
Succinct Trees in Practice

Diego Arroyuelo∗ Rodrigo Cánovas† Gonzalo Navarro† Kunihiko Sadakane‡

Abstract
We implement and compare the major current techniques for
representing general trees in succinct form. This is impor-
tant because a general tree of n nodes is usually represented
in pointer form, requiring O(n log n) bits, whereas the suc-
cinct representations we study require just 2n + o(n) bits
and carry out many sophisticated operations in constant
time. Yet, there is no exhaustive study in the literature
comparing the practical magnitudes of the o(n)-space and
the O(1)-time terms. The techniques can be classified into
three broad trends: those based on BP (balanced parenthe-
ses in preorder), those based on DFUDS (depth-first unary
degree sequence), and those based on LOUDS (level-ordered
unary degree sequence). BP and DFUDS require a balanced
parentheses representation that supports the core operations
findopen, findclose, and enclose, for which we implement and
compare three major algorithmic proposals. All the tree rep-
resentations require also core operations rank and select on
bitmaps, which are already well studied in the literature.
We show how to predict the time and space performance
of most variants via combining these core operations, and
also study some tree operations for which specialized im-
plementations exist. This is especially relevant for a recent
proposal (K. Sadakane and G. Navarro, SODA’10) which,
although belonging to class BP, deviates from the main tech-
niques in some cases in order to achieve constant time for
the widest range of operations. We experiment over vari-
ous types of real-life trees and of traversals, and conclude
that the latter technique stands out as an excellent practi-
cal combination of space occupancy, time performance, and
functionality, whereas others, particularly LOUDS, are still
interesting in some limited-functionality niches.

1 Introduction.

Trees are, on one hand, the paradigmatic data structure
in Computer Science, probably rivalled in popularity
only by arrays and linked lists; and on the other hand,
one of the most striking examples of the success of
succinct data structures. A classical representation of
a general tree of n nodes requires O(nw) bits of space,
where w ≥ log2 n is the bit length of a machine pointer
(we will use log for log2 henceforth). The associated
constant is at least 2, and typically only operations such
as moving to the first child and to the next sibling, or

∗Yahoo! Research Latin America, Chile.
darroyue@dcc.uchile.cl.

†Department of Computer Science, University of Chile.
{rcanovas|gnavarro}@dcc.uchile.cl. Supported in part by Mil-
lennium Institute for Cell Dynamics and Biotechnology (ICDB),
Grant ICM P05-001-F, Mideplan, Chile.

‡National Institute of Informatics (NII), Japan.
sada@nii.ac.jp. Supported in part by a Grant-in-Aid of
the Ministry of Education, Science, Sports and Culture of Japan.

to the i-th child, are supported. By further increasing
the constant, some other simple operations are easily
supported, such as moving to the parent, knowing
the subtree size, or the depth. Much research was
needed (and further increase of the constant) to support
sophisticated operations such as level-ancestor [3] and
lowest common ancestor [2] queries. While the constant-
time complexities achieved for the sophisticated queries
are remarkable, the Ω(n log n)-bit space complexity is
not justified in terms of Information Theory: there are
only Cn ∼ 4n/n3/2 different general trees of n nodes,
and thus log Cn = 2n − Θ(log n) bits are sufficient to
distinguish any one of them. This huge space gap has
motivated a large body of research [16, 19, 20, 21, 11,
4, 10, 7, 15, 12, 25, 17, 18, 8, 27] achieving 2n + o(n)
bits of space and constant time for an impressive set
of operations. Table 1 lists those we consider in this
paper. There are several others, yet most are solved
analogously to those in this set. Note we consider also
labeled trees, where each child of a node is associated
to a distinct label in a range [1, σ]. In this case, n log σ
additional bits are needed to represent the labels.

The existing proposals differ in their functionality,
ranging from those that support basically child/parent
navigation [16, 7] to those supporting a full range of
operations [4, 17, 8, 27]; in the nature of the o(n)
space overhead, ranging from O(n/(log log n)2) [18]
to O(n/polylog(n)) [27]; and in some rare cases on
their capability to take less space when the tree is
compressible in some sense [17]. In theoretical terms,
the problem can be considered basically solved, at least
in the static scenario.

In practice, however, the situation is much less sat-
isfactory. Implementations of the theoretical proposals
are scarce and far from trivial, even for those striving
for simplicity [10, 7, 27]. Verbatim implementations of
the theoretical proposals are usually disastrous, as al-
ready noted in previous work [22], and much empirical
experience must be combined with the theoretical ideas
in order to obtain theoretically and practically sound
solutions. There are few practical comparisons among
techniques, none of which is sufficiently exhaustive to
give a broad idea of their performance. In practice, the
O(1)-time and the o(n)-space terms in the asymptotic
analyses give little clues as to how the structures actu-

parentheses operation description
findclose(i)/findopen(i) position of parenthesis matching P [i]
enclose(i) position of tightest opening parenthesis enclosing node i
rank((i)/rank)(i) number of opening/closing parentheses in P [1, i]
select((i)/select)(i) position of i-th open/close parenthesis
tree operation description
pre rank(x) preorder rank of node x
pre select(x) the node with preorder x
isleaf (x) whether node x is a leaf
ancestor(x, y) whether x is an ancestor of y
depth(x) depth of node x
parent(x) parent of node x
first child(x) first child of node x
next sibling(x) next sibling of node x
subtree size(x) number of nodes in the subtree of node x
degree(x) number of children of node x
child(x, i) i-th child of node x
child rank(x) number of siblings to the left of node x
level ancestor(x, d) ancestor y of x such that depth(y) = depth(x)− d
lca(x, y) the lowest common ancestor of two nodes x, y
labeled tree operation description
labeled child(x, s) child of node x labeled by symbol s
child label(x) label of edge between node x and its parent

Table 1: Operations on parentheses and trees considered in this paper. The first group are core operations on a
parentheses sequence P , and is used to implement many of the others.

ally perform.
In this paper, we carefully implement the theoret-

ical proposals we consider most promising in practice,
and compare them for various real-life trees and typi-
cal tree traversals. Tree representations can be broadly
classified into the following tracks:

BP: The balanced parentheses representation of a tree,
first advocated as a succinct data structure by Ja-
cobson [16], and later achieving constant times [19],
is built from a depth-first preorder traversal of the
tree, writing an opening parenthesis when arriving
to a node for the first time, and a closing paren-
thesis when going up (after traversing the subtree
of the node). In this way, we get a sequence of
2n balanced parentheses. Each node is represented
by a matching pair parentheses ’(’ and ’)’, and we
identify the node with its opening parenthesis. The
subtree of x contains those nodes (parentheses) en-
closed between its representing opening and closing
parentheses. The core operations (see Table 1) on
this sequence are sufficient to implement most of
the functionality.

