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a Center for Web Research, Dept. of Computer Science, University of Chile.
Blanco Encalada 2120, Santiago, Chile.
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Abstract

The problem of Proximity Searching in Metric Spaces consists in finding the el-
ements of a set which are close to a given query under some similarity criterion.
In this paper we present a new methodology to solve this problem, which uses a
t-spanner G′(V,E) as the representation of the metric database. A t-spanner is a
subgraph G′(V,E) of a graph G(V,A), such that E ⊆ A and G′ approximates the
shortest path costs over G within a precision factor t.

Our key idea is to regard the t-spanner as an approximation to the complete graph
of distances among the objects, and to use it as a compact device to simulate the
large matrix of distances required by successful search algorithms such as AESA.
The t-spanner properties imply that we can use shortest paths over G′ to estimate
any distance with bounded error factor t.

For this sake, several t-spanner construction, updating, and search algorithms are
proposed and experimentally evaluated. We show that our technique is competitive
against current approaches. For example, in a metric space of documents our search
time is only 9% over AESA, yet we need just 4% of its space requirement. Similar
results are obtained in other metric spaces.

Finally, we conjecture that the essential metric space property to obtain good t-
spanner performance is the existence of clusters of elements, and enough empirical
evidence is given to support this claim. This property holds in most real-world
metric spaces, so we expect that t-spanners will display good behavior in most
practical applications. Furthermore, we show that t-spanners have a great potential
for improvements.
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1 Introduction

Proximity searching is the problem of, given a data set and a similarity cri-
terion, finding the elements of the set that are close to a given query. This
problem has a vast number of applications. Some examples are:

• Non-traditional databases. New so-called “multimedia” data types such as
images, fingerprints, audio and video cannot be meaningfully queried in the
classical sense. In multimedia applications, all the queries ask for objects
similar to a given one, whereas comparison for exact equality is very rare.
Some example applications are image, audio or video databases, face recog-
nition, fingerprint matching, voice recognition, medical databases, and so
on.
• Text retrieval. Huge text databases with low quality control are emerging

(being the Web the most prominent example), and typing, spelling or OCR
(optical character recognition) errors are commonplace in both the text and
the query. Documents which contain a misspelled word are no longer re-
trievable by a correctly written query. Thus many text search engines aim
to find documents containing close variants of the query words. There exist
several models of similarity among words (variants of the “edit distance”
[32]) which capture very well those kind of errors. Another related appli-
cation is spelling checkers, where we look for close variants of a misspelled
word in a dictionary.
• Information retrieval. Although not considered as a multimedia data type,

unstructured text retrieval poses problems similar to multimedia retrieval.
This is because textual documents are in general not structured to easily
provide the desired information. Although text documents may be searched
for strings that are present or not, in many cases it is more useful to search
them for semantic concepts of interest. The problem is basically solved by
retrieving documents similar to a given query [5], where the query can be
a small set of words or even another document. Some similarity approaches
are based on mapping a document to a vector of real values, so that each
dimension is a vocabulary word and the relevance of the word to the doc-
ument (computed using some formula) is the coordinate of the document
along that dimension. Similarity functions are then defined on that space.
Notice, however, that the dimensionality of the space is very high (thousands
of dimensions).
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• Computational biology. DNA and protein sequences are the basic objects
of study in molecular biology. They can be modeled as texts, and in this
case many biological quests translate into finding local or global similarities
between sequences, in order to detect homologous regions that permit pre-
dicting functionality, structure or evolutionary distance. An exact match is
unlikely to occur because of measurement errors, minor differences in genetic
streams with similar functionality, and evolution. The measure of similarity
used is related to the probability of mutations such as reversals of pieces of
the sequences and other rearrangements (global similarity), or variants of
edit distance (local similarity).
• There are many other applications, such as machine learning and classifica-

tion, where a new element must be classified according to its closest existing
element; image quantization and compression, where only some vectors can
be represented and those that cannot must be coded as their closest repre-
sentable point; function prediction, where we want to search for the most
similar behavior of a function in the past so as to predict its probable future
behavior; and so on.

All those applications have some common characteristics, captured under the
metric space model [16]. There is a universe X of objects, and a nonnegative
distance function d : X×X −→ R

+ ∪ {0} defined among them. This distance
satisfies the three axioms that make (X, d) a metric space:

d(x, y) = 0 ⇔ x = y (strict positiveness)

d(x, y) = d(y, x) (symmetry)

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

These properties hold for many reasonable similarity functions. The smaller
the distance between two objects, the more “similar” they are. We have a
finite database U ⊆ X, which is a subset of the universe of objects and can be
preprocessed to build an index. Later, given a new object from the universe, a
query q ∈ X, we must retrieve similar elements found in the database. There
are two typical queries of this kind:

Range query (q, r): Retrieve all elements which are within distance r to q.
That is, (q, r) = {x ∈ U, d(x, q) ≤ r}.

k-Nearest neighbor query NNk(q): Retrieve the k elements from U closest
to q. That is, NNk(q) such that ∀ x ∈ NNk(q), y ∈ U − NNk(q), d(q, x) ≤
d(q, y), and |NNk(q)| = k.

The distance is assumed to be expensive to compute (think, for instance, in
comparing two fingerprints). Hence, it is customary to define the complexity
of the search as the number of distance evaluations performed, disregarding
other components such as CPU time for side computations, and even I/O
time. Given a database of n = |U| objects, queries can be trivially answered
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by performing n distance evaluations. The goal is to structure the database
so as to compute much fewer distances.

A particular case of this problem arises when the space is R
D, for which there

are effective methods such as kd-trees, R-trees, and X-trees [23,7]. However,
for high dimensions those structures cease to work well. In this paper we
focus in general metric spaces, although these solutions are also well suited to
D-dimensional spaces.

It is interesting to notice that the concept of “dimensionality” can be trans-
lated into metric spaces as well, where it is called intrinsic dimensionality.
Although there is not an accepted criterion to measure intrinsic dimensional-
ity, in general terms, it is agreed that a metric space is high dimensional —
that is, it has high intrinsic dimensionality — when its histogram of distances
is concentrated. A high intrinsic dimension degrades the performance of any
similarity search algorithm [16].

By far, the most successful technique for searching metric spaces ever proposed
is AESA [40,16]. Its main problem, however, is that it requires precomputing
and storing a matrix of all the n(n − 1)/2 distances among the objects of U.
This huge space requirement makes it unsuitable for most applications.

Let us now switch to graph theory and the t-spanner concept. Let G(V, A) be
a connected graph with a nonnegative cost function d(e) assigned to its edges
e ∈ A. The shortest path among every pair of vertices u, v ∈ V is the one
minimizing the sum of the costs of the traversed edges. Let us call dG(u, v)
this shortest path cost (or minimum sum). Shortest paths can be computed
using Floyd’s algorithm [22] or applying |V | iterations of Dijkstra’s algorithm
[20] taking each vertex as the origin node [19,41]. A t-spanner is a subgraph
G′(V, E), with E ⊆ A, which permits us to compute path costs with stretch t,
that is, ensuring that for any u, v ∈ V, dG′(u, v) ≤ t · dG(u, v) [34,33,21]. We
call the latter the t-condition. The t-spanner problem has applications in dis-
tributed systems, communication networks, architecture of parallel machines,
motion planning, robotics, computational geometry, and others.

Our main idea is to combine both concepts, so as to use the t-spanner as a
bounded-error approximation to the full AESA distance matrix, in order to
obtain a competitive space-time trade-off for metric space searching.

Hence, our interest in this paper is on the design and evaluation of t-spanner
algorithms that work well in metric space contexts. To achieve this goal, sev-
eral algorithms to build, maintain, and search t-spanners are proposed. All
these algorithms are experimentally evaluated, to show that our approach
provides an excellent low-cost approximation to the performance of AESA.
As an example, we apply the idea to information retrieval, with document
databases using the cosine distance [5]. If we use a 2-spanner, we need only
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3.99% of the memory required by AESA for the index. To retrieve the most
similar document, we need only 9% distance evaluations over AESA, and 8%
to retrieve the 10 most similar documents.

This paper is organized as follows. In Section 2 we cover related work both in
metric spaces and in t-spanners. In Section 3 we show how to use t-spanners
for metric space searching. In Section 4 we present our t-spanner construc-
tion algorithms. Experimental results are shown in Section 5. In Section 6
we discuss t-spanner updating algorithms. Finally, in Section 7 we draw our
conclusions and future work directions. Early versions of this work appeared
in [31,30].

2 Related Work

2.1 Searching in Metric Spaces

There are several methods to preprocess a metric database in order to re-
duce the number of distance evaluations at search time. All of them work
by discarding elements using the triangle inequality. We discuss here some
approaches that are relevant to our work. See [16] for a more complete survey.

2.1.1 Pivot-based Algorithms

We will focus on a particular class of algorithms called pivot-based. These algo-
rithms select a set of pivots {p1 . . . pk} ⊆ U and store a table of kn distances
d(pi, u), i ∈ {1 . . . k}, ∀ u ∈ U. To solve a range query (q, r), pivot-based
algorithms measure d(q, p1) and use the fact that, because of the triangle in-
equality, d(q, u) ≥ |d(q, p1) − d(u, p1)|, so they can discard every u ∈ U such
that

|d(q, p1)− d(u, p1)| > r , (1)

since this implies d(q, u) > r. Once they are done with p1, they try to discard
elements from the remaining set using p2, and so on, until they use all the k
pivots. The elements u that still cannot be discarded at this point are directly
compared against q.

The k distance evaluations computed between q and the pivots are known
as the internal complexity of the algorithm. If there is a fixed number of
pivots, this complexity has a fixed value. On the other hand, the distance
evaluations used to compare the query against the objects not discarded by
the pivots are known as the external complexity of the algorithm. Hence, the
total complexity of a pivot-based search algorithm is the sum of the internal
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and external complexities. Since the internal complexity increases and the
external complexity decreases with k, there is an optimal k∗ that minimizes
the total complexity. However, in practice k∗ is so large that one cannot store
all the k∗n distances, so the index uses as many pivots as memory permits.

There are many pivot-based algorithms. Among them we can find structures
for discrete or continuous distance functions. In the discrete case we have:
Burkhard-Keller Tree (BKT) [10], Fixed Queries Tree (FQT) [4], Fixed-Height
FQT (FHQT) [4,3], and Fixed Queries Array (FQA) [14]. In the continuous
case we have: Vantage-Point Tree (VPT) [42,17,39], Multi-Vantage-Point Tree
(MVPT) [9,8], Excluded Middle Vantage Point Forest (VPF) [43], Approximat-
ing Eliminating Search Algorithm (AESA) [40], and Linear AESA (LAESA)
[29]. For a comprehensive description of these algorithms see [16].

2.1.2 Approximating Eliminating Search Algorithm (AESA)

In AESA the idea of pivots is taken to the extreme k = n, that is, every
element is a potential pivot and hence we need a matrix with all the n(n−1)

2

precomputed distances. Since we are free to choose any pivot, the pivot to
use next is chosen from the elements not yet discarded. Additionally, as it is
well known that pivots closer to the query are much more effective, the pivot
candidates u are ranked according to the sum of their current lower-bound
distance estimations to q. That is, if we have used pivots {p1 . . . pi}, we choose
pivot pi+1 as the element u minimizing

SumLB(u) =
i

∑

j=1

|d(q, pj)− d(u, pj)| (2)

AESA works as follows. It starts with a set of candidate objects C, which is
initially U, and sets SumLB(u) = 0 for all u ∈ U. Then, it chooses an object
p ∈ C minimizing SumLB (Eq. (2)) and removes it from C. Note that the
first object p = p1 is chosen at random. AESA measures dqp ← d(q, p) and
reports p if dqp ≤ r. By Eq. (1), it removes from C all the objects u that satisfy
d(u, p) 6∈ [dqp− r, dqp + r]. Recall that d(u, p) is obtained from a precomputed
full distance matrix U × U. For non-discarded objects, it updates sumLB
according to Eq (2). These steps are repeated until C = ∅. Fig. 1 depicts the
algorithm.

