most used since
its shape requires less space to be stored.

The canonical Hu�man tree is built from left to right in increasing order. There
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Figure 2.2: Example of Canonical Hu�man.

is at least one leaf per level, and they are placed in the �rst position available from
left to right. The following properties hold:

ˆ Codewords are assigned in increasing length order with the lengths of Hu�man's
algorithm.

ˆ Codewords of a given length are consecutive binary numbers.

ˆ The �rst codeword cl of length l is related to the last codeword of lengthl � 1
by cl = 2( cl � 1 + 1) .

The information about the shape of the canonical Hu�man tree can be compactly
represented by storing only the lengths of the codewords. Therefore, the compressed
�le requires O(h) integers, whereh is the height, to represent the shape of the
tree. Additional space is necessary to store the source alphabet, sorted by frequency.
Figure 2.2 shows the Canonical Hu�man codes for the example of Figure 2.1.

2.1.4.3 Plain Hu�man and Tagged Hu�man Codes

When using Hu�man, if the source alphabet is composed of characters and the target
alphabet are bits, the compression ratio and the compression/decompression speed
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Figure 2.3: Comparison of Plain and Tagged Hu�man Codes. For legibility
we assume each byte is composed by two bits.

are poor. Plain Hu�man and Tagged Hu�man are the word-based byte-oriented
variants of the Hu�man code [dMNZBY00]. By using bytes instead of bits as
target alphabet, since it avoids bit manipulations, the algorithm provides faster
decompression but pays more space with respect to a bit-oriented approach. Another
feature of these variants is that they allow searching for a pattern directly in the
compressed text faster than searching the uncompressed text. Plain Hu�man Code
obtains better compression ratios than Tagged Hu�man, but the Plain approach does
not provide random access, that is, Tagged Hu�man can decompress any portion of
the text and start a search at any position [BM77, NR02]. If we use Plain Hu�man
and start a search in a position di�erent from the beginning of the text, a false
match can occur, as shown in Figure 2.3. However, Tagged Hu�man Codes avoid
that problem by marking the �rst byte of a codeword: the �rst bit of each byte is a
�ag, set to 1 when it corresponds with the �rst bit of the codeword. The remaining
7 bits are used for the Hu�man code. Since only 7 bits are dedicated to coding,
Tagged Hu�man needs more space than Plain Hu�man to encode a given message.
However searches are faster, and it also allows random decompression.
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2.1.4.4 End-Tagged Dense Code and (s,c)-Dense Code

In state of the art, some proposals improve the performance of Tagged Hu�man. The
�rst work proposed was End-Tagged Dense Code [BINP03, BFNP07] that achieves
similar compression ratios to Plain Hu�man but keeps the performance capabilities
of Tagged Hu�man.

The main di�erence between ETDC and Tagged Hu�man is that, instead of
marking the �rst byte of the codeword, it marks the codeword's last byte. Hence,
ETDC reserves the �rst bit of each byte as a �ag that indicates whether the byte
is the last one of its codeword. Although the di�erence is quite simple, there is a
positive implication: the code is a pre�x code regardless of the content of the other
7 bits. Since it does not need to use Hu�man code for the remaining bits, ETDC
can code all possible combinations of those 7 bits, thus producing a dense encoding.
That is the key to obtain compression ratios close to Plain Hu�man and improve
those obtained by Tagged Hu�man.

Assuming our target symbols require b bits (b = 8 in the byte-oriented version)
and given source symbols sorted by decreasing frequencies, each codeword is a
sequence of target symbols representing digits in the range[0; 2b� 1 � 1] except the
last symbol whose value is in the range[2b� 1; 2b � 1]. The process of assigning these
codewords can be run sequentially, making the computation of the codewords simpler
and faster than Hu�man. It is important to notice that the codewords are assigned
depending on the rank in the sorted vocabulary. Therefore, the decompressor only
needs the non-decreasingly sorted vocabulary to obtain the original message.

(s,c)-Dense Code is a generalization of ETDC. By using codewords withb = 8 ,
ETDC uses the values in the range[0; 127] for those bytes that are not the end of
a codeword, called continuers (c), and the values in[128; 255] for the last symbol
of the codewords, called stoppers (s). Notice that the number of stoppers and
continuers are identical, this proportion could not be optimal for a given word
frequency distribution. In (s,c)-Dense Code, anys + c = 2 b can be used. Thus
the values in [0; s � 1] are the stoppers and those bytes in[s;2b � 1] are used as
continuers. The assignment of the codewords and their distribution in bytes are
shown in Figure 2.4. For a given word frequency distribution, the optimal s and c
values can be computed [BFNP07] to maximize compression ratios. Given a sorted
word vocabulary in decreasing frequency, we can describe the encoding process as
follows:

ˆ One-byte codewords[0; s � 1] are given to the �rst s words in the vocabulary.

ˆ Two-byte codewords are assigned to the words in the sorted vocabulary in the
range [s; s + sc � 1]. The �rst byte has a continuer value [s; s + c � 1] and the
last a stopper value in the range[0; s � 1].

ˆ By the function F (i ) =
P i

j =0 scj � 1 for any i > 0 and assumingF (0) = 0 . Any
k-byte codeword is assigned to the range of the vocabulary[F (k � 1); F (k) � 1],
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Figure 2.4: Distribution of (s,c)-Dense Code words.

by using k � 1 continuers and one stopper.

In that work, the authors propose an algorithm to encode and decode a word,
given its position in the sorted vocabulary. For instance, given thei -th ranked word
x = i � sck � 1 � s

c� 1 , the �rst k � 1 values of the codeword are the representation of
number bx=sc in basec, adding then s to each digit, and the last digit is x mod s.

2.1.5 Dictionary-based compressors

2.1.5.1 Lempel-Ziv family

The Lempel-Ziv family includes the most well-known dictionary-based techniques.
Compressors asp7zip, gzip and compressorare implementations based on variants of
this family. All of them are derived from the �rst basic methods: LZ77 and LZ78.

LZ77. LZ77 [ZL77] was the �rst proposed method in the Lempel-Ziv family. The
main idea of LZ77 is to build a dictionary on a sequenceS of an alphabet � from the
previously processed substring. For this purpose, the LZ77 has a�xed-size sliding
window holding the m last processed symbols. The algorithm traverses the sequence
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Figure 2.5: Example of LZ77.

and starts with an empty window. In each step, the algorithm looks for the maximal
subsequence contained in the window that matches with the next input symbols.
Note that the next symbol starts one position after the end of the window. Assuming
that the matched subsequence iss = s1s2 : : : sl and the following symbol is c, LZ77
encodes that substring as a triplehp; l; ci , where the p value denotes the position
of the occurrence ofs in the window as a backward o�set, and l is the length of s.
Once the triplet is computed, the window movesl + 1 positions forward. Whether
there is no match, that is the subsequence is emptys = E, the encoded triplet is
h0; 0; ci and the sliding window moves one position forward. Figure 2.5 shows an
example of LZ77 compression foraababbabaabb. Notice that the �xed-size sliding
window is colored in gray.

During the decompression, the window keeps the last decoded symbols. Hence
for a given triplet hp; l; ci , the decoder only needs to copy thel symbols starting at
position p before the last decoded symbol, and append to that sequence the symbol
c. As a consequence, decompression turns out very fast.

The compression of LZ77 depends on the size of the window. The greater is
that window, the higher the probability to encode larger substrings. Since the
bits needed to representp grows as the size of the window increases, in most of
the implementations the window size is set to4; 096 bytes. Usually, a triplet for
compressing text can be encoded in 8 bytes: 12 bits forp, 4 bits for l , and 8 bits for
the character c. Furthermore, the minimum size of the window must be considered,
in order to avoid cases where the triplet occupies more that the substring.

There are other variants of this family based on LZ77, for instance, LZMA
(Lempel-Ziv-Markov Chain Algorithm) is one of them. Usually, it builds a dictionary
of size 1GB, although it can be limited up to 4GB. As a consequence of this huge
dictionary, implementations of LZMA like p7zip can obtain better compression
ratios than those based on LZ77 likegzip. Instead, compression and decompression
require more memory and time.
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Figure 2.6: Example of LZ78.

LZ78. The LZ78 [ZL78] compressor replaces thesliding window by a dictionary
that stores all the processed subsequences. The algorithm reads one symbol at
a time and locates it in the dictionary. If the symbol is stored in the dictionary,
the algorithm reads the next symbol and concatenates it with the previous one,
creating a subsequence of size two. Again, the algorithm continues appending the
read symbols until the subsequence is not in the dictionary. In that case, we have
found the longest matching entry (ek ). The subsequence is encoded as the pair
hk; ci , where k is the index of the dictionary entry, and c is the symbol that follows
ek in the input. A new entry that corresponds with ek � c is added to the dictionary.
Those steps are repeated until processing the whole sequence.

To locate the dictionary's entries e�ciently, the algorithm builds a trie on the
dictionary. That is, there is a tree where each node points to a dictionary entryei ,
representing the subsequence obtained by appending the symbols in the path from
the root to its corresponding nodeni . Processing the text, for each read symbol, we
traverse the tree downwards. We found the longest match (ek ), when no edge allows
moving to the next symbol of the sequence. After �nding ek , the dictionary adds a
new entry and updates the trie. An example of LZ78 and its trie, with the previous
string used in LZ77 (aababbabaabb), is shown in Figure 2.6.

Although LZ78 compression is faster than LZ77, its decompression speed is slower
than LZ77. A variant of LZ78 is LZZW [ Wel84], which the base of GIF image format
and the Unix compressprogram. The main di�erence is that LZW only points to
entries in the dictionary, it does not add the extra symbol. For that, LZW initializes
the dictionary and trie with the alphabet symbols. As a consequence, LZW gets
better compression ratios than LZ78.
RLZ . Known as Relative Lempel-Ziv [KPZ10], this technique is largely used for
compression of highly-repetitive sequences. The main di�erence with the previous
approaches is that it builds a reference, in other words, it creates a static window
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Figure 2.7: Example of Re-Pair over a sequence of integers. The most
frequent pairs in each step are colored in gray and the rules created in each
step are stored inR.

whose information is highly representative of the sequence to compress. Considering
that the sequence S can be composed of several sub-sequences, that reference can
be real or arti�cial . Whether one of those sub-sequences is chosen as reference, the
reference isreal. On the other hand, when the reference is built by joining parts
of those sub-sequences, it is calledarti�cial . One of the most powerful methods in
DNA for building an arti�cial reference is based on taking uniform samples of the
sub-sequences and join them in the reference [LPMW16].

After choosing a representative reference, the sequence is compressed as a list of
pairs hp; li computed with the LZ77 parse, but instead of making reference to the
sliding-window, they point to the reference. Notice that, RLZ uses pairs instead of
triples, because it does not store the symbol that mismatches the sequence. Unlike
the previous techniques, RLZ allows random access to any part of the data, without
decompressing the whole previous information.

2.1.5.2 Grammar Compression: Re-Pair

Along the time, several techniques [NMW97a, LM00, KYNC00, YK00, KY00, NM96,
NMW97b, Bry86] propose a hierarchical way for compressing text, well known as
grammar compression. This kind of compression gives a more structured way of
compression, which is more suitable for random access, pattern matching, etc. Those
techniques compress the sequence S into a single sequence C and a context-free
grammar G. With C and G, the original sequence S can be obtained without losing
information. Re-Pair [LM00] is one of the most powerful grammar-based compression
techniques since it was used during the development of this thesis, we explain it in
more detail.

Re-Pair. Re-Pair [LM00] is a grammar-based compression method. Given a
sequence of source symbolsI (called terminals), the method proceeds as follows: (1)
it obtains the most frequent pair of source symbolsab in I ; (2) it adds rule s ! ab
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to a dictionary R, where s is a new symbol not present inI (called a nonterminal);
(3) every non-overlapping occurrence ofab in I is replaced bys, and (4) steps 1-3
are repeated until all pairs in I appear only once (see Figure 2.7). The resulting
sequence after compressingI is called C. Every symbol in C represents a phrase (a
sequence of one or more of the source symbols inI ).