DFUDS: Depth-first unary degree sequence [4]. It
is built by the same traversal, except that, upon
arriving at each node, we append i opening and one

closing parentheses, being i the number of children
of the node. The node is represented by the
position where its i parentheses start. The resulting
sequence turns out to be balanced (if one prepends
an extra opening parenthesis at the beginning)
and the same core operations on parentheses are
used to support the same functionality of BP in a
different way (except for depth, which requires extra
structures [17]) plus others, most notably child, in
constant time.

LOUDS: Level-ordered unary degree sequence [16, 4].
Nodes are processed and represented as in DFUDS,
but they are traversed level-wise, instead of in
depth-first order. It turns out that just rank(/rank)

and select(/select) are sufficient to support a few
key operations such as parent and child in constant
time, yet most other operations are not supported.

FF: The recent so-called fully-functional succinct tree
representation [27] is based on a BP representation.
It includes a novel data structure to handle the core
operations, called a range min-max tree. With little
extra data, this same structure is able of solving in
constant time many other sophisticated operations
that are not usually handled by other BP represen-

tations, such as child, lca, and level ancestor.

We omit an extra track based on tree covering
[11, 15, 8], of which we do not know of practical
implementations (we thank Arash Farzan and Meng He
for confirming this).

We first study different alternatives to represent a
sequence of balanced parentheses while supporting the
core operations. These include a hash-based heuristic
implementation developed for a compressed text index
[22], Geary et al.’s recursive pioneer-based representa-
tion [10], and the range min-max trees [27]. We ex-
haustively compare these operations over real-life trees
coming from (a) LZ78 parsings of text collections, (b)
suffix trees of text collections, (c) the tag structure of
XML collections. We emulate typical root-to-leaf (and
vice versa) traversals coming from exact search, LZ78
decompression, and other very common navigation op-
erations, as well as traversals where in addition every
other child of the current node is visited with a given
probability. These are meant to emulate traversals typ-
ical of backtracking, range or proximity searches, and
XPath queries.

We briefly survey the way BP, DFUDS, and LOUDS
build on these core operations, and show how to pre-
dict the performance of most operations in terms of the
core ones. We also study some tree operations indi-
vidually, when the prediction from the performance of
core operations is less direct. Overall, our work pro-
vides implementations (all by ourselves) of the most
promising techniques to represent succinct trees, the
first exhaustive empirical comparison among them, and
recommendations on which structures to use depend-
ing on the case. It turns out that the recent FF pro-
posal [27] stands out as an excellent combination of wide
functionality, little space usage, and good time perfor-
mance. Other approaches are still relevant for certain
niches. In particular, we show that LOUDS, which had
received comparatively little attention, is an extremely
simple and efficient alternative when only the simpler
operataions are needed. LOUDS excells when descend-
ing to an arbitrary ordinal or labeled child. For this
latter operation, the DFUDS variant also shows to be a
reasonable compromise if a wide functionality must be
retained.

2 Balanced Parentheses.

Let P [1, 2n] be a sequence of n pairs of balanced
parentheses (represented with bits 0,1). We describe
the three major representations we will consider, which
support the core parenthesis operations described in
Table 1.

Let us define the key function excess(i) = rank((i)−
rank)(i). Then it holds that findclose(i) is the smallest

j > i such that excess(j) = excess(i− 1) (findopen(i) is
analogous). Also, enclose(i) is the greatest j < i such
that excess(j) = excess(i)− 1.

2.1 Hash-Based Heuristic (HB).

Instead of storing all the possible answers to findclose

(which would require O(n log n) bits of space), this
representation [22] divides the parentheses into three
groups. Let b = log n and s = b log n. Let close

parentheses be those whose matching parentheses are
at distance at most b; near, between b + 1 and s; and
far, farther than s positions away. Only the answers for
near and far parentheses are explicitly stored, in hash
tables. The table for far parentheses uses O(log n) bits
per value stored, while that for near parentheses uses
just log s bits (because the distance from the argument
is stored, rather than the absolute answer).

To compute findclose(i), we first scan the next b
positions, looking for the first parenthesis with the same
excess(i− 1). If the answer is not found in this way, the
hash table for near parentheses is queried. Since the
search key is not stored in this table, we consider all
colliding answers: if more than one candidate answer
is found with the correct excess, the closest one is the
correct answer (because the sequence is balanced [22]).
Finally, if the answer is still not found, the hash table for
far parentheses is queried. A similar approach is used
for operations findopen and enclose, requiring their own
hash tables.

The search for close parentheses is implemented as
a scan by chunks of k bits. Hence, for every different
k-bit stream, we precompute its excess and, for every
j = 1, . . . , k, the first position of the k-bit stream where
the excess becomes −j, if any. To solve findclose(i),
we check wether the excess −1 is reached in the first
chunk after position i. If it is, the position where this
happens is findclose(i). Otherwise, we consider the
second chunk, looking for excess −1 − e1, where e1 is
the total excess of the first chunk, and so on. If the b
bits are exhausted without a solution, then the answer
is not close. Scanning for findopen(i) and enclose(i) is
analogous.

The parenthesis operations are thus supported in
O(b/k) time, plus two searches on hash tables, which
are O(1) on average. If we set k = log n

c , for constant
c > 1, the average time is O(c). The precomputed
table for close parentheses requires 2k(2k + 1) log k =
O(n1/c log n log log n) = o(n) bits. Furthermore, we
need log s = O(log log n) bits per near parenthesis and
O(log n) per far parenthesis. However, there is no
theoretical bounds on these types of parentheses (e.g.,
on a tree formed by n nodes with one child, almost all of
them are far). Fortunately, these worst-case sequences

are not common in practice.
Implementation notes. We choose k = 8 so as to

handle bytes, hence the table requires just 4.25 KB and
admits good caching. The hash tables are implemented
by a closed hashing scheme, with load factor 1.8 for
enclose and 1.6 for findclose and findopen, which gave
us the best space/time tradeoff (recall that we do not
store the keys in the hash table for near parentheses, so
we pay a noticeable cost per collision, and the cost is
proportional to that of an unsuccessful search). See [22,
Sect. 6] for more implementation details.

For operation excess, a lightweight rank/select data
structure is used [13], which supports rank in O(1) and
select in O(log n) time, while requiring 5% extra space
over that of P [1, 2n]. The idea is to store rank values,
in 32 bits, every s = 20 · 32 = 640 bits, and then scan
byte-wise these 640 bits = 80 bytes using a precomputed
table. For select we binary search the sampled values
and finish with a sequential scan as well.

2.2 Recursive Pioneer-Based Representation
(RP).

The representation by Geary et al. [10] divides P into
blocks of size b = log n

2
. A parenthesis at position

i is said to be close if its matching pair belongs
to the same block, otherwise the pair is called far.
Computing findclose for a close parenthesis is done by
using precomputed tables, as in Section 2.1, requiring
o(n) bits of space. An opening far parenthesis at
position i is said to be a pioneer if the previous opening
far parenthesis has its matching closing parenthesis in
a block different to that of the closing parenthesis for
i. Both parentheses forming the matching pair are
called pioneers. The total number of pioneers is O(n/b)
[16, 10]. Thanks to the pioneer properties, findclose(i) is
reduced to (a) finding the previous pioneer i′ ≤ i (which
could be i itself), (b) find j′ = findclose(i′), (c) scan the
block of j′ backwards until finding j = findclose(i) using
the excess property (again by means of precomputed
tables).