AESA is, by far, the most efficient existing search algorithm. As a matter of
fact, it has been experimentally shown to have almost constant search cost.
Nevertheless, the constant hides an exponential dependence on the dimension-
ality of the metric space. AESA’s main problem is that storing O(n2) distances
is impractical for most applications. This has restricted an excellent algorithm
to the few applications where n is very small. Our main goal in this paper is

6



AESA (Query q, Radius r, matrix M)
// Mu,p = d(u, p), precomputed

1. C ← U

2. For each p ∈ C Do SumLB(p)← 0
3. While C 6= ∅ Do
4. p← argminc∈CSumLB(c), C ← C − {p}
5. dqp ← d(q, p), If dqp ≤ r Then Report p
6. For each u ∈ C Do
7. If Mu,p 6∈ [dqp − r, dqp + r] Then C ← C − {u}
8. Else SumLB(u)← SumLB(u) + |dqp −Mu,p|

Fig. 1. Algorithm AESA. M is the full distance matrix U×U, so Mu,p is the distance
between u and p.

to overcome this weakness.

2.1.3 Previous Graph-Based Approaches

We have found only one previous metric space index based on graphs [37].
They use a graph whose nodes are the objects of the metric space and whose
edges are an arbitrary collection of distances among the objects. They compute
two n×n matrices with upper and lower bounds to the real distances, in O(n3)
time. Queries are solved using both matrices.

The greatest deficiency of [37] is that the selected distances are arbitrary and
do not give any guarantee on the quality of their approximation to the real
distances. In fact, the index only has good behavior when distances follow a
uniform distribution, which does not occur in practice. Even in R, an extremely
easy-to-handle metric space, distances have a triangular distribution, whereas
in general metric spaces the distance distribution is usually more concentrated,
far from uniform.

In our work, instead, edges are carefully chosen so as to provide an approxi-
mation guarantee to the real distance value. This yields much better results.

2.2 t-Spanner Construction Algorithms

It was shown [33] that, given a graph G with unitary weight edges and param-
eters t and m, the problem of determining whether a t-spanner of at most m
edges exists is NP-complete. Hence, there is no hope for efficient construction
of minimal t-spanners. Furthermore, as far as we know, only in the case t = 2
and graphs with unitary weight edges there exist polynomial-time algorithms
that guarantee an approximation bound in the number of edges (or in the
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weight) of the resulting t-spanner [27] (the bound is log |E|
|V |

).

If we do not force any guarantee on the number of edges of the resulting
t-spanner, a simple O(mn2) time greedy algorithms exists (see Section 4.1),
where n = |V | and m = |E| refer to the resulting t-spanner. It was shown

[1,2] that these techniques produce t-spanners with n1+O( 1
t−1

) edges on general
graphs of n nodes.

More sophisticated algorithms have been proposed by Cohen in [18], produc-
ing t-spanners with guaranteed O(n1+(2+ε)(1+logn m)/t) edges in worst case time
O(mn(2+ε)(1+logn m)/t), where in this case m refers to the original graph. In our
metric space application m = Θ(n2), which translates into worst case time
O(n2+6/t) and O(n1+6/t) edges for Cohen’s techniques. Additionally, the algo-
rithms in [18] work for t ∈ [2, log n], which, as shown in Section 3, is unsuitable
for our application: We need 1 < t ≤ 2 in most cases to obtain reasonable
search performance. (Perhaps some of Cohen’s algorithms could be adapted
to work heuristically for smaller t, but to the best of our knowledge, this has
not been attempted so far.) Note that, for t = 2, Cohen’s algorithm could still
be useful, but its time complexity would be rather high, O(n5). Other recent
algorithms [38] work only for t = 1, 3, 5, . . ., which is also unsuitable for us.
Parallel algorithms have been pursued in [28], but they do not translate into
new sequential algorithms.

As it regards to Euclidean t-spanners, that is, the subclass of metric t-spanners
where objects are points in a D-dimensional space with Euclidean distance,
much better results exist [21,1,2,26,25,36], showing that one can build t-
spanners with O(n) edges in O(n logD−1 n) time. These results, unfortunately,
make heavy use of coordinate information and cannot be extended to general
metric spaces.

Other related results refer to probabilistic approximations of metric spaces
using tree metrics [6,12]. The idea is to build a set of trees such that their
union makes up a t-spanner with high probability. However, the t values are
of the form O(log n log log n), far from practical for our goals.

3 Simulating AESA Search over a t-Spanner

3.1 Relation between Metric Space Searching and t-Spanners

As we have said, AESA is the most successful technique for searching metric
spaces. However, its huge n(n−1)

2
= O(n2) memory demand makes it unsuitable

for most applications. Nevertheless, if we reduced the memory requirement of
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AESA, we could use it in many practical scenarios. Towards this end, our
main idea is to use the t-spanner as a bounded-error approximation to the full
AESA distance matrix. This permits us trading space for query time, where
the full AESA is just one extreme of the trade-off.

Note that, given the element set U, the full AESA distance matrix can be
regarded as a complete graph G(V = U, A = U×U), where dG(u, v) = d(u, v)
is the distance between elements u and v in the metric space. Due to the
triangle inequality, for any u, v ∈ U the shortest path between u and v is
the direct edge (u, v), and its cost is the distance d(u, v). Thus, in order to
save memory we can use a t-spanner G′(V = U, E ⊆ A) of G, which permits
us estimating the distance between every pair of objects within a factor t,
without the need to store O(n2) distances but only |E| edges. However, in this
case we cannot apply AESA directly over the t-spanner, but we have to take
into account the error introduced by stretch factor t.

3.2 Implementing AESA over a t-Spanner

Given the t-spanner G′ of G(U, U×U), for every u, v ∈ U the following property
is guaranteed

d(u, v) ≤ dG′(u, v) ≤ t · d(u, v) . (3)

Eq. (3) permits us adapting AESA to this approximated distance. According
to the stretch factor t, to simulate AESA over a t-spanner it is enough to
“extend” the upper bound of the AESA exclusion ring with the associated
decrease in the discrimination power. See Fig. 2.

Let us return to the condition to discard an element u with a pivot p. The
condition to be outside the ring, that is, Eq. (1), can be rewritten as

d(u, p) < d(q, p)− r or d(u, p) > d(q, p) + r . (4)

Since we do not know the real distance d(u, v), but only the approximated
distance over the t-spanner, dG′(p, u), we can use Eqs. (3) and (4) to obtain
the new discarding conditions, in Eqs. (5) and (6):

dG′(u, p) < d(q, p)− r , (5)

dG′(u, p) > t · (d(q, p) + r) . (6)

The next theorem shows that either Eq. (5) or (6) gives a sufficient condition
for a pivot p to discard a element u. Fig. 2(b) illustrates.
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(a) The exclusion ring.
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(b) The relaxed exclusion ring.

Fig. 2. In (a), the ring of elements not discarded by pivot p. In (b), the relaxed ring
of elements not discarded by pivot p when using a t-spanner. We note dqp = d(q, p).

Theorem 1 (t-discarding) Given a pivot p ∈ U, a query q ∈ X and a radius
r ∈ R

+, if u ∈ U satisfies Eq. (5) or (6), then d(q, u) > r.

PROOF. As d(u, p) ≤ dG′(u, p), from Eq. (5) we obtain d(u, p) < d(p, q)− r.
On the other hand, as dG′(u, p) ≤ t · d(u, p), from Eq. (6) we obtain that
t · d(u, p) ≥ dG′(u, p) > t · (d(q, p) + r), then d(u, p) > d(q, p) + r. Either case
guarantees that d(q, u) > r. 2

What we have obtained is a relaxed version of AESA, which requires less
memory (O(|E|) instead of O(n2)) and, in exchange, discards less element per
pivot. As t tends to 1, our approximation becomes better but we need more
and more edges. Hence we have a space-time trade-off where full AESA is just
one extreme.

Let us now consider how to choose the next pivot. Since we have only an ap-
proximation to the true distance, we cannot directly use Eq. (2). To compen-
sate for the effect of the precision factor t, after some experimental fine-tuning,
we have chosen αt = 2/t+1

3
, so as to rewrite Eq. (2) as follows:

sumLB′(u) =
i

∑

j=1

∣

∣

∣

∣

d(q, pj)− dG′(u, pj) · αt

∣

∣

∣

∣

. (7)

Our search algorithm is as follows. We start with a set of candidate nodes C,
which is initially U, and set SumLB(u) = 0 for all u ∈ U. Then, we choose
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t-AESA (Query q, Radius r, t-Spanner G′)

1. C ← U, αt ← 2/t+1
3

2. For each p ∈ C Do SumLB′(p)← 0
3. While C 6= ∅ Do
4. p← argminc∈CSumLB′(c), C ← C − {p}
5. dqp ← d(q, p), If dqp ≤ r Then Report p
6. dG′ ← Dijkstra(G′, p, t(dqp + r))
7. For each u ∈ C Do
8. If dG′(u, p) 6∈ [dqp − r, t(dqp + r)] Then C ← C − {u}
9. Else SumLB′(u)← SumLB′(u) + |dqp − dG′(u, p) · αt|

Fig. 3. Our search algorithm (t-AESA). Dijkstra(G′, p, x) computes distances over
the t-spanner G′ from p to all nodes up to distance x, and marks the remaining ones
as “farther away”.

a node p ∈ C minimizing SumLB′ (Eq. (7)) and remove it from C. Note that
the first object p = p1 is chosen at random. We measure dqp ← d(q, p) and
report p if dqp ≤ r. Now, we run Dijkstra’s shortest path algorithm on the
t-spanner starting at p, until retrieving the first node v whose shortest-path
distance to p satisfies dG′(v, p) > t(dqp + r). Since Dijkstra’s algorithm gives
the distances to p in increasing order, we know that all the remaining nodes
will be farther away. By the t-discarding theorem, we remove from C nodes
u which satisfy either Eq. (5) or (6). For the non-discarded nodes we update
sumLB′ according to Eq (7). We repeat these steps until C = ∅. Fig. 3 depicts
the algorithm.

The number of distance evaluations performed by AESA is in practice close
to O(1), and the extra CPU time is close to O(n) [40] (the constants hide
the dimensionality of the space). In our case, however, we have the additional
cost of computing shortest paths. Albeit we are interested only in the nodes
belonging to C, we need to compute distances to many others in order to obtain
those we need. We remark that the shortest-path algorithm works only up to
the point where the next closest element found is far enough. In the worst case,
if Dijkstra’s algorithm uses a heap data structure to find the next closest node,
the total extra CPU time is O(npm log n), where np is the amount of nodes

used as pivots, and m = |E| = n1+O( 1
t−1

). Hence, the CPU time complexity of

a query is at most AESA CPU time cost multiplied by O(nO( 1
t−1

) log n). As we
show later, this is in practice around O(n0.13 log n), which is rather moderate.

Recall that we focus on applications where the cost to compute d dominates
even heavy extra CPU costs. There are many metric spaces where computing
a distance is highly expensive. For instance, in the metric space of documents
under the cosine distance [5], computing a distance requires numerous disk
accesses (in order to load the vector representation of the document) and
hundreds of thousands of basic arithmetic operations (in order to compute
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the angle between the vectors representing the documents). In these cases
the distance evaluation takes several milliseconds, which is rather expensive,
even compared to Dijkstra’s algorithm computations we introduced by using
a t-spanner as the metric database representation.

We finish with a note on the t values of interest. In most metric spaces of prac-
tical applicability the distance histogram is concentrated, so most elements of
U are inside the gray ring of Fig. 2(a). By using values t > 1.0, that ring is
widened, as shown in Fig. 2(b). Thus, for searching purposes, we wish to use
values of t close to 1.0. In fact, if the histogram of distances is too concen-
trated, any value of t > 1.0 could fail to discard any object. On the other hand,
values of t close to 1.0 could force us to retain in the t-spanner almost every
edge from the full graph. Since we want to store few edges, a tradeoff between
space and search time arises. This tradeoff is controlled by the parameter t.
In the experimental study we achieve good results with values t ∈ (1.0, 2.0].
However, in some metric spaces it is possible to obtain reasonable results even
using values of t beyond 2.0.