Figure 2.7 shows an example where Re-Pair is applied over a sequence of integers.
After detecting that the most frequent pair of I is h1; 2i , a new nonterminal is
created (A ! 1; 2). The nonterminal A replaces every pairh1; 2i . As a consequence,
I is updated to the sequence of Step 1. This process is recursively repeated. The
next step �nds the most frequent pair h3; 4i , and replaces it by the nonterminal B .
After replacing the pair hA; B i with D , there is no repeated pair inI . Hence, the
algorithm stops, and I turns into the �nal sequence of Re-Pair, renamed asC. The
result of Re-Pair is composed ofC and the dictionary R.

If the length of the represented phrase is 1, then the phrase consists of an original
(terminal) symbol; otherwise, the phrase is represented by a new (nonterminal)
symbol. We consider that each nonterminal ofC contains a grammar parse tree,
that is, a tree whose root corresponds with the nonterminal symbol and its children
are the right part of its rule. When those nodes are nonterminals, their subtrees
are recursively obtained. For example, in the right part of Figure 2.7, we show the
grammar parse tree ofD . Re-Pair can be implemented in linear time [LM00], and a
phrase may be recursively expanded in optimal time (i.e., proportional to its length).

2.2 Compact data structures

The objective of compact data structures is to represent data in a compact way,
where the space for representing those data is the minimum possible but keeping the
capacity to access any datum in an e�cient way. That is, represent the data (text,
sequences, trees, etc.) in such a way that the space of storing that representation is
smaller than the size of the original data, and decompressing the whole representation
is not necessary to access the data. Since those structures are compact and �t in
main memory, they take advantage of memory hierarchies where accessing the data
is faster in higher levels (e.g., main memory) than in lower levels (e.g., disk). In
many cases, they also provide indexes that allow us to answer queries even faster
than performing those queries over the uncompressed representation.

2.2.1 Rank and select over bit-vectors

Most compact data structures use bit-vectors supporting rank/select operations.
Given a bit-vector B of sizejB j = n we can de�ne three operations:

ˆ access(B; i ), returns the bit value at a given position i of a bit-vector B .
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Figure 2.8: Examples of rank and select.

ˆ rank b(B; i ) counts the number of times theb bit appears from start to the
given position i .

ˆ selectb(B; j ) returns the position of B where is located thej -th occurrence of
the b bit.

These operations are illustrated in Figure 2.8, and they are the basis of most
of the compact data structures. Jacobson, whose Ph.D. thesis can be taken as the
starting point of the study of compact data structures [Jac89], showed that the rank
operation can be answered in constant time over plain bit-vectors.

Given a bit-vector B of size jB j = n, in order to solve the previous operation
Jacobson [Jac89] proposes a structure of two levels. The �rst level is composed
of superblocks of sizes = blognc blogn=2c. Each superblock stores the result of
rank 1(B; i ) for each i multiple of s. In the second level, there are blocks of size
b = blogn=2c, where each block stores the relative rank within the superblock until
the beginning of that block. We can computerank 1(B; i ) using those two directories.
From the �rst level, we obtain the rank value until the previous multiple of s, while
the second level returns therank value until the previous multiple of b. By the
addition of s and b we can know the result until the last position to the block that
contains j . Finally, the algorithm counts how many 1-bits there are between the
beginning of the block andj , and that value will be added to the �nal result. This
last step can be solved in constant time by using alookup tablestoring the result of
rank for all possible subsequences of sizeb. Notice that numbers in polylog(n) can
be encoded inO(log logn). That means that rank can be solved inO(1) time using
an additional space ofo(n) bits. However, solving select requires binary searches
in both levels. Hence this operation takesO(log logn) time. Clark and Munro
[Cla96, Mun96] proposed a new solution that solves both operations in constant
time by using additional structures for computing rank and select. Those structures
add an extra-space ofo(n) bits to the original bit-vector, thus the total required
space isn + o(n) bits.

Another operation that can be implemented using rank and select
is selectnext (B; j ). This operation returns the position of the next
bit set to 1 after position j (included) in the bit-vector B , that is,
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selectnext (B; j ) = select1(B; rank 1(B; j � 1) + 1) . Though rank and select
are O(1) time operations, there is a more practical structure forselectnext [Nav16],
which keeps theo(n) extra-space andO(1) time. In practice, it achieves less space
and better response times than usingrank, and then select. That structure is similar
to the classical rank structure [Jac89], but instead of storing the number of ones
preceding a position, it stores the location of the next 1-bit.

2.2.2 Compressed bit-vector representation

There exist other solutions that provide the operations access, rank, and select, but
storing the bit-vector in a compressed way.

Pagh [Pag99] compressed the bit-vector by splitting it into equal-sized blocks. For
each block, the number of 1-bits that contains is explicitly stored. Those blocks are
compressed with a schema that clusters consecutive blocks into intervals of varying
length. An additional two-level structure and lookup table allow us to extract the
rank information.

A proposal that obtains a space result close tonH 0, whereH0 is the zero-entropy,
was proposed by Raman et al. [RRR02]. They propose a technique that can solve
rank and select in O(1) time. The sequence is split into di�erent blocks, and they
are classi�ed into classes. Each class gathers all blocks with the same number of 1s.
Each block has associated a pair(ci ; oi ), where ci identi�es the class of the block;
and oi is the o�set of that block inside the class, which identi�es how the 1-bits are
distributed inside the associated class. Letb be the size of each block, the cost of
representingci is dlog(b+ 1) e bits and oi usesdlog(

� b
ci

�
)e bits.

Other strategies were focused on sparse bit-vectors, those where the number
of 1-bits m � n. Okanahora and Sadakane [OS07] presented several solutions:
esp, recrank, vcode, and sdarray. All of them assume that the input bit-vector is
sparse and has di�erent advantages and disadvantages in terms of speed, size, and
simplicity. Also, based on those sparse bit-vectors Navarro [Nav16] proposes a way
to compress and support e�cient rank and select operations over bit-vectors with
runs, a sequence of identical consecutive symbols, in this case, bits.

2.2.3 Partial sums

Partial sums is a well-known problem. Given an arrayA[1; n] of small numbers,
this problem tries to answer two types of queries:sum(A; i ), which computes the
sum of the numbersA[1]; A[2] : : : A[i ]; and search(A; j ), which looks for the smallest
index i in A whosesum(A; i ) is greater than or equal to j . The simplest way of
solving it is to store an array S where S[i ] = sum(A; i ). Consequently, we can solve
sum(A; i ) = S[i ] in constant time, and we can solvesearch(A; j ) with a binary
search on S inO(log n) time.

By using bit-vectors with rank and select auxiliary structures, it is possible to
compute both operations in constant time. An Elias-Fano representation [Fan71,
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Eli75] of the partial sums considers the previous arrayS, and builds a bit-vector B of
sizeS[n] where B [S[i ]] = 1 , where i 2 [1; n], and the remaining positions are set to 0.
It can be understood as the list of the values ofS represented in unary. Therefore we
can computesum(A; i ) as select1(B; i ), that can be computed in constant time, and
search(A; j ) as select1(rank 1(B; j )) . The space representation islog(n=m) + O(m)
bits, close to a di�erential representation of the S values.

2.2.4 Compressed tree representations

Trees are a largely used structure in many algorithms. For a general tree ofn
nodes, its classical representation usesO(n) words. Each node requiresw � logn
bits, thus the space turns out O(nw) bits. The constant of this bound is at least
2, which allows to solve basic operations like visiting the �rst child or the next
sibling. By increasing this factor, we can solve more operations (e.g. obtaining
the depth, moving to the parent, obtaining the lowest common ancestor, etc.).
Di�erent works which require 2n + o(n) bits and can solve most of the operations in
O(1) time were proposed [CLL05, Jac89, MRR01, MR01, MR04, GRRR04, GRR04,
GRRR06, GMR06, GGG+ 07, DRR06, HMR07, Sad07, JSS07, LY08, BHMR07,
BDM + 05, FM08, FLMM05 ]. The main di�erence between them resides in the kind
of operations they can solve, and the nature ofo(n) space, which can �uctuate from
O(n=(log logn)2) to O(n=polylog(n)) . Those representations can be divided into
three categories:

ˆ BP : An ordinal tree can be represented as a balanced sequence of parentheses
(BP), that is, a sequence of opening and closing parentheses identi�ed by
1-bits and 0-bits, respectively. By following a depth-�rst order traversal, when
the algorithm reaches a node for the �rst time, it adds to the sequence an
opening parenthesis �(�. The position of every opening parenthesis identi�es
the corresponding node. When the subtree of a node is completely processed,
it appends a closing parenthesis �)�. Assuming that the number of nodes in
the tree is n, this representation requires2n bits, one for the opening and
another for the closing parentheses. The main property of this representation
is that any subtree is contiguously stored in the bit-vector. We can compute
three di�erent core operations on a sequence of parenthesesB :

� close(B; i ): returns the position of the closing parenthesis corresponding
to the opening parenthesis �(� at position i .

� open(B; j ): with respect to a closing parenthesis �)� at position j , it
returns the position of its corresponding opening parenthesis.

� enclose(B; i ): returns the smallest segment of opening and closing
parentheses that contains i . That is, the position k < i such that
[k; close(B; k )] is the minimum interval containing i .
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Figure 2.9: Examples of compressed tree representations.

Jacobson made the �rst studies in this topic [Jac89] that were later improved
by Munro and Raman [MR01] that presented a solution that requires
asymptotically optimal space, and every core operation takes constant time.
However, the most used implementation is based onrange min-max trees
[SN10], making it possible to resolve these queries inO(logn) time by using
o(n) additional space.

ˆ DFUDS : Depth First Unary Degree Sequence [BDM + 05, JSS07] is built by
traversing the tree in a depth-�rst order traversal. When the traversal reaches
a node, the number of children is appended to the �nal sequence in unary.
For example, if a node contains 3 children, it adds to the sequence the value
1110. By adding an arti�cial root, the resulting sequence can turn out to be
a balanced sequence of2n parentheses. Therefore the core operations of BP
can be used by DFUDS in order to solve basic operations in constant time.
More sophisticated operations can be solved in constant time, but adding some
additional space.

ˆ LOUDS : Level-Ordered Unary Degree Sequence [Jac89] is a tree represen-
tation for ordered trees. For each node, from left to right, in a level order
traversal, the representation appends to a binary sequence the unary code
1d0, where d is the degree of the current node, that is, the number of children.
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Therefore, the sequence of a tree ofn nodes has2n � 1 bits. Speci�cally, n
bits correspond with the last 0-bit of each node, andn � 1 bits are set to
1-bit, because each node is a child of another node, except the root. Adding
an arti�cial root node super-root, every node of the tree is a child of another
node. Thus we can maintain the property that all the nodes correspond to
one 1-bit. As a consequence, the length of the �nal sequence increases by 2
bits. The navigation of the tree is supported by rank and select operations.
Among di�erent operations, LOUDS supports access to children, retrieving
the position of the parent or counting the number of children. For example,
given a nodex and the position i of its 1-bit in S, its �rst child is located
as select0(rank 1(i )) . On the other hand, the parent can be computed as
p = select1(rank 0(i )) .

2.2.4.1 Fully Functional Succinct Tree

In this thesis, we use the recent proposal called fully-functional succinct tree (FF)
[SN10]. Based on a BP representation, it combines wide functionality, with little
space usage and good time performance. The main component is arange min-max
tree, which allows us to solve basic and sophisticated operations in constant time.
Unlike previous proposals [Sad07, MRR01, MR04, CLL05, LY08], FF does not need
auxiliary structures for each supported operation.