To solve findclose for pioneers, we form the reduced

sequence of the pioneers, and apply the solution recur-
sively once more. The second time the reduced sequence
is of length O(n/b2) and thus we can store all the an-
swers in O(n log(n)/b) = o(n) bits.

The remaining piece is a bitmap B[1, 2n] marking
the pioneers. With rank1 and select1 on this sequence
we find the previous pioneer, map it to the reduced
sequence, and map the answer to findclose back to
the original sequence. As B has O(n/b) 1s, it can be
represented using O(n log b/b) = o(n) bits of space [24].

The solution to enclose(i) is similar. After checking
within the same block of i, we look for the first pioneer

c following i. If it is a closing parenthesis, then p =
findopen(c), otherwise p is the pioneer most tightly
enclosing c (i.e., its parent in the sequence of pioneers).
Now let q be the first pioneer following p. If q is
in the same block as p, then our answer is the first
far parenthesis to the left of q; else the answer is the
rightmost far parenthesis in the block of p. Both require
just within-block scans. See the original article [10] for
more details.

Implementation notes. For compressed bitmaps
[24] we use a recent implementation [6] which requires
27% extra space on top of the entropy of the bitmap, and
implements rank in constant time and select in O(log n)
time. The block size b is a space/time tradeoff parame-
ter. Because the second-level bitmap B is significantly
smaller and not too compressible, we represent it in un-
compressed form. All uncompressed RP bitmaps are
implemented as those in Section 2.1.

2.3 Range Min-Max-Tree Based Representa-
tion (RMM).

The basic tool of this technique [27] is the range min-

max tree. This is built over the (virtual) array of
excess(i) values. The sequence P is cut into blocks
of b = w

2
parentheses, and we store the minimum

and maximum (local) excess within each block. We
then group k blocks into a superblock, and store the
minimum and maximum excess per superblock. We
then group k superblocks, and so on until building
up a complete k-ary hierarchy. The total space is
O(n log(b)/b) = o(n) bits. The range min-max tree
permits solving the following kernel operations. Let us
overload excess(i, j) = excess(j)− excess(i− 1).

fwd search(i, d): gives the minimum j > i such that
excess(i, j) = d

bwd search(i, d): gives the maximum j < i such that
excess(j, i) = d

With the kernel operations, we easily implement the
basic parentheses operations, and also some sophisti-
cated tree operations:

findclose(x) ≡ fwd search(x, 0)
findopen(x) ≡ bwd search(x, 0)
enclose(x) ≡ bwd search(x, 2)

level ancestor(x, d) ≡ bwd search(x, d + 1)

To solve fwd search(i, d) we first scan the block of i
in constant time using precomputed tables as before. If
unsuccessful, we climb up the range min-max tree until
we find a min/max excess range that, translated into
absolute, contains excess(i − 1) + d: At each node, we
scan the values to the right of the ancestor of i. Once
the proper range min-max tree node is found, we go

down finding the first child that contains the desired
excess, until reaching the leaf block, which is scanned
to find the exact j value. The process is analogous for
bwd search.

If n = polylog(w) and k = Θ(w/ log w), then
there are O(1) levels and the scanning per node can
be done in constant time using universal tables of
size o(2w). A constant-time solution for large trees
using 2n + O(n/polylog(n)) bits is significantly more
complex [27], so we use range min-max trees for all
cases. As a result, the complexity becomes O(log n) for
all operations, yet the structure is extremely efficient
anyway.

Implementation notes. For each block i, we
store its local minimum m[i] and maximum M [i] excess
values. Thus −b ≤ m[i] ≤ 1 and −1 ≤ M [i] ≤ b holds
and they can be stored in ⌈log(b + 2)⌉ bits. Therefore
the maximum value of b is 254 (216 − 2) if we use one
byte (two bytes) to store each value. For example, with
b = 512 the space overhead is 2× 16 · (2n)/b = 6.25%.

A superblock consists of k blocks, and we build a
range min-max tree on superblocks, yet thereafter we
use a branching factor 2, forming a complete binary
tree. Storing 32-bit numbers and using, say, k = 32
and b = 512, the space is 2 × 2 · 32 · (2n)/(bk) ≈ 0.78%
overhead.

Just as for the other solutions, sequence P is
scanned by bytes when looking for some target excess

value. Local excesses are converted into global by
adding excess at the beginning of blocks/superblocks.
Since excess(i) = rank((i)− rank)(i) = 2 · rank((i)− i, all
we need is a particularly efficient rank(at the beginning
of superblocks. Thus we adapt a rank/select scheme
similar to the one used for the other representations [23],
so that the rank structures use blocks aligned with b and
the scheme requires little space. We store 4-byte global
sums of big blocks of size 216, 2-byte local sums of blocks
of size b, and 1-byte sums of blocks of 255 bits. For b =
512 this is 32·(2n)/216+16·(2n)/b+8·(2n)/255≈ 6.31%
overhead.

3 Succinct Tree Representations.

3.1 Preorder Balanced Parentheses (BP).

Table 2 shows the way many operations in BP represen-
tation are expressed in terms of basic parenthesis oper-
ations (we assume the operations can be applied, other-
wise an easy check is necessary). Operation child(x, i)
can be computed in O(i) time by applying first child

and then, repeatedly, next sibling. Operations degree(x)
and child rank(x) are solved similarly. Similarly, we im-
plement level ancestor(x, d) in O(d) time by successive
parent operations. There are constant-time theoretical

solutions for these operations [21, 18], but they have not
been implemented.

A complex operation that has a practical so-
lution is lca(x, y) = enclose(rmq(x, y) + 1) [25].
Operation rmq(x, y) gives the minimum excess in
P [x, y], and is implemented in constant time using
O(n(log log n)2/ log n) = o(n) bits of space on top of
the excess array [2, 25] (we simulate this excess array
with operation excess).

Implementation notes. The most practical im-
plementation we know of for rmq [9] requires 62.5% ex-
tra space on top of P [1, 2n], and this would put the
representation out of competition in terms of space re-
quirement. A theoretical, not implemented, alternative
solution to lca(x, y) is given by operation double-enclose

[19]. We opt, therefore, by taking parent on the less
deep node until it becomes an ancestor of the deeper
one, then this is the lca.

Labeled trees. The labels are stored in pre-
order in a sequence L[1, n], so that child label(x) =
L[pre rank(x)] and labeled child(x, s) is solved by a lin-
ear scan, just like child(x, i).

