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Figuras y Apéndices por Manuel Ariel Cáceres
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1.1.1. Búsqueda en un arreglo . . . . . . . . . . . . . . . . . . . . . . . . . 9
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4.2. Predecesor en Tiempo Loglogaŕıtmico . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1. El van Emde Boas tree . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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6.3. Árboles Aleatorizados y Skip Lists . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1. Árboles aleatorizados . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.2. Treaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.3. Skip lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4. Hashing Universal y Perfecto . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1. Hashing universal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2. Hashing perfecto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5. Ficha Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6. Material Suplementario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7. Algoritmos Aproximados 123
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Caṕıtulo 1

Cotas Inferiores

La complejidad de un problema es el costo del mejor algoritmo que resuelve ese problema.
Por lo tanto, cada nuevo algoritmo que se encuentra para resolver ese problema establece
una nueva cota superior a su complejidad. Por ejemplo, si descubrimos el ordenamiento
por inserción, que toma tiempo O(n2), podemos decir que la complejidad del problema de
ordenar es O(n2). Luego descubrimos MergeSort, y eso nos permite decir que la complejidad
del problema de ordenar es en realidad menor, O(n log n).

¿Cómo podemos determinar que hemos encontrado el algoritmo óptimo (el de menor
costo posible) para resolver un problema? Debemos ser capaces de conocer su complejidad,
pero mediante encontrar algoritmos sólo podremos establecer cotas superiores. Necesitamos
entonces mecanismos para establecer cotas inferiores a un problema, es decir, demostrar que
cualquier algoritmo que resuelva ese problema debe al menos pagar un determinado costo.

Por ejemplo, podemos convencernos de que para ordenar, el algoritmo debe al menos
examinar todos los elementos del arreglo, para lo cual necesita realizar n accesos. Eso significa
que ningún algoritmo de ordenamiento puede tener costo o(n). Eso lo expresamos diciendo
que una cota inferior para el problema de ordenar es Ω(n). Note que esta cota inferior es
válida, pero podŕıa no ser (de hecho, no es), la mejor posible (la más alta posible). Decimos
que esta cota puede no ser ajustada.

Para algunos problemas, se conocen cotas superiores de O(T (n)) y a la vez cotas inferiores
de Ω(T (n)). En ese caso, sabemos que

Los algoritmos que toman tiempo O(T (n)) son óptimos, es decir, no pueden existir
algoritmos de complejidad inferior que resuelvan el problema.

La cota inferior de Ω(T (n)) es ajustada, es decir, no puede haber una mejor cota
inferior para el problema.

Conocemos la complejidad exacta del problema, que expresamos diciendo que el pro-
blema tiene complejidad Θ(T (n)).

Para los problemas en que esto no ocurre, tenemos una cota superior (es decir, la com-
plejidad de un algoritmo que lo resuelve) de O(T1(n)) y una cota inferior de Ω(T2(n)), con
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T2(n) = o(T1(n)). No sabemos si el algoritmo es óptimo, ni si la cota inferior es ajustada, y
no conocemos la complejidad exacta del problema.

Se puede hablar de estas complejidades entendiendo que nos referimos al peor caso de un
algoritmo que resuelva el problema, que es lo más común, pero también interesa conocer la
complejidad de caso promedio de un problema, dada una cierta distribución de los inputs
posibles. En el caso de algoritmos aleatorizados, podemos hablar de la complejidad esperada
de un problema, que considera el peor input posible pero promedia sobre las elecciones alea-
torias que hace el algoritmo. En este caṕıtulo, sin embargo, sólo consideraremos algoritmos
determińısticos (no aleatorizados).

Asimismo, nos puede interesar la complejidad no en términos asintóticos, sino en términos
del costo exacto de los algoritmos (cantidad exacta de comparaciones que hace, o de accesos
a un arreglo, etc.).

Note que una cota inferior puede centrarse en contar sólo cierto tipo de operaciones e
ignorar otras, y aún aśı será válida como cota inferior.

En este caṕıtulo veremos tres técnicas básicas para establecer cotas inferiores: la estrategia
del adversario, reducciones, y teoŕıa de la información.

1.1. Estrategia del Adversario

La estrategia del adversario se usa para demostrar cotas inferiores de peor caso. La idea es
demostrar que, para responder correctamente frente a cualquier input, el algoritmo necesita
aprender lo suficiente sobre el input, y para ello debe pagar un cierto costo. La figura del
adversario se utiliza como metáfora del peor caso. El adversario actúa como intermediario
entre el algoritmo y el input. Cada vez que el algoritmo paga el costo de preguntar algo
sobre el input, el adversario decide qué responder. Es decir, el input no existe de antemano,
sino que el adversario lo va construyendo de modo de provocar el costo más alto posible al
algoritmo. Su única restricción es que lo que responde debe ser consistente, es decir, debe
existir algún input cuyas respuestas a las preguntas del algoritmo sean las mismas que las
del adversario.

Un ejemplo ilustrativo es el juego de las 20 preguntas. Éste consiste en que un jugador
A piensa en un personaje X y el otro jugador B debe adivinar el personaje mediante hacer
a lo sumo 20 preguntas a A, de respuesta śı/no. Aqúı B es el algoritmo y A actúa como
adversario, haciendo de interfaz entre B y el personaje que tiene en mente. ¿Alguna vez jugó
a este juego? ¿Se le ocurrió, siendo A, no decidir X de entrada sino irlo definiendo a medida
que B preguntaba, para asegurarse de que B nunca llegara a una respuesta correcta en 20
preguntas? ¿De qué debe cuidarse si hace esto?

En general, para aplicar este método requerimos crear un modelo de lo que el algoritmo
va aprendiendo acerca del input. El modelo debe tener un estado inicial, que corresponde al
comienzo de la ejecución, cuando el algoritmo no sabe nada del input. Debe tener uno o más
estados finales, cuando el algoritmo aprendió lo suficiente del input como para responder
correctamente. Y el mı́nimo costo de llegar del estado inicial a algún estado final es una cota
inferior al costo del algoritmo: no importa qué algoritmo sea, este modelo es válido e implica
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que el algoritmo no puede responder siempre correctamente si no paga un cierto costo. El rol
del adversario es elegir el peor resultado posible (que el algoritmo avance lo menos posible
hacia un estado final) por cada acción que realiza. Veremos la forma de aplicar esta técnica
a lo largo de varios ejemplos.

1.1.1. Búsqueda en un arreglo

Como un caso muy simple, que ni siquiera requiere de un modelo, consideremos el proble-
ma de encontrar dónde está un determinado elemento en un arreglo desordenado (suponga-
mos que sabemos que está, pero no dónde). Para resolver este problema, cualquier algoritmo
debe examinar las n celdas del arreglo, pues si un algoritmo dejara alguna celda sin leer, el
adversario colocaŕıa alĺı al elemento buscado. Es decir, el adversario responde con elementos
distintos al buscado cada vez que el algoritmo accede a una celda del arreglo, a menos que sea
la última celda restante. Esto es una abstracción del hecho de que, sea cual sea la estrategia
del algoritmo para examinar las celdas, hay un input en el cual el elemento estará en una de
las celdas no examinadas, por lo cual en el peor caso es necesario examinarlas todas.

Arreglo ordenado. Si el arreglo está ordenado, el adversario ya no puede obligar al al-
goritmo a examinar todas las celdas, pues debe ser consistente: si entrega un determinado
elemento A[i] = x, entonces debe entregar elementos ≤ x en celdas < i, y elementos ≥ x en
celdas > i. Por ello, no tenemos una cota inferior de n comparaciones en este caso.

Para encontrar una cota en el caso ordenado, usaremos el siguiente modelo. Todo algo-
ritmo realiza una serie de accesos a A hasta responder, y contaremos sólo la cantidad de esos
accesos como su costo. El modelo es que el algoritmo sabe que el elemento buscado tiene
que estar en un rango A[i, j] del arreglo original A[1, n]. Mediante acceder a un elemento
A[k], puede ser que: (1) k ̸∈ [i, j], en cuyo caso el algoritmo no aprende nada; (2) A[k] es
el elemento buscado, en cuyo caso el algoritmo ahora sabe que el elemento está en el rango
A[k, k]; (3) A[k] sea mayor que el elemento buscado, en cuyo caso el algoritmo ahora sabe
que el elemento está en el rango A[i, k − 1]; y (4) A[k] sea menor que el elemento buscado,
en cuyo caso el algoritmo ahora sabe que el elemento buscado está en el rango A[k + 1, j].

El estado inicial es A[1, n] y los estados finales son todos los rangos A[k, k], 1 ≤ k ≤ n.
Podemos ver por inducción que el algoritmo nunca ha mirado un elemento dentro del rango
actual A[i, j], por lo cual el adversario es libre de decidir entre las alternativas (2), (3) y (4)
(el algoritmo elige el k, por lo cual nunca cometerá la tonteŕıa de elegir (1)). El adversario
intentará que el rango se mantenga lo mayor posible, pues al llegar a tamaño 1 el algoritmo
llega a un estado final. Por ello, nunca elegirá (2). Elegirá (3) si k− i ≥ j−k y (4) si no. Esto
garantiza que el intervalo se reduce a lo sumo a la mitad en cada iteración (cuando tiene
largo par), por lo cual cualquier algoritmo requiere en el peor caso ⌊log2 n⌋ comparaciones
(requiere una más si no se sabe si el elemento está en A).

Cotas superiores. En ambos casos, arreglo desordenado y ordenado, sabemos que las
cotas inferiores son ajustadas porque conocemos la búsqueda secuencial y binaria, que dan
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cotas superiores iguales a las inferiores. Pero en general este método no tiene por qué dar cotas
inferiores ajustadas. Por ejemplo, puede que hayamos elegido un modelo que no representa
todo lo que el algoritmo debe aprender sobre el input para contestar correctamente, por lo
que le permite llegar del estado inicial a uno final a un costo inferior al del algoritmo óptimo.
También puede que el adversario no sea lo suficientemente inteligente y no fabrique el peor
input posible para el algoritmo.

En el caso del arreglo ordenado se nota otro aspecto importante de esta técnica: suele
sugerir lo que debeŕıa hacer un algoritmo óptimo. En este caso, nos queda claro que lo mejor
es consultar a la mitad del intervalo, pues de otro modo el adversario hará que nuestro
intervalo se reduzca más lentamente. Es decir, nos sugiere el algoritmo de búsqueda binaria.

1.1.2. Máximo de un arreglo

Consideremos el problema de buscar el máximo elemento en un arreglo A[1, n] mediante
comparaciones. Es decir, los elementos de A son cajas negras donde la única operación
que podemos hacer sobre ellos es compararlos. Para simplificar, supondremos que todos los
elementos son distintos.

El algoritmo más simple es tomar A[1] como máximo provisional, y luego comparar ese
máximo con A[2], A[3], y aśı hasta A[n], manteniendo siempre el máximo visto hasta ahora.
Para un arreglo A[1, n] requerimos entonces n− 1 comparaciones.

Un algoritmo alternativo es el llamado “torneo de tenis”: Comparamos A[1] con A[2],
comparamos A[3] con A[4], A[5] con A[6], etc. Luego, en un nuevo arreglo de los n/2 gana-
dores (mayores que el otro) en las comparaciones, volvemos a hacer una ronda de comparar
a cada impar con el par que le sigue, y continuamos hasta tener un único ganador. Las com-
paraciones forman un árbol binario donde las n hojas son los elementos de A y cada nodo
interno es una comparación, por lo que se hacen también n− 1 comparaciones.

Cota inferior. Veamos que efectivamente se necesitan n−1 comparaciones para encontrar
el máximo. Usaremos el modelo siguiente. El conocimiento que algoritmo tiene sobre el input
es un grafo de n nodos (1), . . . , (n). Cada vez que el algoritmo compara dos elementos A[i] y
A[j], agregamos una arista entre los nodos (i) y (j). El estado inicial es el grafo sin aristas.

Para establecer los estados finales, notemos que un grafo no conexo no puede ser final. Si
no existe un camino entre (i) y (j), el algoritmo no puede saber cuál es mayor a partir de las
comparaciones realizadas, incluso aplicando transitividad. El adversario puede decidir que
todos los elementos de la componente conexa de (i) son mayores o menores que todos los de
la de (j) sin violar ninguna de las respuestas que ya ha dado. Por lo tanto, si el algoritmo
declara que el máximo es un determinado A[i], existe un input para el cual el resultado es
incorrecto si existe un A[j] en otra componente conexa.

Por lo tanto, los estados finales deben ser grafos conexos. Como se necesitan al menos n−1
aristas para conectar un grafo de n nodos, n−1 es una cota inferior al problema de encontrar
el máximo de un arreglo. Como tenemos algoritmos que usan n− 1 comparaciones, sabemos
que son óptimos y que esta cota inferior es ajustada, a pesar de que sólo consideramos una
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condición bastante débil acerca de lo que debe conocer el algoritmo sobre el input: nos bastó
que existiera un camino de comparaciones que conectara a cualquier par de elementos.

Otro modelo. Consideremos ahora un modelo completamente distinto. El conocimiento
del algoritmo sobre el input se describirá con tres variables (a, b, c):

a es el cardinal del conjunto A de los elementos que nunca han sido comparados (no
confundir con el arreglo A);

b es el cardinal del conjunto B de los elementos que se han comparado alguna vez y
han ganado (han resultado mayores) en todas sus comparaciones; y

c es el cardinal del conjunto C de los elementos que han perdido (han resultado meno-
res) en alguna comparación.

El estado inicial es (n, 0, 0), y está claro que el estado final debe ser (0, 1, n− 1), pues si
a > 0 hay un elemento sin comparar (y el adversario se encargará de que ése sea el máximo)
y si b > 1 hay dos elementos que han ganado todas sus comparaciones (y si el algoritmo
declara ganador a uno de ellos el adversario puede decidir que es menor que el otro). Cada
comparación mueve elementos dentro de la tupla (a, b, c). Según de qué conjunto vengan los
elementos que el algoritmo compara, la siguiente tabla indica los posibles nuevos estados a
partir de un estado (a, b, c):

A B C

A (a− 2, b+ 1, c+ 1) (a− 1, b, c+ 1) (a− 1, b+ 1, c)
(a− 1, b, c+ 1)

B (a, b− 1, c+ 1) (a, b, c)
(a, b− 1, c+ 1)

C (a, b, c)

Por ejemplo, el resultado de la celda ⟨A,A⟩ es el de comparar dos elementos que nunca
hab́ıan sido comparados: ambos salen del conjunto A, uno pasa a haber ganado todas sus
comparaciones (B) y otro a haber perdido alguna comparación (C), por lo tanto el nuevo
estado es (a−2, b+1, c+1). El caso ⟨A,B⟩ nos lleva a (a−1, b, c+1) independientemente de que
el ganador sea el elemento de A o el de B (si el de A gana, pasa a estar en B pero el que estaba
en B pasa a C). El caso ⟨A,C⟩ puede llevar a dos estados distintos dependiendo de quién
gane la comparación. Como el elemento de A nunca se hab́ıa comparado, el adversario puede
decidir cuál de los dos resultados es el que ocurrirá. En particular, el adversario podŕıa elegir
la estrategia de “los que han perdido siguen perdiendo”, con lo cual elige (a− 1, b+ 1, c) en
este caso, y elige (a, b, c) para el caso ⟨B,C⟩ (pues el adversario puede hacer que un elemento
de B sea tan grande como desee).

En cualquier caso, podemos observar que c crece a lo sumo de a uno, y como debe pasar
de 0 a n− 1, se necesitan al menos n− 1 comparaciones para llegar al estado final.

Esta técnica nos sugiere algoritmos óptimos más claramente que la del grafo. Primero es
necesario comparar ⟨A,A⟩. Luego, manteniendo b = 1, podemos seguir siempre comparando
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⟨A,B⟩ (es decir, el único que ha ganado siempre contra uno que no se ha comparado), para
mover los otros n− 2 elementos de A a C. Puede verse que esta es la estrategia de nuestro
primer algoritmo. Alternativamente, podemos utilizar ⟨A,A⟩ n/2 veces, hasta vaciar A y
tener b = n/2, y luego comparar ⟨B,B⟩ n/2− 1 veces hasta dejar un solo elemento en B y
el resto en C. Note que en la segunda fase se comparan siempre ganadores con ganadores, lo
que es compatible con nuestro algoritmo del torneo de tenis. Está claro que ningún algoritmo
debeŕıa volver a comparar elementos de C, pues el adversario podŕıa hacer que no avance
hacia el estado final.

1.1.3. Mı́nimo y máximo de un arreglo

Consideremos ahora el problema de encontrar el mı́nimo y el máximo de un arreglo
A[1, n]. Una forma de resolver este problema es encontrar el máximo de A[1, n] usando n− 1
comparaciones, y luego, excluyendo el máximo, encontrar el mı́nimo de los n− 1 elementos
restantes usando n− 2 comparaciones. En total este algoritmo realiza 2n− 3 comparaciones.

Para ver si es óptimo, usaremos un modelo que extiende el que acabamos de usar, divi-
diendo el conjunto en cuatro:

a es el cardinal del conjunto A de los elementos que nunca han sido comparados (nue-
vamente, no confundir con el arreglo A);

b es el cardinal del conjunto B de los elementos que se han comparado alguna vez y
han ganado (han resultado mayores) en todas sus comparaciones;

c es el cardinal del conjunto C de los elementos que se han comparado alguna vez y
han perdido (han resultado menores) en todas sus comparaciones; y

d es el cardinal del conjunto D de los elementos que han ganado alguna vez y también
han perdido alguna vez.

El estado inicial es ahora (a, b, c, d) = (n, 0, 0, 0), y el estado final es (0, 1, 1, n − 2). La
tabla de resultados de comparaciones es ahora la siguiente:

A B C D

A (a− 2, b+ 1, c+ 1, d) (a− 1, b, c, d+ 1) (a− 1, b+ 1, c, d) (a− 1, b+ 1, c, d)
(a− 1, b, c+ 1, d) (a− 1, b, c, d+ 1) (a− 1, b, c+ 1, d)

B (a, b− 1, c, d+ 1) (a, b, c, d) (a, b, c, d)
(a, b− 1, c− 1, d+ 2) (a, b− 1, c, d+ 1)

C (a, b, c− 1, d+ 1) (a, b, c− 1, d+ 1)
(a, b, c, d)

D (a, b, c, d)

Hemos tachado resultados que el adversario podŕıa evitar siempre con la estrategia de “los
ganadores siguen ganando y los perdedores siguen perdiendo”, que siempre es consistente.
Podŕıamos tachar otros resultados, pero no es necesario para establecer nuestra cota inferior.
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Observe que (1) a decrece a lo sumo de a dos, (2) d crece a lo sumo de a uno, y (3) a nunca
decrece al mismo tiempo que d crece. Entonces, como a debe pasar de n a 0 y d debe pasar de
0 a n− 2, tenemos una cota inferior de ⌈3

2
n⌉− 2 comparaciones para resolver este problema.

Esta vez nuestra cota inferior es distinta de la cota superior 2n−3. Nos podemos preguntar
si será una cota inferior ajustada. Tal vez el modelo es muy débil o el adversario no es muy
inteligente o nuestra observación sobre cómo llegar del estado inicial al final no es suficiente
para demostrar que realmente se necesitan 2n− 3 comparaciones.

Veremos que no es aśı, usando el modelo para encontrar un algoritmo óptimo. La tabla
sugiere que la forma más rápida de llegar al estado final es usar celdas ⟨A,A⟩ n/2 veces
hasta llegar al estado (0, n/2, n/2, 0). Luego podemos usar ⟨B,B⟩ n/2− 1 veces para llegar
a (0, 1, n/2, n/2 − 1) y finalmente usar ⟨C,C⟩ n/2 − 1 veces para llegar al estado final,
(0, 1, 1, n− 2). Esto equivale a realizar un primer nivel de torneo de tenis, comparando cada
celda impar con la siguiente celda par, obteniendo n/2 ganadores y n/2 perdedores. Luego,
buscamos (con cualquiera de los algoritmos vistos) el máximo entre los n/2 ganadores y
el mı́nimo entre los n/2 perdedores. El costo total es ⌈3

2
n⌉ − 2 (note que se necesitan dos

comparaciones más si n es impar).

Con esto tenemos que la cota de ⌈3
2
n⌉ − 2 comparaciones es ajustada, que nuestro algo-

ritmo inicial no era óptimo, y que usamos el modelo de la cota inferior para ayudarnos a
encontrar un algoritmo óptimo en términos del número de comparaciones.

1.1.4. Máximo y segundo máximo de un arreglo

Supongamos que deseamos encontrar el máximo y el segundo máximo elemento de A[1, n].
Una solución simple es encontrar el máximo y luego volver a encontrar el máximo entre los
elementos restantes. Esto nuevamente cuesta 2n−3 comparaciones. ¿Será óptimo? ¿Será que
este problema es intŕınsecamente más dif́ıcil que el de encontrar el máximo y el mı́nimo?

La analoǵıa con el torneo de tenis nos sugiere una forma mucho mejor de resolver este
problema. En un torneo de tenis, el segundo mejor debe haber jugado contra el primero, y
sólo contra éste puede haber perdido. Como el primero realizó (y ganó) ⌈log2 n⌉ partidas, hay
sólo ⌈log2 n⌉ candidatos para el segundo puesto. Una vez realizado el torneo de tenis para
encontrar el máximo, podemos encontrar el segundo máximo entre los que perdieron contra
el máximo usando ⌈log2 n⌉− 1 comparaciones. El costo total es entonces n+ ⌈log2 n⌉− 2, lo
que muestra que este problema es en realidad más fácil que el de encontrar el máximo y el
mı́nimo, pues aquél requiere de ⌈3

2
n⌉ − 2 comparaciones.
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La pregunta natural es si nuestro algoritmo es óptimo, o el problema se puede resolver
aún mejor.

Cota inferior incorrecta. Intentemos reusar el modelo de la tabla, con los siguientes
conjuntos:

a es el cardinal del conjunto A de los elementos que nunca han sido comparados;

b es el cardinal del conjunto B de los elementos que se han comparado alguna vez y
han ganado (han resultado mayores) en todas sus comparaciones;

c es el cardinal del conjunto C de los elementos que han perdido (han resultado meno-
res) exactamente una vez; y

d es el cardinal del conjunto D de los elementos que han perdido más de una vez.

El estado inicial es (n, 0, 0, 0) y el final debe ser (0, 1, 1, n− 2). La tabla es como sigue:

A B C D

A (a− 2, b+ 1, c+ 1, d) (a− 1, b, c+ 1, d) (a− 1, b+ 1, c− 1, d+ 1) (a− 1, b+ 1, c, d)
(a− 1, b, c+ 1, d) (a− 1, b, c+ 1, d)

B (a, b− 1, c+ 1, d) (a, b, c− 1, d+ 1) (a, b, c, d)
(a, b− 1, c+ 1, d) (a, b− 1, c+ 1, d)

C (a, b, c− 1, d+ 1) (a, b, c, d)
(a, b, c− 1, d+ 1)

D (a, b, c, d)

Tal como en el caso del mı́nimo y máximo, obtenemos una cota inferior de ⌈3
2
n⌉−2. ¡Pero

esto no puede ser, ya tenemos una cota superior menor! ¿Qué ha ocurrido?
Lo que ha ocurrido es que nos hemos equivocado al suponer que es necesario llegar al

estado (0, 1, 1, n−2) para poder responder. En el torneo de tenis, casi la mitad de los jugadores
juega un solo partido y queda descartada como primero o segundo, sin necesidad de haber
perdido dos veces. La razón es la transitividad: si se pierde contra alguien que no es el mejor,
no se puede ser el segundo mejor. Es decir, el algoritmo infiere cosas por transitividad, sin
hacer comparaciones directas. Incluimos este ejemplo para mostrar que debe tenerse cuidado
al aplicar esta técnica, asegurándose de que realmente es necesario llegar al estado final para
poder responder correctamente.
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Cota inferior correcta. Digamos que en un algoritmo que encuentra el máximo hay m
elementos que se comparan directamente (y pierden) contra quien finalmente resulta ser el
máximo. El segundo máximo es entonces el mayor de estos m candidatos (el segundo máximo
debe haberse comparado contra el máximo, pues si no, ganó todas sus comparaciones y
el adversario podŕıa hacerlo arbitrariamente grande, incluso mayor que quien el algoritmo
entrega como el máximo).

Consideremos de nuevo el modelo del grafo que se conecta. Si quitamos al nodo del
máximo y a las m aristas que lo conectan con los candidatos a segundo máximo, el grafo
debe aún resultar conexo para poder determinar el segundo máximo. De no ser aśı, existen
dos componentes conexas que se uńıan sólo pasando por el máximo, y el paso por el máximo
no sirve para determinar en cuál de las dos componentes está el segundo máximo.

Por lo tanto el grafo debe tener al menos n + m − 2 aristas, y se necesitan al menos
n + m − 2 comparaciones para encontrar el máximo y el segundo máximo (n − 1 para el
primero y m − 1 para el segundo). Mostraremos que un adversario puede conseguir que
m = ⌈log2 n⌉.

Consideremos el siguiente modelo para la cota inferior. Se asocia un peso w(i) a cada
celda A[i], inicialmente w(i) = 1. Cuando un elemento A[i] pierda una comparación, su w(i)
pasará a ser cero. Por lo tanto, para entregar el máximo correctamente, se requiere que haya
un único w(k) > 0 (donde A[k] será entonces el máximo).

Ahora diseñemos un adversario adecuado. Cuando el algoritmo compara A[i] con A[j],
hay tres casos:

1. Si w(i) > w(j), el adversario responde que A[i] > A[j]. Esto es consistente porque
A[i] no ha perdido ninguna comparación. Asimismo, el adversario actualiza w(i) ←
w(i)+w(j) y w(j)← 0. Este caso incluye el w(i) < w(j), mediante intercambiar i y j.

2. Si w(i) = w(j) > 0, el adversario se comporta como en el caso anterior, eligiendo
arbitrariamente quién es i y quién j.

3. En otro caso, el adversario da cualquier respuesta que sea consistente con las anterio-
res (es decir, si de las comparaciones pasadas se puede deducir el resultado de esta
comparación, ese resultado debe mantenerse). En este caso, no se actualizan las w.

Puede verse que este adversario agrega un par de invariantes más al modelo: (1) todas
las w suman siempre n, y (2) cuando un w(i) crece, a lo sumo se duplica. Eso implica
que, para cuando el algoritmo puede responder correctamente que A[k] es el máximo, vale
que w(k) = n, y como llegamos de w(k) = 1 a w(k) = n a lo sumo duplicándolo en cada
comparación, el elemento A[k] debe haberse comparado directamente al menos ⌈log2 n⌉ veces.

Note que la cota inferior de n − 1 comparaciones para el máximo no requiere que el
adversario responda de alguna manera especial en las comparaciones, por lo que podemos
usar en particular este adversario para garantizar que, además de las n − 1 comparaciones
para encontrar el máximo, se requerirán otras ⌈log2 n⌉ − 1 para el segundo máximo.

Finalmente, note que ningún algoritmo puede decir cuál es el segundo máximo si no
sabe cuál es el máximo, pues eso significa que el segundo máximo propuesto no ha perdido
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ninguna comparación, y el adversario podŕıa hacer que el segundo máximo propuesto fuera
tan grande como quisiera. Por lo tanto, encontrar el segundo máximo es equivalente en
dificultad a encontrar el primer y segundo máximo.

1.1.5. Mediana de un arreglo

Encontrar la mediana z de un arreglo A[1, n] (con n impar) es un problema para el cual
no se conoce el número exacto de comparaciones. Se conoce una cota inferior de (2 + 2−50)n

y una cota superior de 2,95n. Mostraremos una cota inferior relativamente sencilla de 3(n−1)
2

comparaciones. Hablaremos de la mediana z que entregará el algoritmo aunque éste no la
conozca hasta el final.

Consideraremos dos tipos de comparaciones, cruciales y no cruciales. Conceptualmente,
una comparación resulta crucial para un elemento x si es la que nos permite conocer la
relación entre x y z. Más precisamente, consideremos la historia de las comparaciones que
realizó el algoritmo para determinar z, y definamos un grafo con un nodo por elemento.
Dibujemos una arista entre z y los elementos x que se compararon directamente contra z,
roja si x > z y azul si x < z. También pintemos a x de rojo o azul, respectivamente. Para
todo nodo rojo x, dibujemos aristas rojas hacia elementos y > x que aún no tengan color y
se hayan comparado directamente contra x. Para todo nodo azul x, dibujemos aristas azules
hacia elementos y < x que aún no tengan color y se hayan comparado directamente contra
x. En ambos casos, pintemos a y de rojo o azul, respectivamente. Continuemos aśı hasta
pintar todas las aristas y elementos posibles. Todas las aristas pintadas corresponden a las
comparaciones cruciales.

El grafo formado por las aristas rojas y azules no tiene ciclos. Si no resulta conexo, el
algoritmo no puede conocer la mediana, pues implica que existe un elemento x no pintado,
por lo cual el algoritmo nunca hizo una comparación que le permitiera determinar si x < z
ó x > z. El adversario puede entonces decidir si x < z ó x > z, haciendo que la respuesta z
sea incorrecta. Por lo tanto, se necesitan al menos n− 1 comparaciones cruciales.

Mostraremos que, además, el algoritmo debe haber realizado al menos n−1
2

comparaciones
no cruciales, cuyas aristas no están en el grafo porque resultan ser x < y para un y > z, o bien
x > y para un y < z. Para esto, consideremos un adversario que responde a las comparaciones
del algoritmo mediante asignarles valor a los elementos cuando los ve por primera vez. Antes
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de ello, determinará un valor z para quien será la mediana, sin asignárselo a ningún elemento
en particular. Modelaremos el avance del conocimiento del algoritmo partiendo los elementos
en tres conjuntos:

a es el cardinal del conjunto A de los elementos que nunca han sido comparados (no
confundir con el arreglo A);

b es el cardinal del conjunto B de los elementos que se han comparado alguna vez y se
les asignó un valor mayor a z; y

c es el cardinal del conjunto C de los elementos que se han comparado alguna vez y se
les asignó un valor menor a z.

El algoritmo no conoce la mediana hasta el final (es decir, no sabe qué tipo de comparación
está realizando). Cuando se comparen dos elementos de A, el adversario les dará a uno un
valor mayor y a otro un valor menor que z. Cuando se compare un elemento de A con uno
de B, le asignará al de A un valor menor a z. Cuando se compare un elemento de A con uno
de C, le asignará al de A un valor mayor a z. Note que en estos tres casos, la comparación
resultará no ser crucial. Cuando se comparen elementos de B ó C, responderá según los
valores que ya ha asignado (estas comparaciones podŕıan ser cruciales).

Con estas decisiones del adversario, la siguiente tabla muestra cómo progresa el estado
(a, b, c) según los elementos que se comparan:

A B C

A (a− 2, b+ 1, c+ 1) (a− 1, b, c+ 1) (a− 1, b+ 1, c)

B (a, b, c) (a, b, c)

C (a, b, c)

Si llegamos a b = n−1
2
, el adversario asignará a C todos los elementos aún no comparados

(es decir, les dará valores menores a z), salvo uno que se reservará para asignarle el valor z.
Similarmente, si llegamos a c = n−1

2
, el adversario asignará a B todos los elementos aún no

comparados menos uno. Con ello, z resultará ser la mediana, como era el plan del adversario.
De la tabla se deduce que, como partimos de (n, 0, 0) y continuamos hasta que b ó c son

n−1
2
, necesitamos al menos ese número de comparaciones de la primera fila de la tabla, todas

las cuales son no cruciales. Se deduce entonces la cota inferior de 3(n−1)
2

comparaciones para
encontrar la mediana.

Se puede usar el mismo razonamiento para demostrar que encontrar el k-ésimo elemento
de un conjunto requiere n+mı́n(k, n−k)−2 comparaciones, si bien esta cota no es ajustada.

1.2. Teoŕıa de la Información

La Teoŕıa de la Información es una disciplina que estudia la cantidad mı́nima de bits
necesaria para representar un mensaje u objeto. Es decir, establece cotas inferiores para la
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cantidad de bits que debe emitir cualquier programa que represente un objeto, por compri-
mida que sea esta representación.

Es posible entonces obtener cotas inferiores a la cantidad de comparaciones que realiza un
algoritmo sobre un input, si a partir de esas comparaciones podemos reconstruir ese input. En
ese caso, el algoritmo podŕıa considerarse potencialmente como un mecanismo de compresión,
y la cantidad mı́nima de bits que debe emitir cualquier compresor se convierte en la cantidad
mı́nima de comparaciones que debe realizar cualquier algoritmo. Debe notarse que este tipo
de cotas aplica casi exclusivamente a algoritmos que deban proceder por comparaciones, pero
a cambio puede establecer cotas tanto de peor caso como de caso promedio.

1.2.1. Cotas de peor caso

Para cotas de peor caso, la cota inferior es simplemente el logaritmo (base 2) del número
total de inputs posibles. Si el conjunto de inputs posibles es U , entonces no es posible
representar a todos sus elementos usando siempre menos de log2 |U | bits. La razón es que el

número total de descripciones que usan menos de log2 |U | bits es
∑log2 |U |−1

ℓ=0 2ℓ = |U | − 1, es
decir, no hay suficientes descripciones distintas para todos los elementos de U . Por lo tanto,
cualquier algoritmo a través de cuyas comparaciones se pueda identificar el input requiere
log2 |U | comparaciones en el peor caso. Note que, para hablar de bits, las comparaciones
deben ser binarias, es decir, con dos resultados posibles (por ejemplo, ≤ y >).

Volvamos al juego de las 20 preguntas. Si A conoce a más de 220 personajes distintos,
entonces B no tiene suficientes preguntas para poder ganar siempre, pues no bastan 20 “bits”
śı/no para identificar a todos los posibles personajes. Dicho de otro modo, para cualquier
estrategia que B tenga, siempre existe un subconjunto de al menos dos personajes que no se
llegan a distinguir con las primeras 20 preguntas.

Por otro lado, si A conoce no más de 220 personajes, entonces B puede ganar siempre
si busca preguntas balanceadas, es decir que a cada paso dividan el conjunto de personajes
posibles a la mitad. Es por eso que preguntas como “¿tiene pelo negro?” o “¿nació en este
continente?” son mejores que “¿se trata de Napoleón?” como primeras preguntas.

1.2.2. Búsqueda en un arreglo ordenado

Una alternativa al método del adversario usado en la búsqueda en un arreglo ordenado
es la siguiente. Si un algoritmo toma los objetos de búsqueda como cajas negras y se basa
únicamente en comparaciones para tomar sus decisiones, entonces para cada búsqueda de un
elemento A[i] distinto deberá obtener una secuencia distinta de resultados a sus comparacio-
nes (las comparaciones que realiza también pueden depender del resultado de comparaciones
anteriores). Si existen dos elementos A[i] y A[j] para los cuales el algoritmo obtiene la mis-
ma secuencia de resultados, entonces es que realiza las mismas comparaciones y responde lo
mismo a ambas búsquedas, lo cual seŕıa incorrecto.

Eso significa que el algoritmo se puede convertir en un codificador para los valores en
[1, n]. Creo un arreglo ordenado cualquiera A[1, n], y para codificar i pido al algoritmo que
busque A[i]. Tomo nota de los resultados de las comparaciones que va realizando el algoritmo
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y los codifico como una secuencia de bits. Para obtener i a partir de ese código (es decir,
para “descomprimir” el valor de i), simulo el algoritmo, y cuando llega el momento de una
comparación, veo qué pasaŕıa si el resultado de la comparación se corresponde con el siguiente
bit de la codificación.

Dado que un algoritmo de búsqueda permite codificar cada elemento de [1, n] mediante
las comparaciones que realiza, se deduce que en el peor caso debe realizar al menos log2 n
comparaciones. También esto sugiere que, para llegar a ese peor caso, el algoritmo debe
procurar que cada comparación reduzca a la mitad el número de inputs posibles, lo que
nuevamente nos lleva a la búsqueda binaria.

1.2.3. Ordenar un arreglo

Consideremos el problema de ordenar A[1, n]. Ordenar implica aplicar una permutación
π al rango [1, n] de modo que A quede ordenado. Esto significa que la permutación original
que tráıan los elementos de A, ρ, es la inversa de π. Para cada ρ posible, un algoritmo
correcto de ordenamiento debe aplicar un conjunto distinto de operaciones π = ρ−1. Un
algoritmo que procede únicamente por comparaciones puede entonces utilizarse para codificar
la permutación π (o ρ) de la misma manera que en el ejemplo anterior: los resultados de
las comparaciones que va realizando (ignorando las modificaciones que hace al arreglo o
cualquier otra operación) deben ser distintas para cada input posible ρ.

Dado que existen n! posibles permutaciones en las que A puede presentarse, el algoritmo
necesita realizar al menos log2(n!) comparaciones para poder realizar un conjunto de acciones
distinto para cada una de ellas. Por la aproximación de Stirling, log2(n!) = n log2 n−O(n).
Dicho más gruesamente, para ordenar por comparaciones se necesita tiempo Ω(n log n).

1.2.4. Unir dos listas ordenadas

¿Cuántas comparaciones se necesitan para unir dos listas ordenadas, de largo n y m, con
m < n? Una cota inferior está dada por el número de formas en que los elementos de una
lista se pueden insertar en la otra, log2

(
m+n
m

)
. Esto ocurre porque todo algoritmo que haga

la unión debe realizar acciones distintas para cada una de las
(
m+n
m

)
formas en que puede

presentarse el input, y por lo tanto las respuestas a sus comparaciones pueden usarse para
codificar ese aspecto del input.
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Note que, si p ≥ q, (
p

q

)
=

q−1∏
i=0

p− i

q − i
≥

q−1∏
i=0

p

q
=

(
p

q

)q

debido a que p−i
q−i
≥ p

q
pues (p− i)q = pq− iq ≥ pq− ip = p(q− i). De esto obtenemos la cota

inferior log2
(
m+n
m

)
≥ log2((

m+n
m

)m) = m log2(1 +
n
m
).

Asintóticamente, esta cota inferior es Ω(m log n
m
) si m = o(n) y Ω(m) si no. Un algoritmo

que alcanza esta cota inferior asintótica es el que toma la lista más corta y avanza en la
más larga buscándolo mediante búsqueda exponencial (es decir, comparando el elemento en
las posiciones 1, 2, 4, . . . hacia adelante hasta pasarse y luego completando con búsqueda
binaria). Para cada elemento xi de la lista más corta, sea yi el primer elemento ≥ xi de la
lista más larga. Si la distancia entre yi e yi−1 es de di posiciones (en la lista más larga),
entonces el costo total será O(

∑
i log di).

Como
∑

i di ≤ n, el peor caso se da cuando son todos di =
n
m

(por la desigualdad de
Jensen), en cuyo caso el algoritmo toma tiempo O(m(1 + log n

m
)).

Cuando m = n, la cota inferior es log2
(
2n
n

)
≥ 2n − O(log n) (por la aproximación de

Stirling), cuyo término principal exacto se alcanza con el método t́ıpico de recorrer ambas
listas secuencialmente e ir tomando el menor (2n− 1 comparaciones).

1.2.5. Cotas de caso promedio

El Teorema de Shannon establece que, si los elementos de U = {u1, . . . , un} se presentan
con probabilidad pi para ui (con

∑
pi = 1), entonces ningún compresor puede, en promedio,

utilizar menos de

H =
∑
i

pi log2
1

pi

bits para codificar un elemento de U . Este valor se llama la entroṕıa del conjunto de pro-
babilidades. La entroṕıa nos da una herramienta para establecer cotas inferiores en el caso
promedio, lo que no se da con la estrategia del adversario.

Note que, si todas las pi =
1
|U | , entonces la entroṕıa resulta ser H = log2 |U |, llegando a su

valor máximo. Como esto coincide con el valor del peor caso, resulta que la cota inferior de
peor caso de un algoritmo (demostrada con esta técnica) también es la cota inferior de caso
promedio si los inputs se presentan todos con la misma probabilidad. En particular, de los
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ejemplos anteriores, tenemos que la cota de log2 n comparaciones para buscar en un arreglo
ordenado o de n log2 n − O(n) para ordenar también se aplican al caso promedio del mejor
algoritmo posible, si suponemos que los elementos de A se buscan con la misma probabilidad
o que todos los reordenamientos de entrada de A son igualmente probables, respectivamente.

Por otro lado, si resulta que tenemos que buscar en un arreglo y ciertos elementos se
buscan con mayor probabilidad que otros, entonces podemos romper la cota de log2 n com-
paraciones en promedio, y llegar a la entroṕıa H. Pero, ¿cómo hacerlo?

1.2.6. Árboles de búsqueda óptimos

Nuestro problema se puede describir como: encontrar un árbol de búsqueda para A donde
la profundidad promedio de una hoja sea H. Note que cada árbol de búsqueda que podamos
diseñar sobre A corresponde a un algoritmo, o a una estrategia, de búsqueda, mientras
que cada búsqueda en concreto es un camino de comparaciones desde la ráız hasta la hoja
correspondiente.

Algoritmos de Huffman y Hu-Tucker. El problema de, dado un conjunto de proba-
bilidades pi, encontrar el árbol binario que minimice

∑
piℓi, donde ℓi es la profundidad de

la hoja de probabilidad pi, es conocido en compresión. Una estrategia que entrega el árbol
óptimo es el algoritmo de Huffman, que puede describirse de la siguiente forma.

1. Crear un bosque con n árboles, cada uno consistente de un único nodo (ui) de peso
w = pi.

2. Tomar los dos árboles T1 y T2 del bosque con menor peso, sean w1 y w2 esos pesos, y
colocarlos como hijos izquierdo y derecho de un nuevo nodo.

3. Sacar T1 y T2 del bosque, y agregar el nuevo árbol, con peso w1 + w2.

4. Volver al punto 2 a menos que el bosque contenga un solo árbol.

El árbol final que entrega este algoritmo tiene la propiedad de que minimiza L =
∑

piℓi,
y además puede demostrarse que H ≤ L < H + 1, es decir, la profundidad promedio de las
hojas es menos que la entroṕıa más 1.

Antes de continuar, ¿cuánto tiempo requiere este algoritmo? Es fácil ver que se puede
hacer en tiempo O(n log n), mediante almacenar los pesos de los árboles en una cola de
prioridad, implementada por ejemplo con un heap. Se crea con n elementos en tiempo O(n)
y luego se realizan 2n extracciones y n reinserciones. ¿Puede hacerse mejor? No se sabe en
general, pero si los elementos ya vienen ordenados por probabilidad, entonces puede hacerse
en tiempo O(n). Ponga los n nodos iniciales en una cola, y prepare otra cola vaćıa de
tamaño n− 1 para encolar los árboles nuevos que va produciendo. Esta nueva cola también
estará ordenada porque los pesos de los árboles que se van generando son siempre crecientes.
Entonces, cuando tenga que extraer los dos nodos de peso mı́nimo, extráigalos de cualquiera
de las dos colas (uno de cada una o los dos de una cola, según dónde estén los menores).
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De todos modos, ¿el árbol de Huffman sirve como árbol de búsqueda? Supongamos A[1, 3]
con probabilidades p1 = p3 =

1
4
y p2 =

1
2
. El árbol de Huffman tendrá un hijo de la ráız para

la hoja A[2] y el otro será un nodo interno, con hijos hoja para A[1] y A[3]. No es posible
hacer una comparación tipo “¿A[i] ≤ x?” para separar A[2] de A[1] y A[3]. La razón es que
el algoritmo de Huffman desordena las hojas, por lo cual no necesariamente entrega un árbol
de búsqueda.

Existe un algoritmo que entrega el mejor árbol posible sin desordenar las hojas, toma
tiempo O(n log n) y garantiza que H ≤ L < H + 2. Se llama algoritmo de Hu-Tucker. Esto
significa que existe un algoritmo de búsqueda para arreglos ordenados que realiza en promedio
menos de 2 comparaciones por encima de la cota inferior de Teoŕıa de la Información.

En realidad, podemos demostrar que la cota H no es ajustada, y que lo más cercano
ajustado es, precisamente, H + 2. Considere A[1, 3] con probabilidades p1 = p3 = ϵ y p2 =
1−2ϵ, para ϵ > 0 tan pequeño como se quiera. Entonces vale H = 2ϵ log2

1
ϵ
+(1−2ϵ) log2 1

1−2ϵ
,

el cual tiende a cero cuando ϵ → 0. Sin embargo, el mejor árbol de búsqueda posible tiene
al nodo A[2] a profundidad 2 y un costo promedio de búsqueda 2(1− 2ϵ) + 3ϵ, que tiende a
2 cuando ϵ→ 0.

No describiremos el algoritmo de Hu-Tucker en este apunte, por ser demasiado complicado
y alejarse demasiado de nuestro tema principal. En cambio, veremos un algoritmo más costoso
que resuelve un problema más general.

Construcción general. Consideremos un modelo distinto, en que procedemos por com-
paraciones pero éstas pueden ser <, =, ó >. Esto significa que podemos detenernos en un
nodo interno del árbol de búsqueda si encontramos el elemento que buscamos. En este caso,
en vez de comparaciones, contaremos la cantidad de accesos a A.

Para generalizar, supondremos que las búsquedas pueden ser exitosas o infructuosas. Una
búsqueda exitosa encuentra lo que busca en el elemento A[i] del arreglo, el cual se busca con
probabilidad pi. Una búsqueda infructuosa no encuentra lo que busca, sino que determina
que debeŕıa estar entre los elementos A[i] y A[i+ 1] del arreglo, suponiendo impĺıcitamente
que A[0] = −∞ y A[n + 1] = +∞. Diremos que esta búsqueda ocurre con probabilidad qi.
Tenemos entonces

∑n
i=1 pi +

∑n
j=0 qj = 1.

El árbol de búsqueda se puede ver entonces como un árbol de n nodos donde los nodos
internos representan la lectura de un elemento, y entendemos que, si buscamos ese elemento,
la búsqueda termina alĺı. Los n+1 punteros a nulo que salen de las hojas son las búsquedas
infructuosas, cuyos resultados se deducen sólo al final del camino hacia una hoja. El costo
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de una búsqueda exitosa, medido en cantidad de accesos a A, es la profundidad del nodo
interno correspondiente, y el de una búsqueda infructuosa es la profundidad del nodo hoja
correspondiente (y es igual a la búsqueda exitosa para ese nodo). Nuestro modelo anterior
se puede simular suponiendo un arreglo de tamaño n − 1, cuyas n − 1 búsquedas exitosas
tienen probabilidad pi = 0, y sólo existen búsquedas infructuosas (que terminan en hojas).

Podemos construir el árbol binario óptimo para este problema mediante programación
dinámica. Llamemos

Pi,j = qi−1 + pi + qi + . . .+ pj + qj

a la probabilidad de que la búsqueda recaiga sobre el rango A[i, j], incluyendo las búsquedas
infructuosas en sus extremos. Entonces, el costo óptimo para buscar en A[i, j] se puede
encontrar como Ci,i−1 = 0 (arreglo vaćıo, búsqueda infructuosa), Ci,i = 1 (arreglo de 1
elemento, búsqueda exitosa o infructuosa), y, para i < j,

Ci,j = 1 + mı́n
i≤k≤j

Pi,k−1

Pi,j

· Ci,k−1 +
Pk+1,j

Pi,j

· Ck+1,j,

donde k representa la ráız que elijamos para este subárbol de búsqueda, es decir, el elemento
de A sobre el que haremos la primera comparación. Debemos registrar dónde queda esta
ráız, para luego poder reconstruir el árbol:

r(i, j) = arg mı́n
i≤k≤j

Pi,k−1

Pi,j

· Ci,k−1 +
Pk+1,j

Pi,j

· Ck+1,j.

Una vez calculadas estas dos matrices (por ejemplo por diagonales, partiendo de la dia-
gonal principal y la que está bajo ella, y progresando hasta la diagonal de largo 1 de la
celda C1,n), tendremos en C1,n el costo promedio de la búsqueda usando la mejor estrategia
posible, y en r(1, n) la ráız que debemos usar para esa estrategia (es decir, debemos partir
examinando la celda A[r(1, n)]). El hijo izquierdo debe tener ráız r(1, r(1, n)−1) y el derecho
r(r(1, n) + 1, n), y aśı sucesivamente.