The fully-functional succinct tree proposal reduces every operation considered in
the state of the art to core operations on BP, that can be solved e�ciently by the
range min-max tree. Given a sequenceB [0: : : n � 1] of balanced parentheses, we
can de�ne excess(i ) = rank ( (i ) � rank ) (i ) as a function which returns the di�erence
between the number of opening and closing parenthesis inB [0: : : i ]. Note that when
P[i ] is an opening parenthesisexcess(i ) is the depth of the corresponding node,
while in case of a closing parenthesis, it is the depth minus 1. As a consequence, the
core operations on BP can be reduced to:

ˆ close(B; i ) = j : where min j>i f j jexcess(j ) = excess(i ) � 1g

ˆ open(B; i ) = j : where max j<i f j jexcess(j ) = excess(i ) + 1 g

ˆ enclose(B; i ) = j : where max j<i f j jexcess(j ) = excess(i ) � 1g

By considering the operatorexcess(B; i; j ) = excess(B; j ) � excess(B; i � 1), we
can de�ne two core primitives on range min-max trees:

ˆ fwd _ search(B; i; d ) returns the smallest j > i , such that excess(B; i; j ) = d

ˆ bwd_ search(B; i; d ) returns the greatest j < i , such that excess(B; j; i ) = d
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These core primitives can be used for solving di�erent operations on trees:

close(B; i ) = fwd _ search(B; i; 1)

open(B; i ) = bwd_ search(B; i; 0) + 1

enclose(B; i ) = bwd_ search(B; i; 2) + 1

level_ ancestor(B; i; d ) = bwd_ search(B; i; d + 1)

level_ next(B; i ) = fwd _ search(B; close(B; i ); 0)

level_ prev(B; i ) = open(B; bwd_ search(B; i; 0))

Therefore, the e�ciency of those operations depends on the ability of the min-
max tree to compute the core operations (fwd _ search and bwd_ search). The
min-max tree is built over a virtual array of excess(i ) by splitting it into blocks of
sizes = w

2 , where w is the machine word length. For each block, the total excess
and the minimum/ maximum local left-to-right excess are stored. After that, blocks
are recursively assembled into groups of sizek = O(w=logw), and each formed
superblock stores the local excess and minimum/maximum excess within the blocks
it holds. The min-max tree turns into a k-ary balanced search tree, which requires
O(n log(s)=s) = o(n) bits of space (see Figure 2.10).

To compute fwd _ search(B; i; d ) by the range min-max tree, we �rst check if
it can be solved in the block where the positioni is located. For instance, we
consider that the block q = bi=sc corresponds to the range[l; r ] of B . The scan
inside the block can be computed in constant time by using lookup tables. Whether
the solution is not in the current block, the algorithm has to run a bottom-up
traversal from the leaves to the root until �nding the �rst right node which contains
excess(i � 1) + d. If the node is a leaf block, it is scanned by using lookup tables. If
the node is internal, the range min-max tree is traversed top-down from the node
until �nding the leftmost child that contains the desired excess. Analogously, we
can solvebwd_ search(B; i; d ).

Figure 2.10 solvesfwd _ search(B; 6; 0). Firstly, with lookup tables or a sequential
scan, the local excessel within that block regarding the position 6 is computed.
Since B [7] = 1 and given that it is the last position in that block, the relative
excessel is 1. As the second block is a right child, the algorithm moves up to the
parent, N8. Since this node is a left child, the search continues on its right sibling,
N9. We observe that el + N9:m � d, since the excess can only increase by� 1, the
solution is contained within the interval covered by N9. The algorithm moves to
the leftmost child of N9, that is N3. However, the solution is not contained inN3

becauseel + N3:m � d. The next node to process isN4, the right sibling of N3.
As the N3 was completely skipped,el has to be updated with the addition of N3:e.
In this case, N3:e = 0 and el keeps its previous value. The nodeN4 contains the
solution (el + N4:m � d), by scanning its content, we look for the position whereel

turns out d = 0 , in our case, at position14.
Another important operation is rmq(i; j ) (resp. rMq (i; j )), which computes the
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Figure 2.10: Example of fwd _ search.

position of the minimum (resp. maximum) excess within the interval [i; j ]. For
solving it in min-max trees, the algorithm �rstly computes the minimum value in
that range. The algorithm starts with a linear scan in the �rst block intersecting
the queried interval between positions[s; e]. During that scan, the algorithm tracks
the local excessel and the minimum excessml . If e � j , ml is the minimum value.
Otherwise, the algorithm keeps looking for the minimum in the range[e+ 1 ; j ] by
traversing the nodes of the min-max tree completely contained in[e + 1 ; j ], from
the leaves to the root. Once the right sibling is not completely contained in[i; j ],
the algorithm runs a top-down traversal that recursively checks which of its left
descendants containj + 1 , and its corresponding leaf is scanned. During the whole
traversal, ml value is updated with the minimum excess processed, thusml contains
the minimum excess in[i; j ]. Finally, the leftmost position where that minimum
excess can be computed asfwd _ search(B; i � 1; ml ).

In our example of Figure 2.11, the algorithm starts scanning the second block
(N2). Since B [7] = 1, el and ml are updated to 1. The algorithm continues with the
parent of N2 (N8). In that case, N8 is a left child, thus its covered area was processed,
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Figure 2.11: Looking for the minimum value between [7; 18].

and consequently, the algorithm moves to its right siblingN9. Sinceel + N9:m < m l

(0 < 1) the value of ml is updated to el + N9:m = 0 . The algorithm follows with
N12 and updatesel to el + N9:e = 1 , that is, the excess previous to the right child of
N12 (N13). Now, as N12 is a left child, the next node to process isN13. This is the
�rst node that is not completely contained in the queried interval, thus the algorithm
starts, from N13, a top-down traversal looking for a better local minimum excess.
N13 can improve ml becauseel + N13:m < m l (� 1 < 0), so it continues checking its
children. The left child N10 cannot improve ml (el + N10:m � ml ), and the right one
does not intersect the queried interval. Therefore, the algorithm stops and returns
the local minimum excess,ml = 0 . In other words, the algorithm has �nd the local
minimum excessml . By running fwd _ search(B; i � 1; ml ) = fwd _ search(B; 6; 0),
as in the previous example (see Figure 2.10), the minimum value between[7; 18] is
computed at position 14.
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2.2.5 Permutations

A permutation � of sizen is a reordering of the valuesf 1; : : : ; ng, it can be represented
by an array � [1; n] where each value inf 1; : : : ; ng occurs only once. Storing the
permutation in an array requires n logn bits, we can solve in constant time the basic
operation � (i ), which recovers the value at positioni .

In some cases, more advanced operations are required, for instance, the inverse
permutation of i , � � 1(i ) = j , which returns the number j where � (j ) = i . The
simplest way for solving the last operation in constant time is to store an additional
array I [1; n] whereI [i ] = � � 1(i ), but it doubles the space. However, the permutations
can be decomposed incycles, which can speed up these kinds of queries [MRRR12].
Let us de�ne the recursion of applying � over i as i 0 = i , i 1 = � (i ), i 2 = � (i 1) =
� (� (i )) , and so on. We discern a cycle, when starting at positioni , after k recursive
steps of ap plying � we reachi k = i . Since i k � 1 = � � 1(i ), we can solve� � 1(i ) in
O(k) time.

Since k can be as large asn and the expected value ofk is �( n= logn), this
solution turns impractical. However, this idea is the basis of a technique calledcycle
decomposition, which splits the permutation into its cycles. Each of those cycles can
be of di�erent sizes. Therefore the performance of solving� � 1(i ) depends on the
length of the cycle such that i belongs. By introducing a parametert � 1, we can
guarantee that � � 1(i ) requires at most t steps. To achieve it, on those cycles whose
length is greater than t, every t steps in a cycle, we add a shortcut that points to
� � t (i ). An additional shortcut is added when the length of the cycle is not multiple
of t. In order to compute � � 1(i ), we start with j = i , and we repeat these steps: if
� (j ) = i return j ; otherwise, the procedure advances to the nextj . Usually j  � (j )
but, in case that there is a shortcut in j pointing to s, the new value of j  s. It is
important to notice that the algorithm only follows the �rst shortcut.

The shortcuts can be represented by a bit-vectorB [1; n] where B [i ] = 1 such
that i contains a shortcut, and an additional array S stores the targets. Notice that
the size ofS is the number of shortcuts, and the target of a shortcut whose source
is at position i can be computed asS[rank 1(B; i )]. For example in Figure 2.12
the permutation � contains three cycles:f 4; 5; 7; 12; 1; 9g, f 10; 6; 2; 8; 11g and f 3g.
The shortcuts are placed with t = 2 . Except the for the last cycle, the remaining
ones have these shortcuts:5 ! 9, 12 ! 5, 5 ! 9, 6 ! 11, 8 ! 6, and 11 ! 8.
In order to compute � � 1(7), we start at 7 checking B and � . Since at position 7
there is no shortcut (B [7] = 0), the next position to check is at � [7] = 12. However
B [12] = 1, thus there is a shortcut that points to S[rank 1(B; 12)] = 5. At � [5] we
�nd 7, therefore � � 1(7) = 5 .

As rank operation can be solved in constant time with an additional space of
o(n) bits, computing � � 1(i ) takes O(t) time. Given a length of cycle ` > t , there
are b̀ =tc shortcuts, which means that the size ofS is at most 2n

t +1 and requires
2

t +1 nblognc bits. Besides,B and � need n + o(n) and nblognc bits, respectively.
By denoting � = 2

t +1 , the total space is (1 + � )n logn + O(n) bits and can solve� � 1
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Figure 2.12: Example of Permutation.

in O(1=�) time.

2.2.6 Range Minimum Queries

We can extend the query presented in Subsection 2.2.4.1, which �nds the minimum
excess of a fully-functional succinct tree, to an array of integers. Let us de�ne an
array of integers A[1; n]. The range minimum query rmq(A; i; j ) between positions
i and j of A returns the position k, where A[k] is the minimum value in A[i : : : j ].
In case that there are two identical minimums, the rmq can return the leftmost or
rightmost minimum; by default, it returns the leftmost one. The range maximum
query rMq (A; i; j ) computes the position of the maximum instead of the minimum.
In this explanation, since rmq and rMq are analogous, we only refer tormq.

The rmq problem in an array is related to obtaining the lowest common ancestor
(lca) on a tree, it means, the lowest node that is an ancestor of two given nodes.
Speci�cally, rmq operation can be equivalent to computing anlca [GBT84] on the
Cartesian tree [Vui80]. A Cartesian tree of an array of valuesA[1; n] is a binary tree
whose root is the minimum value in the range[1; n]. By assuming that the minimum
is at position p, the left and right subtrees of the root are the Cartesian tree of
A[1; p � 1] and A[p + 1 ; n], respectively. For example, on the left of Figure 2.13 we
can observe theCartesian tree of A. Firstly, we look for the lowest number in array
A, which is the 1 at position 5. Therefore, we create a root node with a value of 1
and label it with 5 (the position of the value in A). Then, the left and right subtrees
will be composed of the values inA[1; 4] and A[6; 12], respectively. We obtain the
minimum of A[1; 4], which is the value 3 at position 3, and the minimum of A[6; 12],
which is the value 2 at position 10. Consequently the second level is composed with a
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Figure 2.13: Example of Range Minimum Queries.

left child node that contains 3, and a right child node with 2. The next subtrees will
be created by applying theses steps recursively toA[1; 2], A[4], A[6; 9], and A[11; 12].

Notice that given a node in a Cartesian tree with an inorder position q, its
value is located at position q in A, and we can detect the minimum between
two nodes by computing its lowest common ancestor. Hence,rmq(A; i; j ) =
inorder (lca(innode(i ); innode(j )) , where inorder maps from a node to its inorder
value, and innode(i ) performs the reverse process [BV93, BFCP+ 05]. That is, we
�rst compute the corresponding nodes at the extremes of the queried interval with
inorder . Then the node which contains the minimum between those two nodes is
computed with lca. Finally, we translate the position of the node in the Cartesian
tree to its position in array A with innode.