4 Practical t-Spanner Construction Algorithms

In Section 4.1 we present a basic t-spanner construction technique. This al-
gorithm has important deficiencies: excessive edge insertion cost and too high
memory requirements. We seek practical algorithms that allow building ap-
propriate t-spanners for metric spaces, that is, with t ≤ 2.0, for complete
graphs, and taking advantage of the triangle inequality. For this sake, we pro-
pose four t-spanner construction algorithms, with the goals of decreasing CPU
and memory cost, and producing t-spanners of good quality (that is, with few
edges). Our four algorithms are:

(1) An optimized basic algorithm, where we limit the propagation of compu-
tations when a new edge is inserted.

(2) A massive edge-insertion algorithm, where we amortize the cost of re-
computing distances over many edge insertions.

(3) An incremental algorithm, where nodes are added one by one to a well-
formed growing t-spanner.

(4) A recursive algorithm, combining a divide and conquer technique with a
variant of the incremental algorithm.

Table 1 shows the worst case complexities obtained. Empirically, the time
costs are around of the form Cc ·n2.24, and the number of edges are around of
the form m = Ce·n1.13, for constants Cc and Ce. This shows that good-quality
t-spanners can be built in reasonable time: note that just scanning all the
edges of the complete graph needs O(n2) time.
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CPU time Memory Distance evaluations

Basic Θ(mn2) Θ(n2) Θ(n2)

Basic optimized Θ(mk2 + n2) Θ(n2) Θ(n2)

Massive edge-insertion Θ(nm log n) Θ(m) Θ(nm)

Incremental Θ(nm log n) Θ(m) Θ(n2)

Recursive Θ(nm log n) Θ(m) Θ(n2)

Table 1
t-Spanner construction worst-case complexities. The value k ≤ n refers to the num-
ber of nodes that have to be checked when updating distances due to a new inserted
edge, and m is the number of edges in the resulting t-spanner.

We remark that, although the m values in each row of Table 1 are different
(because they are the number of edges obtained with different algorithms),
our experimental results show that they are very similar in all cases.

We take no particular advantage of the metric properties of the edge weights,
so our algorithms can be used on general graphs too. The only extra work
needed is to precompute the shortest path among every pair of nodes, which
is free when the triangle inequality holds.

From now on, we use the following terms to simplify the exposition:

• Given a pair u, v ∈ U, the t-condition is dG′(u, v) ≤ t · d(u, v), where
dG′(u, v) is the distance between u and v estimated over the graph, and
d(u, v) is the distance in the metric space.
• We say that a distance d(u, v) is t-estimated, if it fulfills the t-condition

on the graph under consideration. Otherwise, it is not t-estimated.

4.1 Basic t-Spanner Construction Algorithm

The intuitive idea to solve this problem is iterative. We begin with an initial t-
spanner that contains all the vertices and no edges, and calculate the distance
estimations among all vertex pairs. These are all infinite at step zero, except
for the distances between each node and itself (d(u, u) = 0). Edges are inserted
successively until all the distance estimations satisfy the t-condition.

The edges are considered in ascending cost order, so we start by sorting them.
Using smaller-cost edges first is in agreement with the geometric idea of insert-
ing edges between near neighbors and making up paths from low-cost edges
in order to use few edges overall.

The algorithm uses two symmetric matrices. The first, real, contains the true
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t-Spanner0 (Stretch t, Vertices U)
1. For each u, v ∈ U Do
2. real(u, v)← d(u, v)
3. If u = v Then estim(u, v)← 0 Else estim(u, v)←∞
4. t-Spanner ← ∅ // t-spanner edge structure
5. For each e = (eu, ev) ∈ real Do // chosen in increasing cost order
6. If estim(e) > t · real(e) Then // e is not t-estimated
7. t-Spanner ← t-Spanner ∪ {e}
8. For each vi, vj ∈ U Do
9. d1 ← estim(vi, eu) + estim(ev, vj)
10. d2 ← estim(vj , eu) + estim(ev, vi)
11. estim(vi, vj)← min(estim(vi, vj), min(d1, d2)+real(e))

Fig. 4. Basic t-spanner construction algorithm (t-Spanner 0).

distances between all the objects, and the second, estim, contains the distance
estimations obtained with the t-spanner under construction. The t-spanner is
stored as an adjacency list.

The insertion criterion is that an edge is added to the set E only when its
current estimation does not satisfy the t-condition. After inserting the edge, it
is necessary to update all the distance estimations. The updating mechanism
is similar to the distance calculation mechanism of Floyd’s algorithm [22],
except that edges, not nodes, are inserted into the set. Upon insertion of an
edge e = (eu, ev), every path from vi to vj in U can now go through edge e.
There are two choices for this: vi ↔ eu ↔ ev ↔ vj and vi ↔ ev ↔ eu ↔ vj .
Fig. 4 depicts the basic t-spanner construction algorithm.

Analysis. The basic t-spanner construction algorithm takes Θ(n2) distance
evaluations, just as AESA index construction, Θ(mn2) CPU time (recall that
n = |V | and m = |E|), and Θ(n2 + m) = Θ(n2) memory. Its main deficiencies
are excessive edge insertion cost and too high memory requirements.

4.2 Optimized Basic Algorithm

Like the basic algorithm (Section 4.1), this algorithm makes use of real and
estim matrices, choosing the edges in increasing weight order. The optimiza-
tion focuses on the mechanism to update distance estimations.

The main idea is to control the propagation of the computation, updating
only the distance estimations that can be affected by the insertion of the new
edge, and disregarding those that can be proved not to be affected by the new
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Fig. 5. Propagation of distance estimations.

inserted edge.

Fig. 5 illustrates the insertion of a new edge (a1, a2). Note that it is necessary
to propagate the computation only to the nodes that improve their distance
estimation to a1 or a2. In the first step we update only the cost of the edge
that was inserted. The computation then propagates to the neighbors of the
ai nodes, namely nodes {b1, b2, b3}, then to nodes {c1, c2}, and finally {d1}.
The propagation stops when a node does not improve its current distance
estimations or when it does not have further neighbors.

The complete algorithm reviews all the edges of the graph. For each edge,
it iterates until no further propagation is necessary. In order to control the
propagation, the algorithm uses two sets, ok and check.

• ok: The nodes that have already updated their shortest path estimations
due to the inserted edge.
• check: The adjacency of ok, check = adjacency(ok)−ok, where adjacency(S)

= {u ∈ U, ∃ v ∈ S, (u, v) ∈ E}. These are the nodes that we still need to
update.

Fig. 6 depicts the optimized basic algorithm.

Analysis. The optimized basic algorithm takes Θ(n2) distance evaluations
and Θ(mk2+n2) CPU time, where k is the number of neighbors to check when
inserting an edge (that is, final size of set ok). In the worst case this becomes
Θ(mn2), just as the basic algorithm, but on the average it is much less. The
memory usage is Θ(n2 + m) = Θ(n2). Although this algorithm reduces the
CPU time, this time is still high, and the memory requirements are also too
high.

A good feature of the algorithm is that, just like the basic algorithm, it pro-
duces good-quality t-spanners (few edges). We have used its results to predict
the expected number of edges per node in a t-spanner, so as to fine-tune other
algorithms that rely on massive insertion of edges. We call |Et−Spanner 1(n, dim, t)|
the expected number of edges in a metric space of n objects, intrinsic dimen-
sion dim, and stretch t. In order to determine the intrinsic dimension of a
given metric space we develop an empirical method, which will be described
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t-Spanner1 (Stretch t, Vertices U)
1. For each u, v ∈ U Do
2. real(u, v)← d(u, v)
3. If u = v Then estim(u, v)← 0 Else estim(u, v)←∞
4. t-Spanner ← ∅ // t-spanner edge structure
5. For each e = (eu, ev) ∈ real Do // chosen in increasing cost order
6. If estim(e) > t · real(e) Then // e is not t-estimated
7. t-Spanner ← t-Spanner ∪ {e}, estim(e)← real(e)
8. ok ← {eu, ev}, check ← adjacency(ok) − ok
9. For each c ∈ check Do
10. If estim(c, ev) + real(e) < estim(c, eu) or
11. estim(c, eu) + real(e) < estim(c, ev) Then
12. For each o ∈ ok Do
13. d1 ← estim(c, eu) + estim(ev, o)
14. d2 ← estim(c, ev) + estim(eu, o)
15. estim(c,o) ← min(estim(c,o), min(d1,d2) + real(e))
16. check ← check ∪ (adjacency(c) − ok)
17. ok ← ok ∪ {c}, check ← check − {c}

Fig. 6. Optimized basic algorithm (t-Spanner 1).

in Section 5.1.1. In Section 5 (Tables 2 and 3) we show some estimations
obtained.

4.3 Massive Edge-Insertion Algorithm

This algorithm tries to reduce both CPU processing time and memory require-
ments. To reduce CPU time, the algorithm updates the distance estimations
only after performing several edge insertions, using an O(m log n)-time Di-
jkstra’s algorithm to update distances. To reduce the memory requirement,
distances between objects are computed on the fly.

Since we insert edges less carefully than before, the resulting t-spanner could
be of lower quality. Our effort aims at minimizing this effect.

The algorithm has three stages. In the first stage, it builds the t-spanner
backbone by inserting whole minimum spanning trees (MSTs), and determines
the global list of not t-estimated edges (pending). In the second stage, it refines
the t-spanner by adding more edges to improve the not t-estimated edges. In
the third stage, it inserts all the remaining “hard” edges.

The algorithm uses two heuristic values:
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H1 predicts the expected number of edges per node, and it is obtained from
the optimized basic algorithm edge model: H1 = |Et−Spanner 1(n, dim, t)|/n .
With H1 we will define thresholds to determine whether or not to insert the
remaining edges (those still not t-estimated) of the current node. Note that
|Et−Spanner 1(n, dim, t)| is an optimistic predictor of the resulting t-spanner size
using the massive edge-insertion algorithm, so we can use H1 as an expected
lower bound of the number of edges per node. As it is shown by experimental
results in Section 5, in most cases the sizes of resulting t-spanners produced
by any of our algorithms are rather similar, which implies that n·H1 is quite
a good predictor for the expected size of the t-spanner.

H2 is used to control the growth of the pending list size and will give a
criterion to decide when to insert an additional MST into the t-spanner un-
der construction. The maximum pending list size is H2 · |t-Spanner |, where
t-Spanner is t-spanner under construction. After preliminary experiments we
have fixed H2 = 1.2. With values lower than 1.2 the algorithm takes more
processing time without improving the number of edges, and with higher val-
ues the algorithm takes less processing time, but it inserts more edges than
necessary and needs more memory to build the t-spanner.

We describe now the stages of the algorithm.

Stage 1. We insert successive MSTs to the t-spanner. The first MST follows
the basic Prim’s algorithm [35], but next MSTs are built choosing only edges
that have not yet been inserted.

We make a single pass over the nodes, adding to the pending list the not
t-estimated edges that are incident upon the current node under revision.
Every time the size of list pending exceeds H2, we insert a new MST (recall
that H2 depends on the current t-spanner size, |t-Spanner |). Notice that, the
more MSTs are inserted, the tighter the estimations of the distance (by using
the shortest path between two objects). Thus, after an MST is inserted, we
remove the edges from pending list that become t-estimated. Additionally,
if the current node has no more than H1/2 pending edges, we just insert
them, since we only need a small set of edges in order to fix all the distance
estimations for this node.

This stage continues until we pass through all the nodes. The output is the
t-spanner backbone and the global list of pending edges (pending).
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Stage 2. In the second stage we reduce the pending list. For this sake, we
traverse the list of nodes with pending edges (pendingNodes), from those with
most to those with least pending edges. For each such node, we check which
edges have to improve their t-estimation and which do not. Note that edges
originally in the pending list may have become well t-estimated along the
process due to new added edges. We need to insert more edges in order to
improve distance estimations (of edges that are incident to the current node
that remain in pending), so from those still not t-estimated edges, we insert
H1/4 smallest-cost edges, and proceed to the next node.

Note that the current node may have more than H1/4 not t-estimated edges.
However, this technique allows us to review in the first place nodes that re-
quire more attention, without concentrating all the efforts in the same node.
With values lower than H1/4 the algorithm takes more processing time with-
out improving the number of edges considerably, and with higher values the
algorithm inserts more edges than necessary.