3.2 Depth-First Unary Degree Sequence
(DFUDS).

Table 2 also shows how to translate many operations
in DFUDS representation to those on balanced paren-
theses. We have introduced shorthands prev)(x) ≡
select)(rank)(x)) and next)(x) ≡ select)(rank)(x) + 1). If
x is within a sequence of opening parentheses, these op-
erations find the preceding and following closing paren-
thesis, respectively.

There is a theoretical proposal for implementing
depth and level ancestor in constant time [17], but this
has not been implemented as far as we know. Again,
lca(x, y) = parent(rmq(x, y − 1) + 1) can be efficiently
implemented in DFUDS [17], where rmq works over the
excesses of the DFUDS parentheses sequence. (The
formula needs an easy fix if ancestor (x, y).)

Implementation notes. For the same practical
reasons related to rmq and the non-implemented theo-
retical proposals, we implement lca, level ancestor, and
depth by brute force. For lca this means that we have
to trace the full path from both nodes towards the root
using parent, and then find the lowest common node.

We solve prev) and next) by directly scanning P
computer-word-wise, which is preferable to the verbatim
solution unless the tree has extremely large arities.

Labeled trees. The labels are written in a sep-
arate sequence L[1, n] by traversing the tree in pre-
order and writing, at each node, the symbols by
which its children descend. In a labeled tree one
can assume the children are ordered by their sym-

Operation BP DFUDS LOUDS
pre rank(x) rank((x) rank)(x− 1) + 1
pre select(p) select((p) select)(p− 1) + 1
isleaf (x) P [x + 1] =′)′ P [x] =′)′ P [x] =′)′

ancestor(x, y) x ≤ y ≤ findclose(x) x ≤ y ≤ findclose(enclose(x))
depth(x) excess(x)
parent(x) enclose(x) prev)(findopen(x− 1)) + 1 prev)(select((rank)(x− 1))) + 1
first child(x) x + 1 child(x, 1) child(x, 1)
next sibling(x) findclose(x) + 1 findclose(findopen(x−1)−1)+1 select)(select((rank)(x−1))+1)+1)
subtree size(x) (findclose(x)−x+1)/2 (findclose(enclose(x))−x)/2+1
degree(x) next)(x)− x next)(x) − x
child(x, i) findclose(next)(x)− i) + 1 select)(rank((x) + i− 1) + 1
child rank(x) next)(y)−y; y=findopen(x− 1) y−prev)(y); y=select((rank)(x−1))

Table 2: Constant-time reduction of tree operations in BP and DFUDS, to operations on balanced parentheses.

bol. Thus to carry out labeled child(x, s) we binary
search L[rank((x), rank((x) + degree(x) − 1] and fin-
ish with a child(x, i) operation. Also child label(x) =
L[rank((parent(x)) + child rank(x) − 1]. By sorting
the children labels of each parent in reverse order we
save some prev)/next) operations. There is a constant-
time theoretical proposal for labeled child [4], not imple-
mented as far as we know.

3.3 Level-Ordered Unary Degree Sequence
(LOUDS).

The final column of Table 2 shows how some operations
can be solved under LOUDS representation. We assume
that, just as for DFUDS, a tree node corresponds to the
first position of P where we write its arity in unary. The
formulas differ slightly from the original version [16],
but not significantly in terms of performance. Again,
first child and next sibling can be expressed in terms of
the others.

Other operations are not immediately supported.
We discuss, however, some practical alternatives. To
begin, rank)/select) provide a usually sufficient alterna-
tive to pre rank/pre select , as they map the tree nodes
to consecutive numbers in [1, n]. In most cases the pre-
order primitives are used not because preorder is partic-
ularly relevant, but just for the sake of storing satellite
information associated to the node identifiers in [1, n].
For this purpose, level-wise numbering is as good as
preorder.

Although ancestor(x, y) is not supported, there
is a property of LOUDS that simplifies a brute-force
implementation: if y is deeper than x, then y > x.
Then, while y > x, we take y ← parent(y). At the
end, either x = y (in which case the answer is yes) or
y < x (in which case the answer is no).

This same property permits a lightweight brute-

force implementation of lca(x, y): If y > x do y ←
parent(y); else if x > y do x ← parent(x). Continue
until x = y, which is the answer.

Another operation that LOUDS lacks is
subtree size(x). Since the nodes belonging to the
subtree of x are contiguous at each level, this can be
implemented by carrying an interval [y, z] along the lev-
els and counting the number of nodes at each level (with
rank)(z) − rank)(y − 1) + 1). Initially [y, z] ← [x, x].
For each next level we update y ← child(y, 1) and
z ← child(z, degree(z)), until z < y.

The other operations, level ancestor and depth, are
implemented by brute force using parent without any
special improvements.

Implementation notes. We use the rank/select
solution requiring 5% of extra space [13]. Several special
cases are avoided by prepending ’()’ at the beginning of
P . In a previous practical study on LOUDS [7] they
choose differently the bit that represents a tree node.
We found that they require more operations than us and
than Jacobson [16] (except that they get next sibling

almost for free) and their space overhead is too high
(50%-100%).

Labeled trees. These are solved just as for DFUDS
(reversing the order of children is not necessary).

3.4 A Fully-Functional Representation (FF).

The operations in Table 2 are solved as for BP, since the
parentheses are set in BP order. Furthermore, we have
shown how to implement operation level ancestor using
the same primitives fwd search and bwd search, as well
as several others not considered here [27].

The range min-max tree also solves easily operation
rmq(x, y), and thus lca(x, y): The area P [x, y] is covered
by O(k logk(n/b)) (super)blocks, which can be scanned
in constant time for the minimum excess value. By

storing also the number of minima, we can in a similar
way compute degree(x) (which is the number of excess
minima in P [x + 1,findclose(x)− 1]), child(x, i) (which
is the i-th excess minimum in P [x+1,findclose(x)−1]),
and child rank(x) (which is the number of excess minima
in P [parent(x), x− 1]).

Implementation notes. The number of minima
in each (super)block is stored as described for m[i]
and M [i], thus using other ≈ 3.52% overhead. Other
small-space structures can be added to support further
operations [27].

Labeled trees. We use L[1, n] as for BP. Yet,
both binary (using child(x, i)) and sequential search are
possible with the RMM. We test both.

4 Experimental Comparison.

We performed our experiments on trees coming
from (a) LZ78 parsings of text collections, (b) suffix
trees of text collections, and (c) the tag struc-
ture of XML collections. For cases (a) and (b)
we used 200 MB and 50 MB (respectively) pre-
fixes of the the DNA, protein and XML texts from
the Pizza&Chili corpus (http://pizzachili.dcc.
uchile.cl). The resulting trees have 16,373,737,
30,080,186, and 11,775,736 nodes respectively for case
(a), whereas for (b) they have 75,095,011, 72,396,959
and 70,723,755 nodes. For case (c), we used an XMark
[28] document of about 558 MB, a Medline document
(ftp://ftp.cogsi.ed.ac.uk/pub/disp/OHSXML.tar.
gz) of about 380 MB, and the XML text form
Pizza&Chili, of 200 MB. The resulting DOM tree
structures have 14, 238, 042, 3, 966, 917, and 9,560,024
nodes, respectively.