The �rst succinct solution without accessing to A was proposed in [Sad07]. That
proposal requires to addn � 1 arti�cial leaves on a Cartesian tree, getting a space
of 4n + o(n) bits. In[FH11], the authors propose the �rst rmq structure which can
solve this query in O(1) time using 2n + o(n) bits. Recently, a structure proposed
in [FN17] simpli�es the formula of computing the rmq, keeping it in O(1) time and
2n + o(n) bits of space. In practice, this new structure obtains the best compression
ratios and response times, for this reason we explain it in more detail. The main
idea is to represent theCartesian tree with BP. Firstly, we need to build the general
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tree of the Cartesian tree. That transformation creates an arti�cial root, and its
children are the nodes in the right-most path of the Cartesian tree. In Figure 2.13,
the rightmost path traverses the nodes labeled with5, 10 and 12. Therefore, they
turn out the children of the arti�cial root. With the left subtrees of each node x,
the algorithm is recursively applied and takesx as its additional root. For example,
in Figure 2.13, the children of the node labeled with3 are the rightmost nodes from
its left subtree of the Cartesian tree (nodes labeled with 1 and 2). Once the general
tree is computed, an array of depthsD [1; 2(n + 1)] is created. That array D stores
the general tree's depths in a depth-�rst traversal. Since inD every consecutive cells
di�er by � 1, it is transformed into a bitmap E, whereE [i ] = 1 and E[i ] = 0 whether
the di�erence between D[i � 1] and D[i ] is positive or negative, respectively. As a
consequence,E can be seen as a BP representation where we can solve e�ciently
rmq on D by using a min-max tree. However, the result obtained fromrmq(D; i; j )
is not equivalent to rmq(A; i; j ). Notice that the node u from the Cartesian tree
with inorder i is the general tree node with postorderi . Since the general tree is
represented with E , we can compute the closing parentheses of the inorder positioni
as select0(E; i ). Consequently, the mapping from the closing parentheses at position
p to the inorder value of the node isrank 0(E; p). Therefore, the rmq operation on
A is computed by the following equation:

rmq(A; i; j ) = rank 0(E; rmq (D; select0(E; i ); select0(E; j )))

Firstly, the closing parentheses' positions from the inorder values are obtained as
we explained before withselect0. Then, the lowest common ancestor of those nodes
is computed by using the reduction of thelca into a rmq operation [BV93]. Finally,
the inorder value of the node is computed withrank 0. Notice that storing D is
unnecessary becausermq in D can be solved onE with the min-max tree. Hence
the structure only requires 2(n + 1) bits for E and o(n) bits for the min-max tree.
On the bottom of Figure 2.13, we can observe the arrayD and the bitmap E for the
array A. Notice that D is shaded because it does not need to be explicitly stored.
Additionally, over B and D the algorithm for solving rmq(A; 2; 10) = 5 is illustrated.

2.2.7 k2-tree

The k2-tree is a compact data structure initially designed to represent Web graphs
within reduced space, allowing them to be navigated directly in compressed form
[BLN14]. In general, ak2-tree can be used to represent the adjacency matrix of any
graph, as well as binary matrices.

Conceptually, the k2-tree is ak2-ary tree built from a binary matrix by recursively
subdividing the matrix into k2 submatrices of the same size. It starts by subdividing
the original n � n matrix into k2 submatrices of sizen2=k2. The submatrices are
ordered from left to right and from top to bottom. Each submatrix generates a
child of the root node whose value is1 if there is at least one1 in the cells of that
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Figure 2.14: Example of k2-tree.

submatrix, and 0 otherwise. The subdivision proceeds recursively for each child
with value 1 until it reaches a submatrix full of 0s, or until it reaches the cells of
the original matrix (i.e., submatrices of size1 � 1). Figure 2.14 shows an example
of a k2-tree. In the �rst level, the �rst and third nodes are set to 0, because in
the submatrices [0; 8] � [7; 15] and [0; 0] � [7; 7] there is no cell with a 1. Instead
the second and fourth nodes are marked with a 1, and they are split into four
submatrices, in the next level.

Given an area, the positions with the values set to 1-bit can be detected by
going through the tree in a top-down traversal, following those branches with nodes
that contain any part of that area. Notice that for a node whose submatrix has the
top-left corner in (x; y), its i -th submatrix at the next level ` starts at position:

(x + (( i � 1) mod k) � side; y � (i � 1)=k � side)

, where side = n=k` is the side of the submatrix. When ` = 0 , (x; y) is initialized to
(0; n).

For example, in Figure 2.14, given the area[9; 10] � [10; 13] the arrows show
the followed path to �nd the 1s within that area. In the �rst level, that area is
contained within the second submatrix of side8 whose top-left corner is(8; 15), so
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the traversal goes through the second branch. In the second level, the �rst and third
branches contain that region, but the submatrix of the third branch is empty, thus
the traverse continues only with the �rst branch. That branch corresponds with
the submatrix whose top-left corner is (8; 15; ) of side 4. A similar case occurs in
the next two levels, where two nodes are contained in the area, but only one has
information. Finally, the algorithm reaches the leaf of the cell (10; 13) that contains
the one.

We can determine the location of a speci�c 1 in a cell by traversing the tree
from the corresponding leaf to the root. To obtain that location, we initialize
(x; y)  (0; 0). After reaching the i -th child of a node at level `, we update (x; y) as:

(x + (( i � 1) mod k) � side; y + ( k2 � i )=k � side)

, where side = n=k` is the size of the side in the current level̀ .
Figure 2.14 illustrates the bottom-up traversal to obtain the location of the

third 1 with the dashed lines. In the right, we can observe how the values of(x; y)
are updated in each level.

Instead of using a pointer-based representation, thek2-tree is compactly stored
using bit-vectors T and L (see Figure 2.14). T stores all the bits of the k2-tree,
except those in the last level. The bits are placed according to a level-wise traversal:
�rst, the k2 binary values of the children of the root node, then the values of the
second level, and so on.L stores the last level of the tree, consisting of cell values of
the original binary matrix.

We can simulate the navigation of the tree viarank and select operations over
bit-vectors T and L. For example, assuming a value of 1 at positionp in T, its
k2 children start at position pchildren = rank 1(T; p) � k2 of T. If the children of a
node return a position pchildren > jT j, the actual values of the cells are retrieved
by accessingL [pchildren � j T j]. Similarly, the parent of position p in T : L is q � (q
mod k2), where q = select1(T; bp=k2c), and q mod k2 indicates the submatrix of p
within that of its parent. Those operations make it possible to compute in logarithmic
time the 1s within a region and the location of a speci�c 1.

2.2.8 Direct Addressable Codes

Directly Addressable Codes (DACs) [BLN13] is a structure that gives direct access
to variable-length codes, that is, given a sequence of variable-length codes DACs
support the decoding of thei -th code without the need to decompress the preceding
integers. If the sequence of integers has many small numbers and few large ones,
then DACs obtain a very compact representation.

The basis of DACs is splitting the variable-length codes into blocks of �xed length
and store them in di�erent levels. Given a sequence of integersX = x1; x2; : : : ; xn ,
DACs take the binary representation of that sequence and rearrange it into a level-
shaped structure as follows: the �rst level, B1, contains the �rst (least signi�cant)
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Figure 2.15: Example of Direct Addressable Codes.

n1 bits of the binary representation of each integer. A bit-vector C1 is added to
indicate whether the binary representation of each integer requires more thann1

bits (1) or not (0). In the second level, B2 stores the next n2 bits of the integers
with a value of 1 in B1. A bit-vector C2 marks the integers that need more than
n1 + n2 bits, and so on. This process is repeated for as many levels as needed. The
number of levels` and the number nl of bits at each level l , with 1 � l � `, are
calculated in order to maximize the compression. Each valuex i is then retrieved
using less than` rank operations on the bit-vectors Cl and extracting chunks from
the arrays B l .

Figure 2.15 shows how to obtain the value ofx6, that is, the value on X at
position 6. Firstly the algorithm looks into B1[6] for its least signi�cant bits, that is
01. SinceC1[6] = 1, x6 requires more bits, thus it has to retrieve information from
the second level. Speci�cally, its two most signi�cant bits are stored at position
k = rank 1(C1; 6) = 2 in B2. By appending B2[2], the value of x6 up to the second
level is 0101. Finally, C2[k] is checked, as it contains a 0-bit, there are no more bits
for x6. Therefore the algorithm retrieves x6 = 01012 = 5 .
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Chapter 3

Previous work

The di�erent proposals in state of the art for the management of moving objects
and their trajectories could be roughly classi�ed in two groups depending on the
kind of objects: objects whose movements are restricted to a network, e.g., road,
street or public transportation networks; and objects that are moving without any
restriction in the space (boats, planes, birds, etc.). This thesis �ts in the second
group, we consider trajectories where objects move without any restriction, that is,
moving freely in a two dimensional space.

In this chapter, we introduce di�erent techniques for the treatment of those
trajectories. Section 3.1 shows di�erent techniques for indexing trajectories. Then,
Section 3.2 explains di�erent lossy and lossless compression techniques for trajectories.
Section 3.3 presents several systems that support indexation and compression at the
same time. Finally, Section 3.4 presents the capabilities of each type of representation
to solve queries, and the main advantages of our proposals compared with the previous
work.

3.1 Indexing trajectories

Since this thesis covers trajectories without considering the constraints of a network,
we can de�ne a trajectory as a set of tuplesht; (x; y)i where t is a time instant
and (x; y) are the coordinates of the object in the space att. Though there are
di�erent approaches, most of the spatio-temporal indexes are based on theR-tree
index [Gut84].

3.1.1 Spatio-temporal indexes based on R-trees

The R-tree index [Gut84] is a classic spatial structure designed to index spatial
objects. The key concept behind the R-tree is theMinimum Bounding Rectangle

37
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Figure 3.1: Example of R-tree

(MBR) , the minimum rectangle which covers a set of objects. The structure of an
R-tree is quite similar to a B-tree. We can de�ne an R-tree as a balanced search
tree where each node includes an MBR which wraps the MBRs of their children or
objects, in case that the node is an internal node or a leaf, respectively. An example
of R-tree is shown in Figure 3.1. The left part shows the aggregation of MBRs, and
in the right part we can observe the corresponding R-tree.

In order to know which objects are contained by an area or region, the search can
be solved e�ciently by descending through the nodes whose MBR intersects with
the queried area. In Figure 3.1 we illustrate how to obtain the objects within the
queried areaQ. As Q overlapsR2 we descend to its children. In the next level, there
are two MBRs (R6 and R7) and both intersect with Q. Hence, the pointed data of
both MBRs are checked. Since the data contain the actual location of each object,
we can discern that the only object within Q is located on the top-right corner of R6.
Therefore, the queries can be solved faster when the number of intersected MBRs is
minimized. Hence the top-down traversal of the tree can be sped up by reducing the
size of the MBRs. For this reason, the strategy of building MBRs tries to arrange
groups of objects in such a way that the built MBRs are as small as possible.

Though they were designed as a dynamic structure, there is a version of a static
R-tree [BLNS13] where each MBR is represented with its four corners in compressed
form. The bottom-left corner is stored as the di�erence with the bottom-left corner
of the MBR from the parent. The remaining corners of the current MBR are encoded
as the di�erence with its bottom-left corner.

Some spatio-temporal indexes like the 3DR-tree [VTS98] replace MBRs by
Minimum Bounding Boxes (MBBs). An MBB is composed of three dimensions, the
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two spatial coordinates, and an additional dimension that represents the temporal
characteristics. Since this new dimension can cover a considerable interval of time,
the MBBs become large, the search performance is damaged. For this reason,
[PJT00] tries to solve this problem with two di�erent approaches: STR-Tree and
TB-Tree . The �rst index is an extension of an R-tree that modi�es the strategy of
construction of MBBs. Their proposal considers the trajectory orientation. That is,
the MBBs are built by keeping segments of the same trajectory together, not only
regarding the spatial dimensions. Instead, the TB-Tree inserts partial trajectories
as MBBs of an R-tree.

Another family of spatio-temporal indexes is the family of versioned R-trees,
which stores an R-tree (version) per each covered time instant and a B-tree to select
the relevant R-trees. Storing a version per time instant requires a large amount
of space. To overcome this, instead of storing the complete R-tree for each time
instant, these techniques store only the part of the version that is di�erent from
the previous one. For instance, MR-Tree [XHL90] and HR-tree [NS98] can share
branches between consecutive R-trees. Their main disadvantage is the duplication
of objects, which results in high space consumption. Additionally, solving queries
that involve a signi�cant interval of time is not e�cient. The HR+-tree [TP01a] is
an improved version of the HR-tree, which reduces the space of the HR-tree to 20%,
and performs better in all kind of queries.