The process considers two special cases. The first case occurs when we have
inserted more than n edges overall, in which case we regenerate and re-sort list
pendingNodes and restart the process (so that we resume the work on nodes
with many pending edges). The second special case occurs when the pending
list of the current node is so small (less than H1/4 edges) that we simply insert
all its elements.

The condition to finish the second stage is that the pending list size is smaller
than n/2, since these hard-to-estimate edges are so few that it is not worth
the effort of reducing the pending list once again. We made preliminary ex-
periments in order to fix this value, and obtained the best trade-off between
CPU time and t-spanner size with n/2.

Stage 3. The hard-to-estimate edges remain in the pending list, so we just
insert the pending list into the t-Spanner to complete the t-spanner construc-
tion.

Fig. 7 depicts the massive edge-insertion algorithm.

Analysis. The massive edge-insertion algorithm takes Θ(nm) distance eval-
uations, Θ(nm log n) CPU time, and Θ(n + m) = Θ(m) memory. It is easy
to see that the space requirement is Θ(m): the pending list is never larger
than Θ(m) because at each iteration of stage 1 it grows at most by n − 1,
and as soon as it becomes larger than H2 · |t-Spanner | ≤ H2 ·m we add
a new MST into t-Spanner (so m grows by n − 1 as well). The distance
evaluations come from running a Θ(n2)-cost Prim’s algorithm at most m/n

18



times at stage 1 (since each run adds n − 1 edges). The CPU time comes
from running a Θ(m log n)-time Dijkstra’s algorithm once per node, and a
Θ(n2)-time Prim’s algorithm at most m/n times at stage 1. This adds up
Θ(nm log n) + Θ(mn) = Θ(nm log n) CPU time. At stage 2 we insert edges
in groups of Θ(m/n) 1 , running Dijkstra’s algorithm after each insertion, un-
til we have inserted |pending| − n/2 = Θ(m) edges overall. This accounts
for other n times we run the Θ(m log n) Dijkstra’s algorithm, adding another
Θ(nm log n) term.

This algorithm reduces both CPU time and memory requirements, but the
amount of distance evaluations is very high (Θ(nm) ≥ Θ(n2)).

4.4 Incremental Node Insertion Algorithm

This algorithm reduces the amount of distance evaluations to just n(n−1)/2,
while preserving the amortized update cost idea. We insert nodes one by one,
not edges. The invariant is that, for nodes 1 . . . i − 1, we have a well-formed
t-spanner, and we want to insert the i-th node to the growing t-spanner.

This algorithm, unlike the previous ones, makes a local analysis of nodes and
edges, that is, it takes decisions before having knowledge of the whole edge
set. This can affect the quality of the t-spanner.

For each new node i, the algorithm carries out two operations: the first is to
connect the node i to the growing t-spanner using the cheapest edge towards
the previous nodes; the second is to verify that its distance estimations satisfy
the t-condition, adding some edges to node i until the invariant is restored.
We repeat this process until the whole node set is inserted.

We also use the H1 heuristic, with the difference that we recompute H1 at every
iteration (since the t-spanner size changes). We insert δ = H1(i, dim, t)/5 =
|Et−Spanner 1(i,dim,t)|

5i
edges at a time, in order to reduce the processing time.

The factor 5 in the denominator is tuned so that inserting more edges at a
time obtains lower processing time but the size of the t-spanner is increased;
whereas inserting less edges at a time increases the processing time without
significantly reducing the t-spanner size.

For the verification of distances to the new node we use an incremental Di-
jkstra’s algorithm with limited propagation, that is, instead of assuming that
distances have an initial value∞, the algorithm receives the current computed
distances in an array. This is because, in Dijkstra’s algorithm, edges incident

1 This assumes that |Et−Spanner 1| ≈ |Et−Spanner 2|, which is experimentally verified
in Section 5.

19



t-Spanner2 (Stretch t, Vertices U)
1. t-Spanner ← MST // t-spanner edge structure, initially has the first MST
2. pending ← ∅ // global pending edge list
3. H1 ← |Et−Spanner1(n, dim, t)|/n

// Stage 1: Generating the t-Spanner backbone and pending list
4. For each u ∈ U Do
5. If |pending| > H2 · |t-Spanner | Then
6. t-Spanner ← t-Spanner ∪ MST // built over the non-inserted edges
7. dG′ ← Dijkstra(t-Spanner, u) // dG′(u, v) = dt-Spanner(u, v)
8. For each v ∈ U Do
9. If dG′(u, v) ≤ t · d(u, v) Then
10. If (u, v) ∈ pending Then pending ← pending − {(u, v)}
11. Else pending ← pending ∪ {(u, v)}
12. If |pending(u)| ≤ H1/2 Then
13. // Let pending(u) = {e ∈ pending, ∃ v, e = (u, v)}
14. t-Spanner ← t-Spanner ∪ pending(u)
15. pending ← pending − pending(u)

// Stage 2: Reducing pending
16. While |pending| > n/2 Do
17. pendingNodes← nodes sorted by decreasing |pending(u)|
18. For each u ∈ pendingNodes Do
19. If more than n edges have been inserted Then // special case 1
20. break
21. If |pending(u)| < H1/4 Then // special case 2
22. t-Spanner ← t-Spanner ∪ pending(u)
23. pending ← pending − pending(u)
24. Else
25. dG′ ← Dijkstra(t-Spanner, u)
26. For each v ∈ pending(u) Do If dG′(u, v) ≤ t · d(u, v) Then
27. pending ← pending − {(u, v)}
28. smallest← H1/4 smallest edges in pending(u)
29. t-Spanner ← t-Spanner ∪ smallest
30. pending ← pending − smallest

// Stage 3: Inserting the hard edges
31. t-Spanner ← t-Spanner ∪ pending

Fig. 7. Massive edge-insertion algorithm (t-Spanner 2).

upon a processed node are considered only if the node has improved its current
distance estimation. Furthermore, note that when the distance from node i to
node j is not t-estimated, we do not really need to know how poorly estimated
it is. Then, in the first iteration we initialize the distance estimation values
to be just slightly not t-estimated: t ·d(ui, uj) + ε for j ∈ [1 . . . i − 1], where
ε is a small positive constant. For the next iterations, Dijkstra’s algorithm
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t-Spanner3 (Stretch t, Vertices U)
1. t-Spanner ← ∅ // t-spanner edge structure
2. For i ∈ [1, n] Do

3. δ ← |Et−Spanner1(i,dim,t)|

5i
// incremental H1

4. u← nodei, k ← argminj ∈ [1,i−1]{d(u, nodej)}
5. t-Spanner ← t-Spanner ∪ {(u, nodek)} // inserting the cheapest edge
6. dG′ ← {(nodej, t · d(u, nodej) + ε), j ∈ [1 . . . i− 1]} // propagation limit
7. Do
8. dG′ ← Dijkstra(t-Spanner , u, dG′) // incremental Dijkstra
9. pending ← {(u, nodej), dG′(u, nodej) > t · d(u, nodej), j < i}
10. smallest← δ cheapest edges in pending
11. t-Spanner ← t-Spanner ∪ smallest
12. While pending 6= ∅

Fig. 8. Incremental node insertion algorithm (t-Spanner 3).

reuses the array previously computed, because there is no need to propagate
distances from nodes whose estimations have not improved. Note that this
allows the shortest path propagation to stop as soon as possible, both in the
first and in the following iterations.

Fig. 8 depicts the incremental node insertion algorithm.

Analysis. The incremental node insertion algorithm takes Θ(n2) distance
evaluations, Θ(nm log n) CPU time, and Θ(n + m) = Θ(m) memory. The
CPU time comes from the fact that every node runs Dijkstra’s algorithm
m
n
/δ = Θ(1) times (see Footnote 1).

4.5 Recursive Algorithm

The incremental algorithm is an efficient approach to construct metric t-
spanners, but it does not perform a global edge analysis. A way to solve
this is to try that the set in which the t-spanner is incrementally built is made
up of objects close to each other. Following this principle, we present a solu-
tion that divides the object set into two compact subsets, recursively builds
sub-t-spanners for the subsets, and then merges them.

For the initial set division we take two objects p1 and p2 far away from each
other, which we call representatives, and divide the set among objects nearer
to p1 and nearer to p2. Fig. 9(a) illustrates. For the recursive divisions we reuse
the corresponding representative, and the element farthest to it becomes the
other. The recursion finishes when we have less than 3 objects.
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Fig. 9. In (a), we select p1 and p2, and then divide the set. In (b), the merging step
chooses objects according to their distances towards p1.

The merging step also takes into account the spatial proximity among the
objects. When we merge the sub-t-spanners, we have two node subsets V1 and
V2, where |V1| ≥ |V2| (otherwise we swap the subsets). Then, in the sub-t-
spanner represented by p2 (stsp2), we choose the object u closest to p1, and
insert it into the sub-t-spanner represented by p1 (stsp1) verifying that all the
distances towards V1 are t-estimated. Note that this is equivalent to using the
incremental algorithm, where we insert u into the growing t-spanner stsp1. We
continue with the second closest and repeat the procedure until all the nodes
in stsp2 are inserted into stsp1. Fig. 9(b) illustrates. Note that edges already
present in stsp2 are conserved. We also use the H1 heuristic, but this time we
recompute H1 at the beginning of the merging step (not upon inserting every

node). We insert δ = H1(|nodes|, dim, t)/5 =
|Et−Spanner 1(|nodes|,dim,t)|

5|nodes|
edges at

a time, where nodes = V1 ∪ V2, in order to reduce the processing time.

This algorithm also uses an incremental Dijkstra’s algorithm with limited
propagation, but this time we are only interested in limiting the propagation
towards stsp1 nodes (because we know that towards stsp2 we already satisfy
the t-condition). Albeit we are interested only in the nodes belonging to stsp1,
we need also to compute distances to stsp2 to obtain those we need. Hence,
Dijkstra’s algorithm takes an array with precomputed distances initialized at
t·d(ui, uj) + ε for (ui, uj) ∈ V2 × V1, and ∞ for (ui, uj) ∈ V2 × V2, where ε is
a small positive constant. For the next iterations, Dijkstra’s algorithm reuses
the previously computed array.

Fig. 10 depicts the recursive algorithm and the auxiliary functions used to
build and merge sub-t-spanners.

Analysis. The recursive algorithm requires Θ(n2) distance evaluations, Θ(nm log n)
CPU time, and Θ(n+m) = Θ(m) memory. The cost of dividing sets does not
affect that of the underlying incremental construction.
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t-Spanner4 (Stretch t, Vertices U)
1. t-Spanner ← ∅ // t-spanner edge structure
2. (p1, p2) ← two distant objects
3. (V1, V2) ← U divided according to distances towards (p1, p2)
4. stsp1 ← makeSubtSpanner(p1,V1), stsp2 ← makeSubtSpanner(p2,V2)
5. t-Spanner ← mergeSubtSpanner(stsp1, stsp2)

makeSubtSpanner(Representative p, Vertices V )
6. If |V | = 1 Then Return t-Spanner(V = {p}, ∅)
7. Else If |V | = 2 Then Return t-Spanner(V = {p, v}, {(p, v)})
8. Else
9. premote ← argmaxv∈V {d(p, v)}
10. (V, Vremote)← V divided according to distances towards (p, premote)
11. stspp ← makeSubtSpanner(p, V )
12. stspremote ← makeSubtSpanner(premote, Vremote)
13. Return mergeSubtSpanner(stspp, stspremote)

mergeSubtSpanner (t-Spanner stsp1, t-Spanner stsp2)
14. If |nodes(stsp1)| ≤ | nodes(stsp2)| Then stsp1 ↔ stsp2

15. nodes← nodes(stsp1) ∪ nodes(stsp2)
16. edges← edges(stsp1) ∪ edges(stsp2)

17. δ ← |Et−Spanner1(|nodes|,dim,t)|

5|nodes|
// incremental H1

18. p1 ← Representative(stsp1)
19. For each u ∈ nodes(stsp2) in increasing order of d(u, p1) Do
20. // defining the propagation limit towards stsp1

21. For each v ∈ nodes(stsp1) Do dG′(u, v)← t · d(u, v) + ε
22. For each v ∈ nodes(stsp2) Do dG′(u, v)←∞
23. Do
24. dG′ ← Dijkstra(edges, u, dG′) // incremental Dijkstra
25. pending ← {(u, v), dG′(u, v) > t · d(u, v), v ∈ stsp1}
26. smallest← δ cheapest edges in pending
27. edges← edges ∪ smallest
28. While pending 6= ∅
29. Return t-Spanner(nodes, edges)

Fig. 10. Recursive algorithm (t-Spanner 4).

