
Optimal Incremental Sorting ∗

Rodrigo Paredes † Gonzalo Navarro †

Abstract

Let A be a set of size m. Obtaining the first k ≤ m el-
ements of A in ascending order can be done in optimal
O(m+k log k) time. We present an algorithm (online on
k) which incrementally gives the next smallest element
of the set, so that the first k elements are obtained in op-
timal time for any k. We also give a practical algorithm
with the same complexity on average, which improves in
practice the existing online algorithm. As a direct ap-
plication, we use our technique to implement Kruskal’s
Minimum Spanning Tree algorithm, where our solution
is competitive with the best current implementations.
We finally show that our technique can be applied to
several other problems, such as obtaining an interval of
the sorted sequence and implementing heaps.

1 Introduction

There are cases where we need to obtain the smallest
elements from a fixed set without knowing how many
elements we will end up needing. Prominent exam-
ples are Kruskal’s Minimum Spanning Tree (MST) algo-
rithm [14] or ranking by Web search engines [1]. Given
a graph, Kruskal’s MST algorithm processes the edges
one by one, from smaller to larger, until forming the
MST. At this point, remaining edges are not consid-
ered. On the other hand, Web search engines display
a very small sorted subset of the most relevant docu-
ments among all those satisfying the query. Later, if
the user wants more results, the search engine displays
the next group of most relevant documents, and so on.
In both cases, we could first sort the whole set and later
return the desired objects, but obviously this is more
work than necessary.

This problem can be called Incremental Sorting. It
can be stated as follows: Given set A of m numbers,
output the elements of A from smallest to largest, so
that the process can be stopped after k elements have
been output, for any k that is unknown to the algorithm.
Therefore, Incremental Sorting is the online version of

∗Supported in part by the Millennium Nucleus Center for Web
Research, Grant P04-067-F, Mideplan, Chile.

†Center for Web Research, Dept. of Computer Science, Uni-
versity of Chile. Blanco Encalada 2120, Santiago, Chile.
{raparede,gnavarro}@dcc.uchile.cl

the Partial Sorting problem: Given set A of m numbers
and integer k ≤ m, output the smallest k elements of A
in ascending order.

Partial Sorting can be easily solved by first finding
p, the k-th smallest element of A, using O(m) time
Select algorithm [2], and then collecting and sorting
the elements smaller than p. We call SelectSort

this algorithm. Its complexity, O(m + k log k), is
optimal under the comparison model, as there are
mk = m!/(m − k)! possible answers and log(mk) =
Ω(m + k log k).

A practical version of the above, QuickSelect-

Sort (QSS), uses QuickSelect [9] and QuickSort

[10] as the selection and sorting algorithms, obtaining
O(m+k log k) average complexity. Recently, it has been
shown that selection and sorting can be interleaved. The
result, PartialQuickSort (PQS), has the same aver-
age complexity but smaller constant terms [15].

To solve the online problem, we must select the
smallest element, then the second one, and so on until
the process finishes at some unknown value k ∈ [0, m−
1]. One can do this by using Select to find each of
the first k elements, which costs O(km) overall. We
can improve this by transforming A into a min-heap in
time O(m) [5], and then performing k extractions. This
costs O(m + k log m) worst-case complexity. Note that
m + k log m = O(m + k log k), as they can differ only
if k = o(mα) for any α > 0, and then m dominates
k log m. However, this scheme is much slower than the
offline practical algorithm PQS. Then the quest for a
practical online algorithm for partial sorting is raised.

In this paper we present the IncrementalSelect

(IS) algorithm, which solves the online problem in op-
timal O(m + k log k) time. We also present Incre-

mentalQuickSelect (IQS), a practical variant of IS,
which is O(m + k log k) time on average. Our experi-
mental results show that IQS is almost as efficient as
its offline version PQS, and is faster in practice than
alternative solutions.

As an application, we show how to use our algo-
rithm to boost the performance of Kruskal’s MST algo-
rithm [14]. Given a graph G(V, E), we compute its MST
in O(|E| + |V | log2 |V |) average time, which is optimal
in medium or high density graphs. In practice, by using
IQS we obtain an efficient MST implementation, which

is much faster than any other Kruskal’s implementation
we could program or find for any graph density. As a
matter of fact, our Kruskal’s version is faster than the
Prim’s algorithm [18], even as optimized by Moret and
Shapiro [16], and also competitive against the best al-
ternative implementations we could find [12, 13].

We finally show that our algorithm can be used
to solve other basic problems, such as obtaining an
incremental segment of the sorted sequence A, and
implementing a heap data structure. The algorithm can
obviously be used to find the largest elements instead of
smallest.

2 Incremental sorting

In this section we describe IQS algorithm. At the
end we show how it can be converted into its worst-
case version IS. Essentially, to output the k smallest
elements, IQS calls QuickSelect to find the smallest
element on arrays A[0, m− 1], A[1, m− 1], . . . , A[k −
1, m− 1]. This naturally leaves the k smallest elements
sorted in A[0, k−1]. IQS avoids the O(km) complexity
by reusing the work among calls to QuickSelect.