3.1.1.1 Multi-version R-tree

A Multi-version R-tree (MVR-tree) [ TP01b] can contain multiple R-trees (versions).
In a similar way to HR-trees, those R-trees can share between them those parts that
do not su�er any change in their MBRs (see Figure 3.2). In order to simulate that
behavior, the MVR-tree is composed of a set of records where each entry is a tuple
hS; ts; te; ptr i . S is the MBR covered by that node during the interval of time [ts; te].
For an internal node, ptr points to the next level; otherwise, the node is a leaf, thus
it points to the data corresponding to that MBR. Notice that an entry can cover
di�erent time instants since it is alive during [ts; te].

In Figure 3.2, we illustrate an example of MVR-tree where the �rst version
corresponds with Figure 3.1. The updates of each MBR through di�erent versions
are shown on top of Figure 3.2. Notice that each version is associated with an R-tree,
and dashed lines show nodes that are replaced by nodes from a previous version.
For example, in the third version v3, the children of R1 are the same as those ofR1

in v2 which are identical to those of v1. The children of R3 in v3 are equal to the
previous R-tree.

Solving queries that involve one time instant is very e�cient in MVR-trees. For
example, in order to know which objects are within a region, the algorithm looks for
the version which involves the queried time instant, and then the query is solved as
a range search in an R-tree. However, solving queries covering an interval of time
need to check multiple R-trees. In Figure 3.2 we can observe how to compute the
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Figure 3.2: Example of MVR-tree

objects within Q during a range of time that covers versionsv1, v2 and v3. Thus the
algorithm needs to check all these versions. The algorithm starts with a top-down
traversal through the �rst version v1, and follows the nodes that intersectQ. In the
�rst level, R2 is checked becauseR2 overlaps Q. In the next level, since R6 and R7

intersect with Q, both are checked. By accessing the data with the pointers of the
leaves, we obtain the objects withinQ. In the example, there is only one object, and
it is added to the solution. The very same traversal is repeated forv2, obtaining
the object already in the solution. In v3, the main di�erence is that R7 does not
intersect Q. Therefore, only the data from R6 is checked. This produces another
object that is contained by Q, and thus it is appended to the previous solution.
After processing these three versions, the algorithm returns the two objects found in
v1 and v3.

In the MV3R-tree [ TP01b] the versions are composed of a combination of MVR-
trees and auxiliary 3DR-trees [VTS98]. The former part is built on the leaves of the
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MVR-trees and tries to improve the performance on queries that involve more than
one time instant. This structure obtains the best time performance in interval and
time instant queries.

3.1.2 Grid-based indexes

Grid-based indexes split the space into several partitions and build a temporal index
for each partition. The Scalable and E�cient Trajectory Index (SETI) [ CEP03]
divides the space into cells and, for each cell, indexes the trajectories by time with
a variant of an R-Tree, called R*-Tree [BKSS90]. This variant improves the split
heuristic and gets a better query performance. Another example of grid-based
indexes is Multi Time Split B-Tree [ ZZS+ 05] where all the cells are indexed with
a TSB-Tree [LS89]. Instead, the Compressed Start-End tree [WZXM08 ] uses a
combination of B+-trees, dynamic arrays and di�erent structures depending on the
update frequency of the data. PIST [BMNS08], and GCOTraj [ YHC18] are other
examples of these indexes.

3.1.3 Other spatio-temporal indexes

The PA-tree [NR07] uses a completely di�erent approach to the previous ones. This
index tries to avoid MBBs and spatial indexes, by approximating a series of line
or curve segments with a single continuous polynomial. Consequently, the original
trajectory and its approximation are not identical. In order to detect false negatives,
they keep the maximum deviation between both trajectories. By minimizing this
maximum deviation, the index provides better accuracy than MBRs, and its query
performance can be signi�cantly improved.

Distributed computing frameworks to handle trajectories have recently appeared.
Their structure has two layers: a framework for distributed computing and a
set of spatio-temporal indexes. PRADASE [MYQZ09] is a framework based on
MapReduce for querying trajectory data by using Hadoop and a spatio-temporal
index. Another example of using Hadoop is CloST [TLN12], which splits the data
in a hierarchical way. That classi�cation of the data takes into account spatial
and temporal dimensions for e�cient parallel processing of spatio-temporal queries.
TrajSpark [ZJM+ 17] is a distributed framework based on Spark, which adds a two-
level spatio-temporal index called IndexTRDD. One level treats the global data,
whereas the other exploits the local data of segments for speeding up the performance
of trajectory queries.

Other indexes are based on distributed key/value storage. Most of them are
composed of two layers:storageand index. The �rst one allows high performance
on insertions and managing large data volumes. The second part supports
e�cient spatio-temporal query processing. Examples of those indexes are MD-
HBase [NDAEA13], R-HBase [HWZ+ 14], and GeoMesa [HAE+ 15].
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Indexes like SEST-Index [GNR+ 05, Wor05] use snapshots and logs. The
snapshots represent the area where each object is located by using a spatial index
(e.g R-tree). Each log corresponds with an individual object and is composed of
labels that trigger two events: moves in, the associated object goes within a region,
or moves out, the object leaves a speci�c region.

3.2 Compression of trajectories

There are di�erent techniques for compression of trajectories. However, the simplest
one is trajectory simpli�cation , which reduces the size of a trajectory by discarding
some of its points. This deletion of some points makes it impossible to retrieve the
original trajectory from the compressed one, thus it is considered a lossy method.

One way of trajectory simpli�cation is taking points at regular intervals of times,
and discarding the remaining ones [PPS06]. In practice, the larger the span of
the interval, the smaller the representation of the trajectory. However, that new
representation loses too much precision, and the resultant trajectory can be quite
di�erent compared to the original one. In order to avoid that gap between the
original and compressed trajectory, more sophisticated algorithms were designed.

The Douglas-Peucker algorithm [DP73] keeps the most relevant points and
discards those that are redundant. It de�nes a parameter� and traces a line between
the �rst and last point of the trajectory. When there is a point whose perpendicular
distance to that line is greater than � , the furthest point ( outlier ) to that line
is chosen as a relevant point. The algorithm is repeated recursively splitting the
trajectory into two parts, from the �rst point until the outlier and from the outlier
until the last point. The algorithm stops when every non-relevant point is located
closer than � to its corresponding line. Another similar method is top-down time
ratio [MdB04] that takes into account the time. Instead of computing the distance
to a perpendicular point of the line traced in Douglas-Peucker, it is measured with
respect to the interpolated point at the corresponding timestamp in that traced line.
Similar algorithms with di�erent heuristics for measuring the importance of a point
are SQUISH [MOH+ 14], and OPERB [LMZ+ 17].

Other algorithms try to represent the maximum number of points with a linear
segment, for instance, sliding window [KCHP01]. Firstly, the algorithm takes
the leftmost position and approximates the next point as a linear function. If
that approximation has an error lower than a given threshold, the next point is
represented by that segment and continues trying to add new points. Otherwise, the
algorithm stops adding points to that segment and starts building a new segment.

Previous algorithms only take into account the spatio-temporal context, other
techniques exploit speed and heading of objects to discern which points are more
representative in each trajectory. Examples of those algorithms are dead reckoning
[TCS+ 06] and STTrace [PPS06]. On the other hand, methods like [SRL09, TLCF16]
decide about the relevance of points by taking into account a network.
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Delta compression is the most well-known lossless compression method for
trajectories. The �rst position of the trajectory is stored as an absolute position.
The remaining points are represented as the di�erence between the current position
and the previous known location. For example, Trajic [NH15] predicts the next
position by taking the previous location, and stores the di�erence from the actual and
the predicted position. Since small numbers can be stored with a short number of
bits, it obtains a better compression ratio when the predicted positions are accurate.

3.3 Trajectory compression and indexing

Previous algorithms for compression of trajectories are classical methods in the sense
that they do not provide any possibility of querying the compressed data. However,
a small number of techniques can compress and search without decompressing all
the data.

An example of system that compresses and indexes trajectories is TrajS-
tore [CMWM10 ]. Every trajectory is divided into subtrajectories, and each one
belongs to a cell whose size depends on the data distribution. Those subtrajectories
are compressed in each cell by clustering them into similar trajectories and only
storing one representative trajectory. For this reason, TrajStore can be considered a
lossy method. Additionally, delta compression is used over the chosen trajectories.
Concerning the indexation layer, each cell contains a temporal and a spatial (quadtree)
indexes.

SharkDB [WZX + 14] is another system that supports indexing and compression.
The information is split into intervals of time of a �xed length, for each trajectory
and range of time, only one spatial point is stored. They are saved on a column
of a column-oriented database management system. The data of each column is
compressed with delta compression.

3.4 Conclusions

As we explained in Chapter 2, we classi�ed the queries into two groups:object
queries and spatio-temporal range queries. In the previous work, we can observe as
each type of representation of trajectories is focused on only one of those two types.
For example, the structures presented in Sections 3.2 and 3.3 are good compressing
and solving object querieslike retrieving the original trajectory. However, they
cannot solve in an e�cient way spatio-temporal range queries. Notice that, for
detecting whether an object is within a region, those structures must obtain the
original trajectory of each object and check if each single point of that trajectory is
in that region.

On the other hand, those structures presented in Section 3.1 can e�ciently solve
spatio-temporal range queries. For example, in a MVR-tree, by traversing a version,
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we can detect the objects which are within a region at a given time instant. Instead,
computing the trajectory of an object requires to traverse all the nodes of all the
versions of the MVR-tree, looking for that speci�c object. Therefore, it cannot
e�ciently solve object queries.

As we will see, the main goal of our structures is to join the main advantages
of two worlds: compression of trajectories and indexing. They would allow us
to compress the trajectories and to solveobject queriesand spatio-temporal range
queries in an e�cient way.



Chapter 4

Basic structure

In this chapter, we explain the basic structure for all the proposals presented in
this thesis. To simplify the explanations, we assume that all trajectories start at
the same time instant, and there is no absence of information. Therefore, for this
conceptual explanation we assume that at any tracked time instant, the position in
the space of each object is known. Of course, those conditions are not satis�ed when
using real data, for this reasons we present, in Chapter 8, how our data structures
must be adapted to treat with erroneous and missed data.

Firstly, let us de�ne a trajectory as a sequence`1; `2; : : : ; `n . Each ` i is a pair
h(x; y); t i , where (x; y) is the object's location at time instant t. We can denote a
relative movementmi as the di�erence between the location at` i and ` i � 1. Therefore,
we can obtain a speci�c location of an object starting from an explicitly stored
position (absolute position) and the addition of the relative movements of that object
up to the desired time instant (cumulative movement).

We explain how those trajectories are stored with the basic structure common to
all of our proposals in Section 4.1. A brief introduction of the di�erent elements that
are part of our basic structure and the mechanism they use to retrieve the location
of an object are presented in Sections 4.2 and 4.3.

4.1 Introduction

In this thesis, we present eight di�erent structures that provide a compact and a
self-indexed representation of moving object trajectories that support object and
spatio-temporal range queries e�ciently. All of them share the very same properties:

ˆ A raster model is used to represent the space, which is divided into cells of
a �xed size, and objects are assumed to �t into one cell. The size of those
cells can be adjusted depending on the domain. Note that smaller cells require
more space, but provide more precision.
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Figure 4.1: Example of basic structure and its elements

ˆ The structures assume that the positions of all the objects are synchronized
and stored at regular time instants (e.g., every minute). The length of the
period between represented time instants is a parameter that can be adapted to
the speci�c domain. The shorter the length of the period is, the more accurate
the trajectory representation will be, though achieving less compression.

ˆ All of them are composed of the two same essential elements: snapshots and
logs.

� Snapshots : a snapshot stores spatial information of all the moving
objects in our space. That spatial information can refer to a time instant
or an interval of time. The main goal of this component is to support
spatial-temporal range queries and work as a spatial-index. We have
designed two di�erent implementations to represent this element.

� Logs : there is a log per object. Each one stores the displacements of its
object along the time. It can be considered as the representation of the
trajectory, thus makes it possible to compute the position of the object
in each time instant. We propose two di�erent ways to encode those
displacements.