5 Experimental Results

We have tested our construction and search algorithms on spaces of vectors,
strings and documents (these last two are of interest to Information Retrieval
applications [5]). The experiments were run on an Intel Pentium IV of 2 GHz,
with 2.0 GB of RAM, with local disk, under SuSE Linux 7.3 operating system,
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with kernel 2.4.10-4GB i686, using g++ compiler version 2.95.3 with optimiza-
tion option -O9, and the processing time measured user time. For construc-
tion algorithms, we are interested in measuring the CPU time needed and
the amount of edges generated by each algorithm (the number of distance
evaluations is always n(n − 1)/2 in the competitive alternatives). For the
search algorithm, we are interested in measuring the number of distance eval-
uations performed in the retrieval operation. For shortness we have called the
optimized basic algorithm t-Spanner 1, the massive edge-insertion algorithm
t-Spanner 2, the incremental algorithm t-Spanner 3, the recursive algorithm
t-Spanner 4, and the simulated AESA over the t-spanner t-AESA.

The construction experiments compare t-Spanner 1, 2, 3 and 4, in order to
determine which is the most appropriate to metric spaces, with t ∈ [1.4, 2.0].
The search experiments use t-spanners with stretch factors t ∈ [1.4, 2.0], and
compare them against AESA. Since t-spanners offer a time-space trade-off and
AESA does not, we also consider pivot-based indexes with varying number of
pivots. For every t value, we measure the size of the resulting t-spanner and
build a pivot-based index using the same amount of memory (pivots are chosen
at random). This way we compare t-spanners against the classical space-time
trade-off for AESA. Note that with values of t < 1.4 the performance of our
construction algorithms noticeably degrades, whereas the search algorithm
does not improve considerably.

Since in some cases the pivots were too many compared to the average number
of candidates to eliminate, we decided to stop using further pivots when the
remaining candidates were fewer than the remaining pivots. This way we try
not to pay more for having more available pivots than necessary. Also, it turns
out that, sometimes, even the smallest number of pivots shown is beyond the
optimal. In these cases we also show results with fewer pivots, until we reach
the optimum.

5.1 Uniformly distributed Vectors under Euclidean Distance

We start our experimental study with the space of vectors uniformly dis-
tributed in a real D-dimensional cube under the Euclidean distance, that is,
([−1, 1]D, L2), for D ∈ [4, 24]. This metric space allows us to measure the ef-
fect of the space dimension D on our algorithms. We have not explored larger
D values because D = 28 is already too high-dimensional: we can only build
t-spanners in reasonable time for t ≥ 1.8, which is too large for searching. We
remind that all metric space search algorithms fail for these large values of D.

In particular, for t-Spanner 1, we can obtain an edge model to implement the
H1 heuristic. This way, if we compute the intrinsic dimensionality of a given
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metric spaceM, we can apply the H1 heuristic edge model onM, even ifM
has no coordinates. For this sake, in Section 5.1.1 we show an experimental
method to estimate the intrinsic dimensionality of a given metric space.

Note that we have not used the fact that the space has coordinates, but have
rather treated points as abstract objects in an unknown metric space. Com-
puting a single distance takes from 0.893 microseconds in the 4-dimensional
space, to 1.479 microseconds in the 24-dimensional space.

In the construction experiments, we use uniform data sets of varying size
n ∈ [200 . . . 2,000]. We first compare the construction algorithms, in order to
choose the best. Later, search experiments are carried out over the t-spanner
produced by the best construction algorithm. In the search experiments, we
index a uniform data set formed by 10,000 objects, and select 100 random
queries not included in the index, using search radii that on average retrieve
1 object (r = 0.137 for D = 4, r = 0.570 for D = 8, r = 1.035 for D = 12,
r = 1.433 for D = 16, r = 1.812 for D = 20 and r = 2.135 for D = 24).

5.1.1 Estimating the Intrinsic Dimensionality of a General Metric Space

As said in the Introduction, the higher the intrinsic dimensionality dim of a
given metric space M = (X, d), the more difficult to solve proximity queries.
Nevertheless, there is not an accepted criterion to measure dim. Yet, most
authors agree in that the intrinsic dimensionality of a D-dimensional vector
space with uniform distribution is simply D [43,16].

Hence, to experimentally estimate the intrinsic dimensionality of a given met-
ric spaceM, we approximate dim with the dimensionality D of the uniformly
distributed vector space that performs similarly toM for a given benchmark
comparison. Later, we refine the estimation by exploring values of dim around
D. Therefore, to compute H1 we test t-Spanner 1 in all of the metric spaces
we use in the experiments in order to estimate the intrinsic dimensionality
for each space. However, as t-Spanner 1 is, by far, the slowest constructing
algorithm, we run the experiments to estimate dim over a small subset of
the objects. Next, we refine the estimation of dim using some of the massive
edge-insertion algorithms (t-spanner 2, 3 or 4).

Thus, the procedure has the following stages. The first consists in computing
the edge model |Et−Spanner 1(n, D, t)| in ([−1, 1]D, L2). The second consists in
testing t-Spanner 1 over a small subset of the metric space of interestM and
computing its edge model. Third, we find out which value D in the model for
the uniform space corresponds to the performance measured inM. Finally, we
test some of the massive edge-insertion algorithms using dim values around
D to find which dim value produces the smallest t-spanner without increasing
the CPU time considerably.
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5.1.2 Construction

Fig. 11 shows a comparison among the four algorithms on the uniform data set
where we vary D ∈ [4, 24], for n = 1,000 nodes and t = 1.4 and 1.8. Figs. 11(b)
and 11(d) show that t-Spanner 1 is impractically costly, but it produces the
best (that is, smallest) t-spanner as shown in Figs. 11(a) and 11(c). The next
slowest algorithm is t-Spanner 2, being t-Spanner 3 and 4 very similar in per-
formance. On the other hand, the quality of the generated t-spanners is rather
similar for all, being t-Spanner 3 the algorithm that produces t-spanners with
most edges (arguably because of the local analysis it performs). Depending
on the dimension, the next best-quality t-spanners are produced by t-Spanner
4 (low dimensions, D < 8) or by t-Spanner 2 (medium and high dimensions,
D ≥ 8). Note that the difference in t-spanner quality becomes less significant
for higher dimensions. Finally, it is interesting to notice that, even in dimen-
sion D = 24 and for t = 1.8, the number of edges in the resulting t-spanners
is still less that 8.7% of the complete graph.

Fig. 12 compares the four algorithms where we vary t ∈ [1.4, 2.0], for n =
1,000 nodes and D = 12 and 24. Note that, for t > 1.65, all of our algorithms
produce t-spanners of good quality. In practice, to construct a 1.65-spanner
we need 14% of edges of the complete graph in high dimensionality (D = 24),
7% in medium dimensionality (D = 12) and just 1.44% in low dimensionality
spaces (D = 4). Moreover, to construct a 2.0-spanner for the same values
of D, we need just a 7%, 3.8% and 1% of the complete graph, respectively.
Furthermore, t-Spanner 3 and 4 also perform well with respect to CPU time.

It is also interesting to notice that the joint effect of high dimensionality
(D > 16) and small values of t (t < 1.5) produces a sharp increase both in the
number of generated edges and the CPU time.

Fig. 13 shows the effect of the set size n in our algorithms. It can be seen that,
in low dimensions (D = 5), t-Spanner 2, 3 and 4 are slightly super-quadratic in
CPU time. On the other hand, all the algorithms produce t-spanners slightly
super-linear in the number of edges.

We conclude that the fastest construction algorithm for all dimensions D ∈
[4, 24] is t-Spanner 3, closely followed by t-Spanner4. The other two are very
far away in performance. However, t-Spanner 3 produces t-spanners with the
worst quality (many edges), albeit all the qualities are indeed close. This result
was expected, since its incremental methodology locally analyzes the insertion
of edges. On the other hand, the recursive algorithm of t-Spanner 4 strongly
improves the quality of the incremental algorithm, profiting from the global
analysis of the edge set. In some cases, t-Spanner 4 is competitive even with
the optimized basic algorithm in the number of generated edges, yet using 50
times less CPU time.
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Fig. 11. t-Spanner construction in the uniform space of 1,000 nodes for t = 1.4
and 1.8, as a function of D. On the left, edges generated (t-spanner quality) as
a percentage of the complete graph. On the right, construction time. In (b), for
D = 24 t-Spanner 1 reaches 1900 seconds. In (d), note the log-scale. All the plots
use the legend of (a).

Table 2 shows the least squares fittings on the data using the model |E| =

a · ecD/tα ·n1+ b
t−1 and time = a · ecD/tβ ·n2+ b

t−1 microseconds. We chose the
edge model according to the analytical results of [1,2], with a slight correction
to take into account the effect of the dimensionality. As it can be seen, t-
spanner sizes are slightly super-linear for all our construction algorithms, and
times are slightly super-quadratic for t-Spanner 2, 3 and 4. This shows that
our algorithms are very competitive in practice. Remember that constructing
minimal t-spanners is NP-complete [33], whereas our algorithms build small
t-spanners in polynomial time.

The analytical results of [1,2] show that the size of a t-spanner built over a

general graph of n nodes is n1+O( 1
t−1

). The terms ecD/tα and ecD/tβ represent
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Fig. 12. t-Spanner construction in uniform spaces of 1,000 nodes for D = 12 and 24,
as a function of t. On the left, edges generated (t-spanner quality) as a percentage
of the complete graph. On the right, construction time. In (b), t-Spanner 1 reaches
1900 seconds for D = 24 and t = 1.4, also note the log-scale. (b) uses the legend of
(a).
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Fig. 13. t-Spanner construction in a uniform space of dimension D = 5, for t = 1.4
and 1.8, as a function of the number of nodes. On the left, edges generated (t-spanner
quality). On the right, construction time. In (b), for n = 2,000, t-Spanner 1 reaches
1250 and 830 seconds for t = 1.4 and 1.8, respectively. (b) uses the legend of (a).

the usual exponential dependence on the dimension of the metric space (which
is also usually hidden in the constant of the big-O notation). We correct the
dimensional effect with t, because as the value of t increases the effect of the
dimensionality diminishes. The CPU time model comes from running n times
a Θ(m log n) CPU time Dijkstra’s algorithm, where we neglect the term log n
to simplify the analysis of the time models. Note that in the case of t-Spanner

1 we modify the time model to time = a·ecD/tβ ·nd+ b
t−1 microseconds, since in

this case there is a sub-quadratic shortest path updating algorithm run over
matrix estim for each edge (this time is called k2 in Table 1).
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Edges CPU time

Basic optimized 1.023e0.230D/t0.8

n
1+ 0.101

t−1 0.016e0.163D/t1.3

n
3.147+ 0.0392

t−1

Massive edge-insertion 2.742e0.335D/t1.8

n
1+ 0.0693

t−1 1.004e0.413D/t1.8

n
2+ 0.0723

t−1

Incremental 1.983e0.308D/t1.4

n
1+ 0.0835

t−1 0.560e0.182D/t1.2

n
2+ 0.0885

t−1

Recursive 1.670e0.304D/t1.3

n
1+ 0.0768

t−1 0.657e0.229D/t1.3

n
2+ 0.0636

t−1

Table 2
Empirical complexities of our construction algorithms, as a function of D, n and t.
Time is measured in microseconds.
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Fig. 14. Range queries in uniform spaces varying D ∈ [4, 24]. The data set is com-
posed by 10,000 vectors. We retrieve 1 object per query on average.

After this analysis, we select the recursive algorithm to index the metric
database, because it yields the best trade-off between CPU time and size
of the generated t-spanner. This result is also verified in Gaussian, string and
document spaces (see Sections 5.2.1, 5.3.1 and 5.4.1).