Note que, si bien el árbol final requiere de solamente O(n) espacio, necesitamos O(n2)
espacio para encontrarlo usando programación dinámica. El tiempo para calcular la matriz
P es también O(n2), pues cada celda puede calcularse con Pi,i−1 = qi−1 y luego Pi,j =
Pi,j−1+ pj + qj para todo j ≥ i. En cambio, las matrices C y r requieren tiempo O(n3), pues
deben considerarse todos los j − i+ 1 posibles valores de k.

Cuando los costos de acceso son iguales (unitarios, en nuestro modelo), es posible calcular
C y r en tiempo O(n2), mediante usar la importante propiedad (que no demostraremos en
este apunte) de que

r(i, j − 1) ≤ r(i, j) ≤ r(i+ 1, j).

Eso significa que podemos reescribir la fórmula para calcular las celdas Ci,j como

Ci,j = 1 + mı́n
r(i,j−1)≤k≤r(i+1,j)

Pi,k−1

Pi,j

· Ci,k−1 +
Pk+1,j

Pi,j

· Ck+1,j,
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y similarmente para r(i, j). Para ver que esto reduce el costo total a O(n2), consideremos el
costo a lo largo de una diagonal d de la matriz, donde j = i+ d. Entonces, calcular la celda
Ci,j cuesta

r(i+ 1, j)− r(i, j − 1) + 1 = r(i+ 1, i+ d)− r(i, i+ d− 1) + 1.

Calcular la siguiente celda de la diagonal cuesta

r(i+ 2, j + 1)− r(i+ 1, j) + 1 = r(i+ 2, i+ d+ 1)− r(i+ 1, i+ d) + 1.

Y la siguiente cuesta

r(i+ 3, j + 2)− r(i+ 2, j + 1) + 1 = r(i+ 3, i+ d+ 2)− r(i+ 2, i+ d+ 1) + 1.

Si sumamos estos costos, puede verse que cada segundo término se cancela con el primer
término anterior. Por lo tanto la suma es telescópica, y a lo largo de la diagonal d el costo es
a lo sumo r(n− d, n)− r(1, d+1)+n− d ≤ 2n. A lo largo de las n diagonales, el costo suma
O(n2). Este es otro pequeño ejemplo de análisis amortizado: una celda puede demorar O(n)
en calcularse, pero vemos que las O(n2) celdas no requieren más de O(n2) operaciones.

1.3. Reducciones

Las reducciones se usan en el diseño de algoritmos para encontrar una solución a un
problema desconocido mediante reducirlo a uno conocido (por ejemplo, reducir el problema
de encontrar elementos repetidos en un arreglo al de ordenarlos y hacer una pasada buscando
repetidos consecutivos). En cambio, en la teoŕıa de NP-completitud, se demuestra que un
problema es NP-completo mediante reducir un problema NP-completo conocido a él. Es decir,
operamos en la dirección contraria: el problema conocido se reduce al problema desconocido.

En el caso de cotas inferiores, la idea es similar a la de NP-completitud. Supongamos que
tenemos un problema P para el que queremos establecer una cota inferior, y conocemos un
problema Q con una determinada cota inferior Ω(C(n)). Si podemos transformar un input de
Q en uno de P en tiempo o(C(n)), resolver P en el input transformado, y luego transformar
el output de P en el de Q también en tiempo o(C(n)), entonces Ω(C(n)) es también una
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cota inferior para el problema P . De no ser aśı, las transformaciones nos daŕıan una solución
a Q de tiempo o(C(n)), lo que es imposible.

Esta técnica es general y puede usarse para peor caso y caso promedio, si bien general-
mente se usa para establecer órdenes de magnitud y no cantidades exactas de operaciones.

1.3.1. Cápsula convexa

El problema de la cápsula convexa es el de, dados n puntos en el plano, encontrar el
menor poĺıgono convexo que los contiene. Es fácil ver que los vértices de este poĺıgono deben
ser puntos del input, por lo cual el output del problema se pide en la forma de la secuencia de
puntos que se obtienen al recorrer el peŕımetro del poĺıgono en sentido antihorario, partiendo
desde algún punto.

Input Output

x1
x2

x3 

 x4

 x5

x6

x7

x8

 x9

Si consideramos que las coordenadas son números reales, sobre los que únicamente po-
demos hacer operaciones matemáticas y comparaciones, entonces podemos mostrar que este
problema es Ω(n log n) mediante reducir el problema de ordenar al de la cápsula convexa.
Para ordenar A = {a1, . . . , an}, calculamos n puntos {(a1, a21), . . . , (an, a2n)}.

  an a1 a3 a2 a4 a5

an
2

a2
2

a5
2

a3
2

a1
2

a4
2

Es fácil ver que los n puntos están distribuidos en una parábola, por lo cual todos formarán
parte de la cápsula convexa. Más aún, un listado en sentido antihorario de los puntos que
parta del mı́nimo recorre, en sus primeras coordenadas, al conjunto X en orden de menor
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a mayor. Una pasada simple sobre el output de la cápsula convexa nos permite detectar el
menor elemento y a partir de él listar a todos en orden. Como la transformación del input
y del output nos cuesta Θ(n) = o(n log n), tenemos que Ω(n log n) es una cota inferior al
problema de calcular la cápsula convexa.

En realidad esta cota inferior puede refinarse si introducimos otras variables. Por ejemplo,
si h es el número de puntos en el output, existen algoritmos que resuelven el problema en
tiempo O(n log h). Sin embargo, esto es todav́ıa O(n log n) en el peor caso.

1.3.2. Colas de prioridad

Esta técnica también nos permite establecer cotas inferiores al costo de realizar una
secuencia de operaciones sobre una estructura de datos.

Por ejemplo, la implementación basada en un heap obtiene tiempos O(log n) para las ope-
raciones de insertar y extraer el mı́nimo en una cola de prioridad. Existen implementaciones,
como las colas de Fibonacci (que mencionaremos en el caṕıtulo de análisis amortizado) don-
de la inserción se puede hacer en tiempo O(1), pero la extracción del mı́nimo aún cuesta
O(log n). Incluso se puede crear un heap de n elementos en tiempo O(n). Nos preguntamos
si existirá alguna implementación de colas de prioridad donde se pueda insertar un elemento
en tiempo O(1) y extraer el mı́nimo en tiempo O(1).

No es dif́ıcil ver que esto es imposible si se procede por comparaciones. Si lo fuera,
podŕıamos reducir el problema de ordenar n elementos al de insertarlos en una cola de prio-
ridad vaćıa y extraer el mı́nimo, luego el mı́nimo de lo que queda, y aśı sucesivamente hasta
obtener el arreglo ordenado. Si se pudiera extraer el mı́nimo en tiempo o(log n), podŕıamos
ordenar en tiempo o(n log n). Note que esto vale incluso en promedio, si las inserciones agre-
gan los elementos en un orden uniformemente aleatorio.

1.3.3. 3SUM y puntos colineales

El concepto de reducción se utiliza también para hablar de cotas inferiores que están en
función de otras cotas inferiores que no son conocidas, pero śı muy estudiadas. Por ejemplo, si
podemos reducir la multiplicación de matrices de n×n a un cierto problema P , sabemos que P
no es más fácil que multiplicar matrices. Antes de Strassen, podŕıamos haber pensado que la
complejidad del problema era Θ(n3). En 1969, Strassen mostró cómo multiplicar matrices en
tiempo O(n2,81), y luego en 1990 Coppersmith y Winograd lo redujeron a O(n2,38) (analizado
en 2014 por Le Gall). No se conoce una cota inferior general para el problema más allá de la
obvia Ω(n2). Un problema tan trabajado es útil en śı mismo como cota inferior: si podemos
resolver P en menor tiempo, habremos encontrado un algoritmo para multiplicar matrices
mejor que todos los conocidos. Decimos entonces que P es multiplicación-de-matrices-hard.
Tal como en la NP-completitud, donde se dice que un problema es NP-hard, es una forma
de decir cuán improbable se considera obtener un mejor resultado para resolver P (nota: ser
NP-completo equivale a ser NP y ser NP-hard).

El problema 3SUM es el de, dados n números reales Z = {z1, . . . , zn}, encontrar tres que
sumen cero (pueden repetirse números en la suma). Veamos cómo resolver este problema
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en tiempo O(n2). Supongamos que primero ordenamos los números en tiempo O(n log n).
Luego, tomaremos cada número zi y buscaremos dos números de Z que sumen −zi. Para
ello, progresaremos desde las dos puntas del arreglo ordenado, m ← z1 y M ← zn, con dos
cursores. Si m +M + zi < 0, moveremos el cursor de la izquierda hacia adelante, m ← z2.
En cambio, si m +M + zi > 0, moveremos el cursor de la derecha hacia atrás, M ← zn−1.
En todo momento, el invariante es que los números que ya dejamos de considerar no pueden
formar parte de la solución, y se puede ver que se mantiene cuando movemos los cursores. Al
final, en tiempo O(n) encontramos un m y M adecuados (con lo cual resolvimos el problema
con los números m, M y zi), o los cursores se cruzan y debemos pasar a considerar otro
número zi. El tiempo total es O(n2).

Por mucho tiempo se sospechó que Θ(n2) era la complejidad del problema, pero en 2014
Grunlund y Pettie encontraron una solución de tiempo O(n2/(log n/ log log n)2/3). Aún aśı,
se sospecha que el problema es Ω(n2−o(1)) (es decir, Ω(n1,999...) para cualquier cantidad finita
de 9s). Como es un problema bastante estudiado, es interesante cuando se establece que otro
problema es 3SUM-hard.

Consideremos el problema de, dados n puntos (xi, yi), encontrar tres puntos colineales
que no estén en una ĺınea vertical. Esta última restricción se pone por conveniencia para
demostrar una cota inferior, pues ese subcaso es fácil de resolver.

Reduciremos 3SUM a este problema, para mostrar que es 3SUM-hard. Dados n números
Z = {z1, . . . , zn}, generaremos 3 puntos para cada zi: (1, zi), (2,− zi

2
), y (3, zi). Veremos que

este conjunto tiene 3 puntos colineales no en vertical sii Z tiene 3 números que suman 0.
Dadas las coordenadas xi elegidas, estos 3 puntos colineales deben ser de la forma (1, a),
(2, b) y (3, c), con b = a+c

2
. Pero como a = zi para algún i, b = − zj

2
para algún j, y c = zk

para algún k, tenemos que − zj
2
= zi+zk

2
, de lo que se deduce que zi + zj + zk = 0. También

puede verse que ocurre lo rećıproco: si hay tres números que sumen cero, hay tres puntos
colineales. Como la conversión cuesta sólo O(n), tenemos que el problema es 3SUM-hard.

Finalmente, el problema de encontrar tres puntos colineales sin la restricción de que
estén en vertical también es 3SUM-hard. Para que esto tenga sentido, sin embargo, aún
debemos prohibir que los puntos sean iguales, pues el problema es trivial en ese caso. Si
los tres puntos deben ser distintos, entonces podemos crear los puntos (zi, z

3
i ). Si aparecen
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tres puntos colineales distintos (a, a3), (b, b3) y (c, c3), con a < b < c, entonces tenemos que
a3−b3

a−b
= b3−c3

b−c
, es decir, a2 + ab+ b2 = b2 + bc+ c2, de donde tenemos a2 − c2 = −b(a− c), o

(a+ c)(a− c) = −b(a− c). Dividiendo por a− c obtenemos a+ b+ c = 0.

1.4. Ficha Resumen

Técnicas:

Estrategia del adversario

Teoŕıa de la Información

Reducciones

Complejidad de problemas:

Encontrar un elemento en arreglo desordenado: n accesos.

Encontrar un elemento en arreglo ordenado: ⌈log2 n⌉ accesos o comparaciones.

Encontrar el máximo en un arreglo: n− 1 comparaciones.

Encontrar el mı́nimo y el máximo en un arreglo: ⌈3
2
n⌉ − 2 comparaciones.

Encontrar el máximo y segundo máximo en un arreglo: n+⌈log2 n⌉−2 comparaciones.

Encontrar la mediana en un arreglo: entre (2 + 250)n y 2,95n comparaciones (vimos

cota inferior de ⌈3(n−1)
2
⌉).

Ordenar un arreglo: n log2 n−O(n) comparaciones, algoritmos como MergeSort hacen
n log2 n+O(n).

Mergear dos listas de largo m < n: Θ(m log n
m
), y 2n−O(log n) si m = n.

Buscar en un arreglo con entroṕıa de probabilidades H: H + 2 comparaciones.

Calcular la cápsula convexa: Θ(n log n) operaciones y comparaciones sobre reales.

Encontrar tres números que sumen cero (3SUM): O(n2/(log n/ log log n)2/3), se sospe-
cha Ω(n2−o(1)).

Encontrar tres puntos colineales: 3SUM-hard.
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1.5. Material Suplementario

Lee et al. [LTCT05, sec. 2.3] dedican una sección a explicar la idea general de cotas
inferiores y superiores de problemas. Levitin [Lev07, sec. 11.1] también dedica una sección a
presentar la idea general, con los tres enfoques que consideramos en el apunte. Esta sección
tiene varios ejemplos simples, incluyendo la cota para la unión de listas ordenadas. Algo más
corta, Baase [Baa88, sec. 3.1] da una descripción general de la idea del adversario. Estas
secciones son buenas gúıas iniciales, sorprendentemente no muy comunes en la literatura.

Baase [Baa88, sec. 3.2–3.4] describe un mecanismo similar al que expusimos para la cota
inferior de encontrar el máximo y el mı́nimo, aśı como el problema del máximo y segundo
máximo, y el problema de la mediana (describiendo también un algoritmo para esta última).

Mucho más popular en la literatura es la cota inferior de Ω(n log n) para ordenar por
comparaciones. Por ejemplo, la explican Aho et al. [AHU83, sec. 8.6], quienes incluso discuten
el caso promedio (de una forma algo distinta al apunte). Manber [Man89, sec. 6.4.6], Cormen
et al. [CLRS01, sec. 8.1] y Mehlhorn y Sanders [MS08, sec. 5.3] presentan una versión bastante
más resumida. Tanto Baase [Baa88, sec. 2.4] como Brassard y Bratley [BB88, sec. 10.1]
presentan un material más similar al de Aho et al. También Lee et al. cubren esta cota
inferior para el peor caso y caso promedio [LTCT05, sec. 2.4 y 2.6]. Levitin [Lev07, sec. 11.2]
explica con bastante detalle la cota de peor caso, aśı como la cota inferior para la búsqueda
en un arreglo ordenado.

Otro tema que no es dif́ıcil de encontrar es el de reducciones. Por ejemplo, Brassard y
Bratley [BB88, sec. 10.2] presentan muchos ejemplos de problemas con matrices, grafos y
aritmética entera y de polinomios. Más llevadera (aunque mucho menor) es la sección que
Manber [Man89, sec. 10.4] le dedica a las reducciones, que incluyen una demostración dis-
tinta para la cápsula convexa y un par de ejemplos de problemas en matrices. La siguiente
sección [Man89, sec. 10.5] es también interesante: habla de los errores t́ıpicos al utilizar re-
ducciones para demostrar cotas inferiores. Lee et al. [LTCT05, sec. 2.8] presentan brevemente
reducciones, con el ejemplo de la cápsula convexa.

Si tiene interés en el problema mismo de la cápsula convexa, que es bastante famoso,
puede ver un buen libro de geometŕıa computacional [dBCvKO08, cap. 11], si bien también
se encuentran buenas explicaciones en libros de algoritmos [Man89, sec. 8.4] [Sed92, cap. 25]
[Lev07, sec. 4.6] [LTCT05, sec. 4.3].

Knuth [Knu98, pp. 436–453] discute extensamente el tema de la generación de árboles
óptimos en tiempo O(n2), incluyendo los algoritmos de Hu-Tucker (llamados de Garsia-
Wachs en esta edición) y el algoritmo cuadrático. Se puede encontrar un tratamiento más
pausado de la generación del árbol óptimo en tiempo O(n3) (sin la mejora a O(n2)) en el
libro de Lee et al. [LTCT05, sec. 7.6].

Para códigos de Huffman puede verse un buen libro de Teoŕıa de la Información [CT06,
sec. 5.6–5.8], donde también se puede encontrar la desigualdad de Jensen [CT06, sec. 2.6].
Para un tratamiento más algoŕıtmico puede verse, por ejemplo, Sedgewick [Sed92, cap. 22]
o Navarro [Nav16, sec. 2.6].

Otras fuentes online de interés:
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jeffe.cs.illinois.edu/teaching/algorithms/notes/28-lowerbounds.pdf

web.cs.ucdavis.edu/~amenta/w04/dis2.pdf

www.cs.cmu.edu/afs/cs/academic/class/15210-s12/www/lectures/lecture21.pdf

algo.kaust.edu.sa/Documents/cs372l04.pdf

www.cs.princeton.edu/courses/archive/spr08/cos226/lectures/23Reductions-2x2.pdf

courses.cs.vt.edu/cs5114/spring2010/Bounds.pdf

www.youtube.com/watch?v=Nz1KZXbghj8
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Caṕıtulo 2

Memoria Externa

Cuando el volumen de datos a manejar supera la capacidad de la RAM, éstos pueden
almacenarse en memoria externa o secundaria (disco, SSD, etc.). En principio, cualquier algo-
ritmo clásico puede usarse sin modificaciones sobre datos en memoria externa. Sin embargo,
las operaciones en memoria externa pueden ser hasta un millón de veces más lentas que en
la RAM, por lo que vale la pena diseñar algoritmos especialmente adaptados al modelo de
costo de estos dispositivos externos. Con un diseño adecuado, los algoritmos en memoria
externa pueden ser mucho más rápidos, si bien aún serán considerablemente más lentos que
en la RAM.

Estos desarrollos están adquiriendo importancia también para los algoritmos de memoria
principal, a medida que las memorias caché se hacen más rápidas en comparación con ella
(hoy en d́ıa pueden ser hasta 30 veces más rápidas). Un algoritmo para memoria secundaria
implementado en RAM suele tener mejor localidad de referencia, y por lo tanto hacer mejor
uso del caché que uno clásico, a pesar de que su complejidad no sea mejor.

2.1. Modelo de Memoria Externa

Los discos magnéticos están divididos en pistas (anillos concéntricos) y sectores (limitados
por dos radios de ćırculo consecutivos). La intersección de una pista y un sector es un bloque
o página. Un bloque t́ıpicamente almacena unos pocos KBs. Sin embargo, algunos discos
tienen varios platos que giran simultáneamente, y la unión del mismo bloque en todos los
platos se trata como un único bloque, esta vez de unas decenas de KBs.

El disco magnético escribe a través de un cabezal, que es un dispositivo mecánico que
se debe mover a la pista correcta. Esta operación se llama “seek”, y toma unas decenas de
milisegundos. Luego debe esperar a que el sector pase girando por debajo del cabezal. Este es
el “tiempo de latencia”, que suma unos pocos milisegundos más. Finalmente, se lee el bloque
completo, a una velocidad de unos pocos MBs por segundo. Si se leen bloques contiguos de
esa pista, ya no se vuelve a pagar el tiempo de seek ni latencia. Incluso, si se leen bloques
de pistas contiguas, sólo se paga un tiempo mı́nimo adicional.

Esto significa que acceder a un elemento en una posición aleatoria cuesta milisegundos,
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mientras que acceder al elemento al lado de uno léıdo cuesta microsegundos. Los algoritmos
que trabajan en disco son mucho más rápidos si realizan pocos accesos aleatorios y muchos
secuenciales. Dado que la RAM accede a los datos en nanosegundos, los accesos aleatorios a
disco son un millón de veces más lento que en memoria principal, y los secuenciales son mil
veces más lentos.

En el caso de los SSDs, no existen los componentes mecánicos, por lo que da lo mismo
acceder al bloque contiguo que a uno aleatorio. Pero sigue siendo cierto que se leen bloques
completos y que su lectura es bastante costosa, unas decenas de microsegundos (diez mil
veces más lentos que la RAM).

El modelo de memoria externa que usaremos abstrae de estas dos arquitecturas, las más
populares. La memoria externa está formada por bloques de tamaño B. Se leen y escriben
bloques completos. La lectura o escritura son tan caras que despreciamos las operaciones
del algoritmo en CPU y RAM. Simplemente contamos el número de I/Os, es decir, lecturas
y escrituras de bloques. La diferencia entre leer bloques consecutivos o aleatorios no se
considera en el modelo. El algoritmo tiene una memoria RAM de tamaño M , que medida
en bloques es de tamaño m = M

B
. El input es de tamaño N , y se presenta en disco en forma

contigua, ocupando n = N
B

bloques.
Por ejemplo, el costo de un algoritmo que lee secuencialmente un arreglo es O(n). En

cambio, uno que lea el arreglo accediendo a sus elementos en un orden aleatorio es O(N),
miles de veces mayor en la práctica. En general, lo peor que puede pasar con un algoritmo que
se ejecuta en RAM en tiempo T (N) es que al pasarlo a memoria externa también requiera
T (N) I/Os, pues éstos son millones de veces más lentos que la operación en RAM. Pero con
un diseño adecuado, se puede hacer bastante mejor en muchos casos relevantes.

Veremos estructuras de memoria secundaria para buscar elementos en conjuntos ordena-
dos (árboles de búsqueda) y sin orden (hashing), para colas de prioridad, y algoritmos de
ordenamiento.

2.2. Árboles B

Los árboles B son una adaptación de los árboles 2–3 a memoria externa, donde cada
nodo se almacena en un bloque y entonces se ensancha el nodo a tamaño B para aprovechar
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que el bloque se lee completo. Los nodos internos del árbol B pueden almacenar hasta
(B − 1)/2 elementos (entendiendo que éstos requieren almacenar (B − 1)/2 claves y (B −
1)/2+1 punteros a los nodos hijos). Estas claves están replicadas en las hojas (esta variante,
que suele ser la más conveniente, corresponde al llamado árbol B+). Las hojas pueden
almacenar hasta B elementos (pues no almacenan punteros), pero suelen almacenar también
B/2 elementos para poder incorporar un puntero a los datos asociados a cada clave. Incluso
pueden almacenar B/c elementos, para alguna constante c, si se elige almacenar los datos
asociados directamente en la hoja junto con la clave, para evitar otro acceso aleatorio en
disco. Note que los “punteros” son aqúı posiciones del archivo en disco donde se almacena
el árbol B. Por simplicidad de exposición, diremos que los bloques tienen capacidad de
almacenar hasta B claves, tanto en las hojas como en los nodos internos.

Con una capacidad máxima de B claves, el árbol B garantiza que los nodos, salvo la
ráız, tienen al menos B/2 claves. Cada nodo interno con k claves y1, . . . , yk tiene k+ 1 hijos
T0, . . . , Tk. Todas las claves y del subárbol Ti cumplen yi < y ≤ yi+1 (entendiendo y0 = −∞
e yk+1 = +∞). Todas las hojas del árbol B están al mismo nivel, por lo que su altura es
Θ(logB N) (está entre logB N y 1 + logB/2N).

El mecanismo de búsqueda de un elemento x en el árbol B es una extensión clara del
mecanismo del árbol 2–3. Se lee el nodo ráız, con sus claves y1, . . . , yk, y se busca x entre ellas
(en forma binaria o secuencial, no hay diferencia en el modelo de memoria externa). Una
vez determinado que yi < x ≤ yi+1, la búsqueda continúa en el subárbol Ti. La búsqueda
requiere entonces leer O(logB N) páginas de disco.

La inserción de un elemento comienza con una búsqueda, donde se identifica la hoja H
donde debeŕıa estar su clave. El elemento se agrega en la hoja, y si ésta se pasa del tamaño
máximo B, se corta en dos hojas H1 y H2 de tamaño B/2 + 1 y B/2, respectivamente, y la
mediana de las claves (que será la máxima clave almacenada en H1) se inserta en el nodo
padre U , que aśı reemplaza su antiguo hijo H por dos hijos, H1 y H2, separados por la nueva
clave. Si el padre U se pasa del tamaño B, es decir pasa a tener B+1 claves y B+2 hijos, se
repite la operación en forma casi idéntica: se corta en dos mitades U1 y U2 de B/2 claves y
B/2 + 1 hijos, y la clave mediana se mueve hacia el padre V de U , reemplazando el nodo U
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por los nodos U1 y U2 que flanquean la nueva clave de V . Si V a su vez se pasa del tamaño
máximo, se repite el procedimiento de rebalse de nodos internos. Si finalmente esto ocurre
en la ráız, se crea una nueva ráız del árbol con sólo 2 hijos, y la altura del árbol crece en 1.

Para el borrado, se elimina al elemento de la hoja. La clave borrada no necesita eliminarse
de los nodos internos, aunque ya no exista más. Si la hoja pasa a tener menos de B/2
elementos, entonces se une con su anterior o siguiente hermana, y la clave que las separa
en el padre se elimina. Si esto hace que el padre tenga menos de B/2 elementos, se repite
el proceso de forma similar. La diferencia al unir dos nodos internos es que la clave que los
separa en el nodo del padre se baja al nuevo nodo, para separar el último hijo del nodo
izquierdo del primero del nodo derecho que se unen. Eventualmente se puede llegar a la ráız,
que no requiere tener B/2 elementos. Sin embargo, si la ráız queda con cero elementos (y un
hijo), se elimina y el hijo pasa a ser la ráız, con lo que el árbol B pierde altura.

En el borrado puede ocurrir que, cuando unimos un nodo con su hermano, el nodo
resultante tenga más de B elementos. En ese caso debemos volver a cortar el nodo que
hemos creado, por su nueva mediana, y volver a insertar una nueva clave en el padre. En
la práctica, esto implica que las claves se redistribuyen entre los nodos hermanos y la clave
del padre que los separa se modifica. Cuando esto ocurre, el borrado no necesita seguirse
propagando hacia arriba.

Como puede verse, tanto la inserción como el borrado cuestan O(logB N) operaciones de
I/O. El árbol B garantiza un porcentaje mı́nimo de ocupación de las páginas de disco de
50%. Si los datos se insertan en forma uniformemente aleatoria, el porcentaje promedio de
ocupación es de 69%. Con algunas técnicas más refinadas para evitar cortar hojas cuando
rebalsan, la ocupación puede sobrepasar el 80% promedio.

Por otro lado, note que podŕıamos mantener los primeros Θ(logB M) niveles del árbol B
en memoria principal, de modo que la cantidad de I/Os para búsquedas y modificaciones se
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reduciŕıa a O(logB
N
M
).

2.2.1. Cota inferior

El costo de búsqueda de O(logB
N
M
) es óptimo si se busca mediante comparaciones. De-

mostraremos la cota inferior usando el método del adversario. El modelo es que el algoritmo
sabe todo el tiempo el rango del input ordenado en el cual puede estar la clave x que se
busca. Si inicialmente partimos con la memoria llena de datos, éstos particionan el input en
M + 1 zonas, y las comparaciones (gratis) con x le permiten al algoritmo establecer que x
está en una de las M + 1 zonas. El adversario se encargará de que se busque una clave que
cae en la partición más larga. Esta debe medir al menos N

M+1
, pues si todas midieran menos,

no podŕıan sumar N . De modo que comenzamos con un rango de ese tamaño.
Cada vez que el algoritmo lee un bloque de B elementos de disco, lee hasta B nuevas

claves con las que comparar. El algoritmo y la estructura de datos eligen qué claves son esas.
Nuevamente, particionan el rango actual que conoce el algoritmo en B + 1 subrangos, uno
de los cuales pasa a ser el nuevo rango después de las comparaciones. El adversario siempre
elige que x esté en el mayor de los rangos, de modo que el rango se reduce en un factor de a
lo más B+1 por cada lectura. Se deduce que el algoritmo necesita leer al menos logB+1

N
M+1

páginas de disco para poder reducir el rango a tamaño 1 y poder responder correctamente.
Con modificaciones simples, el árbol B puede recuperar un rango de elementos, es decir,

todos los occ objetos cuyas claves estén en un intervalo [x1, x2], en tiempo O(logB
N
M
+occ/B),

lo cual es nuevamente óptimo.

2.3. Ordenamiento

Extenderemos el algoritmo de MergeSort a memoria secundaria. MergeSort comienza
dividiendo el arreglo en dos y se invoca recursivamente, hasta que los subarreglos que tiene
que ordenar son de tamaño 1. Entonces vuelve de la recursión, uniendo los subarreglos
ordenados derecho e izquierdo en forma ordenada.

En un entorno de memoria secundaria, tiene sentido detener esta recursión cuando los
subarreglos a ordenar son de tamaño B. En este momento se puede leer el bloque de disco,
ordenarlo, y reescribirlo a costo O(1) en I/Os. A la vuelta de la recursión, la unión se hace
leyendo secuencialmente los dos subarreglos, usando un buffer de tamaño B en memoria para
cada subarreglo y otro para el resultado del merging. En total, todas las uniones de un nivel
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del árbol requieren leer el arreglo completo y reescribirlo, a costo O(N
B
) = O(n). Como la

recursión se detiene en los subarreglos de tamaño B, la cantidad de niveles en la recursión
es log2

N
B
. Es decir, esta variante de MergeSort requiere O(N

B
log N

B
) = O(n log n) I/Os.

Podemos mejorar este costo deteniendo la recursión cuando el subarreglo a ordenar es de
tamaño M . En este punto, simplemente se lee el subarreglo a memoria, se ordena (gratis),
y se reescribe ordenado. Con la reducción resultante de la cantidad de niveles, el costo de
ordenar pasa a ser O(N

B
log N

M
) = O(n log n

m
) I/Os.

Se consigue una reducción adicional mediante aumentar la aridad del árbol de recursión,
es decir, no particionando el subarreglo en dos sino en más. El único ĺımite a la aridad
del árbol de la recursión es que, al unir, se necesita tener un buffer de B elementos en
memoria por cada archivo que se une, por lo cual éstos no pueden exceder M

B
− 1. Ahora la

cantidad de niveles es O(logM
B

N
M
), por lo que la cantidad de I/Os del algoritmo se reduce a

O(N
B
logM

B

N
M
) = O(n logm

n
m
) = O(n logm n) (notar que las últimas dos expresiones difieren

sólo en O(n), que es un término de orden inferior).

Esta complejidad es bastante buena en la práctica. Considerando una memoria de GBs
y un bloque de KBs, se pueden ordenar PBs (petabytes, 250) con sólo dos pasadas de lec-
tura y dos de escritura sobre los datos. En la práctica, sin embargo, cuando se usan discos
magnéticos, puede ser mala idea llegar realmente a la aridad M

B
− 1, pues esto aumenta

la cantidad de seeks a posiciones aleatorias para leer bloques de muchos archivos distintos.
Experimentalmente el óptimo suele ser unir de a unas decenas de archivos por vez. En este
caso, ordenar unos PBs puede requerir unas 10 lecturas y escrituras del arreglo completo.

Note que, con la estructura adecuada para la unión, el costo de CPU de este algoritmo es
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O(N logN). Cuando se hace la unión de M
B
− 1 archivos, debe usarse una cola de prioridad

en memoria principal para extraer el mı́nimo entre los primeros elementos de cada uno de
los M

B
− 1 buffers. Eso hace que el costo de unir todos los datos de un nivel sea O(N logm).

Multiplicado por los logm
N
M

niveles, nos da O(N log N
M
). A esto debe agregarse el costo de

CPU de ordenar los N
M

subarreglos de largo M en memoria, en el último nivel de la recursión,
O(N logM), lo que en total nos da O(N logN).

2.3.1. Cota Inferior

Demostraremos que este algoritmo de ordenamiento es óptimo si se procede por compa-
raciones. Para ello, volveremos a utilizar la estrategia del adversario. Ya vimos en el caṕıtulo
anterior que un algoritmo de ordenamiento debe permitir determinar en cuál de todas las N !
permutaciones se ha presentado el input. Nuestro modelo será el conjunto de las permuta-
ciones consistentes con los datos que ha léıdo el algoritmo hasta ahora. En el estado inicial,
este conjunto tiene las S = N ! permutaciones posibles, y en los estados finales este conjunto
debe tener un único elemento, S = 1.

El algoritmo va reduciendo el tamaño S del conjunto de permutaciones factibles a medida
que lee un bloque de datos del disco y los compara contra lo que tenga almacenado en
memoria. Al leer B valores, si es la primera vez que los ve, el algoritmo puede compararlos
entre śı para determinar cuál de los B! posibles ordenamientos entre ellos es el correcto.
Asimismo, si guarda otros M −B valores en memoria, puede determinar de cuál de las

(
M
B

)
formas se insertan estos B valores entre los que tiene en memoria. En total, el algoritmo
determina la configuración correcta entre las

(
M
B

)
B! que eran posibles antes de leer el bloque

(esto es optimista: podŕıa ser que un algoritmo no lograra aprender tanto, pero lo importante
es que no puede aprender más que esto).

Cada una de las S permutaciones del input que aún son posibles es compatible con sólo
una de estas configuraciones entre las que la lectura del bloque ha permitido distinguir.
El conjunto de permutaciones se puede particionar entonces en

(
M
B

)
B! subconjuntos, uno

compatible con cada configuración. El adversario puede elegir cuál de estos subconjuntos
es el que resulta compatible con el bloque léıdo, y tomará el mayor. El mayor subconjunto
tiene un tamaño mı́nimo garantizado de S

(MB)B!
. Es decir, por bien que lo haga el algoritmo,

el adversario puede encargarse de que S se reduzca sólo por un factor de
(
M
B

)
B! por cada

bloque que lee. Si el algoritmo lee t bloques, entonces a lo sumo puede reducir el tamaño del
conjunto inicial a

N !(
M
B

)t
(B!)t

.

Si seguimos por este camino llegaremos a una cota inferior válida, pero no ajustada. La
razón es que hemos sido demasiado optimistas. La cantidad de lecturas de bloques a lo largo
del algoritmo debe ser t ≥ n, pues debe leer todo el input. Y de ellas, sólo las primeras n
pueden leer bloques nunca vistos. Por lo tanto, no se puede aprender el orden interno de
los elementos del bloque (lo que aporta la componente B!) todas las t veces que se lee, sino
a lo sumo n veces. (Se pueden escribir bloques nuevos a lo largo del algoritmo, pero como
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estos bloques se han escrito, entonces estuvieron juntos antes en memoria, por lo tanto el
algoritmo ya sab́ıa cómo se ordenaban internamente antes de escribirlos.) En conclusión, si
el algoritmo lee t bloques, realmente sólo puede reducir el conjunto de inputs compatibles a

N !(
M
B

)t
(B!)n

.

Si calculamos ahora cuánto tiene que ser t para que este valor llegue a 1, tendremos

t ≥ logN !− n logB!

log
(
M
B

) .

Usando la aproximación de Stirling e ignorando términos de orden inferior, tenemos

t ≥ N logN −N logB

M logM −B logB − (M −B) log(M −B)
,

t ≥ N log n

B logm+ (M −B) log M
M−B

,

t ≥ n logm n.

Lo que hicimos en el último paso fue usar que log M
M−B

= log(1+ B
M−B

) = O( B
M−B

) (pues

ln(1 + x) ≤ x), y por lo tanto (M −B) log M
M−B

= O(B), que es de orden inferior al término
B logm que lo acompañaba.

Tenemos entonces que todo algoritmo que ordene en memoria externa por comparaciones
requiere Ω(n logm n) I/Os.

2.4. Colas de Prioridad

En problemas de simulación es común tener que manipular cantidades masivas de eventos
que no caben en memoria principal (por ejemplo, colisiones entre part́ıculas, donde cada
evento dispara otros eventos que deben simularse más adelante). Si estos eventos se pueden
manejar con una cola simple, es muy fácil manejarla en disco a un costo de O( 1

B
) por inserción

y borrado. Si, en cambio, deben insertarse para ser procesados en un determinado orden,
necesitaremos una cola de prioridad en disco. Un argumento simple de reducción nos muestra
que manejar una cola de prioridad en disco requiere Ω( 1

B
logm n) I/Os por operación, pues

si no podŕıamos usarla para ordenar rompiendo la cota inferior que acabamos de demostrar.

2.4.1. Cola de prioridad limitada

Consideremos el siguiente esquema. Usaremos la mitad de la memoria, M
2
, para mantener

una cola de prioridad clásica H. Todas las inserciones ocurrirán en H, gratis. Mientras esta
cola no se desborde, no usaremos el disco.
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En el momento en que se inserte un nuevo elemento y H esté llena, ésta se ordenará com-
pletamente en memoria (gratis) y se almacenará en un archivo en disco, F1, lo que requerirá
M
2B

escrituras. Inmediatamente crearemos un buffer de tamaño B en memoria para F1, donde
leeremos su primer bloque. H quedará vaćıa de nuevo para aceptar nuevas inserciones.

De ahora en adelante, cada vez que extraigamos el mı́nimo, tendremos que elegir entre
el mı́nimo de H y el primer elemento del buffer de F1. Una vez que léımos todo el buffer de
F1, lo volvemos a llenar leyendo el siguiente bloque de B elementos.

Como H sigue recibiendo inserciones, puede volverse a llenar. En este caso lo ordenamos
nuevamente y lo escribimos en un nuevo archivo, F2. En general, tendremos k archivos
ordenados F1, . . . , Fk, y las extracciones de mı́nimo tendrán que considerar el mı́nimo entre
el mı́nimo de H y los mı́nimos de cada Fi. Esto se hace fácilmente en tiempo de CPU O(log k)
con una pequeña cola de prioridad que mantiene los primeros elementos de cada Fi y los
reemplaza por el siguiente de su buffer cuando éstos son extráıdos.

Note que en todo momento los archivos Fi pueden estar a medio leer. Podŕıamos pensar
en un mecanismo más sofisticado que eliminara los archivos léıdos, o los uniera cuando se
hicieran pequeños, pero aqúı mantendremos la simplicidad: los archivos Fi se crean y se van
leyendo, y nunca se eliminan o unen.

Considerando que tenemos M
2
espacio de memoria para los buffers, tenemos un ĺımite de

k ≤ M
2B

. Esto significa que tenemos un ĺımite de N ≤ k · M
2
+ M

2
≤ M

2
(M
2B

+ 1) = O(M
2

B
)

al total de elementos que pueden ser insertados en esta estructura (en el peor caso; en la
práctica muchos podŕıan eliminarse antes de pasar a un archivo Fi). Con una memoria de
GBs y un B de KBs, esto equivale a PBs (petabytes).

Para analizar el costo de las operaciones, consideremos lo que nos puede costar un ele-
mento desde que es insertado hasta que es extráıdo. La inserción es gratis, pero el elemento
puede finalmente ser enviado a un archivo Fi, donde es escrito junto con otros B−1 elemen-
tos, por lo que podemos cobrarle 1

B
escrituras. Luego, puede ser léıdo de este archivo a su

buffer en memoria, junto con otros B elementos, por lo que podemos cobrarle 1
B
lecturas. En

total, cada operación cuesta O( 1
B
) I/Os. Esto, por supuesto, es en un sentido amortizado:

muchas operaciones son gratis, y de repente una inserción provoca un costo de O(M
B
) para

escribir un archivo Fi completo. En un esquema más sofisticado, podemos “deamortizar” el
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costo mediante escribir este archivo poco a poco, dividiendo H en dos colas de tamaño M/4,
de manera que cuando una se llena empezamos a usar la otra y vamos escribiendo la que
se llenó poco a poco a disco, a lo largo de las sucesivas inserciones que siguen. Debemos
asegurar que, para cuando la segunda cola se llene, la primera ya se habrá vaciado y puedan
intercambiar sus roles.

Aún en sentido amortizado, esta complejidad parece violar la cota inferior: podŕıamos
ordenar en disco en tiempo O(N

B
) mediante insertar losN elementos y luego extraerlos de esta

cola de prioridad. Esto es efectivamente cierto, pero dentro de la limitación de N = O(M
2

B
).

Bajo este supuesto, la complejidad Θ(n logm
n
m
) de ordenar es efectivamente Θ(n).

2.4.2. Cola de prioridad general

En caso de que debamos manejar más elementos que los permitidos por el esquema
anterior (por ejemplo, no siempre la estructura tendrá permitido usar toda la RAM, con lo
cual la limitación podŕıa ser más notoria), extenderemos el esquema previo mediante una
secuencia creciente de grupos de archivos.

Tendremos un número máximo k de archivos, como antes, pero éstos serán los archivos
F 1
1 , . . . , F

1
k del primer grupo. Cuando se intente crear el archivo F 1

k+1, lo que haremos será
unir todos los archivos del grupo actual en uno nuevo, F 2

1 , de tamaño máximo k · M
2
. Con ello

quedan libres todos los archivos F 1
i y se pueden volver a llenar. Una vez que se creen todos

los archivos F 2
1 , . . . , F

2
k y se necesite crear uno nuevo, se unirán todos en un nuevo archivo,

F 3
1 , de tamaño k2 · M

2
, y se vaciarán todos los F 2

i . Y aśı sucesivamente.
Cada unión de archivos F i

1, . . . , F
i
k para construir un F i+1

j cuesta O(|F i+1
j |/B) = O(kim),

es decir, O( 1
B
) por elemento unido. Si en total construimos r grupos, el costo amortizado de

una operación es O( r
B
), pues a lo largo de su vida en la estructura, un elemento insertado

puede ser escrito, luego unido r − 1 veces, y finalmente léıdo.
Para poder crear el primer elemento del grupo r debemos haber insertado N =

∑r−1
i=0 k

i ·
M
2

= Θ(krM) elementos, por lo tanto el número de grupos que podemos llegar a producir
es r = logk

N
M

+ O(1). Debemos tener k · r buffers en memoria para poder ir extrayendo los
mı́nimos de cada archivo de cada grupo, por lo cual necesitamos que M

2
≥ krB, es decir,
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estamos limitados a 2kr ≤ m. Para tener tiempo óptimo necesitamos que r = O(logm
n
m
), es

decir, log k = Θ(logm). Podemos entonces elegir k = Θ(mα) para algún 0 < α < 1 constante
(el costo de las operaciones se multiplicará por 1

α
). Dada la restricción 2kr ≤ m, esto significa

que debe cumplirse mα logm n = O(m), es decir log n = O(m1−α logm).
Esta condición es bastante generosa en la práctica. Por ejemplo, considérese sólo 1 MB

de memoria y 1 KB de tamaño de bloque, con lo cual m = 210, y α = 1/2. Para manejar 1
YBs (un yottabyte, N = 280) de datos, usemos k = mα = 25 y obtenemos r = logk

N
M

= 12,
con 2kr = 768 < 1024 = m, y el esquema nos cabe en memoria a sólo el doble del costo
óptimo (que seŕıa logm

n
m

= 6).

2.5. Hashing

Además de buscar todos los objetos en un rango, el árbol B puede encontrar el predecesor
o sucesor de un elemento en el conjunto de las claves, mediante una modificación simple del
algoritmo de búsqueda. Cuando estas capacidades no son necesarias y sólo se desea poder
encontrar un elemento insertado, podemos diseñar estructuras basadas en hashing que, bajo
ciertos supuestos razonables, permitan buscar haciendo O(1) accesos al disco en promedio.
Para esto bastaŕıa con implementar una tabla normal de hashing en disco. Sin embargo, una
tabla normal de hashing requiere o bien conocer de antemano la cantidad de elementos que
se almacenarán, para dar un tamaño adecuado a la tabla, o bien incrementar periódicamente
el tamaño de la tabla. Esto tiene un costo importante y es especialmente indeseable en
memoria externa, que es mucho más lenta. Asimismo, en memoria externa, donde los datos
son mucho más masivos y posiblemente persistentes, es menos probable que se tenga una
idea aproximada del tamaño de datos que se deberán manejar.

Presentaremos dos esquemas de hashing que buscan ofrecer costo de operación O(⌈t/B⌉)
basándose en una función de hashing h(·) clásica que produzca O(t) colisiones (t = O(1) si
la función está bien diseñada).

2.5.1. Hashing Extendible

Este esquema de hashing funciona, en promedio, cuando se almacenanN = O(MB) datos
en total, es decir, unas miles de veces el tamaño de la memoria principal. Inicialmente, la
estructura es una única página en disco, H, donde los datos se insertan de cualquier manera,
al costo de O(1) I/Os (o incluso gratis si la tenemos en memoria principal). Las búsquedas
se hacen leyendo la página H y buscando secuencialmente la clave que se desea.

Una vez que esta página se llena, la siguiente inserción provoca que la dividamos en dos,
H0 y H1. Para ello, releemos cada dato y de H y calculamos h(y). Según el primer bit de h(y)
sea 0 ó 1, insertamos el elemento en H0 o H1, respectivamente. Luego, creamos un nodo en
memoria principal con dos hijos: el izquierdo apunta a la página de disco donde almacenamos
H0, y el derecho a la de H1. Supongamos que, más adelante, la página de H0 rebalsa por
una inserción. Recorreremos todos los elementos y de H0 y consideraremos el segundo bit
de h(y) para separar los elementos en dos hojas, H00 y H01. La hoja de H0 se reemplazará

41



entonces por un nodo interno, cuyos hijos izquierdo y derecho serán, respectivamente, H00 y
H01.

En general, tendremos un árbol en memoria de tipo trie (que volveremos a ver en el
caṕıtulo de universos discretos), con k− 1 nodos y k hojas, donde cada hoja almacena datos
en una página de disco. Las búsquedas por una clave x parten por calcular h(x), y usan
sus bits para recorrer el trie, desde la ráız hasta llegar a una hoja. En ese momento leen la
página correspondiente del disco y buscan x secuencialmente entre las claves. El costo de
búsqueda es, en principio, siempre de 1 lectura, y el de inserción agrega 1 ó 2 escrituras.

Note que, cuando se divide una página, no hay garant́ıa de que la división sea equitativa.
Una hoja podŕıa quedar con más elementos que la otra. Esto significa que no hay una
ocupación mı́nima garantizada, y que en particular no podemos garantizar que la cantidad
de nodos del trie es O(k) = O(N/B). Es decir, con mala suerte se nos podŕıa acabar la
memoria disponible para un N mucho menor que Θ(MB). En promedio, sin embargo, si
consideramos que los valores h(y) son aleatorios, las páginas estarán llenas a un 69%.

Incluso podŕıa ocurrir que, al dividir una página, todas las claves se fueran a una de las
dos páginas. En ese caso, no se necesita crear una página vaćıa en disco. Basta que el puntero
desde el árbol sea nulo para indicar esa situación, y deberemos volver a particionar la otra
página, que continuará rebalsada, todas las veces que sea necesario. Note que, aún en este
caso, realizamos solamente 2 escrituras a disco.

También puede ocurrir que la página que rebalsa ya sea de profundidad |h(y)|, es decir,
que ya se hayan usado todos los bits de la función de hashing. Esto equivale a decir que
tenemos más de una página de elementos que colisionan en el hash provisto por h(·). Si bien
esto no debeŕıa ocurrir con una h(·) bien diseñada, debe haber una provisión para este caso.
Lo que se hace es tener una lista enlazada de las páginas que rebalsan en el último nivel. Por
ello, si la función h(·) produce una colisión entre t elementos, que requeriŕıan tiempo O(t)
para buscarse en memoria principal, el costo en disco será O(⌈t/B⌉) lecturas.

Finalmente, para borrar un elemento, debe encontrarse su página y eliminarlo. Luego
de esto, puede ocurrir que la página quede vaćıa, en cuyo caso se elimina y el puntero en
el árbol se hace nulo. Más probable, sin embargo, es el caso en que el nodo hermano en
el árbol también sea una hoja y que ambas quepan en una sola. En este caso se pueden
unir y reemplazar el nodo padre de ambas páginas por la página unida. Esta unión puede
hacerse exigiendo que la nueva página esté, por ejemplo, 2

3
llena, para evitar secuencias de

uniones y divisiones muy seguidas para una página que almacena cerca de B elementos y
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sufre inserciones y borrados consecutivos. Asismismo, debe verificarse que la nueva página no
tenga como hermano un puntero nulo, ya que en ese caso se puede reemplazar al nodo padre
por la hoja creada. Esto puede ocurrir repetidamente para varios ancestros de la página
creada. En total, sin embargo, un borrado requiere de 1 ó 2 lecturas y 1 escritura.