Figure 4.1 shows two trajectories and their representation with our basic structure.
In this case, the snapshotsS0 and S10 store the absolute positions of the objects at
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time instants 0 and 10, respectively. For example,S0 represents the position(2; 12)
of the object O1 at time instant 0, and the location (2; 2) of the object O2 at the same
instant. Between the snapshots, there are two logs, one per each object. The �rst
log L 1 store the sequence of displacements ofO1, and L 2 the corresponding sequence
of movements ofO2. For example, we denote with M1 inL 2 the movement from the
time instant 0 to the time instant t1. This value depends on the implementation of
the log. In the example, M1 represents that the objectO1 moves one position to the
East and one position to the North from the previous location.

Since we design two types of snapshots and four types of logs, the combination
of those elements builds eight structures for the representation of trajectories, each
one with its own properties. All those structures are experimentally evaluated in
Chapter 9.

4.2 Snapshots

The snapshots are elements that store the absolute positions, that is, the cell where
the object is located in the raster model at a speci�c time instant. We denote with Sh

the snapshot at time instant h. In addition, the snapshots work as a spatio-temporal
index, making it possible to accelerate the computation of some queries.

Since the size of the snapshots can be signi�cant, they are stored everyd time
instants, that is, there is a snapshot at time instants t0, td, t2d, and so on. Notice
that, as the value of d reduces, the space required for the snapshots increases, but
some queries can be solved more e�ciently, which introduces a space/time tradeo�.
That parameter d can be speci�ed depending on the domain of the data. Notice
that the initial position of each object is stored at the �rst snapshot S0.

In this thesis, we designed two di�erent data structures for the representation of
snapshots: snapshots based onk2-trees and those based on R-trees.

4.2.1 Snapshots based on k2-trees

This kind of snapshot stores the location of every object at the corresponding time
instant by using a k2-tree and a permutation of the object identi�ers. Since the
space can be considered as a matrix, where each cell represents a location of the
space, we can transform it into a binary matrix, where the 1-bit values mark those
cells with objects, and the 0-bit the absence of objects in that cell. That binary
matrix can be represented with ak2-tree, and the identi�ers of the objects that are
within each cell (leaf of the k2-tree) are stored in the permutation.

Every time we need to retrieve the location of an object, we can obtain it with
two steps. Firstly, we compute the corresponding leaf of that object in thek2-tree
with the � � 1 operation on the permutation. Finally, the location of that leaf in the
space (cell) is computed by running a bottom-up traversal of thek2-tree.
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In addition, we can compute the objects that are within a region, by traversing
the k2-tree from the root to the leaves with objects that are within the queried
region and retrieving the object identi�ers that correspond with each one of those
leaves by using the permutation.

In Section 6.1 we present the snapshots based onk2-trees in detail, with its
structure and algorithms.

4.2.2 Snapshots based on R-trees

The snapshots based on R-trees are focused on storing and indexing the Minimum
Bounding Rectangles (MBR) of the trajectory of an object during the interval of
time between the current snapshot and the next one:[th ; th+ d]. We store together
the MBRs of each object in a snapshot by using a compact representation of an
R-tree.

By running a top-down traversal on the R-tree, following the nodes whose MBR
intersects with a queried region, we know the MBRs of the objects whose trajectories
could intersect with the queried area. That is helpful to detect those objects that
are likely to be within the queried region during the interval of time [th ; th+ d]. Once,
the objects with chances are retrieved, the log is used to con�rm that the object is
within the region. Unlike the snapshots based onk2-trees, those based on R-trees
cannot obtain the objects within a region at the snapshot time instant.

The absolute position of every object in the snapshot at time instantth is stored
by using two arrays X and Y , each one stores the location in the horizontal and
vertical axis, respectively. Therefore, we can compute the location of the object in
constant time by accessing those two arrays.

A detailed explanation of the snapshots based on R-trees can be found in
Section 6.2, where we show its structure and algorithms.

4.3 Logs

We designed four compact data structures to store the log, that is, the sequence
of relative movements of each object. Our four structures are composed by a log
per object denoted asL id , where id is the identi�er of its associated object. Each
of these logs stores a sequence of movements represented as the displacement on
both axes from the location of the object at time instant t i to the next one at t i +1 .
Therefore, given a location(2; 5) and a relative movement(2; 1), we know that the
addition of those two values gives us the next location(4; 6). With the help of the
log, every position of the objects can be computed as the accumulation of the relative
movements up to the queried time instant, from the closest absolute position. For
example, in Figure 4.1, the cumulative movement of the objectO1 from t0 to t4 is
(4; � 2). Since the closest absolute position is(2; 12) at t0, the position at t4 will be
(4; � 2) + (2 ; 12) = (6 ; 10).
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Figure 4.2: Example of spiral encoding representation.

We encode the relative movements with two strategies. The �rst one consists
of representing each movement as an integer (spiral encoding representation)
representing the displacements in the two axis, and the second one uses the classical
representation of a vector of coordinates (coordinates representation). Below, we
explain those two strategies, and we classify the structures that we propose for the
representation of the log.

4.3.1 Spiral encoding representation

Our spiral encoding proposes a strategy to store the displacement of an object in a
two-dimensional space by using a single positive integer that is shorter when the
displacement is nearer to the previous location in the space. For this reason, the
cells around the actual position of an object are enumerated following a spiral in
which the origin is the previously known position of the object, as it is shown in
Figure 4.2 (left).

As an example, assume that an object moves one cell to the East and one cell to
the North with respect to the previous known position. With the encoding on the
left of Figure 4.2 that movement is encoded as an 8. Figure 4.2 (right) shows the
trajectory of an object starting at cell (0,2). Each number indicates a movement
between consecutive time instants. Since most relative movements involve short
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distances, this technique usually produces a sequence of small numbers. At the
bottom of Figure 4.2 we can observe the log representation of the trajectory on the
right. Since that log is compressible, we designed two di�erent structures of log that
use the spiral encoding representation, where the only di�erence is the approach to
compress the log.

ˆ ScdcCT assumes that the consecutive displacements of an object stored in
the log as a sequence of integers tend to be small. For this reason, it encodes
shorter movements with fewer bits than larger movements. To accomplish this,
it uses a statistical zero-order byte-oriented compressor, namely(s; c)-Dense
Code (SCDC) [BFNP07].

ˆ GraCT : observe that the same type of objects tend to do similar movements,
that produces a sequence of relative movements where there are identical
subsequences between all the objects. GraCT exploits the repetitiveness of
patterns of movement between all the objects by using RePair [LM00], a
grammar compressor. That is, the log is compressed as a sequence of symbols
of two types: terminals or nonterminals. The terminals correspond with the
values of the spiral encoding and, each nonterminal represents a sequence of
symbols from the spiral encoding. Additional information is stored for each
nonterminal of the grammar, allowing us to improve the time performance of
some queries.

On these techniques, every time a position of an object has to be computed, the
algorithm has to retrieve a convenient absolute position from the closest snapshot,
and to process the log in order to obtain the displacement of the object from that
snapshot until the queried time instant. That is, the algorithm has to accumulate
the movements and add them to the absolute position. That procedure requires
scanning all the entries from the log up to the queried time instant. Therefore, in
both cases, we need a linear traversal of the log to retrieve the desired location.

The details of ScdcCT and GraCT are explained in Sections 7.1 and 7.2,
respectively.

4.3.2 Coordinates representation

As we explained before, each log is a sequence of relative movements, which is the
displacement of an object from a position to the next one. We need to represent that
information in such a way we can e�ciently solve the queries. In this case, instead
of storing only one positive integer that encodes the displacement in both axis of
a two dimensional space, we represent each relative movement with the classical
representation of a vector of coordinates, that is, a pair of values where each one
corresponds to an axis, and they can acquire positive or negative values.

Figure 4.3 shows an example of a log whose relative movements use the coordinates
representation of the left part of the �gure. That matrix shows several examples of
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Figure 4.3: Example of log using coordinates representation.

how to represent the movements, for example, the value(1; � 1) corresponds with an
object which moves from the previous location one position to the East, and one
position to the South. This technique is applied to the movements of the trajectory
on the right. The resultant log is at the bottom of the �gure.

As in the previous technique, we designed two structures to compress the log
with this approach:

ˆ ContaCT : the aim of this structure is computing the cumulative movement
of an object from the initial time instant up to a given one in constant time,
avoiding the linear traversal of the log. Thus we need to obtain the cumulative
displacement in both axes until the queried time instant in constant time. To
achieve that goal, we store the relative movements of the log in two arrays
per axis, where one represents the positive displacements and the other stores
the negative displacements in that speci�c axis. For example, in the vertical
axis, those two arrays store the movements to the North (positive) and South
(negative). Notice that we can compute the total displacement on the vertical
axis asN � S, where N and S are the cumulative displacements to the North
and the South, respectively. The cumulative displacement on the horizontal
axis can be computed analogously.

We can reduce the computation of those cumulative displacements to a partial
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sums problem on each of those four arrays. Since the problem of the partial
sum can be solved in constant time by using an Elias-Fano representation, we
can compute the cumulative movement in constant time.

ˆ RCT : this technique is based on RLZ [KPZ10] and tries to join the advantages
of GraCT and ContaCT in one single structure. Firstly, an arti�cial reference,
composed of the most frequent patterns of relative movements, is built. Since
that reference can be considered as the log of a trajectory, and our goal is to
exploit the advantages of ContaCT, we store it by using ContaCT. Finally,
each individual log is compactly stored with RLZ. Therefore, the resultant
log is composed of a list of phrases from the reference. With the use ofO(z)
extra-space, wherez is the number of phrases, this structure can compute the
cumulative movement between two time instants in constant time.

More details about ContaCT and RCT are explained in Sections 7.3 and 7.4,
respectively.
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Queries

As we explained in Chapter 3, there are queries focused on retrieving the individual
information of an object (object queries), and the queries of the classical spatio-
temporal indexes, which are interested in obtaining information about those objects
that are inside a spatio-temporal range (spatio-temporal range queries). Notice that
object queries are required on those representations of trajectories that compress
the data, and the spatio-temporal range queries are the classical queries supported
by spatio-temporal indexes.

Section 5.1 classi�es the queries and gives a brief description of each one of them.
Section 5.2 and Section 5.3 explain the algorithms to solve the object queries and
spatio-temporal range queries on our structures.

5.1 Types of queries

As we explained, we can classify the interesting queries about moving objects into
two groups: object queries and spatio-temporal range queries. Below we show
the queries that compose those groups and introduce their functionality. For the
formalizations, let us de�ne the trajectory of n movements of an object id as
Tid = fht0; p0i ; ht1; p1i ; : : : ; htn ; pn ig , where each pairht i ; pi i stores the positionpi

of the object id at time instant t i .

5.1.1 Object queries

This group is composed of three queries that retrieve the individual information of
an object during an interval of time:

ˆ Object Position : given an object identi�er id and a time instant tq, this
query computes the position of that object at the queried time instant tq.
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Formally, the object position query, for an object identi�er id and a time
instant tq, returns the location pq such that htq; pqi 2 T id .

ˆ Object Trajectory : like the previous query, it computes the position of an
object during an interval of time. That is, the object trajectory query, for an
object identi�er id and a time interval [tb; te], returns the sequence of locations
ht i ; pi i 2 T id such that tb � t i � te, in increasing order oft i .

ˆ Minimum Bounding Rectangle (MBR) : although it is not a classical
query, occasionally, we require a summary about the path followed by an
object, instead of computing the whole trajectory. The MBR query returns,
for an object identi�er id and a time interval [tb; te], the smallest rectangular
area R such that, for every elementht i ; pi i 2 T id with tb � t i � te, it holds
that pi 2 R.

5.1.2 Spatio-temporal range queries

Three queries compute which objects are within a spatial region of the space during
an interval of time or a speci�c time instant.

ˆ Time Slice : this query computes those objects within a given rectangular
region at a given time instant tq. That is, this kind of query returns, for a
rectangular region r q and a time instant tq, the set O of object identi�ers such
that, for each id 2 O, there exists a pair htq; pqi 2 T id where pq 2 r q.