5.1.3 Searching

Fig. 14 shows search results on a set formed by 10,000 uniformly distributed
vectors indexed with t-Spanner 4. The 1.5-spanner indexes the database using
from 0.17% of the total matrix in dimension D = 4, to 15.8% in dimension
D = 24, whereas the 2.0-spanner indexes it using 0.08% for D = 4 to 2.02%
for D = 24. With respect to search time, as long as the value of t diminishes,
the performance of t-AESA improves.

On the other hand, the equivalent pivot-based algorithm (using the same
amount of memory to index the space than the t-spanner) has better perfor-
mance than t-AESA. The reasons are analyzed next.
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5.1.4 Discussion

To explain the poor results of our search algorithm on uniform spaces we
need to consider several factors. The first is that the stretch factor t reduces
the discrimination power of our algorithm, as we can only discard objects
beyond the extended upper bound of the exclusion range. The second is that, in
uniform metric spaces ([−1, 1]D, Lp), distances among objects become similar
as long as D increases: the variance of distances is Θ(D2/p−1) [43], which is
constant in Euclidean case. The third is that, in ([−1, 1]D, L2), the average
distance between two objects is Θ(

√
D), thus the distance from a random

query to its nearest neighbor is also Θ(
√

D) on average (for constant n).
Therefore, as long as D increases the query radius also does it, making difficult
to discard objects. As a matter of fact, in D = 4 we use radius r = 0.137 to
retrieve 1 vector on average, whereas in D = 24 we must use radius r = 2.135.
All these consequences of the curse of dimensionality affect the pivot-based
algorithm as well, but our stretch factor t makes our structure more vulnerable
to them.

Nevertheless, this situation will be reverted in real-world metric spaces, where
our t-AESA algorithm beats the pivot-based one and it is very competitive
with AESA. We conjecture that this is basically due to the existence of object
clusters, which naturally occur in real-world metric spaces. Note that in a
real-world metric spaceM, it is likely that a real-world query will fall within
a cluster, thus meaningful query radii will be very small compared to the
average distance in M, compensating the loss of discrimination power. We
also have to consider that in t-AESA every object can be used as a pivot; and
that the pivot selection criterion (Eq. (7)) tends to select pivots close to the
query. Then, we can expect much better results in real-world spaces than in
synthetic ones.

In Section 5.2 we experimentally verify our conjecture. For this sake, we model
a real-world metric space as a synthetic metric space composed by Gaussian-
distributed vectors under Euclidean distance, and then we analyze the behav-
ior of our search algorithm. Later, in Sections 5.3 and 5.4 we show results on
real-world metric spaces, namely the space of strings under the edit distance
and the space of documents under the cosine distance.

5.2 Gaussian-distributed Vectors under Euclidean Distance

Real-life metric spaces have regions called clusters, that is, compact zones of
the space where similar objects accumulate. With the Gaussian vector space
we attempt to simulate a real-world space. The data set is formed by points in
a D-dimensional space with Gaussian distribution forming 256 clusters ran-
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domly centered in the range [−1, 1]D, for D = 20, 40 and 80. The generator
of Gaussian vectors was obtained from [24]. We consider three different stan-
dard deviations to make more crisp or more fuzzy clusters (σ = 0.1, 0.3 and
0.5), and t ∈ [1.4, 2.0]. Of course, we have not used the fact that the space
has coordinates, rather we have treated the points as abstract objects in an
unknown metric space.

Computing a single distance takes 1.281, 1.957 and 3.163 microseconds in our
machine, for D = 20, 40 and 80, respectively. We experimentally estimate
(according to Section 5.1.1) that the intrinsic dimensions for σ = 0.1, 0.3 and
0.5 are, respectively, 4, 13 and 18 in the 20-dimensional Gaussian space; 7,
16 and 32 in the 40-dimensional Gaussian space; and 8, 29 and 55 in the
80-dimensional Gaussian space.

In the construction experiments, we only use Gaussian data sets with clusters
randomly centered in [−1, 1]20 of varying size n ∈ [200 . . . 2,000]. In the search
experiments, we index Gaussian datasets formed by 10,000 objects distributed
in 256 clusters randomly centered in the range [−1, 1]D, for D = 20, 40 and 80,
and select 100 random queries not included in the index, using search radii
that on average retrieve 1 and 10 objects. In the 20-dimensional Gaussian
space we use r = 0.442 and 0.563 for σ = 0.1; r = 1.325 and 1.690 for σ = 0.3;
r = 2.140 and 2.560 for σ = 0.5. In the 40-dimensional Gaussian space we use
r = 0.700 and 0.818 for σ = 0.1; r = 2.101 and 2.455 for σ = 0.3; r = 3.501
and 4.081 for σ = 0.5. In the 80-dimensional Gaussian space we use r = 1.070
and 1.196 for σ = 0.1; r = 3.210 and 3.589 for σ = 0.3; r = 5.350 and 5.981
for σ = 0.5.

We first compare the construction algorithms, in order to choose the best.
Later, search experiments are carried out over the t-spanner produced by the
best construction algorithm. In particular, we aim at empirically verifying the
conjecture that t-spanners profit from clusters more than alternative struc-
tures.

5.2.1 Construction

Figs. 15 and 16 compare the four algorithms on the 20-dimensional Gaussian
dataset, where we vary the stretch t ∈ [1.4, 2.0] and the number of nodes
n ∈ [200 . . . 2,000], respectively, with σ = 0.1, 0.3, and 0.5. As it can be seen,
all the algorithms produce t-spanners of about the same quality, although the
optimized basic algorithm is consistently better, as expected. It is interesting
to note that in the case of σ = 0.1, t-Spanner 2 yields the worst quality t-
spanners. This is because, in its first stage, the algorithm inserts a lot of intra-
cluster edges and then it tries to connect both inner and peripheral objects
among the clusters. Since we need to connect just the peripheral objects, there
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are many redundant edges that do not improve other distance estimations in
the resulting t-spanner.

In construction time, on the other hand, there are large differences. t-Spanner
1 is impractically costly, as expected. Also, t-Spanner 2 is still quite costly in
comparison with t-Spanner 3 and 4.

The bad performance of t-Spanner 2, unlike all the others, improves instead
of degrading as clusters become more fuzzy, see Figs. 16(b) and 16(d). Never-
theless, the high intrinsic dimensionality of the Gaussian space with σ = 0.5
negatively impacts its performance, raising again the CPU time, see Figs. 16(d)
and 16(f). Furthermore, the quality of the t-spanner produced by t-Spanner
2 also varies from (by far) the worst t-spanner on crisp clusters to the second
best on fuzzy clusters. This is because, on one hand, there are less redundant
edges among clusters, and on the other hand, on a uniform space t-Spanner
2 inserts “better” edges since they come from MSTs (which use the shortest
possible edges).

Figs. 15 and 16 show that, the lower σ, the lower the number of edges and CPU
time. This is because the edge selection mechanisms of our algorithms profit
from the clustered structure. In practice, t-Spanner 1, 3 and 4 can make good
distance approximations between the clusters by using few edges. Thus, the
generated t-spanners adapt well to, and benefit from, the existence of clusters.

The incremental and recursive algorithms are quite close in both measures,
being by far the fastest algorithms. The recursive algorithm usually produces
slightly better t-spanners thanks to its more global edge analysis. Note that,
for t as low as 1.5, we obtain t-spanners whose size is 5% to 15% of the full
graph.

It is interesting to notice that, for fuzzy clusters, there is a sharp increase in
construction time and t-spanner size when we move from t = 1.5 to t = 1.4.
The effect shows up for smaller values of t on crisper clusters. A possible
explanation is that, for large enough t, a single edge from a cluster to another
is enough to obtain a t-spanner over both clusters. Thus, few inter-cluster
edges are necessary to complete the t-spanner. However, when t is reduced
below some threshold, the size of the edge set suddenly explodes as we need
to add many inter-cluster edges to fulfill the t-condition from one cluster to
each other.

We show in Table 3 our least squares fittings on the data using the model |E| =
a · n1+ b

t−1 and time = a · n2+ b
t−1 microseconds for t-Spanner 2, 3 and 4. Once

again, we modify the t-Spanner 1 time model to time = a·nc+ b
t−1 microseconds

so as to consider the sub-quadratic updating of matrix estim. In this metric
space the effect of σ is absorbed by the constants. This model has also been
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(b) CPU time in construction for σ =
0.1.
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(c) t-Spanner size for σ = 0.3.
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(d) CPU time in construction for σ =
0.3.
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(e) t-Spanner size for σ = 0.5.
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(f) CPU time in construction for σ =
0.5.

Fig. 15. t-Spanner construction in the Gaussian space of 2,000 nodes with 256
clusters distributed in the range [−1, 1]20 as a function of t. On the left, edges
generated (t-spanner quality) as a percentage of the complete graph. On the right,
construction time, note the log-scale. Each row corresponds to a different variance.
All the plots use the legend of (a).
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Fig. 16. t-Spanner construction in the Gaussian space with 256 clusters distributed
in the range [−1, 1]20 as a function of the number of nodes. On the left, edges
generated (t-spanner quality). On the right, construction time, note the log-scale.
Each row corresponds to a different variance. In (a), 1.4-Spanner 2 reaches 460,000
edges. In (e), 1.4-Spanner 3 reaches 727,000 edges. All the plots use the legend of
(c).
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Basic Massive edge Incremental Recursive

optimized insertion

σ = 0.1

CPU time 1.16 n
2.44+ 0.07

t−1 1.67 n
2+ 0.24

t−1 0.670 n
2+ 0.10

t−1 0.909 n
2+ 0.08

t−1

Edges 5.76 n
1+ 0.10

t−1 6.50 n
1+ 0.18

t−1 6.17 n
1+ 0.13

t−1 5.77 n
1+ 0.14

t−1

σ = 0.3

CPU time 0.054 n
2.99+ 0.11

t−1 1.52 n
2+ 0.22

t−1 0.771 n
2+ 0.13

t−1 0.865 n
2+ 0.13

t−1

Edges 5.69 n
1+ 0.18

t−1 5.41 n
1+ 0.19

t−1 6.52 n
1+ 0.19

t−1 6.50 n
1+ 0.18

t−1

σ = 0.5

CPU time 0.027 n
3.08+ 0.13

t−1 1.33 n
2+ 0.25

t−1 0.587 n
2+ 0.17

t−1 0.650 n
2+ 0.17

t−1

Edges 4.89 n
1+ 0.21

t−1 4.50 n
1+ 0.22

t−1 5.20 n
1+ 0.22

t−1 5.37 n
1+ 0.21

t−1

Table 3
Empirical complexities of our construction algorithms, as a function of n and t.
Time is measured in microseconds.

chosen according to the analytical results of [1,2]. As it can be seen, we obtain
the same conclusions than in the previous section, that is, t-spanner sizes are
slightly super-linear and times are slightly super-quadratic. This confirms that
our construction algorithms are very competitive in practice.

This analysis also confirms the selection of the recursive algorithm to index
the metric database, as it yields the best trade-off between CPU time and size
of the generated t-spanner.

5.2.2 Searching

For this section we will use the datasets of 10,000 Gaussian vectors in 20, 40,
and 80 dimensions. Fig. 17 shows the construction results when indexing these
datasets using t-Spanner 4 varying t ∈ [1.4, 2]. For σ = 0.1, 0.3 and 0.5, the 1.4-
spanner indexes the database using 0.97%, 7.70% and 16.32% of the memory
required by AESA, respectively, in dimension 20. For higher dimensions, only
t = 2 is practical.

Fig. 18 shows search results in dimension 20. It can be seen that the perfor-
mance of t-AESA improves as the value of t decreases, both to retrieve 1 and
10 objects. We also show the pivot-based algorithm performance when using
the optimum number of pivots (found by hand).

On the other hand, the cluster diameter also influences the performance of
t-AESA. On crisp clusters, the results are competitive against AESA and bet-
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(a) Edges generated in 20 dimensions.
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(b) CPU time in 20 dimensions.
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40-dimensional Gaussian space: generated edges

(c) Edges generated in 40 dimensions.
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(d) CPU time in 40 dimensions.
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(e) Edges generated in 80 dimensions.
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(f) CPU time in 80 dimensions.

