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Capitulo 1

Cotas Inferiores

La complejidad de un problema es el costo del mejor algoritmo que resuelve ese problema.
Por lo tanto, cada nuevo algoritmo que se encuentra para resolver ese problema establece
una nueva cota superior a su complejidad. Por ejemplo, si descubrimos el ordenamiento
por insercién, que toma tiempo O(n?), podemos decir que la complejidad del problema de
ordenar es O(n?). Luego descubrimos MergeSort, y eso nos permite decir que la complejidad
del problema de ordenar es en realidad menor, O(nlogn).

. Cémo podemos determinar que hemos encontrado el algoritmo dptimo (el de menor
costo posible) para resolver un problema? Debemos ser capaces de conocer su complejidad,
pero mediante encontrar algoritmos sélo podremos establecer cotas superiores. Necesitamos
entonces mecanismos para establecer cotas inferiores a un problema, es decir, demostrar que
cualquier algoritmo que resuelva ese problema debe al menos pagar un determinado costo.

Por ejemplo, podemos convencernos de que para ordenar, el algoritmo debe al menos
examinar todos los elementos del arreglo, para lo cual necesita realizar n accesos. Eso significa
que ningun algoritmo de ordenamiento puede tener costo o(n). Eso lo expresamos diciendo
que una cota inferior para el problema de ordenar es 2(n). Note que esta cota inferior es
vélida, pero podria no ser (de hecho, no es), la mejor posible (la mas alta posible). Decimos
que esta cota puede no ser ajustada.

Para algunos problemas, se conocen cotas superiores de O(T'(n)) y a la vez cotas inferiores
de Q(T'(n)). En ese caso, sabemos que

» Los algoritmos que toman tiempo O(7'(n)) son éptimos, es decir, no pueden existir
algoritmos de complejidad inferior que resuelvan el problema.

» La cota inferior de Q(7'(n)) es ajustada, es decir, no puede haber una mejor cota
inferior para el problema.

= Conocemos la complejidad exacta del problema, que expresamos diciendo que el pro-
blema tiene complejidad ©(7'(n)).

Para los problemas en que esto no ocurre, tenemos una cota superior (es decir, la com-
plejidad de un algoritmo que lo resuelve) de O(71(n)) y una cota inferior de £2(7%(n)), con
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T5(n) = o(T1(n)). No sabemos si el algoritmo es éptimo, ni si la cota inferior es ajustada, y
no conocemos la complejidad exacta del problema.

Se puede hablar de estas complejidades entendiendo que nos referimos al peor caso de un
algoritmo que resuelva el problema, que es lo mas comun, pero también interesa conocer la
complejidad de caso promedio de un problema, dada una cierta distribucién de los inputs
posibles. En el caso de algoritmos aleatorizados, podemos hablar de la complejidad esperada
de un problema, que considera el peor input posible pero promedia sobre las elecciones alea-
torias que hace el algoritmo. En este capitulo, sin embargo, sélo consideraremos algoritmos
deterministicos (no aleatorizados).

Asimismo, nos puede interesar la complejidad no en términos asintoticos, sino en términos
del costo exacto de los algoritmos (cantidad exacta de comparaciones que hace, o de accesos
a un arreglo, etc.).

Note que una cota inferior puede centrarse en contar solo cierto tipo de operaciones e
ignorar otras, y ain asi sera vélida como cota inferior.

En este capitulo veremos tres técnicas basicas para establecer cotas inferiores: la estrategia
del adversario, reducciones, y teoria de la informacion.

1.1. Estrategia del Adversario

La estrategia del adversario se usa para demostrar cotas inferiores de peor caso. La idea es
demostrar que, para responder correctamente frente a cualquier input, el algoritmo necesita
aprender lo suficiente sobre el input, y para ello debe pagar un cierto costo. La figura del
adversario se utiliza como metafora del peor caso. El adversario actiia como intermediario
entre el algoritmo y el input. Cada vez que el algoritmo paga el costo de preguntar algo
sobre el input, el adversario decide qué responder. Es decir, el input no existe de antemano,
sino que el adversario lo va construyendo de modo de provocar el costo mas alto posible al
algoritmo. Su tunica restriccion es que lo que responde debe ser consistente, es decir, debe
existir algin input cuyas respuestas a las preguntas del algoritmo sean las mismas que las
del adversario.

Un ejemplo ilustrativo es el juego de las 20 preguntas. Este consiste en que un jugador
A piensa en un personaje X y el otro jugador B debe adivinar el personaje mediante hacer
a lo sumo 20 preguntas a A, de respuesta si/no. Aqui B es el algoritmo y A actiia como
adversario, haciendo de interfaz entre B y el personaje que tiene en mente. ;Alguna vez jugd
a este juego? ;Se le ocurrié, siendo A, no decidir X de entrada sino irlo definiendo a medida
que B preguntaba, para asegurarse de que B nunca llegara a una respuesta correcta en 20
preguntas? ;De qué debe cuidarse si hace esto?

En general, para aplicar este método requerimos crear un modelo de lo que el algoritmo
va aprendiendo acerca del input. El modelo debe tener un estado inicial, que corresponde al
comienzo de la ejecucién, cuando el algoritmo no sabe nada del input. Debe tener uno o mas
estados finales, cuando el algoritmo aprendié lo suficiente del input como para responder
correctamente. Y el minimo costo de llegar del estado inicial a algin estado final es una cota
inferior al costo del algoritmo: no importa qué algoritmo sea, este modelo es valido e implica



que el algoritmo no puede responder siempre correctamente si no paga un cierto costo. El rol
del adversario es elegir el peor resultado posible (que el algoritmo avance lo menos posible
hacia un estado final) por cada accién que realiza. Veremos la forma de aplicar esta técnica
a lo largo de varios ejemplos.

1.1.1. Bisqueda en un arreglo

Como un caso muy simple, que ni siquiera requiere de un modelo, consideremos el proble-
ma de encontrar dénde estd un determinado elemento en un arreglo desordenado (suponga-
mos que sabemos que esta, pero no dénde). Para resolver este problema, cualquier algoritmo
debe examinar las n celdas del arreglo, pues si un algoritmo dejara alguna celda sin leer, el
adversario colocaria alli al elemento buscado. Es decir, el adversario responde con elementos
distintos al buscado cada vez que el algoritmo accede a una celda del arreglo, a menos que sea
la ultima celda restante. Esto es una abstraccién del hecho de que, sea cual sea la estrategia
del algoritmo para examinar las celdas, hay un input en el cual el elemento estara en una de
las celdas no examinadas, por lo cual en el peor caso es necesario examinarlas todas.

Arreglo ordenado. Si el arreglo estd ordenado, el adversario ya no puede obligar al al-
goritmo a examinar todas las celdas, pues debe ser consistente: si entrega un determinado
elemento A[i| = x, entonces debe entregar elementos < z en celdas < i, y elementos > z en
celdas > i. Por ello, no tenemos una cota inferior de n comparaciones en este caso.

Para encontrar una cota en el caso ordenado, usaremos el siguiente modelo. Todo algo-
ritmo realiza una serie de accesos a A hasta responder, y contaremos solo la cantidad de esos
accesos como su costo. El modelo es que el algoritmo sabe que el elemento buscado tiene
que estar en un rango A[i, j] del arreglo original A[l,n|. Mediante acceder a un elemento
Alk], puede ser que: (1) k & [i,j], en cuyo caso el algoritmo no aprende nada; (2) A[k| es
el elemento buscado, en cuyo caso el algoritmo ahora sabe que el elemento esta en el rango
Ak, k]; (3) Alk] sea mayor que el elemento buscado, en cuyo caso el algoritmo ahora sabe
que el elemento estd en el rango Ali,k — 1]; y (4) A[k] sea menor que el elemento buscado,
en cuyo caso el algoritmo ahora sabe que el elemento buscado esta en el rango A[k + 1, j].

El estado inicial es A[1,n] y los estados finales son todos los rangos Alk, k|, 1 < k < n.
Podemos ver por induccion que el algoritmo nunca ha mirado un elemento dentro del rango
actual A[i, j], por lo cual el adversario es libre de decidir entre las alternativas (2), (3) y (4)
(el algoritmo elige el k, por lo cual nunca cometera la tonteria de elegir (1)). El adversario
intentara que el rango se mantenga lo mayor posible, pues al llegar a tamano 1 el algoritmo
llega a un estado final. Por ello, nunca elegira (2). Elegira (3) si k—i > j—k y (4) si no. Esto
garantiza que el intervalo se reduce a lo sumo a la mitad en cada iteracién (cuando tiene
largo par), por lo cual cualquier algoritmo requiere en el peor caso |log,n| comparaciones
(requiere una més si no se sabe si el elemento estd en A).

Cotas superiores. En ambos casos, arreglo desordenado y ordenado, sabemos que las
cotas inferiores son ajustadas porque conocemos la busqueda secuencial y binaria, que dan



cotas superiores iguales a las inferiores. Pero en general este método no tiene por qué dar cotas
inferiores ajustadas. Por ejemplo, puede que hayamos elegido un modelo que no representa
todo lo que el algoritmo debe aprender sobre el input para contestar correctamente, por lo
que le permite llegar del estado inicial a uno final a un costo inferior al del algoritmo 6ptimo.
También puede que el adversario no sea lo suficientemente inteligente y no fabrique el peor
input posible para el algoritmo.

En el caso del arreglo ordenado se nota otro aspecto importante de esta técnica: suele
sugerir lo que deberia hacer un algoritmo éptimo. En este caso, nos queda claro que lo mejor
es consultar a la mitad del intervalo, pues de otro modo el adversario hard que nuestro
intervalo se reduzca méas lentamente. Es decir, nos sugiere el algoritmo de bisqueda binaria.

1.1.2. Maximo de un arreglo

Consideremos el problema de buscar el méximo elemento en un arreglo A[l, n| mediante
comparaciones. Es decir, los elementos de A son cajas negras donde la tnica operacién
que podemos hacer sobre ellos es compararlos. Para simplificar, supondremos que todos los
elementos son distintos.

El algoritmo més simple es tomar A[1] como méximo provisional, y luego comparar ese
maximo con A[2], A[3], y asi hasta A[n], manteniendo siempre el maximo visto hasta ahora.
Para un arreglo A[l, n| requerimos entonces n — 1 comparaciones.

Un algoritmo alternativo es el llamado “torneo de tenis”: Comparamos A[l] con A[2],
comparamos A[3] con A[4], A[5] con A[6], etc. Luego, en un nuevo arreglo de los n/2 gana-
dores (mayores que el otro) en las comparaciones, volvemos a hacer una ronda de comparar
a cada impar con el par que le sigue, y continuamos hasta tener un tinico ganador. Las com-
paraciones forman un arbol binario donde las n hojas son los elementos de A y cada nodo
interno es una comparacion, por lo que se hacen también n — 1 comparaciones.

Cota inferior. Veamos que efectivamente se necesitan n —1 comparaciones para encontrar
el maximo. Usaremos el modelo siguiente. El conocimiento que algoritmo tiene sobre el input
es un grafo de n nodos (1),..., (n). Cada vez que el algoritmo compara dos elementos A[i] y
Alj], agregamos una arista entre los nodos (i) y (j). El estado inicial es el grafo sin aristas.

Para establecer los estados finales, notemos que un grafo no conexo no puede ser final. Si
no existe un camino entre (7) y (7), el algoritmo no puede saber cudl es mayor a partir de las
comparaciones realizadas, incluso aplicando transitividad. El adversario puede decidir que
todos los elementos de la componente conexa de (i) son mayores o menores que todos los de
la de (j) sin violar ninguna de las respuestas que ya ha dado. Por lo tanto, si el algoritmo
declara que el méximo es un determinado A[i], existe un input para el cual el resultado es
incorrecto si existe un A[j] en otra componente conexa.

Por lo tanto, los estados finales deben ser grafos conexos. Como se necesitan al menos n—1
aristas para conectar un grafo de n nodos, n—1 es una cota inferior al problema de encontrar
el méaximo de un arreglo. Como tenemos algoritmos que usan n — 1 comparaciones, sabemos
que son 6ptimos y que esta cota inferior es ajustada, a pesar de que sélo consideramos una
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condicién bastante débil acerca de lo que debe conocer el algoritmo sobre el input: nos basto
que existiera un camino de comparaciones que conectara a cualquier par de elementos.

Otro modelo. Consideremos ahora un modelo completamente distinto. El conocimiento
del algoritmo sobre el input se describird con tres variables (a, b, ¢):

= a es el cardinal del conjunto A de los elementos que nunca han sido comparados (no
confundir con el arreglo A);

= b es el cardinal del conjunto B de los elementos que se han comparado alguna vez y
han ganado (han resultado mayores) en todas sus comparaciones; y

» c es el cardinal del conjunto C' de los elementos que han perdido (han resultado meno-
res) en alguna comparacion.

El estado inicial es (n,0,0), y esta claro que el estado final debe ser (0,1,n — 1), pues si
a > 0 hay un elemento sin comparar (y el adversario se encargard de que ése sea el maximo)
y si b > 1 hay dos elementos que han ganado todas sus comparaciones (y si el algoritmo
declara ganador a uno de ellos el adversario puede decidir que es menor que el otro). Cada
comparacién mueve elementos dentro de la tupla (a, b, ¢). Segin de qué conjunto vengan los
elementos que el algoritmo compara, la siguiente tabla indica los posibles nuevos estados a
partir de un estado (a, b, ¢):

A B C
Al (a—2,b+1,c+1)| (a—1,b,c+1) | (a—1,b+1,¢)
(a—1,b,c+1)
B (a,b—1,c+1) (a,b,c)
(a,b—1,c+1)
C (a,b,c)

Por ejemplo, el resultado de la celda (A, A) es el de comparar dos elementos que nunca
habian sido comparados: ambos salen del conjunto A, uno pasa a haber ganado todas sus
comparaciones (B) y otro a haber perdido alguna comparacién (C), por lo tanto el nuevo
estado es (a—2,b+1, c+1). El caso (A, B) nos lleva a (a—1, b, ¢+1) independientemente de que
el ganador sea el elemento de A o el de B (si el de A gana, pasa a estar en B pero el que estaba
en B pasa a C). El caso (A, C) puede llevar a dos estados distintos dependiendo de quién
gane la comparacién. Como el elemento de A nunca se habia comparado, el adversario puede
decidir cual de los dos resultados es el que ocurrira. En particular, el adversario podria elegir
la estrategia de “los que han perdido siguen perdiendo”, con lo cual elige (a — 1,0+ 1,¢) en
este caso, y elige (a, b, ¢) para el caso (B, C) (pues el adversario puede hacer que un elemento
de B sea tan grande como desee).

En cualquier caso, podemos observar que c¢ crece a lo sumo de a uno, y como debe pasar
de 0 a n — 1, se necesitan al menos n — 1 comparaciones para llegar al estado final.

Esta técnica nos sugiere algoritmos 6ptimos mas claramente que la del grafo. Primero es
necesario comparar (A, A). Luego, manteniendo b = 1, podemos seguir siempre comparando
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(A, B) (es decir, el tinico que ha ganado siempre contra uno que no se ha comparado), para
mover los otros n — 2 elementos de A a C. Puede verse que esta es la estrategia de nuestro
primer algoritmo. Alternativamente, podemos utilizar (A4, A) n/2 veces, hasta vaciar A y
tener b = n/2, y luego comparar (B, B) n/2 — 1 veces hasta dejar un solo elemento en By
el resto en C. Note que en la segunda fase se comparan siempre ganadores con ganadores, lo
que es compatible con nuestro algoritmo del torneo de tenis. Esta claro que ningin algoritmo
deberia volver a comparar elementos de C', pues el adversario podria hacer que no avance
hacia el estado final.

1.1.3. Minimo y maximo de un arreglo

Consideremos ahora el problema de encontrar el minimo y el maximo de un arreglo
A[l, n]. Una forma de resolver este problema es encontrar el maximo de A[l,n] usando n — 1
comparaciones, y luego, excluyendo el maximo, encontrar el minimo de los n — 1 elementos
restantes usando n — 2 comparaciones. En total este algoritmo realiza 2n — 3 comparaciones.

Para ver si es 6ptimo, usaremos un modelo que extiende el que acabamos de usar, divi-
diendo el conjunto en cuatro:

» q es el cardinal del conjunto A de los elementos que nunca han sido comparados (nue-
vamente, no confundir con el arreglo A);

b es el cardinal del conjunto B de los elementos que se han comparado alguna vez y
han ganado (han resultado mayores) en todas sus comparaciones;

¢ es el cardinal del conjunto C' de los elementos que se han comparado alguna vez y
han perdido (han resultado menores) en todas sus comparaciones; y

d es el cardinal del conjunto D de los elementos que han ganado alguna vez y también
han perdido alguna vez.

El estado inicial es ahora (a,b,c,d) = (n,0,0,0), y el estado final es (0,1,1,n — 2). La
tabla de resultados de comparaciones es ahora la siguiente:

A B C D

Al (a—2,b+1,c+1,d) e (a—1,b+1,¢,d) (a—1,b+1,¢,d)
(a—1,b,c+1,d) s (a—1,b,c+1,d)

B (a,b—1,¢,d+1) (a,b,c,d) (a,b,c,d)
s s : (a,b—1,¢,d+1)
C (a,b,c—1,d+1) (a,b,c—1,d+1)

(a,b,c,d)

D (a,b,c,d)

Hemos tachado resultados que el adversario podria evitar siempre con la estrategia de “los
ganadores siguen ganando y los perdedores siguen perdiendo”, que siempre es consistente.
Podriamos tachar otros resultados, pero no es necesario para establecer nuestra cota inferior.
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Observe que (1) a decrece a lo sumo de a dos, (2) d crece a lo sumo de a uno, y (3) a nunca
decrece al mismo tiempo que d crece. Entonces, como a debe pasar de n a 0y d debe pasar de
0 a n — 2, tenemos una cota inferior de (%n} — 2 comparaciones para resolver este problema.

Esta vez nuestra cota inferior es distinta de la cota superior 2n—3. Nos podemos preguntar
si serda una cota inferior ajustada. Tal vez el modelo es muy débil o el adversario no es muy
inteligente o nuestra observacion sobre como llegar del estado inicial al final no es suficiente
para demostrar que realmente se necesitan 2n — 3 comparaciones.

Veremos que no es asi, usando el modelo para encontrar un algoritmo 6ptimo. La tabla
sugiere que la forma mads rdapida de llegar al estado final es usar celdas (A, A) n/2 veces
hasta llegar al estado (0,n/2,7n/2,0). Luego podemos usar (B, B) n/2 — 1 veces para llegar
a (0,1,n/2,n/2 — 1) y finalmente usar (C,C) n/2 — 1 veces para llegar al estado final,
(0,1,1,n — 2). Esto equivale a realizar un primer nivel de torneo de tenis, comparando cada
celda impar con la siguiente celda par, obteniendo n/2 ganadores y n/2 perdedores. Luego,
buscamos (con cualquiera de los algoritmos vistos) el méximo entre los n/2 ganadores y
el minimo entre los n/2 perdedores. El costo total es [3n] — 2 (note que se necesitan dos

2
comparaciones mas si n es impar).

max

/’

PR
A

\ 2
man

Con esto tenemos que la cota de f%n} — 2 comparaciones es ajustada, que nuestro algo-

ritmo inicial no era éptimo, y que usamos el modelo de la cota inferior para ayudarnos a
encontrar un algoritmo 6ptimo en términos del nimero de comparaciones.

03
|
—_

1.1.4. Maximo y segundo maximo de un arreglo

Supongamos que deseamos encontrar el maximo y el segundo méximo elemento de A[1, n].
Una solucién simple es encontrar el maximo y luego volver a encontrar el maximo entre los
elementos restantes. Esto nuevamente cuesta 2n — 3 comparaciones. ;Sera 6ptimo? ;Sera que
este problema es intrinsecamente mas dificil que el de encontrar el maximo y el minimo?

La analogia con el torneo de tenis nos sugiere una forma mucho mejor de resolver este
problema. En un torneo de tenis, el segundo mejor debe haber jugado contra el primero, y
sélo contra éste puede haber perdido. Como el primero realizé (y gand) [log, n| partidas, hay
sélo [log,n| candidatos para el segundo puesto. Una vez realizado el torneo de tenis para
encontrar el maximo, podemos encontrar el segundo maximo entre los que perdieron contra
el maximo usando [log, n| — 1 comparaciones. El costo total es entonces n + [logyn] —2, lo
que muestra que este problema es en realidad mas facil que el de encontrar el maximo y el
minimo, pues aquél requiere de [%n} — 2 comparaciones.
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[log, n

La pregunta natural es si nuestro algoritmo es 6ptimo, o el problema se puede resolver
ain mejor.

Cota inferior incorrecta. Intentemos reusar el modelo de la tabla, con los siguientes
conjuntos:

= ¢ es el cardinal del conjunto A de los elementos que nunca han sido comparados;

b es el cardinal del conjunto B de los elementos que se han comparado alguna vez y
han ganado (han resultado mayores) en todas sus comparaciones;

c es el cardinal del conjunto C' de los elementos que han perdido (han resultado meno-
res) exactamente una vez; y

d es el cardinal del conjunto D de los elementos que han perdido més de una vez.

El estado inicial es (n,0,0,0) y el final debe ser (0,1,1,n — 2). La tabla es como sigue:

A B C D

Al (a=2b+1,c+1,d) | (a—1,b,c+1,d) | fe—Hb+He—td+1 | (a—1,b+1,¢,d)
(a—1,b,c+1,d) (a—1,b,c+1,d)

B (a,b—1,c+1,d) (a,b,c—1,d+1) (a,b,c,d)
(a,b—1,c+1,d) (a,b—1,c+1,d)

C (a,bye—1,d+1) (a,b,c,d)
(a,b,c—1,d+1)

D (a,b,c,d)

Tal como en el caso del minimo y méximo, obtenemos una cota inferior de f%n} —2. jPero
esto no puede ser, ya tenemos una cota superior menor! ;Qué ha ocurrido?

Lo que ha ocurrido es que nos hemos equivocado al suponer que es necesario llegar al
estado (0, 1, 1, n—2) para poder responder. En el torneo de tenis, casi la mitad de los jugadores
juega un solo partido y queda descartada como primero o segundo, sin necesidad de haber
perdido dos veces. La razon es la transitividad: si se pierde contra alguien que no es el mejor,
no se puede ser el segundo mejor. Es decir, el algoritmo infiere cosas por transitividad, sin
hacer comparaciones directas. Incluimos este ejemplo para mostrar que debe tenerse cuidado
al aplicar esta técnica, asegurandose de que realmente es necesario llegar al estado final para
poder responder correctamente.
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Cota inferior correcta. Digamos que en un algoritmo que encuentra el maximo hay m
elementos que se comparan directamente (y pierden) contra quien finalmente resulta ser el
méximo. El segundo maximo es entonces el mayor de estos m candidatos (el segundo méximo
debe haberse comparado contra el maximo, pues si no, gand todas sus comparaciones y
el adversario podria hacerlo arbitrariamente grande, incluso mayor que quien el algoritmo
entrega como el maximo).

Consideremos de nuevo el modelo del grafo que se conecta. Si quitamos al nodo del
maximo y a las m aristas que lo conectan con los candidatos a segundo méximo, el grafo
debe aun resultar conexo para poder determinar el segundo maximo. De no ser asi, existen
dos componentes conexas que se unian solo pasando por el maximo, y el paso por el maximo
no sirve para determinar en cudl de las dos componentes esta el segundo maximo.

Por lo tanto el grafo debe tener al menos n + m — 2 aristas, y se necesitan al menos
n 4+ m — 2 comparaciones para encontrar el maximo y el segundo méaximo (n — 1 para el
primero y m — 1 para el segundo). Mostraremos que un adversario puede conseguir que
m = [logy,n].

Consideremos el siguiente modelo para la cota inferior. Se asocia un peso w(i) a cada
celda A[i], inicialmente w(7) = 1. Cuando un elemento A[i] pierda una comparacién, su w(i)
pasara a ser cero. Por lo tanto, para entregar el maximo correctamente, se requiere que haya
un unico w(k) > 0 (donde A[k] serd entonces el maximo).

Ahora diseniemos un adversario adecuado. Cuando el algoritmo compara A[i] con A[j],
hay tres casos:

1. Si w(i) > w(j), el adversario responde que A[i] > A[j]. Esto es consistente porque
Ali] no ha perdido ninguna comparacién. Asimismo, el adversario actualiza w(i) <+
w(i)+w(j) y w(j) < 0. Este caso incluye el w(i) < w(j), mediante intercambiar i y j.

2. Si w(i) = w(j) > 0, el adversario se comporta como en el caso anterior, eligiendo
arbitrariamente quién es ¢ y quién j.

3. En otro caso, el adversario da cualquier respuesta que sea consistente con las anterio-
res (es decir, si de las comparaciones pasadas se puede deducir el resultado de esta
comparacion, ese resultado debe mantenerse). En este caso, no se actualizan las w.

Puede verse que este adversario agrega un par de invariantes mas al modelo: (1) todas
las w suman siempre n, y (2) cuando un w(i) crece, a lo sumo se duplica. Eso implica
que, para cuando el algoritmo puede responder correctamente que A[k] es el maximo, vale
que w(k) = n, y como llegamos de w(k) = 1 a w(k) = n a lo sumo duplicandolo en cada
comparacion, el elemento A[k] debe haberse comparado directamente al menos [log, n| veces.

Note que la cota inferior de n — 1 comparaciones para el maximo no requiere que el
adversario responda de alguna manera especial en las comparaciones, por lo que podemos
usar en particular este adversario para garantizar que, ademas de las n — 1 comparaciones
para encontrar el méximo, se requeriran otras [log,n| — 1 para el segundo méximo.

Finalmente, note que ningin algoritmo puede decir cudl es el segundo méaximo si no
sabe cudl es el maximo, pues eso significa que el segundo méximo propuesto no ha perdido
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ninguna comparacion, y el adversario podria hacer que el segundo méaximo propuesto fuera
tan grande como quisiera. Por lo tanto, encontrar el segundo maximo es equivalente en
dificultad a encontrar el primer y segundo maximo.

1.1.5. Mediana de un arreglo

Encontrar la mediana z de un arreglo A[1,n] (con n impar) es un problema para el cual
no se conoce el nimero exacto de comparaciones. Se conoce una cota inferior de (2 +27%)n
y una cota superior de 2,95n. Mostraremos una cota inferior relativamente sencilla de @
comparaciones. Hablaremos de la mediana z que entregara el algoritmo aunque éste no la
conozca hasta el final.

Consideraremos dos tipos de comparaciones, cruciales y no cruciales. Conceptualmente,
una comparacion resulta crucial para un elemento x si es la que nos permite conocer la
relacion entre x y z. Mas precisamente, consideremos la historia de las comparaciones que
realizé el algoritmo para determinar z, y definamos un grafo con un nodo por elemento.
Dibujemos una arista entre z y los elementos x que se compararon directamente contra z,
roja si x > z y azul si x < z. También pintemos a x de rojo o azul, respectivamente. Para
todo nodo rojo x, dibujemos aristas rojas hacia elementos y > x que ain no tengan color y
se hayan comparado directamente contra x. Para todo nodo azul x, dibujemos aristas azules
hacia elementos y < x que ain no tengan color y se hayan comparado directamente contra
x. En ambos casos, pintemos a y de rojo o azul, respectivamente. Continuemos asi hasta
pintar todas las aristas y elementos posibles. Todas las aristas pintadas corresponden a las
comparaciones cruciales.

El grafo formado por las aristas rojas y azules no tiene ciclos. Si no resulta conexo, el
algoritmo no puede conocer la mediana, pues implica que existe un elemento x no pintado,
por lo cual el algoritmo nunca hizo una comparacién que le permitiera determinar si z < z
6 x > z. El adversario puede entonces decidir si < z 6 x > z, haciendo que la respuesta z
sea incorrecta. Por lo tanto, se necesitan al menos n — 1 comparaciones cruciales.

Mostraremos que, ademas, el algoritmo debe haber realizado al menos ”T_l comparaciones
no cruciales, cuyas aristas no estan en el grafo porque resultan ser x < y paraun y > z, o bien
r >y parauny < z. Para esto, consideremos un adversario que responde a las comparaciones
del algoritmo mediante asignarles valor a los elementos cuando los ve por primera vez. Antes
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de ello, determinard un valor z para quien sera la mediana, sin asignarselo a ningtin elemento
en particular. Modelaremos el avance del conocimiento del algoritmo partiendo los elementos
en tres conjuntos:

» a es el cardinal del conjunto A de los elementos que nunca han sido comparados (no
confundir con el arreglo A);

= ) es el cardinal del conjunto B de los elementos que se han comparado alguna vez y se
les asigné un valor mayor a z; y

= ¢ es el cardinal del conjunto C' de los elementos que se han comparado alguna vez y se
les asigné un valor menor a z.

El algoritmo no conoce la mediana hasta el final (es decir, no sabe qué tipo de comparacién
estd realizando). Cuando se comparen dos elementos de A, el adversario les dard a uno un
valor mayor y a otro un valor menor que z. Cuando se compare un elemento de A con uno
de B, le asignara al de A un valor menor a z. Cuando se compare un elemento de A con uno
de C, le asignard al de A un valor mayor a z. Note que en estos tres casos, la comparacién
resultarda no ser crucial. Cuando se comparen elementos de B 6 C, respondera segun los
valores que ya ha asignado (estas comparaciones podrian ser cruciales).

Con estas decisiones del adversario, la siguiente tabla muestra cémo progresa el estado
(a, b, c) segun los elementos que se comparan:

A B C
Al(a—2,b+1,¢c+1) | (a—1,b,c+1) | (a—1,b+1,¢)
B (a,b,c) (a,b,c)
C (a,b,c)
Si llegamos a b = ”T_l, el adversario asignard a C' todos los elementos atin no comparados
(es decir, les dard valores menores a z), salvo uno que se reservara para asignarle el valor z.
Similarmente, si llegamos a ¢ = ”T’l, el adversario asignard a B todos los elementos atn no

comparados menos uno. Con ello, z resultara ser la mediana, como era el plan del adversario.
De la tabla se deduce que, como partimos de (n,0,0) y continuamos hasta que b 6 ¢ son

n-1 pecesitamos al menos ese nimero de comparaciones de la primera fila de la tabla, todas

2
. . . 3(n—1
las cuales son no cruciales. Se deduce entonces la cota inferior de %
encontrar la mediana.
Se puede usar el mismo razonamiento para demostrar que encontrar el k-ésimo elemento

de un conjunto requiere n+min(k,n — k) — 2 comparaciones, si bien esta cota no es ajustada.

comparaciones para

1.2. Teoria de la Informacion

La Teoria de la Informacion es una disciplina que estudia la cantidad minima de bits
necesaria para representar un mensaje u objeto. Es decir, establece cotas inferiores para la
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cantidad de bits que debe emitir cualquier programa que represente un objeto, por compri-
mida que sea esta representacion.

Es posible entonces obtener cotas inferiores a la cantidad de comparaciones que realiza un
algoritmo sobre un input, si a partir de esas comparaciones podemos reconstruir ese input. En
ese caso, el algoritmo podria considerarse potencialmente como un mecanismo de compresion,
y la cantidad minima de bits que debe emitir cualquier compresor se convierte en la cantidad
minima de comparaciones que debe realizar cualquier algoritmo. Debe notarse que este tipo
de cotas aplica casi exclusivamente a algoritmos que deban proceder por comparaciones, pero
a cambio puede establecer cotas tanto de peor caso como de caso promedio.

1.2.1. Cotas de peor caso

Para cotas de peor caso, la cota inferior es simplemente el logaritmo (base 2) del niimero
total de inputs posibles. Si el conjunto de inputs posibles es U, entonces no es posible
representar a todos sus elementos usando siempre menos de log, |U| bits. La razén es que el
ntimero total de descripciones que usan menos de log, |U| bits es ZE@ =t gt — |U| — 1, es
decir, no hay suficientes descripciones distintas para todos los elementos de U. Por lo tanto,
cualquier algoritmo a través de cuyas comparaciones se pueda identificar el input requiere
log, |U| comparaciones en el peor caso. Note que, para hablar de bits, las comparaciones
deben ser binarias, es decir, con dos resultados posibles (por ejemplo, <y >).

Volvamos al juego de las 20 preguntas. Si A conoce a més de 22° personajes distintos,
entonces B no tiene suficientes preguntas para poder ganar siempre, pues no bastan 20 “bits”
si/no para identificar a todos los posibles personajes. Dicho de otro modo, para cualquier
estrategia que B tenga, siempre existe un subconjunto de al menos dos personajes que no se
llegan a distinguir con las primeras 20 preguntas.

Por otro lado, si A conoce no mas de 22° personajes, entonces B puede ganar siempre
si busca preguntas balanceadas, es decir que a cada paso dividan el conjunto de personajes
posibles a la mitad. Es por eso que preguntas como “;tiene pelo negro?” o “;naci6 en este
continente?” son mejores que “;se trata de Napoleén?” como primeras preguntas.

1.2.2. Btusqueda en un arreglo ordenado

Una alternativa al método del adversario usado en la bisqueda en un arreglo ordenado
es la siguiente. Si un algoritmo toma los objetos de bisqueda como cajas negras y se basa
unicamente en comparaciones para tomar sus decisiones, entonces para cada buisqueda de un
elemento A[i] distinto debera obtener una secuencia distinta de resultados a sus comparacio-
nes (las comparaciones que realiza también pueden depender del resultado de comparaciones
anteriores). Si existen dos elementos A[i] y A[j] para los cuales el algoritmo obtiene la mis-
ma secuencia de resultados, entonces es que realiza las mismas comparaciones y responde lo
mismo a ambas busquedas, lo cual seria incorrecto.

Eso significa que el algoritmo se puede convertir en un codificador para los valores en
[1,n]. Creo un arreglo ordenado cualquiera A[l,n], y para codificar ¢ pido al algoritmo que
busque A[i]. Tomo nota de los resultados de las comparaciones que va realizando el algoritmo
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y los codifico como una secuencia de bits. Para obtener i a partir de ese cédigo (es decir,
para “descomprimir” el valor de i), simulo el algoritmo, y cuando llega el momento de una
comparacion, veo qué pasaria si el resultado de la comparacion se corresponde con el siguiente
bit de la codificacion.

Dado que un algoritmo de busqueda permite codificar cada elemento de [1, n] mediante
las comparaciones que realiza, se deduce que en el peor caso debe realizar al menos log, n
comparaciones. También esto sugiere que, para llegar a ese peor caso, el algoritmo debe
procurar que cada comparacion reduzca a la mitad el nimero de inputs posibles, lo que
nuevamente nos lleva a la busqueda binaria.

1.2.3. Ordenar un arreglo

Consideremos el problema de ordenar A[1,n]. Ordenar implica aplicar una permutacién
7 al rango [1,n] de modo que A quede ordenado. Esto significa que la permutacién original
que traian los elementos de A, p, es la inversa de m. Para cada p posible, un algoritmo
correcto de ordenamiento debe aplicar un conjunto distinto de operaciones @ = p~!. Un
algoritmo que procede tinicamente por comparaciones puede entonces utilizarse para codificar
la permutacién 7 (o p) de la misma manera que en el ejemplo anterior: los resultados de
las comparaciones que va realizando (ignorando las modificaciones que hace al arreglo o
cualquier otra operacién) deben ser distintas para cada input posible p.

Dado que existen n! posibles permutaciones en las que A puede presentarse, el algoritmo
necesita realizar al menos log,(n!) comparaciones para poder realizar un conjunto de acciones
distinto para cada una de ellas. Por la aproximacién de Stirling, log,(n!) = nlog,n — O(n).
Dicho més gruesamente, para ordenar por comparaciones se necesita tiempo €2(nlogn).

1.2.4. Unir dos listas ordenadas

. Cuantas comparaciones se necesitan para unir dos listas ordenadas, de largo n y m, con
m < n? Una cota inferior estd dada por el nimero de formas en que los elementos de una
lista se pueden insertar en la otra, log, (m;”) Esto ocurre porque todo algoritmo que haga
la union debe realizar acciones distintas para cada una de las (mrjl'") formas en que puede
presentarse el input, y por lo tanto las respuestas a sus comparaciones pueden usarse para
codificar ese aspecto del input.
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Note que, si p > q,

g—1 . - q
() - I = 10 - ()
q T q—i q
debido a que Z z > ’; pues (p—1i)q = pq—1iq > pq—ip = p(q —1). De esto obtenemos la cota
inferior log, ("F™) > log, ((Z£2)™) = mlog,(1 + ).

Asintéticamente, esta cota inferior es Q(mlog ) si m = o(n) y Q(m) si no. Un algoritmo
que alcanza esta cota inferior asintética es el que toma la lista mas corta y avanza en la
més larga buscdndolo mediante bisqueda exponencial (es decir, comparando el elemento en
las posiciones 1, 2, 4, ... hacia adelante hasta pasarse y luego completando con busqueda
binaria). Para cada elemento z; de la lista mds corta, sea y; el primer elemento > z; de la
lista mas larga. Si la distancia entre y; e y;_1 es de d; posiciones (en la lista més larga),
entonces el costo total serda O() ", log d;).

[ feef 1]

Como ), d; < n, el peor caso se da cuando son todos d; = = (por la desigualdad de
Jensen), en cuyo caso el algoritmo toma tiempo O(m(1 + log ™*)).

Cuando m = n, la cota inferior es log, (*) > 2n — O(logn) (por la aproximacién de
Stirling), cuyo término principal exacto se alcanza con el método tipico de recorrer ambas
listas secuencialmente e ir tomando el menor (2n — 1 comparaciones).

1.2.5. Cotas de caso promedio

El Teorema de Shannon establece que, si los elementos de U = {uy, ..., u,} se presentan
con probabilidad p; para u; (con ) p; = 1), entonces ningtin compresor puede, en promedio,

utilizar menos de )
Z pilog, —
Z. pi

bits para codificar un elemento de U. Este valor se llama la entropia del conjunto de pro-
babilidades. La entropia nos da una herramienta para establecer cotas inferiores en el caso
promedio, lo que no se da con la estrategia del adversario.

Note que, si todas las p; = il U| entonces la entropia resulta ser H = log, |U]|, llegando a su
valor maximo. Como esto coincide con el valor del peor caso, resulta que la cota inferior de
peor caso de un algoritmo (demostrada con esta técnica) también es la cota inferior de caso
promedio si los inputs se presentan todos con la misma probabilidad. En particular, de los
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ejemplos anteriores, tenemos que la cota de log, n comparaciones para buscar en un arreglo
ordenado o de nlog, n — O(n) para ordenar también se aplican al caso promedio del mejor
algoritmo posible, si suponemos que los elementos de A se buscan con la misma probabilidad
o que todos los reordenamientos de entrada de A son igualmente probables, respectivamente.

Por otro lado, si resulta que tenemos que buscar en un arreglo y ciertos elementos se
buscan con mayor probabilidad que otros, entonces podemos romper la cota de log, n com-
paraciones en promedio, y llegar a la entropia H. Pero, ;como hacerlo?

1.2.6. Arboles de biisqueda 6ptimos

Nuestro problema se puede describir como: encontrar un arbol de busqueda para A donde
la profundidad promedio de una hoja sea H. Note que cada arbol de buisqueda que podamos
disenar sobre A corresponde a un algoritmo, o a una estrategia, de busqueda, mientras
que cada busqueda en concreto es un camino de comparaciones desde la raiz hasta la hoja
correspondiente.

Algoritmos de Huffman y Hu-Tucker. El problema de, dado un conjunto de proba-
bilidades p;, encontrar el drbol binario que minimice Y p;¢;, donde ¢; es la profundidad de
la hoja de probabilidad p;, es conocido en compresién. Una estrategia que entrega el arbol
optimo es el algoritmo de Huffman, que puede describirse de la siguiente forma.

1. Crear un bosque con n arboles, cada uno consistente de un tnico nodo (u;) de peso

2. Tomar los dos arboles T} y T del bosque con menor peso, sean w; y wy €S0S PEsos, y
colocarlos como hijos izquierdo y derecho de un nuevo nodo.

3. Sacar T y Ty del bosque, y agregar el nuevo arbol, con peso wy + wo.
4. Volver al punto 2 a menos que el bosque contenga un solo arbol.

El arbol final que entrega este algoritmo tiene la propiedad de que minimiza L = ) p;¢;,
y ademas puede demostrarse que H < L < H + 1, es decir, la profundidad promedio de las
hojas es menos que la entropia mas 1.

Antes de continuar, ;jcuanto tiempo requiere este algoritmo? Es facil ver que se puede
hacer en tiempo O(nlogn), mediante almacenar los pesos de los arboles en una cola de
prioridad, implementada por ejemplo con un heap. Se crea con n elementos en tiempo O(n)
y luego se realizan 2n extracciones y n reinserciones. ;Puede hacerse mejor? No se sabe en
general, pero si los elementos ya vienen ordenados por probabilidad, entonces puede hacerse
en tiempo O(n). Ponga los m nodos iniciales en una cola, y prepare otra cola vacia de
tamano n — 1 para encolar los arboles nuevos que va produciendo. Esta nueva cola también
estara ordenada porque los pesos de los arboles que se van generando son siempre crecientes.
Entonces, cuando tenga que extraer los dos nodos de peso minimo, extraigalos de cualquiera
de las dos colas (uno de cada una o los dos de una cola, segin dénde estén los menores).
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De todos modos, /el drbol de Huffman sirve como arbol de bisqueda? Supongamos A[1, 3]
con probabilidades p; = p3 = i y po = % El arbol de Huffman tendra un hijo de la raiz para
la hoja A[2] y el otro serd un nodo interno, con hijos hoja para A[1] y A[3]. No es posible
hacer una comparacién tipo “jA[i] < 27" para separar A[2] de A[l] y A[3]. La razén es que
el algoritmo de Huffman desordena las hojas, por lo cual no necesariamente entrega un arbol
de busqueda.

Existe un algoritmo que entrega el mejor arbol posible sin desordenar las hojas, toma
tiempo O(nlogn) y garantiza que H < L < H + 2. Se llama algoritmo de Hu-Tucker. Esto
significa que existe un algoritmo de biisqueda para arreglos ordenados que realiza en promedio
menos de 2 comparaciones por encima de la cota inferior de Teoria de la Informacién.

En realidad, podemos demostrar que la cota H no es ajustada, y que lo méas cercano
ajustado es, precisamente, H + 2. Considere A[l, 3] con probabilidades p; = p3 = €y ps =
1—2¢, para € > 0 tan pequenio como se quiera. Entonces vale H = 2¢log, %+ (1—2¢) log, ﬁ,
el cual tiende a cero cuando € — (. Sin embargo, el mejor drbol de bisqueda posible tiene
al nodo A[2] a profundidad 2 y un costo promedio de bisqueda 2(1 — 2¢) + 3¢, que tiende a
2 cuando € — 0.

No describiremos el algoritmo de Hu-Tucker en este apunte, por ser demasiado complicado
y alejarse demasiado de nuestro tema principal. En cambio, veremos un algoritmo mas costoso
que resuelve un problema mas general.

Construccion general. Consideremos un modelo distinto, en que procedemos por com-
paraciones pero éstas pueden ser <, =, 6 >. Esto significa que podemos detenernos en un
nodo interno del drbol de bisqueda si encontramos el elemento que buscamos. En este caso,
en vez de comparaciones, contaremos la cantidad de accesos a A.

Para generalizar, supondremos que las busquedas pueden ser exitosas o infructuosas. Una
busqueda exitosa encuentra lo que busca en el elemento A[i] del arreglo, el cual se busca con
probabilidad p;. Una busqueda infructuosa no encuentra lo que busca, sino que determina
que deberia estar entre los elementos Afi] y Ai + 1] del arreglo, suponiendo implicitamente
que A[0] = —oo y A[n + 1] = +o0. Diremos que esta bisqueda ocurre con probabilidad g;.
Tenemos entonces > pi + > 5o q; = 1.

El arbol de busqueda se puede ver entonces como un arbol de n nodos donde los nodos
internos representan la lectura de un elemento, y entendemos que, si buscamos ese elemento,
la buisqueda termina alli. Los n + 1 punteros a nulo que salen de las hojas son las buisquedas
infructuosas, cuyos resultados se deducen sélo al final del camino hacia una hoja. El costo
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de una busqueda exitosa, medido en cantidad de accesos a A, es la profundidad del nodo
interno correspondiente, y el de una busqueda infructuosa es la profundidad del nodo hoja
correspondiente (y es igual a la bisqueda exitosa para ese nodo). Nuestro modelo anterior
se puede simular suponiendo un arreglo de tamano n — 1, cuyas n — 1 busquedas exitosas
tienen probabilidad p; = 0, y sélo existen bisquedas infructuosas (que terminan en hojas).

Podemos construir el arbol binario éptimo para este problema mediante programacion
dindmica. Llamemos

Pj=qa+pi+q¢+...+p+q

a la probabilidad de que la busqueda recaiga sobre el rango A[i, j], incluyendo las busquedas
infructuosas en sus extremos. Entonces, el costo éptimo para buscar en Afi, j|] se puede
encontrar como C;;—y = 0 (arreglo vacio, bisqueda infructuosa), C;; = 1 (arreglo de 1
elemento, busqueda exitosa o infructuosa), y, para i < j,

P e Py,
Ci,j = 14 min k1 'Ci,kfl + kil

No Yy
+1,
i<k<j Pi; P 77

7j

donde k representa la raiz que elijamos para este subarbol de bisqueda, es decir, el elemento
de A sobre el que haremos la primera comparacién. Debemos registrar dénde queda esta
raiz, para luego poder reconstruir el arbol:

Pk c Pri1
-Gk +
P B

r(i,j) = argirg}cl’gj

“Cry1j

Una vez calculadas estas dos matrices (por ejemplo por diagonales, partiendo de la dia-
gonal principal y la que esta bajo ella, y progresando hasta la diagonal de largo 1 de la
celda C ,), tendremos en C},, el costo promedio de la bisqueda usando la mejor estrategia
posible, y en r(1,n) la raiz que debemos usar para esa estrategia (es decir, debemos partir
examinando la celda A[r(1,n)]). El hijo izquierdo debe tener raiz r(1,r(1,n)—1) y el derecho
r(r(1,n) + 1,n), y asi sucesivamente.

Note que, si bien el drbol final requiere de solamente O(n) espacio, necesitamos O(n?)
espacio para encontrarlo usando programacién dinamica. El tiempo para calcular la matriz
P es también O(n?), pues cada celda puede calcularse con P; 1 = ¢i_1 y luego P;; =
P, j_1+pj+ g para todo j > i. En cambio, las matrices C'y r requieren tiempo O(n?), pues
deben considerarse todos los j — i + 1 posibles valores de k.

Cuando los costos de acceso son iguales (unitarios, en nuestro modelo), es posible calcular
C' y r en tiempo O(n?), mediante usar la importante propiedad (que no demostraremos en
este apunte) de que

r(i,j—1) < r(i,7) < r@i+1,7).