We tested the performance of the tree operations by
emulating random root-to-leaf traversals of trees (root
itself excluded), where in addition every other child of
the current node in the path is visited with a given
probability p. We retain the order in which such nodes
are visited, so p = 0.0 corresponds to a pure random
root-to-leaf traversal, 0 < p < 1 simulates range- or
approximate-search traversals, and p = 1 simulates a
full traversal of the tree. The general behavior is quite
similar within each class of trees (a), (b) and (c), so for
LZ78 we only show the case of DNA text (and later,
once, proteins), while for suffix trees we only show the
case of proteins, and for XML the XMark document.
Table 3 gives some of their characteristics.

In general, as p grows, a higher proportion of small
and nearby subtrees are visited. This translates into
more close matching parentheses and more cache hits
in BP and DFUDS. As closer parentheses are found
faster in both schemes, such structures become faster
as p grows. LOUDS, instead, is generally insensitive to

LZ78 LZ78 S. tree XML
DNA Protein Protein XMark

Size 16, 373, 737 30, 080, 186 72, 396, 959 14, 238, 042

Height 64 126 173 14

Avg. leaf 14.21 7.79 11.15 7.76
depth

Max.arity 16 25 26 127,500

Avg.arity 2.01 2.63 2.90 2.11

Table 3: Basic characteristics of the trees tested.

the subtree sizes, as it proceeds levelwise (indeed, it is
slightly slower on deeper levels, as the parent/children
are farther away).

The computer used features an Intel(R) Core(TM)2
Duo processor at 3.16 GHz, with 8 GB of main memory
and 6 MB of cache, running version 2.6.24-24 of Linux
kernel.

We first measure the times of the core operations,
which allow predicting the performance of many oper-
ations in Table 2. Some specific tree operations are
studied later.

4.1 Core Operations.

Figure 1 shows the space/time tradeoffs achieved for
the core parenthesis and bitmap operations, for the
cases p = 0.0 and p = 0.2. The times are averaged
over at least 20,000 nodes (for p = 0.0), and up to
20 million for larger p values. We show the times for
findclose and enclose. For the RP representation we
use block sizes b = 32, 64, 128, 256, 512. For HB we use
block sizes b = 128, 256, 512, 1024, 2048. For the RMM
representation we set b = 512 and k = 8, 16, 32, 64, 128
(other values of b did not yield better results). These
combinations yield the observed space/time tradeoffs.

Modifier “DFUDS” means that the parentheses
sequence used is that of DFUDS rather than BP. RP-
DFUDS was very close to RP, which is clearly the worst
performer as we comment soon, so we omitted it to
lighten the plots. On XMark, BP-DFUDS needs more
than 9 bits per node and thus it does not appear in the
XML plots. We also omitted RMM-DFUDS from all
these plots as it was indistinguishable from RMM.

We also show the time for rank and select, which
offers its own space/time tradeoff (with the same space
one solves both) and prev)/next), which is drawn as a
line because it uses brute force and hence does not need
any extra space. Operations prev)/next) were tested
over the nodes traversed in the DFUDS sequence (which
is equivalent to having chosen LOUDS), as these are the
representations where such operations are applied.

The times for findopen are similar to those for
findclose on BP. On DFUDS, instead, they are asym-
metric: findclose(x) is usually faster as it returns a typ-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

LZ78 parsing, DNA, p=0.0

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5
T

im
e

pe
r

op
er

at
io

n
(m

ic
ro

se
co

nd
s)

Bits per node

LZ78 parsing, DNA, p=0.2

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

Suffix tree, protein, p=0.0

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

Suffix tree, protein, p=0.2

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

XML tree, XMark, p=0.0

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

XML tree, XMark, p=0.2

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

Figure 1: Space/time for the core operations on parenthesis structures, for p = 0.0 (left) and p = 0.2 (right).

ically closer node. Yet, the operations findopen(x − 1)
of Table 2 have a cost very similar to enclose(x) (which
usually returns findopen(x− 1)− 1).

Clearly RMM (and RMM-DFUDS) is in general
the best performer, both in space and time. HB is
generally able of approaching its time, yet the space
required by HB varies widely depending on the tree
shape. On DNA, where the arity is low, HB can improve
upon RMM in space, while being competitive in time
(at least for findclose). In proteins, where the arity
is larger, many parentheses become far (especially for
enclose) and the space of HB cannot anymore reach
that of RMM. The effect is dramatic on XMark, where
the arity is much higher and HB is unable of operating
with less than 100% space overhead over the 2n bits.
In the DFUDS variants of HB the parentheses tend
to be farther than on BP, thus HB-DFUDS requires
more space than HB(-BP). In XMark, HB-DFUDS has
a space overhead of more than 450%.

This shows that the lack of space guarantees of HB
is indeed a problem in practice, and emphasizes the
importance of offering such guarantees in fundamental
data structures, where one can hardly predict the type
of instances that will be faced.

The time performance of RP is clearly the worst.
RP is affected by the operations on the compressed
bitmap, which in practice pose a significant time over-
head, as well as space redundancy over the entropy. This
is illustrated, in particular, by the fact that, on findclose

for p > 0, where many small subtrees are handled, RP in
many cases worsens in time when using more space. The
reason is that, when the answer is not too far away, it is
better to find it sequentially through sparser blocks than
to use the heavy machinery of the compressed bitmaps.

Finally, note that the extra space for rank/select
is the only one required by LOUDS, and that it works
well within just 2% of extra space. This means that,
within the small set of operations it supports, LOUDS
is competitive in time and better in space than RMM.
Note in particular that select may worsen when using
more space. This is because the binary search is done
over a denser (and larger) set of samples, whose impact
on the locality is not recovered by scanning a shorter
segment of the bitmap (as this scan is cache-friendly).

Figure 2 shows the extreme case of p = 1.0, which
simulates a full tree traversal. Here most of the extra
structures are useless, as the majority of the operations
are carried out on very small trees, where they are
easily solved by brute force. In this case LOUDS
representation (that is, rank/select) is not that fast
compared to the others, as this kind of locality does
not show up in its levelwise traversal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

LZ78 parsing, DNA, p=1.0

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

 0

 0.5

 1

 1.5

 2

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

Suffix tree, protein, p=1.0

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per node

XML tree, XMark, p=1.0

findclose RMM
findclose HB

findclose HB-DFUDS
findclose RP

enclose RMM
enclose HB

enclose HB-DFUDS
enclose RP

rank
select

prev)/next)

Figure 2: Space/time for the core operations on paren-
thesis structures, for p = 1.0.