Fig. 17. t-Spanner construction in a Gaussian space of 10,000 nodes with 256 clusters
distributed in the range [−1, 1]D, for σ = 0.1, 0.3 and 0.5, using t-Spanner 4 as a
function of t. On the left, edges generated (t-spanner quality) as a percentage of
the complete graph. On the right, construction time. Each row corresponds to a
different D. In D = 20, for σ = 0.5, 1.4-Spanner 4 reaches 16.3% (a) and 6,200
seconds (b). In D = 40, for σ = 0.3, it reaches 13.9% (c) and 6,750 seconds (d); and
for σ = 0.5, it reaches 55.8% (c) and 19,800 seconds (d). Finally, in D = 80, for σ

= 0.3, it reaches 20.0% (e) and 9,280 seconds (f); and for σ = 0.5, it reaches 89.4%
(e) and 23,600 seconds (f). All the plots use the legend of (a).
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(b) Search cost to retrieve 10 objects.

Fig. 18. Range queries in a Gaussian space of 10,000 nodes with 256 clusters dis-
tributed in the range [−1, 1]20, for σ = 0.1, 0.3 and 0.5. On the left, retrieving 1
object. On the right, retrieving 10 objects. (b) uses the legend of (a). Note the
log-scales in the plots.

ter than the pivot-based algorithm, since the t-spanner adapts to and benefits
from the existence of clusters. For instance, with σ = 0.1, 1.4-AESA retrieves
1 and 10 objects using 1.05 and 1.04 times the distance evaluations of AESA,
respectively, whereas the pivot-based algorithm uses 1.51 and 1.54 times the
number of evaluations of AESA, respectively. Moreover, the pivot-based al-
gorithm using the optimum number of pivots takes 1.28 and 1.52 times the
number of evaluations of AESA, respectively. With σ = 0.3, t-AESA is still
better than the pivot-based algorithm. As a matter of fact, 1.4-AESA retrieves
1 and 10 objects by using 1.53 and 2.72 times the distance evaluation of AESA,
and the optimum pivot-based algorithm uses 5.07 and 5.11 times the distance
evaluations of AESA for 1 and 10 objects. The situation is reverted in fuzzy
clusters, as expected from Section 5.1.3, where the objects are distributed
almost uniformly and the t-spanner notoriously loses discrimination power.

Fig. 19 shows the results on higher dimensions and t = 2. For crisp clusters
(σ = 0.1) t-AESA needs few more distance computations than AESA, both
to retrieve 1 or 10 objects. For instance, Fig. 19(a)/(b) shows that in 40/80
dimensions t-AESA uses 1.19/1.34 times the number of evaluations of AESA,
both to retrieve 1 and 10 objects. With σ = 0.3 t-AESA is better, by far, than
the pivot-based technique. Finally, with σ = 0.5 all the techniques dramati-
cally fall down in performance, as with that σ the space is almost uniformly
distributed, and this makes up an intractable scenario on high dimensions.

Hence we experimentally verify the conjecture that t-spanners take advan-
tage of the clusters, which occur naturally in real-world metric spaces. The
crisper the clusters, the better the performance of t-spanner techniques. It is
known that all search algorithms improve in the presence of clusters. How-
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(a) Search cost in 40 dimensions.
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Fig. 19. Range queries in a Gaussian space of 10,000 nodes with 256 clusters for σ

= 0.1, 0.3 and 0.5. We index the space with a 2.0-spanner. In (a), clusters distribute
in the range [−1, 1]40. In (b), clusters distribute in the range [−1, 1]80. (a) uses the
legend of (b). Note the log-scales in the plots.

ever, t-spanner based algorithms improve more than, for example, pivot-based
algorithms.

5.3 Strings under Edit Distance

The string metric space under the edit distance has no coordinates. The edit
distance is a discrete function that, given two strings, measures the mini-
mum number of character insertions, deletions and substitutions needed to
transform one string to the other [32]. Our database is an English dictionary,
where we index a subset of n = 24,000 randomly chosen words. On average, a
distance computation takes 1.632 microseconds.

Since these tests are more massive, we leave out the optimized basic and the
massive edge-insertion algorithms in the construction experiments, as they
were too slow. Anyway, we performed a test with a reduced dictionary in order
to validate the decision of leaving them out, and to experimentally estimate
the intrinsic dimensionality of the string space as dim = 8.

In the search experiments, we select 100 queries at random from dictionary
words not included in the index. We search with radii r = 1, 2, 3, which return
on average 0.0041%, 0.036% and 0.29% of the database, that is, approximately
1, 8 and 66 words of the english dictionary, respectively.
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Fig. 20. t-Spanner construction on the space of strings, for increasing n. On the left,
number of edges generated (t-spanner quality). On the right, construction time. (b)
uses the legend of (a).

5.3.1 Construction

Fig. 20 shows that, also for strings, the number of edges generated is slightly

super-linear (8.03 n1+ 0.16
t−1 for t-Spanner 3 and 8.45 n1+ 0.15

t−1 for t-Spanner 4), and

the construction time is slightly super-quadratic (1.46 n2+ 0.10
t−1 microseconds

for t-Spanner 3 and 1.67 n2+ 0.09
t−1 for t-Spanner 4). The recursive algorithm is

almost always a bit better than the incremental algorithm in both aspects.

Fig. 21 shows construction results when indexing the whole subset of 24000
strings varying t. The full graph of 24,000 nodes has 288 million edges, whereas
a 1.4-spanner has only 8.35 million edges (2.90% of the complete graph). Once
again, Figs. 21(a) and 21(b) confirm the selection of t-Spanner 4.

5.3.2 Searching

Fig. 22 presents the results as a space/time plot. We have chosen to draw a
line to represent AESA although, since it permits no space-time trade-offs, a
point would be the correct representation. The position of this point in the x
axis would be 288× 106, about 1.7 yards from the right end of the plot.

Note that, while pivot-based algorithms have a limit where giving them more
memory does not improve their performance, t-AESA always improves with
more memory.

Fig. 22(a) shows that, with radius 1, the pivot-based algorithm has better
performance than t-AESA with t = 2.0. Furthermore, the equivalent pivot-
based algorithm performs better than t-AESA for t > 1.7, and it uses less
memory. Only with values of t ≤ 1.7 (which produce an index using more
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Fig. 21. t-Spanner construction on the space of strings as a function of t, for
n = 24000. On the left, number of edges generated (t-spanner quality) as a per-
centage of the complete graph. On the right, construction time. (b) uses the legend
of (a).

memory), t-AESA works systematically better, becoming very competitive
for t = 1.4, where it makes just 1.27 times the distance evaluations of AESA.

Figs. 22(b) and 22(c) show that with radii 2 and 3, t-AESA has better perfor-
mance than pivots for all t ∈ [1.4, 2.0]. For example, 1.4-AESA uses 1.16 and
1.46 times the distance evaluations of AESA with radii 2 and 3, respectively.

In order to understand these so favorable results, we have to take into account
that, in addition to the fact that the string space has small radii clusters,
the edit distance is a discrete function. This means that the approximated
distances are rounded down to the closest integer. This fact can be interpreted
as if the effective t′ of the structure were lower than the nominal t, so that
the discrimination power lost is less than in continuous metric spaces. Overall,
this improves the discrimination power of t-AESA.

5.4 Documents under Cosine Distance

In Information Retrieval, documents are usually represented as unitary vectors
of high dimensionality [5]. The idea consists in mapping the document to a
vector of real values, so that each dimension is a vocabulary word and the
relevance of the word to the document (computed using some formula) is the
coordinate of the document along that dimension.

With this model, document similarity is assessed through the inner product
between the vectors. Note that the inner product between two exactly equal
documents is one, since both documents are represented by the same vector.
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Fig. 22. Distance evaluations on the string space. In (a), search radius r = 1; the
pivot-based algorithm reaches 540 distance evaluations for the pivot-index equiva-
lent to a 1.4-spanner (8.5 million edges). In (b), search radius r = 2. In (c), search
radius r = 3. All the plots use legend of (a).

As long as the documents are more different, the inner product between the
vectors representing the documents goes to zero. As we are looking for a
distance, we consider the angle between these vectors. This way, the cosine
distance is simply the arc cosine of the inner product between the vectors [5],
and this satisfies the triangle inequality. Similarity under this model is very
expensive to calculate.

In the construction experiments, we use a data set formed by 1,200 documents
obtained from TREC-3 collection (http://trec.nist.gov/), and exclude the
massive edge-insertion algorithm, which was too slow (the reason, this time,
is that t-Spanner 2 is the algorithm that makes, by far, most distance compu-
tations), with t ∈ [1.4, 2.0].

In the search experiments, we select 50 queries at random from the documents
not included in the index, and search with radii chosen to retrieve, on average,
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Fig. 23. t-Spanner construction on the set of documents, as a function of t. On the
left, edges generated (t-spanner quality) as a percentage of the complete graph. On
the right, construction time. (b) uses the legend of (a).

1 and 10 documents per query (r = 0.13281 and 0.16659, respectively), with
t ∈ [1.4, 2.0].

In most of these experiments, we maintained the whole document set in mem-
ory in order to avoid the disk time, but in real applications we cannot choose
this option, since the data set can be arbitrarily large. We have included an
experiment with the documents held on disk in Section 5.4.2 to demonstrate
the effect of such an expensive distance function.

5.4.1 Construction

Fig. 23(a) shows that t-Spanner 1, 3 and 4 produce t-spanners of about the
same quality. However, as shown in Fig. 23(b) the optimized basic algorithm is
much more expensive than the other two, which are rather similar. Yet, these
time differences are not very large if we compare them to those of Fig. 15.
For instance, for t = 1.4, t-Spanner 1 uses 3 times more CPU time than t-
Spanner 3 or 4, whereas in Gaussian or uniform spaces t-Spanner 1 is 64 times
slower. This is because the cost to compute the cosine distance is clearly the
dominant term of the CPU time cost, and this is always close to n(n − 1)/2
distances. As a matter of fact, for t = 2 the CPU time of t-Spanner 1, 3 and
4 are almost equal. Note that the complete graph of 1,200 nodes has about
720 thousand edges, and a 2.0-spanner has only 28.7 thousands (3.99% of the
complete graph).
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Fig. 24. Distance evaluations on the document space. On the left, retrieving 1 doc-
ument. On the right, retrieving 10 documents. (b) uses the legend of (a).

5.4.2 Searching

Fig. 24 shows that t-AESA can achieve better performance than the pivot-
based algorithm, and it is extremely competitive against AESA. For example,
for t = 2.0, t-AESA makes 1.09 times the distance evaluations of AESA in
order to retrieve the most similar document, and 1.08 times to retrieve 10
documents. We have again chosen to draw a line to represent AESA.

When comparing to pivots, we note that pivots do better than t-AESA when
the amount of memory is very limited (see the smallest values of |E|×1, 000).
Yet, it can be seen that pivots are not so efficient to take advantage of more
memory when it is available. Actually their initial achievement (350–400 dis-
tance computations) are not surpassed until they use much more memory, and
at that point they do not beat t-AESA either.

Up to now we have considered only number of distance evaluations at search
time, in the understanding that in some metric spaces the distance is expensive
enough to absorb the extra CPU time we incur with the graph traversals. There
are many metric spaces where this is the case, and the document space is a
good example to illustrate this situation. The documents are stored on disk
and we measure the overall elapsed time to retrieve 1 and 10 documents.

Fig. 24 shows that, even considering side computations, t-AESA can achieve
better performance than the pivot-based algorithm. When the overall time is
considered, t-AESA has an optimum t-spanner size of around 25,000 edges.
This size is rather small and is achieved using t = 2.1. It is equivalent to using
41 pivots. To achieve a similar result with pivots, one has to spend about 10
times more space.
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Fig. 25. Elapsed search time in the document space. On the left, retrieving 1 docu-
ment. On the right, retrieving 10 documents. (b) uses the legend of (a).

6 t-Spanners as Dynamic Structures for Metric Space Searching

In many real applications, one does not know the whole object set at index
construction time, but rather objects are added/removed to/from the set along
time. Thus, it is necessary to update the index to represent the current status
of the data set.

Hence, in order to use the t-spanner as a metric database representation, we
have to grant it the ability of allowing efficient object insertions and deletions
without degrading the performance of the object retrieval operations.

We show in this section how to implement a dynamic index for metric spaces
based on t-spanners. These algorithms allow us to efficiently update the struc-
ture upon insertions and deletions of objects, while maintaining its quality.