2.5.2. Hashing Lineal

El hashing lineal provee algunas ventajas sobre el extendible. Para comenzar, requiere
almacenar sólo O(1) datos en memoria, por lo que puede manejar conjuntos arbitrariamente
grandes de datos. Segundo, permite controlar el porcentaje de llenado de los bloques, o bien
el costo promedio de búsqueda (pero no ambos).

Pensemos primero que el archivo de hashing en disco tuviera siempre 2t páginas. Un
elemento y está guardado en la página número h(y) mód 2t (es decir, los t bits más bajos
de h(y)). Si algunas páginas rebalsan durante las inserciones, les creamos una lista enlazada
de páginas de rebalse. Si, luego de un rebalse, notamos que el costo de búsqueda (es decir,
1 más el largo promedio de las listas de rebalse) se ha hecho demasiado alto, expandimos la
tabla. Expandir significa duplicar su tamaño a 2t+1. Cada página i, con 0 ≤ i < 2t, se recorre
y sus elementos y se reinsertan en la página h(y) mód 2t+1. Esto significa que una parte de
los elementos se quedan en la página i, mientras que otros se insertan en la página i+ 2t.

El hashing lineal funciona de esa forma, pero realiza el proceso de expansión de manera
gradual. En general, el archivo contiene p páginas, con 2t ≤ p < 2t+1. Inicialmente tenemos
p = 1 páginas y t = 0. Las páginas 0 ≤ i < p− 2t ya fueron expandidas, y repartidas entre
las páginas i e i+ 2t, mientras que las páginas p− 2t ≤ i < 2t aún no han sido expandidas.

Para buscar un elemento y en el caso general, se calcula k ← h(y) mód 2t+1. Si k < p,
entonces se lee la página k (y su posible lista de rebalse) para buscar la clave y en ella,
secuencialmente. Si k ≥ p, sin embargo, la página k aún no ha sido creada por el proceso de
expansión, por lo cual el proceso de lectura debe realizarse en cambio en la página k ← k−2t.

Cuando se cumple una determinada condición (por ejemplo, el costo promedio de búsque-

43



da supera un cierto valor permitido), expandimos la siguiente página, es decir, la página p−2t
(¡que no es necesariamente la que produjo el rebalse que llevó a exceder el costo promedio
de búsqueda permitido!). Esta página se lee y sus elementos y se reinsertan en las páginas
h(y) mód 2t+1, es decir, se reparten entre la misma p− 2t y la nueva página p, que se agrega
al final del archivo. Al terminar la expansión, hacemos p← p+ 1, y si resulta que p = 2t+1,
entonces hemos completado una expansión y nos preparamos para la siguiente: t ← t + 1.
Para eliminar un valor, éste se busca en la tabla y simplemente se elimina. En caso de estar
en una lista de rebalse, puede usarse su espacio para mover un elemento desde la última
página de la lista, de modo de poder liberar apenas se pueda esta última página y reducir aśı
el tiempo promedio de búsqueda. Si se eliminan suficientes elementos, puede resultar que la
tabla pueda contraerse sin que se exceda el costo promedio de búsqueda máximo permitido.
Para realizar una contracción, primero se hace t← t−1 si p = 2t, y luego se hace p← p−1.
Luego, se agregan todos los elementos de la página p a la página p − 2t, procediendo a eli-
minar la página p. Note que esto puede hacer rebalsar la página p− 2t, o alargar su lista de
rebalse.

Note que una expansión o una contracción no necesariamente cambiarán la condición
que las disparó acerca del costo promedio de búsqueda. En general es preferible, para evitar
que una inserción o borrado disparen muchas expansiones o contracciones, realizar de todas
maneras una sola, y dejar que la siguiente operación dispare nuevamente una expansión o
contracción, hasta que la situación se resuelva.

Se pueden usar otros criterios en vez del máximo costo promedio de búsqueda. Por ejem-
plo, puede permitirse un mı́nimo porcentaje de llenado de las páginas, de modo de contraer
cuando éste se hace demasiado bajo (y expandir cuando es posible sin violar el criterio).
Este criterio se contrapone al de mantener un costo de búsqueda máximo, por lo que sólo
se puede controlar uno de los dos (o puede usarse una combinación de criterios). En general
el hashing lineal se comporta mejor que el extendible, aunque no suele garantizar un solo
acceso por lectura.

2.6. R-trees

El R-tree es la estructura de datos más popular para almacenar puntos o hiperrectángulos,
en 2 o más dimensiones. Es una extensión de la idea del B-tree, en el sentido de que los nodos
usan bloques de disco garantizando una fracción mı́nima de llenado, tiene altura O(logB N),
las hojas están todas al mismo nivel, y usa mecanismos similares de inserción y borrado.

Las “claves” son minimum bounding boxes (MBBs), es decir, el menor hiperrectángulo
que encierra un conjunto de objetos. El R-tree puede representar objetos complejos, y la
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clave de búsqueda es su MBB (como caso particular, podemos también almacenar puntos).
Cada nodo interno tiene k claves y k hijos. La clave yi que almacena para su hijo Ti es el
MBB de los MBBs almacenados en la ráız de Ti. Dado un parámetro 0 < α ≤ 1

2
, el R-tree

garantiza que todo nodo u hoja, excepto la ráız, tiene entre αB y B claves.
El R-tree permite encontrar todos los objetos cuyos MBBs se intersecten con un hiper-

rectángulo de consulta. La forma de proceder es leer la ráız, comparar la consulta con los k
MBBs que almacena, y recursivamente continuar la búsqueda en todos los subárboles Ti tal
que yi se intersecta con la consulta. Cuando se llega a las hojas, los MBBs intersectados se
reportan. Asimismo, se puede usar para encontrar todos los objetos del R-tree que contienen
al de la consulta, mediante entrar en todos los hijos cuyos MBBs contengan a la consulta.

Note que la consulta puede entrar a cero o más hijos de un nodo, por lo que el tiempo de
búsqueda no es O(logB N). Podemos obtener una complejidad promedio si consideramos una
probabilidad fija p de que la consulta se intersecte con un MBB. Entonces el tiempo promedio
cumple la recurrencia T (N) = 1 + pB · T (N/B), cuya solución es O(N1−logB(1/p)). Es decir,
la complejidad es de la forma O(nβ) para un 0 < β < 1 que depende de la probabilidad
de intersección. Es por ello que es importante lograr que los MBBs sean lo más pequeños
posible, mediante una adecuada poĺıtica de inserción y borrado de objetos.

Para insertar un objeto x, partimos de la ráız y vemos si está completamente contenido
en algún MBB. Si lo está, elegimos el de menor área y continuamos. Si no, calculamos
en qué hijo Ti tendŕıamos que incrementar menos el área de la clave yi al convertirla en
y′i = MBB(yi ∪ x), reemplazamos yi por y

′
i y continuamos la inserción en Ti. Finalmente, al

llegar a una hoja, agregamos x a los objetos.
En caso de que la hoja pase a tener B + 1 objetos, debemos partirla en dos hojas de

modo de minimizar la suma de las áreas de ambos MBBs y que ninguna tenga menos de
αB objetos. Note que en el modelo de memoria externa podŕıamos considerar las Θ(2B)
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particiones posibles y seleccionar la mejor, lo que seŕıa “gratis” en términos de I/O, pero
esto es impracticable en la realidad por su costo de CPU. En cambio, se utilizan heuŕısticas.
Una clásica, llamada “quadratic split”, hace lo siguiente:

Escoge dos claves y e y′ lo más alejadas posible, es decir, que maximicen las áreas de
MBB(y ∪ y′) −MBB(y) −MBB(y′). Esto toma tiempo O(B2) en memoria principal.
Estas claves serán los primeros elementos de las dos nuevas hojas.

Va insertando las demás claves, eligiendo en cada paso la que incremente menos el área
al insertarla en el MBB de la hoja de y o en el de la hoja de y′. En caso de empate,
puede escoger la hoja de menor área o la de menos elementos. Esto también cuesta
O(B2) operaciones en memoria principal.

Cuando una hoja llegue a (1− α)B elementos, los demás van a la otra.

Este mecanismo se usa también cuando los nodos internos rebalsan. En total, una inser-
ción cuesta O(logB N) I/Os, y O(B2 logB N) tiempo de CPU.

Para borrar un elemento, se elimina de su hoja y se calcula su nuevo MBB, que puede
decrecer. A la vuelta de la recursión, se pueden ir recalculando los MBBs de los ancestros
del nodo, al costo de una nueva escritura del bloque. Cuando una hoja tiene menos de αB
elementos, en vez de intentar algo parecido al B-tree, es decir, unirla con una hoja vecina
y de ser necesario volverlas a partir, lo que hace el R-tree es eliminarla completamente y
reinsertar todos los elementos en el árbol. Esto suele mejorar el empaquetamiento de objetos
en MBBs. Note que esto puede ocurrir también con subárboles completos, cuando un nodo
interno queda con menos de αB claves.

Almacenando los primeros Θ(logB M) niveles en memoria principal, el costo de inserción
se reduce a O(logB

n
m
) I/Os.

2.7. Ficha Resumen

Árbol B: O(logB
n
m
) para insertar, borrar y buscar. Óptimo para buscar si se procede

por comparaciones. Ocupación promedio 69%. Permite recuperar todos los occ objetos
en un rango en tiempo óptimo O(logB

n
m
+ occ/B), y encontrar el predecesor y sucesor

de un elemento en tiempo O(logB
n
m
).

Ordenamiento: O(n logm n) (o, equivalentemente, O(n logm
n
m
) ), lo que es óptimo si se

procede por comparaciones.

Cola de prioridad: O( 1
B
logm n) (amortizado) si log n

m
≤ mα para una constante 0 <

α < 1, lo que es óptimo si se procede por comparaciones.

Hashing extendible: para N = O(MB). Inserta, borra y busca en O(1) promedio, con
un buen hash. Con uno que produce t colisiones, el costo es O(⌈t/B⌉). Ocupación
promedio 69%.
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Hashing lineal: para cualquier N . Se puede acotar el costo promedio o la ocupación
promedio a costa de la otra medida.

R-tree: O(logB
n
m
) para insertar y (salvo cuando se debe reinsertar un nodo) para

borrar. Para encontrar todos los que intersectan o contienen un rectángulo de consulta,
O(nβ) en promedio, para una constante β que depende de la consulta y de los datos.

2.8. Material Suplementario

Probablemente la descripción del modelo de costo en memoria externa más recomendable
es la de Vitter [Vit08, cap. 2] o la de Meyer et al. [MSS03, cap. 1], por su nivel de detalle
y completitud. Incluyen también otros modelos interesantes, que incluyen paralelismo y la
jerarqúıa completa de memoria. Cormen et al. [CLRS01, cap. 18] describen el modelo de
costo con mucho menos detalle, pero aún razonablemente bien. Casi todos los otros libros
mencionados en esta sección describen también el modelo de costo, aunque generalmente con
aún menos detalle.

Cormen et al. [CLRS01, cap. 18] explican detalladamente los árboles B. También los
describen Weiss [Wei95, sec. 4.7] y Sedgewick [Sed92, cap. 18], aunque con bastante menos
detalle. Aho et al. [AHU83, cap. 11] también describen los árboles B, precedidos de una
discusión que es interesante para convencerse de la necesidad de este tipo de estructuras
cuando la masividad de los datos hace que las ideas más simples fracasen. Vitter [Vit08,
cap. 11] también describe los árboles B con bastante detalle, aśı como otras variantes que
son útiles, por ejemplo, para realizar muchas modificaciones en grupo. Meyer et al. [MSS03,
sec. 2.3] también presentan los árboles B en detalle, e incluyen varias variantes de interés.
Asimismo, explican brevemente la cota inferior para buscar en disco [MSS03, sec. 1.5.2].

Weiss [Wei95, sec. 7.11] describe el MergeSort para memoria externa, pero se centra en
un modelo de k cintas en vez de discos. En las cintas, el acceso sólo puede ser secuencial.
Finalmente el algoritmo no es muy distinto al que vimos, si bien hay más detalles distracti-
vos de lo conveniente. También usando cintas, Baase [Baa88, sec. 2.8] y Sedgewick [Sed92,
cap. 13] describen MergeSort con bastante detalle y discuten varios aspectos prácticos. Una
descripción más moderna y simple se puede encontrar en Mehlhorn y Sanders [MS08, sec.
5.7], donde además se presenta SampleSort, una variante muy sencilla que también funciona
bien en la práctica. Meyer et al. [MSS03, sec. 3.2.2] discuten con bastante detalle variantes
de MergeSort y de SampleSort. Vitter [Vit08, cap. 5 y 6] dedica un largo caṕıtulo a técnicas
avanzadas de ordenamiento, si bien el material no es tan aconsejable para leer sobre Mer-
geSort básico. En el caṕıtulo 6, Vitter explica la cota inferior para ordenar en disco. Meyer
et al. [MSS03, sec. 1.5.1] cubren en detalle esta cota inferior, junto con la del problema
relacionado de permutar un arreglo en disco.

Meyer et al. [MSS03, sec. 2.1] cubren estructuras elementales en disco, como pilas, colas
y listas, aśı como una cola de prioridad basada en una variante de los árboles B (los buffer
trees) que obtiene resultados similares a los vistos en el caṕıtulo, pero que son siempre
óptimos [MSS03, sec. 2.3.6]. La versión que presentamos se describe, en su variante simple,
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en Mehlhorn y Sanders [MS08, sec. 6.3], donde dan referencias a la versión completa.
Aho et al. [AHU83, sec. 11.3] describen un hashing fijo en disco, sin un mecanismo eficiente

para crecer cuando las listas de rebalse se hacen demasiado largas. Weiss [Wei95, sec. 5.6]
describe el hashing extendible, si bien, como en casi toda la literatura, usa en memoria
una tabla que se duplica para abarcar la altura máxima en vez de una estructura de trie. Lo
mismo hace Sedgewick [Sed92, cap. 18], con bastante detalle. Vitter [Vit08, sec. 10.1] también
describe el hashing extendible con cierto detalle, y luego describe muy brevemente el hashing
lineal [Vit08, sec. 10.2]. Samet [Sam06, ap. B] describe el hashing extendible usando tries,
aśı como el hashing lineal y otras variantes, con mayor detalle. Meyer et al. [MSS03, sec. 2.4]
describen el hashing lineal y extendible, aśı como varias otras variantes de hashings capaces
y no capaces de hacer crecer las tablas.

Existen muchos otros algoritmos para memoria secundaria. Por ejemplo, Mehlhorn y
Sanders [MS08, sec. 11.5] describen algoritmos para árboles cobertores mı́nimos en memoria
externa. Dos excelentes referencias para más algoritmos y estructuras de datos en memoria
externa son los libros de Vitter [Vit08] y de Meyer et al. [MSS03], que incluyen temas de
matrices, geometŕıa, grafos, textos, y técnicas generales de diseño.

Para los R-trees es mejor consultar un libro de estructuras de datos espaciales [Sam06,
sec. 2.1.5.2.3–2.1.5.2.7].

Otras fuentes online de interés:

El libro de Vitter [Vit08], www.ittc.ku.edu/~jsv/Papers/Vit.IO book.pdf

El libro de Meyer et al. [MSS03], link.springer.com/content/pdf/10.1007/
3-540-36574-5.pdf

algo2.iti.kit.edu/download/mem hierarchy 02.pdf a
algo2.iti.kit.edu/download/mem hierarchy 06.pdf.

www.daimi.au.dk/ large/ioS09/

people.mpi-inf.mpg.de/~mehlhorn/AlgorithmEngineering/ExternalMemorySlides.pdf

164.100.133.129:81/eCONTENT/Uploads/8.0 Data Structures and Algorithms for

External Storage.pdf

ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-

data-structures-spring-2012/calendar-and-notes/MIT6 851S12 L7.pdf

web.stanford.edu/class/cs145/cs145-notebooks-2016/lecture-11-12/

Lecture 11-12 Indexes.pdf

www.imada.sdu.dk/~rolf/Edu/DM808/F08/

www.youtube.com/watch?v=py4z v9dfzQ y www.youtube.com/watch?v=KZua1GbIGr8
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Caṕıtulo 3

Análisis Amortizado

El análisis amortizado es una técnica que permite analizar el costo de una secuencia
de n operaciones, cuando éste es menor de lo que se obtiene tomando el peor caso de una
operación y multiplicándolo por n. En este caso, diremos que el costo amortizado de cada
operación es el costo total de la secuencia de operaciones dividido n. Note que esto no es lo
mismo que análisis de caso promedio: se considera la peor secuencia posible de n operaciones
(aunque, independientemente, podŕıamos hablar de costo promedio amortizado).

Veremos tres técnicas de análisis amortizado. Según el caso, puede ser más natural utilizar
una que otra. Las ejemplificaremos con algunos casos sencillos. Después veremos algunos
algoritmos y estructuras de datos relevantes donde el análisis amortizado es fundamental
para comprender sus costos.

3.1. Técnicas

Comencemos con un problema de juguete para ejemplificar las técnicas a medida que las
describimos. Supongamos que tenemos una pila donde permitimos las operaciones push(x)
(que apila x) y multipop(k) (que desapila k elementos con algún propósito, por ejemplo
entregar su suma). La operación push(x) cuesta Θ(1) y la operación multipop(k) cuesta
Θ(k) (supondremos que cuando se ejecuta es porque hay al menos k elementos en la pila).
La pregunta es ¿cuánto puede costar una secuencia de n operaciones en una pila vaćıa?

Un análisis de peor caso nos muestra que, luego de haber realizado Θ(n) push’s, un
multipop nos puede costar Θ(n). Por lo tanto, una secuencia de n operaciones partiendo de
una pila vaćıa puede costar O(n2). Si bien esto es formalmente cierto, la cota está lejos de
ser ajustada. Usaremos tres tipos de argumentos para mostrar que en realidad n operaciones
sólo pueden costar O(n), es decir, el costo amortizado por operación es O(1) (si bien es
verdad que algún multipop puede costar Θ(n)).

Análisis global. La primera forma de verificar esto es notar que, en n operaciones, sólo se
pueden haber apilado n elementos mediante push’s. Por ello, si bien algún multipop puede
costar casi n, la suma de todos los multipop’s sólo puede costar n, pues todo elemento
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desapilado se debe haber apilado alguna vez. Es decir, con n operaciones a lo sumo podemos
haber apilado n elementos y luego haberlos desapilado. Si tomamos el costo de push como
1 y de multipop(k) como k, el costo total de las n operaciones es a lo más 2n = O(n).

Esta técnica se llama análisis global: observamos los costos de toda la secuencia no paso
a paso sino globalmente, para deducir alguna propiedad que permita acotar el costo total.
Ésta es la más sencilla de las técnicas, aunque no siempre es fácil encontrar una visión global
que haga obvio el costo total.

Contabilidad de costos. La segunda forma es notar que cada elemento que se saca con
multipop debe haber entrado en la pila con un push alguna vez. Podemos entonces cobrarle 2
operaciones al push, y cobrarle cero almultipop. Visto de otro modo, le estamos cobrando por
adelantado al elemento x de push(x) el costo que producirá cuando más adelante participe
de un multipop(k). Queda entonces claro que una secuencia de n operaciones no puede costar
más que 2n, pues no puede haber más de n operaciones de push.

Esta técnica se llama contabilidad de costos: repartimos el costo real de alguna forma,
entre operaciones, objetos, etc. para que resulte más fácil de sumar. Podemos, en particular,
cobrar costos futuros por adelantado. La dificultad está en encontrar, precisamente, una
forma de distribuir los costos que haga evidente el costo total.

Función potencial. Esta técnica consiste en definir una función ϕ que depende del objeto
que vamos modificando a lo largo de las operaciones. Esta función representa un “ahorro” que
vamos haciendo en las operaciones más baratas para poder usarlo en pagar las operaciones
más caras a futuro.

Pensemos en un contratista de una obra. Algunos meses tiene más gastos y otros menos.
Para tener una interfaz sencilla con su cliente, todos los meses i le cobra lo mismo, ĉi = c.
Sin embargo, su costo real, ci, es variable. En los meses en que ci ≤ ĉi, ahorrará el sobrante
ĉi − ci en una bolsa llamada ϕ. En los meses en que ci > ĉi, pagará la diferencia ci − ĉi
con el ahorro que tiene en la bolsa ϕ. Llamamos ϕ0 al ahorro inicial con que se comienza
la obra y ϕi a lo que tiene ahorrado después del mes i. Entonces, se cumple la recurrencia
ϕi = ϕi−1 + ĉi − ci. Como la obra se puede detener en cualquier momento, para asegurarse
de no perder dinero el contratista necesita que en todo mes i valga ϕi ≥ ϕ0. Desde el punto
de vista del cliente, el costo de la obra es constante por mes, ĉi. Esto corresponde al costo
amortizado de la operación del contratista, que usa el ahorro para esconder una estructura
de costos más complicada.

Formalmente, tenemos entonces una secuencia de costos reales ci y una función potencial
con valor ϕi luego de la operación i. Si llamamos ∆ϕi = ϕi − ϕi−1, definimos la secuencia de
costos amortizados ĉi como

ĉi = ci +∆ϕi.
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Con esta definición tenemos

n∑
i=1

ĉi =
n∑

i=1

(ci +∆ϕi),

n∑
i=1

ĉi =

(
n∑

i=1

ci

)
+ ϕn − ϕ0,

n∑
i=1

ĉi ≥
n∑

i=1

ci,

donde lo último se cumple si nos aseguramos de que ϕn ≥ ϕ0 para toda secuencia de opera-
ciones. Entonces nuestra secuencia de costos amortizados es una cota superior a la secuencia
de costos reales.

La dificultad está siempre en definir ϕ adecuadamente para que se mantenga ϕn ≥ ϕ0 y
sobre todo que los ĉi resultantes sean fáciles de sumar (constantes, idealmente). Para ello,
las operaciones que cuestan mucho deben disminuir el potencial en la misma medida.

En nuestro ejemplo, el potencial podŕıa ser el alto de la pila. Tenemos entonces ϕn ≥ 0 y
ϕ0 = 0. Consideremos lo que ocurre al ejecutar push(x). El costo real es ci = 1. Por otro lado,
la pila se hace una unidad más alta, por lo que ∆ϕi = 1. Esto nos da ĉi = ci +∆ϕi = 2. Por
otro lado, al realizar un multipop(k) tenemos un costo real de ci = k, pero como el alto de la
pila decrece en k, tenemos ∆ϕi = −k, con lo cual el costo amortizado es ĉi = ci +∆ϕi = 0.
Nuevamente, hemos obtenido nuestro costo amortizado de a lo más 2 unidades por operación.

Note que los análisis son válidos si partimos de la pila vaćıa, pero no si partimos operando
con una pila que ya tiene k elementos. En ese caso, una sola operación multipop(k) cuesta
O(k) y no O(1). Note que aqúı hemos violado algún supuesto hecho en cada una de las tres
formas de analizar este problema.

3.2. Incrementar un Número Binario

Seguiremos con un problema también de juguete, aunque algo más complicado y con una
aplicación que veremos después. Supongamos que debemos incrementar un número binario de
k d́ıgitos, desde 0 hasta 2k− 1. Llamemos n = 2k. Consideremos que el costo de incrementar
un número es la cantidad de bits que debemos invertir. Como se invierten todos los 1s hasta
el primer 0 de derecha a izquierda, el costo de incrementar vaŕıa entre 1 y k según el número
que incrementemos. Subrayamos a continuación los bits invertidos para k = 4.

0000 0100 1000 1100

0001 0101 1001 1101

0010 0110 1010 1110

0011 0111 1011 1111
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El peor caso es, como dijimos, tener que invertir k bits (al pasar de de 2k−1 − 1 a 2k−1),
por lo cual la secuencia de las n inversiones cuesta kn = O(n log n) operaciones. Esto es
cierto, pero no ajustado. Veremos que en realidad, se realizan en total menos de 2n = O(n)
inversiones de bits, es decir, el costo amortizado de incrementar cada número es a lo más 2.

Análisis global. La primera forma de verificar esto es mirar los costos de una forma
diferente, que permita sumarlos con más facilidad. Miremos los bits subrayados por columnas
y no por filas. Aśı se verá que el último bit del número cambia siempre, el penúltimo cambia
una vez cada 2, el antepenúltimo cambia una vez cada 4, y aśı. Sumando los bits subrayados
por columnas tenemos

n+
n

2
+

n

4
+ . . . < 2n.

Contabilidad de costos. La segunda forma es notar que cada operación realiza exacta-
mente una inversión de la forma 0→ 1, y cero o más inversiones 1→ 0. Como comenzamos
con una secuencia de 0s, todo 1 fue un 0 alguna vez. Podemos entonces cobrarle 2 operaciones
a las inversiones 0→ 1, y cobrarle cero a las inversiones 1→ 0. De este modo, cobramos por
adelantado en las inversiones 0→ 1 la posible futura inversión 1→ 0 de ese bit. Obtenemos
entonces una cota superior fácil de sumar: n incrementos cuestan 2n inversiones a lo sumo.

Función potencial. Nuestra función potencial podŕıa ser el número de 1s en la secuencia
de bits actual. Tenemos entonces ϕn ≥ 0 y ϕ0 = 0. Consideremos lo que ocurre al incrementar
una secuencia que termina con un último 0 y después ℓ 1s. Se invierten el 0 y todos los 1s,
por lo que el costo real es ci = ℓ+1. Por otro lado, se pierden ℓ 1s y se gana uno (al convertir
el 0 a 1), por lo cual ∆ϕi = −ℓ + 1. Esto nos da ĉi = ci + ∆ϕi = 2, y hemos obtenido
nuevamente nuestro costo amortizado.

Nuevamente, los análisis son válidos si partimos de k 0s y realizamos 2k incrementos o
menos, pero no si partimos de otra secuencia de bits. Por ejemplo, si partimos de 2k−1− 1 y
realizamos n = 1 operaciones, entonces el costo, real o amortizado, por operación es k, no 2.

3.3. Realocando un Arreglo

Supongamos que vamos leyendo números de un stream y almacenándolos en un arreglo.
Como no sabemos cuántos números leeremos, no podemos alocar la memoria definitiva que
el arreglo necesitará. Debemos, en cambio, ir realocando áreas de memoria cada vez mayores
para el arreglo cada vez que éste se va llenando. Al realocar un arreglo que contiene n
elementos, debemos copiar sus n elementos al área nueva de memoria. Consideremos como
costo el número total de escrituras a memoria que se requiere a lo largo del proceso.

Si cada vez que se nos llena el arreglo de tamaño n lo realocamos a tamaño n+1, usaremos
el mı́nimo posible de memoria, pero el costo total será Θ(n2). Lo que se usa es partir con un
arreglo de tamaño pequeño (digamos de 1 elemento, para simplificar) y duplicar su tamaño
cada vez que se llena. Esto garantiza que en total usamos a lo sumo el doble de la memoria
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necesaria. Lo que no está claro es cuánto es el costo de insertar un nuevo elemento en el
arreglo si realocamos de esta manera.

En términos de peor caso, esta poĺıtica parece tan mala como la cuadrática: como hay
inserciones que nos requieren realocar el arreglo, el costo de peor caso de una inserción son
n + 1 escrituras, donde n es el número de inserciones anteriores (o el tamaño del arreglo).
Necesitamos un análisis amortizado para reflejar el hecho de que, con esta segunda poĺıtica,
estas inserciones tan costosas ocurren muy pocas veces e impactan poco en el costo total.

Análisis global. Podemos notar que los valores de n en los que, al insertar un nuevo
elemento, debemos expandir el arreglo (es decir, duplicarlo en tamaño) son las potencias de
2: 1, 2, 4, . . ., 2k. El peor caso es que n = 2k + 1, de modo que no tengamos operaciones
baratas después de la última expansión. Además de las n escrituras realizadas para insertar
los elementos en el arreglo, hemos copiado 1 + 2 + 4 + . . . + 2k = 2k+1 − 1 elementos a lo
largo de todas las expansiones. El costo total es entonces 3 · 2k < 3n, y por ende el costo
amortizado de una inserción es a lo más de 3 escrituras.

Contabilidad de costos. En vez de cobrar el costo de expandir el arreglo a la operación
de inserción, se lo cobraremos a los elementos que se copian, de modo que la operación misma
pagará solamente 1 escritura. Cobrarle la operación a los elementos, sin embargo, también
nos da un problema, porque a lo largo de todas las expansiones los primeros elementos
insertados en el arreglo se copian más veces que los últimos insertados.

Haremos entonces lo siguiente: sólo les cobraremos a los elementos que se copian por
primera vez. Cuando se copien n = 2k elementos, entonces, sólo los n/2 de la segunda mitad
pagarán la copia, pues estos elementos se están copiando por primera vez. Como alguien
tiene que pagar la copia de los n/2 de la primera mitad, les cobraremos doble a los de la
segunda mitad. Es decir, cada elemento “nuevo” paga por su copia y por la de un elemento
“viejo”. Luego de copiarse una primera vez, un elemento pasa a ser viejo y a residir en la
primera mitad del nuevo arreglo, por lo que no paga nunca más. Esto facilita contabilizar
los costos: cada uno de los n elementos puede pagar hasta una vez, a costo 2. Además, cada
una de las n inserciones paga 1, por escribir el elemento en el arreglo. Sumando, tenemos un
costo amortizado de a lo más 3 escrituras por inserción.

Función potencial. Sea s el tamaño actual del arreglo, que tiene escritos n elementos,
de modo que n ≤ s < 2n (excepto al comienzo, en que n = 0 y supondremos que partimos
con un arreglo de tamaño s = 1). Definiremos la función potencial como ϕ = 2n − s. Al
comienzo vale ϕ0 = −1, pero luego de la primera inserción siempre vale ϕn > 0. Partiremos la
operación de inserción en dos sub-operaciones: la “inserción elemental” y la “expansión”. La
inserción elemental simplemente agrega el nuevo elemento al arreglo, y sólo puede invocarse
cuando hay espacio. La expansión sólo duplica el arreglo y copia los elementos actuales, y
se invoca cuando no hay espacio. Aśı, una inserción consiste de una inserción elemental, a
veces precedida de una expansión.
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La inserción elemental cuesta ci = 1. Como incrementa n, ocurre que ∆ϕi = 2. De modo
que el costo amortizado de la inserción elemental es ĉi = ci + ∆ϕi = 3. Por otro lado, la
expansión teniendo n elementos en el arreglo cuesta ci = n. Se realiza cuando s = n y hace
que s pase a ser 2s. Por lo tanto, ϕi−1 = 2n− s y ϕi = 2n− 2s, con lo cual ∆ϕi = −s = −n.
Sumando, tenemos que el costo amortizado de la expansión es ĉi = ci + ∆ϕi = 0. Por lo
tanto, el costo amortizado de una inserción es a lo sumo 3.

3.3.1. Parametrizando la solución

Consideremos que, o bien para ahorrar espacio o bien para mejorar el tiempo, decidimos
que el arreglo no se duplicará necesariamente, sino que expandirá su tamaño a αn para
alguna constante α > 1, de modo que a lo sumo usaremos αn celdas de memoria al haber
léıdo n elementos. Nos preguntamos cuál es el costo amortizado.

La forma más fácil de analizar el costo de inserción con este parámetro es modificar la
función potencial, que seguirá siendo de la forma ϕ = an−bs para constantes adecuadas a y b.
Para la inserción elemental tenemos entonces ci = 1 y ∆ϕi = a, dando un costo amortizado
de ĉi = 1 + a. Para la expansión de tamaño s = n a tamaño s = αn tenemos ci = n y
∆ϕi = −b(α − 1)n, lo cual nos da ĉi = (1− b(α − 1))n. Para que esto sea independiente de
n (es decir, cero como antes) debemos tener b = 1

α−1
.

Por otro lado, para que ϕn ≥ ϕ0 podemos pedir que an − bs ≥ 0 (si bien basta an −
bs ≥ −b). Como s ≤ αn, basta que a − bα ≥ 0, lo cual significa que podemos elegir
a = α

α−1
. El costo amortizado, dominado por el de la inserción elemental, es entonces 1 +

α
α−1

= 2α−1
α−1

. Nuestro primer análisis correspond́ıa entonces al caso particular α = 2, mientras
que ahora podemos ahorrar espacio (aumentando el costo por operación) o reducir el costo
por operación (aumentando el espacio). En todo caso, el costo por operación sigue siendo
constante si el espacio extra es proporcional a n.

3.3.2. Permitiendo contracciones

Supongamos ahora una situación más compleja en la que también se pueden eliminar
elementos en el arreglo. Un elemento eliminado se reemplaza por el que está en último
lugar, de modo que el arreglo se almacene en forma compacta. Queremos evitar el estar
almacenando demasiada memoria para un arreglo que alguna vez fue grande pero ahora tiene
pocos elementos. Para ello, podemos contraer el arreglo cuando queda muy vaćıo después de
un borrado. Esta es la acción contraria a la expansión que se realiza durante la inserción, y
supondremos que también cuesta n escrituras.

El primer impulso puede ser que, una vez que el arreglo tenga tamaño s > αn, lo con-
traigamos a tamaño s

α
. Sin embargo, si volvemos a insertar inmediatamente, el arreglo se

volverá a expandir. Por ello, el costo de esta alternativa puede ser muy alto: cada operación
costará Θ(n) escrituras si se elimina un elemento inmediatamente después de expandir, lo
que provoca una contracción, luego se vuelve a insertar, lo que provoca otra expansión, luego
se vuelve a eliminar, lo que provoca otra contracción, etc.
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Para seguir teniendo costo amortizado constante, establecemos que el arreglo se contraerá
solamente cuando s ≥ βn, para cierto β > α, y entonces se contraerá a tamaño γn, para
un 1 < γ < β. Esto garantiza que la memoria máxima a ser usada es βn. Nos preguntamos
ahora cuál es el costo amortizado de una operación.

Esta vez no funciona una función de tipo ϕ = an− bs. Debemos elegir un esquema algo
más complejo: ϕ = |an− bs|. Tenemos ahora las siguientes operaciones:

Inserción elemental, a costo ci = 1. El valor de ∆ϕi es a lo sumo a, por lo que una cota
superior al costo amortizado es ĉi ≤ 1 + a.

Borrado elemental (es decir, sin considerar la contracción), a costo ci = 1. El valor de
∆ϕi es también a lo sumo a, por lo que tenemos la misma cota superior ĉi ≤ 1 + a.

Expansión, a costo ci = n. Esta ocurre cuando n = s, y pasaremos de ϕi−1 = |an−bs| =
|an − bn| a ϕi = |an − bsα| = |an − bnα|. Para que nuestro esquema funcione, la
expansión debe darse cuando an − bnα ≥ 0, es decir, que debe valer a ≥ bα. En este
caso, tenemos ∆ϕi = −b(α− 1)n, y tendremos ĉi ≤ 0 siempre que b ≥ 1

α−1
.

Contracción, a costo ci = n. Esta ocurre cuando s ≥ βn, y pasaremos de ϕi−1 =
|an − bs| a ϕi = |an − bγn|. Para que nuestro esquema funcione, la contracción debe
darse cuando an − bγn ≤ 0, es decir, que debe valer a ≤ bγ. En este caso, tenemos
ϕi−1 = bs − an ≥ bβn − an y ϕi = bγn − an, y entonces ∆ϕi ≤ −b(β − γ)n. Por lo
tanto, tendremos ĉi ≤ 0 siempre que b ≥ 1

β−γ
.

Tenemos entonces las condiciones bα ≤ a ≤ bγ, b ≥ 1
α−1

y b ≥ 1
β−γ

. Dado un β fijo

(relacionado con la memoria máxima que permitimos desperdiciar), queremos minimizar a
(pues el costo amortizado es 1 + a). El menor a posible es a = bα. Usar el menor b posible
implica usar el menor γ posible, pues b ≥ 1

β−γ
. Como nuestras desigualdades implican γ ≥ α,

elegimos γ = α. Las nuevas cotas inferiores son b ≥ 1
α−1

y b ≥ 1
β−α

, que decrecen y crecen,

respectivamente, con α. Por lo tanto, el óptimo se da cuando 1
α−1

= 1
β−α

, es decir, α = β+1
2
.

El costo amortizado es entonces 1 + a = 1 + bα = 1 + α
α−1

= 2α−1
α−1

= 2β
β−1

.
Concluyendo, podemos garantizar un uso máximo de βn celdas para almacenar n elemen-

tos, permitiendo inserciones y borrados, a un costo amortizado de 2β
β−1

por operación. Para

lograrlo, cuando insertamos y s = n, expandimos el arreglo a s = β+1
2
n, y cuando borramos

y s ≥ βn, contraemos el arreglo a s = β+1
2
n. Por ejemplo, podemos elegir β = 3 para obtener

un costo amortizado de 3n.

3.4. Colas Binomiales

En esta sección veremos una nueva implementación de colas de prioridad. A diferencia
de la implementación usando heaps, las colas binomiales permiten unir dos heaps de n y m
elementos en tiempo O(log(n +m)). La siguiente tabla muestra las complejidades de cada
implementación (en términos de O(·)).
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Implementación Insert FindMin ExtractMin Heapify Merge

Heaps log n 1 log n n n+m
Cola binomial log n 1 log n n log(n+m)

3.4.1. Estructura

Definimos el árbol binomial Bk como una topoloǵıa, de la siguiente forma:

B0 es un árbol formado por un único nodo.

Bk+1 es un árbol Bk al que se cuelga de la ráız otro hijo más, que resulta ser la ráız de
otro árbol Bk.

Es fácil demostrar por inducción las siguientes propiedades:

La cantidad de nodos en Bk es 2k.

La altura de Bk es k + 1 (entendiendo que un único nodo tiene altura 1).

El árbol Bk tiene
(
k
i

)
nodos a profundidad i (entendiendo que la ráız se encuentra a

profundidad 0).

La ráız de Bk tiene k hijos, B0, . . . , Bk−1.

Definimos un bosque binomial como un conjunto de árboles binomiales {Bk1 , . . . , Bkr}
donde ningún par de árboles tiene el mismo tamaño, es decir, ki ̸= kj para todo i ̸= j.
Tenemos entonces las siguientes propiedades, también fáciles de ver:

Existe exactamente un bosque binomial de tamaño n para cada n ≥ 0: la única combi-
nación posible es tomar los Bki tal que los 1s en la descomposición binaria de n están
en las posiciones ki, partiendo de cero y de derecha a izquierda. Por ejemplo, el único
bosque binomial de n = 5 = 1012 nodos es {B2, B0}.

Un bosque binomial de n nodos tiene a lo más ⌈log2 n⌉ árboles binomiales.

Una cola binomial para un conjunto de n elementos es un bosque binomial de n nodos
donde se almacena un elemento en cada nodo, cumpliendo que si x está almacenado en el
padre del nodo donde está almacenado y, entonces x ≤ y.

3.4.2. Suma de colas

La primitiva crucial en colas binomiales es la suma, que dadas dos colas binomiales CX

y CY para conjuntos de elementos X e Y entrega una cola binomial CS para el conjunto
X∪Y (permitimos claves duplicadas, de modo que esta unión no elimina repetidos). La suma
procede análogamente a la suma de los números binarios |X| y |Y |, partiendo con CS = ∅ y
considerando los bits en cada posición k de |X| y |Y |, desde el bit menos significativo (k = 0)
al más significativo. Llevaremos también un conjunto T de 0 ó 1 árboles de acarreo, análogo
al bit de carry de la suma binaria. Al comenzar tenemos T = ∅.
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1. Si el k-ésimo bit de |X| es 1, mover el árbol Bk de CX a T .

2. Si el k-ésimo bit de |Y | es 1, mover el árbol Bk de CY a T .

Luego, procesamos el T resultante de la siguiente forma:

1. Si |T | = 0, no hacer nada para este valor de k.

2. Si |T | = 1, mover el árbol Bk de T a CS, dejando T = ∅.

3. Si |T | = 2, unir los dos árboles Bk y B′
k de T en un árbol Bk+1, colgando el que tenga

mayor ráız del que tenga menor ráız. El resultado es el nuevo contenido de T para el
siguiente valor de k.

4. Si |T | = 3, elegir un árbol Bk de los tres y moverlo a CS. Con los otros dos, proceder
como en el punto anterior.

La suma requiere entonces de tiempo O(log(|X ∪ Y |)), y deja los conjuntos CX , CY y T
vaćıos, y el resultado de la suma en CS.

3.4.3. Operaciones

Consideremos ahora una cola binomial CS con n elementos, y veamos cómo realizar las
operaciones.

Insert. Para insertar un elemento x, creamos una cola binomial C = {B0}, con B0 con-
teniendo el elemento x, y sumamos las colas CS y C para formar el nuevo CS. El elemento
queda entonces insertado en tiempo O(log n).

FindMin. El mı́nimo de todos los elementos puede calcularse en tiempo O(log n), me-
diante recorrer las (a lo más) ⌈log2 n⌉ ráıces de los árboles del bosque binomial CS, pues los
elementos no-ráıces no son menores que las ráıces. Para reducir este tiempo a O(1), basta
tener precalculado el valor del mı́nimo: la recorrida de ráıces se realiza como postproceso
luego de realizar cualquiera de las otras operaciones que modifican CS, y les agrega sólo un
costo adicional de O(log n).

ExtractMin. Una vez que sabemos que el mı́nimo es la ráız de un árbol Bk ∈ CS, sacamos
Bk del bosque y eliminamos su ráız. El resultado de eliminar la ráız de Bk es un nuevo bosque
binomial formado por los k hijos de la ráız eliminada, CN = {B0, . . . , Bk−1}. Finalmente,
sumamos las colas CS − {Bk} y CN , en tiempo O(log n), y el resultado es el nuevo CS.

57



Heapify. La implementación de heaps tardaŕıa tiempo O(n log n) en construir un heap
mediante inserciones sucesivas, por lo que se diseña para ella un procedimiento especial para
realizar esta operación en tiempo O(n). Sin embargo, en una cola binomial obtenemos tiempo
O(n) si realizamos n inserciones sucesivas en una cola vaćıa. La razón está en el análisis de los
2k incrementos consecutivos en un número de k bits que realizamos al comienzo del caṕıtulo
y que está en relación directa con los costos de inserción de esta cola.

Unir. La unión de dos colas binomiales de tamaños m y n se obtiene en tiempo O(log(m+
n)) mediante sumarlas. Con un heap clásico, la forma más fácil de unir dos colas de prioridad
es concatenar los arreglos e invocar heapify, lo que cuesta tiempo O(m+ n).

3.5. Colas de Fibonacci

Las colas de Fibonacci son una variante de las colas binomiales que realizan la inserción
y la unión en tiempo constante, mientras que la extracción del mı́nimo tiene un costo amor-
tizado de O(log n). Más precisamente, les corresponde la siguiente tabla (donde el asterisco
significa tiempo amortizado).

Implementación Insert FindMin ExtractMin Heapify Merge

Heaps log n 1 log n n n+m
Cola binomial log n 1 log n n log(n+m)

Cola de Fibonacci 1 1 log n (∗) n 1

La principal diferencia con las colas binomiales es que la cola de Fibonacci no es un bosque
binomial, sino simplemente un bosque de árboles binomiales unidos en una lista doblemente
enlazada. Es decir, la cola de Fibonacci puede tener varios árboles Bk del mismo tamaño.
De hecho, una cola de Fibonacci construida mediante n inserciones en una cola vaćıa no es
más que un bosque de n nodos simples. Todo el trabajo de estructurar la cola se realiza al
momento de la extracción del mı́nimo.

Al igual que en la cola binomial, esta cola sabe cuál es la ráız del árbol que contiene el
mı́nimo elemento.

3.5.1. Operaciones

Insert. Para insertar un elemento x en una cola CS, simplemente se crea un nuevo árbol
B0 conteniendo x y se agrega este B0 a la lista de árboles de CS. Además se compara x con
el mı́nimo elemento, para actualizar el mı́nimo de ser necesario. El tiempo total es O(1).

FindMin. Como siempre conocemos el mı́nimo elemento, el tiempo es O(1).

Heapify. Se realiza mediante n inserciones, en tiempo O(n).
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Merge. Simplemente se unen los dos conjuntos concatenando las dos listas, en tiempo
O(1). Además se comparan los dos mı́nimos, para retener el mı́nimo global.

ExtractMin. Ésta es la operación más compleja. Aqúı recorremos la lista y nos aseguramos
de convertirla en un bosque binomial, mediante sumar árboles iguales iterativamente.

Primero eliminamos la ráız del árbol Bk que contiene el mı́nimo actual (la cual conocemos)
y agregamos los hijos B0, . . . , Bk−1 a la lista de árboles de CS.

Luego, convertimos el bosque de árboles binomiales en un bosque binomial. Para ello,
creamos un pequeño arreglo A de ⌈log2 n⌉ punteros, donde A[k] apunta a un único árbol
Bk si es que tenemos alguno. Inicialmente todos los punteros son nulos. Ahora recorremos
la lista. Para cada árbol Bk que encontramos, si A[k] es nulo, asignamos A[k] ← Bk. Si no,
unimos Bk con el árbol A[k] (colgando la ráız mayor de la menor) en un único árbol Bk+1,
dejamos A[k] en nulo y continuamos el proceso con este nuevo árbol Bk+1.

Al final de esta operación tenemos un bosque binomial en A, y creamos una lista enlazada
con ellos. Ésta es la nueva cola de Fibonacci (en este momento es una cola binomial válida).
Sobre las O(log n) ráıces resultantes calculamos el nuevo mı́nimo y lo recordamos.

3.5.2. Análisis

Para analizar el costo amortizado de las operaciones usaremos la función potencial. Defi-
niremos ϕ = 2ℓ+ a, donde ℓ es el largo de la lista de árboles en el bosque y a es la cantidad
de celdas no vaćıas en el arreglo A que se usa para la operación ExtractMin (se entiende que
el arreglo está vaćıo durante las otras operaciones).

Tenemos ϕ0 = 0 al comenzar con la cola vaćıa. La operación de insertar incrementa ϕ en
2, por lo que su costo amortizado sigue siendo O(1). FindMin no cambia ϕ, por lo que su
costo amortizado es igual al costo real, O(1). Heapify es una secuencia de inserciones, por lo
que su costo real y amortizado es O(n).

Para la operación Merge, debemos considerar un conjunto de colas, y ϕ se define como la
suma de 2ℓ+ a sobre todas las colas. De esa manera, al realizar Merge esta función ϕ global
no cambia, y el costo real O(1) es también el costo amortizado.

Nuevamente, la operación compleja es ExtractMin. El primer paso es eliminar la ráız del
árbolBk que contiene el mı́nimo e insertar sus hijos en la lista. Esto cuesta ci = k e incrementa
el largo de la lista en k − 1, con lo cual tenemos ∆ϕi = 2k − 2 y ĉi = 3k − 2 = O(log n)
(podŕıamos tener ci = 1 si representamos los hijos con una lista doblemente enlazada, pero
esto no cambia el costo amortizado).

Luego reducimos la lista a un bosque binomial. Consideremos el costo amortizado de
procesar cada nuevo árbol Bk. Si A[k] está vaćıo, movemos el Bk de la lista a A[k], con lo
cual tenemos un costo de ci = 1 para moverlo y ∆ϕi = −1, resultando un costo amortizado
de ĉi = 0. Si, en cambio, teńıamos un árbol en A[k], entonces lo sacamos de A[k] y lo unimos
con el árbol Bk de la lista, reemplazando ese árbol por el árbol unión Bk+1, que reemplaza
al Bk de la lista. Tenemos un costo de ci = 1 y ∆ϕi = −1, con lo que nuevamente el costo
amortizado es cero. Finalmente, movemos los a ≤ log n árboles no nulos de A a la lista, lo que
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cuesta a operaciones e incrementa ϕ en a también, sumando O(log n) al costo amortizado.
En total, la operación ExtractMin tiene un costo amortizado de O(log n).

Note que estamos asignando costo ci = 1 a diversas cantidades constantes de operaciones
que realizamos. Se le puede asignar cualquier otro costo constante c y redefinir ϕ = c(2ℓ+a)
para obtener el mismo resultado.