Eso significa que podemos reescribir la férmula para calcular las celdas C; ; como

Pk+1,j

P
Ci; =1 { :
j + min Pz‘

r(ij—1)<k<r(i+1,j) P;

~Cipa1 +

Okt

7j ?j
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Tij—1 Ti,j Tit1,5

i J

y similarmente para r(, j). Para ver que esto reduce el costo total a O(n?), consideremos el
costo a lo largo de una diagonal d de la matriz, donde j = ¢ + d. Entonces, calcular la celda
C;,; cuesta

r(i+1,j)—r(,j—1)+1 = r(i+1,i+d) —r(,i+d—1)+ 1L
Calcular la siguiente celda de la diagonal cuesta
ri+2,7+1) —r(t+1,5)+1 = r(i+2,i+d+1)—r(i+1,i+d) + 1.
Y la siguiente cuesta
r(i+3,j+2)—r(i+2,5+1)+1 = r(i+3,i+d+2)—r(i+2,i+d+ 1)+ 1.

Si sumamos estos costos, puede verse que cada segundo término se cancela con el primer
término anterior. Por lo tanto la suma es telescopica, y a lo largo de la diagonal d el costo es
alosumo r(n—d,n)—r(l,d+1)+n—d < 2n. A lo largo de las n diagonales, el costo suma
O(n?). Este es otro pequeiio ejemplo de anélisis amortizado: una celda puede demorar O(n)
en calcularse, pero vemos que las O(n?) celdas no requieren mas de O(n?) operaciones.

1.3. Reducciones

Las reducciones se usan en el diseno de algoritmos para encontrar una solucién a un
problema desconocido mediante reducirlo a uno conocido (por ejemplo, reducir el problema
de encontrar elementos repetidos en un arreglo al de ordenarlos y hacer una pasada buscando
repetidos consecutivos). En cambio, en la teorfa de NP-completitud, se demuestra que un
problema es NP-completo mediante reducir un problema NP-completo conocido a él. Es decir,
operamos en la direccion contraria: el problema conocido se reduce al problema desconocido.

En el caso de cotas inferiores, la idea es similar a la de NP-completitud. Supongamos que
tenemos un problema P para el que queremos establecer una cota inferior, y conocemos un
problema () con una determinada cota inferior 2(C'(n)). Si podemos transformar un input de
@ en uno de P en tiempo o(C(n)), resolver P en el input transformado, y luego transformar
el output de P en el de @ también en tiempo o(C(n)), entonces Q(C(n)) es también una
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cota inferior para el problema P. De no ser asi, las transformaciones nos darfan una solucién
a @ de tiempo o(C'(n)), lo que es imposible.

Esta técnica es general y puede usarse para peor caso y caso promedio, si bien general-
mente se usa para establecer érdenes de magnitud y no cantidades exactas de operaciones.

1.3.1. Capsula convexa

El problema de la capsula convezra es el de, dados n puntos en el plano, encontrar el
menor poligono convexo que los contiene. Es facil ver que los vértices de este poligono deben
ser puntos del input, por lo cual el output del problema se pide en la forma de la secuencia de
puntos que se obtienen al recorrer el perimetro del poligono en sentido antihorario, partiendo
desde algin punto.

X2, X1

X

X4
X5 X
X6

Input Output

Si consideramos que las coordenadas son nimeros reales, sobre los que tinicamente po-
demos hacer operaciones matematicas y comparaciones, entonces podemos mostrar que este
problema es Q(nlogn) mediante reducir el problema de ordenar al de la capsula convexa.

Para ordenar A = {ay,...,a,}, calculamos n puntos {(a,a?), ..., (a,,a?)}.

as’t '
2 e
2 S
ax\
2 . .
a3 77777777777777777777777777777777777775‘7‘ i | i
z B
e | .

an’l . | | .

a, a; as a, agas

Es facil ver que los n puntos estén distribuidos en una parabola, por lo cual todos formaran
parte de la capsula convexa. Mas ain, un listado en sentido antihorario de los puntos que
parta del minimo recorre, en sus primeras coordenadas, al conjunto X en orden de menor
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a mayor. Una pasada simple sobre el output de la cdpsula convexa nos permite detectar el
menor elemento y a partir de él listar a todos en orden. Como la transformacién del input
y del output nos cuesta ©(n) = o(nlogn), tenemos que Q(nlogn) es una cota inferior al
problema de calcular la capsula convexa.

En realidad esta cota inferior puede refinarse si introducimos otras variables. Por ejemplo,
si h es el nimero de puntos en el output, existen algoritmos que resuelven el problema en
tiempo O(nlogh). Sin embargo, esto es todavia O(nlogn) en el peor caso.

1.3.2. Colas de prioridad

Esta técnica también nos permite establecer cotas inferiores al costo de realizar una
secuencia de operaciones sobre una estructura de datos.

Por ejemplo, la implementacién basada en un heap obtiene tiempos O(logn) para las ope-
raciones de insertar y extraer el minimo en una cola de prioridad. Existen implementaciones,
como las colas de Fibonacci (que mencionaremos en el capitulo de andlisis amortizado) don-
de la insercién se puede hacer en tiempo O(1), pero la extraccién del minimo ain cuesta
O(logn). Incluso se puede crear un heap de n elementos en tiempo O(n). Nos preguntamos
si existira alguna implementacién de colas de prioridad donde se pueda insertar un elemento
en tiempo O(1) y extraer el minimo en tiempo O(1).

No es dificil ver que esto es imposible si se procede por comparaciones. Si lo fuera,
podriamos reducir el problema de ordenar n elementos al de insertarlos en una cola de prio-
ridad vacia y extraer el minimo, luego el minimo de lo que queda, y asi sucesivamente hasta
obtener el arreglo ordenado. Si se pudiera extraer el minimo en tiempo o(logn), podriamos
ordenar en tiempo o(nlogn). Note que esto vale incluso en promedio, si las inserciones agre-
gan los elementos en un orden uniformemente aleatorio.

1.3.3. 3SUM y puntos colineales

El concepto de reduccion se utiliza también para hablar de cotas inferiores que estan en
funcién de otras cotas inferiores que no son conocidas, pero si muy estudiadas. Por ejemplo, si
podemos reducir la multiplicacién de matrices de nxn a un cierto problema P, sabemos que P
no es mas facil que multiplicar matrices. Antes de Strassen, podriamos haber pensado que la
complejidad del problema era ©(n?). En 1969, Strassen mostré cémo multiplicar matrices en
tiempo O(n?8), y luego en 1990 Coppersmith y Winograd lo redujeron a O(n???) (analizado
en 2014 por Le Gall). No se conoce una cota inferior general para el problema maés alld de la
obvia 2(n?). Un problema tan trabajado es 1til en s{ mismo como cota inferior: si podemos
resolver P en menor tiempo, habremos encontrado un algoritmo para multiplicar matrices
mejor que todos los conocidos. Decimos entonces que P es multiplicacién-de-matrices-hard.
Tal como en la NP-completitud, donde se dice que un problema es NP-hard, es una forma
de decir cudn improbable se considera obtener un mejor resultado para resolver P (nota: ser
NP-completo equivale a ser NP y ser NP-hard).

El problema 3SUM es el de, dados n ntimeros reales Z = {z1, ..., z,}, encontrar tres que
sumen cero (pueden repetirse nimeros en la suma). Veamos cémo resolver este problema
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en tiempo O(n?). Supongamos que primero ordenamos los niimeros en tiempo O(nlogn).
Luego, tomaremos cada ntmero z; y buscaremos dos numeros de Z que sumen —z;. Para
ello, progresaremos desde las dos puntas del arreglo ordenado, m < 23 vy M < z,, con dos
cursores. Si m + M + z; < 0, moveremos el cursor de la izquierda hacia adelante, m <+ zj.
En cambio, si m + M + z; > 0, moveremos el cursor de la derecha hacia atras, M < z,_;.
En todo momento, el invariante es que los ntimeros que ya dejamos de considerar no pueden
formar parte de la solucion, y se puede ver que se mantiene cuando movemos los cursores. Al
final, en tiempo O(n) encontramos un m y M adecuados (con lo cual resolvimos el problema
con los nimeros m, M y z;), o los cursores se cruzan y debemos pasar a considerar otro
nimero z;. El tiempo total es O(n?).

Por mucho tiempo se sospeché que ©(n?) era la complejidad del problema, pero en 2014
Grunlund y Pettie encontraron una solucién de tiempo O(n?/(logn/loglogn)??). Atn asi,
se sospecha que el problema es Q(n?7°M) (es decir, Q(n"**) para cualquier cantidad finita
de 9s). Como es un problema bastante estudiado, es interesante cuando se establece que otro
problema es 3SUM-hard.

Consideremos el problema de, dados n puntos (z;,¥;), encontrar tres puntos colineales
que no estén en una linea vertical. Esta ltima restriccién se pone por conveniencia para
demostrar una cota inferior, pues ese subcaso es facil de resolver.

Reduciremos 3SUM a este problema, para mostrar que es 3SUM-hard. Dados n niimeros
Z ={z1,..., 2}, generaremos 3 puntos para cada z;: (1, z), (2,—%), y (3, z;). Veremos que
este conjunto tiene 3 puntos colineales no en vertical sii Z tiene 3 nimeros que suman 0.
Dadas las coordenadas x; elegidas, estos 3 puntos colineales deben ser de la forma (1,a),
(2,0) y (3,¢), con b = 4. Pero como a = z; para algin i, b = —3 para algin j, y ¢ = 2
para algun k, tenemos que —% = WFTZ’“, de lo que se deduce que z; + z; + 2, = 0. También
puede verse que ocurre lo reciproco: si hay tres nimeros que sumen cero, hay tres puntos
colineales. Como la conversién cuesta sélo O(n), tenemos que el problema es 3SUM-hard.

_ °
{ | 1 |
i \
: | 3 5
° ° L4
°
° [ ]

Finalmente, el problema de encontrar tres puntos colineales sin la restriccién de que
estén en vertical también es 3SUM-hard. Para que esto tenga sentido, sin embargo, atn
debemos prohibir que los puntos sean iguales, pues el problema es trivial en ese caso. Si
los tres puntos deben ser distintos, entonces podemos crear los puntos (z;, z3). Si aparecen
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tres puntos colineales distintos (a,a?®), (b,0*) y (¢, ¢?), con a < b < ¢, entonces tenemos que

“2:23 = bz:f, es decir, a® + ab + b* = b? + bc + ¢, de donde tenemos a® — ¢ = —b(a — ¢), o

(a+¢)(a —¢) = =b(a — ¢). Dividiendo por a — ¢ obtenemos a + b+ ¢ = 0.

1.4. Ficha Resumen
Técnicas:

= Estrategia del adversario

= Teorfa de la Informacion

» Reducciones

Complejidad de problemas:
= Encontrar un elemento en arreglo desordenado: n accesos.
» Encontrar un elemento en arreglo ordenado: [log, n| accesos o comparaciones.
= Encontrar el maximo en un arreglo: n — 1 comparaciones.
» Encontrar el minimo y el maximo en un arreglo: (%n} — 2 comparaciones.

» Encontrar el méximo y segundo méximo en un arreglo: n+ [log, n| — 2 comparaciones.

» Encontrar la mediana en un arreglo: entre (2 + 2°%)n y 2,95n comparaciones (vimos

cota inferior de (@D

» Ordenar un arreglo: nlog, n — O(n) comparaciones, algoritmos como MergeSort hacen
nlogyn + O(n).

» Mergear dos listas de largo m < n: ©(mlog ), y 2n — O(logn) si m = n.
= Buscar en un arreglo con entropia de probabilidades H: H + 2 comparaciones.
» Calcular la cédpsula convexa: ©(nlogn) operaciones y comparaciones sobre reales.

= Encontrar tres nimeros que sumen cero (3SUM): O(n?/(logn/loglogn)??), se sospe-
cha Q(n?=°W),

= Encontrar tres puntos colineales: 3SUM-hard.
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1.5. Material Suplementario

Lee et al. [LTCTO5, sec. 2.3] dedican una seccién a explicar la idea general de cotas
inferiores y superiores de problemas. Levitin [Lev07, sec. 11.1] también dedica una seccién a
presentar la idea general, con los tres enfoques que consideramos en el apunte. Esta seccion
tiene varios ejemplos simples, incluyendo la cota para la unién de listas ordenadas. Algo mas
corta, Baase [Baa88, sec. 3.1] da una descripcién general de la idea del adversario. Estas
secciones son buenas guias iniciales, sorprendentemente no muy comunes en la literatura.

Baase [Baa88, sec. 3.2-3.4] describe un mecanismo similar al que expusimos para la cota
inferior de encontrar el méaximo y el minimo, asi como el problema del méaximo y segundo
méximo, y el problema de la mediana (describiendo también un algoritmo para esta tltima).

Mucho méas popular en la literatura es la cota inferior de Q(nlogn) para ordenar por
comparaciones. Por ejemplo, la explican Aho et al. [AHU83, sec. 8.6], quienes incluso discuten
el caso promedio (de una forma algo distinta al apunte). Manber [Man89, sec. 6.4.6], Cormen
et al. [CLRSO01, sec. 8.1] y Mehlhorn y Sanders [MS08, sec. 5.3] presentan una versién bastante
mas resumida. Tanto Baase [Baa88, sec. 2.4] como Brassard y Bratley [BB8S8, sec. 10.1]
presentan un material més similar al de Aho et al. También Lee et al. cubren esta cota
inferior para el peor caso y caso promedio [LTCT05, sec. 2.4 y 2.6]. Levitin [Lev07, sec. 11.2]
explica con bastante detalle la cota de peor caso, asi como la cota inferior para la busqueda
en un arreglo ordenado.

Otro tema que no es dificil de encontrar es el de reducciones. Por ejemplo, Brassard y
Bratley [BB88, sec. 10.2] presentan muchos ejemplos de problemas con matrices, grafos y
aritmética entera y de polinomios. Mas llevadera (aunque mucho menor) es la seccién que
Manber [Man89, sec. 10.4] le dedica a las reducciones, que incluyen una demostracién dis-
tinta para la capsula convexa y un par de ejemplos de problemas en matrices. La siguiente
secciéon [Man89, sec. 10.5] es también interesante: habla de los errores tipicos al utilizar re-
ducciones para demostrar cotas inferiores. Lee et al. [LTCTO05, sec. 2.8] presentan brevemente
reducciones, con el ejemplo de la capsula convexa.

Si tiene interés en el problema mismo de la capsula convexa, que es bastante famoso,
puede ver un buen libro de geometria computacional [{BCvKOO08, cap. 11], si bien también
se encuentran buenas explicaciones en libros de algoritmos [Man89, sec. 8.4] [Sed92, cap. 25]
[Lev07, sec. 4.6] [LTCTO05, sec. 4.3].

Knuth [Knu98, pp. 436-453] discute extensamente el tema de la generaciéon de arboles
éptimos en tiempo O(n?), incluyendo los algoritmos de Hu-Tucker (llamados de Garsia-
Wachs en esta edicién) y el algoritmo cuadrédtico. Se puede encontrar un tratamiento més
pausado de la generacién del drbol 6ptimo en tiempo O(n?) (sin la mejora a O(n?)) en el
libro de Lee et al. [LTCTO05, sec. 7.6].

Para cddigos de Huffman puede verse un buen libro de Teorfa de la Informacién [CTO06,
sec. 5.6-5.8], donde también se puede encontrar la desigualdad de Jensen [CT06, sec. 2.6].
Para un tratamiento mds algoritmico puede verse, por ejemplo, Sedgewick [Sed92, cap. 22]
o Navarro [Nav16, sec. 2.6].

Otras fuentes online de interés:
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jeffe.cs.illinois.edu/teaching/algorithms/notes/28-1lowerbounds.pdf
web.cs.ucdavis.edu/"amenta/w04/dis2.pdf
www.cs.cmu.edu/afs/cs/academic/class/15210-s12/www/lectures/lecture2l.pdf
algo.kaust.edu.sa/Documents/cs372104.pdf
WwwwW.cs.princeton.edu/courses/archive/spr08/cos226/lectures/23Reductions-2x2.pdf
courses.cs.vt.edu/cs5114/spring2010/Bounds . pdf

www . youtube . com/watch?v=Nz1KZXbghj8
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Capitulo 2

Memoria Externa

Cuando el volumen de datos a manejar supera la capacidad de la RAM, éstos pueden
almacenarse en memoria externa o secundaria (disco, SSD, etc.). En principio, cualquier algo-
ritmo clésico puede usarse sin modificaciones sobre datos en memoria externa. Sin embargo,
las operaciones en memoria externa pueden ser hasta un millén de veces mas lentas que en
la RAM, por lo que vale la pena disenar algoritmos especialmente adaptados al modelo de
costo de estos dispositivos externos. Con un disenio adecuado, los algoritmos en memoria
externa pueden ser mucho mas rapidos, si bien atin seran considerablemente mas lentos que
en la RAM.

Estos desarrollos estan adquiriendo importancia también para los algoritmos de memoria
principal, a medida que las memorias caché se hacen mas rapidas en comparacion con ella
(hoy en dia pueden ser hasta 30 veces més rapidas). Un algoritmo para memoria secundaria
implementado en RAM suele tener mejor localidad de referencia, y por lo tanto hacer mejor
uso del caché que uno clésico, a pesar de que su complejidad no sea mejor.

2.1. Modelo de Memoria Externa

Los discos magnéticos estan divididos en pistas (anillos concéntricos) y sectores (limitados
por dos radios de circulo consecutivos). La intersecciéon de una pista y un sector es un blogue
o pagina. Un bloque tipicamente almacena unos pocos KBs. Sin embargo, algunos discos
tienen varios platos que giran simultaneamente, y la uniéon del mismo bloque en todos los
platos se trata como un tnico bloque, esta vez de unas decenas de KBs.

El disco magnético escribe a través de un cabezal, que es un dispositivo mecanico que
se debe mover a la pista correcta. Esta operacion se llama “seek”, y toma unas decenas de
milisegundos. Luego debe esperar a que el sector pase girando por debajo del cabezal. Este es
el “tiempo de latencia”, que suma unos pocos milisegundos méas. Finalmente, se lee el bloque
completo, a una velocidad de unos pocos MBs por segundo. Si se leen bloques contiguos de
esa pista, ya no se vuelve a pagar el tiempo de seek ni latencia. Incluso, si se leen bloques
de pistas contiguas, solo se paga un tiempo minimo adicional.

Esto significa que acceder a un elemento en una posicion aleatoria cuesta milisegundos,
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latencia

mientras que acceder al elemento al lado de uno leido cuesta microsegundos. Los algoritmos
que trabajan en disco son mucho mas rapidos si realizan pocos accesos aleatorios y muchos
secuenciales. Dado que la RAM accede a los datos en nanosegundos, los accesos aleatorios a
disco son un millén de veces més lento que en memoria principal, y los secuenciales son mil
veces mas lentos.

En el caso de los SSDs, no existen los componentes mecénicos, por lo que da lo mismo
acceder al bloque contiguo que a uno aleatorio. Pero sigue siendo cierto que se leen bloques
completos y que su lectura es bastante costosa, unas decenas de microsegundos (diez mil
veces mas lentos que la RAM).

El modelo de memoria externa que usaremos abstrae de estas dos arquitecturas, las méas
populares. La memoria externa esta formada por bloques de tamano B. Se leen y escriben
bloques completos. La lectura o escritura son tan caras que despreciamos las operaciones
del algoritmo en CPU y RAM. Simplemente contamos el nimero de 1/Os, es decir, lecturas
y escrituras de bloques. La diferencia entre leer bloques consecutivos o aleatorios no se
considera en el modelo. El algoritmo tiene una memoria RAM de tamano M, que medida
en bloques es de tamanio m = %. El input es de tamano N, y se presenta en disco en forma
contigua, ocupando n = % bloques.

Por ejemplo, el costo de un algoritmo que lee secuencialmente un arreglo es O(n). En
cambio, uno que lea el arreglo accediendo a sus elementos en un orden aleatorio es O(N),
miles de veces mayor en la practica. En general, lo peor que puede pasar con un algoritmo que
se ejecuta en RAM en tiempo T(N) es que al pasarlo a memoria externa también requiera
T(N) I/Os, pues éstos son millones de veces mas lentos que la operacién en RAM. Pero con
un diseno adecuado, se puede hacer bastante mejor en muchos casos relevantes.

Veremos estructuras de memoria secundaria para buscar elementos en conjuntos ordena-
dos (&rboles de bisqueda) y sin orden (hashing), para colas de prioridad, y algoritmos de
ordenamiento.

2.2. Arboles B

Los arboles B son una adaptacion de los arboles 2-3 a memoria externa, donde cada
nodo se almacena en un bloque y entonces se ensancha el nodo a tamano B para aprovechar
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que el bloque se lee completo. Los nodos internos del arbol B pueden almacenar hasta
(B — 1)/2 elementos (entendiendo que éstos requieren almacenar (B — 1)/2 claves y (B —
1)/24 1 punteros a los nodos hijos). Estas claves estén replicadas en las hojas (esta variante,
que suele ser la mas conveniente, corresponde al llamado drbol B+). Las hojas pueden
almacenar hasta B elementos (pues no almacenan punteros), pero suelen almacenar también
B/2 elementos para poder incorporar un puntero a los datos asociados a cada clave. Incluso
pueden almacenar B/c elementos, para alguna constante ¢, si se elige almacenar los datos
asociados directamente en la hoja junto con la clave, para evitar otro acceso aleatorio en
disco. Note que los “punteros” son aqui posiciones del archivo en disco donde se almacena
el arbol B. Por simplicidad de exposicion, diremos que los bloques tienen capacidad de
almacenar hasta B claves, tanto en las hojas como en los nodos internos.

Con una capacidad maxima de B claves, el arbol B garantiza que los nodos, salvo la
raiz, tienen al menos B/2 claves. Cada nodo interno con k claves yi, ...,y tiene k + 1 hijos
To, ..., Tk. Todas las claves y del subarbol T; cumplen y; < y < y;41 (entendiendo yg = —o0
e Ypr1 = +00). Todas las hojas del arbol B estén al mismo nivel, por lo que su altura es
O(logy V) (estd entre logy N y 1+ logp s V).

El mecanismo de busqueda de un elemento x en el arbol B es una extensiéon clara del
mecanismo del arbol 2-3. Se lee el nodo raiz, con sus claves ¥y, ..., yx, y se busca x entre ellas
(en forma binaria o secuencial, no hay diferencia en el modelo de memoria externa). Una
vez determinado que y; < x < y;11, la bisqueda continia en el subarbol 7;. La busqueda
requiere entonces leer O(logz N) paginas de disco.

La inserciéon de un elemento comienza con una busqueda, donde se identifica la hoja H
donde deberia estar su clave. El elemento se agrega en la hoja, y si ésta se pasa del tamano
méximo B, se corta en dos hojas Hy y Hs de tamano B/2+ 1y B/2, respectivamente, y la
mediana de las claves (que serd la maxima clave almacenada en H;) se inserta en el nodo
padre U, que asi reemplaza su antiguo hijo H por dos hijos, H; y Hs, separados por la nueva
clave. Si el padre U se pasa del tamano B, es decir pasa a tener B+ 1 claves y B + 2 hijos, se
repite la operacién en forma casi idéntica: se corta en dos mitades U; y Uy de B/2 claves y
B/2 4+ 1 hijos, y la clave mediana se mueve hacia el padre V' de U, reemplazando el nodo U
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por los nodos U; y Uy que flanquean la nueva clave de V. Si V' a su vez se pasa del tamano
maximo, se repite el procedimiento de rebalse de nodos internos. Si finalmente esto ocurre
en la raiz, se crea una nueva raiz del arbol con soélo 2 hijos, y la altura del arbol crece en 1.

Para el borrado, se elimina al elemento de la hoja. La clave borrada no necesita eliminarse
de los nodos internos, aunque ya no exista mds. Si la hoja pasa a tener menos de B/2
elementos, entonces se une con su anterior o siguiente hermana, y la clave que las separa
en el padre se elimina. Si esto hace que el padre tenga menos de B/2 elementos, se repite
el proceso de forma similar. La diferencia al unir dos nodos internos es que la clave que los
separa en el nodo del padre se baja al nuevo nodo, para separar el tltimo hijo del nodo
izquierdo del primero del nodo derecho que se unen. Eventualmente se puede llegar a la raiz,
que no requiere tener B/2 elementos. Sin embargo, si la raiz queda con cero elementos (y un
hijo), se elimina y el hijo pasa a ser la raiz, con lo que el drbol B pierde altura.

En el borrado puede ocurrir que, cuando unimos un nodo con su hermano, el nodo
resultante tenga mas de B elementos. En ese caso debemos volver a cortar el nodo que
hemos creado, por su nueva mediana, y volver a insertar una nueva clave en el padre. En
la practica, esto implica que las claves se redistribuyen entre los nodos hermanos y la clave
del padre que los separa se modifica. Cuando esto ocurre, el borrado no necesita seguirse
propagando hacia arriba.

Como puede verse, tanto la insercién como el borrado cuestan O(logz N) operaciones de
I/O. El arbol B garantiza un porcentaje minimo de ocupacién de las paginas de disco de
50 %. Si los datos se insertan en forma uniformemente aleatoria, el porcentaje promedio de
ocupacién es de 69 %. Con algunas técnicas mas refinadas para evitar cortar hojas cuando
rebalsan, la ocupacién puede sobrepasar el 80 % promedio.

Por otro lado, note que podriamos mantener los primeros ©(logz M) niveles del arbol B
en memoria principal, de modo que la cantidad de 1/Os para busquedas y modificaciones se

I
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2.2.1. Cota inferior

El costo de bisqueda de O(logg %) es Optimo si se busca mediante comparaciones. De-
mostraremos la cota inferior usando el método del adversario. El modelo es que el algoritmo
sabe todo el tiempo el rango del input ordenado en el cual puede estar la clave x que se
busca. Si inicialmente partimos con la memoria llena de datos, éstos particionan el input en
M + 1 zonas, y las comparaciones (gratis) con x le permiten al algoritmo establecer que x
estd en una de las M + 1 zonas. El adversario se encargard de que se busque una clave que
cae en la particion méas larga. Esta debe medir al menos ML-H’ pues si todas midieran menos,
no podrian sumar N. De modo que comenzamos con un rango de ese tamano.

Cada vez que el algoritmo lee un bloque de B elementos de disco, lee hasta B nuevas
claves con las que comparar. El algoritmo y la estructura de datos eligen qué claves son esas.
Nuevamente, particionan el rango actual que conoce el algoritmo en B + 1 subrangos, uno
de los cuales pasa a ser el nuevo rango después de las comparaciones. El adversario siempre
elige que z esté en el mayor de los rangos, de modo que el rango se reduce en un factor de a
lo mas B +1 por cada lectura. Se deduce que el algoritmo necesita leer al menos logp., 4 MLH
péaginas de disco para poder reducir el rango a tamano 1 y poder responder correctamente.

Con modificaciones simples, el arbol B puede recuperar un rango de elementos, es decir,
todos los occ objetos cuyas claves estén en un intervalo [z1, 23], en tiempo O(logg %—I—occ/ B),
lo cual es nuevamente 6ptimo.

2.3. Ordenamiento

Extenderemos el algoritmo de MergeSort a memoria secundaria. MergeSort comienza
dividiendo el arreglo en dos y se invoca recursivamente, hasta que los subarreglos que tiene
que ordenar son de tamano 1. Entonces vuelve de la recursion, uniendo los subarreglos
ordenados derecho e izquierdo en forma ordenada.

En un entorno de memoria secundaria, tiene sentido detener esta recursion cuando los
subarreglos a ordenar son de tamano B. En este momento se puede leer el bloque de disco,
ordenarlo, y reescribirlo a costo O(1) en I/Os. A la vuelta de la recursion, la unién se hace
leyendo secuencialmente los dos subarreglos, usando un buffer de tamano B en memoria para
cada subarreglo y otro para el resultado del merging. En total, todas las uniones de un nivel
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del arbol requieren leer el arreglo completo y reescribirlo, a costo O(%) = O(n). Como la
recursion se detiene en los subarreglos de tamano B, la cantidad de niveles en la recursion
es log, %. Es decir, esta variante de MergeSort requiere O(% log &) = O(nlogn) 1/Os.

Podemos mejorar este costo deteniendo la recursion cuando el subarreglo a ordenar es de
tamano M. En este punto, simplemente se lee el subarreglo a memoria, se ordena (gratis),
y se reescribe ordenado. Con la reduccion resultante de la cantidad de niveles, el costo de
ordenar pasa a ser O(% log &) = O(nlog %) 1/Os.

Se consigue una reduccién adicional mediante aumentar la aridad del arbol de recursion,
es decir, no particionando el subarreglo en dos sino en més. El unico limite a la aridad
del arbol de la recursion es que, al unir, se necesita tener un buffer de B elementos en
memoria por cada archivo que se une, por lo cual éstos no pueden exceder % — 1. Ahora la
cantidad de niveles es O(log M &), por lo que la cantidad de I/Os del algoritmo se reduce a
O(% log M L) = O(nlog,, 2) = O(nlog,, n) (notar que las ultimas dos expresiones difieren
sélo en O(n), que es un término de orden inferior).

Esta complejidad es bastante buena en la practica. Considerando una memoria de GBs
y un bloque de KBs, se pueden ordenar PBs (petabytes, 2°°) con sélo dos pasadas de lec-
tura y dos de escritura sobre los datos. En la practica, sin embargo, cuando se usan discos
magnéticos, puede ser mala idea llegar realmente a la aridad % — 1, pues esto aumenta
la cantidad de seeks a posiciones aleatorias para leer bloques de muchos archivos distintos.
Experimentalmente el éptimo suele ser unir de a unas decenas de archivos por vez. En este
caso, ordenar unos PBs puede requerir unas 10 lecturas y escrituras del arreglo completo.

Note que, con la estructura adecuada para la union, el costo de CPU de este algoritmo es
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O(Nlog N). Cuando se hace la unién de % — 1 archivos, debe usarse una cola de prioridad
en memoria principal para extraer el minimo entre los primeros elementos de cada uno de
los % — 1 buffers. Eso hace que el costo de unir todos los datos de un nivel sea O(N logm).
Multiplicado por los log,, % niveles, nos da O(N log %) A esto debe agregarse el costo de
CPU de ordenar los % subarreglos de largo M en memoria, en el ultimo nivel de la recursion,

O(Nlog M), lo que en total nos da O(Nlog V).

2.3.1. Cota Inferior

Demostraremos que este algoritmo de ordenamiento es éptimo si se procede por compa-
raciones. Para ello, volveremos a utilizar la estrategia del adversario. Ya vimos en el capitulo
anterior que un algoritmo de ordenamiento debe permitir determinar en cudl de todas las V!
permutaciones se ha presentado el input. Nuestro modelo sera el conjunto de las permuta-
ciones consistentes con los datos que ha leido el algoritmo hasta ahora. En el estado inicial,
este conjunto tiene las S = N! permutaciones posibles, y en los estados finales este conjunto
debe tener un tnico elemento, S = 1.

El algoritmo va reduciendo el tamano S del conjunto de permutaciones factibles a medida
que lee un bloque de datos del disco y los compara contra lo que tenga almacenado en
memoria. Al leer B valores, si es la primera vez que los ve, el algoritmo puede compararlos
entre si para determinar cudl de los B! posibles ordenamientos entre ellos es el correcto.
Asimismo, si guarda otros M — B valores en memoria, puede determinar de cudl de las (]\g )
formas se insertan estos B valores entre los que tiene en memoria. En total, el algoritmo
determina la configuracién correcta entre las (1‘34 )B I que eran posibles antes de leer el bloque
(esto es optimista: podria ser que un algoritmo no lograra aprender tanto, pero lo importante
es que no puede aprender més que esto).

Cada una de las S permutaciones del input que ain son posibles es compatible con sélo
una de estas configuraciones entre las que la lectura del bloque ha permitido distinguir.
El conjunto de permutaciones se puede particionar entonces en (ABJ)B! subconjuntos, uno
compatible con cada configuracién. El adversario puede elegir cual de estos subconjuntos
es el que resulta compatible con el bloque leido, y tomara el mayor. El mayor subconjunto

tiene un tamano minimo garantizado de (ML Es decir, por bien que lo haga el algoritmo,

W)B!
el adversario puede encargarse de que S se reduzca sélo por un factor de (]\g )B ! por cada
bloque que lee. Si el algoritmo lee ¢ bloques, entonces a lo sumo puede reducir el tamano del

conjunto inicial a
N!

(3) (B
Si seguimos por este camino llegaremos a una cota inferior valida, pero no ajustada. La
razon es que hemos sido demasiado optimistas. La cantidad de lecturas de bloques a lo largo
del algoritmo debe ser t > n, pues debe leer todo el input. Y de ellas, solo las primeras n
pueden leer bloques nunca vistos. Por lo tanto, no se puede aprender el orden interno de

los elementos del bloque (lo que aporta la componente B!) todas las t veces que se lee, sino
a lo sumo n veces. (Se pueden escribir bloques nuevos a lo largo del algoritmo, pero como
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estos bloques se han escrito, entonces estuvieron juntos antes en memoria, por lo tanto el
algoritmo ya sabia como se ordenaban internamente antes de escribirlos.) En conclusion, si
el algoritmo lee t bloques, realmente s6lo puede reducir el conjunto de inputs compatibles a

N!
M\t ’
(5) (BY"
Si calculamos ahora cudnto tiene que ser ¢ para que este valor llegue a 1, tendremos

log N! — nlog B!
log ()

Usando la aproximacién de Stirling e ignorando términos de orden inferior, tenemos

Nlog N — Nlog B

t
Mlog M — Blog B— (M — B)log(M — B)’
Nlogn
t 7
Blogm + (M — B)log 37
t > nlog,n.
Lo que hicimos en el tltimo paso fue usar que log MALIB = log(1+ %) = O(%) (pues

In(1+z) < z), y por lo tanto (M — B)log -2 = O(B), que es de orden inferior al término
Blogm que lo acompanaba.

Tenemos entonces que todo algoritmo que ordene en memoria externa por comparaciones
requiere €(nlog,, n) 1/0s.

2.4. Colas de Prioridad

En problemas de simulacién es comiuin tener que manipular cantidades masivas de eventos
que no caben en memoria principal (por ejemplo, colisiones entre particulas, donde cada
evento dispara otros eventos que deben simularse mas adelante). Si estos eventos se pueden
manejar con una cola simple, es muy facil manejarla en disco a un costo de O(%) por insercién
y borrado. Si, en cambio, deben insertarse para ser procesados en un determinado orden,
necesitaremos una cola de prioridad en disco. Un argumento simple de reduccién nos muestra
que manejar una cola de prioridad en disco requiere Q(% log,, n) 1/Os por operacién, pues
si no podriamos usarla para ordenar rompiendo la cota inferior que acabamos de demostrar.

2.4.1. Cola de prioridad limitada

Consideremos el siguiente esquema. Usaremos la mitad de la memoria, %, para mantener
una cola de prioridad clasica H. Todas las inserciones ocurriran en H, gratis. Mientras esta
cola no se desborde, no usaremos el disco.
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En el momento en que se inserte un nuevo elemento y H esté llena, ésta se ordenara com-
pletamente en memoria (gratis) y se almacenard en un archivo en disco, Fi, lo que requerird
% escrituras. Inmediatamente crearemos un buffer de tamano B en memoria para F;, donde
leeremos su primer bloque. H quedard vacia de nuevo para aceptar nuevas inserciones.

De ahora en adelante, cada vez que extraigamos el minimo, tendremos que elegir entre
el minimo de H y el primer elemento del buffer de F;. Una vez que leimos todo el buffer de
F, lo volvemos a llenar leyendo el siguiente bloque de B elementos.

Como H sigue recibiendo inserciones, puede volverse a llenar. En este caso lo ordenamos
nuevamente y lo escribimos en un nuevo archivo, F,. En general, tendremos k archivos
ordenados Fi, ..., Fy, y las extracciones de minimo tendran que considerar el minimo entre
el minimo de H y los minimos de cada F;. Esto se hace facilmente en tiempo de CPU O(log k)
con una pequena cola de prioridad que mantiene los primeros elementos de cada F; y los
reemplaza por el siguiente de su buffer cuando éstos son extraidos.

Note que en todo momento los archivos F; pueden estar a medio leer. Podriamos pensar
en un mecanismo mas sofisticado que eliminara los archivos leidos, o los uniera cuando se
hicieran pequenos, pero aqui mantendremos la simplicidad: los archivos F; se crean y se van
leyendo, y nunca se eliminan o unen.

Considerando que tenemos % espacio de memoria para los buffers, tenemos un limite de

k < 2L Esto significa que tenemos un limite de N < k-4 + % < Y (M 4 1) = O(%Q)
al total de elementos que pueden ser insertados en esta estructura (en el peor caso; en la
practica muchos podrian eliminarse antes de pasar a un archivo F;). Con una memoria de
GBs y un B de KBs, esto equivale a PBs (petabytes).

Para analizar el costo de las operaciones, consideremos lo que nos puede costar un ele-
mento desde que es insertado hasta que es extraido. La insercién es gratis, pero el elemento
puede finalmente ser enviado a un archivo F;, donde es escrito junto con otros B — 1 elemen-
tos, por lo que podemos cobrarle % escrituras. Luego, puede ser leido de este archivo a su
buffer en memoria, junto con otros B elementos, por lo que podemos cobrarle % lecturas. En
total, cada operacion cuesta O(%) [/Os. Esto, por supuesto, es en un sentido amortizado:
muchas operaciones son gratis, y de repente una insercién provoca un costo de O(%) para
escribir un archivo F; completo. En un esquema mas sofisticado, podemos “deamortizar” el

39



EM

kM

« o DU o

V

costo mediante escribir este archivo poco a poco, dividiendo H en dos colas de tamano M /4,
de manera que cuando una se llena empezamos a usar la otra y vamos escribiendo la que
se llené poco a poco a disco, a lo largo de las sucesivas inserciones que siguen. Debemos
asegurar que, para cuando la segunda cola se llene, la primera ya se habréa vaciado y puedan
intercambiar sus roles.

Aun en sentido amortizado, esta complejidad parece violar la cota inferior: podriamos
ordenar en disco en tiempo O(%) mediante insertar los N elementos y luego extraerlos de esta

cola de prioridad. Esto es efectivamente cierto, pero dentro de la limitacién de N = O(%Q).
Bajo este supuesto, la complejidad ©(nlog,, =) de ordenar es efectivamente O(n).

2.4.2. Cola de prioridad general

En caso de que debamos manejar més elementos que los permitidos por el esquema
anterior (por ejemplo, no siempre la estructura tendra permitido usar toda la RAM, con lo
cual la limitacién podria ser mds notoria), extenderemos el esquema previo mediante una
secuencia creciente de grupos de archivos.

Tendremos un nimero maximo k de archivos, como antes, pero éstos seran los archivos
F!, ..., F} del primer grupo. Cuando se intente crear el archivo F}l,,, lo que haremos serd
unir todos los archivos del grupo actual en uno nuevo, F2, de tamano méaximo k - % Con ello
quedan libres todos los archivos F}' y se pueden volver a llenar. Una vez que se creen todos

los archivos FZ, ..., F¢ y se necesite crear uno nuevo, se uniran todos en un nuevo archivo,
F}, de tamario k? - &, y se vaciardn todos los F2. Y asf sucesivamente.
Cada unién de archivos F}, ..., F} para construir un Fi*! cuesta O(|F;™|/B) = O(k'm),

es decir, O(%) por elemento unido. Si en total construimos r grupos, el costo amortizado de
una operacién es O(%), pues a lo largo de su vida en la estructura, un elemento insertado
puede ser escrito, luego unido r — 1 veces, y finalmente leido.

Para poder crear el primer elemento del grupo r debemos haber insertado N = Z;:é k-
% = O(k"M) elementos, por lo tanto el nimero de grupos que podemos llegar a producir
es r = log,, % + O(1). Debemos tener k - r buffers en memoria para poder ir extrayendo los
minimos de cada archivo de cada grupo, por lo cual necesitamos que % > krB, es decir,
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estamos limitados a 2kr < m. Para tener tiempo 6ptimo necesitamos que 7 = O(log,, ™), es
decir, log k = ©(logm). Podemos entonces elegir k = ©(m®) para algin 0 < a < 1 constante
(el costo de las operaciones se multiplicara por é) Dada la restriccion 2kr < m, esto significa
que debe cumplirse m®log,, n = O(m), es decir logn = O(m'~*logm).

Esta condicién es bastante generosa en la practica. Por ejemplo, considérese sélo 1 MB
de memoria y 1 KB de tamafio de bloque, con lo cual m = 2% y a = 1/2. Para manejar 1
YBs (un yottabyte, N = 2%0) de datos, usemos k = m® = 2° y obtenemos r = log,, 2+ = 12,
con 2kr = 768 < 1024 = m, y el esquema nos cabe en memoria a s6lo el doble del costo
6ptimo (que serfa log,, * = 6).

2.5. Hashing

Ademas de buscar todos los objetos en un rango, el arbol B puede encontrar el predecesor
o sucesor de un elemento en el conjunto de las claves, mediante una modificaciéon simple del
algoritmo de busqueda. Cuando estas capacidades no son necesarias y sélo se desea poder
encontrar un elemento insertado, podemos disenar estructuras basadas en hashing que, bajo
ciertos supuestos razonables, permitan buscar haciendo O(1) accesos al disco en promedio.
Para esto bastaria con implementar una tabla normal de hashing en disco. Sin embargo, una
tabla normal de hashing requiere o bien conocer de antemano la cantidad de elementos que
se almacenaran, para dar un tamano adecuado a la tabla, o bien incrementar periddicamente
el tamano de la tabla. Esto tiene un costo importante y es especialmente indeseable en
memoria externa, que es mucho mas lenta. Asimismo, en memoria externa, donde los datos
son mucho mas masivos y posiblemente persistentes, es menos probable que se tenga una
idea aproximada del tamano de datos que se deberan manejar.

Presentaremos dos esquemas de hashing que buscan ofrecer costo de operacién O([t/B])
basédndose en una funcién de hashing h(-) cldsica que produzca O(t) colisiones (t = O(1) si
la funcién esta bien disenada).

2.5.1. Hashing Extendible

Este esquema de hashing funciona, en promedio, cuando se almacenan N = O(M B) datos
en total, es decir, unas miles de veces el tamano de la memoria principal. Inicialmente, la
estructura es una tnica pagina en disco, H, donde los datos se insertan de cualquier manera,
al costo de O(1) I/Os (o incluso gratis si la tenemos en memoria principal). Las bisquedas
se hacen leyendo la pagina H y buscando secuencialmente la clave que se desea.

Una vez que esta pagina se llena, la siguiente insercién provoca que la dividamos en dos,
Hy y H,. Para ello, releemos cada dato y de H y calculamos h(y). Segun el primer bit de h(y)
sea 0 6 1, insertamos el elemento en Hy o Hy, respectivamente. Luego, creamos un nodo en
memoria principal con dos hijos: el izquierdo apunta a la pagina de disco donde almacenamos
Hy, y el derecho a la de H;. Supongamos que, mas adelante, la pagina de H, rebalsa por
una insercion. Recorreremos todos los elementos y de Hy y consideraremos el segundo bit
de h(y) para separar los elementos en dos hojas, Hoy y Ho1. La hoja de Hy se reemplazard
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entonces por un nodo interno, cuyos hijos izquierdo y derecho serén, respectivamente, Hyg y
Hol.

En general, tendremos un arbol en memoria de tipo trie (que volveremos a ver en el
capitulo de universos discretos), con k — 1 nodos y k hojas, donde cada hoja almacena datos
en una pagina de disco. Las busquedas por una clave z parten por calcular h(z), y usan
sus bits para recorrer el trie, desde la raiz hasta llegar a una hoja. En ese momento leen la
pagina correspondiente del disco y buscan x secuencialmente entre las claves. El costo de
bisqueda es, en principio, siempre de 1 lectura, y el de insercién agrega 1 6 2 escrituras.

Note que, cuando se divide una pagina, no hay garantia de que la divisién sea equitativa.
Una hoja podria quedar con més elementos que la otra. Esto significa que no hay una
ocupacién minima garantizada, y que en particular no podemos garantizar que la cantidad
de nodos del trie es O(k) = O(N/B). Es decir, con mala suerte se nos podria acabar la
memoria disponible para un N mucho menor que ©(M B). En promedio, sin embargo, si
consideramos que los valores h(y) son aleatorios, las pdginas estaran llenas a un 69 %.

Incluso podria ocurrir que, al dividir una pagina, todas las claves se fueran a una de las
dos paginas. En ese caso, no se necesita crear una pagina vacia en disco. Basta que el puntero
desde el arbol sea nulo para indicar esa situacion, y deberemos volver a particionar la otra
pagina, que continuara rebalsada, todas las veces que sea necesario. Note que, aun en este
caso, realizamos solamente 2 escrituras a disco.

También puede ocurrir que la pdgina que rebalsa ya sea de profundidad |h(y)|, es decir,
que ya se hayan usado todos los bits de la funciéon de hashing. Esto equivale a decir que
tenemos més de una pégina de elementos que colisionan en el hash provisto por h(-). Si bien
esto no deberfa ocurrir con una h(-) bien disenada, debe haber una provisién para este caso.
Lo que se hace es tener una lista enlazada de las paginas que rebalsan en el iltimo nivel. Por
ello, si la funcién h(-) produce una colisién entre ¢ elementos, que requerirfan tiempo O(t)
para buscarse en memoria principal, el costo en disco sera O([t/B]) lecturas.

Finalmente, para borrar un elemento, debe encontrarse su péagina y eliminarlo. Luego
de esto, puede ocurrir que la pagina quede vacia, en cuyo caso se elimina y el puntero en
el arbol se hace nulo. Mas probable, sin embargo, es el caso en que el nodo hermano en
el arbol también sea una hoja y que ambas quepan en una sola. En este caso se pueden
unir y reemplazar el nodo padre de ambas paginas por la pagina unida. Esta uniéon puede
hacerse exigiendo que la nueva pagina esté, por ejemplo, % llena, para evitar secuencias de
uniones y divisiones muy seguidas para una pagina que almacena cerca de B elementos y

42



=il

il

Hooo

gl

S 1l

sufre inserciones y borrados consecutivos. Asismismo, debe verificarse que la nueva pagina no
tenga como hermano un puntero nulo, ya que en ese caso se puede reemplazar al nodo padre
por la hoja creada. Esto puede ocurrir repetidamente para varios ancestros de la pagina
creada. En total, sin embargo, un borrado requiere de 1 6 2 lecturas y 1 escritura.

2.5.2. Hashing Lineal

El hashing lineal provee algunas ventajas sobre el extendible. Para comenzar, requiere
almacenar sélo O(1) datos en memoria, por lo que puede manejar conjuntos arbitrariamente
grandes de datos. Segundo, permite controlar el porcentaje de llenado de los bloques, o bien
el costo promedio de busqueda (pero no ambos).