ˆ Time Interval : it is an extension of time slice that expands tq to an interval
of time [tb; te]. Hence, the time interval query returns, for a rectangular region
r q and a time interval [tb; te], the set O of object identi�ers such that, for each
id 2 O, there exists at least one pairht i ; pi i 2 T id where tb � t i � te and
pi 2 r q.

ˆ K-Nearest Neighbors : given a point pq in the space and a time instant tq,
it returns the K closest objects topq at tq. Formally, the K-Nearest neighbor
query for a point pq at time instant tq returns a set O of objects such that
jOj = K and d(pq; id1) � d(pq; id2) for any objects id1 2 O and id2 62O, where
d(pq; id) is the Euclidean distance from point pq to the position of object id at
time instant tq (i.e., p such that hp; tqi 2 T id ).

The classical solutions to represent moving objects and their trajectories are
not able to solve in an e�cient way both types of queries in the same structure.
For example, the traditional spatio-temporal indexes, which are variants of R-trees,
can solve the last group of queries, but the object queries cannot be e�ciently
solved. On the other hand, those structures that compress the trajectories by using
delta-compression or other techniques (see Chapter 3) obtain excellent performance
in object queries, but they are incapable of answering spatio-temporal range queries.



5.2. Solving object queries 55

Our structures join the advantages of spatio-temporal indexes and compression
in the same structure, by using our two elements: snapshots and logs. Consequently,
our structures permit us to solve both kinds of queries in an e�cient way.

5.2 Solving object queries

5.2.1 Object Position

Given an object Oid and a time instant tq, the query computes the location of the
object Oid at the time instant tq. In case that tq corresponds to a snapshot, we can
directly retrieve that information from that snapshot. If the implementation of that
snapshot is based on ak2-tree, it can be obtained with a bottom-up traversal of the
tree. Otherwise, the snapshot is based on a R-tree, and we can get the absolute
position from the arrays X and Y , which store the absolute positions of all the
objects.

In case that tq is not associated with a snapshot, the algorithm has to obtain the
location of that object from the closest snapshot totq. For example, if the closest
snapshot is at time instant th , the location of the object at the time instant th is
obtained from Sh . Then, assuming that th < t q the algorithm has to process the log
to compute the cumulative movement from th to tq, that is, the sum of the relative
movements. Finally, the algorithm computes the desired position as the addition
of the cumulative movement to the absolute position. Note that, if th > t q, the
algorithm has to consider the cumulative movement fromtq to th , and subtract it
to the previous position.

For example, let us look for the position of an objectO1 at time instant t2, whose
log is composed of the relative movementsf (1; 2); (2; 0); (1; � 1); (� 1; 0); (2; 1)g. We
assume that the closest snapshot is at time instant 0, and contains the absolute
position (3; 4) of O1. The cumulative movement up to t2 is the sum of the �rst two
relative movements from the log, that is, (1; 2) + (2 ; 0) = (3 ; 2). The addition of that
cumulative movement to (3; 4) give us the location (6; 6) of O1 at the time instant 2.

As we will see in Chapter 7, logs like ContaCT and RCT can compute in constant
time the cumulative movement. Therefore, they only need to store the �rst tracked
location of each object and add the cumulative movements from the initial position
up to the queried time instant. Consequently, they avoid retrieving the absolute
position from the snapshot.

5.2.2 Object Trajectory

To obtain the trajectory T from an object Oid during an interval of time [tb; te] the
algorithm is similar to the presented for obtaining the location of an object at a
given time instant. Firstly, the algorithm computes the position of the object at tb

by scanning the log, as we have seen above. Then,T is initialized with that position.
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After computing the �rst position, the algorithm reads the next entry of the log,
that is, the following relative movement, which corresponds with the displacement
from tb to tb+1 . Consequently, if we sum that relative movement to the last absolute
position of T , we obtain the next position of the object at tb+1 , which is added back
to T . By repeating those steps for each read entry from the log that is covered by
the interval [tb; te], we obtain the resultant trajectory.

For example, considering that the time interval [t1; t3] and that closest snapshot
corresponds with the time instant t0, we can compute the trajectory of an object
by traversing its log f (1; 2); (2; 0); (1; � 1); (� 1; 0); (2; 1)g. Firstly we retrieve the
location of the object from the snapshot, that is (3; 4). Then we compute the
location of that object at the �rst time instant, (3; 4) + (1 ; 2) = (4 ; 6). Therefore, T
is updated to T = f (4; 6)g. The algorithm reads the next value of the log, which
corresponds to the relative movement(2; 0) and computes the next location as
(4; 6) + (2 ; 0) = (6 ; 6). After updating the trajectory with the new information,
T = f (4; 6); (6; 6)g, the last position is computed as(6; 6) + (1 ; � 1) = (7 ; 5). Hence,
the solution is T = f (4; 6); (6; 6); (7; 5)g.

5.2.3 Minimum Bounding Rectangle

Given an interval of time [tb; te] and an object, this query computes the minimum
rectangle [x1; y1] � [x2; y2] that covers the trajectory of that object from tb to te,
where (x1; y1) and (x2; y2) are the bottom-left and top-right corner of that region,
respectively.

Some applications do not need to know the exact trajectory of an object to
support the queries of its domain. For example, in those applications that detect the
objects that are moving together during an interval of time, we can discern which
objects move together by computing the area where they move, instead of their
trajectory. As we will see, in some structures, computing the MBR can be solved
more e�ciently than retrieving the trajectory, making it a quite interesting query.
It can also be used as a tool for solving time interval queries and other queries.

The general approach of computing the MBR in the interval of time [tb; te]
simulates retrieving the trajectory between tb and te, gathering the minimum and
maximum values of each axis. The �nal minimum and maximum values after
computing the positions correspond with the resultant MBR.

For example, we consider the time interval[t1; t3] to compute the MBR of an
object whose log isf (1; 2); (2; 0); (1; � 1); (� 1; 0); (2; 1)g and its previous and closest
position is (3; 4). The algorithm computes the position (3; 4) at the time instant t1

as we showed before, and it starts with the MBR[3; 4] � [3; 4]. The next position is
(3; 4) + (2 ; 0) = (5 ; 4), since that point is not covered with the current MBR, the
MBR is updated to [3; 4] � [5; 4]. Finally, the position (5; 4) + (1 ; � 1) = (6 ; 3) is
computed, and the MBR is extended to the rectangle[3; 3]� [6; 4] in order to include
that point.
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Although this general approach requires traversing the log and retrieving each
relative movement, in Chapter 7, we show that using the log of GraCT speeds up
this query without needing to retrieve the trajectory. In addition, we explain how
the logs of ContaCT and RCT solve this query in constant time.

5.3 Solving spatio-temporal range queries

5.3.1 Time Slice

Time Slice computes the objects within a regionr q at a speci�c time instant tq. All
of our structures start by retrieving from the closest snapshot (Sh ) those objects
(candidates) that have chances to be within r q at tq. That is, to avoid scanning all
the objects stored in the structure, the �rst step is selecting those objects that have
chances to be withinr q at tq. To obtain those candidates, the algorithm depends on
the implementation of the snapshot.

On those snapshots based onk2-trees, we have to compute, at the time instant
associated with the snapshot, the region aroundr q that contains all the objects
that can be within r q at tq. That region is called expanded region. Therefore, every
object outside the expanded regionhas no chances to be withinr q at time tq.

De�nition 5.3.1. The expanded region of a given regionr q during the interval of
time [t i ; tq] is denoted asE(r q; t i ; tq). That region is the result of expandingr q in
all directions jt i � tqj � M s cells, whereM s is the speed of the fastest object of the
dataset.

Since that region considers the maximum speed of our dataset, every object
outside that region cannot reach regionr q after jt i � tqj time instants, otherwise
the object has to overcome the maximum speed. For example, in Figure 5.1, we
assume that the maximum speed isM s = 1 cells per time instants, and the closest
snapshot is at time instant t0. We show two examples, on the left part of the
�gure tq = t1, and on the right part tq = t2. Since we are looking for the objects
within r q = [5 ; 5] � [8; 8], the expanded regions areE(r q; t0; t1) = [4 ; 4] � [9; 9], in the
�rst case, and E(r q; t0; t2) = [3 ; 3] � [10; 10], in the second. Therefore, the objects
f O1; O2g have chances to be within the region[5; 5] � [8; 8] at the time instant t1.
The other objects cannot be within r q. Instead, in the second example, since the
di�erence between the snapshot and thetq is longer, the region is bigger, so the
candidates aref O1; O2; O3g.

On the other hand, on the snapshots based on R-trees, we can directly detect
which objects have chances to be withinr q from the previous snapshot totq, that is,
the one that stores the MBRs whose time interval includestq. Since those MBRs
provide an idea of the path followed for each trajectory, we can run a top-down
traversal through the R-tree to obtain those objects whose MBR intersects with
r q. Note that in case of not intersecting r q, the object cannot be within r q at time
instant tq.
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Figure 5.1: Two examples of expanded region, with distinct di�erences
between the snapshot and the queried time instant.

We abstract the operation of obtaining the candidates to be within r q from the
implementation of the snapshot by de�ning the operation reach(S; r q; tq).

De�nition 5.3.2. reach(Sh ; r q; tq) is the function that computes the object
candidates stored inSh that can be within r q at time instant tq.

Once the object candidates are obtained, the algorithm has to process the log of
each one of them to get the position of them attq time and check if the object is
within r q to add it to the �nal solution.

Since some log representations need to traverse the log for retrieving the desired
position, we can take advantage of it to detect which objects are moving in the
wrong direction. We can detect those objects that are moving further away from
r q, and stop processing its log before computing its location attq. To accomplish
it, we need to de�ne a new operationchance. It is conceptually similar to reach,
but it considers the position of the object at a speci�c time instant, which can be a
snapshot time instant or not.

De�nition 5.3.3. We de�ne chance(pi ; t i ; r q; tq) as a function that returns true
when an object located in the cellpi at t i have chances to reach the regionr q at time
instant tq.

After reading an entry of the log, we compute the new location of the objectpi

at t i . In case that chance(pi ; t i ; r q; tq) does not hold, the algorithm stops processing



5.3. Solving spatio-temporal range queries 59

that object and continues with the next candidate. We can know whether an object
has possibilities of being within r q at tq by computing E(r q; t i ; tq), in case that pi is
within that expanded region, the object has chances to be withinr q at tq.

5.3.2 Time Interval

Time interval queries return the objects that were within a region r q at any time
instant during a time interval [tb; te]. An easy solution is to use an algorithm
similar to time slice but taking into account that the interval of time can involve
more than one snapshot. That is, the locations in the interval [tb; te] can be
solved by considering snapshotsfS i ; Si + d; : : : ; Sj � d; Sj g, where Si and Sj are the
�rst and last covered snapshots. Therefore, the solution can be computed as the
union of the results from the partial solutions of each interval of time between two
snapshots: f [tb; t i + d� 1]; [t i + d; t i +2 d� 1]; : : : [t j � d; t j � 1]; [t j ; te]g. That is, we compute
a time interval query in each one of those time intervals.

To solve a partial solution whose corresponding time interval is[t i ; t j ], and the
previous snapshot isSh , we have to obtain the candidates that can be inr q at t j by
using reach(Sh ; r q; t j ). Then we have to compute the trajectory of each candidate
with a traversal through the log for obtaining the locations between t i and t j . In
each time instant t i � tc � t j , we obtain a position pc, and the algorithm checks if
pc is within r q. If the object is contained, the algorithm stops and adds the object
to the partial solution. Otherwise, the algorithm checks chance(pi ; t i ; r q; t j ). In
case that the object has no opportunities to be within r q at t j , the algorithm stops
processing this object. In case that the object still has chances to be withinr q, the
algorithm continues processing that log. The partial solution is obtained when all
the logs of the candidates were processed.

In Figure 5.2, assuming that our candidates areO1 and O2, let us compute the
objects within region r q = [8 ; 5] � [10; 8] at [t0; t10]. Firstly O1 is processed, the
algorithm computes each time instant up to t5, and O1 continues with chances to be
within r q. However, after computing the position of O1 at t6, (8; 12), we observe as
the expanded regionE(r q; t6; t8) does not containO1. Therefore, O1 has no chances
to be within r q during the given interval of time. Hence the object is discarded,
and O2 is processed.O2 keeps the chances to be withinr q up to t5, and then it
computes the position at t6, (8; 6). SinceO2 is within r q, it is added to the solution,
and the algorithm stops processingO2. There are no more objects to process, thus
the solution is only composed of the objectO2.