3.6. Union-Find

El algoritmo de Kruskal para encontrar el árbol cobertor mı́nimo de un grafo crea una
cola de prioridad con todas las aristas y parte con un bosque T = ∅ (visto como conjunto
de aristas). Luego va tomando cada arista, y si no forma ciclo en el bosque, la agrega a T ,
terminando cuando |T | = n−1 y el bosque se ha convertido en un árbol. En un grafo conexo
de n nodos y n−1 ≤ e ≤ n2 aristas, el algoritmo tiene un peor caso de O(e log e) = O(e log n)
para manejar la cola de prioridad. Sin embargo, en esta formulación no queda claro cómo
determinar si una arista forma ciclo o no.

Si pensamos los árboles de T como clases de equivalencia formadas por nodos, una arista
(u, v) forma ciclo sii u y v son nodos del mismo árbol, es decir, están en la misma clase
de equivalencia. Cuando no lo están, agregar la arista (u, v) tiene el efecto de unir los dos
árboles, es decir, las dos clases de equivalencia. Podemos entonces reexpresar las operaciones
que necesitamos como operaciones que manejan clases de equivalencia:

Partimos con cada uno de los n elementos formando su propia clase.

Podemos preguntar si dos elementos pertenecen a la misma clase.

Podemos unir dos clases.

La interfaz que veremos define un elemento de cada clase, en forma arbitraria pero con-
sistente, como su representante. Tenemos entonces las dos operaciones siguientes:

Find(v) entrega el representante de la clase de equivalencia de v.

Union(x, y) une las clases de equivalencia representadas por x y por y.

Dos elementos u y v pertenecen entonces a una misma clase sii Find(u) = Find(v),
y para unir las clases de dos elementos cualquiera (no necesariamente representantes de
clase) u y v realizamos Union(Find(u), F ind(v)). Con esta interfaz, el algoritmo de Kruskal
realiza O(e) operaciones Find y O(n) operaciones Union. Veremos primero una solución
de tiempo O(log n) para estas operaciones y luego una mucho mejor, que requiere análisis
amortizado. Con estas soluciones, el costo del algoritmo de Kruskal es O(e log n), dominado
por las operaciones en la cola de prioridad.
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3.6.1. Solución de tiempo O(log n)

Obviando las soluciones muy elementales, que requieren tiempo O(n) para alguna de las
dos operaciones, una solución sencilla es tener n nodos, uno por cada elemento v, y que cada
clase de equivalencia sea un árbol formado por los nodos de los elementos participantes.
En estos árboles, los hijos apuntan a su padre, y la ráız es el representante de la clase. La
operación Find(v) consiste entonces en recorrer los ancestros sucesivos de v hasta llegar a
la ráız x, y entonces responder x. La operación Union(x, y), para dos ráıces x e y, cuelga x
como un hijo más de y (es decir, hace que y sea el padre de x) o vice versa, eligiendo siempre
colgar el árbol con menos nodos del árbol con más nodos (cada nodo conoce el tamaño de
su subárbol, lo que es fácil de mantener cuando se le agrega otro subárbol como hijo).

Es fácil ver por inducción que, en los árboles resultantes, un árbol de altura r tiene v ≥ 2r

nodos. Esto vale para los nodos iniciales, que definimos de altura 0 y que contienen 20 = 1
nodos. Ahora consideremos dos árboles de v1 y v2 nodos, y alturas r1 y r2, respectivamente.
Por hipótesis inductiva se cumple que v1 ≥ 2r1 y v2 ≥ 2r2 . Supongamos que v1 ≤ v2, por
lo que el primer árbol se cuelga del segundo. El árbol resultante tiene entonces v = v1 + v2
nodos y su altura es r = máx(r1 + 1, r2). Si la altura es r = r1 + 1, la tesis inductiva se
cumple porque v = v1 + v2 ≥ 2v1 ≥ 2 · 2r1 = 21+r1 = 2r. Si, en cambio, la altura es r = r2,
la tesis inductiva se cumple porque v = v1 + v2 ≥ v2 ≥ 2r2 = 2r.

Como un árbol tiene a lo más n nodos, su altura no puede ser más de log2 n, por lo cual
la operación Find cuesta tiempo O(log n). Por otro lado, la operación Union es O(1).

3.6.2. Solución de tiempo amortizado O(log∗ n)

Cuando se realiza una operación Find(v), se visitan todos los ancestros de v hasta llegar
a la ráız x: v = v1 → v2 → . . . → vr−2 → vr−1 → vr = x. Para agilizar las futuras
operaciones de Find, no nos cuesta nada colgar a todos los nodos del camino, v1, . . . , vr−2,
directamente de vr = x (por ejemplo, puede hacerse a la vuelta de la recursión). Aśı, las
futuras operaciones Find(vi) tomarán tiempo O(1). Asimismo, se agilizarán los Find(u)
sobre otros descendientes u de algún vi.

¿Qué impacto tiene esta mejora sobre los tiempos de Find? En el peor caso, ninguno,
pues si bien una aplicación de Find mejora el tiempo de las siguientes operaciones Find, el
primer Find puede costar O(log n) (por ejemplo, si hacemos n− 1 Union y luego el primer
Find). Necesitamos entonces realizar un análisis amortizado.

Considere una secuencia S de operaciones Union y Find, y llamemos S ′ a la secuencia
S sin las operaciones Find. Definiremos el rango de un nodo v, r(v), como la altura del
subárbol luego de realizar las operaciones de S ′ (o bien, de aplicar S pero sin la mejora que
acabamos de describir para Find). Hablaremos del rango de los nodos mientras analizamos
la secuencia verdadera S, pero debe recordar que r(v) es fijo e independiente del punto de
S que estemos considerando.

Una propiedad importante es que, como vimos en la subsección anterior, un nodo de
rango r tiene al menos 2r nodos en su subárbol (el que resulta de aplicar S ′). Como, en estos
árboles, dos nodos u y v de rango r no pueden descender uno del otro (pues entonces uno
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seŕıa más alto que el otro), sus subárboles deben ser disjuntos. Por lo tanto, no puede haber
más de n

2r
nodos de rango r.

Otra propiedad importante es que, si en algún momento de S, u desciende de v, entonces
r(u) < r(v). Esto ocurre porque sólo la operación Union crea nuevas descendencias (al
colgar x de y, todo descendiente de x pasa a ser también descendiente de y), mientras que
sólo la operación Find destruye descendencias (al colgar todos los vi directamente de x, los
descendientes de vi dejan de ser descendientes de vi+1, . . . , vr−1). Por lo tanto, en S ′, donde
se han eliminado los Find, u también se hará descendiente de v y se mantendrá aśı hasta el
final. Como u desciende de v al final de S ′, debe ser r(u) < r(v).

Para nuestro análisis, definiremos la función F (i) como F (0) = 1 y F (i) = 2F (i−1). Esta
función crece muy rápidamente:

i 0 1 2 3 4 5
F (i) 1 2 4 16 65536 265536

Llamaremos G(n) a la inversa de F , G(n) = mı́n{i, F (i) ≥ n}. La función G(n) también
se llama log∗ n, y es la cantidad de veces que debemos tomar logaritmo (base 2 en nuestro
caso) a n para que sea ≤ 1. En la práctica, vale G(n) ≤ 5 para cualquier n razonable:

n 0–1 2 3–4 5–16 17–65536 65537–265536

G(n) 0 1 2 3 4 5

Dividiremos a los n nodos en grupos: el nodo v pertenecerá al grupo g(v) = G(r(v)).
Dicho de otro modo, si observamos el bosque que resulta de aplicar S ′, los nodos de altura 0
y 1 (hojas y padres de sólo hojas) son del grupo g = 0, los nodos de altura 2 son del grupo
g = 1, los de altura 3 y 4 son del grupo g = 2, los de altura 5 a 16 son del grupo g = 3, etc.

Con estas definiciones ya podemos presentar el análisis amortizado que haremos. Usa-
remos contabilidad de costos. La operación Union cuesta O(1), por lo que no necesitamos
considerarla. Consideraremos que la operación Find(v) cuesta 1 por cada nodo que atrave-
samos en el camino desde v hasta la ráız x. Este costo, para el análisis, lo repartiremos entre
la operación Find misma y los nodos que atravesamos, de la siguiente forma:

Si, al momento de la operación, el nodo es la ráız x de su árbol, o es hijo de la ráız x,
le cobramos a Find.

Si, al momento de la operación, el nodo tiene distinto grupo que su padre, le cobramos
a Find.

De otro modo, le cobramos al nodo por el que pasamos.

Note que, cuando recorremos v = v1 → . . . → vr = x, como cada vi desciende de
vi+1, vimos que debe valer r(vi) < r(vi+1), y por lo tanto g(vi) ≤ g(vi+1). Eso significa
que cada vez que el grupo de vi es distinto del de su padre vi+1, el valor del grupo debe
aumentar. Como el máximo rango posible es r = log2 n, los grupos posibles van desde 0
hasta G(log2 n) = G(n) − 1, y entonces en el camino de v1 a vr el valor del grupo puede
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aumentar sólo G(n) − 1 veces. Sumando que Find paga por la ráız x = vr y su hijo vr−1,
tenemos que en cada operación nuestra contabilidad de costos le cobra a Find a lo más
1 +G(n) = O(log∗ n).

Debemos ver ahora cuánto les cobramos a los nodos. Note que, como hemos definido la
contabilidad, un nodo que paga adquiere un nuevo padre gracias a la mejora que hace Find.
Este nuevo padre es un ancestro del padre actual, por lo que su rango es estrictamente mayor.
Por lo tanto, cada vez que un nodo paga, adquiere un padre de mayor rango. Una vez que
adquiere un padre cuyo rango es de un grupo mayor al del nodo, el nodo no pagará nunca
más, pues nunca volverá a tener un padre de su mismo grupo (sólo puede seguir adquiriendo
padres de mayor y mayor rango).

¿Cuántas veces puede pagar un nodo hasta adquirir un padre de un grupo superior? Si
está en el grupo g, y su rango sube sólo de a 1 unidad por vez, puede pagar F (g)−F (g− 1)
veces hasta que su padre pertenezca al grupo g + 1. Digamos para simplificar que los nodos
de grupo g pueden pagar F (g) unidades en total. ¿Cuántos nodos hay de grupo g? Digamos

que son N(g), con N(g) =
∑F (g)

r=F (g−1)+1M(r), donde hay M(r) nodos de rango r. Como

vimos que M(r) ≤ n
2r
, tenemos que

N(g) ≤
F (g)∑

r=F (g−1)+1

n

2r
=

n

2F (g−1)+1
×
F (g)−F (g−1)−1∑

r=0

1

2r
<

2n

2F (g−1)+1
=

n

2F (g−1)
=

n

F (g)
.

Es decir, tenemos N(g) ≤ n
F (g)

nodos del grupo g, y cada uno de ellos paga a lo más F (g) a

lo largo de su vida. En total, entre todos los nodos del grupo g pagan a lo másN(g)·F (g) ≤ n.
Como existen G(n) grupos distintos, entre todos los nodos pagan n ·G(n). Por lo tanto, si se
realizan Ω(n) operaciones de Find, el costo amortizado de Find es O(log∗ n), mientras que
su costo de peor caso es O(log n). El costo de los Union es siempre O(1).

3.7. Splay Trees

Los splay trees son árboles binarios de búsqueda que tienen un método distinto de realizar
las operaciones, el cual garantiza un costo amortizado de O(log n) por operación sin necesidad
de almacenar información de balanceo como los árboles AVL o Red-Black. Más aún, una
secuencia de accesos a los nodos con distintas probabilidades entrega un costo amortizado
de O(H), donde H es la entroṕıa de esas probabilidades.

Como la estructura anterior, en el splay tree incluso las operaciones de lectura modifican
el árbol. Sus respuestas no cambian, pero se hacen más eficientes gracias a las modificaciones.

3.7.1. Operaciones

La idea principal del splay tree es que el nodo que acaba de accederse debe quedar en la
ráız del árbol. Para ello, una vez accedido un nodo x, éste se lleva a la ráız mediante una
operación llamada splay(x). Esta operación está formada por una secuencia de rotaciones.
Para describirlas, usaremos el formato z(A,B) para indicar un árbol con el elemento z en la
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ráız, subárbol izquierdo A y subárbol derecho B. Las rotaciones para ir subiendo al nodo x
son las siguientes:

Zig-zig: z(y(x(A,B), C), D)→ x(A, y(B, z(C,D))).

Zig-zag: z(y(A, x(B,C)), D)→ x(y(A,B), z(C,D)).

Zag-zig: z(A, y(x(B,C), D))→ x(z(A,B), y(C,D)).

Zag-zag: z(A, y(B, x(C,D)))→ x(y(z(A,B), C), D).

Zig: y(x(A,B), C)→ x(A, y(B,C)) (sólo si y es ráız).

Zag: y(A, x(B,C))→ (x(y(A,B), C) (sólo si y es ráız).

Supondremos que las rotaciones dobles cuestan 2 unidades de trabajo y las simples cues-
tan 1. Las operaciones del árbol se realizan de la siguiente manera:

Buscar. Se busca x como en un árbol binario de búsqueda y luego se hace splay(x). Si x
no se encuentra, se hace splay(x′), donde x′ es el último nodo visitado.

Insertar. Se inserta x como en un árbol binario de búsqueda y luego se hace splay(x).

Borrar. Se borra x como en un árbol binario de búsqueda (es decir, si tiene dos hijos se
reemplaza por su sucesor o predecesor in-order), y luego se hace splay(x′), donde x′ es el
padre del nodo finalmente borrado (aquel sucesor o predecesor in-order de x).

3.7.2. Análisis

Note que todas las operaciones del árbol tienen un costo proporcional a la operación
splay que las sigue. Por lo tanto, podemos concentrarnos en el costo de esta operación (si
bien luego consideraremos la modificación que hacen en el árbol la inserción y el borrado).

Para analizar esta operación en forma amortizada definiremos una función potencial. Sea
Si(x) el subárbol con ráız x luego de la operación i, y sea si(x) = |Si(x)| su número de nodos.
Finalmente, sea ri(x) = log2 si(x) el rango de x luego de la operación i. La función potencial
del árbol T , visto como un conjunto de nodos, es entonces

ϕi =
∑
x∈T

ri(x).

Analicemos cómo cambia ∆ϕi luego de realizar las rotaciones.
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Zig-zig y zag-zag. Los únicos nodos cuyos rangos se modifican son los de x, y, y z. Por
lo tanto,

∆ϕi = (ri(x)− ri−1(x)) + (ri(y)− ri−1(y)) + (ri(z)− ri−1(z)).

Note también los siguientes hechos simples: (1) ri(x) = ri−1(z); (2) ri−1(y) ≥ ri−1(x); (3)
ri(y) ≤ ri(x). El costo real de hacer un zig-zig es ci = 2, mientras que el costo amortizado es

ĉi = ci +∆ϕi = 2 + (ri(x)− ri−1(x)) + (ri(y)− ri−1(y)) + (ri(z)− ri−1(z))

= 2 + [ri(x)− ri−1(z)] + ri(y) + ri(z)− ri−1(x)− ri−1(y)

≤ 2 + ri(x) + ri(z)− ri−1(x)− ri−1(x)

= 2 + ri(x) + ri(z)− 2ri−1(x),

donde en la desigualdad usamos los tres hechos simples mencionados.
Vamos a usar la siguiente propiedad, que se deduce de la concavidad del logaritmo, pero

igual mostramos su deducción:

0 ≤ (a− b)2,

2ab ≤ a2 + b2,

4ab ≤ (a+ b)2,

log2(4ab) ≤ log2((a+ b)2),

log2(ab) ≤ 2 log2(a+ b)− 2,

log2 a+ log2 b ≤ 2 log2(a+ b)− 2.

Usaremos esta propiedad y el hecho simple de que si−1(x) + si(z) ≤ si(x) para obtener
lo siguiente:

ri−1(x) + ri(z) = log2 si−1(x) + log2 si(z) ≤ 2 log2(si−1(x) + si(z))− 2

≤ 2 log2 si(x)− 2 = 2ri(x)− 2.

Por lo tanto, podemos reemplazar ri(z) por 2ri(x) − ri−1(x) − 2 en nuestra ecuación de
ĉi para obtener

ĉi ≤ 3(ri(x)− ri−1(x)).

Zig-zag y zag-zig. Partimos de la misma forma que antes y luego acotamos:

ĉi = ci +∆ϕi = 2 + (ri(x)− ri−1(x)) + (ri(y)− ri−1(y)) + (ri(z)− ri−1(z))

= 2 + [ri(x)− ri−1(z)] + ri(y) + ri(z)− ri−1(x)− ri−1(y)

≤ 2 + ri(y) + ri(z)− 2ri−1(x),

donde en la desigualdad usamos que ri(x) = ri−1(z) y que ri−1(y) ≥ ri−1(x). Ahora volvemos
a usar que log2 a+ log2 b ≤ 2 log2(a+ b)− 2 y que si(y) + si(z) ≤ si(x) para acotar

ri(y) + ri(z) = log2 si(y) + log2 si(z) ≤ 2 log2(si(y) + si(z))− 2

≤ 2 log2 si(x)− 2 = 2ri(x)− 2.
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Sustituyendo en la fórmula de ĉi tenemos entonces

ĉi ≤ 2(ri(x)− ri−1(x)) ≤ 3(ri(x)− ri−1(x)).

Zig y zag. En estas operaciones tenemos ci = 1. Como ri(y) ≤ ri−1(y) y ri(x) ≥ ri−1(x),

ĉi = ci + (ri(x)− ri−1(x)) + (ri(y)− ri−1(y))

≤ 1 + ri(x)− ri−1(x)

≤ 1 + 3(ri(x)− ri−1(x)).

Splay. Una operación splay se compone de una secuencia de m rotaciones dobles consecu-
tivas, posiblemente terminadas por una simple, todas aplicadas sobre el mismo nodo x. Su
costo amortizado es entonces

ĉ ≤ 1 +
m∑
i=1

3(ri(x)− ri−1(x)) = 1 + 3(rm(x)− r0(x)) ≤ 1 + 3 log2 n,

donde la última desigualdad se obtiene notando que rm(x) = log2 n porque x termina siendo
la ráız, y despreciando r0(x) ≥ 0.

Operaciones del árbol. La cota de splay implica directamente una cota amortizada de
O(log n) para las operaciones de búsqueda exitosa sobre un splay tree. Lo mismo ocurre
con la búsqueda infructuosa, la inserción y el borrado, ya que hemos hecho que su costo
sea proporcional a la operación de splay correspondiente. La única consideración final que
necesitamos es que la inserción, al agregar un elemento x, puede incrementar el potencial ϕ,
lo cual debe ser absorbido por el costo amortizado de la inserción. La diferencia de potencial
que produce la inserción de una hoja x, siendo y1, . . . , ym los nodos de su camino hacia la
ráız y s(yj) sus tamaños, son

∆ϕ =
m∑
j=1

(log2(s(yj) + 1)− log2 s(yj))

≤ (log2(s(ym) + 1)− log2 s(ym)) +
m−1∑
j=1

(log2 s(yj+1)− log2 s(yj))

= log2(s(ym) + 1)− log2 s(ym) + log2 s(ym)− log2 s(y1)

≤ log2(n+ 1)− 1

≤ log2 n,

donde usamos que, como yj+1 es el padre de yj, debe valer s(yj+1) ≥ s(yj)+1. El incremento
de potencial de la inserción es también O(log n), lo que completa el análisis.
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3.7.3. Búsquedas con distintas probabilidades de acceso

El mayor interés de los splay trees es que se acercan a los árboles óptimos que diseñamos en
el caṕıtulo de cotas inferiores cuando teńıamos probabilidades de acceso conocidas, pero sin
necesidad de ningún preprocesamiento. Demostraremos que si realizamos m búsquedas sobre
un splay tree T , donde el elemento x es buscado q(x) veces (por lo tanto

∑
x∈T q(x) = m),

entonces el costo total de las búsquedas es

O

(
m+

∑
x∈T

q(x) log
m

q(x)

)
.

Para ello, reusaremos el análisis ya hecho y sólo cambiaremos la noción de tamaño de un
árbol. Definiremos ahora el peso de un nodo como la probabilidad de ser buscado, w(x) = q(x)

m
,

y definiremos el tamaño de un subárbol con ráız x como la probabilidad de que la búsqueda
pase por el nodo x, es decir,

si(x) =
∑

y∈Si(x)

w(y).

Note que si(x) es un número entre 0 y 1, por lo que ri(x) es negativo, pero aún el logaritmo
es monótonamente creciente. Todo el análisis realizado anteriormente vale, pues lo único que
utilizamos sobre si(x) fue que si(·) (y ri(·)) es mayor en un subárbol que en un subconjunto
disjunto de sus subárboles. Tenemos entonces que el costo amortizado de splay(x) es

ĉ(x) ≤ 1 + 3(rm(x)− r0(x)) = 1 + 3(log2 sm(x)− log2 s0(x))

= 1 + 3(log2 1− log2 s0(x)) = 1 + 3 log
1

s0(x)

≤ 1 + 3 log
1

w(x)
= 1 + 3 log

m

q(x)
.

En la segunda ĺınea usamos que, al final de la operación, x está en la ráız, por lo cual
sm(x) = 1. En la tercera ĺınea usamos que, sin importar dónde estuviera x en el árbol antes
de empezar la operación, tendremos s0(x) ≥ w(x).

Sabemos que realizamos splay(x) q(x) veces, de modo que sumando sobre todos los x
obtenemos el costo prometido. Note que esto implica un costo amortizado de O(1 +H) por
operación, donde H es la entroṕıa de las probabilidades de acceso a los elementos.

Los splay trees tienen otras propiedades interesantes que se pueden demostrar de forma
similar, variando la definición de s(x).

3.8. Ficha Resumen

Técnicas:

Análisis global.

Contabilidad de costos.

Función potencial.
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Ejemplos relevantes:

Realocar arreglo: αn memoria para n elementos, a costo amortizado de inserción 2α−1
α−1

.

Permitiendo borrados, βn memoria a costo amortizado de operación 2β
β−1

.

Colas binomiales: O(log n) para insertar, extraer mı́nimo y unir, O(1) para ver el
mı́nimo y O(n) para construir a partir de n elementos.

Colas de Fibonacci: O(1) para insertar, ver el mı́nimo y unir, O(n) para construir a
partir de n elementos, y O(log n) amortizado para extraer mı́nimo.

Union-Find: O(1) para union y O(log∗ n) amortizado para find.

Splay trees: O(log n) amortizado para insertar, borrar y buscar. O(H) para una se-
cuencia de búsquedas, siendo H la entroṕıa de la secuencia de elementos accedidos.

3.9. Material Suplementario

Cormen et al. [CLRS01, cap. 17] presentan las tres técnicas de análisis amortizado usando
los ejemplos del multipop y el incremento de números binarios. También presentan el caso
de los arreglos que se expanden y contraen, si bien usan una función potencial algo distinta.
Lee et al. [LTCT05] también usan el multipop para introducir el análisis amortizado usando
función potencial. Mehlhorn y Sanders [MS08, sec. 3.3] también describen el problema de
los arreglos y de los números binarios, y los toman como punto de partida para explicar
las técnicas de análisis amortizado en bastante profundidad. En particular, demuestran que
la función potencial es suficiente para cualquier análisis amortizado (si bien puede que no
siempre sea la técnica más intuitiva para usar).

Cormen et al. [CLRS01, cap. 19] describen las colas binomiales y también las de Fibonacci
[CLRS01, cap. 20], si bien nuestra descripción de estas últimas es más simple, porque ellos
permiten una operación que decrementa el valor de una clave, lo que requiere una función
potencial más complicada (esta operación es importante para mostrar que el algoritmo de
Dijkstra sobre un grafo de n nodos y e aristas se puede ejecutar en tiempo O(e + n log n)).
Weiss también describe las colas binomiales [Wei95, sec. 6.8 y 11.2] y las de Fibonacci [Wei95,
sec. 11.4]. Asimismo Weiss [Wei95, sec. 6.6] describe la leftist heap, cuya rama más izquierda
es de largo O(log n). La leftist heap reduce todas las operaciones a la unión de dos heaps,
que se ejecuta en tiempo O(log n). También describe las skew heaps [Wei95, sec. 6.7 y 11.3],
una variante amortizada de las leftist heaps y muy simples de implementar. Las skew heaps
también se analizan en Lee et al. [LTCT05, sec. 10.2].

Nuestra descripción de Union-Find está sacada de Aho et al. [AHU74], y Weiss [Wei95,
cap. 8] la presenta de forma muy similar. Cormen et al. [CLRS01, cap. 21] también la
describen en detalle, pero usan un análisis de función potencial bastante más complicado,
que les entrega un mejor resultado: n operaciones cuestan O(n ·α(n)). Esta α(n) es la inversa
de una función que crece aún más rápidamente que nuestra F (i), por lo que α(n) ≤ 4 para

68



todo valor práctico de n. Lee et al. [LTCT05, sec. 10.6] realizan un análisis similarmente
complejo. Aho et al. [AHU83], Mehlhorn y Sanders [MS08, sec. 11.4], Kleinberg y Tardos
[KT06, sec. 4.6] y Levitin [Lev07, sec. 9.2] también describen esta implementación de Union-
Find, pero sin análisis.

Weiss [Wei95, sec. 4.5, 11.5 y 12.1] describe los splay trees con bastante detalle, pero sólo
muestra la cota de O(log n) amortizado. En las referencias online se encuentran los casos de
distintas probabilidades de acceso (llamado static optimality) y otros.

Otros casos interesantes de análisis amortizado se dan en varios tipos de árboles balan-
ceados y colas de prioridad [CLRS01, probl. 17-3] [MS08, sec. 7.4] [LTCT05, sec. 10.3 y
10.5], algoritmos para flujo en redes [CLRS01, sec. 26.4] [KT06, sec. 7.4] y para scheduling
en discos [LTCT05, sec. 10.7]. Veremos otros casos de análisis amortizado en el caṕıtulo de
competitividad.

Otras fuentes online de interés:

www.cs.princeton.edu/ wayne/cs423/lectures/amortized-4up.pdf

www3.cs.stonybrook.edu/~rezaul/Fall-2012/CSE548/CSE548-lectures-10-11.pdf

courses.cs.washington.edu/courses/cse332/10sp/lectures/lecture21.pdf

www.cs.unm.edu/~saia/classes/561-f09/lec/lec8.pdf

jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/08-amortize.pdf

www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture notes/lect0206.pdf

www.cs.cmu.edu/~rjsimmon/15122-f14/lec/12-ubarrays.pdf

www.cs.duke.edu/courses/fall12/compsci330/restricted/lectures/

LectureAmortizedAnalysis.pdf

www.cs.princeton.edu/~fiebrink/423/AmortizedAnalysisExplained Fiebrink.pdf

www.ibr.cs.tu-bs.de/courses/ss13/na/skript/Fib2.pdf

users.info.uvt.ro/~mmarin/lectures/ADS/ADS-L9-10.pdf

ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-854j-advanced-algorithms-fall-2008/lecture-notes/lec6.pdf

web.stanford.edu/class/cs166/lectures/10/Small10.pdf

www.cs.cmu.edu/ ckingsf/bioinfo-lectures/splaytrees.pdf

jeffe.cs.illinois.edu/teaching/algorithms/notes/16-scapegoat-splay.pdf

www.youtube.com/watch?v=3MpzavN3Mco

www.youtube.com/watch?v=qh5lSHCBiRs
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Caṕıtulo 4

Universos Discretos y Finitos

Los métodos y cotas inferiores que hemos visto para ordenamiento y búsqueda aplican a
algoritmos que proceden por comparaciones. Estos tienen la gracia de que son lo más general
posible, es decir, se pueden usar en cualquier conjunto de objetos que tengan un orden total.
En muchos casos, sin embargo, los objetos que manejamos son de tipos particulares, como
enteros en un rango acotado o strings, y en esos casos es posible ordenar y buscar de otras
formas, sin usar comparaciones. En estos casos, las cotas inferiores de Ω(n log n) para ordenar
o de Ω(log n) para buscar ya no aplican, y efectivamente es posible diseñar algoritmos y
estructuras de datos más eficientes. En este caṕıtulo veremos formas más eficientes de ordenar
enteros en un rango acotado, de buscar en un universo acotado de enteros, y de ordenar y
buscar en strings. Veremos también estructuras especiales para buscar en texto.

4.1. Ordenando en Tiempo Lineal

Veremos que, si tenemos n elementos en un universo entero [1..u], podemos ordenarlos
en tiempo O(n logn u). En particular, esto es O(n) cuando el tamaño del universo es de la
forma u = O(nc) para alguna constante c.

Comenzaremos con un método de ordenamiento muy simple de tiempo O(n+u), llamado
counting sort. Como este método no permite distinguir dos elementos distintos con una
misma clave, seguiremos con bucket sort, que es una variante algo más sofisticada con la
misma complejidad. El bucket sort será usado entonces para construir el radix sort, que
obtendrá finalmente las cotas prometidas. Finalmente, usaremos el bucket sort para ordenar
strings en tiempo lineal.

4.1.1. Counting sort

Supongamos que tenemos que ordenar A[1..n], donde cada A[i] ∈ [1..u]. El counting sort
comienza inicializando un arreglo de contadores C[1..u], todos en cero, C[j] ← 0. Luego
recorre A, incrementando el contador correspondiente, C[A[i]] ← C[A[i]] + 1. Finalmente,
recorre C, escribiendo (en A) C[j] copias del valor j, para j ∈ [1..u].
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Esta técnica puede aplicarse cuando los elementos son solamente claves, es decir, no
tienen información satélite asociada. El tiempo de las tres pasadas es O(n+ u), por lo cual
es conveniente solamente cuando el universo es pequeño (por ejemplo, u = O(n)). Note
también que necesita espacio extra para u contadores, lo cual puede ser significativo incluso
si u = O(n) con una constante no muy pequeña.

4.1.2. Bucket sort

Para el caso en que los elementos tengan información satélite asociada, el bucket sort
obtiene la misma complejidad que el counting sort, y de hecho comienza de la misma forma,
calculando el arreglo C de contadores. Luego, supondremos que tenemos también la celda
C[0] = 1, y convertiremos C en un arreglo de punteros, mediante recorrerlo de izquierda a
derecha y calcular C[j] ← C[j − 1] + C[j], para j ∈ [1..u]. La idea es que ahora C[j − 1]
almacena la posición donde deben empezar a escribirse las copias del valor j en A.

El output del algoritmo es un nuevo arreglo B[1..n], que contendrá los valores de A
ordenados. Para llenarlo, volvemos a recorrer A de izquierda a derecha, copiando B[C[A[i]−
1]]← A[i] y luego incrementando el puntero C[A[i]−1] para la siguiente ocurrencia del valor
A[i]. Se entiende que, al copiar A[i] en B, se copia la clave y la información satélite.

Note que el bucket sort es estable: dos elementos con la misma clave mantienen su orden
original en A. Esto es importante para usarlo en el radix sort. Por otro lado, note que el
bucket sort requiere espacio para almacenar B y C, más que el counting sort.

4.1.3. Radix sort

El radix sort realiza una serie de rondas de bucket sort sobre los datos, ordenándolos
progresivamente de los bits menos a los más significativos. Suponga que primero ordenamos
A[1..n] usando como clave el bit más bajo. Como el bit es la clave, el universo sólo tiene dos
valores, lo que lo hace un caso fácil de bucket sort, que tomará tiempo O(n + 2) = O(n).
Una vez ordenado por el bit más bajo, volvemos a ordenar A por el segundo bit más bajo.
Al ser estable el bucket sort, los elementos que tengan su segundo bit más bajo iguales se
mantendrán ordenados por el bit más bajo, resultado de la ronda previa de ordenamiento.

Si continuamos hasta ordenar por el bit más alto, el arreglo A[1..n] quedará finalmente
ordenado. Como los números en A se representan en ⌈log2 u⌉ bits, esta técnica requiere
tiempo O(n log u), lo cual en principio no es tan bueno.

Sin embargo, no necesitamos ordenar de a un bit por vez. En cambio, podemos ordenar
de a k = ⌊log2 n⌋ bits en cada ronda. Es decir, consideraremos primero los k bits más bajos,
luego los siguientes k bits, etc. Como las claves son ahora de k bits, el universo es de tamaño
2k ≤ n, y el bucket sort aún requerirá tiempo O(n+ 2k) = O(n) en cada ronda. El total de

rondas es ⌈log2 u⌉
k

= O( log u
logn

) = O(logn u), y por ende el tiempo total es O(n logn u).

El espacio requerido es también O(n), que se reparte entre el arreglo B[1..n] y los con-
tadores C[1..2k]. Es posible reducir significativamente el espacio de C mediante reducir k.
Por ejemplo, ordenando de a k/2 bits, realizaremos el doble de rondas (lo que no alterará
la complejidad) y el espacio para C será solamente O(

√
n). Este ahorro de espacio puede
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redundar además en una mayor eficiencia del algoritmo (a pesar de realizar más rondas)
dado que mejorará notablemente su localidad de referencia.

4.1.4. Ordenando strings

Suponga que tiene n strings de largo m, dando un tamaño total N = nm. Supondremos
que los strings usan un alfabeto de tamaño constante σ. Un método clásico de ordenamiento
aplicado a los strings requiere tiempo O(mn log n) = O(N log n), dado que cada comparación
de dos strings puede requerir tiempo O(m).

En cambio, podemos ordenar los strings en tiempo O(N) mediante realizar rondas su-
cesivas de bucket sort, al igual que radix sort. Equivalentemente a ver los strings como
números en base σ, ordenaremos los strings por su último carácter, luego por su penúltimo
carácter, etc. Al final, los strings quedarán ordenados lexicográficamente, es decir por su
primer carácter, los que coincidan en su primer carácter por el segundo, los que coincidan
en sus dos primeros caracteres por el tercero, etc. Cada ronda de bucket sort cuesta tiempo
O(n+σ) = O(n), y se realizan m rondas, con lo que el tiempo total es O(mn) = O(N). Note
que el arreglo A contendrá punteros a los strings, de modo que cada vez que se reescribe un
A[i] en B lo único que se copia es el puntero al string, en tiempo constante.

Consideremos ahora el caso en que los n strings tienen distintos largos mi ≥ 1, sumando
un largo total de N =

∑n
i=1mi. Aún es posible ordenarlos en tiempo O(N). Lo que haremos

será partir ordenando los strings por su largo, de más corto a más largo. Luego, partiremos
del último carácter de los strings más largos, e iremos considerando los caracteres previos,
incorporando nuevos strings al conjunto cuando sus largosmi se van alcanzando en el proceso.

Más en detalle, usaremos bucket sort para ordenar los strings por largo (es decir, la
clave es su largo). Como los largos no pueden exceder N , el bucket sort requerirá tiempo
O(n + N) = O(N) (en la práctica, bastante menos). Consideremos ahora los n strings
S1, . . . , Sn, ordenados de más corto a más largo. Partiremos del largo máximo, m = mn, y
un cursor en p = n + 1. Ahora decrementaremos p hasta el mı́nimo valor posible tal que
mi ≥ m para todo p ≤ i ≤ n (es decir, para incluir a todos los strings de largo máximo, pues
podŕıa haber más de uno). Realizaremos una ronda de bucket sort con el carácter m-ésimo
de los strings A[p..n] = Sp, . . . , Sn. Luego decrementaremos m ← m − 1 y volveremos a
decrementar p para incluir los posibles strings del nuevo largo m. Estos nuevos elementos
se incorporarán al conjunto A[p..n], siendo considerados inicialmente menores que los del
conjunto anterior. Esto es compatible con el orden lexicográfico, donde un string que es
un prefijo de otro se considera lexicográficamente menor. Continuaremos las rondas hasta
procesar el carácter m = 1 de todos los strings.

Es fácil ver que el bucket sort de la ronda m trabaja O(km + σ) = O(km), donde km es
el número de strings de largo ≥ m. Como

∑mn

m=1 km = N , el tiempo total es O(N). Esto
incluye también el tiempo de decrementar p, que suma O(n) en total.
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4.2. Predecesor en Tiempo Loglogaŕıtmico

Dado un conjunto de elementos X = {x1, . . . , xn}, con xi < xi+1, el predecesor de y
en X es el máximo xi ≤ y (definiremos que el predecesor es −∞ cuando y < x1). Note
que, si y ∈ X, entonces su predecesor es el mismo y, y si no, es un elemento estrictamente
menor. Por ello, una estructura que implemente consultas de predecesor puede usarse como
diccionario (es decir, como una estructura en la que se puede insertar, borrar, y buscar si un
elemento está o no), pero es en realidad más potente. Puede usarse en cualquier caso en que
quiera encontrarse el valor más cercano a uno dado. En particular, estas operaciones permiten
simular una cola de prioridad que extraiga el máximo como el predecesor de +∞ (obviamente
podemos tener una cola de prioridad que extraiga el mı́nimo mediante implementar una
estructura de sucesor en vez de predecesor, o cambiando el signo de todos los números).

Si procedemos por comparaciones, tanto un diccionario como una estructura de predece-
sor se pueden implementar en tiempo O(log n) para todas las operaciones usando un árbol
balanceado, y ese tiempo calza con la cota inferior de Ω(log n) de Teoŕıa de la Información
que vimos. Es decir, los dos problemas son equivalentes en el modelo de comparaciones.

Fuera del modelo de comparaciones, sin embargo, los problemas difieren. Usando hashing,
podemos implementar diccionarios en tiempo esperado O(1), e incluso en O(1) peor caso si no
permitimos modificaciones al conjunto (usando hashing perfecto, que veremos más adelante).
Esto no es posible para el problema del predecesor.

En el caso de universos discretos los problemas también son diferentes. Si los xi pertenecen
a un universo discreto [1..u], y nos permitimos usar espacio proporcional a u, entonces un
simple arreglo de u bits implementa un diccionario con todas las operaciones en tiempo O(1).
El problema del predecesor se puede implementar en tiempo O(1) con un arreglo de u enteros
que almacenan todas las respuestas, pero esto no permite modificar el conjunto X.

El problema del predecesor tiene una cota inferior de Ω(log logw
u
n
), para una palabra de

máquina de w bits. Esta cota es válida tanto si se permiten modificaciones a X como si no
se permiten pero se limita el espacio a polinomial en n. Es válida incluso si nos referimos
al caso promedio, y si nos conformamos con tener sólo una probabilidad fija de responder
correctamente.

En esta sección veremos una estructura que usa espacio O(u) y tiempo O(log log u) para
todas las operaciones, lo que está bastante cerca de la cota inferior. Note que esto implica que
podemos tener una cola de prioridad con tiempos O(log log u) para todas las operaciones, y
que podemos ordenar en tiempo O(n log log u).

Existen variantes más complejas de la estructura que usan espacio O(n) pero no permiten
modificaciones aX, o bien los tiempos de operación son esperados y no de peor caso. Veremos
un ejemplo de ellas.

4.2.1. El van Emde Boas tree

El van Emde Boas (vEB) tree particiona recursivamente el universo en subuniversos fijos
(en vez de particionar los datos, como los árboles clásicos). Además, no lo particiona en
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una cantidad constante de hijos, que llevaŕıa a una altura logaŕıtmica, sino en una cantidad
mayor, que hace que su altura sea loglogaŕıtmica.

Un vEB-tree para un universo [0..u− 1], vEB(u), tiene los siguientes componentes:

Enteros min, max, size, que indican, respectivamente, el valor mı́nimo y máximo y la
cantidad de elementos en el árbol.

Un array bottom[0..
√
u − 1] de subárboles de tipo vEB(

√
u), de modo que bottom[i]

contiene los elementos que pertenecen al subuniverso [i ·
√
u..(i+ 1) ·

√
u− 1].

Un subárbol top de tipo vEB(
√
u), donde el elemento i está en top sii bottom[i] no está

vaćıo.

¿Hasta dónde sigue la descomposición recursiva? Para garantizar tiempos O(log log u),
podemos detenernos cuando el tamaño del subuniverso es O(logc u), para alguna constante
c, de modo que podamos almacenar en un árbol balanceado los elementos que caen en ese
subuniverso. Como este árbol no puede tener más de O(logc u) elementos, el tiempo de
operación en él sumará O(c log log u) = O(log log u) al tiempo total.

¿Qué altura tiene el vEB tree? Supongamos para simplificar que continuamos con la
descomposición recursiva hasta que el subuniverso es de tamaño 2. La altura obedece entonces
a la recurrencia H(u) = 1 +H(

√
u) y H(2) = 0, cuya solución es log2 log2 u = O(log log u).

¿Qué espacio requiere esta estructura? Esto corresponde a la recurrencia S(u) = 3+(
√
u+

1) ·S(
√
u) y S(2) = 3. Podemos mostrar por inducción que S(u) ≤ 6u− 9 = O(u), mediante

comprobar el caso base y sustituir para el caso inductivo. Si, en cambio, nos detenemos en
un subuniverso de tamaño O(logc u), entonces los árboles balanceados sumarán O(n), pues
en total almacenan todos los elementos, y la estructura principal sumará O( u

logc u
). Es decir,

podemos dividir la influencia de la estructura global por cualquier polylog, ocupando espacio
O(n+ u

logc u
), si pagamos O(c log log u) por las búsquedas.

4.2.2. Búsquedas

Consideremos el problema de encontrar el predecesor de y en X, que está almacenado en
un vEB tree. Lo primero es descomponer y = a

√
u + b, con 0 ≤ b <

√
u. Esto implica que

y pertenece al subuniverso a, dentro del cual su valor relativo es b. Esta descomposición es
una división, pero puede hacerse más eficientemente usando operaciones de bits si u es de la
forma u = 22

k
. En este caso, b son los 2k−1 bits más bajos de y, mientras que a son los 2k−1

bits más altos (en C, a = y >> 2k−1 y b = y&((1 << 2k−1)− 1)).
Una vez que sabemos que y está en el subuniverso a, podemos determinar si su predecesor

también se halla ah́ı. Esto ocurre sii bottom[a].size > 0 y bottom[a].min ≤ b. Si es ese el
caso, entonces podemos recursivamente encontrar el predecesor b′ de b en el vEB bottom[a],
y luego responder traduciendo b′ del subuniverso a al universo global, a

√
u+ b′.

Si, en cambio, vemos que b no tiene un predecesor en bottom[a], entonces el predecesor
de y debe encontrarse en el subuniverso no vaćıo más cercano a la izquierda de a. Podemos
encontrar este subuniverso, a′ < a, mediante calcular el predecesor de a−1 en el vEB top, que
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contiene precisamente los subuniversos no vaćıos. Si no existe tal a′, entonces tampoco existe
el predecesor de y. Si existe, entonces el predecesor de y es el máximo elemento almacenado
en bottom[a′], es decir, la respuesta es a′

√
u+ bottom[a′].max.

El tiempo de búsqueda resulta ser O(log log u) si notamos que, en cada universo de
tamaño u, reducimos el problema a una búsqueda o bien en un bottom[a], o bien en top, lo
que nos lleva a la recurrencia T (u) = T (

√
u) +O(1) = O(log log u).

4.2.3. Inserciones

Para simplificar, supongamos que sabemos que el elemento y que queremos insertar no
está ya en X. Descomponemos y = a

√
u + b, y entonces debemos insertar b en bottom[a],

recursivamente. Sin embargo, si bottom[a] estaba vaćıo (es decir, bottom[a].size = 0 antes de
la inserción), también debemos insertar a en top, recursivamente. Finalmente, incrementamos
size y actualizamos los campos min y max para considerar el nuevo elemento y (min y max
son válidos sólo si size > 0).

Si bien este método de inserción es correcto, tiene el problema de que podemos realizar
dos invocaciones recursivas sobre subuniversos de tamaño

√
u: en bottom[a] y también en

top. Esto nos lleva a la recurrencia T (u) = 2T (
√
u) + O(1) = O(log u), es decir, el costo de

inserción se hace demasiado alto.

Para evitar este problema basta un pequeño retoque a la estructura: el valor max dejará
de ser una copia del máximo valor almacenado. Ahora será un valor que se mantiene aparte
y no se almacena dentro del vEB.

Con este nuevo invariante, la inserción procede de la siguiente forma. Primero, si size = 0,
todo lo que hacemos es size ← 1, min ← y, y max ← y. Como el elemento y se guardó
en max, no lo almacenamos en su subuniverso correspondiente. Si, en cambio, la estructura
tiene elementos, lo primero que hacemos es ver si y no es el nuevo máximo: si y > max,
intercambiamos sus valores. De esta forma, el elemento insertado pasa a estar guardado en
max, y el que teńıamos en max (que ya no es más el máximo) pasa a ser el que tenemos
que insertar en el árbol. Luego realizamos la inserción de y tal como la hab́ıamos descrito
inicialmente (salvo que las variables que se actualizan al final son sólo min y size).

Con este nuevo método, todav́ıa podemos realizar dos llamadas recursivas, pero si eso
ocurre, una de ellas toma tiempo O(1): si insertamos a en top, es porque bottom[a].size = 0
cuando le insertamos b, y con nuestro nuevo algoritmo, la inserción de b en bottom[a] toma
tiempo O(1). De este modo, el tiempo de la inserción se hace O(log log u).

El nuevo invariante requiere un pequeño cambio en la búsqueda del predecesor de y: antes
que nada, debemos verificar si size > 0 y y ≥ max, en cuyo caso el predecesor de y es max.
De otro modo, procedemos como antes.

4.2.4. Borrados

Para simplificar, supondremos que el elemento y que queremos borrar está en la estructu-
ra. Lo primero que haremos será verificar si size = 1, en cuyo caso sabemos que el elemento

76



a borrar es el único almacenado, max. En este caso basta que hagamos size ← 0 para
invalidarlo.

Si tenemos más de un elemento, la siguiente verificación es si no estamos borrando el
máximo, y = max. En este caso, debemos encontrar el nuevo máximo del conjunto, que
no es dif́ıcil de calcular: max ← top.max

√
u + bottom[top.max].max. Ahora este elemento

debe eliminarse del árbol, por lo que asignamos y ← max antes de continuar. De otro modo,
mantenemos el elemento original y a borrar.

Para borrar y del árbol, lo descomponemos en y = a
√
u+ b, y borramos b de bottom[a],

recursivamente. Si luego de este borrado tenemos que bottom[a].size = 0, entonces debemos
también borrar a de top, recursivamente.

Finalmente, decrementamos size y recalculamos el nuevo mı́nimo, que puede haber cam-
biado si y = min. En este caso, actualizamos min← top.min

√
u+ bottom[top.min].min.

Nuevamente, el borrado en un universo de tamaño u puede realizar dos llamadas recursi-
vas en subuniversos de tamaño

√
u, pero al igual que en la inserción, sólo una de ellas puede

ser no trivial: si borramos a de top, es porque bottom[a] se hizo vaćıo luego de borrar, por lo
cual el borrado de b en bottom[a] se hizo en tiempo O(1).

4.3. Diccionarios de Strings

Cualquier implementación de diccionarios, por ejemplo, un árbol balanceado o una tabla
hash, pueden usarse para almacenar un conjunto de strings. El primero ofreceŕıa tiempo
O(m log n) de peor caso y el segundo O(m) promedio para insertar, borrar, o buscar un
string de largo m en un conjunto de n strings. Aqúı mostraremos cómo aprovechar el hecho
de que los objetos son strings para operar en tiempo de peor caso O(m), pudiendo además
buscar todos los strings prefijados por un string de consulta. Luego usaremos la estructura
de datos para indexar un texto, de modo de poder buscar en sus substrings.

4.3.1. Tries

Un trie, árbol digital, almacena un conjunto de strings. En el trie, cada nodo puede tener
cero o más hijos. La arista hacia cada hijo está rotulada por un carácter del alfabeto, y
no puede haber dos aristas saliendo de un mismo nodo y rotuladas por el mismo carácter.
Cada hoja almacena uno de los strings del conjunto. Los strings almacenados se suponen
terminados por un carácter especial “$”, lo que impide que un string sea prefijo de otro.
Para cada nodo v, llamaremos str(v) al string que se obtiene concatenando los rótulos de
las aristas en el camino de la ráız hasta v. Aśı, si v es la ráız, str(v) es la cadena vaćıa, y si
v es una hoja que representa el string S, str(v) = S. Para los nodos internos v, str(v) es un
prefijo común que comparten todos los strings almacenados en sus hojas descendientes (note
que dos strings que compartan un prefijo común de largo ℓ deben compartir los primeros ℓ
nodos en el camino desde la ráız hasta sus hojas).