Let us recall how QuickSelect works. Given an
integer k, QuickSelect aims to find the k-th smallest
element from a set A of m numbers. For this sake it
chooses an object p, the pivot, and partitions A so that
the elements lower than p are allocated to the left-side
partition, and the others to the right-side one. After the
partitioning, p is placed in its correct position, let idx be
such place. So, if idx = k, QuickSelect returns p and
finishes. Otherwise, if k < idx it recursively processes
the left partition, else the right partition (with a new
k ← k − idx− 1).

Note that it is possible to reuse the work made
by previous calls to QuickSelect. When we call
QuickSelect on A[1, m− 1], a decreasing sequence of
pivots has already been used to partially sort A since the
previous invocation on A[0, m − 1]. IQS manages this
sequence of pivots to reuse previous work. Specifically,
it uses a stack S of decreasing pivots that are relevant
for the next calls to QuickSelect.

Fig. 1 shows how IQS searches for the smallest
element of an array by using a stack initialized with
a single value m = 16. To find the next minimum, we
first check whether p, the top value in S, is the index of
the element sought, in which case we pop and return it.
Otherwise, because of previous partitionings, it holds
that elements in A[1, p−1] are smaller than all the rest,
so we run QuickSelect on that portion of the array,
pushing new pivots into S.

The algorithm is given in Fig. 2. Stack S is
initialized as S = {|A|}. IQS receives the set A, the
index idx (= k − 1) of the element sought (that is, we

12 18 s = {16, 7, 4, 2, 0}

49 81 74 12 58 92 86 33 67 18 25 37 51 63 29 41 s = {16}

33 41 29 12 37 25 18 49 67 86 92 58 51 63 74 81 s = {16, 7}

25 18 29 12 33 37 41 s = {16, 7, 4}

12 18 25 29 s = {16, 7, 4, 2}

Figure 1: Example of how IQS finds the first element
of an array. Each line corresponds to a new partition of
a sub-array. Note that all the pivot positions are stored
in stack S. In the example we use the first element as
the pivot but it could be any other element.

IQS (Set A, Int idx, Stack S)
1. If idx = S.top() Then S.pop(), Return A[idx]
2. pidx← random[idx, S.top()−1]
3. pidx′ ← partition(A, A[pidx], idx, S.top()−1)

// A[0] ≤ . . . ≤ A[idx− 1] ≤ A[idx, pidx′ − 1]
// ≤ A[pidx′] ≤ A[pidx′ + 1, S.top()−1]
// ≤ A[S.top(), m− 1]

4. S.push(pidx′)
5. Return IQS(A, idx, S)

Figure 2: IncrementalQuickSelect (IQS) algo-
rithm. Stack S is initialized as S ← {|A|}. Both S and
A are modified and rearranged during the algorithm.
Note that the search range is limited to the array seg-
ment A[idx, S.top()−1]. Procedure partition returns
the position of pivot A[pidx] after the partition com-
pletes. Note that the tail recursion can be easily re-
moved.

seek the smallest element in A[idx, m − 1]), and the
current stack S (with former pivot positions). First
it checks whether the top element of S is the desired
index idx, in which case it pops idx and returns A[idx].
Otherwise it chooses a random pivot index pidx from
[idx, S.top()−1]. Pivot A[pidx] is used to partition
A[idx, S.top()−1]. After the partitioning, the pivot has
reached its final position pidx′, which is pushed in S.
Finally, a recursive invocation continues the work on
the left hand of the partition.

We remind that partition(A, A[pidx], i, j) rear-
ranges A[i, j] and returns the new position pidx′ of the
original element in A[pidx], so that, in the rearranged
array, all the elements smaller/larger than A[pidx′] ap-
pear before/after pidx′. Thus, pivot A[pidx′] is left at

the correct position it would have in the sorted array
A[i, j]. The next lemma shows that it is correct to
search for the minimum just within A[i, S.top() − 1],
from which the correctness of IQS immediately follows.

Lemma 2.1. After i minima have been obtained in
A[0, i − 1], (1) the pivot indices in S are decreasing
bottom to top, (2) for each pivot position p 6= m in
S, A[p] is not smaller than any element in A[i, p − 1]
and not larger than any element in A[p + 1, m− 1].

Proof. Initially this holds since i = 0 and S = {m}.
Assume this is valid before pushing p, when p′ was
the top of the stack. Since the pivot was chosen from
A[i, p′− 1] and left at some position i ≤ p ≤ p′− 1 after
partitioning, property (1) is guaranteed. As for property
(2), after the partitioning it still holds for any pivot
other than p, as the partitioning rearranged elements at
the left of it. With respect to p, the partitioning ensures
that elements smaller than p are left at A[i, p−1], while
larger elements are left at A[p + 1, p′ − 1]. Since A[p]
was already not larger than elements in A[p′, m−1], the
lemma holds. It obviously remains true after removing
elements from S. �

The worst-case complexity of IQS is O(m2), but it
is easy to derive worst-case optimal IS from it. The only
change is in line 2 of Fig. 2, where the random selection
of the next pivot position must be changed to choosing
the median of A[idx, S.top() − 1], using the linear-time
selection algorithm [2]. Section 3 analyzes the worst-
case of IS and Section 4 considers the average-case of
IQS, both of which are O(m + k log k).