This general approach for solving the partial solutions of time interval queries is
improved on those structures that can solve in constant time the Minimum Bounding
Rectangle between two time instants. In that case, the algorithm performs a binary
search looking for an MBR during the interval of time [tb; te] included within r q.

Therefore, the algorithm starts computing the MBR of [tb; te] and checks three
cases:
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Figure 5.2: Example of the algorithm to solve time interval queries:
retrieving the trajectory (top) and binary search through the MBRs (bottom).

ˆ MBR � r q. The object is within r q during the whole interval [tb; te], thus the
current candidate is part of the solution. The algorithm continues with the
next candidate and adds this object to the solution.

ˆ MBR \ r q = ; . Since there is no intersection withr q during the whole interval,
the object has no chances to be withinr q. Therefore, this object is discarded,
and the algorithm continues with the next candidate.
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ˆ MBR \ r q 6= ; . Though there is an intersection, the current candidate could
be outside r q, thus the process continues recursively with the two halves of
the queried range[tb; tm ] and [tm +1 ; te], where tm is the time instant in the
middle, i.e. tm = dt b + t e

2 e.

At the bottom of Figure 5.2, we show how to compute the time interval query
during the time interval [t0; t10] and with the queried region r q = [8 ; 5] � [10; 8].
Our candidates are the objectsO1 and O2. Firstly, we compute the MBR of O1

in the queried interval (MBR 1). We can observe that MBR 1 does not intersect
r q. Therefore that object is discarded as part of the solution, and the algorithm
continues with O2. Since its MBR (MBR 2) during the queried interval contains
r q, it starts the binary search through the MBRs. That is, MBR 2 is split into
MBR 3 = [2 ; 2] � [7; 5] and MBR 4 = [8 ; 6] � [12; 8]. MBR 3 does not cover any part
of r q, hence the algorithm stops breaking it. Instead,MBR 4 intersects with r q, and
it is divided in two parts: MBR 5 = [8 ; 6] � [10; 7] and MBR 6 = [11; 7] � [12; 8].

Notice that the binary search involves the time interval [tb; te]. That is the main
di�erence with the previous approach, where the chances are checked with respect
to the last instant of the sub-interval. Consequently, with the binary search of the
MBRs, once an object is candidate in a snapshot, it will not be longer considered in
the remaining snapshots.

5.3.3 K-Nearest Neighbor

K-Nearest Neighbor or KNN is a spatio-temporal range query that returns theK
closest neighbors (objects) to a given pointpq at a time instant tq. That is, it
computes the distance frompq to the K -th nearest object, and returns the objects in
a radius lower or equal to that distance. In order to obtain the result, the algorithm
uses a priority queue ofcandidate nodeswith objects from the closest snapshot (Qc),
and a priority queue of best known results(Qr ).

Before explaining how to solve this query, we de�ne the minimum and maximum
Euclidean distance, necessary to discern which objects are closer topq in the space.

De�nition 5.3.4. We denote withpr the minimum Euclidean distance between the
region r = [ x1; x2] � [y1; y2] and the point p = ( x; y).

De�nition 5.3.5. We denote with pr the maximum Euclidean distance from the
region r = [ x1; x2] � [y1; y2] to the point p = ( x; y).

Qc is a min-priority queue that recollects the nodes of the chosen snapshot
prioritized by their proximity to pq. Notice that all the structures of the snapshots
are trees whose nodes contain some spatial data. For example, in the snapshot
based onk2-trees the internal and leaf nodes represent regions and cells of the space,
respectively. Instead, in those snapshots based on R-trees, each leaf stores the MBR
of the trajectory of an object during the corresponding interval of time. Therefore,
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each internal node stores a MBR that wraps the MBRs of its children. Consequently,
every node, independently of the implementation of the snapshot, corresponds with
a region of the space (of size1 � 1 in case of cells) and we can prioritize all of them
by their proximity to pq.

In order to compute that proximity, we de�ne the minimum and maximum
reachable Euclidean distance, that is, the minimum and maximum Euclidean distance
that an object can achieve with respect to a point at a time instant.

De�nition 5.3.6. The minimum reachable Euclidean distance, denoted as
dmin (r i ; t i ; pq; tq), is the Euclidean distance of the objects withinr i at t i can be with
respect to the queried pointpq at the queried time instant tq.

De�nition 5.3.7. The maximum reachable Euclidean distance,dmax (r i ; t i ; pq; tq) is
analogous to the previous de�nition, but instead of the minimum Euclidean distance
they compute the maximum Euclidean distance.

Notice that the main di�erence of these de�nitions with respect to De�nitions 5.3.4
and 5.3.5 is that the De�nitions 5.3.6 and 5.3.7 consider that the object can move
during the interval time [t i ; tq].

The minimum and maximum reachable distance depends on the snapshot's
implementation. For example, if the snapshot is based on an R-tree and the node
contains r 1 as its MBR, the objects are moving within r 1 during an interval that
includes tq. Therefore, the minimum and maximum reachable distance topq is the
minimum and maximum Euclidean distance betweenr 1 and pq, that is, they can be
computed asr 1 pq and r 1 pq, respectively.

On the other hand, in the case of a snapshot that is based on ak2-tree, the
region r 1 does not correspond with any trajectory. Therefore we have to assume
that the included objects move at the maximum speed of the dataset during the
interval [th ; tq]. Consequently, we expandr 1 to r e = E(r 1; th ; tq), where th is the
time instant of the snapshot. That expanded region corresponds with the area
where the objects within r 1 can be moving during the interval [th ; tq]. Hence, the
minimum and maximum reachable distance topq can be computed asr e pq and
r e pq, respectively.

For example in Figure 5.3 we showdmin (r; 0; pq; 2) and dmax (r; 0; pq; 2). Let
us assume that the chosen snapshot corresponds with time instant0, the region
of a node isr = [3 ; 4] � [4; 5], the maximum speed isM s = 1 , and pq = (8 ; 3).
Hence, the objects within r could be moving during the interval of time [0; 2] to
any part of r e, that is, the resultant region of expanding the region of the node
(2 � 0) � 1 = 2 cells in all directions. Consequently, the closest position topq

that an object within r can reach will be the nearest point ofr e to pq. In that
example, the closest point is(6; 3), and its Euclidean distance to pq is equivalent
to dmin (r; 0; pq; 2) =

p
(8 � 6)2 + (3 � 3)2 = 2 . Analogously, dmax (r; 0; pq; 2) is

computed with respect to the furthest cell (1; 7) of r e concerning to pq.
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Figure 5.3: Example of minimum and maximum reachable distance on
snapshots based onk2-trees.

Therefore, prioritizing the nodes of Qc by its proximity to pq means sorting them
in ascending order by using its minimum reachable Euclidean distance, thus the
closest nodes topq are on top of Qc. The ties between two nodes are broken with
the maximum reachable distance.

Assuming that Sh is the previous snapshot1 to tq, the algorithm starts adding
the root of Sh to Qc. Then, the procedure continues retrieving the element on top
of Qc, that is the closest one topq. Depending on the type of node, the algorithm
chooses between the following steps:

ˆ If it is an internal node, it is removed from Qc and its children are added to
Qc, considering the minimum and maximum reachable Euclidean distance.

ˆ Otherwise, if it is a leaf node, the algorithm computes the position of its
objects at tq, and they are added toQr .

Qr is a max-priority queue that stores objects sorted by their distances topq.
The maximum size of this queue isK , that is, once Qr contains K elements, every
time a new object is added, the farthest is deleted. This queue can compute in
constant time the distance to pq of the K -th closest object (the last element of the
queue), which decreases as the search progresses.

Therefore, the algorithm can stop in two cases: (i) whenQc is empty, there are
no more objects to check; or (ii) the candidate on top ofQc cannot improve the
distance of the K -th element of Qr , that is, the best candidate cannot improve the
current solution of Qr .

1When the closest snapshot corresponds to a time instant after tq , the process is analogous but
backwards.
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Figure 5.4: Example of KNN query with K =1 and the followed steps.

To illustrate the algorithm, the left part of Figure 5.4 shows the location of a set
of objects at tq and a point pq. On top of the right part, we observe a conceptual
tree of a snapshot where each node has two values:m and M . m is the minimum
reachable Euclidean distance from the region represented with that node, andM
corresponds with the maximum reachable Euclidean distance.

Following the steps in the right part of Figure 5.4, we can compute the KNN
of that point with K = 1 . Firstly, n0 is added to Qc, since it is the root and the
only node onQc it is located on top of Qc. In the second step,n0 is retrieved and
split into n2 and n1. Once n1 and n2 are added to Qc, n2 is on top because its
minimum reachable Euclidean distance is lower than its corresponding value ton1

(n2:m < n 1:m). In the next step, n2 is divided into n5 and n6. Both have the same
priority, but in our case, we decide to process the �rst n5 because of the maximum
Euclidean distance (n5:M < n 6:M ). Since it is a leaf and contains the objectO1,
we compute the corresponding position ofO1 at the queried time instant tq. The
distance between its location andpq is 2, thus it is added to Qr with priority 2.
As it turns out the current solution to our query, we track its distance. We look
if the distance of the recently added object (since we are computingK = 1 ) can
be improved by checking the minimum reachable Euclidean distance of the object
on top of Qc. In that example, the node on top is n6, since n6:m is 1 and it is
lower than the distance betweenO1 and pq, the next node to process isn6. This
node only contains the objectO2, thus its position at tq is computed. The distance
betweenO2 and pq is 1, moving it to the top of Qc and removing O1. Consequently,
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the K -th distance is 1, and it cannot be improved because the �rst node ofQc has
a minimum reachable Euclidean distance (n1:m = 3 ) greater than 1. Hence, the
algorithm stops and returns the solution f O2g.
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Chapter 6

Snapshots

In this chapter, we present the di�erent structures designed for the representation
of snapshots. All of them assume a raster model that splits the space into cells of a
�xed size. That is, the space can be understood as a matrix, and the coordinates of
a trajectory are mapped into their corresponding cells. The size of those cells can
be established depending on the domain, notice that the smaller the cells are, the
higher the precision we obtain.

This chapter is divided into Sections 6.1 and 6.2 that introduce our two
implementations of the snapshots: based onk2-tree and based on R-trees. In
each section, we explain both, the structure and the required algorithms to compute
the queries of Chapter 5.

6.1 Snapshot based on k2-tree

The k2-tree represents a binary matrix where a cell set to 1 indicates that the
cell contains one or more objects. Recall that thek2-tree exploits the clustering
and sparsity of that matrix by recursively splitting into k2 parts those submatrices
containing information. Therefore, the nodes of the navigable tree represent regions
of the space, and their leaves refer to a speci�c cell, which can contain objects or not.
In case of the existence of objects, each 1-bit is associated with the corresponding
leaf of its cell. Below we present the data structure and the algorithms to compute
the spatial operations.

6.1.1 Data structure

Let Sh denote the snapshot representing the position of all the objects at time
instant th . The components ofSh are:

ˆ The time instant represented by the snapshot, in this caseth , a multiple of d.

67
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Figure 6.1: Example of snapshot and the di�erent operations that supports.
The indexes marked asT : L denote the indexes of concatenating the bitmaps
T and L.

ˆ A k2-tree storing the positions in the space (i.e., the cells of the raster) where
there are objects.

ˆ An array of integers perm storing the identi�ers of the objects at each cell.

ˆ A bitmap Q, which is an auxiliary data structure of perm that is used to
determine the correspondence between positions in the space and the positions
of perm.

Recall that the k2-tree represents a binary matrix where a cell set to 1 indicates
that the cell contains one or more objects. Although thek2-tree provides a fast way
to retrieve the cells with objects, we need to know the identi�er of those objects.
Each 1 in the binary matrix corresponds to a bit set to 1 in bitmap L of the k2-tree.
The object identi�ers corresponding to every cell that have at least one object are
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