Para buscar una determinada cadena S[1..m] en un trie, buscaremos en realidad S∗ = S$.
Partimos de la ráız v0 y bajamos por la arista rotulada S∗[1] para llegar al nodo v1. De v1
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bajamos por la arista rotulada S∗[2] para llegar al nodo v2, y aśı. Esta búsqueda termina de
dos formas posibles:

1. Un cierto nodo vi del camino no tiene un hijo rotulado S∗[i+1], para 0 ≤ i ≤ m. Esto
significa que S no está en el conjunto.

2. Llegamos al nodo vm+1, que debe ser una hoja pues desciende del śımbolo especial $.
En este caso, S está en el conjunto, pues str(vm+1) = S∗.

La búsqueda de S requiere, entonces, tiempo O(m). Esto supone que podemos encontrar
en tiempo constante la arista rotulada S[i]. Si el tamaño σ del alfabeto se considera constante,
entonces esto es inmediato con cualquier implementación que usemos para los hijos de los
nodos. Si no, aún podemos conseguir tiempo constante si, por ejemplo, cada nodo guarda
un arreglo de sus σ hijos, lo cual sin embargo requiere espacio O(σ) por nodo. Si el trie
no sufre modificaciones, podemos usar hashing perfecto (que veremos más adelante) para
mantener el tiempo constante y usar espacio proporcional al número de hijos de cada nodo
(cobrándole este espacio a los hijos, esto amortiza a O(1) por nodo en total). Si el trie sufre
modificaciones, aún podemos usar hashing (no perfecto) para tener tiempo O(1) en promedio.
Finalmente, podemos almacenar los hijos de cada nodo en un árbol balanceado para bajar
al hijo en tiempo O(log σ), de modo que el tiempo total de búsqueda sea O(m log σ). Por
simplicidad, ignoraremos este tiempo de ahora en adelante.

Reduciendo el tamaño. Si guardamos n strings de largo total N , el trie podŕıa llegar a
tener N nodos. Esto hace del trie una estructura bastante exigente en espacio. Una forma de
reducirlo significativamente es eliminar los caminos de nodos con un solo hijo (llamémoslos
unarios) que terminan en una hoja, es decir, si v1 → v2 → v3 . . . → vt es un camino donde
vt es una hoja y v2, . . . , vt−1 tienen un solo hijo, entonces los eliminamos y ponemos a vt
como hijo directo de v1 (conservando el rótulo de la arista v1 → v2). A cambio, deberemos
almacenar el string en la hoja vt (lo que en muchos casos se hace de todos modos). Con esta
modificación, la búsqueda de S en el trie puede nuevamente terminar de dos formas posibles:

1. Un cierto nodo interno vi del camino no tiene un hijo rotulado S∗[i+1], para 0 ≤ i ≤ m.
Igual que antes, esto significa que S no está en el conjunto.

2. Un cierto nodo vi del camino es una hoja. Esto significa que str(vi) es el único string
del conjunto prefijado por S∗[1..i]. Ahora debemos comparar S∗[i + 1..m + 1] con
str(vi)[i+ 1..m+ 1], para determinar si son iguales o no.

Nuevamente, el tiempo de búsqueda es O(m). Con esta modificación, un trie todav́ıa
podŕıa tener Θ(N) nodos en el peor caso, pero en promedio tendrá sólo O(n) nodos si se
insertan strings aleatorios.

Búsqueda de prefijos. Otra operación que permite el trie es la búsqueda de prefijos, es
decir, contar o listar todos los strings del conjunto prefijados por S. En este caso debemos
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descender usando S, no S∗. Si la búsqueda termina en el caso 1, no hay strings en el con-
junto prefijados por S. Si termina en el caso 2, y S[i + 1..m] = str(vi)[i + 1..m], entonces
str(vi) es el único string del conjunto prefijado por S. Pero, al no estar S terminado con $,
existe una tercera posibilidad: que la búsqueda termine en un nodo interno vm después de
haberse consumido todos los caracteres de S[1..m]. En ese caso, toda hoja que descienda de
vm está prefijada por S. Podemos hacer que cada nodo almacene el número de hojas que
descienden de él, resolviendo esta búsqueda en tiempo O(m). Si en cambio queremos poder
listar esos strings, entonces cada nodo debeŕıa almacenar un puntero a su primera y última
hoja descendiente, y cada hoja un puntero a su siguiente hoja. Con ello, cada string prefijado
por S se alcanza en tiempo constante una vez realizada la búsqueda. Los detalles de cómo
mantener estos punteros los dejaremos como ejercicio.

Inserciones y borrados. Veremos ahora cómo insertar y borrar en esta estructura. La
inserción de un string S[1..m] parte como una búsqueda de S∗, y termina de una de las dos
formas vistas. Veamos qué hacer en cada caso:

1. Si el nodo interno vi no tiene un hijo rotulado S∗[i + 1], entonces agregamos ese hijo,
el cual será una hoja conteniendo el string S∗.

2. Si llegamos a una hoja vi conteniendo S ′[1..m′ + 1] (también terminada con $), com-
paramos S∗[i + 1..m + 1] con S ′[i + 1..m′ + 1] hasta encontrar la primera diferencia
S∗[j] ̸= S ′[j] (si no hay diferencia, entonces S ya estaba en el conjunto). Creamos
entonces una cadena de hijos vi → vi+1 → . . . → vj−1, donde cada arista vk → vk+1

está rotulada S∗[k+1] (= S ′[k+1]). De vj−1 salen dos hijos: vj−1 → vj, rotulada S∗[j],
lleva a la hoja vj que contiene el string S∗, mientras que vj−1 → v′j, rotulada S ′[j],
lleva a la hoja v′j que contiene el string S ′.

En todos los casos, el tiempo total sigue siendo O(m). Un caso especial es cuando el trie
no contiene strings, en cuyo caso la primera inserción hace que el trie consista de una única
hoja que almacena el string.

La eliminación del string S parte como una búsqueda exitosa de S∗ , llegando a la hoja v
que lo contiene y eliminándola. Luego, debemos asegurarnos de que no nos quede un camino
unario hacia una hoja. Si v tiene un único hermano v′ y v′ es una hoja, entonces entramos
en el siguiente ciclo: Mientras el padre u de v′ tenga un solo hijo, eliminamos u y colgamos a
v′ del padre de u. Si llegamos a eliminar la ráız, entonces el trie consiste de una única hoja,
v′. Note que el tiempo de borrado sigue siendo O(m), incluso con el ciclo que recorta los
caminos unarios.

4.3.2. Árboles Patricia

Si bien el peor caso de espacio O(N) en un trie es bastante raro cuando eliminamos los
caminos unarios hacia las hojas, puede ocurrir con algunos conjuntos de strings que compar-
ten prefijos largos (por ejemplo, conjuntos de URLs). El árbol Patricia (también conocido
como blind trie) es una variante del trie que asegura espacio O(n) independientemente del
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largo de los strings, y mantiene el tiempo de las operaciones en O(m). El precio es que se
deben almacenar los strings completos en alguna parte (obviamente).

El invariante del árbol Patricia es que no hay caminos unarios de ninguna clase (tampoco
entre nodos internos). Como todo nodo tiene al menos dos hijos y hay n nodos hojas, hay
menos de n nodos internos, con lo cual el total de nodos es O(n).

Para ello, cada arista estará rotulada en general con un string, no con un solo carácter,
pues potencialmente puede provenir de la eliminación de un camino unario. El árbol Patricia
no almacena el string completo, sino sólo su primera letra a y su largo ℓ, en un par (a, ℓ).
Esto hace que no haya suficiente información en el trie para que la búsqueda de S∗ compare
el string completo, sino solamente algunos caracteres: si hemos comparado S∗[1..i] y la arista
rotulada por S∗[i + 1] es de la forma (S∗[i + 1], ℓ), entonces deberemos seguirla y en su
hijo suponer que hemos consumido ya S∗[1..i + ℓ]. Esto hace que, al llegar a una hoja
v, debamos comparar completamente S∗ con str(v), pues algunos de los caracteres que
“saltamos” podŕıan no haber coincidido. Lo que sabemos es que, si S está presente, S∗ tiene
que estar en v, pues no hay otra hoja que coincida con S∗ en los caracteres que śı vimos.

Para buscar S en un árbol Patricia, bajaremos por los nodos v0, v1, . . . buscando S∗, de
la forma que acabamos de explicar (es decir, saltando los largos ℓ indicados en las aristas),
hasta que ocurra una de las siguientes situaciones:

1. Un cierto nodo interno vi del camino no tiene un hijo rotulado S∗[j], donde 1 ≤ j ≤
m + 1 es el carácter que toca comparar en vi. Igual que antes, esto significa que ni S
ni su prefijo S[1..j] están en el conjunto.

2. Llegamos a un nodo interno vi donde el carácter que toca comparar es j > m+1. Esto
significa que todos los strings que descienden de vi son más largos que S∗, y por lo
tanto S no está en el conjunto.

3. Llegamos a una hoja vk. Si el siguiente carácter a consumir en S∗ luego de procesar la
arista es j ̸= m + 2, entonces la hoja no contiene S∗ sino un string más corto o más
largo, en cuyo caso ya sabemos que S no está en el conjunto. En caso de pasar este
test, debemos comparar la totalidad de S∗ con str(vk), por si algún carácter saltado no
coincide. Estos dos strings son iguales sii S está en el conjunto.

A pesar de la doble verificación, el tiempo de búsqueda sigue siendo O(m).

Búsqueda de prefijos. Para buscar prefijos, usamos S[1..m] en vez de S∗. En el caso 3 de
arriba, el único string posible prefijado por S es str(vk). Para ello, la posición del siguiente
carácter a comparar de S debe ser > m + 1, pues si no str(vk) es más corto que S. Pasado
este test, debemos comparar la totalidad de S con str(vk)[1..m] para determinar si S es
prefijo de str(vk), dado que podemos no haber comparado todos los caracteres de S.

Debemos también modificar el caso 2, deteniendo la búsqueda cuando el carácter a com-
parar es el j > m. Para resolver este caso, cada nodo interno vi debe apuntar a alguna
hoja vk que descienda de él, en un campo hoja(vi) (supondremos que, si vk es una hoja,
entonces hoja(vk) = vk sin necesidad de almacenarla). Calcularemos entonces vk = hoja(vi)
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y verificaremos si S = str(vk)[1..m]. De ser aśı, S es prefijo de todos los strings almacena-
dos en hojas que descienden de vi, y si no, de ninguno. Nuevamente, podemos almacenar
contadores en cada vi para entregar la cantidad de strings prefijados en tiempo O(m). No
necesitamos, en cambio, punteros para recorrer las hojas eficientemente, pues si hay h ho-
jas descendiendo de vi, su subárbol contiene O(h) nodos, por lo cual podemos simplemente
recorrerlo recursivamente.

Inserciones y borrados. La inserción en un árbol Patricia es un proceso más complejo
que en un trie. Primero, debemos buscar S∗ en el árbol, y no encontrarlo. Esto ocurre según
los casos 1 a 3 de la búsqueda:

1. Un cierto nodo interno vi del camino no tiene un hijo rotulado S∗[j], donde 1 ≤ j ≤
m+1 es el carácter que toca comparar en vi. En este caso, debemos tomar vk = hoja(vi)
y comparar S∗ con str(vk), para determinar la primera posición d ≤ j donde S∗ difiere
de todos los strings en las hojas que descienden de vi.

2. Llegamos a un nodo vi donde ya nos pasamos de la posición m + 1. Procedemos
exactamente como en el caso 1.

3. Llegamos a una hoja vk. Nuevamente, comparamos S∗ con str(vk) para determinar d.

Note que el punto de inserción de S∗ corresponde a S∗[d], el cual puede estar más arriba
del nodo vi o vk, pues llegamos a esos nodos suponiendo que los caracteres no revisados
coincid́ıan. Una vez conocido d, pueden pasar tres cosas:

1. Estábamos en un nodo interno vi y resulta que j = d. En este caso, creamos un
nuevo hijo hoja de vi asociado al string S∗, y rotulamos la arista que los une con
(S[d],m+ 2− d).

2. Estábamos en una hoja vk, a la que llegamos luego de examinar el carácter S[d′], y
resulta d > d′. En ese caso, convertimos a vk en padre de dos hojas: una representa
el string original S ′ asociado a vk y la otra representa S∗. La arista hacia la primera
se rotula (S ′[d], |S ′| − d+ 1), y la arista hacia la segunda se rotula (S∗[d],m+ 2− d).
Finalmente, la arista (a, |S ′| − d′ +1) que llegaba a vk debe ser convertida a (a, d− d′)
y hoja(vk) puede ser asignada a cualquiera de las dos hojas creadas.

3. Ninguna de las anteriores, en cuyo caso debemos retroceder en la recursión hasta llegar
al ancestro vr desde el que pasamos a vs por una arista rotulada (a, ℓ). Al pasar de
vr a vs, pasamos de haber consumido S∗[1..d′] a haber consumido S∗[1..d′ + ℓ], con
d′ < d − 1 < d′ + ℓ. Entonces debemos cortar esta arista en dos, introduciendo un
nuevo nodo v hijo de vr y padre de vs. La arista de vr a v se rotula (a, d − 1 − d′),
y la de v a vs se rotula (str(vk)[d], d

′ + ℓ − d + 1), donde vk = hoja(vs). Se copia
hoja(v) ← hoja(vs). Finalmente, se crea una nueva hoja v′ que también es hija de v,
con la arista entre ellas rotulada (S∗[d],m+ 2− d), y se asocia la hoja a S∗.
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Para borrar S, una vez eliminada la hoja v que representaba S∗, tenemos que verificar
si su padre no queda con un solo hijo, y de ser aśı eliminar ese padre, reemplazando al
padre de ese otro hijo hoja por su abuelo. El proceso no necesita repetirse hacia arriba.
Concretamente, si u es el padre de v y u tiene sólo otro hijo v′, por una arista rotulada (a, ℓ),
entonces sea u′ el padre de u, conectados por una arista rotulada (a′, ℓ′). Entonces se elimina
u y se cuelga a v′ de u′, por una arista rotulada (a′, ℓ+ ℓ′).

Asimismo, debemos eliminar referencias de la forma hoja(vi) = v en cualquier ancestro
vi de v. Para ello, antes de posiblemente eliminar al padre u de v, tomamos w = hoja(v′)
para cualquier hijo v′ ̸= v de u. Luego de posiblemente eliminar al padre de v, partimos del
(tal vez nuevo) padre de v′ y recorremos el camino hasta la ráız, reemplazando cualquier
hoja(vi) = v por hoja(vi)← w.

En todos los casos, la inserción y el borrado de un string S[1..m] cuesta O(m).

Alfabeto binario. Una implementación particularmente simple de los árboles Patricia se
obtiene si consideramos el alfabeto como binario, es decir, cada carácter en el alfabeto [1..σ]
se toma como una cadena de log2 σ bits. Esto hace que cada nodo interno del árbol tenga
exactamente 2 hijos, simplificando la implementación. Note que el espacio sigue siendo O(n).

El precio es que el camino de la ráız a la hoja donde se almacena S[1..m] puede llegar a
tener largo O(m log σ), que será ahora la nueva complejidad de todas las operaciones. Como
vimos al comienzo, esta es realmente la complejidad en algunas implementaciones.

Autocompletado. Una aplicación interesante de árboles Patricia es el autocompletado
automático, que a medida que uno tipea una palabra va proponiendo la palabra más probable
que uno querŕıa terminar de escribir. El usuario puede, en cualquier momento, aceptar la
opción que le ofrece el autocompletado o seguir tipeando. Y, obviamente, puede terminar
tipeando algo que no esté aún en el conjunto de palabras conocidas. Almacenando las palabras
conocidas y sus frecuencias en un árbol Patricia se puede implementar el autocompletado en
forma bastante simple.

Al comenzar a escribirse una nueva palabra, partimos de la ráız del árbol y vamos bajando
a medida que se tipean nuevos caracteres. Si estamos en un nodo v, podemos proponer como
autocompletado la hoja que lleva mayor frecuencia acumulada y que desciende de v. Para
ello, necesitamos que v tenga un campo best(v) que apunta a esa hoja. Si no se acepta esta
sugerencia y en cambio se tipea una a, buscaremos la arista de la forma (a, ℓ) que salga de
v hacia u, y propondremos best(u). El proceso termina de dos formas posibles:

1. Se llega a una hoja w, o bien porque en algún punto se acepta el autocompletado desde
un nodo v con best(v) = w, o bien porque se tipea hasta llegar a w. Las hojas deben
tener un campo freq(w) que indique la cantidad de veces que han aparecido. Debemos
entonces incrementar freq(w).

2. Nunca se acepta el autocompletado y se termina tipeando una palabra nueva, que
no estaba en el diccionario. Se debe entonces crear la hoja correspondiente w, con
freq(w) = 1.
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Luego de haber visitado o creado una hoja w, debemos actualizar los campos best(v) de
sus ancestros. Para ello, volvemos desde la hoja w hasta la ráız asignando, para cada ancestro
v, best(v) ← w si es que freq(best(v)) ≤ freq(w) (notar que, ante la igualdad, preferimos
la palabra tipeada más recientemente; podemos usar otras poĺıticas también). Este proceso
se puede detener apenas encontremos un v que no reemplace su best(v), pues sus ancestros
tampoco lo harán. Como puede que hayamos llegado a w directamente desde un ancestro v
con best(v) = w, este recorrido hacia arriba desde w requiere o bien punteros hacia el padre
de cada nodo, o bien que volvamos a entrar al árbol con el string str(w).

4.3.3. Árboles de sufijos

Consideremos un texto T [1..n] terminado con el carácter especial $. Este texto define
n sufijos T [i..n], para 1 ≤ i ≤ n. Si insertamos todos estos sufijos en un árbol Patricia, el
resultado es el árbol de sufijos de T . La única diferencia es que las hojas del árbol, en vez
de almacenar el sufijo T [i..n], simplemente almacenan la posición i del texto, con lo cual se
puede acceder directamente al sufijo.

Si hacemos una búsqueda de prefijo por S[1..m], obtendremos la cantidad de sufijos
de T prefijados por S, en tiempo O(m). Eso es exactamente lo mismo que la cantidad de
ocurrencias de S en T . Asimismo, podemos listar las posiciones iniciales i de los sufijos T [i..n]
prefijados por S, que es lo mismo que las posiciones iniciales de las ocurrencias de S en T .
Cada una de esas posiciones se lista en tiempo O(1), tal como vimos.

En resumen, el árbol de sufijos es una estructura de datos que, construida sobre un texto
de largo n, ocupa espacio O(n) y permite buscar las ocurrencias de substrings en el texto en
tiempo óptimo. El árbol de sufijos se puede construir mediante insertar los sufijos de T uno a
uno. Sobre un texto aleatorio, la altura del árbol esO(logσ n), por lo cual la construcción toma
tiempo esperado O(n log n). En el peor caso, sin embargo, esta construcción puede requerir
tiempo O(n2) (por ejemplo, un texto T con substrings repetidos muy largos). Existen varios
algoritmos de construcción del árbol de sufijos en tiempo O(n); daremos algunas referencias
al final del caṕıtulo.

Además de buscar ocurrencias de strings en T , el árbol de sufijos permite responder
muchas otras preguntas más complejas. Describiremos una como ejemplo.

Autorrepeticiones relevantes. Para determinación de plagio y autoŕıa, detección de ge-
nes comunes entre especies, etc. un tipo de pregunta de importancia es qué cadenas se repiten
significativamente en un texto T (que puede ser la concatenación de varias secuencias).

La autorrepetición más larga de T , es decir, la cadena más larga que aparece dos veces
en T , se puede encontrar fácilmente con un recorrido en profundidad por el árbol de sufijos.
Extendamos el concepto de str(v) a nodos internos también, de modo que str(v) es la
concatenación de los strings que rotulan el camino de la ráız hasta v. Cada nodo interno v
del árbol se corresponde con un string distinto str(v) que aparece al menos dos veces (pues si
no, v no tendŕıa al menos dos hijos y no seŕıa un nodo interno). Lo que queremos, entonces,
es el nodo interno v que maximice |str(v)|. Este largo se puede calcular fácilmente mediante
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ir acumulando los campos ℓ de los rótulos (a, ℓ) a medida que bajamos en el árbol. En total,
en tiempo O(n) recorremos todo el árbol y determinamos un nodo v que maximiza |str(v)|.
El string mismo se puede recuperar mediante ir a hoja(v) y rescatar la posición i donde
empieza el sufijo, de modo que el string repetido más largo es T [i..i+ |str(v)| − 1].

De la misma manera, si almacenamos un campo size(v) con el número de hojas que tiene
el nodo v, podemos por ejemplo encontrar todos los strings de largo ≥ ℓ que aparecen al
menos m veces en T , para cualquier parámetro ℓ y m.

4.3.4. Arreglos de sufijos

Si bien el árbol de sufijos ocupa espacio O(n), la constante es bastante grande: puede
haber hasta n nodos internos (cada uno con hasta 6 campos enteros) y n hojas (cada una
con 2 campos). Si un entero ocupa 4 bytes, el espacio suma hasta 32n bytes, mientras que
T usa t́ıpicamente n bytes.

El arreglo de sufijos es una estructura que conserva algo de la funcionalidad del árbol de
sufijos, pero sólo requiere un entero por posición de T . La estructura es un arreglo A[1..n]
de enteros, donde A[i] apunta al i-ésimo sufijo en orden lexicográfico. Es decir, A es una
permutación de [1..n] donde T [A[i]..n] < T [A[i+ 1]..n] para todo 1 ≤ i < n.

Los sufijos que empiezan con un cierto string S forman un rango lexicográfico, por lo
cual aparecen en un rango de A. Para encontrar las ocurrencias de S[1..m] en T podemos
entonces hacer dos búsquedas binarias para encontrar los dos extremos del rango A[sp..ep]
de los sufijos que empiezan con S. Una vez encontrado el rango A[sp..ep], sabemos que S
ocurre ep − sp + 1 veces en T , y que las posiciones iniciales de las ocurrencias son A[sp],
A[sp+ 1], . . ., A[ep].

Cada paso en la búsqueda binaria en un cierto A[i] requiere comparar S con el string
T [A[i]..A[i] +m− 1], para determinar si continuar a la derecha o a la izquierda de i. Como
estas comparaciones requieren examinar hasta m caracteres, el tiempo de encontrar este
rango es O(m log n). Esta mayor complejidad es uno de los precios de haber reducido el
espacio del árbol de sufijos a sólo n enteros. Otro precio es que no podemos realizar ciertas
búsquedas complejas en forma tan eficiente, como la que describimos para encontrar las
repeticiones relevantes de T .

El arreglo de sufijos se puede construir con cualquier algoritmo de ordenamiento. Cada
una de las O(n log n) comparaciones de strings requiere comparar O(logσ n) caracteres en
un texto promedio (donde cada carácter se genera uniformemente), con lo cual el costo pro-
medio total es O(n log n logσ n). En un texto con muchos substrings repetidos, sin embargo,
esto puede empeorar hasta O(n2 log n). Existen algoritmos especializados que construyen el
arreglo de sufijos en tiempo O(n); damos algunas referencias al final del caṕıtulo.

4.4. Ficha Resumen

Con n elementos en un universo entero [1..u], o n strings de largo total N ≥ n, sobre un
alfabeto constante, insertando/borrando/buscando un string de largo m:
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Counting y bucket sort: O(n+ u).

Radix sort: O(n logn u).

Ordenando strings: O(N).

Van Emde Boas trees: espacio O(n + u
logc u

) y tiempo O(c log log u) para cualquier

constante c, para insertar, borrar, y buscar predecesor. Espacio O(n) para sólo buscar
en tiempo O(log log u

n
), o para las tres operaciones en tiempo esperado O(log log u).

Tries: espacio O(N) en el peor caso y tiempo O(m) para insertar, borrar y buscar.

Árboles Patricia: espacio O(n) y tiempo O(m) para insertar, borrar y buscar.

Árboles de sufijos: espacio O(n) para un texto de largo n y buscando en tiempo O(m).

Arreglos de sufijos: espacio O(n) para un texto de largo n (pero menor constante que
el árbol de sufijos) y buscando en tiempo O(m log n).

4.5. Material Suplementario

Cormen et al. [CLRS01, sec. 8.2 a 8.4] presentan el bucket sort (al que llaman counting
sort) y el radix sort. Luego presentan, con el nombre de bucket sort, una estrategia que
ordena en tiempoO(n) promedio si los valores se distribuyen uniformemente (y puede ordenar
números reales, no solamente en universos discretos). Mehlhorn y Sanders [MS08, sec. 5.6]
presentan, con menos detalle, el bucket sort (que llaman Ksort), el radix sort, y el sort de
O(n) promedio (que llaman uniform sort). Aho et al. [AHU83, sec. 8.5] también presentan
el bucket sort (al que llaman bin sort) y el radix sort, y mencionan la aplicación a ordenar
strings del mismo largo. Sedgewick [Sed92, cap. 8] presenta el bucket sort, al que llama
distribution counting, y luego [Sed92, cap. 10] el radix sort, al que llama straight radix sort
para diferenciarlo del que llama radix exchange sort, que se parece más a un QuickSort que
va particionando por el bit más alto, luego por el segundo más alto, etc. Manber [Man89,
sec. 6.4.1] describe brevemente el bucket sort (¡con ese nombre!) y las mismas variantes de
radix sort que Sedgewick. Aho et al. [AHU74, sec. 3.2] presentan el bucket sort (con ese
nombre) y luego el radix sort, al que llaman lexicographic sort porque se concentran en
strings, primero de largo fijo y después de largo variable (presentando un algoritmo muy
similar al que vimos). Varios autores [CLRS01, MS08] mencionan la posibilidad de realizar
radix sort partiendo por el śımbolo más significativo primero (MSD radix sort), particionando
aśı el arreglo y luego ordenando recursivamente cada partición, pero advierten que esto genera
muchas particiones muy pequeñas, lo que hace que el método que vimos (LSD radix sort) sea
preferible. Note que el MSD radix sort es conceptualmente similar a construir un trie sobre
las secuencias de śımbolos. Por último, sólo algunos autores [CLRS01, Sed92] muestran cómo
el bucket sort puede convertir los contadores en punteros para escribir el output ordenado
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en un arreglo; los otros usan estructuras más ineficientes como colas o listas enlazadas para
los buckets.

Cormen et al. [CLRS01, Cap. 20 de la tercera edición] describen los árboles de van Emde
Boas. También se describen en varias fuentes online que listamos al final.

Aho et al. [AHU83, sec. 5.3] hacen una presentación muy básica y detallada de los tries.
Sedgewick [Sed92, cap. 17] entrega un tratamiento más completo, que incluye árboles Patri-
cia. Sedgewick habla de tiempos de operación O(log n) para el árbol Patricia, basándose en
que la profundidad promedio de los nodos cuando se insertan strings aleatorios es O(logσ n).
Aho et al. [AHU74, sec. 9.5] presentan los position trees, que son esencialmente tries con
todos los sufijos de un texto, con aplicaciones y algoritmo de construcción. Para árboles y
arreglos de sufijos es necesario consultar libros de stringoloǵıa. Crochemore y Rytter [CR02,
cap. 4 y 5] presentan el árbol de sufijos, algoritmos de construcción y algunas aplicaciones,
aśı como otras estructuras relacionadas llamadas autómatas de sufijos o DAWGs (directed
acyclic word graphs) [CR02, cap. 6]. Estas estructuras hacen evidentes las conexiones entre
los tries y los autómatas finitos, aśı como las estructuras que usan los algoritmos de búsque-
da en texto como Knuth-Morris-Pratt y Aho-Corasick. Crochemore et al. [CHL07, cap. 5]
también cubren tries, árboles y autómatas de sufijos. También dedican un caṕıtulo [CHL07,
cap. 4] al arreglo de sufijos, su construcción en tiempo lineal, y varias extensiones. Otros
caṕıtulos de ambos libros [CR02, CHL07] exploran varias aplicaciones de estas estructuras.

Otras fuentes online de interés:

brilliant.org/wiki/radix-sort

www.bowdoin.edu/~ltoma/teaching/cs231/duke cps130/Lectures/L07.pdf

www.youtube.com/watch?v=Nz1KZXbghj8

www.ics.uci.edu/~eppstein/161/960123.html

ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-046j-design-and-analysis-of-algorithms-spring-2015/

lecture-notes/MIT6 046JS15 lec04.pdf

www.cs.bris.ac.uk/~bs4039/slidesAA/aa-12.pdf

www2.hawaii.edu/~nodari/teaching/s16/notes/notes10.pdf

www.youtube.com/watch?v=hmReJCupbNU

www.youtube.com/watch?v=ZrV7GiuMNo4

web.stanford.edu/class/cs166/lectures/03/Small03.pdf

algs4.cs.princeton.edu/lectures/52Tries.pdf

www.cs.cmu.edu/~avrim/451f07/lectures/lect1002.pdf
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www.youtube.com/watch?v=NinWEPPrkDQ

visualgo.net/en/suffixtree y visualgo.net/en/suffixarray
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Caṕıtulo 5

Algoritmos en Ĺınea

Hay casos en que un algoritmo debe tomar decisiones antes de conocer todo el input.
Un ejemplo de la vida real es cuando estamos esperando el bus sin saber cuándo llegará:
¿nos conviene seguir esperando o irnos caminando? Estos algoritmos que toman decisiones
teniendo parte del input se llaman algoritmos en ĺınea, y la forma de analizarlos es medir su
competitividad en comparación con un algoritmo óptimo que conoce todo el input de ante-
mano. Note que no estamos hablando de la eficiencia en tiempo o espacio de los algoritmos,
sino de la calidad del resultado que producen.

Tomemos el ejemplo del bus. El bus llega a destino en tiempo x y caminando llego en
tiempo y ≫ x. Pero el bus tardará tiempo z en llegar a la parada, y yo no cononzco z.
Un algoritmo óptimo, que conociera z, simplemente elegiŕıa la mejor alternativa, tardando
mı́n(x + z, y). ¿Qué alternativas tengo si no conozco z? Puedo irme caminando inmediata-
mente y tardar y, en cuyo caso podŕıa ser que z = 0 y el algoritmo óptimo tarda x, es decir,
es y

x
veces más rápido. Puedo esperar el bus todo lo que sea necesario, tardando x+ z, pero

entonces si z es muy grande el algoritmo óptimo se irá caminando directamente, tardando
y y siendo x+z

y
veces más rápido. ¿Puedo tener una estrategia intermedia? Śı: puedo esperar

y, y si no llegó el bus, me voy caminando. Esto demora x + z si z < y, y 2y si no. Note
que esto nunca es más que el doble de lo que demoraŕıa la estrategia óptima: si el óptimo
es x + z < y, nosotros también nos iremos en bus porque z < y; si el óptimo es y < x + z,
nosotros tardamos o bien 2y, o si z < y, x + z < 2y. Decimos que nuestra solución es un
algoritmo en ĺınea 2-competitivo.

Dado un algoritmo en ĺınea A y un algoritmo óptimo OPT , que producen soluciones
de costo CA(I) y COPT (I) para un input I, diremos que A es c-competitivo si existe una
constante b tal que, para todo posible input I, se cumple que

CA(I) ≤ c · COPT (I) + b.

Note que la competitividad aśı definida es una medida de peor caso. Existen medidas
similares para algoritmos aleatorizados, pero no las veremos en el apunte.
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5.1. Aplicaciones Simples

5.1.1. Subastas y codificación de enteros

Considere un juego tipo subasta donde un art́ıculo tiene un precio oculto x. Los parti-
cipantes hacen ofertas y. Si y < x, la casa se queda con y pero no entrega nada a cambio.
Si y ≥ x, la casa se queda con y y entrega el art́ıculo. Un participante puede ofertar varias
veces hasta obtener el art́ıculo. Obviamente el algoritmo óptimo, que conoce x, oferta x y se
lleva el art́ıculo. ¿Cuál es la mejor estrategia para un algoritmo en ĺınea?

Consideremos una estrategia de tipo exponencial, en que en el turno k ofertamos ck, para
k = 0, 1, 2, . . .. Lo peor que puede pasar es que x sea de la forma cn + 1, de modo que al
ofertar cn lo perdamos, y debamos ofertar cn+1. En ese caso el costo total en que incurrimos
fue

n+1∑
k=0

ck =
cn+2 − 1

c− 1
,

mientras que el algoritmo óptimo gasta cn + 1. Para simplificar las cuentas podemos reem-
plazar pesimistamente el costo del algoritmo en ĺınea por cn+2

c−1
y el del óptimo por cn. El

cociente entre ambos es entonces

cn+2

(c− 1)cn
=

c2

c− 1
,

que se minimiza con c = 2. Es decir, ofertando potencias de 2 tenemos un algoritmo 4-
competitivo. No es dif́ıcil ver que un algoritmo que vaya ofertando subexponencialmente o
superexponencialmente no lograrán una competitividad constante, por lo que esta es la mejor
competitividad que podemos conseguir.

Codificación γ. Consideremos ahora un juego análogo, en el que se tiene que adivinar
un número natural x > 0 mediante preguntas del tipo “¿es x < y?”, y lo que tenemos que
optimizar es el número de preguntas. Como este juego es demasiado fácil para el algoritmo
óptimo si le permitimos que conozca x, diremos que la ventaja que tiene es que le permitimos
hacer una primera pregunta para que conozca la cantidad de bits ℓ que requiere representar
x. Conociendo ℓ, el óptimo sabe que x ∈ [2ℓ−1..2ℓ − 1] y entonces puede hacer búsqueda
binaria en el rango, a costo ℓ− 1. En total, el óptimo realiza entonces ℓ preguntas.

El algoritmo en ĺınea, que no puede preguntar por ℓ, puede buscarlo “secuencialmente”,
realizando preguntas sucesivas de la forma: ¿es x < 2k? para k = 1, 2, . . . Una vez determina-
do ℓ con ℓ preguntas, completa con búsqueda binaria en [2ℓ−1..2ℓ − 1], la cual requiere otras
ℓ− 1 preguntas. El costo total, 2ℓ− 1, es entonces una 2-aproximación.

Esta 2-aproximación se corresponde con un método de representación de enteros llama-
do codificación γ, que es útil para cuando debemos representar un número cuya magnitud
desconocemos, y queremos usar un espacio cercano al necesario. La codificación γ contiene
básicamente las respuestas a las preguntas que realizamos: śı es 0 y no es 1, y la primera
pregunta del método óptimo la representamos con un 1. Por ejemplo, si el método óptimo
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busca x = 5 = 1012, primero determina que usa 3 bits (y ponemos un 1), es decir que está en
[4..7]. La primera pregunta que hará será ¿es x < 6? La respuesta es śı = 0. Luego preguntará
¿es x < 5? La respuesta es no = 1, y con ello determina x = 5. La secuencia de respuestas
es 101, la representación binaria de 5.

Ahora bien, el algoritmo en ĺınea debe comenzar preguntando ¿es x < 21? no = 1, ¿es
x < 22? no = 1, ¿es x < 23 śı = 0. Ahora sabe que x ∈ [4..7] y realiza las mismas dos
preguntas de la búsqueda binaria. La codificación es entonces γ(5) = 110 01.

Resumiendo, como ℓ = 1 + ⌊log2 x⌋, la codificación γ(x) usa 2⌊log2 x⌋ + 1 bits. Primero
escribe ⌊log2 x⌋ 1s seguidos de un 0, y luego los ⌊log2 x⌋ bits más bajos de la representación
de x (es decir, omite el bit más alto, ya que siempre es un 1).

Búsqueda exponencial. Supongamos que queremos buscar un número x en un arreglo
ordenado A[1..n], pero sospechamos que x está cerca del comienzo. En vez de una búsqueda
binaria de costo O(log n), quisiéramos encontrar x a costo O(logm), donde A[m] = x. Claro
que no conocemos m de antemano.

Lo que hacemos entonces es comparar x con A[2k] para k = 0, 1, 2, . . . hasta encontrar el
primer k tal que A[2k] ≥ x. Luego de estas k preguntas, sabemos que 2k−1 < m ≤ 2k, con
lo cual completamos la búsqueda binaria con otras k− 1 comparaciones. El costo total de la
búsqueda es entonces 2k − 1 = O(logm), como deseábamos.

Suponga que tenemos que buscar r valores x1 < x2 < . . . < xr en A. Si buscáramos cada
uno con búsqueda binaria, el costo total seŕıa O(r log n). En cambio, si usamos búsqueda
exponencial a partir del punto donde encontramos el elemento anterior, el costo total será
O(
∑

log(mi −mi−1 + 1)), donde mi es el lugar donde se encuentra xi, y m0 = 0. Se puede
probar que esta suma se maximiza cuando los mi están equiespaciados, en cuyo caso la suma
es O(r log n

r
). El costo por elemento va tendiendo a constante cuando se buscan muchos

elementos.
Por ejemplo, para intersectar dos listas crecientes x1, . . . , xr e y1, . . . , yn, suponiendo que

r ≤ n, tenemos dos opciones: o un merge que recorre secuencialmente las dos listas, a costo
O(r + n) = O(n), o buscar cada elemento xi en la lista de las y, a costo O(r log n). Con
búsqueda exponencial, podemos aplicar siempre el segundo método, de costo O(r log n

r
),

obteniendo siempre la mejor de las dos complejidades (y frecuentemente mejor que ambas).

Codificación δ. Cuando queremos representar números x algo mayores, buscar ℓ en forma
secuencial como en los códigos γ puede ser demasiado lento. Podŕıamos en vez usar búsqueda
exponencial para ℓ. En vez de preguntar ¿es x < 2k? preguntaremos ¿es ℓ < 2k?, o lo que es
lo mismo, ¿es x < 22

k−1?. La búsqueda exponencial de ℓ requerirá 2⌊log2 ℓ⌋+ 1 preguntas, y
luego haremos las ℓ−1 preguntas finales para determinar x. Por lo tanto, en vez de necesitar el
doble de preguntas que el óptimo necesitamos un factor extra de O(1+ log ℓ

ℓ
) = O(1+ log log x

log x
),

que va mejorando a medida que representamos números mayores.
Esta estrategia se corresponde con otra codificación llamada δ. El código δ(x) está for-

mado por el código γ(⌊log2 x⌋+ 1) seguido de los últimos ⌊log2 x⌋ bits de x. Por lo tanto su
largo es de ⌊log2 x⌋+ 2⌊log2(⌊log2 x⌋+ 1)⌋+ 1 = ⌊log2 x⌋+O(log log x) bits.
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Si bien no se usa en la práctica, se podŕıa iterar con esta técnica para diseñar códigos
que usen ⌊log2 x⌋+ ⌊log2(⌊log2 x⌋+ 1)⌋+O(log log log x) bits, etc.

5.1.2. Búsqueda en la ĺınea

Supongamos que un robot debe encontrar un objeto a lo largo de una ĺınea, pero no sabe
en cuál de las dos direcciones está. Si el objeto está a distancia d, entonces el algoritmo
óptimo, que conoce la dirección, lo encuentra en tiempo d. El algoritmo en ĺınea, en cambio,
debe usar una estrategia de ir exporando zonas cada vez mayores en una dirección y luego
en otra, hasta dar con el objeto.

Nuevamente, consideraremos una estrategia exponencial, en que el robot camina en una
dirección c0, en la otra c1, luego otra vez en la primera c2, etc. Supongamos primero que
el objeto está en la dirección en que se movió por primera vez. Las posiciones a las que va
llegando el robot luego de los pasos pares son c0, c0 − c1 + c2, . . ., lo que en el paso 2k es

P (2k) =
k∑

i=0

c2i −
k−1∑
i=0

c2i+1 =
c2k+1 + 1

c+ 1
.

El costo total de los pasos 0 a k es C(k), con

C(k) =
k∑

i=0

ci =
ck+1 − 1

c− 1
.

Ahora bien, lo peor que puede pasar es que el objeto esté en una posición de la forma
P (2k)+ 1, pues en ese caso el robot realizará hasta el paso 2k, luego realizará el paso 2k+1
hacia atrás, de largo c2k+1, luego volverá esa distancia de c2k+1, y recién en la siguiente celda
encontrará el objeto. El costo total será entonces

C(2k + 1) + c2k+1 + 1 =
(2c− 1)c2k+1 + c− 2

c− 1
,

mientras que el costo del algoritmo óptimo será P (2k) + 1. El cociente, convirtiendo pesi-

mistamente el costo del óptimo a c2k+1

c+1
y descartando c−2

c−1
del costo del algoritmo en ĺınea

(pues está acotado por la constante b = 1), se reduce a

(2c− 1)(c+ 1)

c− 1
,

el cual se minimiza para c = 2 (es decir, la mejor estrategia es buscar en potencias de 2) y
nos arroja una competitividad de 9. Nuevamente, es claro que sólo la estrategia exponencial
permite una competitividad constante. El costo de no saber en qué dirección buscar es un
factor de 9, sorprendentemente alto. Si el objeto se encuentra hacia el otro lado, tendremos

P (2k + 1) = − c2k+2 − 1

c+ 1
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y el objeto estará en el peor caso en una posición de la forma P (2k + 1)− 1, la que encon-
traremos a costo

C(2k + 2) + c2k+2 + 1 =
(2c− 1)c2k+2 + c− 2

c− 1
,

mientras que el costo del óptimo será −P (2k + 1) + 1. Simplificando, llegamos al mismo
resultado que antes.

Existen versiones más complejas de este problema en dos dimensiones, con aplicaciones
más reales a robótica.

5.2. Paginamiento

Un caso emblemático de problema en ĺınea ocurre cuando los sistemas operativos imple-
mentan una memoria virtual mayor a la f́ısica. La memoria virtual se almacena en disco y
sólo algunas de sus páginas residen en la memoria f́ısica, pues ésta es menor y está usual-
mente llena. Cuando un proceso pide acceder a una página que no está en la memoria f́ısica
(esto se llama fallo de página), se debe elegir una página v́ıctima de la memoria f́ısica para
devolverla al disco y aśı hacer lugar para traer la página deseada a la memoria f́ısica.

Un algoritmo que conociera los pedidos futuros de páginas elegiŕıa como v́ıctima aquella
página que falte más tiempo para que vuelva a ser solicitada. En la realidad, debemos usar
un algoritmo en ĺınea y deseamos establecer su competitividad.

Analizaremos un algoritmo llamado Least Recently Used (LRU). Este algoritmo elige
como v́ıctima la página que hace más tiempo que no se accede. Para analizar el LRU,
consideraremos una memoria f́ısica de k páginas.

Mostraremos que LRU es k-competitivo. Para ello, consideremos una secuencia de n
pedidos de páginas, y cortémosla en segmentos de k fallos de página del algoritmo LRU.
Vamos a mostrar que el algoritmo óptimo debe fallar al menos una vez en cada segmento,
con lo cual la k-competitividad quedará establecida.

Todo segmento termina en un fallo de página. Sea A la última página pedida en el
segmento anterior, la cual ha producido un fallo de página (el k-ésimo de ese segmento).
Existen tres posibilidades para el segmento actual:

En algún momento vuelve a fallar en A. Como A era la página más reciente cuando
empezó el segmento, si dentro del segmento se vuelve a fallar en A es porque se la
hab́ıa elegido como v́ıctima antes en el segmento. En ese momento, entonces, A era la
página usada menos recientemente de las k que hab́ıa en memoria f́ısica. Por lo tanto,
se debieron mencionar otras k páginas, distintas a A y distintas entre śı, para que al
mencionar la k-ésima A hubiera sido la más antigua y se la eligiera como v́ıctima. Al
fallar ahora en A, tenemos que el segmento menciona k + 1 páginas distintas. En este
caso, el algoritmo óptimo está obligado a fallar al menos una vez.

Se falla 2 veces en una página B ̸= A. En el peŕıodo que transcurre entre los dos fa-
llos de B se puede razonar exactamente como con A en el punto anterior: se deben
mencionar k + 1 páginas distintas en ese peŕıodo.
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Ninguna de las anteriores. Como se falla k veces sin repetir ninguna B ni fallar en A,
deben mencionarse k páginas distintas que no son A. Como A estaba en la memoria
f́ısica al comenzar, el óptimo también debe fallar al menos una vez.

Optimalidad. Ningún algoritmo en ĺınea puede ser mejor que k-competitivo. Dado cual-
quier algoritmo en ĺınea, un adversario puede siempre pedir a continuación la página que el
algoritmo acaba de sacar de la memoria f́ısica, haciéndolo aśı fallar n veces. El algoritmo
óptimo, en cambio, decide qué hacer una vez que ha visto la secuencia de pedidos (por lo
tanto no puede haber un adversario que lo obligue a fallar siempre). Como el óptimo elige la
página que falta más tiempo para que vuelva va pedirse, cada vez que falla tiene garantizado
que no volverá a fallar en los siguientes k − 1 pedidos. Por lo tanto el óptimo nunca falla
más de n

k
veces, incluso en la secuencia que hace fallar n veces al algoritmo en ĺınea. En ese

sentido, LRU es lo mejor que puede esperarse en términos de peor caso.

Otro esquema k-competitivo. El esquema First In, First Out (FIFO) selecciona como
v́ıctima la página que hace más tiempo que entró a la memoria f́ısica (sin considerar cuándo
fue accedida después de entrar). Un análisis casi idéntico (y algo más simple) del que hicimos
para LRU muestra que FIFO también es k-competitivo.

Esquemas no competitivos. Los esquemas Most Recently Used (MRU) y Last In, First
Out (LIFO) no son competitivos. Considere que tenemos en la memoria k−2 páginas que no
mencionaremos, y las páginas A y B. Si el proceso pide A y luego B, entonces este esquema
sacará A de la memoria, por ser la más reciente. Luego el proceso pide A y este esquema saca
B de la memoria por ser el más reciente. El proceso entonces pide B, y aśı. En n pedidos
podemos tener n fallos, cuando el óptimo habŕıa mantenido A y B en la memoria, fallando
O(1) veces.

5.3. Move to Front

En el caṕıtulo de amortización, mostramos que los splay trees obtienen un costo amorti-
zado de 3H+1 por operación, donde H era la entroṕıa de las frecuencias de búsqueda. Como
un árbol construido por un algoritmo que conozca esas frecuencias requiere H + 2 operacio-
nes, los splay trees son 3-competitivos. Estudiaremos ahora una versión análoga que puede
utilizarse cuando no existe un orden total entre los elementos, pues sólo requiere compararlos
por igualdad.

Supongamos que tenemos un arreglo A[1..n] de elementos (sin un orden) en el que bus-
camos repetidamente mediante acceder A[1], A[2], . . . hasta dar con el A[k] = x buscado.
Como podemos poner los elementos en cualquier orden y el costo de acceder a x = A[k] es
k, queremos ordenar el arreglo en orden decreciente de frecuencia de acceso, para minimizar
el costo de todas las búsquedas. El problema es que los accesos aún no han ocurrido, por lo
cual tenemos un problema en ĺınea.
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Lo que haremos es partir con un orden arbitrario y usar la estrategiamove to front (MTF),
es decir, el elemento que se accede se reubica en el comienzo de A. Más precisamente, si
A[1..n] = x1, x2, . . . , xn antes de buscar x = xk, entonces luego de encontrarlo reescribiremos
A[1..n] = xk, x1, x2, . . . , xk−1, xk+1, . . . , xn. Si medimos el costo en términos de lecturas en A,
entonces esta reubicación cuesta k− 1 lecturas adicionales, para mover A[1..k− 1] a A[2..k].
Ignoraremos, sin embargo, este costo, pues puede evitarse implementando A como una lista
enlazada o moviendo los elementos a medida que buscamos x (note que, en todo caso, el costo
sólo se duplicaŕıa, de modo que obtendŕıamos competitividad con el doble de la constante).

Si bien suena razonable como estrategia (análoga a los splay trees, que env́ıan a la ráız
al nodo accedido), nos preguntamos si MTF es competitivo contra un algoritmo que cono-
ciera de entrada las frecuencias y dejara el arreglo ordenado en forma óptima, es decir, por
frecuencias decrecientes, en un arreglo fijo AOPT [1..n].

Para analizar el MTF, usaremos análisis amortizado con función potencial. En cualquier
momento de la ejecución de las búsquedas, llamaremos inversión a cada par de elementos
de A que no está en el mismo orden en AOPT . Es decir, cada par A[i] = x y A[j] = y, con
i < j, que están en AOPT [i

′] = y y AOPT [j
′] = x con i′ < j′, es una inversión (supondremos

que todos los elementos son distintos). Note que las inversiones cuentan todos los pares
desordenados, no sólo los consecutivos. Definiremos entonces la función potencial

Φ = número total de inversiones.