Pensemos primero que el archivo de hashing en disco tuviera siempre 2! piginas. Un
elemento y estd guardado en la pagina ntimero h(y) méd 2° (es decir, los ¢t bits mds bajos
de h(y)). Si algunas paginas rebalsan durante las inserciones, les creamos una lista enlazada
de péginas de rebalse. Si, luego de un rebalse, notamos que el costo de busqueda (es decir,
1 més el largo promedio de las listas de rebalse) se ha hecho demasiado alto, ezpandimos la
tabla. Expandir significa duplicar su tamano a 2. Cada pdgina i, con 0 < i < 2¢, se recorre
y sus elementos y se reinsertan en la pagina h(y) méd 201, Esto significa que una parte de
los elementos se quedan en la pagina ¢, mientras que otros se insertan en la pagina i + 2°.

El hashing lineal funciona de esa forma, pero realiza el proceso de expansion de manera
gradual. En general, el archivo contiene p paginas, con 2! < p < 2!, Inicialmente tenemos
p =1 paginas y t = 0. Las pdginas 0 < ¢ < p — 2! ya fueron expandidas, y repartidas entre
las paginas 7 e 7 + 2!, mientras que las paginas p — 2! < ¢ < 2% atin no han sido expandidas.

Para buscar un elemento y en el caso general, se calcula k < h(y) méd 2041 Si k < p,
entonces se lee la pagina k (y su posible lista de rebalse) para buscar la clave y en ella,
secuencialmente. Si k > p, sin embargo, la pagina k£ atin no ha sido creada por el proceso de
expansion, por lo cual el proceso de lectura debe realizarse en cambio en la pagina k < k—2°.

Cuando se cumple una determinada condicién (por ejemplo, el costo promedio de biisque-
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da supera un cierto valor permitido), expandimos la siguiente pdgina, es decir, la pagina p—2°
(jque no es necesariamente la que produjo el rebalse que llev) a exceder el costo promedio
de buisqueda permitido!). Esta pagina se lee y sus elementos y se reinsertan en las paginas
h(y) méd 271 es decir, se reparten entre la misma p — 2! y la nueva pdgina p, que se agrega
al final del archivo. Al terminar la expansién, hacemos p <— p + 1, y si resulta que p = 201,
entonces hemos completado una expansion y nos preparamos para la siguiente: ¢ <— ¢t + 1.
Para eliminar un valor, éste se busca en la tabla y simplemente se elimina. En caso de estar
en una lista de rebalse, puede usarse su espacio para mover un elemento desde la tltima
péagina de la lista, de modo de poder liberar apenas se pueda esta tltima pagina y reducir asi
el tiempo promedio de buisqueda. Si se eliminan suficientes elementos, puede resultar que la
tabla pueda contraerse sin que se exceda el costo promedio de bisqueda maximo permitido.
Para realizar una contraccién, primero se hace t <t — 1 si p = 2%, y luego se hace p + p—1.
Luego, se agregan todos los elementos de la pagina p a la pagina p — 2¢, procediendo a eli-
minar la pagina p. Note que esto puede hacer rebalsar la pagina p — 2¢, o alargar su lista de
rebalse.

Note que una expansion o una contraccién no necesariamente cambiaran la condicion
que las disparé acerca del costo promedio de bisqueda. En general es preferible, para evitar
que una insercién o borrado disparen muchas expansiones o contracciones, realizar de todas
maneras una sola, y dejar que la siguiente operacion dispare nuevamente una expansion o
contraccion, hasta que la situacion se resuelva.

Se pueden usar otros criterios en vez del maximo costo promedio de buiisqueda. Por ejem-
plo, puede permitirse un minimo porcentaje de llenado de las paginas, de modo de contraer
cuando éste se hace demasiado bajo (y expandir cuando es posible sin violar el criterio).
Este criterio se contrapone al de mantener un costo de bisqueda maximo, por lo que solo
se puede controlar uno de los dos (o puede usarse una combinacién de criterios). En general
el hashing lineal se comporta mejor que el extendible, aunque no suele garantizar un solo
acceso por lectura.

2.6. R-trees

El R-tree es la estructura de datos mas popular para almacenar puntos o hiperrectangulos,
en 2 o mas dimensiones. Es una extension de la idea del B-tree, en el sentido de que los nodos
usan bloques de disco garantizando una fracciéon minima de llenado, tiene altura O(logz V),
las hojas estan todas al mismo nivel, y usa mecanismos similares de inserciéon y borrado.

Las “claves” son minimum bounding boxes (MBBs), es decir, el menor hiperrectangulo
que encierra un conjunto de objetos. El R-tree puede representar objetos complejos, v la
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clave de busqueda es su MBB (como caso particular, podemos también almacenar puntos).
Cada nodo interno tiene k claves y k hijos. La clave y; que almacena para su hijo T; es el
MBB de los MBBs almacenados en la raiz de T;. Dado un parametro 0 < a < %, el R-tree
garantiza que todo nodo u hoja, excepto la raiz, tiene entre aB y B claves.

El R-tree permite encontrar todos los objetos cuyos MBBs se intersecten con un hiper-
rectangulo de consulta. La forma de proceder es leer la raiz, comparar la consulta con los k
MBBs que almacena, y recursivamente continuar la buisqueda en todos los subarboles T; tal
que y; se intersecta con la consulta. Cuando se llega a las hojas, los MBBs intersectados se
reportan. Asimismo, se puede usar para encontrar todos los objetos del R-tree que contienen
al de la consulta, mediante entrar en todos los hijos cuyos MBBs contengan a la consulta.

Note que la consulta puede entrar a cero o mas hijos de un nodo, por lo que el tiempo de
busqueda no es O(logz N). Podemos obtener una complejidad promedio si consideramos una
probabilidad fija p de que la consulta se intersecte con un MBB. Entonces el tiempo promedio
cumple la recurrencia T(N) = 1 + pB - T(N/B), cuya solucién es O(N'~'°es(/P)) Es decir,
la complejidad es de la forma O(n?) para un 0 < 3 < 1 que depende de la probabilidad
de interseccion. Es por ello que es importante lograr que los MBBs sean lo mas pequenos
posible, mediante una adecuada politica de insercién y borrado de objetos.

Para insertar un objeto x, partimos de la raiz y vemos si esta completamente contenido
en algin MBB. Si lo estd, elegimos el de menor area y continuamos. Si no, calculamos
en qué hijo 7T; tendriamos que incrementar menos el area de la clave y; al convertirla en
Y. = MBB(y; U x), reemplazamos y; por y; y continuamos la insercién en 7;. Finalmente, al
llegar a una hoja, agregamos = a los objetos.

En caso de que la hoja pase a tener B + 1 objetos, debemos partirla en dos hojas de
modo de minimizar la suma de las areas de ambos MBBs y que ninguna tenga menos de
aB objetos. Note que en el modelo de memoria externa podrfamos considerar las ©(2F)
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particiones posibles y seleccionar la mejor, lo que seria “gratis” en términos de 1/O, pero
esto es impracticable en la realidad por su costo de CPU. En cambio, se utilizan heuristicas.
Una clésica, llamada “quadratic split”, hace lo siguiente:

» Escoge dos claves y e i/ lo méas alejadas posible, es decir, que maximicen las areas de
MBB(y Uy') — MBB(y) — MBB(y'). Esto toma tiempo O(B?) en memoria principal.
Estas claves seran los primeros elementos de las dos nuevas hojas.

= Va insertando las demés claves, eligiendo en cada paso la que incremente menos el drea
al insertarla en el MBB de la hoja de y o en el de la hoja de y'. En caso de empate,
puede escoger la hoja de menor area o la de menos elementos. Esto también cuesta
O(B?) operaciones en memoria principal.

» Cuando una hoja llegue a (1 — a)B elementos, los demés van a la otra.

Este mecanismo se usa también cuando los nodos internos rebalsan. En total, una inser-
cién cuesta O(logg N) 1/Os, y O(B*logg N) tiempo de CPU.

Para borrar un elemento, se elimina de su hoja y se calcula su nuevo MBB, que puede
decrecer. A la vuelta de la recursiéon, se pueden ir recalculando los MBBs de los ancestros
del nodo, al costo de una nueva escritura del bloque. Cuando una hoja tiene menos de aB
elementos, en vez de intentar algo parecido al B-tree, es decir, unirla con una hoja vecina
y de ser necesario volverlas a partir, lo que hace el R-tree es eliminarla completamente y
reinsertar todos los elementos en el arbol. Esto suele mejorar el empaquetamiento de objetos
en MBBs. Note que esto puede ocurrir también con subarboles completos, cuando un nodo
interno queda con menos de aB claves.

Almacenando los primeros O(logz M) niveles en memoria principal, el costo de insercién
se reduce a O(logg ™) 1/Os.

2.7. Ficha Resumen

= Arbol B: O(logp 7*) para insertar, borrar y buscar. ()ptimo para buscar si se procede
por comparaciones. Ocupacién promedio 69 %. Permite recuperar todos los occ objetos
en un rango en tiempo éptimo O(logg =+ +occ/B), y encontrar el predecesor y sucesor
de un elemento en tiempo O(logp =).

= Ordenamiento: O(nlog,, n) (o, equivalentemente, O(nlog,, ) ), lo que es éptimo si se
procede por comparaciones.

= Cola de prioridad: O(4 log,, n) (amortizado) si log 2 < m® para una constante 0 <
a < 1, lo que es 6ptimo si se procede por comparaciones.

» Hashing extendible: para N = O(M B). Inserta, borra y busca en O(1) promedio, con
un buen hash. Con uno que produce ¢ colisiones, el costo es O([t/B]). Ocupacién
promedio 69 %.
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» Hashing lineal: para cualquier N. Se puede acotar el costo promedio o la ocupacion
promedio a costa de la otra medida.

= R-tree: O(logp 1) para insertar y (salvo cuando se debe reinsertar un nodo) para
borrar. Para encontrar todos los que intersectan o contienen un rectdngulo de consulta,
O(n?) en promedio, para una constante 3 que depende de la consulta y de los datos.

2.8. Material Suplementario

Probablemente la descripcion del modelo de costo en memoria externa més recomendable
es la de Vitter [Vit08, cap. 2] o la de Meyer et al. [MSS03, cap. 1], por su nivel de detalle
y completitud. Incluyen también otros modelos interesantes, que incluyen paralelismo y la
jerarquia completa de memoria. Cormen et al. [CLRS01, cap. 18] describen el modelo de
costo con mucho menos detalle, pero ain razonablemente bien. Casi todos los otros libros
mencionados en esta seccién describen también el modelo de costo, aunque generalmente con
aun menos detalle.

Cormen et al. [CLRSO01, cap. 18] explican detalladamente los arboles B. También los
describen Weiss [Wei95, sec. 4.7] y Sedgewick [Sed92, cap. 18], aunque con bastante menos
detalle. Aho et al. [AHUS83, cap. 11] también describen los arboles B, precedidos de una
discusion que es interesante para convencerse de la necesidad de este tipo de estructuras
cuando la masividad de los datos hace que las ideas mds simples fracasen. Vitter [Vit08,
cap. 11] también describe los drboles B con bastante detalle, asi como otras variantes que
son ttiles, por ejemplo, para realizar muchas modificaciones en grupo. Meyer et al. [MSS03,
sec. 2.3] también presentan los drboles B en detalle, e incluyen varias variantes de interés.
Asimismo, explican brevemente la cota inferior para buscar en disco [MSS03, sec. 1.5.2].

Weiss [Wei95, sec. 7.11] describe el MergeSort para memoria externa, pero se centra en
un modelo de k cintas en vez de discos. En las cintas, el acceso sélo puede ser secuencial.
Finalmente el algoritmo no es muy distinto al que vimos, si bien hay mas detalles distracti-
vos de lo conveniente. También usando cintas, Baase [Baa88, sec. 2.8] y Sedgewick [Sed92,
cap. 13] describen MergeSort con bastante detalle y discuten varios aspectos practicos. Una
descripcién més moderna y simple se puede encontrar en Mehlhorn y Sanders [MS08, sec.
5.7], donde ademés se presenta SampleSort, una variante muy sencilla que también funciona
bien en la practica. Meyer et al. [MSS03, sec. 3.2.2] discuten con bastante detalle variantes
de MergeSort y de SampleSort. Vitter [Vit08, cap. 5y 6] dedica un largo capitulo a técnicas
avanzadas de ordenamiento, si bien el material no es tan aconsejable para leer sobre Mer-
geSort basico. En el capitulo 6, Vitter explica la cota inferior para ordenar en disco. Meyer
et al. [MSS03, sec. 1.5.1] cubren en detalle esta cota inferior, junto con la del problema
relacionado de permutar un arreglo en disco.

Meyer et al. [MSS03, sec. 2.1] cubren estructuras elementales en disco, como pilas, colas
y listas, asi como una cola de prioridad basada en una variante de los arboles B (los buffer
trees) que obtiene resultados similares a los vistos en el capitulo, pero que son siempre
6ptimos [MSS03, sec. 2.3.6]. La versién que presentamos se describe, en su variante simple,
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en Mehlhorn y Sanders [MSO08, sec. 6.3], donde dan referencias a la versién completa.

Aho et al. [AHUS83, sec. 11.3] describen un hashing fijo en disco, sin un mecanismo eficiente
para crecer cuando las listas de rebalse se hacen demasiado largas. Weiss [Wei95, sec. 5.6]
describe el hashing extendible, si bien, como en casi toda la literatura, usa en memoria
una tabla que se duplica para abarcar la altura maxima en vez de una estructura de trie. Lo
mismo hace Sedgewick [Sed92, cap. 18], con bastante detalle. Vitter [Vit08, sec. 10.1] también
describe el hashing extendible con cierto detalle, y luego describe muy brevemente el hashing
lineal [Vit08, sec. 10.2]. Samet [Sam06, ap. B] describe el hashing extendible usando tries,
asi como el hashing lineal y otras variantes, con mayor detalle. Meyer et al. [MSS03, sec. 2.4]
describen el hashing lineal y extendible, asi como varias otras variantes de hashings capaces
y no capaces de hacer crecer las tablas.

Existen muchos otros algoritmos para memoria secundaria. Por ejemplo, Mehlhorn y
Sanders [MS08, sec. 11.5] describen algoritmos para drboles cobertores minimos en memoria
externa. Dos excelentes referencias para mas algoritmos y estructuras de datos en memoria
externa son los libros de Vitter [Vit08] y de Meyer et al. [MSS03], que incluyen temas de
matrices, geometria, grafos, textos, y técnicas generales de diseno.

Para los R-trees es mejor consultar un libro de estructuras de datos espaciales [Sam06,
sec. 2.1.5.2.3-2.1.5.2.7].

Otras fuentes online de interés:
» El libro de Vitter [Vit08], www.ittc.ku.edu/~jsv/Papers/Vit.I0 book.pdf

» El libro de Meyer et al. [MSS03], link.springer.com/content/pdf/10.1007/
3-540-36574-5.pdf

m algo2.iti.kit.edu/download/mem hierarchy_ 02.pdf a
algo2.iti.kit.edu/download/mem hierarchy 06.pdf.

» www.daimi.au.dk/ large/ioS09/
» people.mpi-inf.mpg.de/ mehlhorn/AlgorithmEngineering/ExternalMemorySlides.pdf

= 164.100.133.129:81/eCONTENT/Uploads/8.0 Data Structures and Algorithms for
External Storage.pdf

m ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-
data-structures-spring-2012/calendar-and-notes/MIT6_851512_L7.pdf

m web.stanford.edu/class/cs145/cs145-notebooks-2016/lecture-11-12/
Lecture_11-12_Indexes.pdf

m www.imada.sdu.dk/ rolf/Edu/DM808/F08/

» www.youtube.com/watch?v=py4z_v9dfzQ y www.youtube.com/watch?v=KZualGbIGr8
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Capitulo 3

Analisis Amortizado

El analisis amortizado es una técnica que permite analizar el costo de una secuencia
de n operaciones, cuando éste es menor de lo que se obtiene tomando el peor caso de una
operacién y multiplicaindolo por n. En este caso, diremos que el costo amortizado de cada
operacion es el costo total de la secuencia de operaciones dividido n. Note que esto no es lo
mismo que analisis de caso promedio: se considera la peor secuencia posible de n operaciones
(aunque, independientemente, podriamos hablar de costo promedio amortizado).

Veremos tres técnicas de andlisis amortizado. Segun el caso, puede ser mas natural utilizar
una que otra. Las ejemplificaremos con algunos casos sencillos. Después veremos algunos
algoritmos y estructuras de datos relevantes donde el analisis amortizado es fundamental
para comprender sus costos.

3.1. Técnicas

Comencemos con un problema de juguete para ejemplificar las técnicas a medida que las
describimos. Supongamos que tenemos una pila donde permitimos las operaciones push(z)
(que apila x) y multipop(k) (que desapila k elementos con algin propdsito, por ejemplo
entregar su suma). La operacion push(x) cuesta ©O(1) y la operacién multipop(k) cuesta
©(k) (supondremos que cuando se ejecuta es porque hay al menos k elementos en la pila).
La pregunta es jcuanto puede costar una secuencia de n operaciones en una pila vacia?

Un andlisis de peor caso nos muestra que, luego de haber realizado ©(n) push’s, un
multipop nos puede costar ©(n). Por lo tanto, una secuencia de n operaciones partiendo de
una pila vacia puede costar O(n?). Si bien esto es formalmente cierto, la cota estd lejos de
ser ajustada. Usaremos tres tipos de argumentos para mostrar que en realidad n operaciones
sélo pueden costar O(n), es decir, el costo amortizado por operacién es O(1) (si bien es
verdad que algin multipop puede costar ©(n)).

Analisis global. La primera forma de verificar esto es notar que, en n operaciones, sélo se
pueden haber apilado n elementos mediante push’s. Por ello, si bien algin multipop puede
costar casi n, la suma de todos los multipop’s sélo puede costar n, pues todo elemento
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desapilado se debe haber apilado alguna vez. Es decir, con n operaciones a lo sumo podemos
haber apilado n elementos y luego haberlos desapilado. Si tomamos el costo de push como
1 y de multipop(k) como k, el costo total de las n operaciones es a lo mas 2n = O(n).

Esta técnica se llama andlisis global: observamos los costos de toda la secuencia no paso
a paso sino globalmente, para deducir alguna propiedad que permita acotar el costo total.
Esta es la mds sencilla de las técnicas, aunque no siempre es facil encontrar una vision global
que haga obvio el costo total.

Contabilidad de costos. La segunda forma es notar que cada elemento que se saca con
multipop debe haber entrado en la pila con un push alguna vez. Podemos entonces cobrarle 2
operaciones al push, y cobrarle cero al multipop. Visto de otro modo, le estamos cobrando por
adelantado al elemento x de push(x) el costo que producird cuando méas adelante participe
de un multipop(k). Queda entonces claro que una secuencia de n operaciones no puede costar
mas que 2n, pues no puede haber més de n operaciones de push.

Esta técnica se llama contabilidad de costos: repartimos el costo real de alguna forma,
entre operaciones, objetos, etc. para que resulte mas facil de sumar. Podemos, en particular,
cobrar costos futuros por adelantado. La dificultad estd en encontrar, precisamente, una
forma de distribuir los costos que haga evidente el costo total.

Funcién potencial. Esta técnica consiste en definir una funcién ¢ que depende del objeto
que vamos modificando a lo largo de las operaciones. Esta funcion representa un “ahorro” que
vamos haciendo en las operaciones mas baratas para poder usarlo en pagar las operaciones
mas caras a futuro.

Pensemos en un contratista de una obra. Algunos meses tiene mas gastos y otros menos.
Para tener una interfaz sencilla con su cliente, todos los meses i le cobra lo mismo, ¢; = c.
Sin embargo, su costo real, ¢;, es variable. En los meses en que ¢; < ¢;, ahorrara el sobrante
¢; — ¢; en una bolsa llamada ¢. En los meses en que ¢; > ¢, pagard la diferencia ¢; — ¢;
con el ahorro que tiene en la bolsa ¢. Llamamos ¢, al ahorro inicial con que se comienza
la obra y ¢; a lo que tiene ahorrado después del mes ¢. Entonces, se cumple la recurrencia
¢; = ¢;i_1 + ¢ — ¢;. Como la obra se puede detener en cualquier momento, para asegurarse
de no perder dinero el contratista necesita que en todo mes i valga ¢; > ¢q. Desde el punto
de vista del cliente, el costo de la obra es constante por mes, ¢;. Esto corresponde al costo
amortizado de la operacion del contratista, que usa el ahorro para esconder una estructura
de costos mas complicada.

Formalmente, tenemos entonces una secuencia de costos reales ¢; y una funcién potencial
con valor ¢; luego de la operacién i. Si llamamos A¢; = ¢; — ¢;_1, definimos la secuencia de
costos amortizados ¢ como
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Con esta definicion tenemos

éi = Zcz+A¢z

2
=1 =1
Z éz - Z ) + ¢n ¢07

donde lo ultimo se cumple si nos aseguramos de que ¢, > ¢y para toda secuencia de opera-
ciones. Entonces nuestra secuencia de costos amortizados es una cota superior a la secuencia
de costos reales.

La dificultad esta siempre en definir ¢ adecuadamente para que se mantenga ¢, > ¢g y
sobre todo que los ¢; resultantes sean féciles de sumar (constantes, idealmente). Para ello,
las operaciones que cuestan mucho deben disminuir el potencial en la misma medida.

En nuestro ejemplo, el potencial podria ser el alto de la pila. Tenemos entonces ¢,, > 0y
¢o = 0. Consideremos lo que ocurre al ejecutar push(z). El costo real es ¢; = 1. Por otro lado,
la pila se hace una unidad mas alta, por lo que A¢; = 1. Esto nos da ¢ = ¢; + A¢; = 2. Por
otro lado, al realizar un multipop(k) tenemos un costo real de ¢; = k, pero como el alto de la
pila decrece en k, tenemos A¢; = —k, con lo cual el costo amortizado es ¢ = ¢; + A¢; = 0.
Nuevamente, hemos obtenido nuestro costo amortizado de a lo mas 2 unidades por operacién.

Note que los analisis son validos si partimos de la pila vacia, pero no si partimos operando
con una pila que ya tiene k elementos. En ese caso, una sola operacién multipop(k) cuesta
O(k) y no O(1). Note que aqui hemos violado algiin supuesto hecho en cada una de las tres
formas de analizar este problema.

3.2. Incrementar un Numero Binario

Seguiremos con un problema también de juguete, aunque algo mas complicado y con una
aplicacion que veremos después. Supongamos que debemos incrementar un ntimero binario de
k digitos, desde 0 hasta 2¥ — 1. Llamemos n = 2*. Consideremos que el costo de incrementar
un numero es la cantidad de bits que debemos invertir. Como se invierten todos los 1s hasta
el primer 0 de derecha a izquierda, el costo de incrementar varia entre 1 y k segiin el niimero
que incrementemos. Subrayamos a continuacién los bits invertidos para k = 4.

0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111
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El peor caso es, como dijimos, tener que invertir & bits (al pasar de de 2¥=1 — 1 a 2F1),
por lo cual la secuencia de las n inversiones cuesta kn = O(nlogn) operaciones. Esto es
cierto, pero no ajustado. Veremos que en realidad, se realizan en total menos de 2n = O(n)
inversiones de bits, es decir, el costo amortizado de incrementar cada niimero es a lo més 2.

Analisis global. La primera forma de verificar esto es mirar los costos de una forma
diferente, que permita sumarlos con mas facilidad. Miremos los bits subrayados por columnas
y no por filas. Asi se verd que el ultimo bit del nimero cambia siempre, el peniltimo cambia
una vez cada 2, el antepentltimo cambia una vez cada 4, y asi. Sumando los bits subrayados
por columnas tenemos

+o4+ <2
n - — n.
2 "4

Contabilidad de costos. La segunda forma es notar que cada operacion realiza exacta-
mente una inversion de la forma 0 — 1, y cero o mas inversiones 1 — 0. Como comenzamos
con una secuencia de Os, todo 1 fue un 0 alguna vez. Podemos entonces cobrarle 2 operaciones
a las inversiones 0 — 1, y cobrarle cero a las inversiones 1 — 0. De este modo, cobramos por
adelantado en las inversiones 0 — 1 la posible futura inversién 1 — 0 de ese bit. Obtenemos
entonces una cota superior facil de sumar: n incrementos cuestan 2n inversiones a lo sumo.

Funcién potencial. Nuestra funcion potencial podria ser el niumero de 1s en la secuencia
de bits actual. Tenemos entonces ¢, > 0y ¢y = 0. Consideremos lo que ocurre al incrementar
una secuencia que termina con un ultimo 0 y después ¢ 1s. Se invierten el 0 y todos los 1s,
por lo que el costo real es ¢; = £+ 1. Por otro lado, se pierden ¢ 1s y se gana uno (al convertir
el 0 a 1), por lo cual Agp; = —¢ + 1. Esto nos da ¢ = ¢; + A¢; = 2, y hemos obtenido
nuevamente nuestro costo amortizado.

Nuevamente, los anélisis son vélidos si partimos de k Os y realizamos 2* incrementos o
menos, pero no si partimos de otra secuencia de bits. Por ejemplo, si partimos de 2= — 1y
realizamos n = 1 operaciones, entonces el costo, real o amortizado, por operacion es k, no 2.

3.3. Realocando un Arreglo

Supongamos que vamos leyendo niimeros de un stream y almacenandolos en un arreglo.
Como no sabemos cuantos nimeros leeremos, no podemos alocar la memoria definitiva que
el arreglo necesitara. Debemos, en cambio, ir realocando areas de memoria cada vez mayores
para el arreglo cada vez que éste se va llenando. Al realocar un arreglo que contiene n
elementos, debemos copiar sus n elementos al area nueva de memoria. Consideremos como
costo el nimero total de escrituras a memoria que se requiere a lo largo del proceso.

Si cada vez que se nos llena el arreglo de tamano n lo realocamos a tamano n+1, usaremos
el minimo posible de memoria, pero el costo total serd ©(n?). Lo que se usa es partir con un
arreglo de tamano pequeno (digamos de 1 elemento, para simplificar) y duplicar su tamano
cada vez que se llena. Esto garantiza que en total usamos a lo sumo el doble de la memoria
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necesaria. Lo que no esta claro es cuanto es el costo de insertar un nuevo elemento en el
arreglo si realocamos de esta manera.

En términos de peor caso, esta politica parece tan mala como la cuadratica: como hay
inserciones que nos requieren realocar el arreglo, el costo de peor caso de una insercion son
n + 1 escrituras, donde n es el nimero de inserciones anteriores (o el tamano del arreglo).
Necesitamos un analisis amortizado para reflejar el hecho de que, con esta segunda politica,
estas inserciones tan costosas ocurren muy pocas veces e impactan poco en el costo total.

Analisis global. Podemos notar que los valores de n en los que, al insertar un nuevo
elemento, debemos expandir el arreglo (es decir, duplicarlo en tamano) son las potencias de
2: 1,2, 4, ..., 2% El peor caso es que n = 2% 4+ 1, de modo que no tengamos operaciones
baratas después de la ultima expansién. Ademas de las n escrituras realizadas para insertar
los elementos en el arreglo, hemos copiado 1 +2 +4 + ...+ 2¥ = 21 _ 1 clementos a lo
largo de todas las expansiones. El costo total es entonces 3 - 2 < 3n, y por ende el costo
amortizado de una insercién es a lo mas de 3 escrituras.

Contabilidad de costos. En vez de cobrar el costo de expandir el arreglo a la operaciéon
de insercion, se lo cobraremos a los elementos que se copian, de modo que la operaciéon misma
pagara solamente 1 escritura. Cobrarle la operacién a los elementos, sin embargo, también
nos da un problema, porque a lo largo de todas las expansiones los primeros elementos
insertados en el arreglo se copian mas veces que los ultimos insertados.

Haremos entonces lo siguiente: sélo les cobraremos a los elementos que se copian por
primera vez. Cuando se copien n = 2¥ elementos, entonces, sélo los n/2 de la segunda mitad
pagaran la copia, pues estos elementos se estan copiando por primera vez. Como alguien
tiene que pagar la copia de los n/2 de la primera mitad, les cobraremos doble a los de la
segunda mitad. Es decir, cada elemento “nuevo” paga por su copia y por la de un elemento
“viejo”. Luego de copiarse una primera vez, un elemento pasa a ser viejo y a residir en la
primera mitad del nuevo arreglo, por lo que no paga nunca mas. Esto facilita contabilizar
los costos: cada uno de los n elementos puede pagar hasta una vez, a costo 2. Ademas, cada
una de las n inserciones paga 1, por escribir el elemento en el arreglo. Sumando, tenemos un
costo amortizado de a lo mas 3 escrituras por insercién.

Funcién potencial. Sea s el tamano actual del arreglo, que tiene escritos n elementos,
de modo que n < s < 2n (excepto al comienzo, en que n = 0 y supondremos que partimos
con un arreglo de tamano s = 1). Definiremos la funcién potencial como ¢ = 2n — s. Al
comienzo vale ¢g = —1, pero luego de la primera insercion siempre vale ¢,, > 0. Partiremos la
operacién de insercién en dos sub-operaciones: la “insercién elemental” y la “expansién”. La
insercién elemental simplemente agrega el nuevo elemento al arreglo, y sélo puede invocarse
cuando hay espacio. La expansion sélo duplica el arreglo y copia los elementos actuales, y
se invoca cuando no hay espacio. Asi, una insercién consiste de una insercion elemental, a
veces precedida de una expansion.
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La insercién elemental cuesta ¢; = 1. Como incrementa n, ocurre que A¢; = 2. De modo
que el costo amortizado de la insercién elemental es ¢; = ¢; + A¢; = 3. Por otro lado, la
expansion teniendo n elementos en el arreglo cuesta ¢; = n. Se realiza cuando s = n y hace
que s pase a ser 2s. Por lo tanto, ¢;_1 = 2n — sy ¢; = 2n — 2s, con lo cual A¢; = —s = —n.
Sumando, tenemos que el costo amortizado de la expansion es ¢; = ¢; + A¢; = 0. Por lo
tanto, el costo amortizado de una insercion es a lo sumo 3.

3.3.1. Parametrizando la solucion

Consideremos que, o bien para ahorrar espacio o bien para mejorar el tiempo, decidimos
que el arreglo no se duplicard necesariamente, sino que expandird su tamano a an para
alguna constante @ > 1, de modo que a lo sumo usaremos an celdas de memoria al haber
leido n elementos. Nos preguntamos cual es el costo amortizado.

La forma mas facil de analizar el costo de insercién con este parametro es modificar la
funcién potencial, que seguira siendo de la forma ¢ = an—bs para constantes adecuadas a y b.
Para la insercion elemental tenemos entonces ¢; = 1y A¢; = a, dando un costo amortizado
de ¢; = 1 + a. Para la expansién de tamano s = n a tamano s = an tenemos ¢; = n y
A¢; = —b(av — 1)n, lo cual nos da é; = (1 — b(aw — 1))n. Para que esto sea independiente de
n (es decir, cero como antes) debemos tener b = ﬁ

Por otro lado, para que ¢, > ¢y podemos pedir que an — bs > 0 (si bien basta an —
bs > —b). Como s < an, basta que a — ba > 0, lo cual significa que podemos elegir
a = =%5. El costo amortizado, dominado por el de la insercion elemental, es entonces 1 +
= 25_’11. Nuestro primer analisis correspondia entonces al caso particular o = 2, mientras
que ahora podemos ahorrar espacio (aumentando el costo por operacién) o reducir el costo
por operacién (aumentando el espacio). En todo caso, el costo por operacién sigue siendo

constante si el espacio extra es proporcional a n.

3.3.2. Permitiendo contracciones

Supongamos ahora una situacién m&s compleja en la que también se pueden eliminar
elementos en el arreglo. Un elemento eliminado se reemplaza por el que esta en tultimo
lugar, de modo que el arreglo se almacene en forma compacta. Queremos evitar el estar
almacenando demasiada memoria para un arreglo que alguna vez fue grande pero ahora tiene
pocos elementos. Para ello, podemos contraer el arreglo cuando queda muy vacio después de
un borrado. Esta es la accién contraria a la expansion que se realiza durante la insercion, y
supondremos que también cuesta n escrituras.

El primer impulso puede ser que, una vez que el arreglo tenga tamano s > an, lo con-
traigamos a tamano 2. Sin embargo, si volvemos a insertar inmediatamente, el arreglo se
volvera a expandir. Por ello, el costo de esta alternativa puede ser muy alto: cada operacion
costard ©(n) escrituras si se elimina un elemento inmediatamente después de expandir, lo
que provoca una contraccion, luego se vuelve a insertar, lo que provoca otra expansion, luego
se vuelve a eliminar, lo que provoca otra contraccion, etc.
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Para seguir teniendo costo amortizado constante, establecemos que el arreglo se contraera
solamente cuando s > [n, para cierto 8 > «, y entonces se contraerd a tamano yn, para
un 1 < v < (. Esto garantiza que la memoria maxima a ser usada es fn. Nos preguntamos
ahora cual es el costo amortizado de una operacion.

Esta vez no funciona una funcién de tipo ¢ = an — bs. Debemos elegir un esquema algo
méas complejo: ¢ = |an — bs|. Tenemos ahora las siguientes operaciones:

= Insercion elemental, a costo ¢; = 1. El valor de A¢; es a lo sumo a, por lo que una cota
superior al costo amortizado es ¢; < 1+ a.

» Borrado elemental (es decir, sin considerar la contraccién), a costo ¢; = 1. El valor de
A¢; es también a lo sumo a, por lo que tenemos la misma cota superior ¢; < 1+ a.

» Expansion, a costo ¢; = n. Esta ocurre cuando n = s, y pasaremos de ¢; 1 = |an—bs| =
lan — bn| a ¢; = |an — bsa| = |an — bna|. Para que nuestro esquema funcione, la
expansion debe darse cuando an — bna > 0, es decir, que debe valer a > ba. En este

caso, tenemos A¢; = —b(a — 1)n, y tendremos é; < 0 siempre que b > ﬁ

= Contraccién, a costo ¢; = n. Esta ocurre cuando s > fn, y pasaremos de ¢;_1 =
lan — bs| a ¢; = |an — byn|. Para que nuestro esquema funcione, la contraccién debe
darse cuando an — byn < 0, es decir, que debe valer a < by. En este caso, tenemos
¢i—1 = bs —an > bfn —any ¢; = byn — an, y entonces A¢p; < —b(8 — v)n. Por lo
tanto, tendremos ¢; < 0 siempre que b > ﬁ
Tenemos entonces las condiciones ba < a < by, b > ﬁ yb> B_L/ Dado un S fijo
(relacionado con la memoria maxima que permitimos desperdiciar), queremos minimizar a
(pues el costo amortizado es 1 + a). El menor a posible es a = ba. Usar el menor b posible
implica usar el menor v posible, pues b > 5 . Como nuestras de&gualdades implican v > «a,

elegimos 7 = a. Las nuevas cotas mferlores sonb>—=yb > 55, que decrecen y crecen,
respectivamente, con «. Por lo tanto, el éptimo se da cuando E = ﬁ+ es decir, a = %
El costo amortizado es entonces 1 +a =1+ba =1+ 25 = 2;_11 = 52_ﬁl

Concluyendo, podemos garantizar un uso maximo de Bn celdas pa a almacenar n elemen-
tos, permitiendo inserciones y borrados, a un costo amortizado de T por operacion. Para

lograrlo, cuando insertamos y s = n, expandimos el arreglo a s = 21 + E=n, y cuando borramos
y s > fn, contraemos el arreglo a s = 241 + =—n. Por ejemplo, podemos eleglr B = 3 para obtener
un costo amortizado de 3n.

3.4. Colas Binomiales

En esta seccion veremos una nueva implementacién de colas de prioridad. A diferencia
de la implementacion usando heaps, las colas binomiales permiten unir dos heaps de n y m
elementos en tiempo O(log(n + m)). La siguiente tabla muestra las complejidades de cada
implementacién (en términos de O(-)).
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’ Implementacion H Insert ‘ FindMin ‘ ExtractMin ‘ Heapify ‘ Merge ‘

Heaps logn 1 logn n n+m
Cola binomial | logn 1 logn n log(n +m)

3.4.1. Estructura

Definimos el drbol binomial By, como una topologia, de la siguiente forma:

= By es un arbol formado por un tnico nodo.

» B es un arbol By al que se cuelga de la raiz otro hijo méas, que resulta ser la raiz de
otro arbol Bj,.

Es facil demostrar por induccién las siguientes propiedades:

La cantidad de nodos en By es 2*.

La altura de By es k + 1 (entendiendo que un tnico nodo tiene altura 1).

El arbol By tiene (f) nodos a profundidad i (entendiendo que la raiz se encuentra a
profundidad 0).

= La raiz de By tiene k hijos, By, ..., Bx_1.

Definimos un bosque binomial como un conjunto de arboles binomiales {By,, ..., B, }
donde ningtin par de arboles tiene el mismo tamarto, es decir, k; # k; para todo ¢ # j.
Tenemos entonces las siguientes propiedades, también faciles de ver:

» Existe exactamente un bosque binomial de tamano n para cada n > 0: la inica combi-
nacion posible es tomar los By, tal que los 1s en la descomposicién binaria de n estan
en las posiciones k;, partiendo de cero y de derecha a izquierda. Por ejemplo, el tinico
bosque binomial de n =5 = 1015 nodos es {Bsy, By}.

= Un bosque binomial de n nodos tiene a lo més [log, n] drboles binomiales.

Una cola binomial para un conjunto de n elementos es un bosque binomial de n nodos
donde se almacena un elemento en cada nodo, cumpliendo que si x esta almacenado en el
padre del nodo donde esta almacenado y, entonces z < y.

3.4.2. Suma de colas

La primitiva crucial en colas binomiales es la suma, que dadas dos colas binomiales C'y
y Cy para conjuntos de elementos X e Y entrega una cola binomial C's para el conjunto
XUY (permitimos claves duplicadas, de modo que esta unién no elimina repetidos). La suma
procede andlogamente a la suma de los nimeros binarios | X| y |Y|, partiendo con Cs = () y
considerando los bits en cada posicién k de | X| y |Y], desde el bit menos significativo (k = 0)
al mas significativo. Llevaremos también un conjunto 7" de 0 6 1 arboles de acarreo, analogo
al bit de carry de la suma binaria. Al comenzar tenemos T = ().
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1. Si el k-ésimo bit de |X| es 1, mover el arbol By, de Cx a T.

2. Si el k-ésimo bit de |Y| es 1, mover el arbol By de Cy a T.
Luego, procesamos el T resultante de la siguiente forma:

1. Si|T'| = 0, no hacer nada para este valor de k.
2. Si |T| =1, mover el &rbol By de T a Cg, dejando T' = ).

3. Si |T'| = 2, unir los dos arboles By, y By de T en un arbol By, colgando el que tenga
mayor raiz del que tenga menor raiz. El resultado es el nuevo contenido de T para el
siguiente valor de k.

4. Si |T| = 3, elegir un arbol By, de los tres y moverlo a C's. Con los otros dos, proceder
como en el punto anterior.

La suma requiere entonces de tiempo O(log(|X UY)), y deja los conjuntos Cx, Cy y T
vacios, y el resultado de la suma en Cl.

3.4.3. Operaciones

Consideremos ahora una cola binomial Cs con n elementos, y veamos como realizar las
operaciones.

Insert. Para insertar un elemento z, creamos una cola binomial C' = {By}, con B con-
teniendo el elemento z, y sumamos las colas Cs y C' para formar el nuevo Cy. El elemento
queda entonces insertado en tiempo O(logn).

FindMin. El minimo de todos los elementos puede calcularse en tiempo O(logn), me-
diante recorrer las (a lo més) [log, n] raices de los drboles del bosque binomial C, pues los
elementos no-raices no son menores que las raices. Para reducir este tiempo a O(1), basta
tener precalculado el valor del minimo: la recorrida de raices se realiza como postproceso
luego de realizar cualquiera de las otras operaciones que modifican Cyg, y les agrega sélo un
costo adicional de O(logn).

ExtractMin. Una vez que sabemos que el minimo es la raiz de un arbol By € Cg, sacamos
By, del bosque y eliminamos su raiz. El resultado de eliminar la raiz de By, es un nuevo bosque
binomial formado por los k hijos de la raiz eliminada, Cy = {By,..., Bx_1}. Finalmente,
sumamos las colas Cs — { By} y C, en tiempo O(logn), y el resultado es el nuevo Cs.
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Heapify. La implementacién de heaps tardaria tiempo O(nlogn) en construir un heap
mediante inserciones sucesivas, por lo que se disena para ella un procedimiento especial para
realizar esta operacién en tiempo O(n). Sin embargo, en una cola binomial obtenemos tiempo
O(n) si realizamos n inserciones sucesivas en una cola vacia. La razén estd en el andlisis de los
2% incrementos consecutivos en un ntiimero de k bits que realizamos al comienzo del capitulo
y que esta en relacion directa con los costos de insercién de esta cola.

Unir. La unién de dos colas binomiales de tamafios m y n se obtiene en tiempo O(log(m +
n)) mediante sumarlas. Con un heap clasico, la forma maés facil de unir dos colas de prioridad
es concatenar los arreglos e invocar heapify, lo que cuesta tiempo O(m + n).

3.5. Colas de Fibonacci

Las colas de Fibonacci son una variante de las colas binomiales que realizan la insercion
y la unién en tiempo constante, mientras que la extraccién del minimo tiene un costo amor-
tizado de O(logn). Méas precisamente, les corresponde la siguiente tabla (donde el asterisco
significa tiempo amortizado).

’ Implementacion H Insert ‘ FindMin ‘ ExtractMin ‘ Heapify ‘ Merge ‘

Heaps logn 1 logn n n+m
Cola binomial logn 1 logn n log(n +m)
Cola de Fibonacci 1 1 logn (%) n 1

La principal diferencia con las colas binomiales es que la cola de Fibonacci no es un bosque
binomial, sino simplemente un bosque de arboles binomiales unidos en una lista doblemente
enlazada. Es decir, la cola de Fibonacci puede tener varios arboles By del mismo tamano.
De hecho, una cola de Fibonacci construida mediante n inserciones en una cola vacia no es
mas que un bosque de n nodos simples. Todo el trabajo de estructurar la cola se realiza al
momento de la extraccién del minimo.

Al igual que en la cola binomial, esta cola sabe cudl es la raiz del arbol que contiene el
minimo elemento.

3.5.1. Operaciones

Insert. Para insertar un elemento x en una cola Clg, simplemente se crea un nuevo arbol
By conteniendo x y se agrega este By a la lista de arboles de C's. Ademas se compara x con
el minimo elemento, para actualizar el minimo de ser necesario. El tiempo total es O(1).

FindMin. Como siempre conocemos el minimo elemento, el tiempo es O(1).

Heapify. Se realiza mediante n inserciones, en tiempo O(n).
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Merge. Simplemente se unen los dos conjuntos concatenando las dos listas, en tiempo
O(1). Ademas se comparan los dos minimos, para retener el minimo global.

ExtractMin. Estaesla operacién mas compleja. Aqui recorremos la lista y nos aseguramos
de convertirla en un bosque binomial, mediante sumar arboles iguales iterativamente.

Primero eliminamos la raiz del arbol By que contiene el minimo actual (la cual conocemos)
y agregamos los hijos By, ..., Bi_1 a la lista de arboles de Cs.

Luego, convertimos el bosque de arboles binomiales en un bosque binomial. Para ello,
creamos un pequeno arreglo A de [log, n] punteros, donde A[k] apunta a un tnico &rbol
By, si es que tenemos alguno. Inicialmente todos los punteros son nulos. Ahora recorremos
la lista. Para cada arbol By que encontramos, si A[k] es nulo, asignamos A[k| <— By. Si no,
unimos By, con el drbol A[k] (colgando la raiz mayor de la menor) en un tnico arbol Byyq,
dejamos A[k] en nulo y continuamos el proceso con este nuevo arbol Byyq.

Al final de esta operacion tenemos un bosque binomial en A, y creamos una lista enlazada
con ellos. Esta es la nueva cola de Fibonacci (en este momento es una cola binomial valida).
Sobre las O(logn) raices resultantes calculamos el nuevo minimo y lo recordamos.

3.5.2. Analisis

Para analizar el costo amortizado de las operaciones usaremos la funcién potencial. Defi-
niremos ¢ = 2¢ + a, donde ¢ es el largo de la lista de arboles en el bosque y a es la cantidad
de celdas no vacias en el arreglo A que se usa para la operacién ExtractMin (se entiende que
el arreglo estd vacio durante las otras operaciones).

Tenemos ¢g = 0 al comenzar con la cola vacia. La operacion de insertar incrementa ¢ en
2, por lo que su costo amortizado sigue siendo O(1). FindMin no cambia ¢, por lo que su
costo amortizado es igual al costo real, O(1). Heapify es una secuencia de inserciones, por lo
que su costo real y amortizado es O(n).

Para la operacion Merge, debemos considerar un conjunto de colas, y ¢ se define como la
suma de 2¢ + a sobre todas las colas. De esa manera, al realizar Merge esta funcion ¢ global
no cambia, y el costo real O(1) es también el costo amortizado.

Nuevamente, la operacion compleja es ExtractMin. El primer paso es eliminar la raiz del
arbol By que contiene el minimo e insertar sus hijos en la lista. Esto cuesta ¢; = k e incrementa
el largo de la lista en k — 1, con lo cual tenemos A¢; = 2k — 2y ¢ = 3k — 2 = O(logn)
(podriamos tener ¢; = 1 si representamos los hijos con una lista doblemente enlazada, pero
esto no cambia el costo amortizado).

Luego reducimos la lista a un bosque binomial. Consideremos el costo amortizado de
procesar cada nuevo arbol By. Si A[k] estd vacio, movemos el By de la lista a A[k], con lo
cual tenemos un costo de ¢; = 1 para moverlo y A¢; = —1, resultando un costo amortizado
de é; = 0. Si, en cambio, tenfamos un arbol en A[k], entonces lo sacamos de A[k] y lo unimos
con el arbol By de la lista, reemplazando ese arbol por el arbol uniéon By, que reemplaza
al By de la lista. Tenemos un costo de ¢; = 1y A¢p; = —1, con lo que nuevamente el costo
amortizado es cero. Finalmente, movemos los a < logn darboles no nulos de A a la lista, lo que
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cuesta a operaciones e incrementa ¢ en a también, sumando O(logn) al costo amortizado.
En total, la operacién ExtractMin tiene un costo amortizado de O(logn).

Note que estamos asignando costo ¢; = 1 a diversas cantidades constantes de operaciones
que realizamos. Se le puede asignar cualquier otro costo constante ¢ y redefinir ¢ = ¢(2¢+a)
para obtener el mismo resultado.