Repres. Params. LZ78 LZ78 S. tree XML
DNA Protein Protein XMark

FF-BP and b = 512, 2.37 2.37 2.38 2.37

FF-DFUDS k = 32

HB-BP b = 512 2.58 2.75 3.22 3.97

HB-DFUDS b = 512 3.35 4.17 4.84 9.52

RP-BP b = 64 3.45 3.33 3.36 3.29

LOUDS s = 640 2.10 2.10 2.10 2.10

Table 4: Default space usage for the representations in
Section 4.2.

4.2 Tree Operations.

We tested several operations, a few to show that their
times can be predicted with those of the core operations,
and most because they are harder to predict: parent(x),
child(x, i), labeled child(x, s), level ancestor(x, d), and
lca(x, y). We choose one representative tree for each
operation, as the conclusions are roughly the same for
the others. Except for lca(x, y), we chose one reasonable
space/time point per structure. These choices are given
in Table 4 (recall that FF-* corresponds to RMM).

Figure 3 gives the times for operation parent(x) on
the suffix tree for proteins. We use the same sampling
method (i.e., via tree traversals) of the core operations,
with varying p. As in these, we average the times
over at least 20,000 nodes. FF-BP outperforms the
other alternatives except for p = 0.0, where LOUDS
is faster. For higher p (where more smaller subtrees
are chosen) LOUDS does not benefit from locality, as
explained. The difference between HB-DFUDS and HB-
BP is small, and can be attributed to the extra prev)

operation. The difference between FF-DFUDS and FF-
BP is larger.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Probability p

Suffix tree, protein, Parent

FF-BP
HB-BP
RP-BP

FF-DFUDS
HB-DFUDS

LOUDS

Figure 3: Performance for operation parent(x) as a
function of p.

Figure 4 shows the times for operation child(x, i)

on the suffix tree of proteins, for 1 ≤ i ≤ 5. We
choose nodes from the same traversal done for p = 0.0
on the core operations, keeping all nodes with degree
at least 5. This gives us a sampling of 14,000 nodes
to average over. This time we have also included the
times over a pointer-based uncompressed tree, which
will be discussed in Section 4.4. That time is essentially
that of a single memory access, and is close to the time
of first child(x) = child(x, 1) on BP representations.
For larger i, as HB-BP and RP-BP operate by brute
force, they are essentially O(i), though with different
constants (related to their time to carry out findclose).
LOUDS is clearly O(1) for this operation, and faster
than all the others except for the trivial case i = 1
(which, on the other hand, is the dominant case on
various common traversals). HB-DFUDS is also O(1)
in theory (as it always needs one findclose operation),
yet it is faster for smaller i values because the answer
is closer in those cases. The time of FF-DFUDS is in
practice logarithmic on the distance of the answer, as
it climbs the range-min-max tree. FF-BP uses its own
algorithm for child, and its time is also logarithmic on
the distance of the answer (and thus very similar to
FF-DFUDS). This explains the slow growth of these
alternatives. All the three also get closer to LOUDS for
larger p (this plot is for p = 0.0, as explained), finally
surpassing it around p = 0.6.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter i

Suffix tree, protein, Child(i)

FF-BP
HB-BP
RP-BP

FF-DFUDS
HB-DFUDS

LOUDS
Uncompressed Tree

Figure 4: Performance for operation child(x, i) as a
function of i.

Figure 5 illustrates the performance for operation
labeled child(x, s) on the LZ78 parsing of proteins. We
use exactly the same method of sampling nodes of
child(x, i), and also plot the times as a function of i,
so this time the argument s is the one resulting in
descending to the i-th child. This is an operation where
LOUDS excells, DFUDS does well, and FF-BP falls far

behind. The binary search of LOUDS and DFUDS is
done directly over a range in L, which makes them
very fast, much faster than the linear searches of BP
alternatives (still DFUDS and LOUDS need to finish
with one child(x, i) operation after finding i). The time
differences among LOUDS and DFUDS alternatives are
lower than for child(x, i) because all must carry out
the same binary search. On the other hand, the linear
times of the BP alternatives are slightly costlier than
for child(x, i) because, although they probe the same
nodes, they must carry out one further rank operation
per node to find the letter in L. They are only faster
in the lucky case of s labeling the first child. Finally,
FF-BP is surprisingly slow. Although it carries out
a binary search, this search is not local and requires
various child(x, i) operations, which renders it slower
than some linear searches in practice. Indeed, it is much
better to linearly scan for the i-th child using findclose,
as illustrated by FF-Seq-BP, which is the fastest among
the O(i) methods.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

position of the labeled child

LZ78 parsing, protein, labeled child

FF-BP
FF-Seq-BP

HB-BP
RP-BP

FF-DFUDS
HB-DFUDS

LOUDS

Figure 5: Performance for operation labeled child(x, s)
as a function of i, the position of the resulting child.

Figure 6 compares the performance for operation
level ancestor(x, d) on the LZ78 tree of DNA, for 1 ≤
d ≤ 5. We choose all the nodes from the sampling of
core operations corresponding to p = 0.0, and keep the
nodes with depth at least 5. This leaves us 2,000 nodes
to average over. Here all the techniques except FF-BP
use brute force (note FF-DFUDS cannot benefit from
the FF-BP algorithm, as excesses do not correspond
to depths in DFUDS). The times, consequently, are
basically linear, except for FF-BP, whose algorithm
based on operation bwd search is logarithmic in the
distance to the answer. This dominates all the other
costs and shows its practicality. Note the times are
about 50% faster than the corresponding to parent(x)

on the suffix tree of proteins, as these nodes have fewer
children and hence their parents are closer.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

LZ78 parsing, DNA, Level Ancestor(d)

FF-BP
HB-BP
RP-BP

FF-DFUDS
HB-DFUDS

LOUDS

Figure 6: Performance for operation level ancestor(x, d)
as a function of d.

Finally, Figure 7 shows operation lca(x, y) on
XMark, for different memory usage of the structures.
This time we simply chose 100,000 pairs of tree nodes at
random. This operation is implemented by brute force
on all representations except FF-BP and FF-DFUDS,
which provide a native solution to lca. It can be seen
that FF and LOUDS (with its lightweight brute-force
algorithm) sharply dominate the space/time tradeoff.
FF-DFUDS is slightly slower than FF-BP because it
needs an extra check that invokes an ancestor query.
Using the RMQ-based solution for the other alterna-
tives would achieve competitive times (0.9 microseconds
according to a simple experiment we carried out), yet it
would require including the extra constant-time RMQ
structure [9], which adds 6.12n bits to the already large
HB and RP representations.

4.3 Asymptotics.

Our experiments have considered fixed trees. While all
the operations are in theory constant-time, in practice
the implementation of select is O(log n), as well as
our FF operations1. Furthermore, cache effects can
significantly affect the performance. Thus, one may
wonder how the tree size n affects the results given.

Figure 8 shows the times for operations findclose

and enclose as a function of the tree size n. For this sake,
we created random binary trees of increasing size, from
50 to 350 million nodes, and tried the BP alternatives

1While the theoretical article [27] achieves constant time, our
FF implementation builds solely on the RMM, which seems much
more practical but requires time logarithmic on the tree size.