Si el elemento buscado x está en AOPT [i] y en A[k], entonces el algoritmo óptimo tiene
costo i y el MTF tiene costo k. A esto debemos sumar el cambio del potencial Φ cuando
MTF mueve x al comienzo de A. Lo primero a notar es que Φ sólo cambia con respecto a
los pares que involucran a x y a algún elemento y en A[1..k − 1]. Luego de mover x a A[1],
éste aparecerá antes de y. ¿Esto aumenta o disminuye Φ? Depende:

Si y está antes que x en AOPT , entonces hemos creado una inversión que no exist́ıa
antes, lo cual incrementa Φ en 1.

Si y está después de x en AOPT , entonces hemos destruido una inversión que exist́ıa
antes, lo cual decrementa Φ en 1.

Esto significa que al mover x podemos crear a lo sumo i − 1 inversiones nuevas, para
aquellos y en AOPT [1..i − 1]. Digamos que creamos 0 ≤ r ≤ i − 1 inversiones. Entonces los
otros k − 1 − r ≥ k − i elementos y que cambian su relación con x destruyen inversiones.
Sumando las inversiones que se crean y restando las que se destruyen, tenemos para la j-ésima
operación

∆Φj = r − ((k − 1)− r) = 2r − (k − 1) ≤ 2i− 2− (k − 1) = 2i− k − 1.

Por otro lado, el costo real ci de la búsqueda es, como dijimos, k, lo que nos da un costo
amortizado de

cj +∆Φj = k + (2i− k − 1) < 2i,

es decir, 2 veces el costo del óptimo.
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Para concluir, hemos analizado el paso de una operación a la siguiente, pero el valor de
Φ0 puede llegar a ser n(n−1)

2
. Si consideramos el largo n del arreglo como constante (y un

número variable m de búsquedas), entonces podemos decir que MTF es 2-competitivo, pues
en cualquier secuencia tenemos que los costos totales satisfacen

m · cMTF ≤ m · 2 cOPT +
n(n− 1)

2
,

es decir,

cMTF ≤ 2 cOPT +
n(n− 1)

2m
.

Si no consideramos n constante, entonces debemos establecer que deben realizarsem = Ω(n2)
operaciones para que MTF sea 2-competitivo. Es decir, las suficientes para que se extinga el
efecto de un orden inicial poco conveniente en A.

Óptimo dinámico. ¿Qué ocurre si le permitimos al óptimo que también mueva elemen-
tos en el arreglo, dado que puede ser que el orden óptimo en un momento del tiempo sea
muy distinto del de otro momento? No podemos permitirle que mueva cualquier elemento a
cualquier posición a costo O(1), pues entonces en cada paso pondŕıa en AOPT [1] el elemento
que se buscará a continuación. Es más interesante que le permitamos intercambiar elementos
adjacentes, de modo que mover un elemento de la posición i a la j le cueste |i− j|.

En este modelo, el movimiento que hace MTF de A[k] a A[1] también puede ejecutarse
con este tipo de intercambios, a costo k − 1. Si rehacemos el análisis de MTF considerando
que su costo para buscar x = A[k] no es k sino 2k − 1, y usando como función potencial

Φ = 2 · (número de inversiones),

obtendremos cj +∆Φj ≤ 4i, es decir, una 4-aproximación.
Supongamos entonces que el óptimo, luego de encontrar x en AOPT [i], decide intercambiar

w pares consecutivos de AOPT en forma arbitraria. El costo pagado por el algoritmo óptimo
será entonces i+w. El efecto en nuestro análisis es que esos intercambios pueden hacer crecer
Φ. En particular, cada intercambio en AOPT puede crear una nueva inversión, de modo que
los w intercambios pueden hacer crecer Φ en 2w. En total, nuestro costo amortizado de 4i
puede crecer entonces a 4i+2w. Nuestro algoritmo sigue siendo entonces 4-competitivo, pues

4i+ 2w

i+ w
≤ 4.

Menos que MTF. ¿Es necesario trabajar tanto como lo hace MTF luego de cada búsqueda
para lograr competitividad? Consideremos una versión que, al encontrar un elemento x =
A[k], solamente lo intercambia con A[k−1] (si k > 1), moviéndolo aśı de a una posición hacia
el comienzo del arreglo. Es fácil ver que esta versión no es competitiva, pues si A[n] = x
y A[n − 1] = y son el último y el penúltimo elementos del arreglo al comenzar, entonces
haremos que el algoritmo pague n por cada operación mediante buscar x, y, x, y, . . . El
óptimo, en cambio, pagará 1 ó 2 mediante poner a x y a y al comienzo de AOPT .
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Note que, en el caso de MTF, también podemos diseñar una secuencia de búsquedas
donde MTF pague siempre n, haciéndolo que busque el elemento que en cada momento está
al final del arreglo. La diferencia es que, por lo que hemos demostrado, esa secuencia tampoco
es buena para el algoritmo óptimo: lo obliga a pagar al menos n

2
lecturas en cada búsqueda.

La esencia de demostrar competitividad no es mostrar que no hay secuencias malas para el
algoritmo en ĺınea, sino mostrar que esas secuencias también son malas para un algoritmo
óptimo que conociera el futuro.

Compresión usando MTF. El MTF se usa también como método de compresión. La
idea es que se parte con los n śımbolos distintos en un orden arbitrario pero conocido en
A[1..n]. Luego, para codificar el śımbolo x, se lo busca en A, y si se lo encuentra en A[k] = x,
se emite el número k, moviendo luego x al frente del arreglo. El descompresor, al recibir k,
decodifica x = A[k] y también lo mueve al frente del arreglo.

Tal como el costo k de las búsquedas se reduce al mover los elementos al frente de A, los
números k emitidos por este compresor tienden a ser pequeños. Por ejemplo, si los codificamos
con los códigos-δ que vimos antes en este caṕıtulo, requeriremos log2 k + O(log log k) bits.
¿Esta compresión basada en MTF nos ofrece alguna garant́ıa de optimalidad?

Consideremos primero un compresor estático, es decir, que le asigna el mismo código a
x cada vez que lo emite. En el caṕıtulo de cotas inferiores vimos que el largo total en bits
de los códigos con un codificador óptimo que conozca la frecuencia f(x) con que se emite el
elemento x no puede ser inferior a la entroṕıa:

mH =
∑
x

f(x) log2
m

f(x)
.

Consideremos lo que ocurre con MTF. El elemento x se emite f(x) veces, digamos que en
los instantes 1 ≤ t1 < t2 < . . . < tf(x) ≤ m. Note que, entre el momento ti−1 y ti, se emitieron
precisamente ti − ti−1 − 1 śımbolos distintos de x. Si todos ellos fueran distintos entre śı,
como el MTF los envió al comienzo de A, el elemento x estaŕıa en la posición ti − ti−1 de
A, y si no, estaŕıa antes. Esto significa que codificar x en el instante ti nos cuesta a lo sumo
log2(ti − ti−1) +O(log log(ti − ti−1)) bits. El costo de codificar todas las ocurrencias de x es
entonces a lo sumo

log2 n+O(log log n) +

f(x)∑
i=2

log2(ti − ti−1) +O(log log(ti − ti−1))

bits, donde estamos suponiendo lo peor al codificar t1 porque no sabemos dónde estaba x en
A. La suma se maximiza cuando todos los ti están equiespaciados, ti = i m

f(x)
, llegando a

log2 n+O(log log n) + (f(x)− 1)

(
log2

m

f(x)
+O

(
log log

m

f(x)

))
bits. Sumando sobre todos los n elementos x obtenemos

n log2 n+O(n log log n) +
∑
x

f(x) log2
m

f(x)
+O

(
f(x) log log

m

f(x)

)
,
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lo cual se puede mostrar que es a lo más

mH +mO(logH) +O(n log n).

Es decir, el MTF se acerca a los H bits de entroṕıa H por śımbolo emitido, con un costo extra
de O(logH) bits por śımbolo, y un costo extra total de O(n log n) bits. Este último costo
tiene que ver con el reordenamiento original de A, e indica que deben emitirse Ω(n log n)
śımbolos para que este costo extra sea O(1) por śımbolo. En este caso, podemos decir que el
compresor MTF es (1 +O( logH

H
))-competitivo contra un compresor estático óptimo.

¿Qué ocurre si el compresor óptimo puede ser dinámico, cambiando los códigos a medida
que va emitiendo los śımbolos? Supongamos que permitimos que, cuando lo desee, el algorit-
mo óptimo gaste n log2 n bits en establecer un nuevo orden de los elementos. Esto divide el
tiempo en t peŕıodos de largos m1, . . . ,mt. Podemos aplicar el análisis de la compresión MTF
dentro de cada peŕıodo, obteniendo la suma de las entroṕıas locales, mi Hi +miO(logHi),
más los extras O(tn log n). El óptimo dinámico, en cambio, costará mi Hi + (t − 1)n log n.
La competitividad de MTF se mantiene igual.

5.4. Los k Servidores

Un problema en ĺınea importante es el de tener k servidores que deben movilizarse para
atender pedidos que ocurren en un determinado lugar, por ejemplo polićıa, ambulancias,
bomberos, taxis, repartidores de pizza, etc. El objetivo es minimizar desplazamiento total
de los servidores para cubrir los pedidos que van apareciendo a lo largo del tiempo, pero no
se conocen de antemano los pedidos futuros. Queremos una técnica que sea competitiva con
un algoritmo óptimo que conozca todos los pedidos de antemano.

Consideremos una versión simplificada en la que los k servidores están en una ĺınea.
Un algoritmo obvio parece ser desplazar el servidor más cercano al pedido, para minimizar
el recorrido total. Sin embargo, consideremos el caso de dos servidores, uno lejano y otro
cercano a dos puntos x e y donde ocurren pedidos alternadamente. Con esta estrategia,
elegiremos el servidor cercano para cubrir todos los pedidos, de modo que cada pedido nos
costará un desplazamiento de |x−y|, mientras que el lejano no se usará. El algoritmo óptimo,
en cambio, mueve un servidor a x y el otro a y y luego no necesita desplazarse más.

Una estrategia que demostraremos competitiva es la siguiente: sean s1 ≤ s2 ≤ . . . ≤ sk
las posiciones de los servidores en la ĺınea. Entonces

Si el pedido ocurre en una posición x < s1, desplazamos el servidor 1 a x, a costo
s1 − x.

Si el pedido ocurre en una posición x > sk, desplazamos el servidor k a x, a costo
x− sk.

Si el pedido ocurre en una posición si ≤ x ≤ si+1, desplazamos ambos servidores, i e
i + 1, en direcciones opuestas hacia x, hasta que el más cercano lo alcance. Es decir,
ambos se mueven mı́n(x − si, si+1 − x). Note que en el caso particular en que x = si,
nadie se moverá e i atenderá el pedido sin costo.
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Demostraremos la k-competitividad de este esquema. Para ello, llamaremos o1 ≤ o2 ≤
. . . ≤ ok a las posiciones de los servidores del algoritmo óptimo, y definiremos la función
potencial

Φ =

( ∑
1≤i<i′≤k

si′ − si

)
+ k ·

(∑
1≤i≤k

|si − oi|

)
.

Observe que los servidores del algoritmo en ĺınea siempre mantienen el orden si ≤ si+1,
y los del óptimo tampoco necesitan cambiar de identidad para mantener el orden oi ≤ oi+1:
una estrategia donde i se mueve a la derecha hasta rebasar a i+1 se puede cambiar por otra
donde i alcanza a i+1 y luego i+1 continúa a la derecha haciendo lo que habŕıa hecho i. A
cambio, debemos permitir que el óptimo realice varios movimientos de servidores cuando llega
un pedido x. Consideraremos primero, según dónde cae x, el costo de los movimientos del
algoritmo en ĺınea y el movimiento del óptimo que atiende el pedido. Al final consideraremos
otros movimientos del algoritmo óptimo.

Caso x < s1. Movemos s1 hacia x, a costo cj = a = s1 − x. ¿En cuánto cambia la función
potencial? La primera sumatoria aumenta en (k − 1) · a. La segunda depende de qué
servidor del óptimo atienda el pedido.

Si el óptimo mueve su servidor 1. En este caso, el costo del óptimo será b = |o1−
x|. La distancia entre s1 y o1, que originalmente era |s1 − o1| ≥ |a − b|, ahora
se hará 0, por lo cual Φ decrecerá al menos en k · |a − b|. En total, usando que
|a− b| ≥ a− b, tendremos un costo amortizado de

cj +∆Φj ≤ a+ (k − 1) · a− k · |a− b| = k · (a− |a− b|) ≤ k · b,

lo cual es a lo sumo k veces el costo b del óptimo.

Si el óptimo mueve su servidor i > 1. En este caso, el costo del óptimo será b =
|oi − x|. La distancia entre s1 y o1 se reduce en a, pues debe ser o1 < x para que
el servidor i pueda moverse hasta x sin cruzarse con el servidor 1. En cambio, la
distancia entre los dos servidores i puede crecer hasta en b. En total, tendremos
un costo amortizado de

cj +∆Φj ≤ a+ (k − 1) · a+ k · (b− a) = k · b,

lo cual es a lo sumo k veces el costo b del óptimo.

Caso si ≤ x ≤ si+1. El algoritmo en ĺınea moverá ambos servidores, i e i+ 1, hacia x, una
distancia de a = mı́n(x − si, si+1 − x). El costo será entonces cj = 2 · a. No es dif́ıcil
ver que, en la primera sumatoria de Φ, los efectos de mover i e i+ 1 contra otros i′ se
cancelan, y sólo queda la diferencia si+1 − si, que decrece en 2 · a. Con respecto a la
segunda sumatoria y los movimientos del óptimo, tenemos dos subcasos.
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Si oi+1 < x o x < oi. En el primer caso, el acercamiento de si+1 a x reduce la distancia
|si+1−oi+1| en a, mientras que en el segundo caso, el acercamiento de si a x reduce
la distancia |si − oi| en a. En ambos casos, el movimiento del otro servidor del
algoritmo en ĺınea puede incrementar la distancia con el correspondiente servidor
del óptimo en a lo sumo a. Estos efectos entonces se cancelan en la segunda
sumatoria de Φ, dándonos un costo amortizado de

cj +∆Φj ≤ 2 · a+ (−2 · a) + k · (a− a) = 0.

Por ello, el movimiento que realice el óptimo para cubrir el pedido (que aún no
hab́ıamos inclúıdo) lo podemos considerar en forma independiente, de acuerdo al
último caso considerado en esta lista.

Si oi ≤ x ≤ oi+1. Para que no se crucen los servidores del óptimo, éste debe usar el
servidor i o el i + 1 para mover hacia x. Supongamos que mueve el i a costo
b = x − oi; el otro caso es simétrico. Independientemente de qué servidor del
algoritmo llegue a x, ambos servidores i se mueven en la misma dirección, el
óptimo en b unidades y el algoritmo en a. Por ello, la distancia |si− oi| decrece en
|a− b|. Por otro lado, el servidor i+1 del algoritmo en ĺınea se mueve a unidades
en la otra dirección, posiblemente alejándose del servidor i + 1 del óptimo. En
total, usando que |a− b| ≥ a− b, tenemos

cj +∆Φj ≤ 2 · a+ (−2 · a) + k · (a− |a− b|) ≤ k · b,

que es k-competitivo contra el costo b del óptimo.

Caso x > sk. Análogo al caso x < s1.

Otros movimientos del óptimo. Además del último movimiento que consideramos, que
finalmente cubre el pedido, el óptimo puede mover todos los servidores que desee, como
explicamos. Cualquier movimiento de un servidor óptimo i a una distancia b puede
incrementar Φ en k · b debido a la segunda sumatoria, pero eso aún es k-competitivo
con el costo b que pagó el algoritmo óptimo para mover el servidor.

Existen algoritmos k-competitivos para otras variantes más generales del problema, y se
cree que esto es posible para k servidores en un espacio métrico cualquiera, pero hasta ahora
sólo se conocen algoritmos (2k − 1)-competitivos para este caso más general.

5.5. Ficha Resumen

Códigos γ y δ, búsqueda exponencial e intersección de listas.

Búsqueda de un robot en la ĺınea: 9-competitivo.

Paginamiento: k-competitivo.
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Move-to-front: 2-competitivo contra un óptimo estático y 4-competitivo contra uno
dinámico.

Compresión usando move-to-front: (1+O( logH
H

))-competitivo, donde H es la entroṕıa.

Servidores en la ĺınea: k-competitivo con k servidores.

5.6. Material Suplementario

El tema de algoritmos en ĺınea no se trata en muchos libros de texto, pero el de Borodin
y El-Yaniv [BEY98] está dedicado enteramente al tema. Considera competitividad de peor
caso pero también aleatorizada. Entre muchos temas que cubre, incluye algunos vistos en
este caṕıtulo: paginamiento (cap. 3), move-to-front (cap. 1), y k servidores en la ĺınea y otros
modelos más complejos (cap. 10).

Lee et al. [LTCT05, cap. 10] también dedican un caṕıtulo a tratar algoritmos en ĺınea
en profundidad. Además de las definiciones, dedican la sección 12.2 al problema de los k
servidores, pero extendido a moverse a lo largo de las aristas de un árbol dibujado en el
plano. El resto del caṕıtulo se dedica a varios otros problemas que no describimos. En una
sección anterior [LTCT05, sec. 10.3] describen brevemente el análisis amortizado de MTF
contra un óptimo estático.

Otras fuentes online de interés:

www.cs.huji.ac.il/course/2005/algo2/on-line/on-line-course.html

www.cs.cmu.edu/ avrim/451f13/lectures/lect1107.pdf

web.stanford.edu/class/cs369/files/cs369-notes

www14.in.tum.de/personen/albers/papers/inter.pdf

www-math.mit.edu/~goemans/notes-online.ps

www.youtube.com/watch?v=2RxCCEHlEys
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Caṕıtulo 6

Algoritmos Probabiĺısticos y
Aleatorizados

En este caṕıtulo consideraremos algoritmos que rompen al menos una de las dos siguientes
suposiciones básicas de los algoritmos clásicos:

El algoritmo nunca se equivoca.

El algoritmo siempre hace lo mismo frente a la misma entrada.

No cumplir con la primera suposición suena extraño a primera vista. En el mundo clásico,
un algoritmo que ordena pero que a veces se equivoca, ¡simplemente no es un algoritmo que
ordena! Un algoritmo probabiĺıstico, en cambio, śı tiene permitido equivocarse. Generalmente,
el algoritmo se equivoca con una cierta probabilidad de error, la que puede hacerse arbitra-
riamente pequeña con un incremento moderado en el costo del algoritmo. En muchos casos,
es muy barato hacer que la probabilidad sea más pequeña que la de un fallo del hardware,
por ejemplo, de modo que en términos prácticos un buen algoritmo probabiĺıstico puede ser
completamente satisfactorio. Por otro lado, muchos problemas que son sumamente costosos
de resolver sin error pueden ser resueltos muy eficientemente si se permite una pequeñ́ısima
probabilidad de equivocarse.

Los algoritmos que hacen siempre lo mismo se llaman determińısticos, y los que no, se
llaman aleatorizados. Estos últimos incorporan una componente de azar en su ejecución, de
modo que pueden no hacer lo mismo frente a la misma entrada. Note que estos algoritmos
pueden tener un costo distinto cada vez que ejecutan frente al mismo input, por lo cual
más que un costo fijo para cada input, su costo es una distribución de probabilidad. Esta
distribución puede no tener que ver con la distribución de la entrada, sino con la de las
decisiones aleatorias que toma internamente el algoritmo. Aparece entonces la noción de
costo esperado del algoritmo, que no es igual al costo promedio. El costo esperado promedia
sobre las distintas ejecuciones posibles del algoritmo frente a un input, y considera el peor
input posible (aunque el promedio suele ser independiente del input). El costo promedio, en
cambio, se refiere a los distintos inputs posibles, para cada uno de los cuales un algoritmo
determińıstico tiene un costo fijo.
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El interés de los algoritmos aleatorizados reside en que pueden ofrecer un costo esperado
independiente de cualquier suposición sobre cómo se distribuyen los inputs, lo que constituye
una medida mucho más robusta que el costo promedio, que siempre depende de la distri-
bución del input. En particular, a un algoritmo determińıstico de buen costo promedio se
lo puede hacer comportar sistemáticamente mal dándole “malos inputs”, mientras que para
un algoritmo aleatorizado de buen costo esperado no existen “malos inputs”, sino “malas
ejecuciones”: si se produce una ejecución muy costosa, lo más probable es que volviendo a
correr incluso sobre el mismo input no vuelva a ocurrir lo mismo. Esto además hace a la
aleatorización una buena herramienta contra adversarios maliciosos, que eligen el input que
haga fallar un algoritmo (por ejemplo, en criptograf́ıa o en ataques tipo denial-of-service).

Es común que los algoritmos probabiĺısticos sean también aleatorizados, en cuyo caso
la probabilidad de error no depende de la distribución de la entrada, sino que vale para
cualquier input. De hecho, en la literatura se suele englobar a ambos, generalmente bajo el
término de randomized algorithms.

Los computadores no producen números aleatorios, sino secuencias pseudoaleatorias. Es-
tas secuencias son realmente determińısticas, pero están diseñadas para superar varios tests
estad́ısticos de aleatoriedad. Es conveniente además partir de un punto de esta secuencia
(llamado la semilla) determinado por algo impredecible, como los d́ıgitos más bajos del reloj
del computador, para evitar que el programa reciba siempre la misma secuencia. Todos los
lenguajes ofrecen acceso a estos generadores aleatorios, y también se pueden programar con
bastante facilidad.

Comenzaremos con un conjunto de definiciones relacionadas con los algoritmos proba-
biĺısticos y aleatorizados, y varios ejemplos muy simples. Luego veremos ejemplos más im-
portantes de algoritmos y estructuras de datos que usan la aleatoriedad y permiten el error.

6.1. Definiciones y Ejemplos Simples

6.1.1. Algoritmos tipo Monte Carlo y Las Vegas

Un algoritmo probabiĺıstico es de tipo Monte Carlo si puede entregar una respuesta equi-
vocada. Algunos algoritmos Monte Carlo pueden verificar si su respuesta es correcta o no a
un costo razonable. Cuando pueden hacerlo y son algoritmos aleatorizados, es posible reeje-
cutarlos varias veces, para reducir la probabilidad de que entreguen una respuesta incorrecta.
Incluso es posible reejecutarlos indefinidamente, hasta que entreguen una respuesta correcta.
Este último tipo de algoritmo se llama Las Vegas, el cual nunca se equivoca pero no tiene
un tiempo de peor caso garantizado, sólo un tiempo esperado acotado. Sin embargo, incluso
con un algoritmo de tipo Monte Carlo que no pueda verificar su respuesta, es posible redu-
cir su probabilidad de error arbitrariamente mediante repetirlo una cantidad fija de veces y
devolver la “mejor” respuesta de las obtenidas. Veamos algunos ejemplos simples.

Un pez grande. Considere el problema de pescar un pez grande en el océano, donde
definimos “grande” como “mayor o igual que la mediana”. Un algoritmo determińıstico debe
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pescar al menos ⌈n+1
2
⌉ peces para garantizar que el máximo de ellos es grande, donde n es

el número de peces en el océano. Consideremos ahora el expediente simple de sacar un pez
y declararlo grande. Este es un algoritmo de Monte Carlo que se equivoca con probabilidad
1
2
, y ni siquiera podemos saber (a un costo razonable) si nos equivocamos o no. Si bien no

parece un gran logro, considere iterar este algoritmo: pescamos k peces y nos vamos quedando
con el mayor, que finalmente declaramos grande. Este es un algoritmo de costo O(k), y la
probabilidad de equivocarnos es la de que las k veces hayamos sacado un pescado pequeño,
es decir 1

2k
. Por ejemplo, sacando k = 22 pescados, la probabilidad de equivocarse es cercana

a la de ganarse el Loto. Compare esto con el costo Θ(n) de cualquier algoritmo clásico.

Suponga, en cambio, que sabemos que la mediana de los pesos de los peces del océano
son 20 kilogramos. Entonces nuestro algoritmo puede verificar si se equivoca o no, y pode-
mos repetirlo hasta que no se equivoque. El número esperado de veces que debemos pescar
hasta sacar un pez grande (y sin error) es 2. Sin embargo, en el peor caso, no tenemos ga-
rant́ıa de terminar nunca (especialmente si devolvemos los peces pequeños al océano luego
de pescarlos). Este es un algoritmo tipo Las Vegas.

No es dif́ıcil imaginar problemas de corte más computacional que tienen esta estructura,
por ejemplo elegir un buen alumno de una lista sin tener que recorrer media lista.

Acceso a Ethernet. El protocolo de acceso a la red Ethernet funciona de esta forma.
F́ısicamente, todos los computadores conectados pueden leer lo que todos escriben, de modo
que para enviar un mensaje a otro computador se debe indicar el destinatario en el enca-
bezamiento del mensaje. Todos leerán el encabezado y el aludido leerá el resto del mensaje.
Si dos computadores deciden escribir al mismo tiempo, sin embargo, la señal se corromperá
y todos lo notarán. El protocolo de escritura es, entonces, como sigue: se espera a que no
haya un mensaje escrito en la red y entonces se escribe el mensaje que se desea. Luego se
lee la red. Si se puede leer lo que se escribió, entonces terminamos. Si en cambio se lee un
mensaje corrupto, es porque más de un computador decidió escribir al mismo tiempo. Se
espera entonces que el mensaje corrupto desaparezca más un intervalo aleatorio de tiempo,
y se reintenta. Este es un algoritmo probabiĺıstico y aleatorizado, tipo Las Vegas, más eficaz
y sencillo que cualquier protocolo que intentara resolver el problema determińısticamente.

Consistencia de bases de datos. Considere verificar la consistencia entre dos copias de
una gran base de datos, conectadas por una red proporcionalmente lenta. No hay algoritmo
que pueda garantizar que las dos copias son iguales sin esencialmente transmitir una de ellas
al lugar de la otra. En la práctica, se usa un esquema de firma digital: se calcula un hash
de una de ellas y se transmite a la otra, que también calcula su hash y los compara. Las
funciones de hash son determińısticas, pero si están bien diseñadas, la probabilidad de que
dos bases de datos elegidas al azar tengan la misma firma de k bits es de 1

2k
.

Para hacerse una idea de lo que significa esta probabilidad de error, usemos una estima-
ción reciente de que se producen unos 75 fallos en chips de memoria por millón de horas de
funcionamiento por megabit. Por lo tanto, una firma de 70 bits entrega menor probabilidad
de error que la de que ocurra un fallo de hardware que afecte uno de esos 70 bits justo en el
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nanosegundo en que se examina.
Existen mecanismos de firmas que además no se equivocan frente a ciertos tipos de errores

muy comunes, como un número limitado de inversiones de bits, o errores en ráfaga, etc. Este
es un esquema determińıstico (no aleatorizado) de error tipo Monte Carlo.

En el último ejemplo, si las firmas son distintas, entonces con seguridad las dos copias son
inconsistentes, pero si las firmas son iguales, aún podŕıa ser que las copias fueran distintas
(con una probabilidad muy baja). Este tipo de algoritmos Monte Carlo que responden “śı”
o “no” se clasifican en one-sided error (en que sólo se equivocan en una dirección, como en
este caso) y two-sided error (en que ambas respuestas pueden ser erróneas).

6.1.2. Aleatorización para independizarse del input

Veamos dos ejemplos simples de aleatorizar para independizarse de las suposiciones sobre
el input, o incluso defenderse de inputs maliciosos.

Búsqueda secuencial. Supongamos que tenemos una lista de n elementos que no pueden
ordenarse. Buscamos un elemento x secuencialmente en la lista, y si lo hallamos en la posición
i, nuestro costo fue i. Si en nuestra aplicación los elementos de la lista son las palabras
distintas que vemos en un texto y vamos insertando las nuevas al final, entonces las más
comunes estarán al comienzo, pues tienden a aparecer antes. Por ello, seŕıa bueno recorrer la
lista de la posición 1 a la n. Pero si en nuestra aplicación los elementos son nombres propios
que aparecen en noticias, entonces es probable que volvamos a ver los más recientes, por lo que
seŕıa mejor buscar la lista desde el final. Nos conformaŕıamos con pagar n+1

2
en promedio,

pero cualquier estrategia determińıstica que elijamos puede funcionar pésimamente en un
determinado entorno, el cual no podemos predecir.

Una forma segura de independizarnos de cualquier suposición externa es aleatorizar:
tiramos una moneda, y si sale cara, buscamos de 1 a n, si no, buscamos de n a 1. ¿Cuál es el
costo esperado de encontrar el elemento x, que está en la posición i? Es i si buscamos de 1 a
n (lo que hacemos con probabilidad 1

2
), y es n− i+ 1 si buscamos de n a 1 (lo que hacemos

con probabilidad 1
2
). El costo esperado es entonces

1

2
· i +

1

2
· (n− i+ 1) =

n+ 1

2
,

¡independiente de i! Es decir, independiente de la distribución de las búsquedas.

QuickSort aleatorizado. Otro ejemplo bien conocido es el QuickSort, que tiene costo
promedio O(n log n) suponiendo que la distribución de las posibles permutaciones de entrada
es uniforme. Pero aunque elija el pivote al medio, al principio, al final, etc., hay inputs
que lo hacen tomar tiempo Θ(n2). Es dif́ıcil saber de antemano en qué entorno terminará
ejecutándose nuestro programa. Por ello, es más seguro aleatorizar la elección del pivote.
Aśı, nuestro QuickSort tomará tiempo esperado O(n log n) con cualquier input que se le dé.
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6.1.3. Complejidad computacional

Los algoritmos probabiĺısticos y aleatorizados también irrumpen en las clases de comple-
jidad computacional. Por ejemplo existen problemas para los que no se conoce una solución
clásica de tiempo polinomial (es decir, no se sabe si están en P) pero śı una que permite un
pequeño margen de error. Uno de esos problemas es determinar si dos polinomios son iguales
(por ejemplo (x + y)(x − y) = x2 − y2), que parece fácil pero puede requerir tiempo expo-
nencial para aplicar todas las distributivas. En cambio, un algoritmo aleatorizado sencillo,
al que le basta poder evaluar los polinomios sin conocer su descripción, responde en tiempo
polinomial con muy baja probabilidad de error.

Una forma de entender esto es que los problemas en NP se resuelven con una máquina
de Turing no determińıstica que adivina en tiempo t la hoja correcta en un árbol de todas
las decisiones posibles, y luego la verifica en tiempo t′. Su tiempo total es entonces t+ t′, que
es polinomial en el tamaño del input. En cambio, la máquina determińıstica debe recorrer
todas las hojas, que son un número exponencial con respecto a la altura t del árbol. Pero
algunos problemas en NP tienen en realidad muchas hojas correctas, digamos una fracción
0 < p < 1, por lo cual se pueden resolver eficientemente con un un algoritmo aleatorizado
que elija una hoja al azar: éste tiene una probabilidad p de responder correctamente, por lo
cual en tiempo esperado t+t′

p
encuentra una solución. Si no puede verificar la solución pero

śı escoger la mejor, entonces puede repetirse k veces, con tiempo total kt, para encontrar la
solución correcta con probabilidad 1− (1− p)k.

Algunas clases de complejidad relevantes para estos algoritmos son las siguientes:

ZPP son los problemas que se pueden resolver en tiempo esperado polinomial sin error (es
decir, con un algoritmo tipo Las Vegas).

RP y co-RP son los problemas que se pueden resolver en tiempo polinomial equivocándose
con probabilidad 0 < p < 1 sólo en el caso de responder “śı”, pero sin error al responder
“no” (y viceversa para co-RP). Estos son los algoritmos Monte Carlo one-sided.

BPP son los problemas que se pueden resolver en tiempo polinomial equivocándose con
probabilidad 0 < p < 1

2
en caso de responder “śı” y con probabilidad 0 < p′ < 1

2
en

caso de responder “no”. Estos son los algoritmos Monte Carlo two-sided.

Tenemos P ⊆ ZPP , P ⊆ RP ⊆ NP y P ⊆ co-RP ⊆ co-NP , RP ∪ co-RP ⊆ BPP .
Asimismo, se sabe que ZPP = RP∩co-RP . Actualmente se cree que P = BPP (con lo cual
todas estas clases colapsaŕıan y los algoritmos probabiĺısticos y aleatorizados no tendŕıan im-
pacto en las clases de complejidad), dado que la cantidad de problemas conocidos que pueden
estar en BPP −P ha ido decreciendo. El problema mencionado de los polinomios es uno de
los pocos que quedan. Sin embargo, muchas de las soluciones determińısticas encontradas son
notoriamente más complicadas, y de mayor complejidad, que las probabiĺısticas. Veremos un
caso importante a continuación.
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6.2. Test de Primalidad

Determinar si un número n es primo es un problema sumamente importante, no sólo
en teoŕıa de números sino en computación, por sus aplicaciones a criptograf́ıa y hashing,
por ejemplo. Si bien es fácil probar todos los posibles divisores hasta

√
n, un algoritmo de

tiempo O(
√
n) es muy ineficiente para los grandes valores de n que se usan en criptograf́ıa

(cientos de d́ıgitos). En términos de complejidad, un algoritmo eficiente debe ser polinomial
en función del largo ℓ del input, es decir, en los ℓ = O(log n) bits usados para representar n.

Recién en 2002 se descubrió un algoritmo polinomial para determinar si n es primo o
no. Sin embargo el algoritmo es complicado y, luego de varias mejoras, su complejidad es de
O(ℓ4) multiplicaciones, lo que aún es considerablemente grande para los valores de n que se
usan en criptograf́ıa. Note que este algoritmo indica que n es compuesto sin poder dar una
factorización. No se conoce un algoritmo polinomial para factorizar un número, ni siquiera
de tipo probabiĺıstico, y este desconocimiento es la base de la criptograf́ıa de clave pública.

En la práctica, para determinar si n es primo es mucho más conveniente usar el algoritmo
de Miller-Rabin, que realiza O(k log n) multiplicaciones y se equivoca con probabilidad a lo
sumo 1

4k
, sólo en caso de responder que n es primo. Cuando responde que n es compuesto,

el algoritmo no se equivoca. Es decir, es un algoritmo de tipo Monte Carlo one-sided.
El algoritmo hace lo siguiente para determinar si n es primo:

1. Sean s y d tal que n− 1 = 2s · d con d impar.

2. Repetir k veces:

a) Elegir a ∈ [1..n− 1] al azar.

b) Si ad ̸≡ 1 mód n y ∀r ∈ [0..s− 1], a2
r·d ̸≡ −1 mód n

c) Retornar “compuesto”.

3. Retornar “probablemente primo”.

El algoritmo requiere O(k log n) multiplicaciones módulo n. La primera ĺınea divide n−1
por 2, s veces, hasta que quede un d impar, lo cual puede requerir O(log n) iteraciones (pero
puede hacerse incluso más rápido manipulando bits). En la ĺınea 2.b, calcular ad mód n
requiere O(log d) = O(log n) multiplicaciones usando un algoritmo muy simple llamado
exponenciación modular (se calcula a1, a2, a4, a8, etc. mediante ir elevando al cuadrado el
valor anterior, y luego se multiplican las potencias necesarias para formar ad). Similarmente,
para calcular todos los s = O(log n) valores a2

r·d en la ĺınea 2.b, vamos elevando ad al
cuadrado cada vez.

Lo segundo es establecer que, si n es compuesto, entonces en cada iteración tenemos una
chance de 3

4
de encontrar un valor de a que satisfaga la condición de la ĺınea 2.b. Tales valores

de a se llaman testigos de que n es compuesto. Todo número compuesto n tiene al menos
3
4
n testigos a ∈ [0..n − 1], por lo cual la probabilidad de que k veces no demos con uno de

ellos, y respondamos incorrectamente que n es primo, es a lo sumo 1
4k
.
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Veamos primero que un a que cumpla con la ĺınea 2.b es un testigo de que n es compuesto.
Considere un primo n y un x tal que x2 ≡ 1 mód n. Esto es lo mismo que (x+1)(x−1) ≡ 0
mód n, lo que implica x ≡ 1 mód n ó x ≡ −1 mód n (pues si un primo divide a un producto,
debe dividir a uno de los factores). Es decir, las únicas ráıces cuadradas de 1 módulo un primo
n son 1 y −1. Sea ahora un número n con n− 1 = 2s · d con d impar, como en el algoritmo.
Entonces debe valer que ad ≡ 1 mód n o que a2

r·d ≡ −1 mód n para algún r ∈ [0..s−1]. Esto
ocurre porque a2

s·d = an−1 ≡ 1 mód n por el Pequeño Teorema de Fermat. Si comenzamos
a sacar ráıces de an−1 obtenemos a2

s−1·d, a2
s−2·d, . . ., ad. Como vimos, esas ráıces deben ser 1

o −1. Si alguna de ellas es −1, entonces tenemos nuestro a2
r·d ≡ −1 mód n, y si todas ellas

son 1, tenemos ad ≡ 1 mód n.

El algoritmo usa la contrapositiva de esta demostración: si encontramos un a para el cual
no vale ni ad ≡ 1 mód n ni a2

r·d ≡ −1 mód n para ningún r ∈ [0..s− 1], entonces n no es
primo. Decimos por ello que a es un testigo de que n es compuesto.

Demostrar que existen al menos 3
4
n testigos a es algo extenso para los objetivos de este

curso; daremos una referencia al final del caṕıtulo. Por otro lado, esa es una cota bastante
generosa, dado que el test es mucho más fuerte. Por ejemplo, se sabe que probando sólo
a = 2, 3, 61 el test funciona sin error para cualquier número n de 32 bits, que probando sólo
con los primeros 12 primos a = 2, . . . , 37 basta para 64 bits, y que agregando a = 41 el test
funciona sin error hasta n < 3× 1024.

Generar primos. Un problema relacionado es el de generar un número primo aleatorio de
ℓ bits. Una forma razonable de hacerlo es generar números al azar en ese rango y comprobar
su primalidad con el test visto. Se sabe que el número de primos entre 1 y n tiende a n

lnn
, por

lo que en promedio bastará con O(log n) = O(ℓ) intentos para encontrar un primo, usando
un algoritmo tipo Las Vegas.

6.3. Árboles Aleatorizados y Skip Lists

Veremos un par de estructuras que implementan diccionarios, es decir, mantienen un
conjunto de elementos donde podemos insertar, borrar y buscar en tiempo O(log n). También
podemos, en el mismo tiempo, encontrar el predecesor y el sucesor de un número dado. Ambos
algoritmos implementan todas las operaciones en tiempo esperado O(log n), para un conjunto
de n elementos. Note la diferencia con los árboles binarios de búsqueda clásicos, que ofrecen
tiempo promedio O(log n) bajo la suposición de que el orden en que se insertan las claves es
una permutación aleatoria.

Comenzaremos con una estructura que es idéntica a un árbol binario de búsqueda clásico,
pero que se encarga de producir un árbol en el que las claves se hubieran insertado en orden
aleatorio, independientemente del orden en que se insertaron realmente. Luego veremos cómo
ese árbol se puede usar para mantener elementos ordenados por clave y a la vez por prioridad
(como en colas de prioridad). Finalmente, veremos una estructura alternativa para obtener
el equivalente de la primera estructura usando menos espacio esperado.
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6.3.1. Árboles aleatorizados

Nuestra tarea es mantener un árbol binario de búsqueda (ABB) para el conjunto de ele-
mentos {x1, . . . , xn} que se han insertado, aleatorizando virtualmente el orden de la entrada
de modo que el árbol corresponda a cada permutación posible de esos elementos con la misma
probabilidad, 1

n!
.

Inserción. Supongamos que, con ese invariante, tenemos en este momento un árbol binario
T que corresponde a haber insertado los elementos x1, . . . , xn, en ese orden, con el mecanismo
normal de inserción de los ABBs. Si ahora se inserta un nuevo elemento x, debemos darle
la misma probabilidad, 1

n+1
, de que se inserte en cada posible lugar dentro de la secuencia

elegida x1, . . . , xn (no almacenaremos esta secuencia expĺıcitamente, bastará con que cada
nodo de T guarde el número de nodos en su subárbol).

En particular, decidiremos que x va al principio de la secuencia de inserción con pro-
babilidad 1

n+1
. En este caso, x debe ser la ráız, como dicta el método de inserción de los

ABBs. En cambio, con probabilidad n
n+1

, x no va al principio de la secuencia y por lo tanto
mantenemos la ráız actual (que debe ser x1).

El segundo caso es más sencillo. Si x no está al comienzo de la secuencia de inserción,
entonces x1 sigue siendo la ráız de T , y lo era cuando llegó x a insertarse. De modo que lo
que ocurrió al insertarse x fue que se lo comparó con x1, y si x < x1, lo insertamos en el
hijo izquierdo de T , de otro modo lo insertamos en el hijo derecho. Es decir, continuamos
como en la recursión normal de la inserción en ABBs. El código recursivo correspondiente
para insertar(T, x) es entonces como sigue (es fácil convertirlo a iterativo):

1. Elegir r al azar en [1..|T |+ 1].

2. Si r = 1, convertir a x en la ráız de T y retornar el resultado.

3. Si x < T.ráız,
entonces T.izquierdo← insertar(T.izquierdo, x);
si no, T.derecho← insertar(T.derecho, x).

4. Retornar T .

Lo intrigante es la ĺınea 2. ¿Qué significa convertir a x en ráız? Significa construir el ABB
T ′ que corresponde a la secuencia x, x1, . . . , xn a partir del árbol T de la secuencia x1, . . . , xn.
La ráız de T ′ será x, aśı como la de T es x1. Llamemos TL y TR a los subárboles izquierdo y
derecho de x en T ′, y T1 y T2 a los subárboles izquierdo y derecho de x1 en T . Definiremos
una operación cut(T, x), que corta T en el par de árboles formados por los elementos menores
y mayores que x, respectivamente, respetando el mismo orden de inserción que muestran en
T . Es decir, cut(T, x) nos entregará TL y TR.

Consideremos el caso x1 < x. Esto significa que x1 se convirtió en el hijo izquierdo de x,
por lo tanto x1 es la ráız de TL. Más aún, todo el subárbol T1 se habŕıa comparado con x,
resultando menor, y luego con x1, resultando menor; por lo tanto se habŕıan organizado en el
subárbol izquierdo de x1 exactamente igual que como lo han hecho en T . Es decir, si x1 < x,
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entonces TL tiene a x1 como ráız y a T1 como su subárbol izquierdo. Los elementos de T2, en
cambio, pueden ser mayores o menores que x, de modo que podemos obtener recursivamente
(T<, T>) = cut(T2, x). Como T< son los elementos menores que x, pero mayores que x1, que
se forman respetando el orden de inserción, T< corresponde al hijo derecho de x1 en TL: son
los elementos llegaron en el mismo orden original, se compararon con x resultando menores,
y luego con x1 resultando mayores, y en ese orden poblaron el subárbol derecho de x1 en
TL. Por otro lado, los elementos en T> corresponden exactamente a TR: los elementos que se
comparan con x al llegar y resultan mayores. El caso x1 > x es simétrico. El código recursivo
para cut(T, x) (nuevamente, fácil de convertir a iterativo) es como sigue, donde usamos la
notación ⟨ráız,izquierdo,derecho⟩ para describir un árbol:

1. Si T = nulo, Retornar (nulo,nulo).

2. Si T.ráız < x

(T<, T>)← cut(T.derecho, x).

TL ← ⟨T.ráız, T.izquierdo, T<⟩.
TR ← T>.

3. Si no,

(T<, T>)← cut(T.izquierdo, x).

TR ← ⟨T.ráız, T>, T.derecho⟩.
TL ← T<.

4. Retornar (TL, TR)

Note que cut(T, x) recorre el camino de la ráız de T a la hoja donde se debeŕıa insertar x en
el método clásico, y por lo mismo nuestro método insertar también recorre el mismo camino,
primero con la recursión de insertar y luego cambiándose a la de cut. Como el árbol es el
correspondiente a cada uno de los órdenes posibles de inserción con la misma probabilidad,
independientemente del orden real en que se insertaron los elementos, su altura esperada es
O(log n), y ese orden es el de la inserción y el de la búsqueda (que se realiza como en un
ABB clásico).

Por ejemplo, si se insertan los elementos 1, 2, 3 en un árbol vaćıo con este algoritmo, se
obtiene el árbol balanceado de ráız 2 con probabilidad 1

3
(pues resulta de las permutaciones

2, 1, 3 y 2, 3, 1) , y los otros 4 árboles posibles con probabilidad 1
6
.

Borrado. Para borrar un determinado xi de la secuencia x1, . . . , xn, debemos modificar
el árbol para que sea como si xi nunca se hubiera insertado. Lo primero que hacemos es,
entonces, buscar xi en el árbol con el método normal de búsqueda, y borrarlo. Al borrarlo,
queda en su lugar un nodo “vaćıo”, del que debemos deshacernos.
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Para deshacernos de la ráız vaćıa del subárbol de xi, con hijos TL y TR, debemos considerar
la subsecuencia de x1, . . . , xn de los nodos que cayeron en el subárbol. El primer elemento
de la subsecuencia es xi. ¡Pero con la información que almacenamos, no sabemos cuál es el
segundo! Podŕıa ser xL, ráız de TL, o xR, ráız de TR. Lo que debemos hacer es, dentro de
todas las subsecuencias xi, . . . de nodos que dan lugar a este subárbol, contar en cuántas
el segundo elemento es xL < xi y en cuántas es xR > xi. Como hay |TL| elementos del

primer grupo y |TR| del segundo, la probabilidad de que luego de xi venga xL es |TL|
|TL|+|TR| ,

y viceversa. En el primer caso, llamemos T< y T> a los subárboles izquierdo y derecho de
xL. El subárbol de ráız xi, de no existir xi, se habŕıa inaugurado con xL, quien seŕıa su ráız,
y su hijo izquierdo, T ′

L, correspondeŕıa a T<. En cambio, T ′
R correspondeŕıa a los elementos

de T> más los de TR. Como los primeros son menores que los segundos, podemos definir T ′
R

como una ráız vaćıa, con subárboles izquierdo y derecho T> y TR, respectivamente, y hemos
llevado el problema del nodo vaćıo un nivel hacia abajo. El caso de elegir xR es simétrico.
El código recursivo para resolver la ráız vaćıa de un subárbol T , merge(T ), es como sigue:

1. Si |T | = 1, Retornar nulo.

2. Elegir r al azar en [1..|T | − 1].

3. Si r ≤ |T.izquierdo|

I ← T.izquierdo.

T.ráız← I.ráız.

T.izquierdo← I.izquierdo.

T.derecho← merge(⟨−, I.derecho, T.derecho⟩).

4. Si no,

D ← T.derecho.

T.ráız← D.ráız.

T.derecho← D.derecho.

T.izquierdo← merge(⟨−, T.izquierdo, D.izquierdo⟩).

5. Retornar T

Al realizar un recorrido desde la ráız hasta una hoja, este método de borrado tiene
también un costo esperado de O(log n). El método puede agilizarse para que, en caso de que
T tenga un solo hijo, simplemente borre la ráız.

6.3.2. Treaps

Un treap es una cruza de un árbol y una cola de prioridad (tree + heap). Almacena
elementos que tienen una clave y una prioridad. Permite insertar, borrar y buscar elementos
usando la clave, pero también ver y extraer el elemento con máxima prioridad.
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Si bien podemos implementar un treap usando un árbol y un heap, la estructura del árbol
aleatorizado nos da una implementación muy elegante, con tiempos logaŕıtmicos bajo supo-
siciones razonables sobre el input (no es una estructura aleatorizada). La idea es equiparar
la prioridad con el momento de inserción, de modo que una mayor prioridad corresponde
a un menor tiempo de inserción. De este modo, esta implementación de treap es un ABB
válido sobre las claves, pero que respeta que la prioridad del padre nunca es menor que la
de sus hijos (o equivalentemente, el tiempo de inserción del padre nunca es mayor que el de
sus hijos).