3.6. Union-Find

El algoritmo de Kruskal para encontrar el drbol cobertor minimo de un grafo crea una
cola de prioridad con todas las aristas y parte con un bosque T' = () (visto como conjunto
de aristas). Luego va tomando cada arista, y si no forma ciclo en el bosque, la agrega a T,
terminando cuando |T| = n—1 y el bosque se ha convertido en un arbol. En un grafo conexo
de n nodos y n—1 < e < n? aristas, el algoritmo tiene un peor caso de O(eloge) = O(elogn)
para manejar la cola de prioridad. Sin embargo, en esta formulacién no queda claro cémo
determinar si una arista forma ciclo o no.

Si pensamos los arboles de T' como clases de equivalencia formadas por nodos, una arista
(u,v) forma ciclo sii w y v son nodos del mismo arbol, es decir, estdn en la misma clase
de equivalencia. Cuando no lo estén, agregar la arista (u,v) tiene el efecto de unir los dos
arboles, es decir, las dos clases de equivalencia. Podemos entonces reexpresar las operaciones
que necesitamos como operaciones que manejan clases de equivalencia:

= Partimos con cada uno de los n elementos formando su propia clase.
= Podemos preguntar si dos elementos pertenecen a la misma clase.
= Podemos unir dos clases.

La interfaz que veremos define un elemento de cada clase, en forma arbitraria pero con-
sistente, como su representante. Tenemos entonces las dos operaciones siguientes:

» Find(v) entrega el representante de la clase de equivalencia de v.
» Union(z,y) une las clases de equivalencia representadas por = y por y.

Dos elementos u y v pertenecen entonces a una misma clase sii Find(u) = Find(v),
y para unir las clases de dos elementos cualquiera (no necesariamente representantes de
clase) u y v realizamos Union(Find(u), Find(v)). Con esta interfaz, el algoritmo de Kruskal
realiza O(e) operaciones Find y O(n) operaciones Union. Veremos primero una solucién
de tiempo O(logn) para estas operaciones y luego una mucho mejor, que requiere andlisis
amortizado. Con estas soluciones, el costo del algoritmo de Kruskal es O(elogn), dominado
por las operaciones en la cola de prioridad.
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3.6.1. Solucién de tiempo O(logn)

Obviando las soluciones muy elementales, que requieren tiempo O(n) para alguna de las
dos operaciones, una solucion sencilla es tener n nodos, uno por cada elemento v, y que cada
clase de equivalencia sea un arbol formado por los nodos de los elementos participantes.
En estos arboles, los hijos apuntan a su padre, y la raiz es el representante de la clase. La
operacién Find(v) consiste entonces en recorrer los ancestros sucesivos de v hasta llegar a
la raiz x, y entonces responder x. La operacion Union(z,y), para dos raices x e y, cuelga z
como un hijo més de y (es decir, hace que y sea el padre de x) o vice versa, eligiendo siempre
colgar el arbol con menos nodos del drbol con mas nodos (cada nodo conoce el tamano de
su subdarbol, lo que es facil de mantener cuando se le agrega otro subarbol como hijo).

Es facil ver por induccién que, en los arboles resultantes, un arbol de altura r tiene v > 2"
nodos. Esto vale para los nodos iniciales, que definimos de altura 0 y que contienen 2° = 1
nodos. Ahora consideremos dos arboles de v; y v5 nodos, y alturas r; y ro, respectivamente.
Por hipétesis inductiva se cumple que vy > 2™ y vy > 2™, Supongamos que v; < v, pOr
lo que el primer arbol se cuelga del segundo. El arbol resultante tiene entonces v = vy + vy
nodos y su altura es r = max(r; + 1,75). Si la altura es » = r; + 1, la tesis inductiva se
cumple porque v = vy + vy > 20y > 22" = 2171 = 27 §Gj en cambio, la altura es r = 7,
la tesis inductiva se cumple porque v = vy + vy > vy > 272 = 27,

Como un arbol tiene a lo més n nodos, su altura no puede ser mas de log, n, por lo cual
la operacién Find cuesta tiempo O(logn). Por otro lado, la operacién Union es O(1).

3.6.2. Solucidén de tiempo amortizado O(log" n)

Cuando se realiza una operacién Find(v), se visitan todos los ancestros de v hasta llegar
alaraiz xz: v = vy - v - ... = v,_9 — v,_1 — v, = x. Para agilizar las futuras
operaciones de F'ind, no nos cuesta nada colgar a todos los nodos del camino, vy, ..., v, o,
directamente de v, = z (por ejemplo, puede hacerse a la vuelta de la recursién). Asi, las
futuras operaciones Find(v;) tomaran tiempo O(1). Asimismo, se agilizaran los Find(u)
sobre otros descendientes u de algin v;.

., Qué impacto tiene esta mejora sobre los tiempos de Find? En el peor caso, ninguno,
pues si bien una aplicacion de Find mejora el tiempo de las siguientes operaciones Find, el
primer Find puede costar O(logn) (por ejemplo, si hacemos n — 1 Union y luego el primer
Find). Necesitamos entonces realizar un anélisis amortizado.

Considere una secuencia S de operaciones Union y Find, y llamemos S’ a la secuencia
S sin las operaciones Find. Definiremos el rango de un nodo v, r(v), como la altura del
subarbol luego de realizar las operaciones de S’ (o bien, de aplicar S pero sin la mejora que
acabamos de describir para Find). Hablaremos del rango de los nodos mientras analizamos
la secuencia verdadera S, pero debe recordar que r(v) es fijo e independiente del punto de
S que estemos considerando.

Una propiedad importante es que, como vimos en la subsecciéon anterior, un nodo de
rango r tiene al menos 2" nodos en su subdrbol (el que resulta de aplicar S’). Como, en estos
arboles, dos nodos u y v de rango r no pueden descender uno del otro (pues entonces uno
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serfa mas alto que el otro), sus subdrboles deben ser disjuntos. Por lo tanto, no puede haber
mds de 7 nodos de rango r.

Otra propiedad importante es que, si en algin momento de S, u desciende de v, entonces
r(u) < r(v). Esto ocurre porque sélo la operacién Union crea nuevas descendencias (al
colgar = de y, todo descendiente de x pasa a ser también descendiente de y), mientras que
sélo la operacién Find destruye descendencias (al colgar todos los v; directamente de x, los
descendientes de v; dejan de ser descendientes de v;41,...,v,_1). Por lo tanto, en S’, donde
se han eliminado los F'ind, u también se hard descendiente de v y se mantendra asi hasta el
final. Como u desciende de v al final de S’, debe ser r(u) < r(v).

Para nuestro andlisis, definiremos la funcién F(i) como F(0) = 1y F(i) = 2F¢=Y_ Esta
funcién crece muy rapidamente:

i Jol1[2]3 ] 4 5
F(i) | 1|24 16| 65536 | 265936

Llamaremos G(n) a la inversa de F', G(n) = min{i, F(i) > n}. La funcién G(n) también
se llama log™ n, y es la cantidad de veces que debemos tomar logaritmo (base 2 en nuestro
caso) a n para que sea < 1. En la préactica, vale G(n) < 5 para cualquier n razonable:

n |0-1]2]34[516] 1765536 | 65537205550
Gn)| 0 |1 2 | 3 4 5

Dividiremos a los n nodos en grupos: el nodo v pertenecera al grupo g(v) = G(r(v)).
Dicho de otro modo, si observamos el bosque que resulta de aplicar S’ los nodos de altura 0
y 1 (hojas y padres de sélo hojas) son del grupo g = 0, los nodos de altura 2 son del grupo
g =1, los de altura 3 y 4 son del grupo g = 2, los de altura 5 a 16 son del grupo g = 3, etc.

Con estas definiciones ya podemos presentar el analisis amortizado que haremos. Usa-
remos contabilidad de costos. La operaciéon Union cuesta O(1), por lo que no necesitamos
considerarla. Consideraremos que la operacién Find(v) cuesta 1 por cada nodo que atrave-
samos en el camino desde v hasta la raiz z. Este costo, para el analisis, lo repartiremos entre
la operacién Find misma y los nodos que atravesamos, de la siguiente forma:

= Si, al momento de la operacién, el nodo es la raiz x de su arbol, o es hijo de la raiz x,
le cobramos a Find.

= Si, al momento de la operacién, el nodo tiene distinto grupo que su padre, le cobramos
a Find.

= De otro modo, le cobramos al nodo por el que pasamos.

Note que, cuando recorremos v = v; — ... — v, = x, como cada v; desciende de
vi+1, vimos que debe valer r(v;) < 7(v;11), y por lo tanto g(v;) < g(vi+1). Eso significa
que cada vez que el grupo de v; es distinto del de su padre v;y1, el valor del grupo debe
aumentar. Como el maximo rango posible es r = log, n, los grupos posibles van desde 0
hasta G(log,n) = G(n) — 1, y entonces en el camino de vy a v, el valor del grupo puede
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aumentar s6lo G(n) — 1 veces. Sumando que Find paga por la raiz x = v, y su hijo v,_1,
tenemos que en cada operaciéon nuestra contabilidad de costos le cobra a Find a lo mas
1+ G(n) = O(log™n).

Debemos ver ahora cuanto les cobramos a los nodos. Note que, como hemos definido la
contabilidad, un nodo que paga adquiere un nuevo padre gracias a la mejora que hace Find.
Este nuevo padre es un ancestro del padre actual, por lo que su rango es estrictamente mayor.
Por lo tanto, cada vez que un nodo paga, adquiere un padre de mayor rango. Una vez que
adquiere un padre cuyo rango es de un grupo mayor al del nodo, el nodo no pagara nunca
més, pues nunca volverd a tener un padre de su mismo grupo (sélo puede seguir adquiriendo
padres de mayor y mayor rango).

., Cuantas veces puede pagar un nodo hasta adquirir un padre de un grupo superior? Si
estd en el grupo g, y su rango sube sélo de a 1 unidad por vez, puede pagar F(g) — F(g — 1)
veces hasta que su padre pertenezca al grupo g + 1. Digamos para simplificar que los nodos
de grupo g pueden pagar F'(g) unidades en total. ;Cudntos nodos hay de grupo g7 Digamos

que son N(g), con N(g) = Zf:(iz(g_l)ﬂ M(r), donde hay M(r) nodos de rango r. Como
vimos que M (r) < g, tenemos que

F(g) n n F(g)—F(g9—1)-1 1 m n n
N(g) < Z o = SR~ Z or < oF(—D+1 — 9F(-1) F(g)
r=F(g—1)+1 r=0

@
lo largo de su vida. En total, entre todos los nodos del grupo g pagan a lo mas N(g)-F(g) < n.

Como existen G(n) grupos distintos, entre todos los nodos pagan n-G(n). Por lo tanto, si se
realizan §2(n) operaciones de Flind, el costo amortizado de Fiind es O(log® n), mientras que
su costo de peor caso es O(logn). El costo de los Union es siempre O(1).

Es decir, tenemos N(g) < nodos del grupo g, y cada uno de ellos paga a lo més F'(g) a

3.7. Splay Trees

Los splay trees son arboles binarios de bisqueda que tienen un método distinto de realizar
las operaciones, el cual garantiza un costo amortizado de O(log n) por operacién sin necesidad
de almacenar informacion de balanceo como los arboles AVL o Red-Black. Més atn, una
secuencia de accesos a los nodos con distintas probabilidades entrega un costo amortizado
de O(H), donde H es la entropia de esas probabilidades.

Como la estructura anterior, en el splay tree incluso las operaciones de lectura modifican
el arbol. Sus respuestas no cambian, pero se hacen mas eficientes gracias a las modificaciones.

3.7.1. Operaciones

La idea principal del splay tree es que el nodo que acaba de accederse debe quedar en la
raiz del arbol. Para ello, una vez accedido un nodo x, éste se lleva a la raiz mediante una
operacién llamada splay(x). Esta operacién estéd formada por una secuencia de rotaciones.
Para describirlas, usaremos el formato z(A, B) para indicar un &rbol con el elemento z en la

63



raiz, subarbol izquierdo A y subarbol derecho B. Las rotaciones para ir subiendo al nodo x
son las siguientes:

Zig-zig: z(y(z(A, B),C), D) — z(A,y(B, z(C, D))).

Zig-zag: z(y(A,xz(B,C)), D) — z(y(A, B), z(C, D)).

Zag-7ig: z(A,y(x(B,C), D)) = z(2(A, B),y(C, D)).

Zag-zag: z(A,y(B,z(C,D))) — z(y(2(A, B),C), D).

Zig: y(z(A, B),C) — z(A,y(B,C)) (sélo si y es raiz).

Zag: y(A,z(B,C)) — (z(y(A, B),C) (s6lo si y es raiz).

Supondremos que las rotaciones dobles cuestan 2 unidades de trabajo y las simples cues-
tan 1. Las operaciones del arbol se realizan de la siguiente manera:

Buscar. Se busca x como en un arbol binario de busqueda y luego se hace splay(x). Si z
no se encuentra, se hace splay(z’), donde 2’ es el ultimo nodo visitado.

Insertar. Se inserta x como en un arbol binario de biisqueda y luego se hace splay(x).

Borrar. Se borra x como en un arbol binario de bisqueda (es decir, si tiene dos hijos se
reemplaza por su sucesor o predecesor in-order), y luego se hace splay(z’), donde 2’ es el
padre del nodo finalmente borrado (aquel sucesor o predecesor in-order de x).

3.7.2. Analisis

Note que todas las operaciones del arbol tienen un costo proporcional a la operacion
splay que las sigue. Por lo tanto, podemos concentrarnos en el costo de esta operacién (si
bien luego consideraremos la modificacién que hacen en el arbol la insercién y el borrado).

Para analizar esta operacion en forma amortizada definiremos una funcién potencial. Sea
S;(z) el subdrbol con raiz x luego de la operacion i, y sea s;(z) = |.S;(z)| su nimero de nodos.
Finalmente, sea r;(x) = log, s;() el rango de x luego de la operacién i. La funcién potencial
del arbol T', visto como un conjunto de nodos, es entonces

¢; = Z ri(z).

zeT

Analicemos como cambia A¢; luego de realizar las rotaciones.
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Zig-zig y zag-zag. Los tUnicos nodos cuyos rangos se modifican son los de z, y, y 2. Por
lo tanto,

Agi = (ri(x) —rima(2)) + (ri(y) — rica(y)) + (ri(z) — rica(2))-

Note también los siguientes hechos simples: (1) 7;(z) = 7_1(2); (2) rii1(y) > rii(x); (3)
ri(y) < ri(z). El costo real de hacer un zig-zig es ¢; = 2, mientras que el costo amortizado es
G o= a+tAd = 2+ (ri(z) —rica(2) + (ri(y) —rica(y)) + (ri(2) —riea(2))

= 2+ [ri(z) = rima(2)] + 7ri(y) + ri(2) — rica(@) — rica(y)
2+ ri(x) +1i(2) —risi(z) — rioi ()
= 2+4ri(x) +ri(z) — 2ri_1(x),

IN

donde en la desigualdad usamos los tres hechos simples mencionados.
Vamos a usar la siguiente propiedad, que se deduce de la concavidad del logaritmo, pero
igual mostramos su deduccion:

0 < (a—bp,
20b < a®+ b,
4ab < (a+0b)?
loga(1ab) < logy((a+ b)),
logy(ab) < 2logy(a+0b) — 2,
log, a+log, b < 2logy(a+b) — 2.

Usaremos esta propiedad y el hecho simple de que s;_1(z) + s;(2) < s;(x) para obtener
lo siguiente:

ric1(x) +ri(2) = logysi1(x) +1logysi(z) < 2logy(si—1(x) + si(2)) — 2
< 2logy si(x) —2 = 2r(x) — 2.

Por lo tanto, podemos reemplazar r;(z) por 2r;(x) — r;_1(x) — 2 en nuestra ecuacién de
¢; para obtener
éi S S(T’Z(I) - 7"2‘_1(.%)).

Zig-zag y zag-zig. Partimos de la misma forma que antes y luego acotamos:

G = +Ay = 24 (ri(x) —rici(z)) + (ri(y) —rica(y)) + (ri(2) —ri-a(2))
= 2+ [ri(z) —ric1(2)] +1i(y) +1i(2) — rica(@) —rica(y)
< 24 7(y) +ri(z) = 24 (x),
donde en la desigualdad usamos que r;(z) = r;_1(2) y que 7,_1(y) > r;—1(x). Ahora volvemos

a usar que log, a + log, b < 2logy(a + b) — 2y que s;(y) + s;(z) < s;(x) para acotar
<

ri(y) +ri(z) = log, si(y) + logy si(2) 2logy(si(y) + si(z)) — 2
< 2logy si(x) —2 = 2r(x) — 2.
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Sustituyendo en la férmula de ¢; tenemos entonces

G < 2ri(z) —ria(x)) < 3(ri(x) —risa(x)).

Zig y zag. FEn estas operaciones tenemos ¢; = 1. Como 7;(y) < r;_1(y) y mi(z) > ri1(x),
G = ¢+ (ri(x) —rima(z)) + (rily) — rica(y))

S 1 -+ 'I"Z<£C> — Tifl(CC)

< 14 3(ri(z) — riq(z)).

Splay. Una operacion splay se compone de una secuencia de m rotaciones dobles consecu-
tivas, posiblemente terminadas por una simple, todas aplicadas sobre el mismo nodo z. Su
costo amortizado es entonces

¢ < 1+23(ri(az)—ri,1(a¢)) = 1+43(rm(z) —ro(z)) < 1+ 3logyn,

donde la ultima desigualdad se obtiene notando que r,,(x) = log, n porque = termina siendo
la raiz, y despreciando ro(z) > 0.

Operaciones del arbol. La cota de splay implica directamente una cota amortizada de
O(logn) para las operaciones de busqueda exitosa sobre un splay tree. Lo mismo ocurre
con la busqueda infructuosa, la insercién y el borrado, ya que hemos hecho que su costo
sea proporcional a la operacion de splay correspondiente. La unica consideraciéon final que
necesitamos es que la insercion, al agregar un elemento x, puede incrementar el potencial ¢,
lo cual debe ser absorbido por el costo amortizado de la insercion. La diferencia de potencial
que produce la inserciéon de una hoja x, siendo vy, ..., %, los nodos de su camino hacia la
rafz y s(y;) sus tamafios, son

Ap = > (logy(s(y;) + 1) —log, s(y;))
j=1

m—1

< (logy(s(ym) + 1) —logy s(ym)) + D (logy s(yj+1) — logs s(y;))
j=1

= logy(s(ym) + 1) — logy s(ym) + 10gy $(ym) — logy s(1)

< log,(n+1)—1

< logyn,

donde usamos que, como y;; es el padre de y;, debe valer s(y;11) > s(y;)+ 1. El incremento
de potencial de la insercién es también O(logn), lo que completa el andlisis.
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3.7.3. Bisquedas con distintas probabilidades de acceso

El mayor interés de los splay trees es que se acercan a los arboles 6ptimos que disennamos en
el capitulo de cotas inferiores cuando teniamos probabilidades de acceso conocidas, pero sin
necesidad de ningin preprocesamiento. Demostraremos que si realizamos m busquedas sobre
un splay tree T, donde el elemento = es buscado g(z) veces (por lo tanto ) . q(x) = m),
entonces el costo total de las bisquedas es

(m + Z log > )
z€T
Para ello, reusaremos el analisis ya hecho y s6lo cambiaremos la nociéon de tamano de un
arbol. Definiremos ahora el peso de un nodo como la probabilidad de ser buscado, w(z) = %f),

y definiremos el tamano de un subarbol con raiz x como la probabilidad de que la busqueda
pase por el nodo x, es decir,
sifw) = Y w(y).

y€Si(w)

Note que s;(z) es un nimero entre 0 y 1, por lo que r;(x) es negativo, pero atn el logaritmo
es monotonamente creciente. Todo el andlisis realizado anteriormente vale, pues lo tinico que
utilizamos sobre s;(z) fue que s;(+) (y r;(+)) es mayor en un subarbol que en un subconjunto
disjunto de sus subdrboles. Tenemos entonces que el costo amortizado de splay(x) es

é(x) < 143(rm(x) —ro(z)) = 14 3(logy sm(x) —logy so(x))
=1 log, 1 —1 =1 1
+ 3( OgQ Og2 S0 (x)> + 3 0og 80(1})
1
< 14 3log = 1+3log£.
w(z) q(x)

En la segunda linea usamos que, al final de la operacion, x estd en la raiz, por lo cual
sm(x) = 1. En la tercera linea usamos que, sin importar dénde estuviera x en el drbol antes
de empezar la operacién, tendremos so(z) > w(x).

Sabemos que realizamos splay(x) q(x) veces, de modo que sumando sobre todos los =
obtenemos el costo prometido. Note que esto implica un costo amortizado de O(1 + H) por
operacion, donde H es la entropia de las probabilidades de acceso a los elementos.

Los splay trees tienen otras propiedades interesantes que se pueden demostrar de forma
similar, variando la definicién de s(z).

3.8. Ficha Resumen

Técnicas:

= Andlisis global.
» Contabilidad de costos.

= Funcién potencial.
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Ejemplos relevantes:

= Realocar arreglo: an memoria para n elementos, a costo amortizado de insercion %
o . . . ., 2
Permitiendo borrados, fn memoria a costo amortizado de operacion 5__61
» Colas binomiales: O(logn) para insertar, extraer minimo y unir, O(1) para ver el

minimo y O(n) para construir a partir de n elementos.

» Colas de Fibonacci: O(1) para insertar, ver el minimo y unir, O(n) para construir a
partir de n elementos, y O(logn) amortizado para extraer minimo.

» Union-Find: O(1) para union y O(log"n) amortizado para find.

» Splay trees: O(logn) amortizado para insertar, borrar y buscar. O(H) para una se-
cuencia de busquedas, siendo H la entropia de la secuencia de elementos accedidos.

3.9. Material Suplementario

Cormen et al. [CLRS01, cap. 17] presentan las tres técnicas de anélisis amortizado usando
los ejemplos del multipop y el incremento de niimeros binarios. También presentan el caso
de los arreglos que se expanden y contraen, si bien usan una funcion potencial algo distinta.
Lee et al. [LTCTO05] también usan el multipop para introducir el anélisis amortizado usando
funcién potencial. Mehlhorn y Sanders [MS08, sec. 3.3] también describen el problema de
los arreglos y de los nimeros binarios, y los toman como punto de partida para explicar
las técnicas de andlisis amortizado en bastante profundidad. En particular, demuestran que
la funcién potencial es suficiente para cualquier andlisis amortizado (si bien puede que no
siempre sea la técnica mas intuitiva para usar).

Cormen et al. [CLRS01, cap. 19] describen las colas binomiales y también las de Fibonacci
[CLRS01, cap. 20], si bien nuestra descripcién de estas tltimas es més simple, porque ellos
permiten una operacion que decrementa el valor de una clave, lo que requiere una funcion
potencial més complicada (esta operaciéon es importante para mostrar que el algoritmo de
Dijkstra sobre un grafo de n nodos y e aristas se puede ejecutar en tiempo O(e + nlogn)).
Weiss también describe las colas binomiales [Wei95, sec. 6.8 y 11.2] y las de Fibonacci [Wei95,
sec. 11.4]. Asimismo Weiss [Wei95, sec. 6.6] describe la leftist heap, cuya rama maés izquierda
es de largo O(logn). La leftist heap reduce todas las operaciones a la unién de dos heaps,
que se ejecuta en tiempo O(logn). También describe las skew heaps [Wei95, sec. 6.7 y 11.3],
una variante amortizada de las leftist heaps y muy simples de implementar. Las skew heaps
también se analizan en Lee et al. [LTCTO05, sec. 10.2].

Nuestra descripcién de Union-Find estd sacada de Aho et al. [AHU74], y Weiss [Wei95,
cap. 8] la presenta de forma muy similar. Cormen et al. [CLRS01, cap. 21] también la
describen en detalle, pero usan un analisis de funcién potencial bastante méas complicado,
que les entrega un mejor resultado: n operaciones cuestan O(n-«a(n)). Esta a(n) es la inversa
de una funcién que crece ain més rapidamente que nuestra F'(i), por lo que a(n) < 4 para
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todo valor prictico de n. Lee et al. [LTCTO05, sec. 10.6] realizan un andlisis similarmente
complejo. Aho et al. [AHU83], Mehlhorn y Sanders [MS08, sec. 11.4], Kleinberg y Tardos
[KT06, sec. 4.6] y Levitin [Lev07, sec. 9.2] también describen esta implementacién de Union-
Find, pero sin anélisis.

Weiss [Wei95, sec. 4.5, 11.5 y 12.1] describe los splay trees con bastante detalle, pero sélo
muestra la cota de O(logn) amortizado. En las referencias online se encuentran los casos de
distintas probabilidades de acceso (llamado static optimality) y otros.

Otros casos interesantes de andlisis amortizado se dan en varios tipos de arboles balan-
ceados y colas de prioridad [CLRSO01, probl. 17-3] [MS08, sec. 7.4] [LTCTO05, sec. 10.3 y
10.5], algoritmos para flujo en redes [CLRS01, sec. 26.4] [KT06, sec. 7.4] y para scheduling
en discos [LTCTO05, sec. 10.7]. Veremos otros casos de andlisis amortizado en el capitulo de
competitividad.

Otras fuentes online de interés:

® www.cs.princeton.edu/ wayne/cs423/lectures/amortized-4up.pdf

» www3.cs.stonybrook.edu/ rezaul/Fall-2012/CSE548/CSE548-1lectures-10-11.pdf

m courses.cs.washington.edu/courses/cse332/10sp/lectures/lecture2l.pdf

» www.cs.unm.edu/ saia/classes/561-f09/1lec/lec8.pdf

m jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/08-amortize.pdf

= www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture notes/lect0206.pdf
®» www.cs.cmu.edu/ rjsimmon/15122-f14/lec/12-ubarrays.pdf

» www.cs.duke.edu/courses/falll2/compsci330/restricted/lectures/
LectureAmortizedAnalysis.pdf

®» www.cs.princeton.edu/"fiebrink/423/AmortizedAnalysisExplained Fiebrink.pdf
= www.ibr.cs.tu-bs.de/courses/ss13/na/skript/Fib2.pdf
» users.info.uvt.ro/“mmarin/lectures/ADS/ADS-L9-10.pdf

m ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-854j-advanced-algorithms-fall-2008/lecture-notes/lec6.pdf

= web.stanford.edu/class/cs166/lectures/10/Smalll0.pdf

» www.cs.cmu.edu/ ckingsf/bioinfo-lectures/splaytrees.pdf

= jeffe.cs.illinois.edu/teaching/algorithms/notes/16-scapegoat-splay.pdf
= www.youtube.com/watch?v=3MpzavN3Mco

» www.youtube.com/watch?v=qghb51SHCBiRs
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Capitulo 4

Universos Discretos y Finitos

Los métodos y cotas inferiores que hemos visto para ordenamiento y buisqueda aplican a
algoritmos que proceden por comparaciones. Estos tienen la gracia de que son lo més general
posible, es decir, se pueden usar en cualquier conjunto de objetos que tengan un orden total.
En muchos casos, sin embargo, los objetos que manejamos son de tipos particulares, como
enteros en un rango acotado o strings, y en esos casos es posible ordenar y buscar de otras
formas, sin usar comparaciones. En estos casos, las cotas inferiores de {)(nlogn) para ordenar
o de Q(logn) para buscar ya no aplican, y efectivamente es posible disenar algoritmos y
estructuras de datos mas eficientes. En este capitulo veremos formas mas eficientes de ordenar
enteros en un rango acotado, de buscar en un universo acotado de enteros, y de ordenar y
buscar en strings. Veremos también estructuras especiales para buscar en texto.

4.1. Ordenando en Tiempo Lineal

Veremos que, si tenemos n elementos en un universo entero [1..u], podemos ordenarlos
en tiempo O(nlog, u). En particular, esto es O(n) cuando el tamano del universo es de la
forma u = O(n) para alguna constante c.

Comenzaremos con un método de ordenamiento muy simple de tiempo O(n+u), llamado
counting sort. Como este método no permite distinguir dos elementos distintos con una
misma clave, seguiremos con bucket sort, que es una variante algo mas sofisticada con la
misma complejidad. El bucket sort sera usado entonces para construir el radix sort, que
obtendra finalmente las cotas prometidas. Finalmente, usaremos el bucket sort para ordenar
strings en tiempo lineal.

4.1.1. Counting sort

Supongamos que tenemos que ordenar A[l..n], donde cada Ali] € [1..u]. El counting sort
comienza inicializando un arreglo de contadores C|l..u], todos en cero, C[j] < 0. Luego
recorre A, incrementando el contador correspondiente, C[Ai]] <— C[A[i]] + 1. Finalmente,
recorre C, escribiendo (en A) C[j] copias del valor j, para j € [1..u].
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Esta técnica puede aplicarse cuando los elementos son solamente claves, es decir, no
tienen informacién satélite asociada. El tiempo de las tres pasadas es O(n + ), por lo cual
es conveniente solamente cuando el universo es pequeno (por ejemplo, u = O(n)). Note
también que necesita espacio extra para u contadores, lo cual puede ser significativo incluso
si w = O(n) con una constante no muy pequena.

4.1.2. Bucket sort

Para el caso en que los elementos tengan informacién satélite asociada, el bucket sort
obtiene la misma complejidad que el counting sort, y de hecho comienza de la misma forma,
calculando el arreglo C' de contadores. Luego, supondremos que tenemos también la celda
C[0] = 1, y convertiremos C' en un arreglo de punteros, mediante recorrerlo de izquierda a
derecha y calcular C[j] - C[j — 1] + C[j], para j € [l..u]. La idea es que ahora C[j — 1]
almacena la posicién donde deben empezar a escribirse las copias del valor j en A.

El output del algoritmo es un nuevo arreglo B[l..n], que contendréd los valores de A
ordenados. Para llenarlo, volvemos a recorrer A de izquierda a derecha, copiando B[C[A[i] —
1]] < A[i] y luego incrementando el puntero C[A[i] — 1] para la siguiente ocurrencia del valor
Alt]. Se entiende que, al copiar A[i| en B, se copia la clave y la informacién satélite.

Note que el bucket sort es estable: dos elementos con la misma clave mantienen su orden
original en A. Esto es importante para usarlo en el radix sort. Por otro lado, note que el
bucket sort requiere espacio para almacenar B y C', mas que el counting sort.

4.1.3. Radix sort

El radix sort realiza una serie de rondas de bucket sort sobre los datos, ordendndolos
progresivamente de los bits menos a los mas significativos. Suponga que primero ordenamos
A[l..n] usando como clave el bit més bajo. Como el bit es la clave, el universo sélo tiene dos
valores, lo que lo hace un caso facil de bucket sort, que tomara tiempo O(n + 2) = O(n).
Una vez ordenado por el bit méas bajo, volvemos a ordenar A por el segundo bit mas bajo.
Al ser estable el bucket sort, los elementos que tengan su segundo bit mas bajo iguales se
mantendran ordenados por el bit mas bajo, resultado de la ronda previa de ordenamiento.

Si continuamos hasta ordenar por el bit mds alto, el arreglo A[l..n| quedara finalmente
ordenado. Como los niimeros en A se representan en [log,u]| bits, esta técnica requiere
tiempo O(nlogu), lo cual en principio no es tan bueno.

Sin embargo, no necesitamos ordenar de a un bit por vez. En cambio, podemos ordenar
de a k = [log, n| bits en cada ronda. Es decir, consideraremos primero los k bits més bajos,
luego los siguientes k bits, etc. Como las claves son ahora de k bits, el universo es de tamano
2% < 'n, y el bucket sort ain requerira tiempo O(n + 2¥) = O(n) en cada ronda. El total de
rondas es M = O(igi;j) = O(log, u), y por ende el tiempo total es O(nlog, u).

El espacio requerido es también O(n), que se reparte entre el arreglo B[1..n] y los con-
tadores C[1..2%]. Es posible reducir significativamente el espacio de C' mediante reducir k.
Por ejemplo, ordenando de a k/2 bits, realizaremos el doble de rondas (lo que no alterard
la complejidad) y el espacio para C' serd solamente O(y/n). Este ahorro de espacio puede
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redundar ademds en una mayor eficiencia del algoritmo (a pesar de realizar més rondas)
dado que mejorara notablemente su localidad de referencia.

4.1.4. Ordenando strings

Suponga que tiene n strings de largo m, dando un tamano total N = nm. Supondremos
que los strings usan un alfabeto de tamano constante ¢. Un método clasico de ordenamiento
aplicado a los strings requiere tiempo O(mnlogn) = O(N logn), dado que cada comparacion
de dos strings puede requerir tiempo O(m).

En cambio, podemos ordenar los strings en tiempo O(N) mediante realizar rondas su-
cesivas de bucket sort, al igual que radix sort. Equivalentemente a ver los strings como
niumeros en base o, ordenaremos los strings por su ultimo caracter, luego por su peniltimo
caracter, etc. Al final, los strings quedaran ordenados lexicograficamente, es decir por su
primer caracter, los que coincidan en su primer cardcter por el segundo, los que coincidan
en sus dos primeros caracteres por el tercero, etc. Cada ronda de bucket sort cuesta tiempo
O(n+o0) = O(n), y se realizan m rondas, con lo que el tiempo total es O(mn) = O(N). Note
que el arreglo A contendra punteros a los strings, de modo que cada vez que se reescribe un
Ali] en B lo tnico que se copia es el puntero al string, en tiempo constante.

Consideremos ahora el caso en que los n strings tienen distintos largos m; > 1, sumando
un largo total de N = >""  m;. Atn es posible ordenarlos en tiempo O(N). Lo que haremos
sera partir ordenando los strings por su largo, de mas corto a mas largo. Luego, partiremos
del dltimo caracter de los strings més largos, e iremos considerando los caracteres previos,
incorporando nuevos strings al conjunto cuando sus largos m; se van alcanzando en el proceso.

Maés en detalle, usaremos bucket sort para ordenar los strings por largo (es decir, la
clave es su largo). Como los largos no pueden exceder N, el bucket sort requerird tiempo
O(n + N) = O(N) (en la practica, bastante menos). Consideremos ahora los n strings
Si,...,8,, ordenados de mas corto a mas largo. Partiremos del largo maximo, m = m,,, y
un cursor en p = n + 1. Ahora decrementaremos p hasta el minimo valor posible tal que
m; > m para todo p < i < n (es decir, para incluir a todos los strings de largo maximo, pues
podria haber mas de uno). Realizaremos una ronda de bucket sort con el cardcter m-ésimo
de los strings A[p..n] = S,,...,S,. Luego decrementaremos m < m — 1 y volveremos a
decrementar p para incluir los posibles strings del nuevo largo m. Estos nuevos elementos
se incorporaran al conjunto Alp..n], siendo considerados inicialmente menores que los del
conjunto anterior. Esto es compatible con el orden lexicografico, donde un string que es
un prefijo de otro se considera lexicograficamente menor. Continuaremos las rondas hasta
procesar el cardcter m = 1 de todos los strings.

Es fécil ver que el bucket sort de la ronda m trabaja O(k,, + o) = O(k,,), donde k,, es
el nimero de strings de largo > m. Como > """ k,, = N, el tiempo total es O(N). Esto
incluye también el tiempo de decrementar p, que suma O(n) en total.
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4.2. Predecesor en Tiempo Loglogaritmico

Dado un conjunto de elementos X = {z1,...,x,}, con z; < x;,1, el predecesor de y
en X es el maximo x; < y (definiremos que el predecesor es —oo cuando y < z7). Note
que, si y € X, entonces su predecesor es el mismo y, y si no, es un elemento estrictamente
menor. Por ello, una estructura que implemente consultas de predecesor puede usarse como
diccionario (es decir, como una estructura en la que se puede insertar, borrar, y buscar si un
elemento estd o no), pero es en realidad més potente. Puede usarse en cualquier caso en que
quiera encontrarse el valor mas cercano a uno dado. En particular, estas operaciones permiten
simular una cola de prioridad que extraiga el maximo como el predecesor de +0o (obviamente
podemos tener una cola de prioridad que extraiga el minimo mediante implementar una
estructura de sucesor en vez de predecesor, o cambiando el signo de todos los nimeros).

Si procedemos por comparaciones, tanto un diccionario como una estructura de predece-
sor se pueden implementar en tiempo O(logn) para todas las operaciones usando un érbol
balanceado, y ese tiempo calza con la cota inferior de Q(logn) de Teoria de la Informacién
que vimos. Es decir, los dos problemas son equivalentes en el modelo de comparaciones.

Fuera del modelo de comparaciones, sin embargo, los problemas difieren. Usando hashing,
podemos implementar diccionarios en tiempo esperado O(1), e incluso en O(1) peor caso si no
permitimos modificaciones al conjunto (usando hashing perfecto, que veremos més adelante).
Esto no es posible para el problema del predecesor.

En el caso de universos discretos los problemas también son diferentes. Si los z; pertenecen
a un universo discreto [1..u], y nos permitimos usar espacio proporcional a u, entonces un
simple arreglo de u bits implementa un diccionario con todas las operaciones en tiempo O(1).
El problema del predecesor se puede implementar en tiempo O(1) con un arreglo de u enteros
que almacenan todas las respuestas, pero esto no permite modificar el conjunto X.

El problema del predecesor tiene una cota inferior de 2(loglog,, %), para una palabra de
maquina de w bits. Esta cota es vélida tanto si se permiten modificaciones a X como si no
se permiten pero se limita el espacio a polinomial en n. Es vélida incluso si nos referimos
al caso promedio, y si nos conformamos con tener sélo una probabilidad fija de responder
correctamente.

En esta seccién veremos una estructura que usa espacio O(u) y tiempo O(loglogu) para
todas las operaciones, lo que estd bastante cerca de la cota inferior. Note que esto implica que
podemos tener una cola de prioridad con tiempos O(loglogu) para todas las operaciones, y
que podemos ordenar en tiempo O(nloglogu).

Existen variantes mas complejas de la estructura que usan espacio O(n) pero no permiten
modificaciones a X, o bien los tiempos de operacién son esperados y no de peor caso. Veremos
un ejemplo de ellas.

4.2.1. El van Emde Boas tree

El van Emde Boas (VEB) tree particiona recursivamente el universo en subuniversos fijos
(en vez de particionar los datos, como los drboles cldsicos). Ademds, no lo particiona en
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una cantidad constante de hijos, que llevaria a una altura logaritmica, sino en una cantidad
mayor, que hace que su altura sea loglogaritmica.
Un vEB-tree para un universo [0..u — 1], vEB(u), tiene los siguientes componentes:

= Enteros min, max, size, que indican, respectivamente, el valor minimo y maximo y la
cantidad de elementos en el arbol.

» Un array bottom|0.../u — 1] de subarboles de tipo vEB(y/u), de modo que bottom]i]
contiene los elementos que pertenecen al subuniverso [i - v/u..(i + 1) - y/u — 1].

» Un subdrbol top de tipo vEB(y/u), donde el elemento i estd en top sii bottom[i] no esté
vacio.

. Hasta donde sigue la descomposicién recursiva? Para garantizar tiempos O(loglogu),
podemos detenernos cuando el tamano del subuniverso es O(log®u), para alguna constante
¢, de modo que podamos almacenar en un arbol balanceado los elementos que caen en ese
subuniverso. Como este arbol no puede tener mas de O(log®u) elementos, el tiempo de
operacién en él sumard O(cloglogu) = O(loglogu) al tiempo total.

.Qué altura tiene el VEB tree? Supongamos para simplificar que continuamos con la
descomposicién recursiva hasta que el subuniverso es de tamano 2. La altura obedece entonces
a la recurrencia H(u) = 14 H(y/u) y H(2) = 0, cuya solucién es log, log, u = O(loglog u).

. Qué espacio requiere esta estructura? Esto corresponde a la recurrencia S(u) = 3+ (y/u+
1)-S(y/u) y S(2) = 3. Podemos mostrar por induccién que S(u) < 6u—9 = O(u), mediante
comprobar el caso base y sustituir para el caso inductivo. Si, en cambio, nos detenemos en
un subuniverso de tamano O(log®u), entonces los arboles balanceados sumaran O(n), pues
en total almacenan todos los elementos, y la estructura principal sumara O(logcu). Es decir,
podemos dividir la influencia de la estructura global por cualquier polylog, ocupando espacio
O(n + —%-), si pagamos O(cloglogu) por las busquedas.

log€u

4.2.2. Busquedas

Consideremos el problema de encontrar el predecesor de y en X, que estda almacenado en
un vEB tree. Lo primero es descomponer y = ay/u + b, con 0 < b < /u. Esto implica que
y pertenece al subuniverso a, dentro del cual su valor relativo es b. Esta descomposiciéon es
una divisién, pero puede hacerse mas eficientemente usando operaciones de bits si u es de la
forma u = 22°. En este caso, b son los 27! bits mas bajos de y, mientras que a son los 2F~!
bits més altos (en C, a =y >> 281 y b=y & ((1 << 2871) — 1)).

Una vez que sabemos que y esta en el subuniverso a, podemos determinar si su predecesor
también se halla ahi. Esto ocurre sii bottom[a].size > 0 y bottom|a].min < b. Si es ese el
caso, entonces podemos recursivamente encontrar el predecesor ¢’ de b en el vEB bottom|a],
y luego responder traduciendo b del subuniverso a al universo global, ay/u + b'.

Si, en cambio, vemos que b no tiene un predecesor en bottom|al, entonces el predecesor
de y debe encontrarse en el subuniverso no vacio més cercano a la izquierda de a. Podemos
encontrar este subuniverso, a’ < a, mediante calcular el predecesor de a—1 en el vEB top, que
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contiene precisamente los subuniversos no vacios. Si no existe tal a’, entonces tampoco existe
el predecesor de y. Si existe, entonces el predecesor de y es el maximo elemento almacenado
en bottom[a’], es decir, la respuesta es a’\/u + bottom|a'].mazx.

El tiempo de busqueda resulta ser O(loglogu) si notamos que, en cada universo de
tamano u, reducimos el problema a una biisqueda o bien en un bottom[a], o bien en top, lo
que nos lleva a la recurrencia T'(u) = T'(1/u) + O(1) = O(log log u).

4.2.3. Inserciones

Para simplificar, supongamos que sabemos que el elemento y que queremos insertar no
estd ya en X. Descomponemos y = ay/u + b, y entonces debemos insertar b en bottom|al,
recursivamente. Sin embargo, si bottom|a] estaba vacio (es decir, bottom|a].size = 0 antes de
la inserci6n), también debemos insertar a en top, recursivamente. Finalmente, incrementamos
size y actualizamos los campos min y max para considerar el nuevo elemento y (min y max
son validos sélo si size > 0).

Si bien este método de insercion es correcto, tiene el problema de que podemos realizar
dos invocaciones recursivas sobre subuniversos de tamano \/u: en bottomla] y también en
top. Esto nos lleva a la recurrencia T'(u) = 27T (y/u) + O(1) = O(log u), es decir, el costo de
insercién se hace demasiado alto.

Para evitar este problema basta un pequeno retoque a la estructura: el valor maz dejara
de ser una copia del maximo valor almacenado. Ahora serd un valor que se mantiene aparte
y no se almacena dentro del vEB.

Con este nuevo invariante, la insercion procede de la siguiente forma. Primero, si size = 0,
todo lo que hacemos es size < 1, min < y, y mazr < y. Como el elemento y se guardo
en max, no lo almacenamos en su subuniverso correspondiente. Si, en cambio, la estructura
tiene elementos, lo primero que hacemos es ver si y no es el nuevo maximo: si y > maz,
intercambiamos sus valores. De esta forma, el elemento insertado pasa a estar guardado en
maz, y el que teniamos en maz (que ya no es mas el maximo) pasa a ser el que tenemos
que insertar en el arbol. Luego realizamos la insercién de y tal como la habiamos descrito
inicialmente (salvo que las variables que se actualizan al final son sélo min y size).

Con este nuevo método, todavia podemos realizar dos llamadas recursivas, pero si eso
ocurre, una de ellas toma tiempo O(1): si insertamos a en top, es porque bottom[a|.size = 0
cuando le insertamos b, y con nuestro nuevo algoritmo, la insercién de b en bottom|a] toma
tiempo O(1). De este modo, el tiempo de la insercién se hace O(loglogu).

El nuevo invariante requiere un pequeno cambio en la bisqueda del predecesor de y: antes
que nada, debemos verificar si size > 0y y > max, en cuyo caso el predecesor de y es mazx.
De otro modo, procedemos como antes.

4.2.4. Borrados

Para simplificar, supondremos que el elemento y que queremos borrar esta en la estructu-
ra. Lo primero que haremos sera verificar si size = 1, en cuyo caso sabemos que el elemento
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a borrar es el Unico almacenado, max. En este caso basta que hagamos size < 0 para
invalidarlo.

Si tenemos mas de un elemento, la siguiente verificacién es si no estamos borrando el
maximo, y = max. En este caso, debemos encontrar el nuevo maximo del conjunto, que
no es dificil de calcular: max < top.max\/u + bottom[top.max].mazx. Ahora este elemento
debe eliminarse del arbol, por lo que asignamos y <— max antes de continuar. De otro modo,
mantenemos el elemento original y a borrar.

Para borrar y del drbol, lo descomponemos en y = ay/u + b, y borramos b de bottom/|al,
recursivamente. Si luego de este borrado tenemos que bottom[a].size = 0, entonces debemos
también borrar a de top, recursivamente.

Finalmente, decrementamos size y recalculamos el nuevo minimo, que puede haber cam-
biado si y = min. En este caso, actualizamos min < top.min~/u + bottom[top.min].min.

Nuevamente, el borrado en un universo de tamano u puede realizar dos llamadas recursi-
vas en subuniversos de tamano +/u, pero al igual que en la insercién, sélo una de ellas puede
ser no trivial: si borramos a de top, es porque bottom|a] se hizo vacio luego de borrar, por lo
cual el borrado de b en bottom[a] se hizo en tiempo O(1).

4.3. Diccionarios de Strings

Cualquier implementacion de diccionarios, por ejemplo, un arbol balanceado o una tabla
hash, pueden usarse para almacenar un conjunto de strings. El primero ofreceria tiempo
O(mlogn) de peor caso y el segundo O(m) promedio para insertar, borrar, o buscar un
string de largo m en un conjunto de n strings. Aqui mostraremos como aprovechar el hecho
de que los objetos son strings para operar en tiempo de peor caso O(m), pudiendo ademés
buscar todos los strings prefijados por un string de consulta. Luego usaremos la estructura
de datos para indexar un texto, de modo de poder buscar en sus substrings.

4.3.1. Tries

Un trie, drbol digital, almacena un conjunto de strings. En el trie, cada nodo puede tener
cero o mas hijos. La arista hacia cada hijo estda rotulada por un cardcter del alfabeto, y
no puede haber dos aristas saliendo de un mismo nodo y rotuladas por el mismo caracter.
Cada hoja almacena uno de los strings del conjunto. Los strings almacenados se suponen
terminados por un caracter especial “$”, lo que impide que un string sea prefijo de otro.
Para cada nodo v, llamaremos str(v) al string que se obtiene concatenando los rétulos de
las aristas en el camino de la raiz hasta v. Asi, si v es la raiz, str(v) es la cadena vacia, y si
v es una hoja que representa el string S, str(v) = S. Para los nodos internos v, str(v) es un
prefijo comtin que comparten todos los strings almacenados en sus hojas descendientes (note
que dos strings que compartan un prefijo comin de largo ¢ deben compartir los primeros ¢
nodos en el camino desde la raiz hasta sus hojas).