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8 9 10 11

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bit per node

XML tree - XMark, Lca

FF-BP
HB-BP
RP-BP

FF-DFUDS
HB-DFUDS

LOUDS

Figure 7: Performance for operation lca(x, y) as a
function of the space usage.

on them. We maintained the space usage parameters
of Table 4, obtaining 2.37–2.38 bits per node for RMM,
2.62–2.99 for HB, and 3.68–3.74 for RP. The nodes to
operate are collected over 100,000 random root-to-leaf
traversals (akin to p = 0.0 above).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

number of nodes (millions)

Random Binary Tree

findclose RMM
findclose HB
findclose RP

enclose RMM
enclose HB
enclose RP

Figure 8: Performance as a function of the tree size, for
random binary trees.

As it can be seen, apart from some oscillations,
there is no any clear increase in the time as we handle
larger trees. This is due in part to the fact that many
operations (most clearly those of RMM) depend not on
the total tree size, but on the distance between the query
and the answer node, and this average distance varies
very mildly on n even for the traversal with p = 0.0.

This result confirms the scalability of the solutions
and the stability of our results on larger trees. Note in
passing that findclose(x) is slower than enclose(x) on

binary trees, as half the times the answer of the latter
is simply x− 1.

4.4 Non-Succinct Tree Representations.

A natural question is how the times we have shown
(usually below the microsecond per operation, for the
best performing structures) compare to a plain pointer-
based tree representation. For this sake, we set up such
a tree, where each node has a pointer to an array of
its children. This allows one to implement child(x, i)
using just one memory access. This takes around 18–
31 nanoseconds in our machine and is illustrated in
Figure 4.

This means that an uncompressed tree, in the cases
where it can actually fit in main memory, is about
12–20 times faster than LOUDS, our best compressed
representation for this operation. If we consider all the
operations, and take FF-BP as the alternative (as it
gives the widest support), we have that in most cases
the time of FF-BP is within half a microsecond (30
times slower than the single memory access needed by
the uncompressed representation) and for some complex
operations, up to 2 microseconds (120 times slower).

Still, it is important to illustrate in numeric terms
what it means to be succinct or plain, especially when
we need more functionality than moving to a child. A
plain representation on a 32-bit machine spends 32 bits
per node (that is, 13 times more than FF-BP and 15
more than LOUDS), if we arrange the tree in levelwise
order on an array, and the cell of each node points to
the cell of its first child. This arrangement supports
efficiently the most basic navigation: child, degree,
isleaf , first child, and next sibling. However, each other
operation we wish to support efficiently requires another
integer: parent, depth, subtree size, pre rank , etc. Thus,
just supporting these four operations we would require
160 bits per node. The more functionality we wish to
support, the less likely is that the pointer-based tree will
fit in main memory, in applications managing massive
trees. In contrast, the powerful FF-BP representation
supports all those operations within the same space (less
than 2.4 bits per node).

The more sophisticated operations, like lca and
level ancestor, deserve a special mention. They can be
solved within O(n)-word space and O(1) time, but they
require several (not just 1) further integers per node.
Worse than that, they require several memory accesses.
For example, the classical lca algorithm [2] requires 7
extra integers (224 bits) per node and 12 non-local
memory accesses. Thus its expected time is around 0.2–
0.4 microseconds, whereas FF-BP solves lca within the
microsecond (just up to 5 times slower) and the same
2.4 bits per node.

Repres. LZ78 LZ78 S. tree XML
DNA Protein Protein XMark

gaps 1.62 1.46 1.36 1.59

γ-code 2.24 1.92 1.72 2.18
real γ 3.43 2.72 2.44 2.90

Table 5: Space usage for the larger representations with
minimum functionality. Only the last column is a real
encoding scheme.

On the other hand, there are intermediate tree
representations [16, 5, 14] which, although do not
guarantee 2n + o(n) bits of space usage (only O(n)
bits in general), offer a relevant tradeoff in practice.
Translated into a general tree representation, they
usually boil down to a scheme as follows: Arrange the
nodes of the tree on an array T [1, n] by performing a
preorder traversal. The cell of each node stores where
is its next sibling. Unlike our previous uncompressed
scheme, akin to a LOUDS layout, this resembles more
BP: we immediately have first child(i) = i + 1 and
next sibling(i) = T [i] (yet, as before, we lack most of
the other operations unless we pay for the space of
storing the answers explicitly). By storing the pointers
in relative form and using a variable-length encoding,
compression is possible since most of the subtrees are
small. The value of the relative pointer from node x to
its next sibling will be just subtree size(x).

To measure the practical performance of this idea,
we computed

∑
x∈T ⌈log(subtree size(x) + 1)⌉ on our

trees, which gives a lower bound to the size that can be
achieved by this technique. It is shown in the first line
of Table 5. It is a lower bound because (i) storing the
exact number of bits the number needs is not possible (a
representation like, say, γ-encoding, is necessary); and
(ii) since a variable-length code is used, the pointers
must point to bit offsets, not to cell numbers of T .

The second row of Table 5 addresses prob-
lem (i) using γ-codes, which gave us good re-
sults. It shows the value

∑
x∈T |γ(subtree size(x))| =∑

x∈T (2⌈log(subtree size(x) + 1)⌉ − 1). The last line of
the table addresses problem (ii), only now reaching a
real solution to the problem. It γ-encodes not the sub-
tree size of x, but the length of the representation of
the subtree of x (which recursively uses γ-codes, a leaf
using |γ(1)| = 1 bit). One adds this value to the pointer
to x and reaches the bit-offset of its next sibling.

As it can be seen, these representations are space-
efficient in practice, competing with our 2.4n-bit repre-
sentations, and possibly being very fast for operations
first child, next sibling, and isleaf , that is, for a full tree
traversal. Yet, as we have seen in Figure 2, one can
do pretty well with the plain 2n parentheses for such

traversal. Still, assuming that next sibling will be sig-
nificantly faster by decoding a γ-code, the representa-
tion offers a rather limited repertoire of operations. By
somehow mixing fixed- and varying-length representa-
tions one could include child and degree, at some price
in space. Yet, as before, each further operation to sup-
port requires storing extra data that is already included
in our 2.4n-bit representations (and many are also in-
cluded in our 2.1n-bit LOUDS format).

This shows that the key advantage in the modern
succinct tree representations is not their 2.x-bit space
usage, as this is not that difficult to achieve. The
key advantage is the wide functionality these succinct
representations support within this space.

5 Conclusions.

We have carried out a rather exhaustive comparison
of the best techniques to represent general trees of n
nodes in little space. We focused on the most succinct
schemes, which use 2n + o(n) bits. It turns out that
the recent so-called fully-functional (FF) representation
[27] offers an excellent combination of space usage,
time performance, and functionality. It implements a
large set of simple and sophisticated operations, and
in most cases it outperforms all the other structures
in time and space. For example, with less than 20%
overhead over the minimum 2n bits of space, it carries
out all the operations within the microsecond (up to
2 microseconds for a few of them). Indeed, we have
recently used FF representation successfully for an
application managing large XML databases in main
memory while supporting fast XPath operations [1].