Para insertar en un treap con clave x y prioridad p, procedemos como en la inserción del
árbol aleatorizado, sólo que en vez de usar el azar para determinar si pasamos a usar cut,
pasamos a cut si la prioridad de la ráız de T es menor que p. En ese caso, convertimos x
en la ráız de T y usamos cut(T, x) para obtener los subárboles TL y TR, que serán treaps y
formarán los subárboles izquierdo y derecho de x.

Para borrar x de un treap, lo buscaremos, dejaremos el nodo vaćıo, y usaremos un método
equivalente a merge para deshacernos del nodo. En vez de la versión aleatorizada, este
método elegirá xL o xR según quién tenga mayor prioridad, para llenar el nodo vaciado.

Para buscar x por clave en un treap, lo buscamos exactamente como en un ABB. Para
ver el elemento de mayor prioridad, miramos la ráız. Para extraer el elemento de máxima
prioridad, dejamos vaćıa la ráız y procedemos como en el borrado.

Los treaps permiten otras operaciones más complejas, como recorrer todos los elementos
con clave entre x y x′ y prioridad ≥ p, con métodos recursivos muy sencillos.

6.3.3. Skip lists

Las skip lists son estructuras aleatorizadas que ofrecen garant́ıas similares a los árboles
aleatorizados. Una desventaja es que su espacio para almacenar n elementos es O(n) espe-
rado, no peor caso como los árboles. Sin embargo, la constante de ese espacio esperado es
menor que la de los árboles.

La skip list para una secuencia x1 < x2 < . . . < xn (note que ahora vemos la secuencia en
su orden numérico, no de inserción) es una lista de n torres, donde la i-ésima torre almacena
key(i) = xi y uno o más punteros hacia torres siguientes. La altura de la torre i se define
aleatoriamente al insertar xi, mediante tirar una moneda que cae cara con probabilidad p,
ki ≥ 1 veces hasta que salga cara. Entonces la altura de la torre es ki (note que el valor
esperado de ki es

1
p
). En el piso j de la torre i, con 1 ≤ j ≤ ki, almacenamos un puntero

ptr(i, j) hacia la torre más cercana i′ > i que tenga altura ≥ j, o nulo si no existe tal torre.

Además, la skip list guarda una torre 0, con un puntero ptr(0, j) hacia la primera torre
de altura ≥ j, para 1 ≤ j ≤ kmáx, donde kmáx es la altura máxima de una torre.

El espacio esperado de toda la estructura es n claves más n
p
punteros. A esto se le suma

la torre 0, cuya altura kmáx es el máximo de las n torres. El valor esperado del máximo de
n variables aleatorias con distribución geométrica de parámetro p es log 1

1−p
n+O(1), por lo

cual esto le suma sólo O(log n) al espacio.
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Búsqueda. La búsqueda de un elemento x en una skip list empieza en el piso j = kmáx de
la torre i = 0. Si key(ptr(i, j)) ≤ x, entonces hacemos i← ptr(i, j) (es decir, saltamos por el
puntero a una torre más adelante), y si no, hacemos j ← j − 1 (es decir, bajamos un piso).
Cuando llegamos a j = 0, key(i) es x o su predecesor en el conjunto.

Para analizar el costo, podemos separar los dos tipos de operaciones. La cantidad de veces
que se baja un piso en total es kmáx. Para ver la cantidad de saltos entre torres, consideremos
la búsqueda de xn, que es la clave más lejana. Recorreremos todas las torres de altura kmáx,
y luego de la última, todas las torres siguientes de altura kmáx − 1, etc. Por simetŕıa, esto
equivale a partir de la torre 0 y recorrer por el piso 1 hasta encontrar una torre de altura ≥ 2,
luego recorrer por los pisos 2 hasta encontrar una torre de altura ≥ 3, etc. En cada piso j,
cada torre que visitamos se detiene en ese piso con probabilidad p, por lo que tiene más de j
pisos con probabilidad 1− p. Por ello, recorremos en promedio 1

1−p
torres hasta dar con una

que tenga un piso más, y alĺı pasamos al piso j+1. De este modo, el costo esperado de todos
los movimientos horizontales es 1

1−p
kmáx, y sumando los verticales tenemos (1 + 1

1−p
)kmáx.

El valor esperado de esto es (1 + 1
1−p

) log 1
1−p

n más términos de orden inferior. Este costo

es O(log n) para cualquier p fijo, y el valor óptimo de p es ≈ 0,72. Con este valor de p,
el costo esperado de búsqueda es ≈ 3,59 lnn y el espacio esperado de la estructura son n
claves más ≈ 1,39n punteros. Note que esto es inferior a los 2n punteros usados por el árbol
aleatorizado, el cual además debe almacenar el tamaño de los subárboles (¡curiosamente, no
necesitamos almacenar la altura de las torres en la skip list!). En cambio, la cantidad de
comparaciones esperadas para buscar es menor en el árbol aleatorizado: 2 lnn.

Inserción. Para insertar x en la skip list simulamos la búsqueda, pero recordamos la última
torre de altura j que visitamos, torre(j), para todo j. Una vez encontrado el predecesor de
x en la torre i, creamos una nueva torre i′ entre la i y la i + 1. Determinamos su altura k
aleatoriamente como explicamos, y finalmente, para cada 1 ≤ j ≤ k, asignamos ptr(i′, j)←
ptr(torre(j), j) y ptr(torre(j), j)← i′. Es decir, interponemos la torre i′ entre la i y la i+1,
interrumpiendo todos los punteros entre los pisos 1 y k para insertar el nuevo piso de la torre
i′. El costo de la inserción es similar al de la búsqueda.

Borrado. Para borrar x lo buscamos como en la inserción. Al encontrarlo en la torre i, de
altura ki, antes de borrar la torre debemos conectar los punteros que llevan a la torre i con
los que salen de la torre i, para todos los pisos 1 ≤ j ≤ ki: ptr(torre(j), j)← ptr(i, j). Note
que podemos determinar ki sin almacenarlo, pues llegamos a la torre i siempre desde su piso
más alto. El costo de borrado es similar al de la búsqueda.

6.4. Hashing Universal y Perfecto

El hashing es una técnica clásica para insertar, borrar y buscar con tiempo promedio
constante, lo cual no se sabe hacer en el peor caso. La idea es construir una función de
hashing h : X → [0..m− 1] que mapee los objetos de su universo original X a una posición
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en una tabla de tamaño m. El elemento x ∈ X se almacena entonces en la celda h(x) de la
tabla, y alĺı mismo se busca.

Lo que hace que esta idea pueda fallar son las colisiones, es decir, dos elementos x ̸= y
que son mapeados a la misma celda, h(x) = h(y). Las colisiones se resuelven de distintas
formas, siendo la más simple la de tener una lista enlazada en cada celda para almacenar
los distintos elementos que caen en ella. De cualquier manera que se resuelvan, las colisiones
atentan contra el objetivo de operar en tiempo O(1). Por otro lado, es imposible evitar las
colisiones si |X | > m. Más aún, si almacenamos n elementos y |X | ≥ nm, entonces siempre,
no importa cómo elijamos h, el adversario puede insertar n elementos que colisionen todos
en la misma celda: basta insertar nm elementos de X y ver que en alguna celda caerán al
menos n, entonces esos n elementos colisionan todos.

Ante la imposibilidad de tener garant́ıas de peor caso, se recurre normalmente a una
probabiĺıstica: se analizan los esquemas de hashing como si h(x) fuera una variable aleatoria
distribuida uniformemente en [0..m − 1]. De este modo, la cantidad esperada de elementos
por celda será n

m
, lo que será O(1) si hacemos que el tamaño de la tabla sea proporcional al

número de elementos que se almacenarán. Si no conocemos n de antemano, podemos hacer
que la tabla se vaya duplicando cuando n

m
exceda un cierto valor permitido, y volviendo a

insertar todos los elementos en la nueva tabla. Esto agrega un tiempo amortizado constante
por operación, como vimos en el caṕıtulo de análisis amortizado.

Sin embargo, h debe ser determińıstica, o no encontraremos un elemento x que inserta-
mos antes. Se busca que h “se comporte” como si fuera aleatoria. Existen algunos tipos de
funciones de hashing conocidos por “distribuir bien” los valores, “destruir posibles regulari-
dades del input”, etc. Pero mientras su elección sea determińıstica, la función h distribuirá
bien los valores sólo si estos tienen una cierta distribución, es decir, el comportamiento del
hashing será promedio, no esperado, y dependerá del input. Habrá inputs que harán fallar
sistemáticamente a la función de hashing elegida.

En esta sección veremos una forma aleatorizada de elegir funciones de hashing, que ga-
ranticen el comportamiento esperado deseado, independientemente de qué valores se inserten
en la tabla. Note que, de todos modos, una vez elegida h, se debe seguirla usando duran-
te el tiempo de vida de la estructura de datos. Sin embargo, una secuencia de inserciones
que haga fallar h no lo logrará sistemáticamente: repetir la secuencia con otra elección de h
probablemente hará que la segunda vez no falle.

6.4.1. Hashing universal

Supongamos que nuestro universo es X = [0..N − 1], con N > m. Diremos que H es una
familia universal de funciones de hashing de [0..N − 1] en [0..m− 1] si, para todo x ̸= y,

Pr(h(x) = h(y)) ≤ 1

m
,

donde la probabilidad se toma sobre las posibles elecciones de funciones h ∈ H (eligiendo
uniformemente).
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Si tenemos una familia universal H, todo lo que tenemos que hacer es elegir un h aleato-
riamente de la familia cada vez que creamos una tabla de hashing. Para ver que la propiedad
de universalidad es suficientemente buena, definamos S como el conjunto de claves que vamos
a almacenar, n = |S|, y la variable aleatoria

Cx,y = 1 si h(x) = h(y) y 0 si no.

Las Cx,y son variables aleatorias, pues dependen de la elección al azar de h. Si h se elige
uniformemente de una familia universal H, tenemos por definición

Pr(Cx,y = 1) ≤ 1

m
.

Definamos también

Cx,S = la cantidad de elementos de S que colisionan con x.

Dicho de otro modo,

Cx,S =
∑
y∈S

Cx,y.

También podemos ver Cx,S como el largo de la lista enlazada en la celda h(x), lo cual es
proporcional al costo de buscar, insertar o borrar x. El costo esperado de estas operaciones
es entonces

E(Cx,S) = E

(∑
y∈S

Cx,y

)
= E(Cx,x) +

∑
y∈S−{x}

E(Cx,y) = 1+
∑

y∈S−{x}

Pr(Cx,y = 1) ≤ 1+
n− 1

m
.

Es decir, el costo esperado de las operaciones será O(1) si n = O(m).

Una familia universal. Existen varias familias universales conocidas. Una sencilla es la
siguiente: dado un primo p ≥ N , definimos

H = {ha,b, a ∈ [1..p− 1] y b ∈ [0..p− 1]}

donde
ha,b(x) = ((ax+ b) mód p) mód m.

Para ver que esta familia es universal, consideremos cuatro números r, s, x, y ∈ [0..p− 1],
con r ̸= s y x ̸= y, y calculemos

Pr((ax+ b ≡ r mód p) y (ay + b ≡ s mód p)).

Si esto ocurre, entonces a(x−y) ≡ r−s mód p. Siendo p primo, y por lo tanto primo relativo
con x−y (pues x, y < N ≤ p, con lo cual x−y no puede ser múltiplo de p), la ecuación tiene
una única solución, a ≡ (x−y)−1(r−s) mód p. Y dado este valor de a, existe un único valor
b ≡ r − ax mód p (o equivalentemente b ≡ s − ay mód p). Es decir, de las |H| = p(p − 1)
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posibles funciones ha,b para elegir, existe exactamente una con el valor adecuado de a y b
para los r, s, x, y que elegimos. Entonces la probabilidad que buscamos es

Pr((ax+ b ≡ r mód p) y (ay + b ≡ s mód p)) =
1

p(p− 1)
.

Note, en cambio, que esto no puede ocurrir si r = s y x ̸= y.
Para que x e y colisionen, es decir h(x) = h(y), debe ocurrir lo anterior para algún par

r ≡ s mód m con r ̸= s, es decir, s = r ± km para k > 0. Tenemos p formas de elegir r. Y
para cada elección de r, tenemos a lo más ⌈ p

m
⌉ − 1 formas de elegir s. En total, el número

de pares r ̸= s que generan una colisión es

p ·
(⌈ p

m

⌉
− 1
)

= p ·
(⌊

p+m− 1

m

⌋
− 1

)
= p ·

⌊
p− 1

m

⌋
≤ p(p− 1)

m
.

La probabilidad, al elegir h, de que cada uno de esos p(p−1)
m

pares r ̸= s genere una colisión
módulo p es 1

p(p−1)
, con lo cual la probabilidad de una colisión es a lo sumo 1

m
.

Utilizar esta familia con una tabla de tamaño m es muy sencillo: generamos un primo
p ≥ N con el algoritmo ya discutido, y luego generamos a y b al azar. Luego usamos
h(x) = ((ax+ b) mód p) mód m como nuestra función de hash, que mapea los elementos de
[0..N − 1] a [0..m− 1].

¿Es necesaria la b? Podemos preguntarnos si es necesario incluir b en la fórmula, o
podŕıamos tener simplemente una familia ha(x) = (ax mód p) mód m. En ese caso tendŕıamos
|H| = p − 1 y la colisión antes de tomar módulo m implicaŕıa a ≡ (x − y)−1(r − s) mód p.
Entonces la probabilidad de colisión es a lo más 1

|H| =
1

p−1
. Ahora bien, la condición sobre

a es necesaria pero puede no ser suficiente, pues requerimos que ese a satisfaga r − ax ≡ 0
mód p (antes eleǵıamos b precisamente para que r − ax ≡ b). Sustituyendo el valor de a,
esto equivale a sx ≡ ry mód p. Aśı, podemos elegir r de p formas pero entonces debe ser
s ≡ x−1yr mód p y m debe dividir a s − r = (x−1y − 1)r. Esto puede ser factible para los
p valores de r si m divide a x−1y − 1, o sólo para p

m
de ellos si m y x−1y − 1 son primos

relativos. Es decir, la probabilidad de colisión depende de x e y, pudiendo variar desde tanto
como p

p−1
(una cota mayor a 1) hasta tan poco como p

m(p−1)
(cercana a la que obtuvimos;

algunos de estos cálculos tienen excepciones si hay valores cero). El esquema que vimos, en
cambio, ofrece una probabilidad de colisión de 1

m
independientemente del input.

Otros universos. Cuando el universo X no es de la forma [0..N−1], debemos llevarlo a esa
forma. Por ejemplo, los strings sobre el alfabeto [0..σ−1] pueden interpretarse como números

en base σ, es decir, x1 . . . xℓ =
(∑ℓ

i=1 xi σ
i−1
)
mód p. Esto es popular, pero es determińıstico

y un adversario puede elegir strings en concreto que dan el mismo valor módulo p para
producirnos colisiones. Una versión aleatorizada que nos da una familia universal es

h(x1 . . . xℓ) =

((
b+

ℓ∑
i=1

aixi

)
mód p

)
mód m,
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donde b ∈ [0..p− 1] y los ai ∈ [1..p− 1] se eligen al azar (necesitamos tantos valores ai como
el string más largo; podemos ir generando nuevos al irlos necesitando).

Funciones más rápidas. Si el tamaño m de nuestra tabla es una potencia de 2, m = 2ℓ,
entonces calcular el módulom es barato, pues equivale a quedarse con los ℓ bits más bajos del
valor. En cambio, calcular módulo p para un p primo es una operación relativamente lenta.
Una buena opción es elegir p como un primo de Mersenne, que tiene la forma 2k−1, de modo
que el módulo se puede reducir a bitwise-ands y shifts: x ≡ (x mód 2k) + (x ÷ 2k) mód p,
donde ÷ es la parte entera de la división. Aśı, x mód 2k = x&((1≪ k)−1), x÷2k = x≫ k,
y el último mód p sólo requiere restar p si el valor es ≥ p, pues éste es menor a 2p. Los primos
de Mersenne son bastante escasos, pero hay buenas opciones para enteros de 32 a 128 bits
(por ejemplo, 231 − 1, 261 − 1, 289 − 1 y 2127 − 1 lo son).

Otra familia universal que usa sólo módulos y divisiones por potencias de 2 es

ha,b(x) = ((ax+ b) mód 2k)÷ 2ℓ,

con k ≥ ℓ. Esta función mapea x a [0..2k−ℓ − 1].

6.4.2. Hashing perfecto

En algunos casos, conocemos de antemano los n elementos S que insertaremos en la
tabla, y sólo nos interesa buscarlos más adelante. En este caso podŕıamos pensar en generar
una función de hashing h que no produjera ninguna colisión para los elementos de S. A este
tipo de función de hashing se la llama perfecta. Al no generar colisiones, no necesitamos
almacenar listas enlazadas ni verificar si es efectivamente la clave x quien está almacenada
en la celda h(x) (aunque si buscamos elementos x ̸∈ S aún necesitaremos comparar las claves
para verificar que no sea una colisión fuera de S).

Es tentador generar funciones de una familia universalH hasta dar con una perfecta, pero
¿es eficiente? ¿obtendremos una función perfecta con una cantidad razonable de intentos?

Veamos cuál es la probabilidad de que una función h ∈ H sea perfecta. La probabilidad de
que x ̸= y colisionen es ≤ 1

m
. La probabilidad de que alguno de los n(n−1)

2
pares colisione es a

lo más 1
m
· n(n−1)

2
< 1

2
· n2

m
. Por lo tanto, si elegimos una tabla de tamaño m = n2, tenemos una

chance de 1
2
de que una función h ∈ H elegida al azar sea perfecta. Esto nos da un algoritmo

tipo Las Vegas para encontrar una función perfecta. El número esperado de intentos es 2, y
en cada intento podemos verificar en tiempo O(n) si hay alguna colisión (mediante insertar
todos los elementos de S en la tabla). El tiempo esperado de este algoritmo es entonces O(n).

El problema es que este algoritmo requiere una tabla demasiado grande para tener una
chance aceptable de encontrar una función perfecta. Querŕıamos una tabla de tamaño O(n),
y construirla en tiempo esperado O(n) también.

Una solución es un esquema de dos niveles. Primero elegiremos una función de hashing
distribuidora h, de S a [0..n − 1], aleatoriamente de una familia universal. Esta función
dif́ıcilmente será perfecta, pero esperamos que distribuya los elementos de S más o menos

118



uniformemente. Luego tendremos una tabla de hashing perfecto asociada a cada celda de la
tabla principal, para almacenar los elementos que h envió a esa celda.

Concretamente, sea Bi el conjunto de elementos de S que h pone en la celda 0 ≤ i < n,
y bi = |Bi|. Si ahora creáramos una función de hashing perfecto hi para almacenar los
elementos de cada Bi en una tabla propia de tamaño b2i , entonces fácilmente encontraŕıamos
una función perfecta en tiempo O(bi). El tiempo total para encontrar las n funciones hi seŕıa
O(
∑

bi) = O(n). El espacio, en cambio, seŕıa X =
∑

b2i , una variable aleatoria.
Veamos el valor esperado de X. Para ello, notemos que∑

0≤i<n

b2i =
∑
x,y∈S

Cx,y,

pues si Bi = {x1, . . . , xbi}, cada par (xi, xj) aporta un Cxi,xj
= 1. La esperanza es entonces

E(X) = E

(∑
x,y∈S

Cx,y

)
=
∑
x∈S

E(Cx,x) +
∑

x ̸=y∈S

E(Cx,y) ≤ n+ n(n− 1) · 1
n

< 2n,

donde en la primera desigualdad usamos que E(Cx,y) = Pr(Cx,y = 1) ≤ 1
n
porque h es

universal en [0..n− 1].
Tenemos entonces que la esperanza de la variable aleatoria X =

∑
b2i es menos de 2n.

Como X es el espacio de todas las tablas del segundo nivel, si X < 2n entonces nuestro
espacio total es O(n), incluyendo la tabla para h y los valores ai y bi almacenados para
hi. Quisiéramos entonces elegir funciones h ∈ H al azar hasta obtener una donde X fuera
efectivamente 2n, o al menos O(n). ¿Cuántos intentos debemos hacer? La desigualdad de
Markov nos dice que si µ = E(X), entonces

Pr(X ≥ kµ) ≤ 1

k
,

por lo tanto, como µ < 2n, Pr(X ≥ 4n) ≤ 1
2
. Es decir, tenemos una chance de al menos 1

2

de que, al elegir h, nos produzca un espacio total de
∑

b2i ≤ 4n.
El algoritmo tipo Las Vegas es, entonces, como sigue. Elegimos una función distribuidora

h de S en [0..n−1], mapeamos todos sus elementos en una tabla de contadores, donde iremos
acumulando las cantidades bi de elementos que caen en cada celda. Luego, verificaremos si∑

b2i ≤ 4n. Si no es el caso, es que elegimos una h mala, que nos requerirá mucho espacio,
por lo cual volvemos a probar con otra h. El número esperado de intentos es 2, por lo que el
tiempo esperado hasta que encontremos una buena función distribuidora h es O(n). Una vez
encontrada, construimos los conjuntos Bi y para cada uno creamos una función de hashing
perfecto hi en tiempo O(bi) y espacio b2i . Esta función (su ai y bi) se almacena en la i-ésima
celda de la tabla. El tiempo esperado de construcción, y el espacio total, son O(n).

Para buscar x, primero vamos a la celda i = h(x). Alĺı tenemos guardada la función hi,
con la que mapearemos x a la posición hi(x) de la tabla asociada a la celda i, donde se
guardan los elementos de Bi. El tiempo es O(1) en el peor caso.
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6.5. Ficha Resumen

Conceptos de algoritmos probabiĺısticos y aleatorizados, tiempo esperado.

Verificar si n es primo: O(k log n) multiplicaciones y se puede equivocar con probabi-
lidad ≤ 1

4k
al decir que es primo.

Generar un primo entre n y 2n: O(k log2 n) multiplicaciones esperadas, puede entregar
un no-primo con probabilidad ≤ 1

4k
.

Árboles aleatorizados: tiempo O(log n) esperado para insertar, borrar y buscar.

Skip lists: similar a árboles aleatorizados. El espacio es O(n) esperado, no peor caso,
aunque con una mejor constante esperada (y peor constante de tiempo esperado).

Hashing universal: tiempo O(1) esperado para todas las operaciones con espacio O(n)
eligiendo funciones de hash en forma aleatorizada.

Hashing perfecto: tiempo esperado de construcción O(n), espacio O(n), tiempo de
búsqueda O(1) en el peor caso.

6.6. Material Suplementario

Cormen et al. [CLRS01, cap. 5] dedican un caṕıtulo a conceptos básicos de algorit-
mos aleatorizados. Más adelante en el libro analizan versiones aleatorizadas de QuickSort
[CLRS01, sec. 7.3 y 7.4] y QuickSelect [CLRS01, sec. 9.2]. Brassard y Bratley [BB88, cap. 8]
dedican un caṕıtulo a algoritmos probabiĺısticos y aleatorizados. Explican la clasificación en
Monte Carlo y Las Vegas, y le llaman tipo “Sherwood” a los aleatorizados que no son pro-
babiĺısticos (es decir, que no se equivocan y siempre terminan, como nuestras estructuras de
datos aleatorizadas). Dan un buen número de ejemplos pequeños y medianos de algoritmos
de cada tipo, referentes a problemas de cálculo numérico, de aritmética entera (incluyendo
el test de primalidad que vimos), de problemas combinatoriales, y algunos de estructuras de
datos aleatorizadas de menor importancia. Manber [Man89, sec. 6.9] le dedica una sección a
algoritmos probabiĺısticos y aleatorizados. Discute conceptos básicos y los tipos Monte Carlo
y Las Vegas, presenta un generador seudoaleatorio popular, y un ejemplo simple. También
discute una técnica para convertir algoritmos aleatorizados tipo Las Vegas en determińısti-
cos. Kleinberg y Tardos [KT06, cap. 13] dedican un muy buen caṕıtulo a estos algoritmos.
Esto incluye conceptos básicos de probabilidades, una descripción mucho más sofisticada de
nuestro ejemplo de Ethernet como un problema genérico de acceso a recursos, los algoritmos
QuickSort y QuickSelect aleatorizados, y otros que mencionaremos más adelante. El libro
de Motwani y Raghavan [MR95] se dedica completamente a estos algoritmos y describe un
número importante de técnicas de diseño junto con algoritmos y estructuras de datos concre-
tos. En el primer caṕıtulo incluye una descripción de las clases de complejidad relacionadas

120



con la aleatorización. También incluye [MR95, sec. 14.6] algoritmos para verificar primalidad
del estilo del que vimos, demostrando su probabilidad de error.

Motwani y Raghavan [MR95, sec. 8.1 y 8.2] describen los treaps (los cuales no son aleato-
rizados) y luego muestran cómo los árboles binarios aleatorizados se obtienen insertando los
elementos en un treap con una prioridad asignada en forma aleatoria. Sin embargo, usa ro-
taciones en vez de cut y merge para insertar y borrar. Asimismo, en la sección 8.3, describen
las skip lists.

Cormen et al. [CLRS01, sec. 11.5] describen la construcción del hashing perfecto como la
vimos en el caṕıtulo; en los ejercicios describen la función de hashing universal. Mehlhorn y
Sanders [MS08, sec. 4.2] dedican una excelente sección al hashing universal, donde describen
una cantidad de familias universales (entre ellas la que vimos en el caṕıtulo), e incluso una
forma eficiente de encontrar un primo mayor a N y cercano. Usan el término “c-universal”
en una forma no ortodoxa, significando que la probabilidad de colisión es ≤ c

n
. Más adelan-

te [MS08, sec. 4.5] presentan el hashing perfecto en forma muy parecida a la del caṕıtulo,
aunque describen brevemente cómo se podŕıan permitir inserciones y borrados. Kleinberg
y Tardos [KT06, sec. 13.6] también explican de buena forma el hashing universal y per-
fecto, usando otra familia universal (descrita también por Mehlhorn y Sanders). Motwani
y Raghavan [MR95, sec. 8.4] presentan el hashing universal, usando el término equivalen-
te de “2-universal” (el 2 viene de que son pares x e y) e introduciendo los conceptos de
“strongly 2-universal” y su generalización “strongly k-universal” (que significa que k va-
riables aleatorias h(xi) cualesquiera son independientes; la familia que vimos es realmente
strongly 2-universal). Presentan la misma familia H que usamos en el caṕıtulo, e incluyen
una detallada presentación, algo distinta de la nuestra, del hashing perfecto. Navarro [Nav16,
sec. 4.5.3] describe una construcción de hashing perfecto más sofisticada, que requiere menos
espacio de almacenamiento.

Lee et al. [LTCT05, cap. 11] dedican un caṕıtulo a algoritmos aleatorizados y probabiĺısti-
cos. Si bien la parte de conceptos básicos es débil, incluyen varios problemas interesantes
de mediana complejidad, como encontrar el par de puntos más cercanos entre n en tiempo
esperado O(n) usando Las Vegas (los algoritmos determińısticos son O(n log n)), una va-
riante del algoritmo de Miller-Rabin para verificar primalidad, búsqueda en texto usando
Monte Carlo, y un algoritmo Las Vegas de tiempo esperado O(n+ e) para encontrar el árbol
cobertor mı́nimo en un grafo de n nodos y e aristas. Kleinberg y Tardos [KT06, cap. 13]
también describen problemas de cierta complejidad, como encontrar el corte mı́nimo de un
grafo con un algoritmo Monte Carlo, algoritmos en ĺınea y aproximados aleatorizados (donde
se puede conseguir, por ejemplo, ser O(log k) competitivo en promedio para el paginado),
nuevamente el par de puntos más cercano, y varios problemas de algoritmos distribuidos que
la aleatorización simplifica notablemente. El libro de Motwani y Raghavan [MR95] es sin
duda la referencia más completa para algoritmos probabiĺısticos y aleatorizados, incluyendo
problemas de geometŕıa, grafos y teoŕıa de números, y algoritmos aproximados, paralelos y
en ĺınea.

Otras fuentes online de interés:
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jeffe.cs.illinois.edu/teaching/algorithms/notes/09-nutsbolts.pdf

www.cs.cornell.edu/courses/cs4820/2010sp/handouts/MillerRabin.pdf

jeffe.cs.illinois.edu/teaching/algorithms/notes/10-treaps.pdf

www.cs.cmu.edu/afs/cs/academic/class/15210-s15/www/lectures/bst-notes.pdf

www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/13RandomizedAlgorithms.pdf

www.cse.iitk.ac.in/users/sbaswana/randomized-algo.html

www.cs.ubc.ca/~nickhar/W12

www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf

www.youtube.com/watch?v=2g9OSRKJuzM

www.youtube.com/watch?v=z0lJ2k0sl1g
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Caṕıtulo 7

Algoritmos Aproximados

Se llaman problemas de decisión a aquellos en los que debe responderse śı o no frente
a un input dado. Los problemas de decisión NP-completos son aquellos que, hasta donde
sabemos, no se pueden resolver en tiempo polinomial en computadores realistas, sino que
requieren de una Máquina de Turing no determińıstica, la cual “adivina” la respuesta correcta
y luego sólo debemos verificar que lo es. Dicho de otro modo, las únicas soluciones conocidas
(y probablemente las únicas existentes) para problemas NP-completos en un computador
realista requieren tiempo exponencial en el tamaño de la entrada.

Los problemas de optimización son aquellos en los cuales hay que construir un objeto
que maximiza o minimiza una determinada función. Por ejemplo, dado un grafo, encontrar
un subgrafo maximal que sea un clique (es decir, que todos los nodos estén conectados con
todos). Los problemas de optimización suelen estar relacionados con problemas de decisión.
Por ejemplo, el problema de decisión CLIQUE es, dado un grafo G y un número k, determinar
si G tiene o no un clique de tamaño k. Es fácil ver que, si podemos resolver el problema de
decisión en tiempo polinomial T , también podemos resolver el problema de optimización en
tiempo O(T · log |G|) mediante búsqueda binaria, el cual también es polinomial en el tamaño
del input (que es |G|). A la inversa, es trivial resolver el problema de decisión si tenemos una
solución al problema de optimización.

Por ello, podemos hablar en general de problemas de optimización NP-completos, es
decir, para los cuales no tenemos esperanza de encontrar una solución de tiempo polinomial.
Los algoritmos aproximados ofrecen una salida que puede ser útil en muchos casos reales:
encuentran en tiempo polinomial una solución cuya “distancia” multiplicativa a la solución
óptima puede garantizarse. Más formalmente, un algoritmo A para resolver un problema de
maximización es una ρ(n)-aproximación si

∀n, máx
I,|I|=n

SOPT (I)

SA(I)
≤ ρ(n),

donde SOPT (I) es el valor de la solución óptima para el input I, y SA(I) es el valor de la
solución que entrega el algoritmo A para el input I. Similarmente, para un algoritmo de
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minimización debe cumplirse

∀n, máx
I,|I|=n

SA(I)

SOPT (I)
≤ ρ(n).

Veremos que, con esta óptica, no todos problemas NP-completos (en su versión de opti-
mización) son igualmente intratables. Algunos resultan ser aproximables por una constante,
por ejemplo ρ(n) = 2, mientras que otros son aproximables por una función que empeora con
n, por ejemplo ρ(n) = log n. También veremos que otros problemas no son aproximables en
absoluto. Finalmente, veremos que algunos problemas admiten lo que se llama un esquema
de aproximación polinomial, en el cual se le entrega un input adicional ϵ, tan pequeño como
se desee, y el algoritmo produce una (1 + ϵ)-aproximación. El costo del algoritmo debe ser
polinomial en n, pero podŕıa ser exponencial en 1

ϵ
, por ejemplo podŕıa ser O(n2/ϵ). Mejor

aún es un esquema de aproximación completamente polinomial, en el cual el costo también
debe ser polinomial en 1

ϵ
, por ejemplo O(n

2

ϵ
).

7.1. Recubrimiento de Vértices

Un recubrimiento de vértices de un grafo G(V,E) es un subconjunto de nodos tal que
toda arista incide en algún nodo elegido. Es decir, es un V ′ ⊆ V , tal que para toda arista
(u, v) ∈ E, se tiene que u ∈ V ′ ó v ∈ V ′ (o ambos). El problema de decisión de decir si G
tiene un recubrimiento V ′ de determinado tamaño k, es NP-completo. En el problema de
optimización, se desea encontrar un recubrimiento de vértices de tamaño mı́nimo.

7.1.1. Vértices sin Pesos

En la versión simple del problema, los vértices son todos equivalentes, y entonces se
desea minimizar |V ′|. Podemos mostrar fácilmente cómo construir una 2-aproximación a
este problema. Comencemos con V ′ = ∅ y vayamos extrayendo una a una las aristas de
E. Por cada (u, v) que extraigamos, agreguemos {u, v} a V ′. Esta arista estará entonces
cubierta, pues ambos extremos están en V ′ (bastaŕıa con uno solo). Incluso, cualquier otra
arista de E que incida en los nodos u ó v también estará cubierta, por lo cual también las
eliminamos de E. Después volvemos a sacar una arista de las que restan en E, metemos
ambos nodos en V ′, y repetimos el proceso hasta que E sea vaćıo.

Está claro que el conjunto V ′ resultante es un recubrimiento de vértices, pues toda arista
que se sacó de E estaba cubierta por algún nodo de V ′. Para ver que además su tamaño
no puede ser más que el doble del óptimo, notemos que, cuando metemos u y v en V ′ la
primera vez, alguno de los dos tiene que estar en cualquier recubrimiento óptimo, pues si
no la arista (u, v) no estaŕıa cubierta. Es decir, por cada dos nodos que metemos en V ′,
el algoritmo óptimo tiene que haber metido al menos uno. Dado que luego se eliminan las
aristas que inciden en u ó v, todos los pares (u, v) cuyos extremos incluimos en V ′ son de
nodos disjuntos, por lo cual el argumento aplica individualmente a cada par: de cada par, el
algoritmo óptimo debe meter un nodo distinto en su solución. Se sigue que nuestro algoritmo
es una 2-aproximación. Por supuesto, es de tiempo polinomial.
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7.1.2. Vértices con Pesos

Una variante más sofisticada le asigna costos c(v) a los nodos v ∈ V , y se busca un V ′ que
minimice

∑
v∈V ′ c(v). Nuevamente, es posible obtener una 2-aproximación, pero la solución

es bastante más sofisticada.
Comencemos por expresar este problema de minimización como un problema de progra-

mación entera. Esta es una técnica muy fruct́ıfera para encontrar buenas aproximaciones.
Tendremos una variable x(v) para cada v ∈ V , donde x(v) = 0 indicará que v ̸∈ V ′ y
x(v) = 1 que v ∈ V ′. Lo que queremos minimizar es entonces

∑
v∈V c(v) ·x(v). La restricción

de que toda arista esté cubierta la expresaremos como x(u)+x(v) ≥ 1 para todo (u, v) ∈ E.
El problema resultante se ve entonces aśı:

Minimizar
∑
v∈V

c(v) · x(v)

Sujeto a

x(u) + x(v) ≥ 1, ∀(u, v) ∈ E

x(v) ∈ {0, 1}, ∀v ∈ V

La última condición hace que este sea un problema de programación entera y no lineal.
Lamentablemente la optimización entera también es NP-completa, por lo cual no parece que
hayamos avanzado mucho. Sin embargo, si cambiamos la última restricción por

0 ≤ x(v) ≤ 1, ∀v ∈ V,

tendremos un problema de programación lineal, que śı se puede resolver en tiempo polinomial.
El problema, claro, es que la solución a este problema le asignará a cada v ∈ V un valor

real x(v) ∈ [0, 1], lo cual no podemos usar directamente para modelar la solución a nuestro
problema original de recubrimiento de vértices. Lo que haremos será algo intuitivamente
razonable: diremos que v ∈ V ′ sii x(v) ≥ 0,5.

Veamos primero que esto entrega un recubrimiento de vértices. Para cada (u, v) ∈ E,
debe cumplirse que x(u)+x(v) ≥ 1, por lo cual alguna de las dos debe ser ≥ 0,5, y entonces
será incluida en V ′. Por lo tanto, nuestro procedimiento entrega una solución válida.

Segundo, veamos que la solución es una 2-aproximación. Para ello, observemos que la
solución al problema de programación lineal no puede ser más costosa que la de programación
entera, dado que permite un superconjunto de soluciones. Y ahora, observemos que nuestra
solución cuesta a lo sumo el doble que la de programación lineal. En efecto, lo que hacemos
es equivalente a que, si x(v) < 0,5, entonces asignamos x(v)← 0 (lo cual reduce el costo), y
que, si x(v) ≥ 0,5, entonces asignamos x(v)← 1 (lo cual a lo sumo duplica el costo).

7.2. El Viajante de Comercio

Otro famoso problema NP-completo es el de determinar si un grafo dirigido G(V,E) tiene
un circuito hamiltoniano. Este es un camino que pasa por cada nodo exactamente una vez
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y luego vuelve al nodo original. En la versión de optimización, el grafo G es completo (es
decir, E = V × V ) pero las aristas tienen un costo no negativo c(u, v). Se busca entonces
un circuito hamiltoniano que minimice la suma de los costos de sus aristas. El nombre del
problema alude a un viajante que deba visitar cada ciudad (nodo) exactamente una vez y
volver a la suya.

7.2.1. Caso General

Veremos primero que este problema es inaproximable. La forma de demostrar esto es ver
que, si existiera una ρ-aproximación para el problema del viajante de comercio, entonces
podŕıamos resolver el problema del circuito hamiltoniano en tiempo polinomial. Lograr esto
con cualquier problema NP-completo implica inmediatamente que se puede lograr para todos,
lo cual se considera altamente improbable (y el concepto de aproximación pierde sentido).

Supongamos que existe tal ρ-aproximación. Consideremos un problema de circuito hamil-
toniano G(V,E). A partir de él, diseñaremos el siguiente problema de viajante de comercio:
el grafo G′(V ′, E ′) es el grafo completo donde V ′ = V , y los costos de las aristas se definen
de la siguiente manera: si (u, v) ∈ E (en el grafo original), entonces c(u, v) = 1 (en el grafo
del viajante de comercio); si no, entonces c(u, v) = ρ · |V |+ 1.

La intuición es que hacemos que pasar por las aristas que existen en G sea muy barato
(costo 1), mientras que pasar por las que no existen es muy caro (costo ρ · |V | + 1). La
diferencia es tanta, que incluso una ρ-aproximación es capaz de distinguir si existe o no un
circuito que use solamente las aristas permitidas (las de E).

Concretamente, note que todo circuito tiene exactamente |V | aristas. Si existe un circuito
hamiltoniano en G, entonces ese circuito tiene costo total |V | en G′ (pues todas las aristas
son de costo 1). Esto significa que una ρ-aproximación entregará una solución de costo a lo
sumo ρ · |V |. En cambio, si no existe un circuito hamiltoniano en G, entonces todo circuito
en G′ debe usar al menos una arista que no está en E, la cual tiene costo ρ · |V |+ 1. Por lo
tanto el costo de incluso la mejor solución es mayor que ρ · |V |. Esto significa que, viendo
el costo que obtiene una ρ-aproximación, que corre en tiempo polinomial, somos capaces de
decir si G tiene o no un circuito hamiltoniano, y hemos resuelto un problema NP-completo
en tiempo polinomial.

7.2.2. Costos Métricos

En cambio, es posible obtener una 2-aproximación para este problema en el caso particu-
lar (pero plausible) de que los costos en E satisfagan los axiomas de una métrica: c(u, u) = 0
(reflexividad), c(u, v) = c(v, u) (simetŕıa), y c(u, v)+ c(v, w) ≥ c(u,w) (desigualdad triangu-
lar). Incluso existe una 1,5-aproximación (ver las referencias al final del caṕıtulo).

Podemos obtener una 2-aproximación de la siguiente forma. Comencemos generando un
árbol cobertor mı́nimo T de G. El costo c(T ) de T (es decir, la suma de los costos de sus
aristas) tiene que ser menor que el de cualquier circuito hamiltoniano, pues si al circuito se
le saca una arista el resultado es un camino que toca todos los nodos, y eso también es un
árbol cobertor de G. Por lo tanto, si c∗ es el costo óptimo del viajante de comercio, tenemos
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que c(T ) ≤ c∗. Note que no importa la dirección de las aristas para calcular su costo porque
estamos suponiendo simetŕıa, c(u, v) = c(v, u).

Claro que T no es el circuito que necesitamos, sino un árbol. Obtendremos un circuito C
a partir de T mediante recorrerlo en orden DFS partiendo de cualquiera de sus nodos. Como
cada arista de T se recorre dos veces en C (una al ir y otra al volver del DFS), tenemos que
c(C) = 2 · c(T ) (nuevamente estamos usando la simetŕıa de los costos).

Si bien C es un circuito que incluye a todos los nodos de G, resulta que puede pasar
varias veces por un mismo nodo (todos los nodos internos del recorrido DFS), por lo cual no
es aún un circuito hamiltoniano. Para convertirlo en uno, escribiremos la lista de los nodos
que va tocando el circuito y eliminaremos cada nodo que ya hayamos visto antes en la lista.
Aśı, si la lista dice u — v — w y decidimos eliminar a v, la lista de aristas quedará u — w,
entendiéndose que en el camino hemos reemplazado las aristas (u, v) y (v, w) por la arista
(u,w). Debido a la desigualdad triangular, estos cambios no incrementan el costo c(C).

Una vez que hemos eliminado los nodos repetidos, el circuito resultante C ′ es hamilto-
niano, y su costo está acotado por c(C ′) ≤ c(C) ≤ 2 · c(T ) ≤ 2 · c∗, con lo cual tenemos una
2-aproximación. Todos los algoritmos que hemos usado son de tiempo polinomial.

7.3. Recubrimiento de Conjuntos

Suponga que tiene conjuntos S1, . . . , Sr, con traslape para que sea interesante, y consi-
deremos su unión, S = ∪ri=1Si, llamando n = |S|. El problema de decisión NP-completo de
recubrimiento de conjuntos es, dado además un k, determinar si hay k de esos conjuntos
Si cuya unión es S. El problema de optimización es encontrar el mı́nimo k. Esto modela
problemas como comprar el mı́nimo número de discos que incluyen todas las canciones de
un cierto artista.

Veremos que este problema admite una ln(n)-aproximación. La técnica es un sencillo
enfoque avaro: Elegimos primero el Si que cubra más elementos de S (al comienzo, esto
es simplemente el mayor conjunto Si). Luego sacamos sus elementos de S, S ← S − Si, e
iteramos. Claramente esto da una solución de tiempo polinomial.

Para ver que esta solución es una ln(n)-aproximación, consideremos que k es el tamaño de
la solución óptima. Como el algoritmo óptimo cubre S con k conjuntos Si, al menos uno de
ellos debe ser de tamaño ≥ n

k
. Como nuestro algoritmo parte eligiendo el máximo conjunto,

digamos Sx, este conjunto tiene tamaño al menos n
k
. Eso significa que, luego de elegir el

primer conjunto, nuestro algoritmo deja S de tamaño a lo más n(1− 1
k
).

Lo que resta de S, S−Sx, también es cubierto con los k conjuntos elegidos originalmente
por el óptimo, por lo tanto alguno de ellos debe cubrir al menos una fracción de 1

k
de S−Sx.

Nuevamente, nuestra aproximación elegirá entonces en el segundo paso un conjunto que
cubra al menos esa fracción de S − Sx, por lo cual el nuevo tamaño del conjunto restante S
será a lo más n(1− 1

k
)2.

Siguiendo este razonamiento, luego dem iteraciones, S será de tamaño a lo más n(1− 1
k
)m,
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y para que esta cota llegue a 1 (con lo cual el algoritmo termina en un paso más), basta que

m = − log n

log(1− 1
k
)

=
log n

log 1
1− 1

k

≤ k lnn,

donde al final usamos que ln(1+ϵ) ≥ ϵ
1+ϵ

. Por lo tanto, el algoritmo aproximado no elige más
de 1 + k lnn conjuntos. Deteniéndonos en m = k ln n

k
, nos quedan k elementos por cubrir,

los que necesitan a lo sumo k pasos más. Esto nos da una cota levemente mejor, k(1+ ln n
k
).

7.4. Llenar la Mochila

Finalmente, veremos un esquema de aproximación completamente polinomial. El proble-
ma de la mochila (también llamado suma de subconjuntos), parte de un multiconjunto de
enteros positivos X = {x1, . . . , xn}, y un tope t. En su versión de decisión, se pregunta si
es posible encontrar un subconjunto de X cuya suma sea exactamente t. En la versión de
optimización, queremos un conjunto X ′ ⊆ X de suma máxima pero sin exceder t (la analoǵıa
es que se llena una mochila lo más posible sin exceder su capacidad).

Partamos con una solución exacta, aunque de tiempo exponencial. En el paso i, habremos
generado una lista Li que contiene, en forma creciente, todos los pesos que se pueden sumar
con subconjuntos de {x1, . . . , xi}, pero sin exceder t. Claramente el mayor elemento de Ln es
la solución óptima. Inicialmente L0 = {0}. Luego, dado Li−1, podemos generar Li mediante
(a) generar L′

i−1 = {v + xi, v ∈ Li−1}, es decir, agregar xi a todas las soluciones de Li−1; (b)
unir Li ← Li−1 ∪ L′

i−1 eliminando repetidos; (c) eliminar los valores de Li mayores a t (los
tres pasos se pueden hacer simultáneamente en dos pasadas secuenciales simultáneas sobre
Li−1). La intuición es que, en el paso i, podemos o no usar xi, por lo tanto consideramos
agregarlo y no agregarlo a cada solución previa.

En esta solución exacta, el largo de Li puede llegar a ser 2i, por lo que el costo total del
algoritmo es O(2n). Generaremos ahora una solución aproximada de tiempo polinomial.

La idea es que eliminaremos valores consecutivos de cada Li que sean demasiado cercanos.
Diremos que si z < y son dos valores en Li, entonces z representa y si

y

1 + δ
≤ z < y,

donde δ es un parámetro que definiremos luego. Es decir, z es menor que y pero no está tan
lejos. Cuando encontremos una situación aśı, eliminaremos y, dado que z está suficientemente
cerca. Note que no es buena idea eliminar z en vez de y, pues podŕıa ser que y exceda t y
nos quedemos sin ninguna de las dos.

Modificaremos el algoritmo exacto de manera que, luego de producir cada nueva lista Li,
le hagamos una pasada eliminando elementos que pueden ser representados por un elemento
previo. Si Li = {l1, . . . , lr}, no podemos eliminar l1, pero tomaremos last ← l1 como un
elemento que puede representar a otros. Aśı, eliminaremos l2, l3, . . . hasta que encontremos
un lk > (1 + δ) · last, el cual ya no puede ser representado con last. Entonces lk será el
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siguiente elemento que sobrevive a la purga. Tomaremos last ← lk y continuaremos de la
misma forma hasta procesar toda la lista Li.

Con esta purga, el algoritmo resulta ser aproximado, ya que podemos perder el valor
máximo de Ln, pero éste estará representado por algún otro valor algo menor. ¿Cuánto
menor? Supongamos que el máximo z∗ ya está presente en L1, pero es eliminado porque
es representado por un valor menor, z1 ≥ z∗

1+δ
. En L2, z1 es a su vez eliminado porque es

representado por otro valor menor, z2 ≥ z1
1+δ

, y aśı. Al final, tendremos en Ln un valor

zn ≥ z∗

(1+δ)n
. Como lo que deseamos es una (1 + ϵ)-aproximación para un ϵ dado, queremos

garantizar que zn ≥ z∗

1+ϵ
, por lo que debe cumplirse que (1 + δ)n ≤ 1 + ϵ. Usamos esta

desigualdad para definir δ precisamente como δ = (1 + ϵ)1/n − 1.

La pregunta final es si, usando este valor de δ, el algoritmo resultante es de tiempo
polinomial. Note que, como el primer valor de cualquier Li es a lo menos 1, cada valor
siguiente en Li luego de la purga es a lo menos (1 + δ) veces mayor que el anterior, y el
último valor es a lo sumo t, tenemos que Li tiene a lo sumo 1 + log1+δ t elementos, es decir,

|Li| ≤ 1 +
log t

log(1 + δ)
= 1 +

n log t

log(1 + ϵ)
.