Para buscar una determinada cadena S[1..m] en un trie, buscaremos en realidad S* = S$.
Partimos de la raiz vy y bajamos por la arista rotulada S*[1] para llegar al nodo v;. De vy
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bajamos por la arista rotulada S*[2] para llegar al nodo v, y asi. Esta bisqueda termina de
dos formas posibles:

1. Un cierto nodo v; del camino no tiene un hijo rotulado S*[i + 1], para 0 < i < m. Esto
significa que S no esta en el conjunto.

2. Llegamos al nodo v,,,1, que debe ser una hoja pues desciende del simbolo especial $.
En este caso, S estd en el conjunto, pues str(v,,.1) = S*.

La bisqueda de S requiere, entonces, tiempo O(m). Esto supone que podemos encontrar
en tiempo constante la arista rotulada S[i]. Si el tamano o del alfabeto se considera constante,
entonces esto es inmediato con cualquier implementacién que usemos para los hijos de los
nodos. Si no, ain podemos conseguir tiempo constante si, por ejemplo, cada nodo guarda
un arreglo de sus ¢ hijos, lo cual sin embargo requiere espacio O(c) por nodo. Si el trie
no sufre modificaciones, podemos usar hashing perfecto (que veremos més adelante) para
mantener el tiempo constante y usar espacio proporcional al nimero de hijos de cada nodo
(cobrandole este espacio a los hijos, esto amortiza a O(1) por nodo en total). Si el trie sufre
modificaciones, ain podemos usar hashing (no perfecto) para tener tiempo O(1) en promedio.
Finalmente, podemos almacenar los hijos de cada nodo en un arbol balanceado para bajar
al hijo en tiempo O(log o), de modo que el tiempo total de bisqueda sea O(mlogo). Por
simplicidad, ignoraremos este tiempo de ahora en adelante.

Reduciendo el tamano. Si guardamos n strings de largo total N, el trie podria llegar a
tener N nodos. Esto hace del trie una estructura bastante exigente en espacio. Una forma de
reducirlo significativamente es eliminar los caminos de nodos con un solo hijo (llamémoslos
unarios) que terminan en una hoja, es decir, si v; — v9 — v3... — v; es un camino donde
v; es una hoja y vy, ...,v;_; tienen un solo hijo, entonces los eliminamos y ponemos a v,
como hijo directo de vy (conservando el rétulo de la arista v; — v9). A cambio, deberemos
almacenar el string en la hoja v; (lo que en muchos casos se hace de todos modos). Con esta
modificacién, la buisqueda de S en el trie puede nuevamente terminar de dos formas posibles:

1. Un cierto nodo interno v; del camino no tiene un hijo rotulado S*[i+1], para 0 < i < m.
Igual que antes, esto significa que S no estéd en el conjunto.

2. Un cierto nodo v; del camino es una hoja. Esto significa que str(v;) es el tnico string
del conjunto prefijado por S*[1..i]. Ahora debemos comparar S*[i + 1..m + 1] con
str(v;)[i + 1..m + 1], para determinar si son iguales o no.

Nuevamente, el tiempo de bisqueda es O(m). Con esta modificacién, un trie todavia
podria tener ©(N) nodos en el peor caso, pero en promedio tendrd sélo O(n) nodos si se
insertan strings aleatorios.

Busqueda de prefijos. Otra operacion que permite el trie es la busqueda de prefijos, es
decir, contar o listar todos los strings del conjunto prefijados por S. En este caso debemos
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descender usando S, no S*. Si la busqueda termina en el caso 1, no hay strings en el con-
junto prefijados por S. Si termina en el caso 2, y S[i + 1..m| = str(v;)[i + 1..m|, entonces
str(v;) es el inico string del conjunto prefijado por S. Pero, al no estar S terminado con $,
existe una tercera posibilidad: que la bisqueda termine en un nodo interno v,, después de
haberse consumido todos los caracteres de S[1..m]. En ese caso, toda hoja que descienda de
vy, esta prefijada por S. Podemos hacer que cada nodo almacene el niimero de hojas que
descienden de él, resolviendo esta busqueda en tiempo O(m). Si en cambio queremos poder
listar esos strings, entonces cada nodo deberia almacenar un puntero a su primera y tltima
hoja descendiente, y cada hoja un puntero a su siguiente hoja. Con ello, cada string prefijado
por S se alcanza en tiempo constante una vez realizada la busqueda. Los detalles de cémo
mantener estos punteros los dejaremos como ejercicio.

Inserciones y borrados. Veremos ahora cémo insertar y borrar en esta estructura. La
insercién de un string S[1..m] parte como una bisqueda de S*, y termina de una de las dos
formas vistas. Veamos qué hacer en cada caso:

1. Si el nodo interno v; no tiene un hijo rotulado S*[i + 1], entonces agregamos ese hijo,
el cual serd una hoja conteniendo el string S*.

2. Si llegamos a una hoja v; conteniendo S’[1..m’ + 1] (también terminada con $), com-
paramos S*[i + 1..m + 1] con S’[i + 1..m' + 1] hasta encontrar la primera diferencia
S*[j] # S'[j] (si no hay diferencia, entonces S ya estaba en el conjunto). Creamos
entonces una cadena de hijos v; — v;41 — ... — v;_1, donde cada arista vy, — vy
esta rotulada S*[k+1] (= S’[k+1]). De v;_; salen dos hijos: v;_1 — v}, rotulada S*[J],
lleva a la hoja v; que contiene el string S*, mientras que v;_; — vg-, rotulada S’[j],
lleva a la hoja v} que contiene el string S”.

En todos los casos, el tiempo total sigue siendo O(m). Un caso especial es cuando el trie
no contiene strings, en cuyo caso la primera insercién hace que el trie consista de una unica
hoja que almacena el string.

La eliminacion del string S parte como una buisqueda exitosa de S* , llegando a la hoja v
que lo contiene y eliminandola. Luego, debemos asegurarnos de que no nos quede un camino
unario hacia una hoja. Si v tiene un tnico hermano v" y v’ es una hoja, entonces entramos
en el siguiente ciclo: Mientras el padre u de v’ tenga un solo hijo, eliminamos u y colgamos a
v’ del padre de u. Si llegamos a eliminar la raiz, entonces el trie consiste de una unica hoja,
v'. Note que el tiempo de borrado sigue siendo O(m), incluso con el ciclo que recorta los
caminos unarios.

4.3.2. Arboles Patricia

Si bien el peor caso de espacio O(N) en un trie es bastante raro cuando eliminamos los
caminos unarios hacia las hojas, puede ocurrir con algunos conjuntos de strings que compar-
ten prefijos largos (por ejemplo, conjuntos de URLSs). El drbol Patricia (también conocido
como blind trie) es una variante del trie que asegura espacio O(n) independientemente del
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largo de los strings, y mantiene el tiempo de las operaciones en O(m). El precio es que se
deben almacenar los strings completos en alguna parte (obviamente).

El invariante del arbol Patricia es que no hay caminos unarios de ninguna clase (tampoco
entre nodos internos). Como todo nodo tiene al menos dos hijos y hay n nodos hojas, hay
menos de n nodos internos, con lo cual el total de nodos es O(n).

Para ello, cada arista estara rotulada en general con un string, no con un solo caracter,
pues potencialmente puede provenir de la eliminacién de un camino unario. El arbol Patricia
no almacena el string completo, sino sélo su primera letra a y su largo ¢, en un par (a,?).
Esto hace que no haya suficiente informacion en el trie para que la bisqueda de S* compare
el string completo, sino solamente algunos caracteres: si hemos comparado S*[1..i] y la arista
rotulada por S*[i + 1] es de la forma (S*[i + 1],/), entonces deberemos seguirla y en su
hijo suponer que hemos consumido ya S*[1..i + ¢|. Esto hace que, al llegar a una hoja
v, debamos comparar completamente S* con str(v), pues algunos de los caracteres que
“saltamos” podrian no haber coincidido. Lo que sabemos es que, si S esta presente, S* tiene
que estar en v, pues no hay otra hoja que coincida con S* en los caracteres que si vimos.

Para buscar S en un arbol Patricia, bajaremos por los nodos vy, vy, ... buscando S*, de
la forma que acabamos de explicar (es decir, saltando los largos ¢ indicados en las aristas),
hasta que ocurra una de las siguientes situaciones:

1. Un cierto nodo interno v; del camino no tiene un hijo rotulado S*[j], donde 1 < j <
m + 1 es el cardcter que toca comparar en v;. Igual que antes, esto significa que ni .S
ni su prefijo S[1..j] estéan en el conjunto.

2. Llegamos a un nodo interno v; donde el caracter que toca comparar es 7 > m+ 1. Esto
significa que todos los strings que descienden de v; son mas largos que S*, y por lo
tanto S no esta en el conjunto.

3. Llegamos a una hoja v. Si el siguiente caracter a consumir en S* luego de procesar la
arista es 7 # m + 2, entonces la hoja no contiene S* sino un string mas corto o méas
largo, en cuyo caso ya sabemos que S no estd en el conjunto. En caso de pasar este
test, debemos comparar la totalidad de S* con str(wvy), por si algin caracter saltado no
coincide. Estos dos strings son iguales sii S esta en el conjunto.

A pesar de la doble verificacién, el tiempo de busqueda sigue siendo O(m).

Bisqueda de prefijos. Para buscar prefijos, usamos S[1..m] en vez de S*. En el caso 3 de
arriba, el unico string posible prefijado por S es str(v). Para ello, la posicién del siguiente
cardcter a comparar de S debe ser > m + 1, pues si no str(vg) es més corto que S. Pasado
este test, debemos comparar la totalidad de S con str(vg)[l..m| para determinar si S es
prefijo de str(vy), dado que podemos no haber comparado todos los caracteres de S.
Debemos también modificar el caso 2, deteniendo la buisqueda cuando el caracter a com-
parar es el 7 > m. Para resolver este caso, cada nodo interno v; debe apuntar a alguna
hoja v que descienda de él, en un campo hoja(v;) (supondremos que, si v; es una hoja,
entonces hoja(vg) = vy sin necesidad de almacenarla). Calcularemos entonces v, = hoja(v;)
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y verificaremos si S = str(vg)[1..m]. De ser asi, S es prefijo de todos los strings almacena-
dos en hojas que descienden de v;, vy si no, de ninguno. Nuevamente, podemos almacenar
contadores en cada v; para entregar la cantidad de strings prefijados en tiempo O(m). No
necesitamos, en cambio, punteros para recorrer las hojas eficientemente, pues si hay h ho-
jas descendiendo de v;, su subérbol contiene O(h) nodos, por lo cual podemos simplemente
recorrerlo recursivamente.

Inserciones y borrados. La inserciéon en un arbol Patricia es un proceso més complejo
que en un trie. Primero, debemos buscar S* en el arbol, y no encontrarlo. Esto ocurre segin
los casos 1 a 3 de la busqueda:

1. Un cierto nodo interno v; del camino no tiene un hijo rotulado S*[j], donde 1 < j <
m+1 es el cardcter que toca comparar en v;. En este caso, debemos tomar v, = hoja(v;)
y comparar S* con str(vy), para determinar la primera posicion d < j donde S* difiere
de todos los strings en las hojas que descienden de v;.

2. Llegamos a un nodo v; donde ya nos pasamos de la posicion m + 1. Procedemos
exactamente como en el caso 1.

3. Llegamos a una hoja v,. Nuevamente, comparamos S* con str(vy) para determinar d.

Note que el punto de insercién de S* corresponde a S*[d], el cual puede estar més arriba
del nodo v; o vg, pues llegamos a esos nodos suponiendo que los caracteres no revisados
coincidian. Una vez conocido d, pueden pasar tres cosas:

1. Estabamos en un nodo interno v; y resulta que j = d. En este caso, creamos un
nuevo hijo hoja de v; asociado al string S*, y rotulamos la arista que los une con
(S[d],m +2 — d).

2. Estdbamos en una hoja v, a la que llegamos luego de examinar el cardcter S[d'], y
resulta d > d'. En ese caso, convertimos a v, en padre de dos hojas: una representa
el string original S’ asociado a vy y la otra representa S*. La arista hacia la primera
se rotula (S’[d],|S’| —d + 1), y la arista hacia la segunda se rotula (S*[d], m + 2 — d).
Finalmente, la arista (a, |S’| — d’ 4+ 1) que llegaba a vj, debe ser convertida a (a,d — d')
y hoja(vg) puede ser asignada a cualquiera de las dos hojas creadas.

3. Ninguna de las anteriores, en cuyo caso debemos retroceder en la recursién hasta llegar
al ancestro v, desde el que pasamos a vy por una arista rotulada (a,f). Al pasar de
v, a vg, pasamos de haber consumido S*[1..d"] a haber consumido S*[1..d" 4 ¢], con
d < d—1 < d + (. Entonces debemos cortar esta arista en dos, introduciendo un
nuevo nodo v hijo de v, y padre de v,. La arista de v, a v se rotula (a,d — 1 — d'),
y la de v a vy se rotula (str(vy)[d],d + ¢ —d+ 1), donde v, = hoja(vs). Se copia
hoja(v) < hoja(vs). Finalmente, se crea una nueva hoja v que también es hija de v,
con la arista entre ellas rotulada (S*[d],m + 2 — d), y se asocia la hoja a S*.
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Para borrar S, una vez eliminada la hoja v que representaba S*, tenemos que verificar
si su padre no queda con un solo hijo, y de ser asi eliminar ese padre, reemplazando al
padre de ese otro hijo hoja por su abuelo. El proceso no necesita repetirse hacia arriba.
Concretamente, si u es el padre de v y u tiene sélo otro hijo v/, por una arista rotulada (a, ¢),
entonces sea u’ el padre de u, conectados por una arista rotulada (a’, ¢'). Entonces se elimina
u 'y se cuelga a v’ de v/, por una arista rotulada (a’, ¢ + ).

Asimismo, debemos eliminar referencias de la forma hoja(v;) = v en cualquier ancestro
v; de v. Para ello, antes de posiblemente eliminar al padre u de v, tomamos w = hoja(v')
para cualquier hijo v" # v de u. Luego de posiblemente eliminar al padre de v, partimos del
(tal vez nuevo) padre de v' y recorremos el camino hasta la raiz, reemplazando cualquier
hoja(v;) = v por hoja(v;) < w.

En todos los casos, la insercién y el borrado de un string S[1..m| cuesta O(m).

Alfabeto binario. Una implementacién particularmente simple de los drboles Patricia se
obtiene si consideramos el alfabeto como binario, es decir, cada caracter en el alfabeto [1..0]
se toma como una cadena de log, o bits. Esto hace que cada nodo interno del arbol tenga
exactamente 2 hijos, simplificando la implementacién. Note que el espacio sigue siendo O(n).

El precio es que el camino de la raiz a la hoja donde se almacena S[1..m| puede llegar a
tener largo O(mlog o), que serd ahora la nueva complejidad de todas las operaciones. Como
vimos al comienzo, esta es realmente la complejidad en algunas implementaciones.

Autocompletado. Una aplicacién interesante de arboles Patricia es el autocompletado
automatico, que a medida que uno tipea una palabra va proponiendo la palabra mas probable
que uno querria terminar de escribir. El usuario puede, en cualquier momento, aceptar la
opcion que le ofrece el autocompletado o seguir tipeando. Y, obviamente, puede terminar
tipeando algo que no esté atin en el conjunto de palabras conocidas. Almacenando las palabras
conocidas y sus frecuencias en un arbol Patricia se puede implementar el autocompletado en
forma bastante simple.

Al comenzar a escribirse una nueva palabra, partimos de la raiz del arbol y vamos bajando
a medida que se tipean nuevos caracteres. Si estamos en un nodo v, podemos proponer como
autocompletado la hoja que lleva mayor frecuencia acumulada y que desciende de v. Para
ello, necesitamos que v tenga un campo best(v) que apunta a esa hoja. Si no se acepta esta
sugerencia y en cambio se tipea una a, buscaremos la arista de la forma (a, ) que salga de
v hacia u, y propondremos best(u). El proceso termina de dos formas posibles:

1. Se llega a una hoja w, o bien porque en algin punto se acepta el autocompletado desde
un nodo v con best(v) = w, o bien porque se tipea hasta llegar a w. Las hojas deben
tener un campo freq(w) que indique la cantidad de veces que han aparecido. Debemos
entonces incrementar freg(w).

2. Nunca se acepta el autocompletado y se termina tipeando una palabra nueva, que
no estaba en el diccionario. Se debe entonces crear la hoja correspondiente w, con

freq(w) = 1.
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Luego de haber visitado o creado una hoja w, debemos actualizar los campos best(v) de
sus ancestros. Para ello, volvemos desde la hoja w hasta la raiz asignando, para cada ancestro
v, best(v) < w si es que freq(best(v)) < freqg(w) (notar que, ante la igualdad, preferimos
la palabra tipeada més recientemente; podemos usar otras politicas también). Este proceso
se puede detener apenas encontremos un v que no reemplace su best(v), pues sus ancestros
tampoco lo haran. Como puede que hayamos llegado a w directamente desde un ancestro v
con best(v) = w, este recorrido hacia arriba desde w requiere o bien punteros hacia el padre
de cada nodo, o bien que volvamos a entrar al arbol con el string str(w).

4.3.3. Arboles de sufijos

Consideremos un texto T'[1..n] terminado con el caracter especial $. Este texto define
n sufijos T[i..n], para 1 < i < n. Si insertamos todos estos sufijos en un arbol Patricia, el
resultado es el arbol de sufijos de T. La tunica diferencia es que las hojas del arbol, en vez
de almacenar el sufijo T'[i..n], simplemente almacenan la posicién i del texto, con lo cual se
puede acceder directamente al sufijo.

Si hacemos una busqueda de prefijo por S[1..m], obtendremos la cantidad de sufijos
de T prefijados por S, en tiempo O(m). Eso es exactamente lo mismo que la cantidad de
ocurrencias de S en T'. Asimismo, podemos listar las posiciones iniciales i de los sufijos T'[i..n]
prefijados por S, que es lo mismo que las posiciones iniciales de las ocurrencias de S en T
Cada una de esas posiciones se lista en tiempo O(1), tal como vimos.

En resumen, el arbol de sufijos es una estructura de datos que, construida sobre un texto
de largo n, ocupa espacio O(n) y permite buscar las ocurrencias de substrings en el texto en
tiempo éptimo. El arbol de sufijos se puede construir mediante insertar los sufijos de 7" uno a
uno. Sobre un texto aleatorio, la altura del arbol es O(log, n), por lo cual la construccién toma
tiempo esperado O(nlogn). En el peor caso, sin embargo, esta construcciéon puede requerir
tiempo O(n?) (por ejemplo, un texto T' con substrings repetidos muy largos). Existen varios
algoritmos de construccién del arbol de sufijos en tiempo O(n); daremos algunas referencias
al final del capitulo.

Ademas de buscar ocurrencias de strings en 7', el arbol de sufijos permite responder
muchas otras preguntas mas complejas. Describiremos una como ejemplo.

Autorrepeticiones relevantes. Para determinacion de plagio y autoria, deteccion de ge-
nes comunes entre especies, etc. un tipo de pregunta de importancia es qué cadenas se repiten
significativamente en un texto 7' (que puede ser la concatenacién de varias secuencias).

La autorrepeticion mas larga de T', es decir, la cadena mas larga que aparece dos veces
en T, se puede encontrar facilmente con un recorrido en profundidad por el arbol de sufijos.
Extendamos el concepto de str(v) a nodos internos también, de modo que str(v) es la
concatenacién de los strings que rotulan el camino de la raiz hasta v. Cada nodo interno v
del drbol se corresponde con un string distinto str(v) que aparece al menos dos veces (pues si
no, v no tendria al menos dos hijos y no serfa un nodo interno). Lo que queremos, entonces,
es el nodo interno v que maximice |str(v)|. Este largo se puede calcular facilmente mediante
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ir acumulando los campos ¢ de los rétulos (a, f) a medida que bajamos en el arbol. En total,
en tiempo O(n) recorremos todo el arbol y determinamos un nodo v que maximiza |str(v)|.
El string mismo se puede recuperar mediante ir a hoja(v) y rescatar la posicién i donde
empieza el sufijo, de modo que el string repetido més largo es T[i..i + |str(v)| — 1].

De la misma manera, si almacenamos un campo size(v) con el nimero de hojas que tiene
el nodo v, podemos por ejemplo encontrar todos los strings de largo > ¢ que aparecen al
menos m veces en T, para cualquier pardmetro ¢ y m.

4.3.4. Arreglos de sufijos

Si bien el arbol de sufijos ocupa espacio O(n), la constante es bastante grande: puede
haber hasta n nodos internos (cada uno con hasta 6 campos enteros) y n hojas (cada una
con 2 campos). Si un entero ocupa 4 bytes, el espacio suma hasta 32n bytes, mientras que
T usa tipicamente n bytes.

El arreglo de sufijos es una estructura que conserva algo de la funcionalidad del arbol de
sufijos, pero sélo requiere un entero por posicién de T'. La estructura es un arreglo A[l..n]
de enteros, donde A[i] apunta al i-ésimo sufijo en orden lexicografico. Es decir, A es una
permutacién de [1..n] donde T'[A[i]..n] < T[A[i + 1]..n] para todo 1 < i < n.

Los sufijos que empiezan con un cierto string S forman un rango lexicografico, por lo
cual aparecen en un rango de A. Para encontrar las ocurrencias de S[1..m] en T' podemos
entonces hacer dos bisquedas binarias para encontrar los dos extremos del rango A[sp..ep]
de los sufijos que empiezan con S. Una vez encontrado el rango Alsp..ep|, sabemos que S
ocurre ep — sp + 1 veces en T, y que las posiciones iniciales de las ocurrencias son A[sp],
Alsp+1], ..., Alep].

Cada paso en la bisqueda binaria en un cierto A[i] requiere comparar S con el string
T[A[i]..A[i] + m — 1], para determinar si continuar a la derecha o a la izquierda de i. Como
estas comparaciones requieren examinar hasta m caracteres, el tiempo de encontrar este
rango es O(mlogn). Esta mayor complejidad es uno de los precios de haber reducido el
espacio del arbol de sufijos a solo n enteros. Otro precio es que no podemos realizar ciertas
busquedas complejas en forma tan eficiente, como la que describimos para encontrar las
repeticiones relevantes de T

El arreglo de sufijos se puede construir con cualquier algoritmo de ordenamiento. Cada
una de las O(nlogn) comparaciones de strings requiere comparar O(log, n) caracteres en
un texto promedio (donde cada cardcter se genera uniformemente), con lo cual el costo pro-
medio total es O(nlognlog, n). En un texto con muchos substrings repetidos, sin embargo,
esto puede empeorar hasta O(n?logn). Existen algoritmos especializados que construyen el
arreglo de sufijos en tiempo O(n); damos algunas referencias al final del capitulo.

4.4. Ficha Resumen

Con n elementos en un universo entero [1..u], o n strings de largo total N > n, sobre un
alfabeto constante, insertando/borrando/buscando un string de largo m:
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» Counting y bucket sort: O(n + u).
» Radix sort: O(nlog, u).
» Ordenando strings: O(N).

= Van Emde Boas trees: espacio O(n + ) v tiempo O(cloglogu) para cualquier
constante ¢, para insertar, borrar, y buscar predecesor. Espacio O(n) para sélo buscar

en tiempo O(loglog ), o para las tres operaciones en tiempo esperado O(loglogu).
» Tries: espacio O(NV) en el peor caso y tiempo O(m) para insertar, borrar y buscar.
= Arboles Patricia: espacio O(n) y tiempo O(m) para insertar, borrar y buscar.
= Arboles de sufijos: espacio O(n) para un texto de largo n y buscando en tiempo O(m).

= Arreglos de sufijos: espacio O(n) para un texto de largo n (pero menor constante que
el arbol de sufijos) y buscando en tiempo O(mlogn).

4.5. Material Suplementario

Cormen et al. [CLRS01, sec. 8.2 a 8.4] presentan el bucket sort (al que llaman counting
sort) y el radix sort. Luego presentan, con el nombre de bucket sort, una estrategia que
ordena en tiempo O(n) promedio si los valores se distribuyen uniformemente (y puede ordenar
nimeros reales, no solamente en universos discretos). Mehlhorn y Sanders [MS08, sec. 5.6]
presentan, con menos detalle, el bucket sort (que llaman Ksort), el radix sort, y el sort de
O(n) promedio (que llaman uniform sort). Aho et al. [AHUS83, sec. 8.5] también presentan
el bucket sort (al que llaman bin sort) y el radix sort, y mencionan la aplicacién a ordenar
strings del mismo largo. Sedgewick [Sed92, cap. 8] presenta el bucket sort, al que llama
distribution counting, y luego [Sed92, cap. 10| el radix sort, al que llama straight radix sort
para diferenciarlo del que llama radix exchange sort, que se parece mas a un QuickSort que
va particionando por el bit mds alto, luego por el segundo mas alto, etc. Manber [Man89,
sec. 6.4.1] describe brevemente el bucket sort (jcon ese nombre!) y las mismas variantes de
radix sort que Sedgewick. Aho et al. [AHUT74, sec. 3.2] presentan el bucket sort (con ese
nombre) y luego el radix sort, al que llaman lexicographic sort porque se concentran en
strings, primero de largo fijo y después de largo variable (presentando un algoritmo muy
similar al que vimos). Varios autores [CLRS01, MS08] mencionan la posibilidad de realizar
radix sort partiendo por el simbolo més significativo primero (MSD radix sort), particionando
asi el arreglo y luego ordenando recursivamente cada particién, pero advierten que esto genera
muchas particiones muy pequenas, lo que hace que el método que vimos (LSD radix sort) sea
preferible. Note que el MSD radix sort es conceptualmente similar a construir un trie sobre
las secuencias de simbolos. Por iltimo, s6lo algunos autores [CLRS01, Sed92] muestran cémo
el bucket sort puede convertir los contadores en punteros para escribir el output ordenado
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en un arreglo; los otros usan estructuras mas ineficientes como colas o listas enlazadas para
los buckets.

Cormen et al. [CLRSO01, Cap. 20 de la tercera edicién]| describen los drboles de van Emde
Boas. También se describen en varias fuentes online que listamos al final.

Aho et al. [AHUS83, sec. 5.3] hacen una presentacién muy bésica y detallada de los tries.
Sedgewick [Sed92, cap. 17] entrega un tratamiento méas completo, que incluye arboles Patri-
cia. Sedgewick habla de tiempos de operacién O(logn) para el drbol Patricia, basdndose en
que la profundidad promedio de los nodos cuando se insertan strings aleatorios es O(log, n).
Aho et al. [AHUT74, sec. 9.5] presentan los position trees, que son esencialmente tries con
todos los sufijos de un texto, con aplicaciones y algoritmo de construccion. Para arboles y
arreglos de sufijos es necesario consultar libros de stringologia. Crochemore y Rytter [CR02,
cap. 4 y 5] presentan el arbol de sufijos, algoritmos de construccién y algunas aplicaciones,
asi como otras estructuras relacionadas llamadas autématas de sufijos o DAWGSs (directed
acyclic word graphs) [CR02, cap. 6]. Estas estructuras hacen evidentes las conexiones entre
los tries y los autématas finitos, asi como las estructuras que usan los algoritmos de biisque-
da en texto como Knuth-Morris-Pratt y Aho-Corasick. Crochemore et al. [CHLO7, cap. 5]
también cubren tries, arboles y autématas de sufijos. También dedican un capitulo [CHLO7,
cap. 4] al arreglo de sufijos, su construccién en tiempo lineal, y varias extensiones. Otros
capitulos de ambos libros [CR02, CHLO7] exploran varias aplicaciones de estas estructuras.

Otras fuentes online de interés:
» brilliant.org/wiki/radix-sort
= www.bowdoin.edu/"1toma/teaching/cs231/duke_cps130/Lectures/L07.pdf
» www.youtube.com/watch?v=Nz1KZXbghj38
» www.ics.uci.edu/"eppstein/161/960123.html

» ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-046j-design-and-analysis-of-algorithms-spring-2015/
lecture-notes/MIT6_046J515_1lec04.pdf

®» www.cs.bris.ac.uk/"bs4039/slidesAA/aa-12.pdf

» www2.hawaii.edu/"nodari/teaching/s16/notes/notes10.pdf
= www.youtube.com/watch?v=hmReJCupbNU

= www.youtube.com/watch?v=ZrV7GiuMNo4

» web.stanford.edu/class/cs166/lectures/03/Small03. pdf

= algs4.cs.princeton.edu/lectures/52Tries.pdf

» www.cs.cmu.edu/ avrim/451£07/lectures/lect1002.pdf
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» www.youtube.com/watch?v=NinWEPPrkDQ

» visualgo.net/en/suffixtree y visualgo.net/en/suffixarray
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Capitulo 5

Algoritmos en Linea

Hay casos en que un algoritmo debe tomar decisiones antes de conocer todo el input.
Un ejemplo de la vida real es cuando estamos esperando el bus sin saber cuando llegara:
Jnos conviene seguir esperando o irnos caminando? Estos algoritmos que toman decisiones
teniendo parte del input se llaman algoritmos en linea, y la forma de analizarlos es medir su
competitividad en comparacion con un algoritmo dptimo que conoce todo el input de ante-
mano. Note que no estamos hablando de la eficiencia en tiempo o espacio de los algoritmos,
sino de la calidad del resultado que producen.

Tomemos el ejemplo del bus. El bus llega a destino en tiempo x y caminando llego en
tiempo y > x. Pero el bus tardara tiempo z en llegar a la parada, y yo no cononzco z.
Un algoritmo 6ptimo, que conociera z, simplemente elegiria la mejor alternativa, tardando
min(z + z,y). ;Qué alternativas tengo si no conozco z? Puedo irme caminando inmediata-
mente y tardar y, en cuyo caso podria ser que z = 0 y el algoritmo 6ptimo tarda z, es decir,
es ¥ veces més rapido. Puedo esperar el bus todo lo que sea necesario, tardando x + z, pero
entonces si z es muy grande el algoritmo 6ptimo se ird caminando directamente, tardando
y v siendo xT*Z veces mas rapido. ;Puedo tener una estrategia intermedia? Si: puedo esperar
y, v si no llegd el bus, me voy caminando. Esto demora =z + 2z si 2z < y, y 2y si no. Note
que esto nunca es mas que el doble de lo que demoraria la estrategia éptima: si el éptimo
es r + z < y, nosotros también nos iremos en bus porque z < y; si el Optimo es y < x + z,
nosotros tardamos o bien 2y, o si z < y, © + z < 2y. Decimos que nuestra solucién es un

algoritmo en linea 2-competitivo.

Dado un algoritmo en linea A y un algoritmo 6ptimo OPT, que producen soluciones
de costo Cu(I) y Copr(I) para un input I, diremos que A es c-competitivo si existe una
constante b tal que, para todo posible input I, se cumple que

CA<I) < C'COPT(I> +b.

Note que la competitividad asi definida es una medida de peor caso. Existen medidas
similares para algoritmos aleatorizados, pero no las veremos en el apunte.
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5.1. Aplicaciones Simples

5.1.1. Subastas y codificacion de enteros

Considere un juego tipo subasta donde un articulo tiene un precio oculto x. Los parti-
cipantes hacen ofertas y. Si y < z, la casa se queda con y pero no entrega nada a cambio.
Si y > z, la casa se queda con y y entrega el articulo. Un participante puede ofertar varias
veces hasta obtener el articulo. Obviamente el algoritmo 6ptimo, que conoce x, oferta x y se
lleva el articulo. ;Cudl es la mejor estrategia para un algoritmo en linea?

Consideremos una estrategia de tipo exponencial, en que en el turno k ofertamos c*, para
k=0,1,2,.... Lo peor que puede pasar es que = sea de la forma ¢" + 1, de modo que al
ofertar ¢” lo perdamos, y debamos ofertar ¢"**. En ese caso el costo total en que incurrimos

fue
n+1
Cn+2 -1

g &= _
c—1
k=0

mientras que el algoritmo 6ptimo gasta ¢” + 1. Para simplificar las cuentas podemos reem-
. . , n+2 , .

plazar pesimistamente el costo del algoritmo en linea por CC_+1 y el del 6ptimo por ¢". El

cociente entre ambos es entonces

Cn+2 2

(c—1)cn c—1

que se minimiza con ¢ = 2. Es decir, ofertando potencias de 2 tenemos un algoritmo 4-
competitivo. No es dificil ver que un algoritmo que vaya ofertando subexponencialmente o
superexponencialmente no lograran una competitividad constante, por lo que esta es la mejor
competitividad que podemos conseguir.

Codificacion . Consideremos ahora un juego analogo, en el que se tiene que adivinar
un nimero natural z > 0 mediante preguntas del tipo “jes x < y?”, y lo que tenemos que
optimizar es el nimero de preguntas. Como este juego es demasiado facil para el algoritmo
optimo si le permitimos que conozca x, diremos que la ventaja que tiene es que le permitimos
hacer una primera pregunta para que conozca la cantidad de bits ¢ que requiere representar
x. Conociendo ¢, el 6ptimo sabe que x € [2¢71..2¢ — 1] y entonces puede hacer busqueda
binaria en el rango, a costo £ — 1. En total, el 6ptimo realiza entonces ¢ preguntas.

El algoritmo en linea, que no puede preguntar por ¢, puede buscarlo “secuencialmente”,
realizando preguntas sucesivas de la forma: jes v < 2F? para k = 1,2, ... Una vez determina-
do ¢ con ¢ preguntas, completa con bisqueda binaria en [2¢71..2¢ — 1], la cual requiere otras
¢ — 1 preguntas. El costo total, 2¢ — 1, es entonces una 2-aproximacion.

Esta 2-aproximacion se corresponde con un método de representacién de enteros llama-
do codificacion v, que es util para cuando debemos representar un niimero cuya magnitud
desconocemos, y queremos usar un espacio cercano al necesario. La codificacién v contiene
béasicamente las respuestas a las preguntas que realizamos: si es 0 y no es 1, y la primera
pregunta del método 6ptimo la representamos con un 1. Por ejemplo, si el método 6ptimo
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busca x = 5 = 1015, primero determina que usa 3 bits (y ponemos un 1), es decir que estd en
[4..7]. La primera pregunta que hard sera jes x < 67 La respuesta es si = 0. Luego preguntara
ies x < 57 La respuesta es no = 1, y con ello determina x = 5. La secuencia de respuestas
es 101, la representacion binaria de 5.

Ahora bien, el algoritmo en linea debe comenzar preguntando jes x < 2?7 no = 1, jes
r < 2?7 no =1, jesx < 2% si = 0. Ahora sabe que = € [4..7] y realiza las mismas dos
preguntas de la busqueda binaria. La codificacién es entonces v(5) = 11001.

Resumiendo, como ¢ = 1+ |log, |, la codificacién v(z) usa 2|log, x| + 1 bits. Primero
escribe |log, x| 1s seguidos de un 0, y luego los |log, x| bits mas bajos de la representacién
de z (es decir, omite el bit més alto, ya que siempre es un 1).

Busqueda exponencial. Supongamos que queremos buscar un numero x en un arreglo
ordenado A[l..n], pero sospechamos que x estd cerca del comienzo. En vez de una biisqueda
binaria de costo O(logn), quisiéramos encontrar = a costo O(logm), donde A[m| = z. Claro
que no conocemos m de antemano.

Lo que hacemos entonces es comparar  con A[2¥] para k = 0,1,2,... hasta encontrar el
primer k tal que A[2*] > x. Luego de estas k preguntas, sabemos que 2*71 < m < 2% con
lo cual completamos la biisqueda binaria con otras k — 1 comparaciones. El costo total de la
busqueda es entonces 2k — 1 = O(logm), como desedbamos.

Suponga que tenemos que buscar r valores 7 < z5 < ... < x, en A. Si buscaramos cada
uno con busqueda binaria, el costo total seria O(rlogn). En cambio, si usamos busqueda
exponencial a partir del punto donde encontramos el elemento anterior, el costo total sera
O(>_log(m; —m;—1 + 1)), donde m; es el lugar donde se encuentra x;, y mo = 0. Se puede
probar que esta suma se maximiza cuando los m; estan equiespaciados, en cuyo caso la suma
es O(rlog®). El costo por elemento va tendiendo a constante cuando se buscan muchos
elementos.

Por ejemplo, para intersectar dos listas crecientes x1,...,x, € y1,...,Yn, suponiendo que
r < n, tenemos dos opciones: o un merge que recorre secuencialmente las dos listas, a costo
O(r +n) = O(n), o buscar cada elemento z; en la lista de las y, a costo O(rlogn). Con
busqueda exponencial, podemos aplicar siempre el segundo método, de costo O(rlogZ2),
obteniendo siempre la mejor de las dos complejidades (y frecuentemente mejor que ambas).

Codificacion 9. Cuando queremos representar nimeros x algo mayores, buscar ¢ en forma
secuencial como en los cédigos v puede ser demasiado lento. Podriamos en vez usar buisqueda
exponencial para ¢. En vez de preguntar jes x < 2¥? preguntaremos jes ¢ < 2¥?, o lo que es
lo mismo, jes x < 22-17 La bisqueda exponencial de ¢ requeriréd 2|log, ¢| + 1 preguntas, y
luego haremos las /—1 preguntas finales para determinar x. Por lo tanto, en vez de necesitar el
doble de preguntas que el éptimo necesitamos un factor extra de O(1+%2%) = O(1+ blgol%),
que va mejorando a medida que representamos nimeros mayores.

Esta estrategia se corresponde con otra codificacién llamada §. El cédigo 6(x) esta for-
mado por el codigo v(|log, x| + 1) seguido de los tltimos [log, 2] bits de x. Por lo tanto su
largo es de |log, x| 4+ 2[logy(|logy x| + 1) | + 1 = |log, z] 4+ O(loglog x) bits.
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Si bien no se usa en la préctica, se podria iterar con esta técnica para disenar codigos
que usen |log, x| + |logy(|log, ] + 1) ] + O(logloglog ) bits, etc.

5.1.2. Bisqueda en la linea

Supongamos que un robot debe encontrar un objeto a lo largo de una linea, pero no sabe
en cudl de las dos direcciones esta. Si el objeto estda a distancia d, entonces el algoritmo
optimo, que conoce la direccién, lo encuentra en tiempo d. El algoritmo en linea, en cambio,
debe usar una estrategia de ir exporando zonas cada vez mayores en una direccién y luego
en otra, hasta dar con el objeto.

Nuevamente, consideraremos una estrategia exponencial, en que el robot camina en una
direccién ¢, en la otra c!, luego otra vez en la primera c?, etc. Supongamos primero que
el objeto esta en la direccién en que se movié por primera vez. Las posiciones a las que va

llegando el robot luego de los pasos pares son ?,c® — ¢! 4 2, ..., lo que en el paso 2k es
k —1 2k+1
. . c +1
P(2k) = A=y A =
BUP I T

El costo total de los pasos 0 a k es C(k), con

k k+1 1

cw = Yo o= !

1=0

Ahora bien, lo peor que puede pasar es que el objeto esté en una posicién de la forma
P(2k) + 1, pues en ese caso el robot realizara hasta el paso 2k, luego realizara el paso 2k + 1
hacia atrés, de largo ¢?**1, luego volverd esa distancia de ¢2*!, y recién en la siguiente celda
encontrara el objeto. El costo total sera entonces

(2c — 1)+ 4 ¢ —2
c—1 ’

CRk+1)+cH 11 =

mientras que el costo del algoritmo 6ptimo serd P(2k) + 1. El cociente, convirtiendo pesi-
mistamente el costo del éptimo a Czj: y descartando <=2 del costo del algoritmo en linea

c—1
(pues estéa acotado por la constante b = 1), se reduce a

(2¢c —1)(c+1)
c—1

?

el cual se minimiza para ¢ = 2 (es decir, la mejor estrategia es buscar en potencias de 2) y
nos arroja una competitividad de 9. Nuevamente, es claro que solo la estrategia exponencial
permite una competitividad constante. El costo de no saber en qué direccién buscar es un
factor de 9, sorprendentemente alto. Si el objeto se encuentra hacia el otro lado, tendremos

62k+2 -1
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y el objeto estard en el peor caso en una posicién de la forma P(2k + 1) — 1, la que encon-
traremos a costo
(2c — 1) T2 4 ¢ — 2
c—1 ’

mientras que el costo del éptimo serd —P(2k + 1) + 1. Simplificando, llegamos al mismo
resultado que antes.

Existen versiones méas complejas de este problema en dos dimensiones, con aplicaciones
mas reales a robética.

C(2k +2) + 12 +1

5.2. Paginamiento

Un caso emblematico de problema en linea ocurre cuando los sistemas operativos imple-
mentan una memoria virtual mayor a la fisica. La memoria virtual se almacena en disco y
solo algunas de sus paginas residen en la memoria fisica, pues ésta es menor y estd usual-
mente llena. Cuando un proceso pide acceder a una pagina que no esta en la memoria fisica
(esto se llama fallo de pdgina), se debe elegir una pagina victima de la memoria fisica para
devolverla al disco y asi hacer lugar para traer la pagina deseada a la memoria fisica.

Un algoritmo que conociera los pedidos futuros de paginas elegiria como victima aquella
pagina que falte mas tiempo para que vuelva a ser solicitada. En la realidad, debemos usar
un algoritmo en linea y deseamos establecer su competitividad.

Analizaremos un algoritmo llamado Least Recently Used (LRU). Este algoritmo elige
como victima la pagina que hace mas tiempo que no se accede. Para analizar el LRU,
consideraremos una memoria fisica de k paginas.

Mostraremos que LRU es k-competitivo. Para ello, consideremos una secuencia de n
pedidos de paginas, y cortémosla en segmentos de k fallos de pagina del algoritmo LRU.
Vamos a mostrar que el algoritmo 6ptimo debe fallar al menos una vez en cada segmento,
con lo cual la k-competitividad quedara establecida.

Todo segmento termina en un fallo de pagina. Sea A la tltima pagina pedida en el
segmento anterior, la cual ha producido un fallo de pagina (el k-ésimo de ese segmento).
Existen tres posibilidades para el segmento actual:

En algiin momento vuelve a fallar en A. Como A era la pagina mas reciente cuando
empezé el segmento, si dentro del segmento se vuelve a fallar en A es porque se la
habia elegido como victima antes en el segmento. En ese momento, entonces, A era la
pagina usada menos recientemente de las k que habia en memoria fisica. Por lo tanto,
se debieron mencionar otras k paginas, distintas a A y distintas entre si, para que al
mencionar la k-ésima A hubiera sido la mas antigua y se la eligiera como victima. Al
fallar ahora en A, tenemos que el segmento menciona k + 1 paginas distintas. En este
caso, el algoritmo optimo estd obligado a fallar al menos una vez.

Se falla 2 veces en una pagina B # A. En el periodo que transcurre entre los dos fa-
llos de B se puede razonar exactamente como con A en el punto anterior: se deben
mencionar k£ + 1 paginas distintas en ese periodo.
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Ninguna de las anteriores. Como se falla k veces sin repetir ninguna B ni fallar en A,
deben mencionarse k paginas distintas que no son A. Como A estaba en la memoria
fisica al comenzar, el 6ptimo también debe fallar al menos una vez.

Optimalidad. Ningtn algoritmo en linea puede ser mejor que k-competitivo. Dado cual-
quier algoritmo en linea, un adversario puede siempre pedir a continuaciéon la pagina que el
algoritmo acaba de sacar de la memoria fisica, haciéndolo asi fallar n veces. El algoritmo
6ptimo, en cambio, decide qué hacer una vez que ha visto la secuencia de pedidos (por lo
tanto no puede haber un adversario que lo obligue a fallar siempre). Como el 6ptimo elige la
pagina que falta mas tiempo para que vuelva va pedirse, cada vez que falla tiene garantizado
que no volvera a fallar en los siguientes k — 1 pedidos. Por lo tanto el 6ptimo nunca falla
mds de 7 veces, incluso en la secuencia que hace fallar n veces al algoritmo en linea. En ese
sentido, LRU es lo mejor que puede esperarse en términos de peor caso.

Otro esquema k-competitivo. El esquema First In, First Out (FIFO) selecciona como
victima la pdgina que hace méas tiempo que entré a la memoria fisica (sin considerar cuando
fue accedida después de entrar). Un anélisis casi idéntico (y algo mdas simple) del que hicimos
para LRU muestra que FIFO también es k-competitivo.

Esquemas no competitivos. Los esquemas Most Recently Used (MRU)y Last In, First
Out (LIFO) no son competitivos. Considere que tenemos en la memoria k — 2 paginas que no
mencionaremos, y las paginas A y B. Si el proceso pide A y luego B, entonces este esquema
sacara A de la memoria, por ser la méas reciente. Luego el proceso pide A y este esquema saca
B de la memoria por ser el mas reciente. El proceso entonces pide B, y asi. En n pedidos
podemos tener n fallos, cuando el éptimo habria mantenido A y B en la memoria, fallando
O(1) veces.

5.3. Move to Front

En el capitulo de amortizacién, mostramos que los splay trees obtienen un costo amorti-
zado de 3H 41 por operacion, donde H era la entropia de las frecuencias de bisqueda. Como
un arbol construido por un algoritmo que conozca esas frecuencias requiere H + 2 operacio-
nes, los splay trees son 3-competitivos. Estudiaremos ahora una versién analoga que puede
utilizarse cuando no existe un orden total entre los elementos, pues sélo requiere compararlos
por igualdad.

Supongamos que tenemos un arreglo A[l..n] de elementos (sin un orden) en el que bus-
camos repetidamente mediante acceder A[1], A[2], ... hasta dar con el A[k] = z buscado.
Como podemos poner los elementos en cualquier orden y el costo de acceder a x = A[k| es
k, queremos ordenar el arreglo en orden decreciente de frecuencia de acceso, para minimizar
el costo de todas las busquedas. El problema es que los accesos aun no han ocurrido, por lo
cual tenemos un problema en linea.
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Lo que haremos es partir con un orden arbitrario y usar la estrategia move to front (MTF),
es decir, el elemento que se accede se reubica en el comienzo de A. Mas precisamente, si
All.n] = x1, 29, ..., x, antes de buscar x = xy, entonces luego de encontrarlo reescribiremos
All.n] = xg, 1, %2, . . ., Th—1, Tht1, - - - , T S1 medimos el costo en términos de lecturas en A,
entonces esta reubicacion cuesta k — 1 lecturas adicionales, para mover A[l..k — 1] a A[2..k].
Ignoraremos, sin embargo, este costo, pues puede evitarse implementando A como una lista
enlazada o moviendo los elementos a medida que buscamos x (note que, en todo caso, el costo
sélo se duplicaria, de modo que obtendriamos competitividad con el doble de la constante).