6.1 Inserting an Object into the t-Spanner

Assume we want to insert an object u into a t-spanner G′(V, E) so as to obtain
a new t-spanner G′

u(V ∪ {u}, Eu). Since we are only interested in that the t-
estimations from u towards elements of V fulfill the t-condition and G′(V, E)
is already a well-formed t-spanner, this is the perfect situation to use the
incremental algorithm (Section 4.4) for u.

Therefore, constructing a t-spanner by successive object insertions is equiva-
lent to using the incremental algorithm over the whole object set.
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6.2 Deleting an Object from the t-Spanner

Elements handled in metric spaces are in many cases very large. Thus, upon
an object deletion, it is mandatory to effectively remove it. As a consequence,
folklore solutions such as marking objects as eliminated without effectively
removing them are not acceptable in the metric space scenario.

We present two choices to remove elements from a t-spanner: lazy deletion and
effective deletion.

Lazy deletion consists in removing the object and leaving its node and edges
untouched. Those nodes that do not represent anymore an object are said to
be empty. Empty nodes are treated as regular nodes at search time, except
that they are not considered to be candidate nodes. As a consequence, they
are never chosen as pivots nor reported. In Fig. 3, this corresponds to changing
just line 1, so that C is initially U minus the empty nodes.

This choice has the advantage of taking constant time and not modifying the
t-spanner structure. In order to preserve the long-term quality of the graph,
periodic global reconstructions should be carried out (see Section 6.3).

Effective deletion consists in eliminating not only the object, but also its
graph node and its incident edges. In order to preserve the t-condition, we have
to make a local t-spanner reconstruction around the deleted object by using
“temporal” edges. Note that some temporal edges could be unnecessary to
preserve the t-condition, and that for each inserted edge we need to compute
one additional distance. At search time, temporal edges are treated as regular
edges. Just as for empty nodes in lazy deletion, global periodic reconstructions
are necessary to get rid of the temporal edges.

We envision two connection mechanisms to perform the local t-spanner recon-
struction:

• Clique connection: it consists in connecting all the neighbors of the deleted
vertex to each other using temporal edges. This mechanism has the advan-
tage of freeing the memory used by the node and its incident edges, but
the disadvantage of inserting some unnecessary edges, which degrade the
quality of the t-spanner.
• Conservative connection: it consists in connecting neighbors of the deleted

vertex, with temporal edges, only if the current distance t-estimation among
them is greater than before the vertex deletion. This choice has the advan-
tage of inserting only some edges of the clique, but the disadvantage of
taking more CPU time per deletion.

Note that an alternative to conservative connection is local t-spanner connec-
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tion, where we use temporal edges to connect neighbors of the deleted vertex
whose current distance estimation is greater than the t-distance allowed for
them. This mechanism takes one additional distance evaluation per checked
edge, even if the distance is not inserted in the t-spanner. This option has
the advantage of preserving the t-spanner quality and taking less CPU time
per deletion compared to the previous mechanism. The disadvantage is that
this local reconstruction does not necessarily preserve the global t-spanner
property. That is, even if we ensure that the t-condition is locally restored
among neighbors, it might be that some distant nodes get their distance not
t-estimated. These distances have to be detected and patched by adding direct
edges. Periodical global reviews of the t-spanner can be used both to detect
these distant edges, and to remove the excess of direct edges in favor of shorter
ones. Yet, the method does not guarantee that we actually have a t-spanner.

6.3 Remodeling the t-Spanner

After successive deletions (using either lazy or effective deletion) the quality of
the t-spanner may be degraded. This motivates the need of a “reconstruction”
algorithm to be run periodically in order to maintain the structure quality,
that is, to maintain a t-spanner that appropriately models the current state
of the metric database.

The remodeling algorithm has two stages. First, depending on the deletion
strategy, it deletes either empty nodes and their incident edges, or temporal
edges. Second, it builds the t-spanner by using the recursive algorithm, starting
with the nodes and edges that remain after the elimination. This strategy
allows us to reuse previous work.

6.4 Experimental Results with Dynamic t-Spanners

In this section we show that dynamic t-spanners are a robust technique to
index a metric database upon insertions and deletions of objects. We first
study effective deletion as an alternative to lazy deletion, and then consider
the effect of periodic reconstructions.

6.4.1 Performance of Effective Deletion

While the performance of lazy deletion is immediate in terms of the resulting
t-spanner size and deletion cost, those measures deserve experimental study
for effective deletion.
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Fig. 26. Dynamic t-spanners for D = 12 and 24 and t = 1.8 and 2.0 as a function
of the maximum number of nodes. On the left, edges generated (t-spanner quality).
On the right, distance computations required by the reconstruction. (b) uses the
legend of (a).

We start with a dataset of n vectors in ([−1, 1]D, L2) that we index with t-
Spanner 4. Then we add nodes until reaching a maximum value nmax > n, by
using the incremental algorithm for each new object as suggested in Section
6.1. Now we mark nmax − n objects at random and delete them using the
conservative connection technique of Section 6.2.

Fig. 26 shows the results on insertion and deletion over ([−1, 1]D, L2), for D ∈
[4, 24]. We start by indexing n = 2, 000 vectors, and then vary nmax from 2,050
to 2,250. Fig. 26(a) shows the number of edges when we add objects to the
t-spanner and then remove the same amount at random using the conservative
connection technique. Fig. 26(b) shows the number of distance computations
required by the whole process of insertions and deletions, compared to just
inserting 2,000 nodes.

It can be seen that the number of edges sharply increases under effective dele-
tion, even after a few updates. In the best case (D = 24, t = 1.8) the number
of edges after reaching 2,200 elements and then deleting 200 is more than
twice that of the initial graph (before any update). If we used lazy deletion,
this ratio would be below 1.11. Thus, we pay a high price in terms of edges for
having removed the node. In addition, we pay a high price in terms of distance
computations (Fig. 26(b)), as opposed to zero in the case of lazy deletion. This
shows that lazy deletion is clearly preferable over effective deletion.
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(a) Size of the reconstructed t-spanner.
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Uniform Space: CPU time in the reconstruction

D = 12, t = 1.4
D = 12, t = 1.8
D = 24, t = 1.4
D = 24, t = 1.8

(b) CPU time for reconstruction.

Fig. 27. t-Spanner reconstruction in uniform spaces for D = 12 and 24, as a function
of the maximum number of nodes. On the left, edges generated (t-spanner quality)
measured as a percentage with respect to the original. On the right, reconstruction
CPU time measured as a percentage with respect to the original. (a) uses the legend
of (b).

6.4.2 Remodeling

We test now the performance of our t-spanner remodeling technique. We start
with a dataset of n vectors in ([−1, 1]D, L2), insert new nodes until reaching
nmax, and then delete random nodes until we are back with n nodes. Now, we
use the remodeling technique from Section 6.3. Note that the deletion strategy
we use is irrelevant for this experiment.

Fig. 27 shows the results for D ∈ [4, 24]. We start by indexing n = 2, 000
vectors, and then vary nmax from 2,800 to 5,200. In Fig. 27(a) we show the
ratio between edge set size after the reconstruction and that of the initial
indexing. Analogously, in 27(b) we show the ratio between the reconstruction
time and initial construction time.

It can be seen that reconstruction is quite effective, maintaining the t-spanner
quality relatively similar to its original version even after many updates take
place. This shows that the combination of lazy deletion and periodic remod-
eling is a robust alternative for dynamic t-spanners (note that in this case the
t-spanner quality and search performance are unaltered, yet objects are not
physically removed until the next remodeling takes place).

7 Conclusions and Further Work

We have presented a new approach to metric space searching, which is based
on using a t-spanner data structure as an approximate map of the space. This
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permits us trading space for query time.

We started by proposing an algorithm to solve range queries over the t-spanner.
It is based on simulating the successful AESA algorithm [40] with a bounded-
error estimation of the distances. We show that, the more available memory,
the better the performance of the search process. Note that classical pivot-
based algorithms do not have this feature.

We have shown experimentally that t-spanners are competitive against ex-
isting solutions. In particular we have shown that t-spanners are especially
competitive in applications of interest to Information Retrieval: strings under
edit distance and documents under cosine distance. For example, in an ap-
proximate string matching scenario typical of text databases, we show that
t-spanners provide better space-time trade-offs than classical pivot-based so-
lutions. Moreover, t-Spanners permit approximating AESA, which is an un-
beaten index, within 1.5 times its distance evaluations using only about 3%
of the space AESA requires. This becomes a feasible approximation to AESA,
which in its original form cannot be implemented in practice because of its
quadratic memory requirements. Furthermore, for document retrieval in a text
database, we just perform 1.09 times the distance evaluations of AESA, using
only 4% of its memory requirement.

To complete this approach, practical t-spanner construction algorithms are
required for 1.0 < t ≤ 2.0. To the best of our knowledge, no previous technique
had been shown to work well under this scenario (complete graph, metric
distances, small t, practical construction time) and no practical study had
been carried out on the subject. Our algorithms not only close this gap, but
they are also well suited to general graphs.

We have shown that it is possible to build good-quality t-spanners in reason-

able time. We have empirically obtained time costs of the form Cc · n2+ 0.1...0.2
t−1

and number of edges of the form Ce ·n1+ 0.1...0.2
t−1 . Note that just scanning all the

edges of the complete graph requires O(n2) time. Moreover, just computing
all the distances in a general graph requires O(n3) time. Compared to exist-
ing algorithms, our contribution represents in practice a large improvement
over the current state of the art. Note that in our case we do not provide any
guarantee in the number of edges. Rather, we show that in practice we gen-
erate t-spanners with few edges with fast algorithms. Among the algorithms
proposed, we have selected the recursive one as the most appropriate to index
a metric database.

One of the most important advantages of this methodology is that the t-
spanner naturally adapts, by its construction methodology, to the spatial dis-
tribution of the data set, which allows obtaining better performance both in
the construction and the search phase (in particular, better than pivot-based
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algorithms). We have given enough empirical evidence to support the conjec-
ture that this good behavior holds in any clustered space. Most real-world
metric spaces have clusters, so we expect that t-spanners will also perform
well in other real applications.

Finally, we have addressed the problem of indexing a dynamic database using
t-spanners. We proposed mechanisms for object insertion and deletion, and
t-spanner remodeling, that make up a robust method for maintaining the
t-spanner up to date while preserving its quality. For insertions, the use of
the incremental algorithm is efficient and yields t-spanners of good quality.
For deletions, we obtain good results by combining lazy deletion (where the
object itself is indeed removed) and periodic remodeling of the structure.

Several lines of future work remain open, both in t-spanner construction and
in its use as a search tool:

• A first one is that, for search purposes, we do not really want the same
stretch t for all the edges. Shorter edges are more important than longer
ones, as Dijkstra’s algorithm tends to use shorter edges to build the shortest
paths. Using a t value that depends on the distance to estimate may give
us better space-time trade-offs.
• We can consider fully dynamic t-spanners, which means that the t-spanner

allows object insertions and deletions while preserving its quality without
need of periodical remodeling. This is important in real-time applications
where there is no time for remodeling.
• A weakness of out current construction algorithms is the need to have an

externally computed model predicting their final number of edges. We are
working on versions that use the t-spanner under construction to extrapolate
its final size. Preliminary experiments show that the results are as good as
with external estimation.
• Another line of work is probabilistic t-spanners, where most distances are

t-estimated, so that with much fewer edges we find most of the results.
• Yet another idea is that we can build a t-spanner and use it as a t′-spanner,

for t′ < t. This may lose some relevant elements but improves the search
time. The result is a probabilistic algorithm, which is a new successful trend
in metric space searching [15,11,13]. In particular, we have observed that,
in order to build a t-spanner, many distances are estimated better than t
times the real one, so this idea seems promising. For example, a preliminary
experiment in the string metric space shows that, with a 2.0-spanner and
using t′ = 1.9, we need only 53% of the original distance computations to
retrieve 92% of the result.
• Finally, another idea is to use the t-spanner as a navigational device. A pivot

is much more effective if it is closer to the query, as the ball of candidate
elements has much smaller volume. We can use the t-spanner edges to start
at a random node and approach the query by neighbors.
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