Como ϵ
1+ϵ
≤ ln(1 + ϵ) ≤ ϵ, esto es |Li| ≤ 1 + (1+ϵ)n ln t

ϵ
= O(n log t

ϵ
). El costo total de las n

iteraciones es entonces O(n
2 log t
ϵ

), lo cual es polinomial tanto en la entrada como en 1
ϵ
.

7.5. Búsqueda Exhaustiva

Antes de terminar, vale la pena hacer notar que un método inteligente de búsqueda
exhaustiva puede encontrar la solución óptima en un tiempo que, si bien es exponencial en
el peor caso, puede resultar mucho menor, incluso práctico, en muchos casos de la vida real.

El método llamado backtracking consiste en construir todas las posibles soluciones, pro-
bando en cada paso de la construcción todas las opciones posibles. Aśı se genera un árbol
virtual donde cada nodo interno es una solución parcial y cada hoja es una solución com-
pleta, y nos quedamos con la hoja óptima. Podemos evitar generar el subárbol de un nodo
cuando detectamos que es imposible obtener una solución válida a partir de las decisiones ya
tomadas. Una sofisticación llamada branch and bound permite también cortar la generación
del subárbol de un nodo interno cuando puede predecir que ninguna hoja de ese subárbol
será competitiva contra la mejor solución generada hasta el momento.

Tomemos nuevamente el problema de la mochila. Podemos almacenar una variable global
con la mejor solución z∗ conocida hasta el momento, y explorar, para cada variable xi, si
la incluimos o no en la solución. Partimos entonces con la solución z∗ = 0, correspondiente
a no incluir ningún xi, e invocamos una función probar(1, t). La función probar(i, p) genera
la mejor solución sumando números de {xi, . . . , xn} sin exceder p. Por lo tanto, prueba no
incluir xi, invocando probar(i+ 1, p), e incluir xi, invocando probar(i+ 1, p− xi). Cada vez
que llegamos a probar(n+ 1, p), si p ≥ 0, recalculamos z∗ ← máx(z∗, t− p).
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Esta recursión realmente genera exhaustivamente todas las 2n soluciones, válidas e inváli-
das. El backtracking puede mejorarse notando que, si invocamos probar(i, p) con p < 0, para
cualquier i, ya no tenemos chance de obtener una solución válida porque hemos excedido
la capacidad t de la mochila. Por lo tanto, podemos abortar la recursión en esos casos, evi-
tando generar grandes subárboles inútiles. La solución resultante de esta poda es similar a
la solución exacta de las listas Li que vimos como preludio a la aproximación. Sin embar-
go, podemos mejorarla más con un enfoque de branch and bound. Por ejemplo, podemos
precalcular todas las sumas Si = xi + . . . + xn, y abortar la búsqueda en probar(i, p) si
t − p + Si ≤ z∗, es decir, ya no tenemos chance de alcanzar el mejor z∗ conocido incluso
agregando todos los xi que tenemos por delante.

Asimismo, la programación dinámica es una forma de acelerar la búsqueda exhaustiva,
cuando puede aplicarse. Para el mismo ejemplo de la mochila, si t no es demasiado grande,
una solución es calcular la matriz M [i, p], que da la mejor solución con {x1, . . . , xi} y tope
p. Por lo tanto, calculamos cada celda M [i, p] ← máx(M [i − 1, p], xi + M [i − 1, p − xi])
(el segundo término sólo si xi ≤ p), M [0, p] ← 0 y M [i, 0] ← 0, en tiempo constante. Aśı
encontramos el óptimo M [n, t] en tiempo O(nt), lo que es exponencial en el tamaño de la
entrada (que es O(n log t)) pero, como se dijo, puede ser aceptable si t no es muy grande.

Finalmente, un enfoque interesante es la kernelización, que busca reducir el input de modo
de aplicar la solución exponencial en algo más pequeño. Un ejemplo simple es determinar si
un grafo tiene un clique de tamaño k. Podemos partir eliminando todos los nodos de grado
menor a k, dado que no pueden participar en esos cliques. Al eliminar nodos, se reduce la
aridad de otros nodos, por lo que se puede seguir iterando hasta obtener un subgrafo con
sólo nodos de grado mayor o igual a k. Finalmente, se aplica un algoritmo exponencial sobre
este grafo (con suerte muy) reducido.

7.6. Ficha Resumen

Conceptos de algoritmos aproximados.

Recubrimiento de vértices: 2-aproximable, sin y con pesos.

Viajante de comercio: 2-aproximable si los costos son métricos, inaproximable si no.

Suma de subconjuntos: log(n)-aproximable.

Llenar la mochila: (1 + ϵ)-aproximable completamente polinomial.

Búsqueda exhaustiva usando branch and bound.

7.7. Material Suplementario

El material de este caṕıtulo está basado casi completamente en Cormen et al. [CLRS01,
cap. 35], excepto por la búsqueda exhaustiva y el análisis del recubrimiento de conjuntos.
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Muchos otros libros contienen material de algoritmos aproximados también. Mehlhorn y
Sanders [MS08, sec. 12.1 y 12.2] ven los problemas de la mochila y de scheduling como
ejemplos de aproximaciones basadas en programación lineal y de algoritmos avaros. Baase
[Baa88, sec. 9.3 a 9.6] presenta varios algoritmos aproximados, incluyendo los problemas de la
mochila, bin packing (una variante de la mochila), y coloreo de grafos. Manber [Man89, sec.
11.5.2] ve recubrimiento de vértices, bin packing, y el viajante de comercio, incluyendo la 1,5-
aproximación (el llamado algoritmo de Christofides). Levitin [Lev07, sec. 12.3] discute con
detalle el viajante de comercio (incluyendo Christofides) y la mochila. Kleinberg y Tardos
[KT06, cap. 11] estudian en detalle los problemas de scheduling, ubicación de servidores,
recubrimiento de conjuntos, recubrimiento de vértices (con otra solución), caminos disjuntos
y mochila (donde los elementos tienen pesos y valores). Se enfocan en detalle en programación
lineal y el método llamado de “pricing” como técnicas generales. Dasgupta et al. [DPV08,
sec. 5.4 y 9.2] explican sucintamente recubrimiento de conjuntos, de vértices, mochila (con
otra solución basada en reescalar los valores y usar programación dinámica), y un interesante
problema de clustering. Finalmente, Lee et al. [LTCT05, cap. 9] estudian con bastante detalle
recubrimiento de vértices, viajante de comercio (y una variante), ubicación de servidores, bin
packing, conjunto independiente maximal, mochila, ruteo en grafos, y problemas relevantes
en bioinformática como alineamiento múltiple y ordenar mediante transposiciones.

Brassard y Bratley [BB88, sec. 6.6], Aho et al. [AHU83, sec. 10.4], Weiss [Wei95, sec.
10.5], Mehlhorn y Sanders [MS08, sec. 12.4] (en menor medida), Sedgewick [Sed92, cap. 44]
(brevemente), Manber [Man89, sec. 11.5.1], y Levitin [Lev07, sec. 12.1 y 12.2] (con bastante
detalle) describen el backtracking y el branch and bound, con variados ejemplos. Los tres
primeros describen también la poda alfa-beta, que es útil especialmente en juegos.

Aho et al. [AHU83, sec. 10.5], Mehlhorn y Sanders [MS08, sec. 12.5 y 12.6], Kleinberg
y Tardos [KT06, cap. 12] y Dasgupta et al. [DPV08, sec. 9.3] describen otras heuŕısticas
para encontrar valores cercanos al óptimo en casos muy complejos, cuando ya no se tiene
esperanza de garantizar una aproximación: búsqueda local, algoritmos evolutivos, y otros.

Finalmente, Lee et al. [LTCT05, sec. 9.12] describen el interesante concepto de NPO-
completitud, que define la jerarqúıa de complejidad para problemas de optimización y per-
mite demostrar que ciertos problemas de optimización son imposibles de aproximar (siempre
que P ̸= NP ). Entre estos problemas se encuentran la versión de optimización de satisfacti-
bilidad, la programación entera, y encontrar el circuito hamiltoniano más caro y más barato
(este último es, precisamente, el problema del viajante de comercio).

Otras fuentes online de interés:

www.cc.gatech.edu/fac/Vijay.Vazirani/book.pdf

www.designofapproxalgs.com/book.pdf

pdfs.semanticscholar.org/4439/63a150ddce5bde1f0e5930971f66d5bffe51.pdf

www.cs.cmu.edu/~avrim/451f12/lectures/lect1106.pdf
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pages.cs.wisc.edu/~shuchi/courses/880-S07/scribe-notes/all-in-one.pdf

www.cs.princeton.edu/~wayne/cs423/lectures/approx-alg-4up.pdf

theory.stanford.edu/~tim/w16/l/l15.pdf .. l17.pdf

www.youtube.com/watch?v=MEz1J9wY2iM

www.youtube.com/watch?v=4q-jmGrmxKs

www.youtube.com/watch?v=zM5MW5NKZJg
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Caṕıtulo 8

Algoritmos Paralelos

Hasta ahora hemos considerado que los algoritmos son secuenciales, es decir, ejecutan una
instrucción tras otra. Desde que la velocidad de los procesadores ha dejado de duplicarse cada
dos años por ĺımites f́ısicos, la Ley de Moore se ha traducido en el incremento del número de
procesadores que pueden trabajar paralelamente. Asimismo, hay cada vez un mayor interés en
usar GPUs (Graphic Processing Units, originalmente diseñadas para procesar instrucciones
gráficas) para implementar soluciones a diversos problemas usando paralelismo masivo tipo
SIMD (Single Instruction, Multiple Data) en procesadores más o menos convencionales.

Si bien los compiladores pueden paralelizar automáticamente algunos programas, no siem-
pre lo logran al máximo. El diseño de algoritmos paralelos requiere, en muchos casos, eliminar
dependencias secuenciales aparentes para poder partir un problema en subproblemas que se
puedan resolver al mismo tiempo.

Si bien existen muchos modelos de computación paralela (multithreaded, distribuida,
sincrónica, etc.) los fundamentos algoŕıtmicos son similares, por lo cual vamos a trabajar
en base a un modelo llamado PRAM (Parallel RAM), que tiene la ventaja de ser sencillo y
dejarnos concentrar en lo algoŕıtmico. Este modelo es cercano a la programación de GPUs.

8.1. El Modelo PRAM

En este modelo tenemos un número arbitrario de procesadores. Todos tienen el mismo
programa, y todos ejecutan la misma instrucción al mismo tiempo, en sincrońıa perfecta.
Trabajan sobre una memoria global compartida. El input se encuentra en esta memoria y el
output se deja ah́ı también.

Una variable especial, pid, entrega un valor distinto según qué procesador la lea: al pro-
cesador i le devuelve i. Esto permite que los procesadores hagan cosas distintas, por ejemplo,
para poner en cero un arreglo A[1..n] teniendo n procesadores (numerados de 1 a n), basta
con que todos ejecuten la instrucción A[pid]← 0. El pid también permite que los procesado-
res tengan variables locales x mediante guardarlas en un arreglo global X[1..n], e interpretar
que x = X[pid] (normalmente hablaremos de variables locales a cada procesador, enten-
diendo esta forma de implementarlas). Finalmente, el pid permite que algunos procesadores
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se abstengan de realizar una acción. Por ejemplo, para poner en 1 las posiciones pares de
nuestro arreglo A, podemos decir if pid mód 2 = 0 then A[pid]← 1. Lo que ocurre en este
caso es que los procesadores que dan falso en la condición se inhabilitan hasta que los demás
terminen de ejecutar el if. No pueden ignorar el if y proseguir con la siguiente instrucción.
Esto debe ser aśı para que todos trabajen sincronizadamente. En una instrucción if-then-
else, algunos se inhabilitan mientras se ejecuta la parte del if y los otros se inhabilitan luego,
cuando los primeros ejecutan la parte del else.

Esto puede llevarse a la recursión también, en la que debe mantenerse la sincronización.
Supongamos que en mergesort(i, j), ejecutada por los procesadores i a j, queremos que
se partan en dos mitades y se invoquen recursivamente en los subarreglos. Podemos decir:
m← ⌊ i+j

2
⌋ y luego: if pid ≤ m then j ← m else i← m+1. Note que m, i y j son variables

locales. Finalmente, todos los procesadores se invocan recursivamente con mergesort(i, j), lo
que hará que la mitad de ellos se aboque al subarreglo izquierdo, [i..m], y la otra mitad al
derecho, [m+ 1..j], si bien continuarán ejecutando exactamente las mismas instrucciones.

El modelo PRAM tiene tres submodelos, según cómo se permite a los procesadores acceder
a la memoria compartida. Los listamos de más a menos restrictivos (un algoritmo en un
modelo más restrictivo es más conveniente, pues requiere menos poder).

EREW (Exclusive Read, Exclusive Write) Dos procesadores no pueden leer ni escribir una
misma celda al mismo tiempo.

CREW (Concurrent Read, Exclusive Write) Dos procesadores pueden leer una misma celda
al mismo tiempo, pero no escribirla.

CRCW (Concurrent Read, Concurrent Write) Dos procesadores pueden leer y escribir una
misma celda al mismo tiempo. Hay submodelos de CRCW según lo que ocurra con
la celda escrita. El más restrictivo es el CRCW común, en que sólo pueden escribir
al mismo tiempo si escriben el mismo valor. Una segunda posibilidad es el CRCW
arbitrario, en que cuando varios escriben una misma celda simultáneamente, lo que
queda escrito es alguno de los valores, elegido arbitrariamente. Existen otros modelos
incluso más convenientes, pero no se toman muy en serio en la práctica.

Un ejemplo donde se hace clara la diferencia entre el poder de EREW y de CREW
es cuando queremos copiar a todas las celdas de un arreglo A[1..n] el valor de A[1]. En
el modelo CREW, podemos simplemente hacer A[pid] ← A[1], en tiempo constante. En el
modelo EREW, en cambio, debemos hacer log n iteraciones donde vamos duplicando el valor:
en el paso ℓ = 0, . . . , (log n)− 1, hacemos if pid ≤ 2ℓ then A[pid+ 2ℓ]← A[pid].

Un ejemplo del poder del modelo CRCW (común) es el algoritmo que encuentra el máxi-

mo en un arreglo A[1..n] usando n(n−1)
2

procesadores en tiempo constante. Llamemos a los
procesadores (i, j), con i < j. Primero, n de estos procesadores inicializan un arreglo R[1..n]
en 1. Entonces, el procesador (i, j) compara A[i] con A[j]. Si A[i] ≤ A[j], escribe R[i]← 0, si
no, escribe R[j]← 0. Luego de esto, sólo el máximo A[k] conserva su celda R[k] = 1 (frente
a un empate, gana el mayor k). Entonces n procesadores miran las celdas de R y el que
encuentra el 1 entrega el ı́ndice k como respuesta.
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8.2. Modelo de Costos

En los algoritmos paralelos importa no sólo el tiempo de ejecución, sino cuántos proce-
sadores necesitamos para lograrlo, es decir, cuán eficientemente usamos los procesadores.

Tendremos n en general como el tamaño del input, y usaremos p para denotar la cantidad
de procesadores. Entonces T (n, p) será el tiempo que toma el algoritmo con un input de
tamaño n y usando p procesadores. El sentido de T (n, 1) será especial: representará el tiempo
del mejor algoritmo secuencial, no el de mi algoritmo usando 1 procesador. Esto importa
para medir cuán bien escala algoritmo paralelo con p. La medida

S(n, p) =
T (n, 1)

T (n, p)

se llama speedup, e indica cuánto se acelera el algoritmo al usar p procesadores (en general
omitiremos la notación O(·) en este caṕıtulo). Como el numerador es el mejor algoritmo
secuencial, evitamos engañarnos con algoritmos paralelos que parezcan mejorar mucho al
usar más procesadores por la mera razón de estar paralelizando un mal algoritmo. Por
ejemplo, es fácil paralelizar bien un algoritmo de sorting cuadrático: cada procesador se
compara con todos, obtiene el número t de valores menores a su celda, y luego escribe su
valor en la posición t+ 1. Con n procesadores, ordenamos en tiempo n, mientras que con 1
procesador nos tomaŕıa n2. El speedup nos daŕıa n, que pareceŕıa muy bueno. Sin embargo,
la idea no es tan buena cuando sabemos que secuencialmente se puede ordenar en tiempo
n log n: usamos n procesadores y el tiempo no baja n veces, sino sólo log n veces. El verdadero
speedup es sólo S(n, n) = log n.

Está claro entonces que S(n, p) ≤ p, pues si con p procesadores obtuviéramos T (n, 1) >
pT (n, p), entonces podŕıamos simular los p procesadores usando uno solo y obtendŕıamos
tiempo p T (n, p), superando al mejor algoritmo secuencial.

Una medida relacionada con el speedup es la eficiencia,

E(n, p) =
S(n, p)

p
=

T (n, 1)

p T (n, p)
,

donde vale que 0 ≤ E(n, p) ≤ 1. La eficiencia indica qué fracción de la capacidad de los
procesadores se está usando (con respecto al mejor algoritmo secuencial). Lo ideal es usar una
fracción constante de la capacidad (que, como ignoraremos la notación O(·), veremos como
eficiencia 1). Por ejemplo, la eficiencia de nuestro algoritmo de ordenamiento es sóloE(n, n) =
logn
n

, sumamente baja: estamos usando demasiados procesadores para la reducción en tiempo
que estamos obteniendo. Lo mismo ocurre con nuestro algoritmo CRCW para encontrar el
máximo: a pesar de que su tiempo es sólo T (n, n2) = 1, su eficiencia es E(n, n2) = n

n2·1 = 1
n
.

En la mayoŕıa de los algoritmos es factible que, si lo diseñé para p procesadores pero tengo
solamente p

k
disponibles, cada procesador haga el trabajo de k procesadores “virtuales”. Aśı,

se obtiene T (n, p
k
) = k T (n, p). Es entonces conveniente diseñar los algoritmos usando todos

los procesadores que se desee, entendiendo que no significa que necesitemos esa cantidad,
sino que en caso de tener menos el tiempo escalará en forma correspondiente. Aśı, cuando
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está claro que el algoritmo escala de esta manera, se suele presentar su tiempo usando dos
medidas:

T (n) (“time”) es el tiempo que demora el algoritmo usando todos los procesadores que
desee. Indica el grado de paralelización que se puede alcanzar: por más que tenga más
procesadores, el tiempo no puede bajar de T (n).

W (n) (“work”) es el trabajo total que realiza el algoritmo, sumando todos los procesa-
dores pero sin contar el tiempo que pasan inhabilitados. Indica el tiempo que demoraŕıa
ejecutar el algoritmo con un solo procesador que simulara a todos. Un algoritmo sólo
puede tener eficiencia máxima si W (n) = T (n, 1).

Los algoritmos que se describen aśı pueden emularse con cualquier cantidad deseada p
de procesadores, en tiempo

T (n, p) = T (n) +
W (n)

p
.

Note que esto significa que no vale la pena usar más de

p∗ =
W (n)

T (n)

procesadores. Con esa cantidad ideal, el tiempo es el mejor posible:

T (n, p∗) = T (n)

y la eficiencia también:

E(n, p∗) =
T (n, 1)

p∗T (n, p∗)
=

T (n, 1)

W (n)

(que es 1 si el algoritmo básico es el mejor posible). Si usamos menos de p∗ procesadores,

la eficiencia sigue siendo alta pero el tiempo T (n, p) aumenta, a W (n)
p

. Si usamos más de p∗

procesadores, el tiempo sigue siendo T (n), pero la eficiencia empieza a decrecer, a T (n,1)
p T (n)

.
El Lema de Brent establece que un algoritmo EREW donde se pueda calcular en tiempo

constante qué procesadores están activos en cada momento, puede siempre expresarse como
T (n) y W (n) y obtener el T (n, p) que vimos para cualquier p. El lema es algo técnico, por
lo cual seguiremos describiendo cómo los algoritmos que vemos permiten hacer esto.

8.3. Sumando un Arreglo

Comenzaremos con un problema muy sencillo que nos permite ilustrar los puntos ante-
riores. Consideremos un arreglo A[1..n], del que tenemos que obtener la suma de todos sus
elementos, S =

∑n
i=1A[i] (podemos usar cualquier otra operación asociativa). Consideremos
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que tenemos n procesadores. Lo que podemos usar, entonces, es una estructura de tipo torneo
de tenis en ⌈log n⌉ pasos, numerados 0 a ⌈log n⌉ − 1. En el paso ℓ, los procesadores ejecutan

if (pid− 1) mód 2ℓ+1 = 0 ∧ pid+ 2ℓ ≤ n then A[pid]← A[pid] + A[pid+ 2ℓ].

Entonces, en el paso ℓ = 0, habremos hecho A[1]← A[1] +A[2], A[3]← A[3] +A[4], A[5]←
A[5]+A[6], A[7]← A[7]+A[8], etc. En el siguiente paso, ℓ = 1, haremos A[1]← A[1]+A[3],
A[5]← A[5] +A[7], etc. En el paso ℓ = 2, haremos A[1]← A[1] +A[5], etc. Es fácil ver que,
cuando terminemos, la suma estará en A[1].

Éste es un algoritmo EREW. Lo hemos descrito para n procesadores, donde toma tiempo
T (n, n) = log n y su eficiencia es E(n, n) = n

n logn
= 1

logn
.

¿Puede mejorarse la eficiencia usando menos procesadores? Si tenemos p procesadores,
cada uno puede primero sumar n

p
números, y luego los p procesadores suman los p números

usando el algoritmo paralelo visto. El tiempo total es T (n, p) = n
p
+ log p. En términos de

orden, esto es equivalente a T (n, p) = n
p
+ log n. Por ello, podemos describir el costo del

algoritmo en forma genérica en términos de tiempo y trabajo: T (n) = log n y W (n) = n
(pues en total se realizan n

2
+ n

4
+ . . . + 1 < 2n sumas). El número ideal de procesadores

para este algoritmo es entonces p∗ = n
logn

, en el cual el tiempo aún será T (n, p∗) = log n y la

eficiencia habrá mejorado a E(n, p∗) = 1.

8.4. Parallel Prefix

Consideremos un operador asociativo +. Dado un arreglo A[1..n], el problema de parallel
prefix es el de reescribir A[i] ←

∑i
j=1A[j]. Esto puede resolverse fácilmente en T (n, 1) = n

mediante hacer, para i = 2, . . . , n, A[i] ← A[i − 1] + A[i]. Pero este algoritmo es intŕınsica-
mente secuencial, ¿puede paralelizarse?

8.4.1. Un método recursivo

Veamos primero una técnica recursiva, que se invocará como pp(1, n). En general, pp(a, b)
calculará el parallel prefix correcto para A[a..b], es decir, A[k] ←

∑k
j=a A[j] para todo a ≤

k ≤ b. Para resolver pp(a, b) con los procesadores numerados a a b, calcularemos m← ⌊a+b
2
⌋.

Los procesadores a am calcularán pp(a,m), mientras que los procesadoresm+1 a b calcularán
pp(m+1, b). Una vez terminadas ambas mitades (que se ejecutan simultáneamente), notamos
que los valores calculados en A[a..m] ya están correctos, mientras que a los que están en
A[m+ 1..b] sólo necesitan que se les haga A[k]← A[m] +A[k] (todos a la vez, en una única
instrucción if pid > m then A[pid]← A[m] + A[pid]).

Éste es un algoritmo CREW, pues al corregir la parte derecha del arreglo todos leen la
misma celda A[m]. ¿Podemos convertirlo en EREW? Śı, y en este caso sin costo (asintótico)
adicional. Calculemos, a la par de A, un arreglo B donde pp(a, b) dejará escrito B[k] = A[b]
para todo a ≤ k ≤ b. Entonces, al volver de las invocaciones pp(a,m) y pp(m+1, b) haremos

if pid > m then A[pid]← B[pid− (m− a+ 1)] + A[pid],
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lo cual es EREW. También, para reestablecer el invariante sobre B, haremos

if pid > m then B[pid]← B[pid− (m− a+ 1)] +B[pid]

if pid < m then B[pid]← B[pid+ (m− a+ 1)]

if pid = m then B[pid]← B[b].

Ahora bien, este algoritmo tiene tiempo T (n, n) = log n y eficiencia E(n, n) = 1
logn

.
Hemos logrado paralelizar la solución, pero ¿podemos mejorar la eficiencia, como lo hicimos
para sumar n elementos? Esta vez no podemos porque, si bien T (n) = log n, el trabajo que
se hace es W (n) = n log n. Esto se deduce de que, para una invocación de pp de tamaño n,
el trabajo es t(n) = 2 t(n

2
) + n, este último n para corregir los valores de la mitad derecha.

Por lo tanto, el número óptimo de procesadores es p∗ = n, con eficiencia E(n, p∗) = 1
logn

.

Dicho de otro modo, no podemos tener eficiencia 1 porque W (n) es mayor que T (n, 1).

8.4.2. Un método más eficiente

Podemos, en cambio, diseñar una paralelización completamente distinta, que śı nos entre-
gará una mejor eficiencia. La idea es que primero realizamos un torneo de tenis “ascendente”,
donde en el paso ℓ cada celda que sea múltiplo de 2ℓ+1 suma a su contenido la que está a
distancia 2ℓ hacia atrás. Ahora un torneo de tenis “descendente” completa el cálculo: cada
celda múltiplo de 2ℓ+1 le agrega su contenido a la que está a distancia 2ℓ hacia adelante.
Concretamente, para ℓ = 0, . . . , ⌈log n⌉ − 1, haremos

if pid mód 2ℓ+1 = 0 ∧ pid > 2ℓ then A[pid]← A[pid− 2ℓ] + A[pid]

y luego, para ℓ = ⌈log n⌉ − 1, . . . , 0, haremos

if pid mód 2ℓ+1 = 0 ∧ pid ≤ n− 2ℓ then A[pid+ 2ℓ]← A[pid] + A[pid+ 2ℓ].

El algoritmo funciona porque, al terminar la fase ascendente, las celdas que son múltiplo
de 2ℓ (y no de 2ℓ+1) quedan sumadas con las 2ℓ − 1 celdas anteriores. Luego, en la fase
descendente, se les suma la celda a distancia 2ℓ hacia atrás, la cual es múltiplo de 2ℓ+1 y, por
hipótesis inductiva, ya tiene su valor correcto calculado.

Consideremos la iteración ascendente y n = 8. En el paso ℓ = 0, haremos A[2] ←
A[1] + A[2], A[4] ← A[3] + A[4], A[6] ← A[5] + A[6], y A[8] ← A[7] + A[8]. En el paso
ℓ = 1 haremos A[4] ← A[2] + A[4] y A[8] ← A[6] + A[8]. En el paso ℓ = 2 haremos
A[8] ← A[4] + A[8]. Ahora la fase descendente comienza con ℓ = 2, en que no hace nada.
Con ℓ = 1 hace A[6]← A[4] +A[6]. Con ℓ = 0 hace A[3]← A[2] +A[3], A[5]← A[4] +A[5],
y A[7]← A[6] + A[7]. Puede verificarse que las sumas se han realizado correctamente.

Este algoritmo es EREW, con T (n) = log n y W (n) = n. Se puede correr con p∗ = n
logn

procesadores y obtener tiempo T (n, p∗) = log n y eficiencia E(n, p∗) = 1, mediante hacer que
cada procesador se encargue de n

p∗
celdas consecutivas de A.
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8.5. List Ranking

Suponga que tiene una lista implementada en un arreglo A[1..n], es decir, cada elemento
A[i] tiene indicado en N [i] cuál es su siguiente elemento, con el último elemento de la lista
indicado como N [i] = 0. Nos gustaŕıa poner el arreglo A en orden lineal, pero para ello
necesitamos saber cuál es su posición. Decimos que el rank de una posición i es su distancia
al final de la lista. Si conseguimos calcular todos los ranks en un arreglo R, entonces podremos
poner A en orden lineal mediante simplemente A[n+ 1−R[pid]]← A[pid].

Pero ¿cómo calcular el rank de todos los elementos? Es fácil hacerlo secuencialmente,
entrando en la lista recursivamente hasta hallar el último elemento y luego ir asignando los
ranks en forma creciente a la vuelta de la recursión. Pero ¿puede paralelizarse?

Procederemos en log n iteraciones. En el paso ℓ, todos los elementos a distancia ≤ 2ℓ+1

del final de la lista descubrirán su rank, y en vez de apuntar al siguiente de la lista, quedarán
apuntando en N al elemento 2ℓ+1 posiciones hacia adelante. Para ello, inicializaremos R con
if N [pid] = 0 then R[pid]← 1 else R[pid]← 0. Luego haremos, para ℓ = 0, . . . , ⌈log n⌉− 1,

if N [pid] ̸= 0 ∧ R[N [pid]] ̸= 0 then R[pid]← R[N [pid]] + 2ℓ

if N [pid] ̸= 0 then N [pid]← N [N [pid]].

Consideremos la lista 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0 (identificando los
elementos con sus ranks, poniendo en bold los elementos que ya conocen sus ranks, y tomando
el 0 como nulo). Al inicializarse, sólo el 1 conoce su rank. Luego de ejecutar para ℓ = 0,
pasamos a 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0. Sin embargo, al hacer que N apunte
dos posiciones hacia adelante, nos quedan en la práctica dos listas, 8 → 6 → 4 → 2 → 0 y
7→ 5→ 3→ 1→ 0. Al ejecutar para ℓ = 1 aprendemos nuevos ranks: 8→ 6→ 4→ 2→ 0
y 7 → 5 → 3 → 1 → 0. Al doblar N nuevamente, nos quedan cuadro listas, 8 → 4 → 0,
6→ 2→ 0, 7→ 3→ 0, y 5→ 1→ 0. En la última iteración, para ℓ = 2, se aprenden todos
los ranks que faltan.

El algoritmo resultante es EREW, con T (n) = log n y W (n) = n log n, por lo que no
puede lograrse eficiencia 1 mediante reducir la cantidad de procesadores.

8.6. Tour Euleriano

Aśı como el list ranking es una forma de escribir una lista en forma lineal en un arreglo,
el tour euleriano es una forma de hacerlo para árboles (consideramos árboles en el sentido
de grafos, es decir grafos no dirigidos, conexos y aćıclicos). Un tour euleriano es un recorrido
en profunidad del árbol que pasa por todos sus nodos, listando cada arista dos veces (una
de ida y una de vuelta del recorrido). Es muy sencillo hacerlo con un recorrido DFS a partir
de cualquier nodo, en tiempo T (n, 1) = n, pero ¿es posible paralelizarlo?

Consideremos la siguiente representación del árbol. Cada nodo i tiene una lista enlazada
de las aristas que inciden en él. El puntero a la lista es E(i), y cada elemento de la lista
corresponde a una arista (i, j) para algún nodo j. La lista termina con el puntero 0. Para
cada arista (i, j), next(i, j) es el siguiente elemento de la lista de i. Asimismo, como las
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aristas no son dirigidas, la (i, j) también está representada como (j, i) en la lista del nodo j.
Supondremos que existen punteros directos entre las dos orientaciones de cada arista.

Usaremos las dos notaciones de la misma arista, (i, j) y (j, i), para denotar en qué direc-
ción las recorre el tour euleriano (de i hacia j en el primer caso, de j hacia i en el segundo).
Aśı, podemos pensarlas como dos aristas dirigidas distintas. Es posible determinar, en para-
lelo, cuál será la arista que sigue a cualquier arista dirigida (i, j) en el tour euleriano. A esta
siguiente arista la llamaremos nextTour(i, j) y se cumple que

nextTour(i, j) =

{
next(j, i), si next(i, j) ̸= 0
E(j), si no.

Nótese que la expresión efectivamente trata a la lista de aristas que inciden en j como si
fuera circular (si next(j, i) es la última, volvemos al comienzo con E(j)). Aśı, nextTour(i, j)
nos da la arista de j que sigue a (j, i) en su lista, y recorre todos los otros vecinos de j
antes de volver a entregar (j, i). Si j es una hoja, el resultado es (j, i) inmediatamente. Aśı,
nextTour(i, j) nos da un tour euleriano de todo el subárbol que parte en el nodo j y termina
con la arista (j, i), que es la misma (i, j) con la que entramos pero en dirección opuesta.

Si tenemos, entonces, a todas las aristas (i, j) en un arreglo, podemos ejecutar un algo-
ritmo de list ranking para determinar en qué posición del tour ubicar a cada arista (i, j).
Para ello, primero inicializamos N [k] ← nextTour(i, j), donde k representa la arista (i, j).
El tour es circular: podemos partir de cualquier arista (i, j), poniendo su celda N [k]← 0, y
tendremos el tour que parte en (j, i) y termina luego de volver por (i, j). El costo de construir
el tour euleriano es entonces igual al de hacer list ranking.

8.7. Ordenamiento

Veamos ahora otra primitiva importante: ordenar un arreglo A[1..n]. Veremos cómo adap-
tar MergeSort. La idea será particionar el arreglo por la mitad y ordenar recursivamente las
dos mitades en paralelo. La parte compleja es entonces cómo hacer la mezcla de las dos
mitades ya ordenadas, A1 = A[1..n

2
] y A2 = A[n

2
+ 1..n].

El mecanismo secuencial de mezclado no parece fácil de paralelizar, pero hay en realidad
varias formas de hacerlo. Veremos dos.

8.7.1. Un algoritmo EREW

Una particularmente elegante es la siguiente. La mitad de los n procesadores se dedicará
a mezclar las posiciones pares de A1 y A2, dejando el resultado en P . La otra mitad mezclará
las posiciones impares y dejará el resultado en I. Este mezclado se hará recursivamente. Una
vez que tengamos P e I, la mezcla de ambas es sumamente simple: I[1] es el menor de los
dos mı́nimos A1[1] y A2[1], por lo que se ubica en A[1]. Luego, para i ≥ 1, los elementos P [i]
e I[i + 1] deben ser escritos en A[2i..2i + 1], en el orden que les corresponda (es decir, los
comparamos y los escribimos).

140



La razón de esto es la siguiente: x = P [i] es el i-ésimo elemento de la mezcla de los
elementos pares de las secuencias originales. Por lo tanto, x es mayor que otros i−1 de aquellos
elementos pares. Pero cada uno de aquellos elementos pares, incluido x, estaba precedido de
un elemento impar menor, por lo cual x también es mayor que i elementos impares. Por lo
tanto, la posición de x en la secuencia completa mezclada es > (i− 1)+ (i) = 2i− 1. Con un
razonamiento similar, y = I[i+1] es mayor que i elementos impares de la secuencia original,
y que i − 1 elementos pares (no i + 1, pues los dos primeros impares no están precedidos
de pares), por lo cual la posición de y en la secuencia mezclada es > 2i − 1. Es decir, x e
y deben ubicarse a partir de la posición 2i de A. Como los siguientes elementos, P [i + 1] e
I[i+2], deberán ubicarse a partir de la posición 2i+2, considerando todas las posiciones, x
e y sólo pueden posicionarse en A[2i..2i+ 1].

El algoritmo merge(1, n) procede entonces de la siguiente forma. Primero, cada procesa-
dor i se encarga de ubicar A[i] en el lugar que le corresponde (reutilizamos A1 para P y A2

para I):

if pid ≤
⌊n
2

⌋
then b← 0; t←

⌊n
2

⌋
else b←

⌊n
2

⌋
; t← n

if pid− b mód 2 = 0 then d←
⌊
b

2

⌋
+

⌊
pid− b

2

⌋
else d← b+

⌊
n− b

2

⌋
+

⌈
pid− b

2

⌉
A[d]← A[pid],

luego se invoca recursivamente como merge(b, t), y finalmente n
2
procesadores se encargan

cada uno de comparar dos celdas, A[i] y A[⌊n
2
⌋+ i+1], y ubicarlas ordenadas en A[2i..2i+1]

(más un tratamiento especial para escribir A[1]← A[⌊n
2
⌋+1] y, si n es par, A[n]← A[⌊n

2
⌋]).

La recursión termina cuando los arreglos son de tamaño 1, como siempre.
El algoritmo de mezclado resultante es EREW, de tiempo T (n, n) = log n. El Merge-

Sort consiste de log n invocaciones recursivas, cada una con su mezclado, por lo cual tiene
T (n, n) = log2 n y E(n, n) = 1

logn
.

El algoritmo se puede correr con menos procesadores, pero la eficiencia no aumentará
significativamente porque realiza trabajo n log2 n. Ejecutado con p procesadores, podemos
repartir la tarea de mezclado de manera que cada procesador se encargue primero de dis-
tribuir n

p
celdas en sus posiciones según su paridad, y a la vuelta de la recursión (cada una

con n
2
elementos y p

2
procesadores) cada procesador se encargue de ubicar n

2p
pares en su

posición final. La recursión termina cuando nos queda 1 procesador, en cuyo caso se mezcla
secuencialmente en tiempo n

p
. El tiempo total de mezclado es entonces n

p
log p. El ordena-

miento completo tiene entonces tiempo T (n, p) = n
p
log n log p, y la eficiencia será entonces

E(n, p) = 1
log p

.

8.7.2. Un algoritmo CREW con mejor eficiencia

Consideremos una forma distinta de mezclar. Cada celda A2[i] estará a cargo de un
procesador. Éste realizará una búsqueda binaria de A2[i] en A1 (las igualdades deben des-
empatarse en forma consistente, por ejemplo, poniendo antes a los elementos de A1, lo que
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además nos da un ordenamiento estable). Digamos que la búsqueda binaria arroja que exis-
ten p elementos menores que A2[i] en A1. Entonces podemos copiar A2[i] en su posición final,
A[i+ p]← A2[i].

Estas n
2
búsquedas binarias ocurren en paralelo para todos los elementos de A2, y se

hacen otras n
2
búsquedas análogas en A2, para los elementos de A1. Luego de ellas, cada

procesador escribe su celda en la posición final.

El resultado es un algoritmo CREW de mezclado que toma tiempo TM(n, n) = log n. El
MergeSort completo requiere entonces tiempo T (n, n) = TM(n, n) · log n = log2 n, y obtiene
una eficiencia E(n, n) = 1

logn
. A pesar de que el algoritmo realiza trabajo n log2 n, veremos

que también podŕıa realizar trabajo n log n, de modo de obtener el mismo tiempo usando
n

logn
procesadores, y aśı mejorando la eficiencia.

Tomemos solamente n
2 logn

procesadores por un momento. Cada uno ahora estará a cargo
de log n celdas consecutivas de A2. Lo que hará será entonces buscar binariamente el último
elemento de su zona en A1. Al final, habremos obtenido las posiciones p1, p2, . . . , pn/(2 logn)
donde cada zona de A2 termina en A1. Por lo tanto, cada procesador i estará a cargo de
mezclar su zona A2[(i − 1) n

2 logn
+ 1..i n

2 logn
], con la zona A1[pi−1 + 1..pi] (con p0 = 0). El

resultado de la mezcla se debe escribir a partir de A[(i − 1) n
2 logn

+ pi−1 + 1]. Alguien debe

también copiar la parte final A1[pn/(2 logn) + 1..n
2
] al final de A.

Todos los procesadores pueden entonces trabajar en paralelo haciendo su mezcla y escri-
biendo en la zona ya predeterminada de A, sin estorbarse. El problema con este esquema
es que la partición de A1 puede ser desbalanceada, tocándole a algunos procesadores más
trabajo que a otros. En el peor caso, algún procesador puede trabajar sobre Θ(n) celdas y
los demás deberán esperarlo.

La solución a esto es que los otros n
2 logn

procesadores particionen A1 en forma regular,
y busquen binariamente la posición que les corresponde en A2, obteniendo las posiciones
q1, q2, . . . , qn/(2 logn). Si ahora unimos las posiciones regulares p′i = i n

2 logn
con las irregulares

pi en A1, obtendremos n
logn

cortes p′′i en A1 donde ningún intervalo es más largo que log n. Si-
milarmente, unimos las posiciones regulares q′i = i n

2 logn
con las irregulares qi para particionar

A2 con n
logn

cortes q′′i . Una vez realizadas las uniones, cada procesador i puede dedicarse a

mezclar el intervalo A1[p
′′
i−1+1..p′′i ] con A2[q

′′
i−1..q

′′
i ], escribiendo a partir de A[p′′i−1+q′′i−1+1],

sin estorbarse y con la garant́ıa de procesar a lo sumo 2 log n celdas entre los dos arreglos.
Algún procesador debe también encargarse mezclar los dos intervalos finales de A1 y A2.

Nos falta resolver el subproblema de cómo unir los conjuntos ordenados pi y p′i, o qi y
q′i. Note que estamos frente a un problema de mezclado similar al que estamos intentando
resolver, con la diferencia de que los conjuntos suman n

logn
elementos, por lo que tenemos

un procesador por cada elemento y podemos mezclarlos usando nuestro método básico para
cuando tenemos un procesador por elemento.

En total, tenemos un algoritmo CREW para ordenar con T (n, n
logn

) = log2 n y E(n, n
logn

) =

1. No es dif́ıcil modificarlo para p < n
logn

procesadores, obteniendo T (n, p) = log n(n
p
+ log n)

y eficiencia 1.
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8.8. Máximo de un Arreglo en CRCW

Vimos que, en el modelo CRCW, se pod́ıa obtener el máximo de un arreglo en tiempo
constante usando n(n−1)

2
procesadores. Diremos que este es el algoritmo de dos pasos. Tiene

un tiempo muy bueno, pero su eficiencia es muy baja, 1
n
¿Es posible mejorar esa eficiencia?

Tratemos de ejecutar algo parecido a este algoritmo con n procesadores. Dividamos el
arreglo en grupos de tamaño k, de manera que tengamos suficientes procesadores para darle
k(k−1)

2
procesadores a cada grupo, aśı éste puede usar el algoritmo de dos pasos.

Al principio, haremos n
2
grupos de 2 elementos. Nos basta un procesador para determinar

el máximo de cada grupo. Ahora nos quedan n
2
máximos, pero seguimos teniendo n procesa-

dores. Esto nos permite definir grupos de tamaño 4, pues tendremos n
8
grupos en total y cada

uno necesitará 4·3
2

= 6 procesadores, de modo que tenemos suficientes. Una vez encontrados
estos n

8
máximos, podremos formar grupos de tamaño 16, pues tendremos n

8·16 = n
128

grupos
y necesitaremos 16·15

2
= 120 procesadores por grupo.

Más formalmente, en la iteración ℓ = 1 tenemos n candidatos a máximo. El tamaño del
grupo es g1 = 2. Veamos que podemos tener gℓ = g2ℓ−1 = 22

ℓ−1
en general. Al comenzar la

iteración ℓ, tenemos

n

g1 · g2 · · · gℓ−1

=
n

21 · 22 · 24 · · · 22ℓ−2 =
n

21+2+4+···+2ℓ−2 =
n

22ℓ−1−1

candidatos, por lo cual podemos formar grupos de tamaño gℓ = 22
ℓ−1

, con lo que en total
tendremos n

g1·g2···gℓ
= n

22ℓ−1
grupos. Cada grupo necesitará gℓ(gℓ−1)

2
< 22

ℓ−1 procesadores. El

número total de procesadores que necesitamos es entonces < n

22ℓ−1
· 22ℓ−1 = n.

Es decir, el número de procesadores por grupo se puede ir elevando al cuadrado en cada
iteración del algoritmo, por lo cual éste termina luego de O(log log n) pasos. Por lo tanto,
conseguimos tiempo T (n, n) = log log n, con eficiencia E(n, n) = 1

log logn
, mucho mejor que 1

n

dado que, usando muchos menos procesadores, tenemos sólo un leve incremento en el tiempo.

8.9. Ficha Resumen

Modelo PRAM y medidas de eficiencia.

Suma (u operadores asociativos) en arreglos: T (n) = log n, W (n) = n EREW.

Parallel prefix: T (n) = log n, W (n) = n EREW.

List ranking: T (n) = log n, W (n) = n log n EREW.

Tour euleriano: T (n) = log n, W (n) = n EREW.

Ordenar: T (n, n) = log2 n y E(n, n) = 1
logn

EREW.

Ordenar: T (n, n
logn

) = log2 n y E(n, n
logn

) = 1 CREW.

Máximo o mı́nimo: T (n, n) = log log n, E(n, n) = 1
log logn

CRCW común.
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8.10. Material Suplementario

Manber [Man89, cap. 12] dedica un caṕıtulo muy elegante a algoritmos en el modelo
PRAM, en el que basamos la mayor parte de nuestro caṕıtulo, exceptuando el MergeSort
paralelo. Tiene un problema más que no cubrimos, sobre sumar dos números binarios en
paralelo. Asimismo, explica el Lema de Brent con algo más de detalle. A partir de la sección
12.4 considera problemas en otros modelos de paralelismo, incluyendo un circuito que ordena
en T (n, n) = log2 n en base al cual presentamos nuestro algoritmo EREW. Sedgewick [Sed92,
cap. 40] describe este mismo circuito.

Baase [Baa88, cap. 10] trata algoritmos PRAM también y discute unos pocos de los que
vemos en el caṕıtulo, en particular nuestro MergeSort CREW. También describe un algoritmo
bastante más complicado para detectar las componentes conexas de un grafo G(V,E) en
tiempo log |V | usando 2(|V | + |E|) procesadores, en el modelo CRCW arbitrario. Al final
incluye técnicas para mostrar cotas inferiores al tiempo T (n) de algoritmos PRAM.

Para profundizar en algoritmos paralelos, una excelente fuente es JáJá [Jáj92], que incluye
mucho más material que el resto de la bibliograf́ıa mencionada: modelo PRAM y sus costos,
técnicas generales, algoritmos en listas y en árboles, búsqueda y ordenamiento, algoritmos
en grafos generales y planares, en strings, algoritmos numéricos, algoritmos aleatorizados, y
cotas inferiores. En particular, el libro describe un algoritmo de ordenamiento con T (n) =
log n y W (n) = n log n en el modelo CREW, indicando que puede llevarse (en forma no
trivial) a EREW.

Otras fuentes online de interés:

legacydirs.umiacs.umd.edu/~vishkin/PUBLICATIONS/classnotes.pdf

homes.cs.washington.edu/~arvind/cs424/notes/l2-6.pdf

stanford.edu/~rezab/classes/cme323/S17/notes/lecture19/final prep.pdf

www.ida.liu.se/~chrke55/courses/MULTI/slides/theory2.pdf
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Apéndice A

Conceptos Básicos

En este apéndice enunciamos resultados que deben ser conocidos para poder seguir este
curso, y damos referencias donde puede encontrarse una descripción completa.

A.1. Análisis de Algoritmos

Notación O, Ω, o, ω, manipulación.

Teorema maestro y solución de recurrencias.

Definición de caso promedio y peor caso.

A.2. Técnicas Algoŕıtmicas Básicas

A.2.1. Dividir y Reinar

ej búsqueda binaria, O(log n).

A.2.2. Algoritmos Avaros

A.2.3. Programación Dinámica

A.3. Árboles de Búsqueda

Operaciones: buscar, insertar, borrar, rangos, predecesor y sucesor.

A.3.1. Árboles binarios

O(log n) si los elementos vienen en permutaciones aleatorias.
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A.3.2. Árboles AVL

O(log n).

A.3.3. Árboles 2-3

O(log n).

A.4. Hashing

Operaciones: buscar, insertar, borrar.
O(1) promedio si la función se comporta como random

A.4.1. Hashing abierto

Linked list

A.4.2. Hashing cerrado

Rehashing, linear probing, factores de carga permitidos.

A.5. Ordenamiento

A.5.1. MergeSort

O(n log n).

A.5.2. QuickSort

O(n log n) promedio, pero más rápido.

A.6. Colas de Prioridad

Operaciones

A.6.1. Heaps

O(log n)

A.6.2. HeapSort

O(n log n) e in-place.
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A.7. Mediana de un Arreglo

Y generalización a k-ésimo.

A.7.1. QuickSelect

O(n) promedio

A.7.2. Algoritmo lineal

O(n) peor caso, constante involucrada

A.8. Árboles y Grafos

A.8.1. Recorrido en DFS

De un árbol, y de un grafo para obtener un árbol generador

A.8.2. Árbol cobertor mı́nimo

Algoritmos de Kruskal y Prim.

A.8.3. Caminos mı́nimos

Algoritmos de Dijskstra y Floyd.
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