Si bien suena razonable como estrategia (andloga a los splay trees, que envian a la raiz
al nodo accedido), nos preguntamos si MTF es competitivo contra un algoritmo que cono-
ciera de entrada las frecuencias y dejara el arreglo ordenado en forma 6ptima, es decir, por
frecuencias decrecientes, en un arreglo fijo Appr[l..n].

Para analizar el MTF, usaremos anélisis amortizado con funcion potencial. En cualquier
momento de la ejecuciéon de las busquedas, llamaremos inversion a cada par de elementos
de A que no estd en el mismo orden en Appr. Es decir, cada par Ali] =z y A[j] = y, con
i < 7, que estdan en Appr[i'] =y y Aopr[j’] = x con i’ < j', es una inversién (supondremos
que todos los elementos son distintos). Note que las inversiones cuentan todos los pares
desordenados, no sélo los consecutivos. Definiremos entonces la funcién potencial

® = ndmero total de inversiones.

Si el elemento buscado x estd en Apprli] y en A[k], entonces el algoritmo éptimo tiene
costo ¢ y el MTF tiene costo k. A esto debemos sumar el cambio del potencial & cuando
MTF mueve x al comienzo de A. Lo primero a notar es que ® sélo cambia con respecto a
los pares que involucran a x y a algun elemento y en A[l..k — 1]. Luego de mover x a A[l],
éste aparecera antes de y. ;Esto aumenta o disminuye ®7 Depende:

= Si y estd antes que x en Appr, entonces hemos creado una inversion que no existia
antes, lo cual incrementa ¢ en 1.

= Si y esta después de x en Appr, entonces hemos destruido una inversion que existia
antes, lo cual decrementa ® en 1.

Esto significa que al mover x podemos crear a lo sumo ¢ — 1 inversiones nuevas, para
aquellos y en Appr[l..i — 1]. Digamos que creamos 0 < r < i — 1 inversiones. Entonces los
otros k — 1 —r > k — i elementos y que cambian su relacion con x destruyen inversiones.
Sumando las inversiones que se crean y restando las que se destruyen, tenemos para la j-ésima
operacion

A, = r—((k-1)—r) = 2r—(k—-1) < 2i-2—(k—1) = 2i—k—1.

Por otro lado, el costo real ¢; de la busqueda es, como dijimos, k, lo que nos da un costo
amortizado de
¢;+A;, = k+(2i—k—-1) < 2i

es decir, 2 veces el costo del 6ptimo.

95



Para concluir, hemos analizado el paso de una operacion a la siguiente, pero el valor de
®( puede llegar a ser nn=b - Si consideramos el largo n del arreglo como constante (y un
ntimero variable m de bisquedas), entonces podemos decir que MTF es 2-competitivo, pues

en cualquier secuencia tenemos que los costos totales satisfacen

n(n —1)
m-cyrr < m-2copr + — 5

es decir,
n(n —1)
curr < 2copr + —(—.
2m
Si no consideramos n constante, entonces debemos establecer que deben realizarse m = Q(n?)
operaciones para que MTF sea 2-competitivo. Es decir, las suficientes para que se extinga el

efecto de un orden inicial poco conveniente en A.

()ptimo dinamico. ;Qué ocurre si le permitimos al éptimo que también mueva elemen-
tos en el arreglo, dado que puede ser que el orden 6ptimo en un momento del tiempo sea
muy distinto del de otro momento? No podemos permitirle que mueva cualquier elemento a
cualquier posicién a costo O(1), pues entonces en cada paso pondria en Appr[l] el elemento
que se buscara a continuacién. Es mas interesante que le permitamos intercambiar elementos
adjacentes, de modo que mover un elemento de la posicién i a la j le cueste |i — j|.

En este modelo, el movimiento que hace MTF de A[k] a A[1] también puede ejecutarse
con este tipo de intercambios, a costo k — 1. Si rehacemos el analisis de MTF considerando
que su costo para buscar x = A[k] no es k sino 2k — 1, y usando como funcién potencial

® = 2. (numero de inversiones),

obtendremos ¢; + A®; < 47, es decir, una 4-aproximacion.

Supongamos entonces que el éptimo, luego de encontrar x en Appr|i], decide intercambiar
w pares consecutivos de Appr en forma arbitraria. El costo pagado por el algoritmo 6ptimo
serd entonces 7+ w. El efecto en nuestro analisis es que esos intercambios pueden hacer crecer
®. En particular, cada intercambio en Appr puede crear una nueva inversion, de modo que
los w intercambios pueden hacer crecer ® en 2w. En total, nuestro costo amortizado de 47
puede crecer entonces a 47+ 2w. Nuestro algoritmo sigue siendo entonces 4-competitivo, pues

47 4 2w
T+ w

4.

Menos que MTF. | Esnecesario trabajar tanto como lo hace MTF luego de cada buisqueda
para lograr competitividad? Consideremos una versién que, al encontrar un elemento x =
A[k], solamente lo intercambia con A[k—1] (si k > 1), moviéndolo asi de a una posicién hacia

el comienzo del arreglo. Es facil ver que esta versién no es competitiva, pues si A[n] = z
y Aln — 1] = y son el dltimo y el peniltimo elementos del arreglo al comenzar, entonces
haremos que el algoritmo pague n por cada operacién mediante buscar z, y, =, y, ... El

Optimo, en cambio, pagarda 1 6 2 mediante poner a x y a y al comienzo de Appr.
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Note que, en el caso de MTF, también podemos disenar una secuencia de busquedas
donde MTF pague siempre n, haciéndolo que busque el elemento que en cada momento esta
al final del arreglo. La diferencia es que, por lo que hemos demostrado, esa secuencia tampoco
es buena para el algoritmo 6ptimo: lo obliga a pagar al menos % lecturas en cada busqueda.
La esencia de demostrar competitividad no es mostrar que no hay secuencias malas para el
algoritmo en linea, sino mostrar que esas secuencias también son malas para un algoritmo
o6ptimo que conociera el futuro.

Compresion usando MTF. FElI MTF se usa también como método de compresién. La
idea es que se parte con los n simbolos distintos en un orden arbitrario pero conocido en
A[l..n]. Luego, para codificar el simbolo x, se lo busca en A, y si se lo encuentra en A[k] = x,
se emite el nimero k, moviendo luego x al frente del arreglo. El descompresor, al recibir k,
decodifica © = Alk] y también lo mueve al frente del arreglo.

Tal como el costo k de las buisquedas se reduce al mover los elementos al frente de A, los
numeros k emitidos por este compresor tienden a ser pequenos. Por ejemplo, si los codificamos
con los c6digos-0 que vimos antes en este capitulo, requeriremos log, k + O(loglog k) bits.
.Esta compresién basada en MTF nos ofrece alguna garantia de optimalidad?

Consideremos primero un compresor estatico, es decir, que le asigna el mismo cédigo a
x cada vez que lo emite. En el capitulo de cotas inferiores vimos que el largo total en bits
de los cédigos con un codificador éptimo que conozca la frecuencia f(z) con que se emite el
elemento = no puede ser inferior a la entropia:

mH = Z f(z log2 )

Consideremos lo que ocurre con MTF. El elemento z se emite f(z) veces, digamos que en
los instantes 1 < &) <1y < ... <{tf) < m. Note que, entre el momento ¢;_; y ¢;, se emitieron
precisamente t; — t;_1 — 1 simbolos distintos de z. Si todos ellos fueran distintos entre si,
como el MTF los envié al comienzo de A, el elemento x estaria en la posicion t; — t;,_; de
A, y si no, estaria antes. Esto significa que codificar x en el instante ¢; nos cuesta a lo sumo
log,(t; — ti—1) + O(loglog(t; — t;—1)) bits. El costo de codificar todas las ocurrencias de x es
entonces a lo sumo

/()
log, n + O(loglogn) + Z logy(t; — ti—1) + O(loglog(t; — t;—1))
i=2
bits, donde estamos suponiendo lo peor al codificar ¢; porque no sabemos dénde estaba x en
A. La suma se maximiza cuando todos los t; estan equiespaciados, t; = z llegando a

m m
log, n + O(loglogn) + (f(x) — 1 (log —+O<loglog >>
bits. Sumando sobre todos los n elementos x obtenemos
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lo cual se puede mostrar que es a lo mas
mH +mO(log H) + O(nlogn).

Es decir, el MTF se acerca a los H bits de entropia H por simbolo emitido, con un costo extra
de O(log H) bits por simbolo, y un costo extra total de O(nlogn) bits. Este dltimo costo
tiene que ver con el reordenamiento original de A, e indica que deben emitirse Q(n logn)
simbolos para que este costo extra sea O(1) por simbolo. En este caso, podemos decir que el
compresor MTF es (1 + O(*2))-competitivo contra un compresor estdtico éptimo.

. Qué ocurre si el compresor 6ptimo puede ser dindmico, cambiando los codigos a medida
que va emitiendo los simbolos? Supongamos que permitimos que, cuando lo desee, el algorit-
mo 6ptimo gaste nlog, n bits en establecer un nuevo orden de los elementos. Esto divide el
tiempo en t periodos de largos myq, ..., m;. Podemos aplicar el andlisis de la compresiéon MTF
dentro de cada periodo, obteniendo la suma de las entropias locales, m; H; + m; O(log H;),
mas los extras O(tnlogn). El 6ptimo dindmico, en cambio, costard m; H; + (t — 1)nlogn.
La competitividad de MTF se mantiene igual.

5.4. Los k Servidores

Un problema en linea importante es el de tener k servidores que deben movilizarse para
atender pedidos que ocurren en un determinado lugar, por ejemplo policia, ambulancias,
bomberos, taxis, repartidores de pizza, etc. El objetivo es minimizar desplazamiento total
de los servidores para cubrir los pedidos que van apareciendo a lo largo del tiempo, pero no
se conocen de antemano los pedidos futuros. Queremos una técnica que sea competitiva con
un algoritmo 6ptimo que conozca todos los pedidos de antemano.

Consideremos una version simplificada en la que los k servidores estan en una linea.
Un algoritmo obvio parece ser desplazar el servidor mas cercano al pedido, para minimizar
el recorrido total. Sin embargo, consideremos el caso de dos servidores, uno lejano y otro
cercano a dos puntos x e y donde ocurren pedidos alternadamente. Con esta estrategia,
elegiremos el servidor cercano para cubrir todos los pedidos, de modo que cada pedido nos
costard un desplazamiento de |x —y|, mientras que el lejano no se usard. El algoritmo éptimo,
en cambio, mueve un servidor a x y el otro a y y luego no necesita desplazarse mas.

Una estrategia que demostraremos competitiva es la siguiente: sean s; < 5o < ... < 53
las posiciones de los servidores en la linea. Entonces

= Si el pedido ocurre en una posicion x < si, desplazamos el servidor 1 a z, a costo
S1— X.

= Si el pedido ocurre en una posicién x > s, desplazamos el servidor k a z, a costo
Xr — Sg.

» Si el pedido ocurre en una posicién s; < = < s;41, desplazamos ambos servidores, ¢ e
1+ 1, en direcciones opuestas hacia x, hasta que el mas cercano lo alcance. Es decir,
ambos se mueven min(x — s;, ;41 — x). Note que en el caso particular en que z = s;,
nadie se movera e 1 atendera el pedido sin costo.
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Demostraremos la k-competitividad de este esquema. Para ello, llamaremos 01 < 0y <
. < o a las posiciones de los servidores del algoritmo 6ptimo, y definiremos la funcién
potencial

o = Z Sit — S5 +k Z‘Si_Oi’

1<i<i'<k 1<i<k

Observe que los servidores del algoritmo en linea siempre mantienen el orden s; < s;,1,
y los del 6ptimo tampoco necesitan cambiar de identidad para mantener el orden o; < 0;11:
una estrategia donde ¢ se mueve a la derecha hasta rebasar a i 4+ 1 se puede cambiar por otra
donde i alcanza a i+ 1 y luego 7 + 1 continua a la derecha haciendo lo que habria hecho 7. A
cambio, debemos permitir que el 6ptimo realice varios movimientos de servidores cuando llega
un pedido x. Consideraremos primero, segiin dénde cae z, el costo de los movimientos del
algoritmo en linea y el movimiento del 6ptimo que atiende el pedido. Al final consideraremos
otros movimientos del algoritmo 6ptimo.

Caso z < s;. Movemos s; hacia z, a costo ¢; = a = s; — 2. (En cuanto cambia la funcién
potencial? La primera sumatoria aumenta en (k — 1) - a. La segunda depende de qué
servidor del éptimo atienda el pedido.

Si el 6ptimo mueve su servidor 1. En este caso, el costo del 6ptimo serd b = |o; —
z|. La distancia entre s; y oy, que originalmente era |s; — 01| > |a — b|, ahora
se hard 0, por lo cual ® decrecerd al menos en k - |a — b|. En total, usando que
la — b| > a — b, tendremos un costo amortizado de

¢;+A®; < a+(k—1)-a—k-la—b = k-(a—]a—b]) < k-0,

lo cual es a lo sumo k veces el costo b del 6ptimo.

Si el 6ptimo mueve su servidor ¢ > 1. En este caso, el costo del éptimo serda b =
lo; — x|. La distancia entre s; y 0; se reduce en a, pues debe ser 0; < x para que
el servidor ¢+ pueda moverse hasta = sin cruzarse con el servidor 1. En cambio, la
distancia entre los dos servidores ¢ puede crecer hasta en b. En total, tendremos
un costo amortizado de

i+ AP, < a+(k—1)-a+k-(b—a) = k-b,
lo cual es a lo sumo k veces el costo b del 6ptimo.

Caso s; < x < s;41. El algoritmo en linea movera ambos servidores, i e ¢ 4+ 1, hacia z, una
distancia de @ = min(xz — s;, 5,41 — x). El costo serd entonces ¢; = 2 - a. No es dificil
ver que, en la primera sumatoria de @, los efectos de mover 7 e i + 1 contra otros i’ se
cancelan, y solo queda la diferencia s;;1 — s;, que decrece en 2 - a. Con respecto a la
segunda sumatoria y los movimientos del 6ptimo, tenemos dos subcasos.
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Si 0,11 < x 0o x < o0;. En el primer caso, el acercamiento de s;,; a x reduce la distancia
|si+1—0i+1] en a, mientras que en el segundo caso, el acercamiento de s; a x reduce
la distancia |s; — 0;| en a. En ambos casos, el movimiento del otro servidor del
algoritmo en linea puede incrementar la distancia con el correspondiente servidor
del 6ptimo en a lo sumo a. Estos efectos entonces se cancelan en la segunda
sumatoria de ®, dandonos un costo amortizado de

¢;+A®P;, < 2-a+(-2-a)+k-(a—a) = 0.

Por ello, el movimiento que realice el 6ptimo para cubrir el pedido (que ain no
habiamos incluido) lo podemos considerar en forma independiente, de acuerdo al
ultimo caso considerado en esta lista.

Si 0; < x < 0;,1. Para que no se crucen los servidores del 6ptimo, éste debe usar el
servidor 7 o el 7 + 1 para mover hacia x. Supongamos que mueve el i a costo
b = x — 0;; el otro caso es simétrico. Independientemente de qué servidor del
algoritmo llegue a x, ambos servidores ¢ se mueven en la misma direccién, el
éptimo en b unidades y el algoritmo en a. Por ello, la distancia |s; — o;| decrece en
la — b|. Por otro lado, el servidor i + 1 del algoritmo en linea se mueve a unidades
en la otra direccion, posiblemente alejandose del servidor ¢ + 1 del 6ptimo. En
total, usando que |a — b| > a — b, tenemos

¢;+A®; < 2.a+(-2-a)+k-(a—|a—0]) < k-b,
que es k-competitivo contra el costo b del éptimo.

Caso z > s;. Analogo al caso x < s;.

Otros movimientos del 6ptimo. Ademas del tultimo movimiento que consideramos, que
finalmente cubre el pedido, el 6ptimo puede mover todos los servidores que desee, como
explicamos. Cualquier movimiento de un servidor éptimo i a una distancia b puede
incrementar ® en k - b debido a la segunda sumatoria, pero eso aun es k-competitivo
con el costo b que pago el algoritmo éptimo para mover el servidor.

Existen algoritmos k-competitivos para otras variantes mas generales del problema, y se
cree que esto es posible para k servidores en un espacio métrico cualquiera, pero hasta ahora
sélo se conocen algoritmos (2k — 1)-competitivos para este caso mas general.

5.5. Ficha Resumen

= Cdédigos v y 6, busqueda exponencial e interseccion de listas.
= Bisqueda de un robot en la linea: 9-competitivo.

= Paginamiento: k-competitivo.
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= Move-to-front: 2-competitivo contra un éptimo estatico y 4-competitivo contra uno
dindmico.

log H

= Compresién usando move-to-front: (1 -+ O(=%;

))-competitivo, donde H es la entropia.

= Servidores en la linea: k-competitivo con k servidores.

5.6. Material Suplementario

El tema de algoritmos en linea no se trata en muchos libros de texto, pero el de Borodin
y El-Yaniv [BEY98] esta dedicado enteramente al tema. Considera competitividad de peor
caso pero también aleatorizada. Entre muchos temas que cubre, incluye algunos vistos en
este capitulo: paginamiento (cap. 3), move-to-front (cap. 1), y k servidores en la linea y otros
modelos més complejos (cap. 10).

Lee et al. [LTCTO5, cap. 10] también dedican un capitulo a tratar algoritmos en linea
en profundidad. Ademas de las definiciones, dedican la seccién 12.2 al problema de los k
servidores, pero extendido a moverse a lo largo de las aristas de un arbol dibujado en el
plano. El resto del capitulo se dedica a varios otros problemas que no describimos. En una
seccién anterior [LTCTO05, sec. 10.3] describen brevemente el andlisis amortizado de MTF
contra un éptimo estatico.

Otras fuentes online de interés:
» www.cs.huji.ac.il/course/2005/algo2/on-1line/on-line-course.html
» www.cs.cmu.edu/ avrim/451f13/lectures/lect1107.pdf
= web.stanford.edu/class/cs369/files/cs369-notes
» wwwl4d.in.tum.de/personen/albers/papers/inter.pdf
» www-math.mit.edu/~goemans/notes-online.ps

= www.youtube.com/watch?v=2RxCCEH1Eys
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Capitulo 6

Algoritmos Probabilisticos y
Aleatorizados

En este capitulo consideraremos algoritmos que rompen al menos una de las dos siguientes
suposiciones basicas de los algoritmos clasicos:

= Kl algoritmo nunca se equivoca.
= Kl algoritmo siempre hace lo mismo frente a la misma entrada.

No cumplir con la primera suposicién suena extrano a primera vista. En el mundo clésico,
un algoritmo que ordena pero que a veces se equivoca, jsimplemente no es un algoritmo que
ordena! Un algoritmo probabilistico, en cambio, si tiene permitido equivocarse. Generalmente,
el algoritmo se equivoca con una cierta probabilidad de error, la que puede hacerse arbitra-
riamente pequena con un incremento moderado en el costo del algoritmo. En muchos casos,
es muy barato hacer que la probabilidad sea méas pequena que la de un fallo del hardware,
por ejemplo, de modo que en términos practicos un buen algoritmo probabilistico puede ser
completamente satisfactorio. Por otro lado, muchos problemas que son sumamente costosos
de resolver sin error pueden ser resueltos muy eficientemente si se permite una pequenisima
probabilidad de equivocarse.

Los algoritmos que hacen siempre lo mismo se llaman deterministicos, y los que no, se
llaman aleatorizados. Estos ultimos incorporan una componente de azar en su ejecucion, de
modo que pueden no hacer lo mismo frente a la misma entrada. Note que estos algoritmos
pueden tener un costo distinto cada vez que ejecutan frente al mismo input, por lo cual
mas que un costo fijo para cada input, su costo es una distribucion de probabilidad. Esta
distribucion puede no tener que ver con la distribucion de la entrada, sino con la de las
decisiones aleatorias que toma internamente el algoritmo. Aparece entonces la nocién de
costo esperado del algoritmo, que no es igual al costo promedio. El costo esperado promedia
sobre las distintas ejecuciones posibles del algoritmo frente a un input, y considera el peor
input posible (aunque el promedio suele ser independiente del input). El costo promedio, en
cambio, se refiere a los distintos inputs posibles, para cada uno de los cuales un algoritmo
deterministico tiene un costo fijo.

103



El interés de los algoritmos aleatorizados reside en que pueden ofrecer un costo esperado
independiente de cualquier suposicién sobre como se distribuyen los inputs, lo que constituye
una medida mucho mas robusta que el costo promedio, que siempre depende de la distri-
bucién del input. En particular, a un algoritmo deterministico de buen costo promedio se
lo puede hacer comportar sistematicamente mal dandole “malos inputs”, mientras que para
un algoritmo aleatorizado de buen costo esperado no existen “malos inputs”, sino “malas
ejecuciones”: si se produce una ejecuciéon muy costosa, lo mas probable es que volviendo a
correr incluso sobre el mismo input no vuelva a ocurrir lo mismo. Esto ademaés hace a la
aleatorizacién una buena herramienta contra adversarios maliciosos, que eligen el input que
haga fallar un algoritmo (por ejemplo, en criptografia o en ataques tipo denial-of-service).

Es comin que los algoritmos probabilisticos sean también aleatorizados, en cuyo caso
la probabilidad de error no depende de la distribucién de la entrada, sino que vale para
cualquier input. De hecho, en la literatura se suele englobar a ambos, generalmente bajo el
término de randomized algorithms.

Los computadores no producen niimeros aleatorios, sino secuencias pseudoaleatorias. Es-
tas secuencias son realmente deterministicas, pero estan disenadas para superar varios tests
estadisticos de aleatoriedad. Es conveniente ademas partir de un punto de esta secuencia
(llamado la semilla) determinado por algo impredecible, como los digitos més bajos del reloj
del computador, para evitar que el programa reciba siempre la misma secuencia. Todos los
lenguajes ofrecen acceso a estos generadores aleatorios, y también se pueden programar con
bastante facilidad.

Comenzaremos con un conjunto de definiciones relacionadas con los algoritmos proba-
bilisticos y aleatorizados, y varios ejemplos muy simples. Luego veremos ejemplos mas im-
portantes de algoritmos y estructuras de datos que usan la aleatoriedad y permiten el error.

6.1. Definiciones y Ejemplos Simples

6.1.1. Algoritmos tipo Monte Carlo y Las Vegas

Un algoritmo probabilistico es de tipo Monte Carlo si puede entregar una respuesta equi-
vocada. Algunos algoritmos Monte Carlo pueden verificar si su respuesta es correcta o no a
un costo razonable. Cuando pueden hacerlo y son algoritmos aleatorizados, es posible reeje-
cutarlos varias veces, para reducir la probabilidad de que entreguen una respuesta incorrecta.
Incluso es posible reejecutarlos indefinidamente, hasta que entreguen una respuesta correcta.
Este 1ltimo tipo de algoritmo se llama Las Vegas, el cual nunca se equivoca pero no tiene
un tiempo de peor caso garantizado, s6lo un tiempo esperado acotado. Sin embargo, incluso
con un algoritmo de tipo Monte Carlo que no pueda verificar su respuesta, es posible redu-
cir su probabilidad de error arbitrariamente mediante repetirlo una cantidad fija de veces y
devolver la “mejor” respuesta de las obtenidas. Veamos algunos ejemplos simples.

Un pez grande. Considere el problema de pescar un pez grande en el océano, donde
definimos “grande” como “mayor o igual que la mediana”. Un algoritmo deterministico debe
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pescar al menos [”THW peces para garantizar que el maximo de ellos es grande, donde n es
el nimero de peces en el océano. Consideremos ahora el expediente simple de sacar un pez
y declararlo grande. Este es un algoritmo de Monte Carlo que se equivoca con probabilidad
%, y ni siquiera podemos saber (a un costo razonable) si nos equivocamos o no. Si bien no
parece un gran logro, considere iterar este algoritmo: pescamos k peces y nos vamos quedando
con el mayor, que finalmente declaramos grande. Este es un algoritmo de costo O(k), y la
probabilidad de equivocarnos es la de que las k veces hayamos sacado un pescado pequeno,
es decir 2% Por ejemplo, sacando k = 22 pescados, la probabilidad de equivocarse es cercana
a la de ganarse el Loto. Compare esto con el costo ©(n) de cualquier algoritmo clésico.

Suponga, en cambio, que sabemos que la mediana de los pesos de los peces del océano
son 20 kilogramos. Entonces nuestro algoritmo puede verificar si se equivoca o no, y pode-
mos repetirlo hasta que no se equivoque. El nimero esperado de veces que debemos pescar
hasta sacar un pez grande (y sin error) es 2. Sin embargo, en el peor caso, no tenemos ga-
rantia de terminar nunca (especialmente si devolvemos los peces pequenos al océano luego
de pescarlos). Este es un algoritmo tipo Las Vegas.

No es dificil imaginar problemas de corte mas computacional que tienen esta estructura,
por ejemplo elegir un buen alumno de una lista sin tener que recorrer media lista.

Acceso a Ethernet. El protocolo de acceso a la red Ethernet funciona de esta forma.
Fisicamente, todos los computadores conectados pueden leer lo que todos escriben, de modo
que para enviar un mensaje a otro computador se debe indicar el destinatario en el enca-
bezamiento del mensaje. Todos leeran el encabezado y el aludido leerd el resto del mensaje.
Si dos computadores deciden escribir al mismo tiempo, sin embargo, la senal se corrompera
y todos lo notaran. El protocolo de escritura es, entonces, como sigue: se espera a que no
haya un mensaje escrito en la red y entonces se escribe el mensaje que se desea. Luego se
lee la red. Si se puede leer lo que se escribid, entonces terminamos. Si en cambio se lee un
mensaje corrupto, es porque mas de un computador decidié escribir al mismo tiempo. Se
espera entonces que el mensaje corrupto desaparezca mas un intervalo aleatorio de tiempo,
y se reintenta. Este es un algoritmo probabilistico y aleatorizado, tipo Las Vegas, mas eficaz
y sencillo que cualquier protocolo que intentara resolver el problema deterministicamente.

Consistencia de bases de datos. Considere verificar la consistencia entre dos copias de
una gran base de datos, conectadas por una red proporcionalmente lenta. No hay algoritmo
que pueda garantizar que las dos copias son iguales sin esencialmente transmitir una de ellas
al lugar de la otra. En la préactica, se usa un esquema de firma digital: se calcula un hash
de una de ellas y se transmite a la otra, que también calcula su hash y los compara. Las
funciones de hash son deterministicas, pero si estan bien disenadas, la probabilidad de que
dos bases de datos elegidas al azar tengan la misma firma de £ bits es de Qik

Para hacerse una idea de lo que significa esta probabilidad de error, usemos una estima-
cién reciente de que se producen unos 75 fallos en chips de memoria por millén de horas de
funcionamiento por megabit. Por lo tanto, una firma de 70 bits entrega menor probabilidad
de error que la de que ocurra un fallo de hardware que afecte uno de esos 70 bits justo en el
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nanosegundo en que se examina.

Existen mecanismos de firmas que ademas no se equivocan frente a ciertos tipos de errores
muy comunes, como un nimero limitado de inversiones de bits, o errores en rafaga, etc. Este
es un esquema deterministico (no aleatorizado) de error tipo Monte Carlo.

En el ultimo ejemplo, si las firmas son distintas, entonces con seguridad las dos copias son
inconsistentes, pero si las firmas son iguales, atin podria ser que las copias fueran distintas
(con una probabilidad muy baja). Este tipo de algoritmos Monte Carlo que responden “si”
0 “no” se clasifican en one-sided error (en que sélo se equivocan en una direccién, como en
este caso) y two-sided error (en que ambas respuestas pueden ser erréneas).

6.1.2. Aleatorizacion para independizarse del input

Veamos dos ejemplos simples de aleatorizar para independizarse de las suposiciones sobre
el input, o incluso defenderse de inputs maliciosos.

Buasqueda secuencial. Supongamos que tenemos una lista de n elementos que no pueden
ordenarse. Buscamos un elemento x secuencialmente en la lista, y si lo hallamos en la posicién
1, nuestro costo fue i. Si en nuestra aplicacion los elementos de la lista son las palabras
distintas que vemos en un texto y vamos insertando las nuevas al final, entonces las mas
comunes estaran al comienzo, pues tienden a aparecer antes. Por ello, seria bueno recorrer la
lista de la posicion 1 a la n. Pero si en nuestra aplicacién los elementos son nombres propios
que aparecen en noticias, entonces es probable que volvamos a ver los mas recientes, por lo que
serfa mejor buscar la lista desde el final. Nos conformariamos con pagar ”T“ en promedio,
pero cualquier estrategia deterministica que elijamos puede funcionar pésimamente en un
determinado entorno, el cual no podemos predecir.

Una forma segura de independizarnos de cualquier suposicién externa es aleatorizar:
tiramos una moneda, y si sale cara, buscamos de 1 a n, si no, buscamos de n a 1. ;Cudl es el
costo esperado de encontrar el elemento x, que esta en la posicion 7 Es i si buscamos de 1 a
n (lo que hacemos con probabilidad %), y es n — i+ 1 si buscamos de n a 1 (lo que hacemos

con probabilidad %) El costo esperado es entonces

1
(n—it1) = ”;“ :

i+

| —

1
2

jindependiente de ¢! Es decir, independiente de la distribucién de las bisquedas.

QuickSort aleatorizado. Otro ejemplo bien conocido es el QuickSort, que tiene costo
promedio O(nlogn) suponiendo que la distribucién de las posibles permutaciones de entrada
es uniforme. Pero aunque elija el pivote al medio, al principio, al final, etc., hay inputs
que lo hacen tomar tiempo ©(n?). Es dificil saber de antemano en qué entorno terminard
ejecutandose nuestro programa. Por ello, es més seguro aleatorizar la eleccion del pivote.
Asi, nuestro QuickSort tomara tiempo esperado O(nlogn) con cualquier input que se le dé.
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6.1.3. Complejidad computacional

Los algoritmos probabilisticos y aleatorizados también irrumpen en las clases de comple-
jidad computacional. Por ejemplo existen problemas para los que no se conoce una solucion
clasica de tiempo polinomial (es decir, no se sabe si estan en P) pero si una que permite un
pequeno margen de error. Uno de esos problemas es determinar si dos polinomios son iguales
(por ejemplo (x + y)(z — y) = % — y?), que parece facil pero puede requerir tiempo expo-
nencial para aplicar todas las distributivas. En cambio, un algoritmo aleatorizado sencillo,
al que le basta poder evaluar los polinomios sin conocer su descripcién, responde en tiempo
polinomial con muy baja probabilidad de error.

Una forma de entender esto es que los problemas en NP se resuelven con una maquina
de Turing no deterministica que adivina en tiempo ¢ la hoja correcta en un arbol de todas
las decisiones posibles, y luego la verifica en tiempo t'. Su tiempo total es entonces ¢t +t', que
es polinomial en el tamano del input. En cambio, la maquina deterministica debe recorrer
todas las hojas, que son un nimero exponencial con respecto a la altura ¢ del arbol. Pero
algunos problemas en NP tienen en realidad muchas hojas correctas, digamos una fraccién
0 < p < 1, por lo cual se pueden resolver eficientemente con un un algoritmo aleatorizado
que elija una hoja al azar: éste tiene una probabilidad p de responder correctamente, por lo
cual en tiempo esperado “;Tt/ encuentra una solucién. Si no puede verificar la solucién pero
si escoger la mejor, entonces puede repetirse k veces, con tiempo total kt, para encontrar la
solucién correcta con probabilidad 1 — (1 — p)*.

Algunas clases de complejidad relevantes para estos algoritmos son las siguientes:

ZPP son los problemas que se pueden resolver en tiempo esperado polinomial sin error (es
decir, con un algoritmo tipo Las Vegas).

RP y co-RP son los problemas que se pueden resolver en tiempo polinomial equivocandose
con probabilidad 0 < p < 1 sd6lo en el caso de responder “si”, pero sin error al responder
“no” (y viceversa para co-RP). Estos son los algoritmos Monte Carlo one-sided.

BPP son los problemas que se pueden resolver en tiempo polinomial equivocandose con
probabilidad 0 < p < % en caso de responder “si” y con probabilidad 0 < p’ < % en
caso de responder “no”. Estos son los algoritmos Monte Carlo two-sided.

Tenemos P C ZPP, P C RP C NPy P C co-RP C co-NP, RPUco-RP C BPP.
Asimismo, se sabe que ZPP = RPNco-RP. Actualmente se cree que P = BPP (con lo cual
todas estas clases colapsarian y los algoritmos probabilisticos y aleatorizados no tendrian im-
pacto en las clases de complejidad), dado que la cantidad de problemas conocidos que pueden
estar en BPP — P ha ido decreciendo. El problema mencionado de los polinomios es uno de
los pocos que quedan. Sin embargo, muchas de las soluciones deterministicas encontradas son
notoriamente mas complicadas, y de mayor complejidad, que las probabilisticas. Veremos un
caso importante a continuacion.
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6.2. Test de Primalidad

Determinar si un nimero n es primo es un problema sumamente importante, no sélo
en teoria de niimeros sino en computacién, por sus aplicaciones a criptografia y hashing,
por ejemplo. Si bien es facil probar todos los posibles divisores hasta y/n, un algoritmo de
tiempo O(y/n) es muy ineficiente para los grandes valores de n que se usan en criptografia
(cientos de digitos). En términos de complejidad, un algoritmo eficiente debe ser polinomial
en funcién del largo ¢ del input, es decir, en los ¢ = O(logn) bits usados para representar n.

Recién en 2002 se descubrié un algoritmo polinomial para determinar si n es primo o
no. Sin embargo el algoritmo es complicado y, luego de varias mejoras, su complejidad es de
O(¢*) multiplicaciones, lo que atin es considerablemente grande para los valores de n que se
usan en criptografia. Note que este algoritmo indica que n es compuesto sin poder dar una
factorizacién. No se conoce un algoritmo polinomial para factorizar un nimero, ni siquiera
de tipo probabilistico, y este desconocimiento es la base de la criptografia de clave publica.

En la practica, para determinar si n es primo es mucho mas conveniente usar el algoritmo
de Miller-Rabin, que realiza O(klogn) multiplicaciones y se equivoca con probabilidad a lo
sSumo 4%, solo en caso de responder que n es primo. Cuando responde que n es compuesto,
el algoritmo no se equivoca. Es decir, es un algoritmo de tipo Monte Carlo one-sided.

El algoritmo hace lo siguiente para determinar si n es primo:

1. Sean sy d tal que n — 1 = 2% - d con d impar.
2. Repetir k veces:

a) Elegir a € [1..n — 1] al azar.
b) Sia?#1 méd ny Vr e [0..s — 1], a* 4% —1 méd n

c) Retornar “compuesto”.

3. Retornar “probablemente primo”.

El algoritmo requiere O(k log n) multiplicaciones médulo n. La primera linea divide n —1
por 2, s veces, hasta que quede un d impar, lo cual puede requerir O(log n) iteraciones (pero
puede hacerse incluso méas rédpido manipulando bits). En la linea 2.b, calcular a? méd n
requiere O(logd) = O(logn) multiplicaciones usando un algoritmo muy simple llamado
exponenciacién modular (se calcula a', a?, a?, a®, etc. mediante ir elevando al cuadrado el
valor anterior, y luego se multiplican las potencias necesarias para formar a?). Similarmente,
para calcular todos los s = O(logn) valores a®>¢ en la linea 2.b, vamos elevando a? al
cuadrado cada vez.

Lo segundo es establecer que, si n es compuesto, entonces en cada iteracion tenemos una
chance de % de encontrar un valor de a que satisfaga la condicion de la linea 2.b. Tales valores
de a se llaman testigos de que n es compuesto. Todo nimero compuesto n tiene al menos
%n testigos a € [0..n — 1], por lo cual la probabilidad de que k veces no demos con uno de
ellos, y respondamos incorrectamente que n es primo, es a lo sumo 4%.

108



Veamos primero que un a que cumpla con la linea 2.b es un testigo de que n es compuesto.
Considere un primo n y un z tal que 22 = 1 mdéd n. Esto es lo mismo que (z+1)(z—1) =0
méd n, lo que implicaz =1 mdd n 6z = —1 mdd n (pues si un primo divide a un producto,
debe dividir a uno de los factores). Es decir, las tinicas raices cuadradas de 1 médulo un primo
n son 1 y —1. Sea ahora un niimero n con n — 1 = 2° - d con d impar, como en el algoritmo.
Entonces debe valer que a? =1 méd n o que a* ¥ = —1 méd n para algiin r € [0..s—1]. Esto
ocurre porque a®> % = a"' =1 mdd n por el Pequeiio Teorema de Fermat. Si comenzamos
a sacar raices de a" ! obtenemos a2s_1'd, a2l ., a®. Como vimos, esas raices deben ser 1
o —1. Si alguna de ellas es —1, entonces tenemos nuestro a? ¢ = —1 méd n, y si todas ellas
son 1, tenemos a? =1 méd n.

El algoritmo usa la contrapositiva de esta demostracion: si encontramos un a para el cual
no vale ni a® =1 méd n ni a®? = —1 méd n para ningin r € [0..s — 1], entonces n no es
primo. Decimos por ello que a es un testigo de que n es compuesto.

Demostrar que existen al menos %n testigos a es algo extenso para los objetivos de este
curso; daremos una referencia al final del capitulo. Por otro lado, esa es una cota bastante
generosa, dado que el test es mucho mas fuerte. Por ejemplo, se sabe que probando sélo
a = 2,3,61 el test funciona sin error para cualquier niimero n de 32 bits, que probando sélo
con los primeros 12 primos a = 2,...,37 basta para 64 bits, y que agregando a = 41 el test
funciona sin error hasta n < 3 x 10%.

Generar primos. Un problema relacionado es el de generar un nimero primo aleatorio de
¢ bits. Una forma razonable de hacerlo es generar niimeros al azar en ese rango y comprobar
su primalidad con el test visto. Se sabe que el ntimero de primos entre 1y n tiende a -, por
lo que en promedio bastard con O(logn) = O({) intentos para encontrar un primo, usando
un algoritmo tipo Las Vegas.

6.3. Arboles Aleatorizados y Skip Lists

Veremos un par de estructuras que implementan diccionarios, es decir, mantienen un
conjunto de elementos donde podemos insertar, borrar y buscar en tiempo O(logn). También
podemos, en el mismo tiempo, encontrar el predecesor y el sucesor de un nimero dado. Ambos
algoritmos implementan todas las operaciones en tiempo esperado O(logn), para un conjunto
de n elementos. Note la diferencia con los arboles binarios de busqueda clasicos, que ofrecen
tiempo promedio O(logn) bajo la suposicién de que el orden en que se insertan las claves es
una permutacién aleatoria.

Comenzaremos con una estructura que es idéntica a un arbol binario de busqueda clasico,
pero que se encarga de producir un arbol en el que las claves se hubieran insertado en orden
aleatorio, independientemente del orden en que se insertaron realmente. Luego veremos como
ese arbol se puede usar para mantener elementos ordenados por clave y a la vez por prioridad
(como en colas de prioridad). Finalmente, veremos una estructura alternativa para obtener
el equivalente de la primera estructura usando menos espacio esperado.
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6.3.1. Arboles aleatorizados

Nuestra tarea es mantener un arbol binario de bisqueda (ABB) para el conjunto de ele-
mentos {x1,...,z,} que se han insertado, aleatorizando virtualmente el orden de la entrada
de modo que el arbol corresponda a cada permutacion posible de esos elementos con la misma
probabilidad, %

Insercién. Supongamos que, con ese invariante, tenemos en este momento un arbol binario
T que corresponde a haber insertado los elementos x4, . .., z,, en ese orden, con el mecanismo
normal de insercién de los ABBs. Si ahora se inserta un nuevo elemento x, debemos darle
la misma probabilidad, n+r1, de que se inserte en cada posible lugar dentro de la secuencia
elegida x1,...,z, (no almacenaremos esta secuencia explicitamente, bastara con que cada
nodo de 7" guarde el nimero de nodos en su subarbol).

En particular, decidiremos que x va al principio de la secuencia de insercién con pro-
babilidad ﬁ En este caso, x debe ser la raiz, como dicta el método de insercion de los
ABBs. En cambio, con probabilidad -7, © no va al principio de la secuencia y por lo tanto
mantenemos la raiz actual (que debe ser x7).

El segundo caso es més sencillo. Si x no estd al comienzo de la secuencia de insercién,
entonces x; sigue siendo la raiz de T', y lo era cuando llegd x a insertarse. De modo que lo
que ocurrié al insertarse x fue que se lo compard con x1, y si ¢ < x1, lo insertamos en el
hijo izquierdo de T', de otro modo lo insertamos en el hijo derecho. Es decir, continuamos
como en la recursién normal de la insercion en ABBs. El cédigo recursivo correspondiente

para insertar(T, x) es entonces como sigue (es facil convertirlo a iterativo):
1. Elegir r al azar en [1..|T| + 1].
2. Sir =1, convertir a x en la raiz de T' y retornar el resultado.

3. Six < T.raiz,
entonces T.izquierdo < insertar (T .izquierdo, z);
si no, T.derecho <« insertar(T.derecho, z).

4. Retornar T.

Lo intrigante es la linea 2. ; Qué significa convertir a « en raiz? Significa construir el ABB
T’ que corresponde a la secuencia x, x1, . .., x, a partir del arbol T" de la secuencia x4, . .., .
La raiz de T” serd x, asi como la de T" es x1. Llamemos T}, y Tk a los subarboles izquierdo y
derecho de x en 1", y T1 y 15 a los subarboles izquierdo y derecho de x; en T'. Definiremos
una operacion cut(T', z), que corta T en el par de drboles formados por los elementos menores
y mayores que z, respectivamente, respetando el mismo orden de inserciéon que muestran en
T. Es decir, cut(T,x) nos entregard Ty, y Tg.

Consideremos el caso z; < z. Esto significa que x; se convirtié en el hijo izquierdo de =z,
por lo tanto x; es la raiz de Ty,. Mas atn, todo el subarbol T} se habria comparado con z,
resultando menor, y luego con z1, resultando menor; por lo tanto se habrian organizado en el
subarbol izquierdo de x; exactamente igual que como lo han hecho en T'. Es decir, si z; < x,
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entonces T}, tiene a x; como raiz y a 77 como su subérbol izquierdo. Los elementos de T3, en
cambio, pueden ser mayores o menores que x, de modo que podemos obtener recursivamente
(T<,Ts) = cut(T,z). Como T son los elementos menores que x, pero mayores que i, que
se forman respetando el orden de insercién, T corresponde al hijo derecho de x; en T} : son
los elementos llegaron en el mismo orden original, se compararon con z resultando menores,
y luego con x; resultando mayores, y en ese orden poblaron el subarbol derecho de z; en
Tr. Por otro lado, los elementos en 7% corresponden exactamente a Tg: los elementos que se
comparan con x al llegar y resultan mayores. El caso x1 > x es simétrico. El cédigo recursivo
para cut(7T, z) (nuevamente, facil de convertir a iterativo) es como sigue, donde usamos la
notacién (raiz,izquierdo,derecho) para describir un arbol:

1. Si T' = nulo, Retornar (nulo,nulo).

2. SiTraiz < x

w (T.,T5) « cut(T.derecho, x).
w Tp < (T.raiz, T.izquierdo, T-).

u TR <— T>.
3. Si no,

w (T, T%) < cut(T.izquierdo, x).
» T < (T'raiz, T, T.derecho).

L] TL — T<.
4. Retornar (11, Tkr)

Note que cut (T, x) recorre el camino de la raiz de T" a la hoja donde se deberia insertar x en
el método clasico, y por lo mismo nuestro método insertar también recorre el mismo camino,
primero con la recursién de insertar y luego cambiandose a la de cut. Como el arbol es el
correspondiente a cada uno de los érdenes posibles de insercion con la misma probabilidad,
independientemente del orden real en que se insertaron los elementos, su altura esperada es
O(logn), y ese orden es el de la insercién y el de la buisqueda (que se realiza como en un
ABB clésico).

Por ejemplo, si se insertan los elementos 1, 2,3 en un arbol vacio con este algoritmo, se
obtiene el arbol balanceado de raiz 2 con probabilidad % (pues resulta de las permutaciones
2,1,3y2,3,1) , y los otros 4 arboles posibles con probabilidad %.

Borrado. Para borrar un determinado z; de la secuencia zq,...,z,, debemos modificar
el arbol para que sea como si x; nunca se hubiera insertado. Lo primero que hacemos es,
entonces, buscar x; en el arbol con el método normal de busqueda, y borrarlo. Al borrarlo,
queda en su lugar un nodo “vacio”, del que debemos deshacernos.
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Para deshacernos de la raiz vacia del subarbol de x;, con hijos T}, y Tr, debemos considerar
la subsecuencia de x1,...,x, de los nodos que cayeron en el subarbol. El primer elemento
de la subsecuencia es x;. jPero con la informaciéon que almacenamos, no sabemos cudl es el
segundo! Podria ser xp, raiz de T, o xR, raiz de Tx. Lo que debemos hacer es, dentro de
todas las subsecuencias x;, ... de nodos que dan lugar a este subarbol, contar en cuéntas
el segundo elemento es x; < x; y en cudntas es g > x;. Como hay |T;| elementos del
primer grupo y |Tg| del segundo, la probabilidad de que luego de z; venga x es %,
y viceversa. En el primer caso, llamemos T y 7% a los subarboles izquierdo y derecho de
xr. El subarbol de raiz x;, de no existir x;, se habria inaugurado con xp, quien seria su raiz,
y su hijo izquierdo, 77, corresponderia a T-. En cambio, T}, corresponderia a los elementos
de 75 mas los de Tx. Como los primeros son menores que los segundos, podemos definir 77,
como una raiz vacia, con subarboles izquierdo y derecho TS y T, respectivamente, y hemos
llevado el problema del nodo vacio un nivel hacia abajo. El caso de elegir i es simétrico.
El c6digo recursivo para resolver la raiz vacia de un subérbol T, merge(T'), es como sigue:

1. Si |T| = 1, Retornar nulo.
2. Elegir r al azar en [1..|T| — 1].
3. Sir < |T.izquierdo|

» [ < T.izquierdo.

T.raiz < I.raiz.

T'.izquierdo <— [.izquierdo.
T.derecho < merge({—, I.derecho, T'.derecho)).

4. Si no,

D <« T'.derecho.

T'raiz < D.raiz.

T'.derecho < D.derecho.

T.izquierdo < merge({—, T izquierdo, D.izquierdo)).

5. Retornar T

Al realizar un recorrido desde la raiz hasta una hoja, este método de borrado tiene
también un costo esperado de O(logn). El método puede agilizarse para que, en caso de que
T tenga un solo hijo, simplemente borre la raiz.