In some applications requiring limited functionality,
other structures are of interest. LOUDS can implement
a more reduced set of navigation operations using just
5% extra space (and even 2%, at a small price in time)
over the 2n bits. Within that little space, LOUDS is
very competitive in time, being the fastest choice in
several cases. This is particularly noticeably on large-
arity trees and on random root-to-leaf traversals, while
the other schemes tend to perform better on lower arities
or when many nearby nodes have to be processed (in
particular, for full traversals).

A case where LOUDS excells and FF falls far behind
is for descending to a child given its label. Here
DFUDS is a good alternative, only somewhat slower
than LOUDS. Although DFUDS variants are usually
a bit slower than their BP counterparts, FF-DFUDS
can be a reasonable compromise when this labeled-child
operation is important and full functionality is desired.
It requires the same space of FF(-BP).

We believe in particular that LOUDS representa-
tion has not been sufficiently studied in the litera-

ture because it lacks support for some sophisticated
operations, even if it offers a very attractive solution
for the simplest (and most common) navigation oper-
ations. These are already richer than the minimal set
of downward-traversal operations that “classical” com-
pressed representations based on variable-length encod-
ing offer. In this paper we have introduced novel practi-
cal solutions for several sophisticated operations, which
turn out to be surprisingly competitive (others, such as
computing the subtree size, are still relatively too slow).
We believe that even more could be done.

An important topic of future work is to achieve
practical succinct dynamic tree representations, where
nodes can be added to and deleted from the tree. In
this aspect even the theoretical proposals are lacking.
The FF representation admits a simple and practical
dynamic implementation with O(log n) time for all the
operations, and a more complex theoretical one reaching
the lower bound O(log n/ log log n) [26].

Our implementations have been left public in Google

Code, extending the current libcds library, to foster
their use in diverse applications and their comparison
to other practical proposals to come.

References

[1] D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen,
G. Navarro, K. Nguy˜̂en, J. Sirén, and N. Välimäki.
Fast in-memory XPath search over compressed text
and tree indexes. In Proc. 26th ICDE, 2010. To
appear.

[2] M. Bender and M. Farach-Colton. The LCA problem
revisited. In Proc. 4th LATIN, LNCS 1776, pages 88–
94, 2000.

[3] M. Bender and M. Farach-Colton. The level ancestor
problem simplified. Theoretical Computer Science,
321(1):5–12, 2004.

[4] D. Benoit, E. Demaine, I. Munro, R. Raman, V. Ra-
man, and S. Rao. Representing trees of higher degree.
Algorithmica, 43(4):275–292, 2005.

[5] D. Blandford, G. Blelloch, and I. Kash. An experi-
mental analysis of a compact graph representation. In
Proc. 6th ALENEX, pages 49–61, 2004.

[6] F. Claude and G. Navarro. Practical rank/select
queries over arbitrary sequences. In Proc. 15th SPIRE,
LNCS 5280, pages 176–187, 2008.

[7] O. Delpratt, N. Rahman, and R. Raman. Engineering
the LOUDS succinct tree representation. In Proc. 5th
WEA, pages 134–145. LNCS 4007, 2006.

[8] A. Farzan and J. I. Munro. A uniform approach
towards succinct representation of trees. In Proc. 11th
SWAT, LNCS 5124, pages 173–184, 2008.

[9] J. Fischer and V. Heun. A new succinct representa-
tion of RMQ-information and improvements in the en-
hanced suffix array. In Proc. ESCAPE, LNCS 4614,
pages 459–470, 2007.

[10] R. Geary, N. Rahman, R. Raman, and V. Raman.

A simple optimal representation for balanced paren-
theses. Theoretical Computer Science, 368(3):231–246,
2006.

[11] R. Geary, R. Raman, and V. Raman. Succinct ordinal
trees with level-ancestor queries. In Proc. 15th SODA,
pages 1–10, 2004.

[12] A. Golynski, R. Grossi, A. Gupta, R. Raman, and
S. Rao. On the size of succinct indices. In Proc. 15th
ESA, pages 371–382. LNCS 4698, 2007.

[13] R. González, Sz. Grabowski, V. Mäkinen, and
G. Navarro. Practical implementation of rank and se-
lect queries. In Proc. 4th WEA (posters), pages 27–38,
2005.

[14] A. Gupta, W.-K. Hon, R. Shah, and J. Vitter. Com-
pressed dictionaries: Space measures, data sets, and
experiments. In Proc. 5th WEA, pages 158–169, 2006.

[15] M. He, J. I. Munro, and S. S. Rao. Succinct ordinal
trees based on tree covering. In Proc. 34th ICALP,
LNCS 4596, pages 509–520, 2007.

[16] G. Jacobson. Space-efficient static trees and graphs.
In Proc. 30th FOCS, pages 549–554, 1989.

[17] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-
succinct representation of ordered trees. In Proc. 18th
SODA, pages 575–584, 2007.

[18] H.-I. Lu and C.-C. Yeh. Balanced parentheses strike
back. ACM Transactions on Algorithms (TALG),
4(3):article 28, 2008.

[19] I. Munro and V. Raman. Succinct representation of
balanced parentheses and static trees. SIAM Journal
on Computing, 31(3):762–776, 2001.

[20] I. Munro, V. Raman, and S. Rao. Space efficient suffix
trees. Journal of Algorithms, 39(2):205–222, 2001.

[21] I. Munro and S. Rao. Succinct representations of
functions. In Proc. 31th ICALP, LNCS 3142, pages
1006–1015, 2004.

[22] G. Navarro. Implementing the LZ-index: Theory ver-
sus practice. ACM Journal of Experimental Algorith-
mics (JEA), 13(article 2), 2009. 49 pages.

[23] D. Okanohara and K. Sadakane. Practical entropy-
compressed rank/select dictionary. In Proc. 9th
ALENEX, 2007.

[24] R. Raman, V. Raman, and S. Rao. Succinct indexable
dictionaries with applications to encoding k-ary trees
and multisets. In Proc. 13th SODA, pages 233–242,
2002.

[25] K. Sadakane. Compressed Suffix Trees with Full Func-
tionality. Theory of Computing Systems, 41(4):589–
607, 2007.

[26] K. Sadakane and G. Navarro. Fully-functional static
and dynamic succinct trees. CoRR, abs/0905.0768,
2009. http://arxiv.org/abs/0905.0768.

[27] K. Sadakane and G. Navarro. Fully-functional succinct
trees. In Proc. 21st SODA, 2010. To appear.

[28] A. Schmidt, F. Waas, M. Kersten, M. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for
XML data management. In Proc. 28th VLDB, pages
974–985, 2002.