6.3.2. Treaps

Un treap es una cruza de un arbol y una cola de prioridad (tree + heap). Almacena
elementos que tienen una clave y una prioridad. Permite insertar, borrar y buscar elementos
usando la clave, pero también ver y extraer el elemento con maxima prioridad.
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Si bien podemos implementar un treap usando un arbol y un heap, la estructura del arbol
aleatorizado nos da una implementacion muy elegante, con tiempos logaritmicos bajo supo-
siciones razonables sobre el input (no es una estructura aleatorizada). La idea es equiparar
la prioridad con el momento de insercion, de modo que una mayor prioridad corresponde
a un menor tiempo de insercién. De este modo, esta implementacion de treap es un ABB
valido sobre las claves, pero que respeta que la prioridad del padre nunca es menor que la
de sus hijos (o equivalentemente, el tiempo de insercién del padre nunca es mayor que el de
sus hijos).

Para insertar en un treap con clave x y prioridad p, procedemos como en la insercion del
arbol aleatorizado, sélo que en vez de usar el azar para determinar si pasamos a usar cut,
pasamos a cut si la prioridad de la raiz de T es menor que p. En ese caso, convertimos x
en la raiz de T' y usamos cut(7, x) para obtener los subarboles T, y Tk, que seran treaps y
formaran los subarboles izquierdo y derecho de .

Para borrar x de un treap, lo buscaremos, dejaremos el nodo vacio, y usaremos un método
equivalente a merge para deshacernos del nodo. En vez de la versién aleatorizada, este
método elegird x; o xg segin quién tenga mayor prioridad, para llenar el nodo vaciado.

Para buscar x por clave en un treap, lo buscamos exactamente como en un ABB. Para
ver el elemento de mayor prioridad, miramos la raiz. Para extraer el elemento de maxima
prioridad, dejamos vacia la raiz y procedemos como en el borrado.

Los treaps permiten otras operaciones mas complejas, como recorrer todos los elementos
con clave entre x y 2’ y prioridad > p, con métodos recursivos muy sencillos.

6.3.3. Skip lists

Las skip lists son estructuras aleatorizadas que ofrecen garantias similares a los arboles
aleatorizados. Una desventaja es que su espacio para almacenar n elementos es O(n) espe-
rado, no peor caso como los arboles. Sin embargo, la constante de ese espacio esperado es
menor que la de los arboles.

La skip list para una secuencia r; < x5 < ... < z, (note que ahora vemos la secuencia en
su orden numérico, no de insercién) es una lista de n torres, donde la i-ésima torre almacena
key(i) = x; y uno o mds punteros hacia torres siguientes. La altura de la torre i se define
aleatoriamente al insertar x;, mediante tirar una moneda que cae cara con probabilidad p,
k; > 1 veces hasta que salga cara. Entonces la altura de la torre es k; (note que el valor
esperado de k; es %) En el piso j de la torre 7, con 1 < j < k;, almacenamos un puntero
ptr(i, j) hacia la torre més cercana ¢’ > i que tenga altura > j, o nulo si no existe tal torre.

Ademés, la skip list guarda una torre 0, con un puntero ptr(0, 7) hacia la primera torre
de altura > j, para 1 < 7 < ks, donde k4, es la altura méaxima de una torre.

El espacio esperado de toda la estructura es n claves mas % punteros. A esto se le suma
la torre 0, cuya altura ks es el maximo de las n torres. El valor esperado del méximo de
n variables aleatorias con distribucion geométrica de parametro p es log =" + O(1), por lo

cual esto le suma sélo O(logn) al espacio.
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Busqueda. La bisqueda de un elemento x en una skip list empieza en el piso j = ks, de
la torre i = 0. Si key(ptr(i, j)) < z, entonces hacemos i < ptr(i, j) (es decir, saltamos por el
puntero a una torre mas adelante), y si no, hacemos j < j — 1 (es decir, bajamos un piso).
Cuando llegamos a j = 0, key(i) es x o su predecesor en el conjunto.

Para analizar el costo, podemos separar los dos tipos de operaciones. La cantidad de veces
que se baja un piso en total es k4. Para ver la cantidad de saltos entre torres, consideremos
la bisqueda de z,,, que es la clave mas lejana. Recorreremos todas las torres de altura £,
y luego de la ultima, todas las torres siguientes de altura ks — 1, etc. Por simetria, esto
equivale a partir de la torre 0 y recorrer por el piso 1 hasta encontrar una torre de altura > 2,
luego recorrer por los pisos 2 hasta encontrar una torre de altura > 3, etc. En cada piso j,
cada torre que visitamos se detiene en ese piso con probabilidad p, por lo que tiene mas de j
pisos con probabilidad 1 — p. Por ello, recorremos en promedio l%p torres hasta dar con una
que tenga un piso mas, y alli pasamos al piso j + 1. De este modo, el costo esperado de todos
los movimientos horizontales es l%p kmsx, v sumando los verticales tenemos (1 + fp)kméx.
El valor esperado de esto es (1 + l%p) log L7 mas términos de orden inferior. Este costo
es O(logn) para cualquier p fijo, y el valor 6ptimo de p es &~ 0,72. Con este valor de p,
el costo esperado de busqueda es ~ 3,591Inn y el espacio esperado de la estructura son n
claves mas ~ 1,39 n punteros. Note que esto es inferior a los 2n punteros usados por el arbol
aleatorizado, el cual ademds debe almacenar el tamano de los subarboles (jcuriosamente, no
necesitamos almacenar la altura de las torres en la skip list!). En cambio, la cantidad de
comparaciones esperadas para buscar es menor en el arbol aleatorizado: 2Inn.

Insercion. Para insertar x en la skip list simulamos la bisqueda, pero recordamos la tltima
torre de altura j que visitamos, torre(j), para todo j. Una vez encontrado el predecesor de
x en la torre i, creamos una nueva torre i’ entre la 7 y la ¢ + 1. Determinamos su altura k
aleatoriamente como explicamos, y finalmente, para cada 1 < j < k, asignamos ptr(i’, j) <
ptr(torre(j), ) y ptr(torre(j),j) < i'. Es decir, interponemos la torre i’ entre la i y la i + 1,
interrumpiendo todos los punteros entre los pisos 1 y k para insertar el nuevo piso de la torre
. El costo de la insercién es similar al de la bisqueda.

Borrado. Para borrar z lo buscamos como en la insercién. Al encontrarlo en la torre 7, de
altura k;, antes de borrar la torre debemos conectar los punteros que llevan a la torre ¢ con
los que salen de la torre i, para todos los pisos 1 < j < k;: ptr(torre(j),j) < ptr(i,j). Note
que podemos determinar k; sin almacenarlo, pues llegamos a la torre ¢ siempre desde su piso
mas alto. El costo de borrado es similar al de la busqueda.

6.4. Hashing Universal y Perfecto
El hashing es una técnica clasica para insertar, borrar y buscar con tiempo promedio
constante, lo cual no se sabe hacer en el peor caso. La idea es construir una funcion de

hashing h : X — [0..m — 1] que mapee los objetos de su universo original X a una posicién
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en una tabla de tamano m. El elemento x € X" se almacena entonces en la celda h(x) de la
tabla, y alli mismo se busca.

Lo que hace que esta idea pueda fallar son las colisiones, es decir, dos elementos = # y
que son mapeados a la misma celda, h(z) = h(y). Las colisiones se resuelven de distintas
formas, siendo la mas simple la de tener una lista enlazada en cada celda para almacenar
los distintos elementos que caen en ella. De cualquier manera que se resuelvan, las colisiones
atentan contra el objetivo de operar en tiempo O(1). Por otro lado, es imposible evitar las
colisiones si |X| > m. Més atn, si almacenamos n elementos y |X'| > nm, entonces siempre,
no importa cémo elijamos h, el adversario puede insertar n elementos que colisionen todos
en la misma celda: basta insertar nm elementos de X y ver que en alguna celda caeran al
menos n, entonces esos n elementos colisionan todos.

Ante la imposibilidad de tener garantias de peor caso, se recurre normalmente a una
probabilistica: se analizan los esquemas de hashing como si h(z) fuera una variable aleatoria
distribuida uniformemente en [0..m — 1]. De este modo, la cantidad esperada de elementos
por celda serd ”, lo que serd O(1) si hacemos que el tamafio de la tabla sea proporcional al
numero de elementos que se almacenaran. Si no conocemos n de antemano, podemos hacer
que la tabla se vaya duplicando cuando 7 exceda un cierto valor permitido, y volviendo a
insertar todos los elementos en la nueva tabla. Esto agrega un tiempo amortizado constante
por operacién, como vimos en el capitulo de andlisis amortizado.

Sin embargo, h debe ser deterministica, o no encontraremos un elemento x que inserta-
mos antes. Se busca que h “se comporte” como si fuera aleatoria. Existen algunos tipos de
funciones de hashing conocidos por “distribuir bien” los valores, “destruir posibles regulari-
dades del input”, etc. Pero mientras su eleccién sea deterministica, la funcion h distribuira
bien los valores solo si estos tienen una cierta distribucion, es decir, el comportamiento del
hashing serd promedio, no esperado, y dependera del input. Habra inputs que haran fallar
sistematicamente a la funcion de hashing elegida.

En esta seccién veremos una forma aleatorizada de elegir funciones de hashing, que ga-
ranticen el comportamiento esperado deseado, independientemente de qué valores se inserten
en la tabla. Note que, de todos modos, una vez elegida h, se debe seguirla usando duran-
te el tiempo de vida de la estructura de datos. Sin embargo, una secuencia de inserciones
que haga fallar h no lo logrard sistematicamente: repetir la secuencia con otra eleccién de h
probablemente hara que la segunda vez no falle.

6.4.1. Hashing universal

Supongamos que nuestro universo es X = [0..N — 1], con N > m. Diremos que H es una
familia universal de funciones de hashing de [0..N — 1] en [0..m — 1] si, para todo = # v,

donde la probabilidad se toma sobre las posibles elecciones de funciones h € H (eligiendo
uniformemente).
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Si tenemos una familia universal H, todo lo que tenemos que hacer es elegir un h aleato-
riamente de la familia cada vez que creamos una tabla de hashing. Para ver que la propiedad
de universalidad es suficientemente buena, definamos S como el conjunto de claves que vamos
a almacenar, n = |S|, y la variable aleatoria

Cyy = 1sih(z)=nh(y)y 0 sino.

Las C,, son variables aleatorias, pues dependen de la eleccién al azar de h. Si h se elige
uniformemente de una familia universal H, tenemos por definicién

Pr(C,,=1) <

)

1
-
Definamos también

C,s = la cantidad de elementos de S que colisionan con z.

Dicho de otro modo,

> Cay.

yes

También podemos ver C, g como el largo de la lista enlazada en la celda h(x), lo cual es
proporcional al costo de buscar, insertar o borrar x. El costo esperado de estas operaciones
es entonces

E(C,.s) _]E<ZCW>_IE va) + Y E(Chy) = 14 Y Pr(Chy=1) < ml

yes yeS—{z} yeS—{z}

Es decir, el costo esperado de las operaciones serda O(1) si n = O(m).

Una familia universal. Existen varias familias universales conocidas. Una sencilla es la
siguiente: dado un primo p > N, definimos

H = {hap, a€l.p—1ybe[0.p—1]}

donde
hop(z) = ((ax +b) mdd p) méd m.

Para ver que esta familia es universal, consideremos cuatro nimeros r, s, z,y € [0..p — 1],
conr # sy x#y,y calculemos

Pr((ax+b=r méd p)y (ay +b=s mdd p)).

Si esto ocurre, entonces a(z —y) = r—s mdd p. Siendo p primo, y por lo tanto primo relativo
con z—y (pues z,y < N < p, con lo cual  —y no puede ser miltiplo de p), la ecuacién tiene
una tnica solucién, a = (x —y)~}(r —s) méd p. Y dado este valor de a, existe un tinico valor
b =r —armdd p (o equivalentemente b = s — ay mdd p). Es decir, de las |[H| = p(p — 1)
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posibles funciones h,; para elegir, existe exactamente una con el valor adecuado de a y b
para los r, s, z,y que elegimos. Entonces la probabilidad que buscamos es

Pr((ax+b=r méd p)y (ay +b=s mdd p)) =1
Note, en cambio, que esto no puede ocurrir si r = sy x # y.

Para que x e y colisionen, es decir h(z) = h(y), debe ocurrir lo anterior para algin par
r = s mdéd m con r # s, es decir, s = r £+ km para k > 0. Tenemos p formas de elegir r. Y
para cada eleccién de 7, tenemos a lo mas [£] — 1 formas de elegir s. En total, el niimero
de pares r # s que generan una colision es

p-([2]-1) = ». QMJ _1) I V;lJ < pe=1)
m m m m
La probabilidad, al elegir h, de que cada uno de esos % pares r # s genere una colision
modulo p es p(p+1, con lo cual la probabilidad de una colisién es a lo sumo %
Utilizar esta gamilia con una tabla de tamano m es muy sencillo: generamos un primo
p > N con el algoritmo ya discutido, y luego generamos a y b al azar. Luego usamos
h( ((ax 4+ b) méd p) méd m como nuestra funcién de hash, que mapea los elementos de

x) =
[0..N —1] a [0..m — 1].

{Es necesaria la b? Podemos preguntarnos si es necesario incluir b en la férmula, o
podriamos tener simplemente una familia b, (z) = (ax méd p) méd m. En ese caso tendriamos
|H| = p— 1 y la colisién antes de tomar médulo m implicarfa a = (z — y) ™' (r — s) méd p.
Entonces la probabilidad de colisién es a lo mas ﬁ = p%l. Ahora bien, la condicién sobre
a es necesaria pero puede no ser suficiente, pues requerimos que ese a satisfaga r — ax = 0
mod p (antes elegiamos b precisamente para que r — ax = b). Sustituyendo el valor de a,
esto equivale a st = ry mod p. Asi, podemos elegir r de p formas pero entonces debe ser
s =z lyr méd p y m debe dividir a s — 7 = (x7'y — 1)r. Esto puede ser factible para los
p valores de r si m divide a 7'y — 1, o sélo para 2 de ellos si m y x~ 'y — 1 son primos
relativos. Es decir, la probabilidad de colisiéon depende de x e y, pudiendo variar desde tanto

como p% (una cota mayor a 1) hasta tan poco como cercana a la que obtuvimos;

= (
1 m(p—1)
algunos de estos calculos tienen excepciones si hay valores cero). El esquema que vimos, en
cambio, ofrece una probabilidad de colisién de % independientemente del input.

Otros universos. Cuando el universo X no es de la forma [0..N —1], debemos llevarlo a esa
forma. Por ejemplo, los strings sobre el alfabeto [0..0 — 1] pueden interpretarse como niimeros

. / i , e s
en base o, es decir, 1 ...z, = <Ei:1 x;o" 1) mod p. Esto es popular, pero es deterministico

y un adversario puede elegir strings en concreto que dan el mismo valor médulo p para
producirnos colisiones. Una version aleatorizada que nos da una familia universal es

¢
hzy...xp) = ((b + Z aixi) mod p) mod m,
i=1
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donde b € [0..p — 1] y los a; € [1..p — 1] se eligen al azar (necesitamos tantos valores a; como
el string mas largo; podemos ir generando nuevos al irlos necesitando).

Funciones més rapidas. Si el tamafio m de nuestra tabla es una potencia de 2, m = 2¢,
entonces calcular el médulo m es barato, pues equivale a quedarse con los ¢ bits més bajos del
valor. En cambio, calcular médulo p para un p primo es una operacion relativamente lenta.
Una buena opcién es elegir p como un primo de Mersenne, que tiene la forma 2% — 1, de modo
que el médulo se puede reducir a bitwise-ands y shifts: = (z méd 2%) + (z = 2¥) méd p,
donde + es la parte entera de la divisién. Asf, x méd 2% = 2 & (1 < k) —1), 2 +2F =2 >k,
y el tltimo mod p sélo requiere restar p si el valor es > p, pues éste es menor a 2p. Los primos
de Mersenne son bastante escasos, pero hay buenas opciones para enteros de 32 a 128 bits
(por ejemplo, 231 — 1, 261 — 1, 2% — 1y 2127 — 1 1o son).
Otra familia universal que usa s6lo médulos y divisiones por potencias de 2 es

hap(z) = ((ax +b) méd 2%) + 2,

con k > /. Esta funcién mapea z a [0..28¢ — 1].

6.4.2. Hashing perfecto

En algunos casos, conocemos de antemano los n elementos S que insertaremos en la
tabla, y s6lo nos interesa buscarlos mas adelante. En este caso podriamos pensar en generar
una funcién de hashing A que no produjera ninguna colisién para los elementos de S. A este
tipo de funcién de hashing se la llama perfecta. Al no generar colisiones, no necesitamos
almacenar listas enlazadas ni verificar si es efectivamente la clave x quien estd almacenada
en la celda h(x) (aunque si buscamos elementos = ¢ S aun necesitaremos comparar las claves
para verificar que no sea una colisién fuera de ).

Es tentador generar funciones de una familia universal H hasta dar con una perfecta, pero
es eficiente? jobtendremos una funcion perfecta con una cantidad razonable de intentos?

Veamos cudl es la probabilidad de que una funcién h € ‘H sea perfecta. La probabilidad de

que = # y colisionen es < % La probabilidad de que alguno de los @ pares colisione es a

1 2 . . ~
nnl) ~ 1.22 Porlo tanto, si elegimos una tabla de tamafio m = n2, tenemos una

lo més =+ -
chance ge % de que img funcion h € H elegida al azar sea perfecta. Esto nos da un algoritmo
tipo Las Vegas para encontrar una funcién perfecta. El niimero esperado de intentos es 2, y
en cada intento podemos verificar en tiempo O(n) si hay alguna colisiéon (mediante insertar
todos los elementos de S en la tabla). El tiempo esperado de este algoritmo es entonces O(n).
El problema es que este algoritmo requiere una tabla demasiado grande para tener una
chance aceptable de encontrar una funcién perfecta. Querriamos una tabla de tamano O(n),
y construirla en tiempo esperado O(n) también.
Una solucién es un esquema de dos niveles. Primero elegiremos una funcién de hashing
distribuidora h, de S a [0..n — 1], aleatoriamente de una familia universal. Esta funcién
dificilmente serd perfecta, pero esperamos que distribuya los elementos de S més o menos
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uniformemente. Luego tendremos una tabla de hashing perfecto asociada a cada celda de la
tabla principal, para almacenar los elementos que h envié a esa celda.

Concretamente, sea B; el conjunto de elementos de S que h pone en la celda 0 < i < n,
y b; = |B;|. Si ahora credramos una funcién de hashing perfecto h; para almacenar los
elementos de cada B; en una tabla propia de tamaro b?, entonces facilmente encontrarfamos
una funcién perfecta en tiempo O(b;). El tiempo total para encontrar las n funciones h; seria
O(>_b;) = O(n). El espacio, en cambio, serfa X = 3 b7, una variable aleatoria.

Veamos el valor esperado de X. Para ello, notemos que

2.0 = ) Cay

0<i<n x,yes

pues si B; = {z1,...,2,}, cada par (z;, ;) aporta un C,, ., = 1. La esperanza es entonces

E(X) = E(Z Cx,y> = ) E(Cow)+ Y E(Cay) < n+n(n—1)-l < 2n,

n
T,y€S z€eS TH#yeS

donde en la primera desigualdad usamos que E(C,,) = Pr(C,, = 1) < & porque h es
universal en [0..n — 1].

Tenemos entonces que la esperanza de la variable aleatoria X = Y b? es menos de 2n.
Como X es el espacio de todas las tablas del segundo nivel, si X < 2n entonces nuestro
espacio total es O(n), incluyendo la tabla para h y los valores a; y b; almacenados para
h;. Quisiéramos entonces elegir funciones h € H al azar hasta obtener una donde X fuera
efectivamente 2n, o al menos O(n). ;Cudntos intentos debemos hacer? La desigualdad de
Markov nos dice que si u = E(X), entonces

Pr(X > kp) <

| =

por lo tanto, como pu < 2n, Pr(X > 4n) < % Es decir, tenemos una chance de al menos 1

de que, al elegir h, nos produzca un espacio total de > b7 < 4n. ’

El algoritmo tipo Las Vegas es, entonces, como sigue. Elegimos una funcién distribuidora
h de S en [0..n— 1], mapeamos todos sus elementos en una tabla de contadores, donde iremos
acumulando las cantidades b; de elementos que caen en cada celda. Luego, verificaremos si
3702 < 4n. Si no es el caso, es que elegimos una h mala, que nos requerird mucho espacio,
por lo cual volvemos a probar con otra h. El nimero esperado de intentos es 2, por lo que el
tiempo esperado hasta que encontremos una buena funcién distribuidora h es O(n). Una vez
encontrada, construimos los conjuntos B; y para cada uno creamos una funcién de hashing
perfecto h; en tiempo O(b;) y espacio b7. Esta funcién (su a; y b;) se almacena en la i-ésima
celda de la tabla. El tiempo esperado de construccion, y el espacio total, son O(n).

Para buscar x, primero vamos a la celda i = h(z). Alli tenemos guardada la funcién h,,
con la que mapearemos z a la posiciéon h;(x) de la tabla asociada a la celda ¢, donde se
guardan los elementos de B;. El tiempo es O(1) en el peor caso.
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6.5. Ficha Resumen
= Conceptos de algoritmos probabilisticos y aleatorizados, tiempo esperado.

» Verificar si n es primo: O(klogn) multiplicaciones y se puede equivocar con probabi-
lidad < 4% al decir que es primo.

= Generar un primo entre n y 2n: O(klog? n) multiplicaciones esperadas, puede entregar
un no-primo con probabilidad < 4%.

= Arboles aleatorizados: tiempo O(logn) esperado para insertar, borrar y buscar.

» Skip lists: similar a arboles aleatorizados. El espacio es O(n) esperado, no peor caso,
aunque con una mejor constante esperada (y peor constante de tiempo esperado).

» Hashing universal: tiempo O(1) esperado para todas las operaciones con espacio O(n)
eligiendo funciones de hash en forma aleatorizada.

» Hashing perfecto: tiempo esperado de construcciéon O(n), espacio O(n), tiempo de
busqueda O(1) en el peor caso.

6.6. Material Suplementario

Cormen et al. [CLRSO01, cap. 5] dedican un capitulo a conceptos bésicos de algorit-
mos aleatorizados. Mas adelante en el libro analizan versiones aleatorizadas de QuickSort
[CLRS01, sec. 7.3 y 7.4] y QuickSelect [CLRS01, sec. 9.2]. Brassard y Bratley [BB88, cap. §]
dedican un capitulo a algoritmos probabilisticos y aleatorizados. Explican la clasificaciéon en
Monte Carlo y Las Vegas, y le llaman tipo “Sherwood” a los aleatorizados que no son pro-
babilisticos (es decir, que no se equivocan y siempre terminan, como nuestras estructuras de
datos aleatorizadas). Dan un buen nimero de ejemplos pequenos y medianos de algoritmos
de cada tipo, referentes a problemas de célculo numérico, de aritmética entera (incluyendo
el test de primalidad que vimos), de problemas combinatoriales, y algunos de estructuras de
datos aleatorizadas de menor importancia. Manber [Man89, sec. 6.9] le dedica una seccién a
algoritmos probabilisticos y aleatorizados. Discute conceptos basicos y los tipos Monte Carlo
y Las Vegas, presenta un generador seudoaleatorio popular, y un ejemplo simple. También
discute una técnica para convertir algoritmos aleatorizados tipo Las Vegas en deterministi-
cos. Kleinberg y Tardos [KT06, cap. 13] dedican un muy buen capitulo a estos algoritmos.
Esto incluye conceptos basicos de probabilidades, una descripcién mucho mas sofisticada de
nuestro ejemplo de Ethernet como un problema genérico de acceso a recursos, los algoritmos
QuickSort y QuickSelect aleatorizados, y otros que mencionaremos mas adelante. El libro
de Motwani y Raghavan [MR95] se dedica completamente a estos algoritmos y describe un
numero importante de técnicas de diseno junto con algoritmos y estructuras de datos concre-
tos. En el primer capitulo incluye una descripcion de las clases de complejidad relacionadas

120



con la aleatorizacién. También incluye [MR95, sec. 14.6] algoritmos para verificar primalidad
del estilo del que vimos, demostrando su probabilidad de error.

Motwani y Raghavan [MR95, sec. 8.1 y 8.2] describen los treaps (los cuales no son aleato-
rizados) y luego muestran cémo los drboles binarios aleatorizados se obtienen insertando los
elementos en un treap con una prioridad asignada en forma aleatoria. Sin embargo, usa ro-
taciones en vez de cut y merge para insertar y borrar. Asimismo, en la seccién 8.3, describen
las skip lists.

Cormen et al. [CLRSO01, sec. 11.5] describen la construccién del hashing perfecto como la
vimos en el capitulo; en los ejercicios describen la funcién de hashing universal. Mehlhorn y
Sanders [MS08, sec. 4.2] dedican una excelente seccién al hashing universal, donde describen
una cantidad de familias universales (entre ellas la que vimos en el capitulo), e incluso una
forma eficiente de encontrar un primo mayor a N y cercano. Usan el término “c-universal”
en una forma no ortodoxa, significando que la probabilidad de colision es < =. Mds adelan-
te [MSO08, sec. 4.5] presentan el hashing perfecto en forma muy parecida a la del capitulo,
aunque describen brevemente como se podrian permitir inserciones y borrados. Kleinberg
y Tardos [KT06, sec. 13.6] también explican de buena forma el hashing universal y per-
fecto, usando otra familia universal (descrita también por Mehlhorn y Sanders). Motwani
y Raghavan [MR95, sec. 8.4] presentan el hashing universal, usando el término equivalen-
te de “2-universal” (el 2 viene de que son pares x e y) e introduciendo los conceptos de
“strongly 2-universal” y su generalizaciéon “strongly k-universal” (que significa que k va-
riables aleatorias h(z;) cualesquiera son independientes; la familia que vimos es realmente
strongly 2-universal). Presentan la misma familia H que usamos en el capitulo, e incluyen
una detallada presentacién, algo distinta de la nuestra, del hashing perfecto. Navarro [Nav16,
sec. 4.5.3] describe una construccién de hashing perfecto més sofisticada, que requiere menos
espacio de almacenamiento.

Lee et al. [LTCTO05, cap. 11] dedican un capitulo a algoritmos aleatorizados y probabilisti-
cos. Si bien la parte de conceptos basicos es débil, incluyen varios problemas interesantes
de mediana complejidad, como encontrar el par de puntos mas cercanos entre n en tiempo
esperado O(n) usando Las Vegas (los algoritmos deterministicos son O(nlogn)), una va-
riante del algoritmo de Miller-Rabin para verificar primalidad, bisqueda en texto usando
Monte Carlo, y un algoritmo Las Vegas de tiempo esperado O(n + e) para encontrar el drbol
cobertor minimo en un grafo de n nodos y e aristas. Kleinberg y Tardos [KT06, cap. 13]
también describen problemas de cierta complejidad, como encontrar el corte minimo de un
grafo con un algoritmo Monte Carlo, algoritmos en linea y aproximados aleatorizados (donde
se puede conseguir, por ejemplo, ser O(log k) competitivo en promedio para el paginado),
nuevamente el par de puntos mas cercano, y varios problemas de algoritmos distribuidos que
la aleatorizacién simplifica notablemente. El libro de Motwani y Raghavan [MR95] es sin
duda la referencia mas completa para algoritmos probabilisticos y aleatorizados, incluyendo
problemas de geometria, grafos y teoria de ntimeros, y algoritmos aproximados, paralelos y
en linea.

Otras fuentes online de interés:
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jeffe.cs.illinois.edu/teaching/algorithms/notes/09-nutsbolts.pdf

WWW .

cs.cornell.edu/courses/cs4820/2010sp/handouts/MillerRabin.pdf

jeffe.cs.illinois.edu/teaching/algorithms/notes/10-treaps.pdf

WWW .

WWW .

WWW.

WWW .

WWW .

WWW .

WWW .

cs.cmu.edu/afs/cs/academic/class/15210-s15/www/lectures/bst-notes.pdf
cs.princeton.edu/ wayne/kleinberg-tardos/pdf/13RandomizedAlgorithms.pdf
cse.iitk.ac.in/users/sbaswana/randomized-algo.html

cs.ubc.ca/ nickhar/Wi2

cs.yale.edu/homes/aspnes/classes/469/notes. pdf

youtube . com/watch?v=2g90SRKJuzM

youtube.com/watch?v=z01J2k0sllg
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Capitulo 7

Algoritmos Aproximados

Se llaman problemas de decision a aquellos en los que debe responderse si o no frente
a un input dado. Los problemas de decision NP-completos son aquellos que, hasta donde
sabemos, no se pueden resolver en tiempo polinomial en computadores realistas, sino que
requieren de una Méquina de Turing no deterministica, la cual “adivina” la respuesta correcta
y luego s6lo debemos verificar que lo es. Dicho de otro modo, las tinicas soluciones conocidas
(y probablemente las tnicas existentes) para problemas NP-completos en un computador
realista requieren tiempo exponencial en el tamano de la entrada.

Los problemas de optimizacion son aquellos en los cuales hay que construir un objeto
que maximiza o minimiza una determinada funcién. Por ejemplo, dado un grafo, encontrar
un subgrafo maximal que sea un clique (es decir, que todos los nodos estén conectados con
todos). Los problemas de optimizacién suelen estar relacionados con problemas de decisién.
Por ejemplo, el problema de decisiéon CLIQUE es, dado un grafo G y un niimero k, determinar
si GG tiene o no un clique de tamano k. Es facil ver que, si podemos resolver el problema de
decision en tiempo polinomial 7', también podemos resolver el problema de optimizacion en
tiempo O(T -log |G|) mediante busqueda binaria, el cual también es polinomial en el tamano
del input (que es |G]). A la inversa, es trivial resolver el problema de decisién si tenemos una
solucién al problema de optimizacion.

Por ello, podemos hablar en general de problemas de optimizacion NP-completos, es
decir, para los cuales no tenemos esperanza de encontrar una solucién de tiempo polinomial.
Los algoritmos aproximados ofrecen una salida que puede ser 1til en muchos casos reales:
encuentran en tiempo polinomial una soluciéon cuya “distancia” multiplicativa a la solucion
optima puede garantizarse. Mas formalmente, un algoritmo A para resolver un problema de
maximizacion es una p(n)-aproximacion si

‘ SOPT<I)
Y — <K
s sam = (n).

donde Sppr(I) es el valor de la solucién éptima para el input I, y Sa(I) es el valor de la
solucion que entrega el algoritmo A para el input I. Similarmente, para un algoritmo de
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minimizacion debe cumplirse

Vn, max Sall) < p(n).
Lit|=n Sopr (1)

Veremos que, con esta 6ptica, no todos problemas NP-completos (en su versién de opti-
mizacién) son igualmente intratables. Algunos resultan ser aproximables por una constante,
por ejemplo p(n) = 2, mientras que otros son aproximables por una funcién que empeora con
n, por ejemplo p(n) = logn. También veremos que otros problemas no son aproximables en
absoluto. Finalmente, veremos que algunos problemas admiten lo que se llama un esquema
de aproximacion polinomial, en el cual se le entrega un input adicional €, tan pequeno como
se desee, y el algoritmo produce una (1 + €)-aproximacién. El costo del algoritmo debe ser
polinomial en n, pero podria ser exponencial en %, por ejemplo podria ser O(n?€). Mejor
aun es un esquema de aproximacion completamente polinomial, en el cual el costo también
debe ser polinomial en %, por ejemplo 0(7‘6—2)

7.1. Recubrimiento de Vértices

Un recubrimiento de vértices de un grafo G(V, E) es un subconjunto de nodos tal que
toda arista incide en algin nodo elegido. Es decir, es un V/ C V, tal que para toda arista
(u,v) € E, se tiene que u € V' 6 v € V' (0 ambos). El problema de decisién de decir si G
tiene un recubrimiento V' de determinado tamano k, es NP-completo. En el problema de
optimizacién, se desea encontrar un recubrimiento de vértices de tamano minimo.

7.1.1. Vértices sin Pesos

En la versién simple del problema, los vértices son todos equivalentes, y entonces se
desea minimizar |V’|. Podemos mostrar ficilmente cémo construir una 2-aproximacién a
este problema. Comencemos con V' = () y vayamos extrayendo una a una las aristas de
E. Por cada (u,v) que extraigamos, agreguemos {u,v} a V’'. Esta arista estard entonces
cubierta, pues ambos extremos estdn en V' (bastarfa con uno solo). Incluso, cualquier otra
arista de F que incida en los nodos u é v también estard cubierta, por lo cual también las
eliminamos de E. Después volvemos a sacar una arista de las que restan en F, metemos
ambos nodos en V', y repetimos el proceso hasta que E sea vacio.

Esté claro que el conjunto V' resultante es un recubrimiento de vértices, pues toda arista
que se sac6 de E estaba cubierta por algin nodo de V’. Para ver que ademds su tamano
no puede ser més que el doble del 6ptimo, notemos que, cuando metemos u y v en V' la
primera vez, alguno de los dos tiene que estar en cualquier recubrimiento 6ptimo, pues si
no la arista (u,v) no estarfa cubierta. Es decir, por cada dos nodos que metemos en V',
el algoritmo 6ptimo tiene que haber metido al menos uno. Dado que luego se eliminan las
aristas que inciden en u 6 v, todos los pares (u,v) cuyos extremos incluimos en V' son de
nodos disjuntos, por lo cual el argumento aplica individualmente a cada par: de cada par, el
algoritmo 6ptimo debe meter un nodo distinto en su solucién. Se sigue que nuestro algoritmo
es una 2-aproximacion. Por supuesto, es de tiempo polinomial.
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7.1.2. Vértices con Pesos

Una variante més sofisticada le asigna costos ¢(v) a los nodos v € V', y se busca un V' que
minimice ) ... c(v). Nuevamente, es posible obtener una 2-aproximacién, pero la solucién
es bastante mas sofisticada.

Comencemos por expresar este problema de minimizacién como un problema de progra-
macion entera. Esta es una técnica muy fructifera para encontrar buenas aproximaciones.
Tendremos una variable z(v) para cada v € V, donde z(v) = 0 indicard que v & V' y

B , e L
r(v) = 1 que v € V'. Lo que queremos minimizar es entonces ) i, c(v)-z(v). La restriccién
de que toda arista esté cubierta la expresaremos como z(u) + x(v) > 1 para todo (u,v) € E.
El problema resultante se ve entonces asi:

Minimizar Z c(v) - z(v)
veV
Sujeto a

z(u) +z(v) > 1, V(u,v) € E
z(v) € {0,1}, YweV

La tultima condicién hace que este sea un problema de programaciéon entera y no lineal.
Lamentablemente la optimizacion entera también es NP-completa, por lo cual no parece que
hayamos avanzado mucho. Sin embargo, si cambiamos la tltima restricciéon por

0<z(v)<1, YveV,

tendremos un problema de programacion lineal, que si se puede resolver en tiempo polinomial.

El problema, claro, es que la solucién a este problema le asignara a cada v € V' un valor
real z(v) € [0,1], lo cual no podemos usar directamente para modelar la solucién a nuestro
problema original de recubrimiento de vértices. Lo que haremos serd algo intuitivamente
razonable: diremos que v € V' sii z(v) > 0,5.

Veamos primero que esto entrega un recubrimiento de vértices. Para cada (u,v) € E,
debe cumplirse que x(u) + z(v) > 1, por lo cual alguna de las dos debe ser > 0,5, y entonces
sera incluida en V’. Por lo tanto, nuestro procedimiento entrega una solucién valida.

Segundo, veamos que la solucién es una 2-aproximacion. Para ello, observemos que la
solucion al problema de programacion lineal no puede ser mas costosa que la de programaciéon
entera, dado que permite un superconjunto de soluciones. Y ahora, observemos que nuestra
solucién cuesta a lo sumo el doble que la de programacién lineal. En efecto, lo que hacemos
es equivalente a que, si z(v) < 0,5, entonces asignamos x(v) <— 0 (lo cual reduce el costo), y
que, si z(v) > 0,5, entonces asignamos z(v) < 1 (lo cual a lo sumo duplica el costo).

7.2. El Viajante de Comercio

Otro famoso problema NP-completo es el de determinar si un grafo dirigido G(V, E) tiene
un circuito hamiltoniano. Este es un camino que pasa por cada nodo exactamente una vez
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y luego vuelve al nodo original. En la version de optimizacién, el grafo G es completo (es
decir, E =V x V) pero las aristas tienen un costo no negativo c(u,v). Se busca entonces
un circuito hamiltoniano que minimice la suma de los costos de sus aristas. El nombre del
problema alude a un viajante que deba visitar cada ciudad (nodo) exactamente una vez y
volver a la suya.

7.2.1. Caso General

Veremos primero que este problema es inaproximable. La forma de demostrar esto es ver
que, si existiera una p-aproximacién para el problema del viajante de comercio, entonces
podriamos resolver el problema del circuito hamiltoniano en tiempo polinomial. Lograr esto
con cualquier problema NP-completo implica inmediatamente que se puede lograr para todos,
lo cual se considera altamente improbable (y el concepto de aproximacién pierde sentido).

Supongamos que existe tal p-aproximacién. Consideremos un problema de circuito hamil-
toniano G(V, E'). A partir de él, disenaremos el siguiente problema de viajante de comercio:
el grafo G'(V', E') es el grafo completo donde V' = V| y los costos de las aristas se definen
de la siguiente manera: si (u,v) € E (en el grafo original), entonces ¢(u,v) =1 (en el grafo
del viajante de comercio); si no, entonces c(u,v) = p - |V |+ 1.

La intuicién es que hacemos que pasar por las aristas que existen en G sea muy barato
(costo 1), mientras que pasar por las que no existen es muy caro (costo p - |[V| + 1). La
diferencia es tanta, que incluso una p-aproximacién es capaz de distinguir si existe o no un
circuito que use solamente las aristas permitidas (las de E).

Concretamente, note que todo circuito tiene exactamente |V | aristas. Si existe un circuito
hamiltoniano en G, entonces ese circuito tiene costo total |V| en G’ (pues todas las aristas
son de costo 1). Esto significa que una p-aproximacién entregard una solucién de costo a lo
sumo p - |V|. En cambio, si no existe un circuito hamiltoniano en G, entonces todo circuito
en G’ debe usar al menos una arista que no estd en F, la cual tiene costo p - |V|+ 1. Por lo
tanto el costo de incluso la mejor solucién es mayor que p - |V|. Esto significa que, viendo
el costo que obtiene una p-aproximacién, que corre en tiempo polinomial, somos capaces de
decir si GG tiene o no un circuito hamiltoniano, y hemos resuelto un problema NP-completo
en tiempo polinomial.

7.2.2. Costos Métricos

En cambio, es posible obtener una 2-aproximacion para este problema en el caso particu-
lar (pero plausible) de que los costos en FE satisfagan los axiomas de una métrica: c¢(u,u) =0
(reflexividad), c¢(u,v) = ¢(v,u) (simetria), y ¢(u,v) + c(v,w) > c(u,w) (desigualdad triangu-
lar). Incluso existe una 1,5-aproximacién (ver las referencias al final del capitulo).

Podemos obtener una 2-aproximacion de la siguiente forma. Comencemos generando un
arbol cobertor minimo 7" de G. El costo ¢(T") de T (es decir, la suma de los costos de sus
aristas) tiene que ser menor que el de cualquier circuito hamiltoniano, pues si al circuito se
le saca una arista el resultado es un camino que toca todos los nodos, y eso también es un
arbol cobertor de GG. Por lo tanto, si ¢* es el costo 6ptimo del viajante de comercio, tenemos

126



que ¢(T') < ¢*. Note que no importa la direccién de las aristas para calcular su costo porque
estamos suponiendo simetria, c(u,v) = ¢(v, u).

Claro que T no es el circuito que necesitamos, sino un arbol. Obtendremos un circuito C'
a partir de T" mediante recorrerlo en orden DFS partiendo de cualquiera de sus nodos. Como
cada arista de T se recorre dos veces en C' (una al ir y otra al volver del DFS), tenemos que
c(C) =2 ¢(T) (nuevamente estamos usando la simetria de los costos).

Si bien C' es un circuito que incluye a todos los nodos de G, resulta que puede pasar
varias veces por un mismo nodo (todos los nodos internos del recorrido DFS), por lo cual no
es aun un circuito hamiltoniano. Para convertirlo en uno, escribiremos la lista de los nodos
que va tocando el circuito y eliminaremos cada nodo que ya hayamos visto antes en la lista.
Asi, si la lista dice v — v — w y decidimos eliminar a v, la lista de aristas quedara u — w,
entendiéndose que en el camino hemos reemplazado las aristas (u,v) y (v,w) por la arista
(u,w). Debido a la desigualdad triangular, estos cambios no incrementan el costo ¢(C).

Una vez que hemos eliminado los nodos repetidos, el circuito resultante C’ es hamilto-
niano, y su costo estd acotado por ¢(C") < ¢(C) < 2-¢(T) < 2-¢*, con lo cual tenemos una
2-aproximacion. Todos los algoritmos que hemos usado son de tiempo polinomial.

7.3. Recubrimiento de Conjuntos

Suponga que tiene conjuntos Si,...,S,, con traslape para que sea interesante, y consi-
deremos su unién, S = U;_,S;, llamando n = |S|. El problema de decisién NP-completo de
recubrimiento de conjuntos es, dado ademés un k, determinar si hay k£ de esos conjuntos
S; cuya union es S. El problema de optimizacién es encontrar el minimo k. Esto modela
problemas como comprar el minimo nimero de discos que incluyen todas las canciones de
un cierto artista.

Veremos que este problema admite una In(n)-aproximacién. La técnica es un sencillo
enfoque avaro: Elegimos primero el S; que cubra mas elementos de S (al comienzo, esto
es simplemente el mayor conjunto S;). Luego sacamos sus elementos de S, S < S — S;, e
iteramos. Claramente esto da una solucién de tiempo polinomial.

Para ver que esta solucién es una In(n)-aproximacién, consideremos que k es el tamano de
la solucién 6ptima. Como el algoritmo éptimo cubre S con k£ conjuntos .S;, al menos uno de
ellos debe ser de tamano > #. Como nuestro algoritmo parte eligiendo el maximo conjunto,
digamos S, este conjunto tiene tamarno al menos 7. Eso significa que, luego de elegir el
primer conjunto, nuestro algoritmo deja S de tamano a lo més n(1 — %)

Lo que resta de S, S — S,, también es cubierto con los k£ conjuntos elegidos originalmente
por el 6ptimo, por lo tanto alguno de ellos debe cubrir al menos una fraccién de % de S —95,.
Nuevamente, nuestra aproximacién elegird entonces en el segundo paso un conjunto que
cubra al menos esa fraccion de S — S, por lo cual el nuevo tamano del conjunto restante S
serd a lo méds n(1 — 1)

)"

Siguiendo este razonamiento, luego de m iteraciones, S sera de tamafio a lo mas n(1—

=
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y para que esta cota llegue a 1 (con lo cual el algoritmo termina en un paso més), basta que

1 1
m = — ognl = ongz < klnn,
log(1 — E) log =

donde al final usamos que In(1+¢) > i+ Por lo tanto, el algoritmo aproximado no elige mas
de 1 + kInn conjuntos. Deteniéndonos en m = kln 7, nos quedan k elementos por cubrir,

los que necesitan a lo sumo k pasos més. Esto nos da una cota levemente mejor, k(1 +1In 7).

7.4. Llenar la Mochila

Finalmente, veremos un esquema de aproximacion completamente polinomial. El proble-
ma de la mochila (también llamado suma de subconjuntos), parte de un multiconjunto de
enteros positivos X = {z1,...,x,}, y un tope t. En su versién de decisién, se pregunta si
es posible encontrar un subconjunto de X cuya suma sea exactamente t. En la versién de
optimizacion, queremos un conjunto X’ C X de suma méaxima pero sin exceder ¢ (la analogia
es que se llena una mochila lo més posible sin exceder su capacidad).

Partamos con una solucion exacta, aunque de tiempo exponencial. En el paso 7, habremos
generado una lista L; que contiene, en forma creciente, todos los pesos que se pueden sumar
con subconjuntos de {z1, ..., x;}, pero sin exceder t. Claramente el mayor elemento de L,, es
la solucién 6ptima. Inicialmente Ly = {0}. Luego, dado L; 1, podemos generar L; mediante
(a) generar L, | = {v+x;,v € L;_1}, es decir, agregar z; a todas las soluciones de L;_1; (b)
unir L; < L;—1 U L_; eliminando repetidos; (¢) eliminar los valores de L; mayores a t (los
tres pasos se pueden hacer simultaneamente en dos pasadas secuenciales simultaneas sobre
L;_1). La intuicién es que, en el paso i, podemos o no usar x;, por lo tanto consideramos
agregarlo y no agregarlo a cada solucién previa.

En esta solucién exacta, el largo de L; puede llegar a ser 2¢, por lo que el costo total del
algoritmo es O(2"). Generaremos ahora una solucién aproximada de tiempo polinomial.

La idea es que eliminaremos valores consecutivos de cada L; que sean demasiado cercanos.
Diremos que si z < y son dos valores en L;, entonces z representa y si

1L+5 < z <y,

donde 4 es un parametro que definiremos luego. Es decir, 2z es menor que y pero no esta tan
lejos. Cuando encontremos una situacion asi, eliminaremos y, dado que z esta suficientemente
cerca. Note que no es buena idea eliminar z en vez de y, pues podria ser que y exceda t y
nos quedemos sin ninguna de las dos.

Modificaremos el algoritmo exacto de manera que, luego de producir cada nueva lista L;,
le hagamos una pasada eliminando elementos que pueden ser representados por un elemento
previo. Si L; = {ly,...,l.}, no podemos eliminar l;, pero tomaremos last < l; como un
elemento que puede representar a otros. Asi, eliminaremos [, I3, ... hasta que encontremos
un I, > (14 9) - last, el cual ya no puede ser representado con last. Entonces [;, serd el
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siguiente elemento que sobrevive a la purga. Tomaremos last < [, y continuaremos de la
misma forma hasta procesar toda la lista L;.

Con esta purga, el algoritmo resulta ser aproximado, ya que podemos perder el valor
maximo de L,, pero éste estard representado por algin otro valor algo menor. ;Cuénto
menor? Supongamos que el maximo z* ya estd presente en L;, pero es eliminado porque
es representado por un valor menor, z; > 12_;5- En Ls, 21 es a su vez eliminado porque es
representado por otro valor menor, zo > 15, y asi. Al final, tendremos en L, un valor

i

Zn > T Como lo que deseamos es una (1 + €)-aproximacién para un € dado, queremos

garantizar que z, > f—:e, por lo que debe cumplirse que (1 + §)" < 1+ €. Usamos esta
desigualdad para definir § precisamente como § = (1 + €)'/™ — 1.

La pregunta final es si, usando este valor de ¢, el algoritmo resultante es de tiempo
polinomial. Note que, como el primer valor de cualquier L; es a lo menos 1, cada valor
siguiente en L; luego de la purga es a lo menos (1 + §) veces mayor que el anterior, y el
ultimo valor es a lo sumo ¢, tenemos que L; tiene a lo sumo 1+ log,_ ;¢ elementos, es decir,

logt nlogt
L; — = —
L log(1 + 9) * log(1+¢)

Como = < In(l+¢€) < estoes |[L;| <1+ M = O(@). El costo total de las n

. . 2] . .
iteraciones es entonces O(”Togt), lo cual es polinomial tanto en la entrada como en %

7.5. Bisqueda Exhaustiva

Antes de terminar, vale la pena hacer notar que un método inteligente de busqueda
exhaustiva puede encontrar la solucion 6éptima en un tiempo que, si bien es exponencial en
el peor caso, puede resultar mucho menor, incluso practico, en muchos casos de la vida real.

El método llamado backtracking consiste en construir todas las posibles soluciones, pro-
bando en cada paso de la construcciéon todas las opciones posibles. Asi se genera un arbol
virtual donde cada nodo interno es una solucién parcial y cada hoja es una solucion com-
pleta, y nos quedamos con la hoja 6ptima. Podemos evitar generar el subarbol de un nodo
cuando detectamos que es imposible obtener una solucion valida a partir de las decisiones ya
tomadas. Una sofisticacion llamada branch and bound permite también cortar la generacion
del subarbol de un nodo interno cuando puede predecir que ninguna hoja de ese subarbol
serd competitiva contra la mejor solucion generada hasta el momento.

Tomemos nuevamente el problema de la mochila. Podemos almacenar una variable global
con la mejor solucién z* conocida hasta el momento, y explorar, para cada variable x;, si
la incluimos o no en la solucion. Partimos entonces con la solucion z* = 0, correspondiente
a no incluir ningun x;, e invocamos una funcién probar(1,t). La funcién probar(i,p) genera
la mejor solucién sumando numeros de {z;,...,z,} sin exceder p. Por lo tanto, prueba no
incluir x;, invocando probar(i 4+ 1,p), e incluir x;, invocando probar(i + 1,p — x;). Cada vez
que llegamos a probar(n + 1,p), si p > 0, recalculamos z* +— méx(z*,t — p).
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Esta recursion realmente genera exhaustivamente todas las 2" soluciones, validas e invali-
das. El backtracking puede mejorarse notando que, si invocamos probar (i, p) con p < 0, para
cualquier 7, ya no tenemos chance de obtener una solucién valida porque hemos excedido
la capacidad t de la mochila. Por lo tanto, podemos abortar la recursién en esos casos, evi-
tando generar grandes subarboles inttiles. La solucién resultante de esta poda es similar a
la solucién exacta de las listas L; que vimos como preludio a la aproximacién. Sin embar-
go, podemos mejorarla mas con un enfoque de branch and bound. Por ejemplo, podemos
precalcular todas las sumas S; = xz; + ... + x,, y abortar la bisqueda en probar(i,p) si
t—p+.95; < z* es decir, ya no tenemos chance de alcanzar el mejor z* conocido incluso
agregando todos los x; que tenemos por delante.

Asimismo, la programacién dindmica es una forma de acelerar la busqueda exhaustiva,
cuando puede aplicarse. Para el mismo ejemplo de la mochila, si ¢ no es demasiado grande,
una solucién es calcular la matriz M|[i, p], que da la mejor solucién con {x1,...,x;} y tope
p. Por lo tanto, calculamos cada celda M[i,p] < max(M[i — 1,p|,z; + M[i — 1,p — x;])
(el segundo término sélo si z; < p), M[0,p] < 0y M][i,0] < 0, en tiempo constante. Asi
encontramos el 6ptimo M|n,t] en tiempo O(nt), lo que es exponencial en el tamano de la
entrada (que es O(nlogt)) pero, como se dijo, puede ser aceptable si t no es muy grande.

Finalmente, un enfoque interesante es la kernelizacion, que busca reducir el input de modo
de aplicar la solucién exponencial en algo mas pequeno. Un ejemplo simple es determinar si
un grafo tiene un clique de tamano k. Podemos partir eliminando todos los nodos de grado
menor a k, dado que no pueden participar en esos cliques. Al eliminar nodos, se reduce la
aridad de otros nodos, por lo que se puede seguir iterando hasta obtener un subgrafo con
solo nodos de grado mayor o igual a k. Finalmente, se aplica un algoritmo exponencial sobre
este grafo (con suerte muy) reducido.

7.6. Ficha Resumen

Conceptos de algoritmos aproximados.

= Recubrimiento de vértices: 2-aproximable, sin y con pesos.

Viajante de comercio: 2-aproximable si los costos son métricos, inaproximable si no.

Suma de subconjuntos: log(n)-aproximable.

Llenar la mochila: (1 + €)-aproximable completamente polinomial.

Busqueda exhaustiva usando branch and bound.

7.7. Material Suplementario

El material de este capitulo estd basado casi completamente en Cormen et al. [CLRSO01,
cap. 35], excepto por la bisqueda exhaustiva y el andlisis del recubrimiento de conjuntos.
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Muchos otros libros contienen material de algoritmos aproximados también. Mehlhorn y
Sanders [MS08, sec. 12.1 y 12.2] ven los problemas de la mochila y de scheduling como
ejemplos de aproximaciones basadas en programacion lineal y de algoritmos avaros. Baase
[Baa88, sec. 9.3 a 9.6] presenta varios algoritmos aproximados, incluyendo los problemas de la
mochila, bin packing (una variante de la mochila), y coloreo de grafos. Manber [Man89, sec.
11.5.2] ve recubrimiento de vértices, bin packing, y el viajante de comercio, incluyendo la 1,5-
aproximacién (el llamado algoritmo de Christofides). Levitin [Lev07, sec. 12.3] discute con
detalle el viajante de comercio (incluyendo Christofides) y la mochila. Kleinberg y Tardos
[KTO06, cap. 11] estudian en detalle los problemas de scheduling, ubicacién de servidores,
recubrimiento de conjuntos, recubrimiento de vértices (con otra solucién), caminos disjuntos
y mochila (donde los elementos tienen pesos y valores). Se enfocan en detalle en programacién
lineal y el método llamado de “pricing” como técnicas generales. Dasgupta et al. [DPVO0S,
sec. 5.4 y 9.2] explican sucintamente recubrimiento de conjuntos, de vértices, mochila (con
otra solucién basada en reescalar los valores y usar programacién dindmica), y un interesante
problema de clustering. Finalmente, Lee et al. [LTCTO05, cap. 9] estudian con bastante detalle
recubrimiento de vértices, viajante de comercio (y una variante), ubicacién de servidores, bin
packing, conjunto independiente maximal, mochila, ruteo en grafos, y problemas relevantes
en bioinformatica como alineamiento multiple y ordenar mediante transposiciones.

Brassard y Bratley [BBS8S8, sec. 6.6], Aho et al. [AHUS83, sec. 10.4], Weiss [Wei95, sec.
10.5], Mehlhorn y Sanders [MS08, sec. 12.4] (en menor medida), Sedgewick [Sed92, cap. 44]
(brevemente), Manber [Man89, sec. 11.5.1], y Levitin [Lev07, sec. 12.1 y 12.2] (con bastante
detalle) describen el backtracking y el branch and bound, con variados ejemplos. Los tres
primeros describen también la poda alfa-beta, que es ttil especialmente en juegos.

Aho et al. [AHUS83, sec. 10.5], Mehlhorn y Sanders [MS08, sec. 12.5 y 12.6], Kleinberg
y Tardos [KTO06, cap. 12] y Dasgupta et al. [DPVO08, sec. 9.3] describen otras heuristicas
para encontrar valores cercanos al éptimo en casos muy complejos, cuando ya no se tiene
esperanza de garantizar una aproximacion: busqueda local, algoritmos evolutivos, y otros.

Finalmente, Lee et al. [LTCTO05, sec. 9.12] describen el interesante concepto de NPO-
completitud, que define la jerarquia de complejidad para problemas de optimizacion y per-
mite demostrar que ciertos problemas de optimizacién son imposibles de aproximar (siempre
que P # NP). Entre estos problemas se encuentran la versién de optimizacién de satisfacti-
bilidad, la programacién entera, y encontrar el circuito hamiltoniano mas caro y mas barato
(este 1dltimo es, precisamente, el problema del viajante de comercio).

Otras fuentes online de interés:
» wuw.cc.gatech.edu/fac/Vijay.Vazirani/book.pdf
» www.designofapproxalgs.com/book.pdf
» pdfs.semanticscholar.org/4439/63a150ddcebbdel1f0e5930971f66d5bffe51. pdf

» www.cs.cmu.edu/ avrim/451f12/lectures/lect1106.pdf
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pages.cs.wisc.edu/"shuchi/courses/880-507/scribe-notes/all-in-one.pdf
www.cs.princeton.edu/ wayne/cs423/lectures/approx-alg-4up.pdf
theory.stanford.edu/"tim/w16/1/115.pdf .. 117.pdf

www . youtube . com/watch?v=MEz1J9wY2iM

Www.youtube. com/watch?v=4q-jmGrmxKs

www.youtube.com/watch?v=zM5MWENKZJg
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Capitulo 8

Algoritmos Paralelos

Hasta ahora hemos considerado que los algoritmos son secuenciales, es decir, ejecutan una
instruccion tras otra. Desde que la velocidad de los procesadores ha dejado de duplicarse cada
dos anos por limites fisicos, la Ley de Moore se ha traducido en el incremento del niimero de
procesadores que pueden trabajar paralelamente. Asimismo, hay cada vez un mayor interés en
usar GPUs (Graphic Processing Units, originalmente disenadas para procesar instrucciones
graficas) para implementar soluciones a diversos problemas usando paralelismo masivo tipo
SIMD (Single Instruction, Multiple Data) en procesadores més o menos convencionales.

Si bien los compiladores pueden paralelizar automaticamente algunos programas, no siem-
pre lo logran al maximo. El disenio de algoritmos paralelos requiere, en muchos casos, eliminar
dependencias secuenciales aparentes para poder partir un problema en subproblemas que se
puedan resolver al mismo tiempo.

Si bien existen muchos modelos de computacién paralela (multithreaded, distribuida,
sincrénica, etc.) los fundamentos algoritmicos son similares, por lo cual vamos a trabajar
en base a un modelo llamado PRAM (Parallel RAM), que tiene la ventaja de ser sencillo y
dejarnos concentrar en lo algoritmico. Este modelo es cercano a la programacion de GPUs.

8.1. EIl Modelo PRAM

En este modelo tenemos un ntmero arbitrario de procesadores. Todos tienen el mismo
programa, y todos ejecutan la misma instruccion al mismo tiempo, en sincronia perfecta.
Trabajan sobre una memoria global compartida. El input se encuentra en esta memoria y el
output se deja ahi también.

Una variable especial, pid, entrega un valor distinto segin qué procesador la lea: al pro-
cesador i le devuelve 7. Esto permite que los procesadores hagan cosas distintas, por ejemplo,
para poner en cero un arreglo A[l..n| teniendo n procesadores (numerados de 1 a n), basta
con que todos ejecuten la instruccién A[pid] < 0. El pid también permite que los procesado-
res tengan variables locales x mediante guardarlas en un arreglo global X[1..n], e interpretar
que z = X|[pid] (normalmente hablaremos de variables locales a cada procesador, enten-
diendo esta forma de implementarlas). Finalmente, el pid permite que algunos procesadores
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se abstengan de realizar una accién. Por ejemplo, para poner en 1 las posiciones pares de
nuestro arreglo A, podemos decir if pid méd 2 = 0 then A[pid] < 1. Lo que ocurre en este
caso es que los procesadores que dan falso en la condicion se inhabilitan hasta que los demas
terminen de ejecutar el if. No pueden ignorar el if y proseguir con la siguiente instruccion.
Esto debe ser asi para que todos trabajen sincronizadamente. En una instruccion if-then-
else, algunos se inhabilitan mientras se ejecuta la parte del if y los otros se inhabilitan luego,
cuando los primeros ejecutan la parte del else.

Esto puede llevarse a la recursion también, en la que debe mantenerse la sincronizacion.
Supongamos que en mergesort(i, j), ejecutada por los procesadores i a j, queremos que
se partan en dos mitades y se invoquen recursivamente en los subarreglos. Podemos decir:
m < L%j y luego: if pid < m then j < m else i + m + 1. Note que m, 7 y j son variables
locales. Finalmente, todos los procesadores se invocan recursivamente con mergesort(i, j), lo
que hard que la mitad de ellos se aboque al subarreglo izquierdo, [i..m], y la otra mitad al
derecho, [m + 1..j], si bien continuarén ejecutando exactamente las mismas instrucciones.

El modelo PRAM tiene tres submodelos, segiin como se permite a los procesadores acceder
a la memoria compartida. Los listamos de mds a menos restrictivos (un algoritmo en un
modelo més restrictivo es mas conveniente, pues requiere menos poder).

EREW (Exclusive Read, Exclusive Write) Dos procesadores no pueden leer ni escribir una
misma celda al mismo tiempo.

CREW (Concurrent Read, Exclusive Write) Dos procesadores pueden leer una misma celda
al mismo tiempo, pero no escribirla.

CRCW (Concurrent Read, Concurrent Write) Dos procesadores pueden leer y escribir una
misma celda al mismo tiempo. Hay submodelos de CRCW segtin lo que ocurra con
la celda escrita. El mas restrictivo es el CRCW comin, en que sélo pueden escribir
al mismo tiempo si escriben el mismo valor. Una segunda posibilidad es el CRCW
arbitrario, en que cuando varios escriben una misma celda simultaneamente, lo que
queda escrito es alguno de los valores, elegido arbitrariamente. Existen otros modelos
incluso mas convenientes, pero no se toman muy en serio en la practica.

Un ejemplo donde se hace clara la diferencia entre el poder de EREW y de CREW
es cuando queremos copiar a todas las celdas de un arreglo A[l..n] el valor de A[l]. En
el modelo CREW, podemos simplemente hacer A[pid] <— A[l], en tiempo constante. En el
modelo EREW, en cambio, debemos hacer log n iteraciones donde vamos duplicando el valor:
en el paso £ =0,...,(logn) — 1, hacemos if pid < 2° then A[pid + 2] < Alpid].

Un ejemplo del poder del modelo CRCW (comun) es el algoritmo que encuentra el maxi-
mo en un arreglo A[l..n| usando @ procesadores en tiempo constante. Llamemos a los
procesadores (i, 7), con i < j. Primero, n de estos procesadores inicializan un arreglo R[1..n]
en 1. Entonces, el procesador (i, j) compara A[i] con A[j]. Si A[i] < A[j], escribe R[i] < 0, si
no, escribe R[j| < 0. Luego de esto, s6lo el maximo A[k] conserva su celda R[k] = 1 (frente
a un empate, gana el mayor k). Entonces n procesadores miran las celdas de R y el que
encuentra el 1 entrega el indice k£ como respuesta.
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8.2. Modelo de Costos

En los algoritmos paralelos importa no sélo el tiempo de ejecucién, sino cuantos proce-
sadores necesitamos para lograrlo, es decir, cuan eficientemente usamos los procesadores.

Tendremos n en general como el tamano del input, y usaremos p para denotar la cantidad
de procesadores. Entonces T'(n,p) sera el tiempo que toma el algoritmo con un input de
tamano n y usando p procesadores. El sentido de T'(n, 1) serd especial: representard el tiempo
del mejor algoritmo secuencial, no el de mi algoritmo usando 1 procesador. Esto importa
para medir cuan bien escala algoritmo paralelo con p. La medida

T(n,1)
T'(n,p)

se llama speedup, e indica cudnto se acelera el algoritmo al usar p procesadores (en general
omitiremos la notacion O(-) en este capitulo). Como el numerador es el mejor algoritmo
secuencial, evitamos enganarnos con algoritmos paralelos que parezcan mejorar mucho al
usar mas procesadores por la mera razén de estar paralelizando un mal algoritmo. Por
ejemplo, es facil paralelizar bien un algoritmo de sorting cuadratico: cada procesador se
compara con todos, obtiene el niimero ¢ de valores menores a su celda, y luego escribe su
valor en la posicion t 4+ 1. Con n procesadores, ordenamos en tiempo n, mientras que con 1
procesador nos tomaria n?. El speedup nos daria n, que parecerfa muy bueno. Sin embargo,
la idea no es tan buena cuando sabemos que secuencialmente se puede ordenar en tiempo
nlogn: usamos n procesadores y el tiempo no baja n veces, sino solo log n veces. El verdadero
speedup es sbélo S(n,n) = logn.

Esta claro entonces que S(n,p) < p, pues si con p procesadores obtuviéramos T'(n,1) >
pT(n,p), entonces podriamos simular los p procesadores usando uno solo y obtendriamos
tiempo pT'(n, p), superando al mejor algoritmo secuencial.

Una medida relacionada con el speedup es la eficiencia,

S(n,p) =

_ Stp) _ T(1)
o = T Sty

donde vale que 0 < E(n,p) < 1. La eficiencia indica qué fraccién de la capacidad de los
procesadores se estd usando (con respecto al mejor algoritmo secuencial). Lo ideal es usar una
fraccién constante de la capacidad (que, como ignoraremos la notacién O(-), veremos como
eficiencia 1). Por ejemplo, la eficiencia de nuestro algoritmo de ordenamiento es sélo E(n,n) =
105 " sumamente baja: estamos usando demasiados procesadores para la reduccion en tiempo
que estamos obteniendo. Lo mismo ocurre con nuestro algoritmo CRCW para encontrar el
maximo: a pesar de que su tiempo es s6lo T'(n,n*) = 1, su eficiencia es E(n,n?) = -~ = %

En la mayoria de los algoritmos es factible que, si lo disené para p procesadores pero tengo
solamente £ disponibles, cada procesador haga el trabajo de k procesadores “virtuales”. Asi,
se obtiene T'(n, ?) = kT (n,p). Es entonces conveniente disefiar los algoritmos usando todos
los procesadores que se desee, entendiendo que no significa que necesitemos esa cantidad,

sino que en caso de tener menos el tiempo escalara en forma correspondiente. Asi, cuando
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esta claro que el algoritmo escala de esta manera, se suele presentar su tiempo usando dos
medidas:

» T'(n) (“time”) es el tiempo que demora el algoritmo usando todos los procesadores que
desee. Indica el grado de paralelizacién que se puede alcanzar: por mas que tenga mas
procesadores, el tiempo no puede bajar de T'(n).

» W(n) (“work”) es el trabajo total que realiza el algoritmo, sumando todos los procesa-
dores pero sin contar el tiempo que pasan inhabilitados. Indica el tiempo que demoraria
ejecutar el algoritmo con un solo procesador que simulara a todos. Un algoritmo sélo
puede tener eficiencia maxima si W(n) = T'(n, 1).

Los algoritmos que se describen asi pueden emularse con cualquier cantidad deseada p
de procesadores, en tiempo

W(n)
—

Note que esto significa que no vale la pena usar mas de

T(n,p) = T(n)+

W(n)
T(n)

procesadores. Con esa cantidad ideal, el tiempo es el mejor posible:

T(n,p*) = T(n)
y la eficiencia también:
. T(n,1 T(n,1
Enyy = D T
p*T(n, p*) W(n)

(que es 1 si el algoritmo bésico es el mejor posible). Si usamos menos de p* procesadores,

@. Si usamos mas de p*
procesadores, el tiempo sigue siendo T'(n), pero la eficiencia empieza a decrecer, a %.

El Lema de Brent establece que un algoritmo EREW donde se pueda calcular en tiempo
constante qué procesadores estan activos en cada momento, puede siempre expresarse como
T(n) y W(n) y obtener el T'(n,p) que vimos para cualquier p. El lema es algo técnico, por

lo cual seguiremos describiendo cémo los algoritmos que vemos permiten hacer esto.

la eficiencia sigue siendo alta pero el tiempo T'(n, p) aumenta, a

8.3. Sumando un Arreglo

Comenzaremos con un problema muy sencillo que nos permite ilustrar los puntos ante-
riores. Consideremos un arreglo A[l..n], del que tenemos que obtener la suma de todos sus
elementos, S = Y"1 | Ali] (podemos usar cualquier otra operacién asociativa). Consideremos
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que tenemos n procesadores. Lo que podemos usar, entonces, es una estructura de tipo torneo
de tenis en [logn| pasos, numerados 0 a [logn] — 1. En el paso ¢, los procesadores ejecutan

if (pid —1) méd 277 =0 A pid + 2° < n then Alpid] < Alpid] + Alpid + 2°].

Entonces, en el paso ¢ = 0, habremos hecho A[1] < A[1] + A[2], A[3] <= A[3] + A[4], A[5] +
A[5]+ A6], A[7] + A[7]+ A[8], etc. En el siguiente paso, ¢ = 1, haremos A[1] <— A[1] + A[3],
A[5] « A[5] + A[7], etc. En el paso ¢ = 2, haremos A[1] <— A[1] + A[5], etc. Es facil ver que,
cuando terminemos, la suma estarda en A[l].

Este es un algoritmo EREW. Lo hemos descrito para n procesadores, donde toma tiempo
T'(n,n) =logn y su eficiencia es E(n,n) = ;35— = 1o§;n'

. Puede mejorarse la eficiencia usando menos procesadores? Si tenemos p procesadores,
cada uno puede primero sumar % nuameros, vy luego los p procesadores suman los p niimeros

usando el algoritmo paralelo visto. El tiempo total es T'(n,p) = % + log p. En términos de
orden, esto es equivalente a T'(n,p) = % + logn. Por ello, podemos describir el costo del
algoritmo en forma genérica en términos de tiempo y trabajo: T'(n) = logn y W(n) = n
(pues en total se realizan § + % + ... 4+ 1 < 2n sumas). El nimero ideal de procesadores

para este algoritmo es entonces p* = Toen €L el cual el tiempo aun serd T'(n,p*) =logn y la

eficiencia habrd mejorado a E(n,p*) = 1.

8.4. Parallel Prefix

Consideremos un operador asociativo +. Dado un arreglo A[1..n], el problema de parallel
prefiz es el de reescribir A[i] < Z;’:l Alj]. Esto puede resolverse facilmente en T'(n,1) =n
mediante hacer, para i = 2,...,n, A[i] < A[i — 1] + A[i]. Pero este algoritmo es intrinsica-
mente secuencial, jpuede paralelizarse?

8.4.1. Un método recursivo

Veamos primero una técnica recursiva, que se invocard como pp(1,n). En general, pp(a, b)
calculara el parallel prefix correcto para Ala..b], es decir, A[k] < Z?:a Alj] para todo a <
k < b. Para resolver pp(a, b) con los procesadores numerados a a b, calcularemos m < L‘%“bj
Los procesadores a a m calcularan pp(a, m), mientras que los procesadores m+1 a b calcularan
pp(m—+1,b). Una vez terminadas ambas mitades (que se ejecutan simultdneamente), notamos
que los valores calculados en Ala..m] ya estdn correctos, mientras que a los que estdn en
A[m + 1..b] s6lo necesitan que se les haga A[k] <— A[m] + A[k] (todos a la vez, en una unica
instruccién if pid > m then A[pid] <— Alm] + Alpid]).

Este es un algoritmo CREW, pues al corregir la parte derecha del arreglo todos leen la
misma celda A[m]. jPodemos convertirlo en EREW? Si, y en este caso sin costo (asintético)
adicional. Calculemos, a la par de A, un arreglo B donde pp(a, b) dejard escrito B[k| = A[b]
para todo a < k < b. Entonces, al volver de las invocaciones pp(a, m) y pp(m+ 1, b) haremos

if pid > m then A[pid] < Blpid — (m — a + 1)] + A[pid],
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lo cual es EREW. También, para reestablecer el invariante sobre B, haremos

if pid > m then B(pid] < B[pid — (m — a + 1)] + B|pid|

if pid < m then Blpid] < B[pid + (m — a + 1)]

if pid = m then Blpid] < Blb].
Ahora bien, este algoritmo tiene tiempo T'(n,n) = logn y eficiencia E(n,n) = @.
Hemos logrado paralelizar la solucién, pero ;podemos mejorar la eficiencia, como lo hicimos
para sumar n elementos? Esta vez no podemos porque, si bien T'(n) = logn, el trabajo que
se hace es W(n) = nlogn. Esto se deduce de que, para una invocacién de pp de tamano n,
el trabajo es t(n) = 2t(%) 4+ n, este dltimo n para corregir los valores de la mitad derecha.

Por lo tanto, el niimero éptimo de procesadores es p* = n, con eficiencia E(n,p*) = ; L
ogn

Dicho de otro modo, no podemos tener eficiencia 1 porque W (n) es mayor que T'(n, 1).

8.4.2. Un método mas eficiente

Podemos, en cambio, disenar una paralelizacion completamente distinta, que si nos entre-
gara una mejor eficiencia. La idea es que primero realizamos un torneo de tenis “ascendente”,
donde en el paso ¢ cada celda que sea multiplo de 27! suma a su contenido la que estd a
distancia 2¢ hacia atrds. Ahora un torneo de tenis “descendente” completa el calculo: cada
celda multiplo de 2! le agrega su contenido a la que estd a distancia 2° hacia adelante.
Concretamente, para £ =0, ..., [logn]| — 1, haremos

if pid méd 271 =0 A pid > 2° then Alpid] < Alpid — 2] + Alpid]
y luego, para ¢ = [logn]| —1,...,0, haremos
if pid méd 271 =0 A pid < n — 2° then Alpid + 2°] < Alpid] + A[pid + 2.

El algoritmo funciona porque, al terminar la fase ascendente, las celdas que son miltiplo
de 2 (y no de 2*!) quedan sumadas con las 2° — 1 celdas anteriores. Luego, en la fase
descendente, se les suma la celda a distancia 2¢ hacia atrés, la cual es multiplo de 27! y, por
hipotesis inductiva, ya tiene su valor correcto calculado.

Consideremos la iteracién ascendente y n = 8. En el paso £ = 0, haremos A[2] <
All] + AJ2], A[4] < A[3] + A[4], A[6] < A[5] + A6], y A[8] + A[7] + A[8]. En el paso
¢ = 1 haremos A[4] « A[2] + A[4] v A[8] < A[6] + A[8]. En el paso ¢ = 2 haremos
A[8] < A[4] + A[8]. Ahora la fase descendente comienza con ¢ = 2, en que no hace nada.
Con ¢ =1 hace A[6] < A[4] + A[6]. Con £ = 0 hace A[3] < A[2] + A[3], A[5] « A[4] + A[5],
y A[7] < A[6] + A[7]. Puede verificarse que las sumas se han realizado correctamente.

Este algoritmo es EREW, con T'(n) = logn y W(n) = n. Se puede correr con p* = Toan
procesadores y obtener tiempo T'(n, p*) = logn y eficiencia E(n, p*) = 1, mediante hacer que
cada procesador se encargue de :z% celdas consecutivas de A.
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8.5. List Ranking

Suponga que tiene una lista implementada en un arreglo A[l..n], es decir, cada elemento
Ali] tiene indicado en N[i] cudl es su siguiente elemento, con el tiltimo elemento de la lista
indicado como NJ[i] = 0. Nos gustaria poner el arreglo A en orden lineal, pero para ello
necesitamos saber cudl es su posicion. Decimos que el rank de una posicion ¢ es su distancia
al final de la lista. Si conseguimos calcular todos los ranks en un arreglo R, entonces podremos
poner A en orden lineal mediante simplemente A[n + 1 — R[pid]] < A[pid].

Pero jcomo calcular el rank de todos los elementos? Es facil hacerlo secuencialmente,
entrando en la lista recursivamente hasta hallar el iltimo elemento y luego ir asignando los
ranks en forma creciente a la vuelta de la recursion. Pero jpuede paralelizarse?

Procederemos en logn iteraciones. En el paso ¢, todos los elementos a distancia < 2*!
del final de la lista descubriran su rank, y en vez de apuntar al siguiente de la lista, quedaran
apuntando en N al elemento 2! posiciones hacia adelante. Para ello, inicializaremos R con
if N[pid] = 0 then R[pid] < 1 else Rpid] < 0. Luego haremos, para ¢ = 0,..., [logn] —1,

if N[pid] #0 A R[N[pid]] # 0 then R[pid] < R[N[pid]] + 2°
if N[pid] # 0 then N|[pid] < N[N [pid]].

Consideremos la lista 8 -+ 7 -6 -5 -4 -3 — 2 - 1 — 0 (identificando los
elementos con sus ranks, poniendo en bold los elementos que ya conocen sus ranks, y tomando
el 0 como nulo). Al inicializarse, sélo el 1 conoce su rank. Luego de ejecutar para ¢ = 0,
pasamos a 8 -7 —6 -5 —4 — 3 — 2 — 1 — 0. Sin embargo, al hacer que N apunte
dos posiciones hacia adelante, nos quedan en la practica dos listas, 8 -6 -4 -2 =0y
7—5—3—1— 0. Al ejecutar para ¢ = 1 aprendemos nuevos ranks: 8 -6 >4 — 2 — 0
y7—5—3—=1— 0. Al doblar N nuevamente, nos quedan cuadro listas, 8 —+ 4 — 0,
6—>2—>0,7—-3—0,y5—1— 0. En la dltima iteracién, para ¢ = 2, se aprenden todos
los ranks que faltan.

El algoritmo resultante es EREW, con T'(n) = logn y W(n) = nlogn, por lo que no
puede lograrse eficiencia 1 mediante reducir la cantidad de procesadores.

8.6. Tour Euleriano

Asi como el list ranking es una forma de escribir una lista en forma lineal en un arreglo,
el tour euleriano es una forma de hacerlo para arboles (consideramos arboles en el sentido
de grafos, es decir grafos no dirigidos, conexos y aciclicos). Un tour euleriano es un recorrido
en profunidad del arbol que pasa por todos sus nodos, listando cada arista dos veces (una
de ida y una de vuelta del recorrido). Es muy sencillo hacerlo con un recorrido DFS a partir
de cualquier nodo, en tiempo 7T'(n, 1) = n, pero jes posible paralelizarlo?

Consideremos la siguiente representacion del arbol. Cada nodo ¢ tiene una lista enlazada
de las aristas que inciden en él. El puntero a la lista es E(i), y cada elemento de la lista
corresponde a una arista (4, j) para algin nodo j. La lista termina con el puntero 0. Para
cada arista (i,7), next(i,j) es el siguiente elemento de la lista de i. Asimismo, como las
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aristas no son dirigidas, la (4, 7) también esta representada como (7,7) en la lista del nodo j.
Supondremos que existen punteros directos entre las dos orientaciones de cada arista.

Usaremos las dos notaciones de la misma arista, (¢,7) y (j,4), para denotar en qué direc-
cién las recorre el tour euleriano (de 7 hacia j en el primer caso, de j hacia i en el segundo).
Asi, podemos pensarlas como dos aristas dirigidas distintas. Es posible determinar, en para-
lelo, cudl serd la arista que sigue a cualquier arista dirigida (7, j) en el tour euleriano. A esta
siguiente arista la llamaremos nextTour(i, j) y se cumple que

nextTour(i,j) = { %%.t(j’ ), S% next(i,j) # 0
(7), si no.

Notese que la expresiéon efectivamente trata a la lista de aristas que inciden en j como si
fuera circular (si next(j,7) es la tltima, volvemos al comienzo con E(j)). Asi, nextTour(i, j)
nos da la arista de j que sigue a (j,i) en su lista, y recorre todos los otros vecinos de j
antes de volver a entregar (7,4). Si j es una hoja, el resultado es (j,7) inmediatamente. Asi,
nextTour(i, j) nos da un tour euleriano de todo el subérbol que parte en el nodo j y termina
con la arista (j,7), que es la misma (7, j) con la que entramos pero en direccién opuesta.

Si tenemos, entonces, a todas las aristas (i, 7) en un arreglo, podemos ejecutar un algo-
ritmo de list ranking para determinar en qué posiciéon del tour ubicar a cada arista (i, 7).
Para ello, primero inicializamos N[k| < nextTour(i, j), donde k representa la arista (i, 7).
El tour es circular: podemos partir de cualquier arista (7, j), poniendo su celda N[k] < 0, y
tendremos el tour que parte en (j,7) y termina luego de volver por (4, 7). El costo de construir
el tour euleriano es entonces igual al de hacer list ranking.

8.7. Ordenamiento

Veamos ahora otra primitiva importante: ordenar un arreglo A[1..n]. Veremos cémo adap-
tar MergeSort. La idea sera particionar el arreglo por la mitad y ordenar recursivamente las
dos mitades en paralelo. La parte compleja es entonces como hacer la mezcla de las dos
mitades ya ordenadas, A; = A[l..5] y Ay = A[§ + 1.n].

El mecanismo secuencial de mezclado no parece facil de paralelizar, pero hay en realidad
varias formas de hacerlo. Veremos dos.

8.7.1. Un algoritmo EREW

Una particularmente elegante es la siguiente. La mitad de los n procesadores se dedicara
a mezclar las posiciones pares de A; y As, dejando el resultado en P. La otra mitad mezclara
las posiciones impares y dejaré el resultado en I. Este mezclado se hard recursivamente. Una
vez que tengamos P e I, la mezcla de ambas es sumamente simple: I[1] es el menor de los
dos minimos A;[1] y As[1], por lo que se ubica en A[1]. Luego, para ¢ > 1, los elementos P[i
e I[i + 1] deben ser escritos en A[2i..2i + 1], en el orden que les corresponda (es decir, los
comparamos y los escribimos).
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La razén de esto es la siguiente: x = P[i] es el i-ésimo elemento de la mezcla de los
elementos pares de las secuencias originales. Por lo tanto, x es mayor que otros i—1 de aquellos
elementos pares. Pero cada uno de aquellos elementos pares, incluido x, estaba precedido de
un elemento impar menor, por lo cual x también es mayor que ¢ elementos impares. Por lo
tanto, la posicién de x en la secuencia completa mezclada es > (i — 1) + (i) = 2i — 1. Con un
razonamiento similar, y = I[i + 1] es mayor que i elementos impares de la secuencia original,
y que i — 1 elementos pares (no i + 1, pues los dos primeros impares no estan precedidos
de pares), por lo cual la posicién de y en la secuencia mezclada es > 2i — 1. Es decir, x e
y deben ubicarse a partir de la posicién 2i de A. Como los siguientes elementos, P[i + 1] e
I[i 4 2], deberédn ubicarse a partir de la posicién 2i 4 2, considerando todas las posiciones,
e y s6lo pueden posicionarse en A[2i..2i + 1].

El algoritmo merge(1,n) procede entonces de la siguiente forma. Primero, cada procesa-
dor i se encarga de ubicar A[i] en el lugar que le corresponde (reutilizamos A; para Py A,
para [):

if pid < {gJ then b ¢ 0;1 « {gJ else b« EJ e

if pid — b méd 2 = 0 then d « H +V”d—bJ else d b+ V—bJJF Pﬂd_ﬂ

2 9 2 9
Ald] + Alpid],

luego se invoca recursivamente como merge(b,t), y finalmente § procesadores se encargan
cada uno de comparar dos celdas, Afi] y A[[ %] +i+1], y ubicarlas ordenadas en A[2i..27 + 1]
(més un tratamiento especial para escribir A[1] <— A[| 5| + 1]y, si n es par, Aln] < A[|§]]).
La recursion termina cuando los arreglos son de tamano 1, como siempre.

El algoritmo de mezclado resultante es EREW, de tiempo T'(n,n) = logn. El Merge-
Sort consiste de logn invocaciones recursivas, cada una con su mezclado, por lo cual tiene
T(n,n) =log’ny E(n,n) = loén’

El algoritmo se puede correr con menos procesadores, pero la eficiencia no aumentara
significativamente porque realiza trabajo nlog®n. Ejecutado con p procesadores, podemos
repartir la tarea de mezclado de manera que cada procesador se encargue primero de dis-

tribuir % celdas en sus posiciones segiin su paridad, y a la vuelta de la recursién (cada una

con 3 elementos y £ procesadores) cada procesador se encargue de ubicar le pares en su
posicién final. La recursion termina cuando nos queda 1 procesador, en cuyo caso se mezcla
secuencialmente en tiempo %. El tiempo total de mezclado es entonces glog p. El ordena-
miento completo tiene entonces tiempo T'(n,p) = %lognlog p, v la eficiencia sera entonces

E(n,p) =

~ logp”

8.7.2. Un algoritmo CREW con mejor eficiencia

Consideremos una forma distinta de mezclar. Cada celda Aj[i] estard a cargo de un
procesador. Este realizard una bisqueda binaria de As[i] en A; (las igualdades deben des-
empatarse en forma consistente, por ejemplo, poniendo antes a los elementos de Ay, lo que
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ademds nos da un ordenamiento estable). Digamos que la bisqueda binaria arroja que exis-
ten p elementos menores que As[i] en A;. Entonces podemos copiar As[i] en su posicién final,
Ali + p| + Asli].

Estas § busquedas binarias ocurren en paralelo para todos los elementos de A, y se

hacen otras 7 busquedas andlogas en Ay, para los elementos de A;. Luego de ellas, cada

procesador escribe su celda en la posicion final.

El resultado es un algoritmo CREW de mezclado que toma tiempo T/ (n,n) = logn. El
MergeSort completo requiere entonces tiempo T'(n,n) = Tys(n,n) - logn = log* n, y obtiene
una eficiencia E(n,n) = loén' A pesar de que el algoritmo realiza trabajo nlog®n, veremos
que también podria realizar trabajo nlogn, de modo de obtener el mismo tiempo usando

oo procesadores, y asi mejorando la eficiencia.
ogn

Tomemos solamente 2l:gn procesadores por un momento. Cada uno ahora estara a cargo

de logn celdas consecutivas de A,. Lo que hard serd entonces buscar binariamente el ultimo
elemento de su zona en A;. Al final, habremos obtenido las posiciones pi,pa, ..., Pn/210gn)
donde cada zona de A, termina en A;. Por lo tanto, cada procesador i estard a cargo de
mezclar su zona As[(i — 1)575 + Ligi—], con la zona Ai[p;—1 + 1.p] (con pg = 0). El

resultado de la mezcla se debe escribir a partir de A[(i — 1)575 + pi—1 + 1]. Alguien debe

también copiar la parte final A;[p,/(210gn) + 1..5] al final de A.

Todos los procesadores pueden entonces trabajar en paralelo haciendo su mezcla y escri-
biendo en la zona ya predeterminada de A, sin estorbarse. El problema con este esquema
es que la particion de A; puede ser desbalanceada, tocandole a algunos procesadores mas
trabajo que a otros. En el peor caso, algiin procesador puede trabajar sobre ©(n) celdas y
los demas deberan esperarlo.

La solucién a esto es que los otros nggn procesadores particionen A; en forma regular,

y busquen binariamente la posicién que les corresponde en As, obteniendo las posiciones

: , . PR .
q1,92, - - -, Gn/(210gn)- S1 ahora unimos las posiciones regulares p; = I5Teey con las irregulares
T

p; en Ay, obtendremos —— cortes p; en A; donde ningun intervalo es mas largo que logn. Si-

logn
. . .. ;- on . ..
mllarmente, unimos las posiciones regulares q;, = Z2logn con las 1rregulares q; para partlclonar

Ay con @ cortes ¢/. Una vez realizadas las uniones, cada procesador i puede dedicarse a

mezclar el intervalo A, [p! , +1..p}] con As[q!" ,..q}], escribiendo a partir de A[p} ,+¢/ , +1],
sin estorbarse y con la garantia de procesar a lo sumo 2logn celdas entre los dos arreglos.
Algun procesador debe también encargarse mezclar los dos intervalos finales de A; y A,.

Nos falta resolver el subproblema de cémo unir los conjuntos ordenados p; y pi, 0 ¢; y
¢;. Note que estamos frente a un problema de mezclado similar al que estamos intentando
resolver, con la diferencia de que los conjuntos suman 1ogn elementos, por lo que tenemos
un procesador por cada elemento y podemos mezclarlos usando nuestro método bésico para

cuando tenemos un procesador por elemento.

En total, tenemos un algoritmo CREW para ordenar con T'(n, %) =log’ny E(n, %) =
1. No es dificil modificarlo para p < foen Procesadores, obteniendo T(n,p) = log n(g +logn)

y eficiencia 1.
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8.8. Maximo de un Arreglo en CRCW

Vimos que, en el modelo CRCW, se podia obtener el maximo de un arreglo en tiempo
constante usando @ procesadores. Diremos que este es el algoritmo de dos pasos. Tiene
un tiempo muy bueno, pero su eficiencia es muy baja, % . Es posible mejorar esa eficiencia?

Tratemos de ejecutar algo parecido a este algoritmo con n procesadores. Dividamos el
arreglo en grupos de tamano k, de manera que tengamos suficientes procesadores para darle
k(kz_ L) procesadores a cada grupo, asi éste puede usar el algoritmo de dos pasos.

Al principio, haremos 5 grupos de 2 elementos. Nos basta un procesador para determinar
el maximo de cada grupo. Ahora nos quedan § mdximos, pero seguimos teniendo n procesa-
dores. Esto nos permite definir grupos de tamano 4, pues tendremos ¢ grupos en total y cada
uno necesitard £2 = 6 procesadores, de modo que tenemos suﬁc1entes Una vez encontrados
estos § maxnnos podremos formar grupos de tamano 16, pues tendremos ¢'iz = 155 grupos
y neces.ltaremos 16215 = 120 procesadores por grupo.

Mas formalmente, en la iteracion ¢ = 1 tenemos n candidatos a maximo. El tamano del
grupo es g; = 2. Veamos que podemos tener gy = g7 | = 227" en general. Al comenzar la
iteracion £, tenemos

n n n n

G- gr1  21.92.04...9202 T gl¥2rare42i? T 92fiod

candidatos, por lo cual podemos formar grupos de tamano g, = 221571, con lo que en total

. ’ -1 £ _
tendremos 7 g;‘ i 22? - grupos. Cada grupo necesitara M < 221 procesadores. El

0
nimero total de procesadores que necesitamos es entonces < —r— 22l =,
Es decir, el nimero de procesadores por grupo se puede ir elevando al cuadrado en cada
iteracién del algoritmo, por lo cual éste termina luego de O(log log n) pasos. Por lo tanto,
. . . 1
conseguimos tiempo T'(n,n) = loglogn, con eficiencia F(n,n) = w, mucho mejor que
dado que, usando muchos menos procesadores, tenemos sélo un leve incremento en el tiempo.

8.9. Ficha Resumen

= Modelo PRAM y medidas de eficiencia.

= Suma (u operadores asociativos) en arreglos: T'(n) = logn, W(n) = n EREW.
» Parallel prefix: T'(n) = logn, W(n) = n EREW.

» List ranking: T'(n) = logn, W(n) = nlogn EREW.

» Tour euleriano: T'(n) = logn, W(n) =n EREW.

= Ordenar: T(n,n) =log’ny E(n,n) = -
= Ordenar: T'(n, 577) = log’ny E(n, foen) = 1 CREW.

» Méaximo o minimo: T'(n,n) = loglogn, E(n n) = 10glogn CRCW comun.
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8.10. Material Suplementario

Manber [Man89, cap. 12] dedica un capitulo muy elegante a algoritmos en el modelo
PRAM, en el que basamos la mayor parte de nuestro capitulo, exceptuando el MergeSort
paralelo. Tiene un problema ma&s que no cubrimos, sobre sumar dos nimeros binarios en
paralelo. Asimismo, explica el Lema de Brent con algo mas de detalle. A partir de la seccién
12.4 considera problemas en otros modelos de paralelismo, incluyendo un circuito que ordena
en T'(n,n) = log®n en base al cual presentamos nuestro algoritmo EREW. Sedgewick [Sed92,
cap. 40] describe este mismo circuito.

Baase [Baa88, cap. 10] trata algoritmos PRAM también y discute unos pocos de los que
vemos en el capitulo, en particular nuestro MergeSort CREW. También describe un algoritmo
bastante mas complicado para detectar las componentes conexas de un grafo G(V, F) en
tiempo log |V| usando 2(|V| + |E|) procesadores, en el modelo CRCW arbitrario. Al final
incluye técnicas para mostrar cotas inferiores al tiempo T'(n) de algoritmos PRAM.

Para profundizar en algoritmos paralelos, una excelente fuente es JaJa [J4j92], que incluye
mucho més material que el resto de la bibliografia mencionada: modelo PRAM y sus costos,
técnicas generales, algoritmos en listas y en arboles, bisqueda y ordenamiento, algoritmos
en grafos generales y planares, en strings, algoritmos numéricos, algoritmos aleatorizados, y
cotas inferiores. En particular, el libro describe un algoritmo de ordenamiento con 7'(n) =
logn y W(n) = nlogn en el modelo CREW, indicando que puede llevarse (en forma no
trivial) a EREW.

Otras fuentes online de interés:
» legacydirs.umiacs.umd.edu/"vishkin/PUBLICATIONS/classnotes.pdf
= homes.cs.washington.edu/"arvind/cs424/notes/12-6.pdf
» stanford.edu/"rezab/classes/cme323/S17/notes/lecturel9/final prep.pdf

» www.ida.liu.se/ chrkeb5/courses/MULTI/slides/theory2.pdf
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Apéndice A
Conceptos Basicos

En este apéndice enunciamos resultados que deben ser conocidos para poder seguir este
curso, y damos referencias donde puede encontrarse una descripciéon completa.

A.1. Analisis de Algoritmos

Notacién O, €2, o0, w, manipulacion.
Teorema maestro y solucion de recurrencias.
Definicién de caso promedio y peor caso.

A.2. Técnicas Algoritmicas Basicas

A.2.1. Dividir y Reinar

ej busqueda binaria, O(logn).

A.2.2. Algoritmos Avaros

A.2.3. Programacién Dinamica

A.3. Arboles de Bisqueda

Operaciones: buscar, insertar, borrar, rangos, predecesor y sucesor.

A.3.1. Arboles binarios

O(logn) si los elementos vienen en permutaciones aleatorias.
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A.3.2. Arboles AVL
O(logn).

A.3.3. Arboles 2-3
O(logn).

A.4. Hashing

Operaciones: buscar, insertar, borrar.
O(1) promedio si la funcién se comporta como random

A.4.1. Hashing abierto
Linked list

A.4.2. Hashing cerrado

Rehashing, linear probing, factores de carga permitidos.

A.5. Ordenamiento

A.5.1. MergeSort
O(nlogn).

A.5.2. QuickSort

O(nlogn) promedio, pero mas rapido.

A.6. Colas de Prioridad

Operaciones

A.6.1. Heaps
O(logn)

A.6.2. HeapSort
O(nlogn) e in-place.
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A.7. Mediana de un Arreglo

Y generalizacion a k-ésimo.

A.7.1. QuickSelect
O(n) promedio

A.7.2. Algoritmo lineal

O(n) peor caso, constante involucrada

A.8. Arboles y Grafos

A.8.1. Recorrido en DFS

De un arbol, y de un grafo para obtener un arbol generador

A.8.2. Arbol cobertor minimo

Algoritmos de Kruskal y Prim.

A.8.3. Caminos minimos

Algoritmos de Dijskstra y Floyd.
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