3 IS worst-case complexity

In this section we analyze IS, which is not as efficient in
practice as IQS, but has good worst-case performance.
In particular, the analysis serves as a basis for the
average-case analysis of IQS in Section 4. In IS, the
partition is perfectly balanced since each pivot position
is chosen as the median of its array segment.

In this analysis we assume that m is of the form
2j − 1. We recall that array indices are in the range
[0, m − 1]. Fig. 3 illustrates the incremental sorting
process when k = 5 in a perfect balanced tree of m = 31
elements, j = 5. Black nodes are the elements already
reported, grey nodes the pivots that remain in stack S,
and white nodes and trees are the other elements of A.

The pivot at the tree root is the first to be obtained
(the median of A), at cost linear in m (both to obtain
the median and to partition the array). The two root
children are the medians of A[0, m−3

2] and A[m+1
2 , m−

1]. Obtaining those pivots and partitioning with them
will cost time linear in m/2. The left child of the root

h =

h =

h =

h =

1

2

3

4

h = j = 5

Figure 3: IS partition tree for incremental sorting when
k = 5, m = 31, j = 5.

will actually be the second pivot to be processed. The
right child, on the other hand, will be processed only
if k > m−1

2 , that is, at the moment we ask IS to
output the m+1

2 -th minimum. In general, processing
the pivots at level h will cost O(2h), but only some of
these will be required for a given k. The maximum level
is j = log2(m + 1).

It is not hard to see that, in order to obtain the
k smallest elements of A, we will require

⌈

k
2h

⌉

pivots of
level h. Adding up their processing cost we get Eq. (3.1),
where we split the sum into the cases

⌈

k
2h

⌉

> 1 and
⌈

k
2h

⌉

= 1. Only then, in Eq. (3.3), we use k + 2h to
bound the terms of the first sum, and redistribute terms
to obtain that IS is O(m+k log k) worst-case time. The
extra space used by IS is O(log m) pivot positions.

T (m, k) =

log
2
(m+1)
∑

h=1

⌈

k

2h

⌉

2h(3.1)

=

⌊log
2

k⌋
∑

h=1

⌈

k

2h

⌉

2h +

log
2
(m+1)
∑

h=⌊log
2

k⌋+1

2h(3.2)

≤
⌊log

2
k⌋

∑

h=1

k +

log
2
(m+1)
∑

h=1

2h(3.3)

T (m, k) = k⌊log2 k⌋+ 2m + 1(3.4)

4 IQS average-case complexity

In this case the final pivot position p after the parti-
tioning of A[0, m−1] distributes uniformly in [0, m−1].
Consider again Fig. 3, where the root is not anymore
the middle of A but a random position. We call T (m, k)
the average number of key comparisons needed to ob-
tain the k smallest elements of A[0, m − 1]. After the
m − 1 comparisons used in the partitioning, there are
three cases depending on p: (1) k ≤ p, in which case the
right subtree will never be expanded, and the total ex-
tra cost will be T (p, k) to solve A[0, p−1]; (2) k = p+1,
in which case the left subtree will be fully expanded to
obtain its p elements at cost T (p, p); and (3) k > p + 1,
in which case we pay T (p, p) on the left subtree, whereas
the right subtree, of size m− 1− p, will be expanded so
as to obtain the remaining k − p− 1 elements.

Thus IQS average cost follows Eq. (4.5), which
is rearranged as Eq. (4.6). It is easy to check that
this is exactly the same as Eq. (3.1) in [15], which
shows that IQS makes exactly the same number of
comparisons than its offline version, PQS. This is
2m + 2(m + 1)Hm − 2(m + 3 − k)Hm+1−k − 6k + 6.
That analysis [15] is rather sophisticated, resorting to
bivariate generating functions. In which follows we give
a simple development arriving at a solution of the form
O(m + k log k).

T (m, k) = m− 1 +
1

m

(

m−1
∑

p=k

T (p, k) + T (k − 1, k − 1)

+

k−2
∑

p=0

(

T (p, p) + T (m− 1− p, k − p− 1)
)

)

(4.5)

= m− 1 +
1

m

(

k−1
∑

p=0

T (p, p)

+

k−2
∑

p=0

T (m− 1− p, k − p− 1) +

m−1
∑

p=k

T (p, k)

)

(4.6)

Eq. (4.6) simplifies to Eq. (4.7) by noticing that
T (p, p) behaves exactly like QuickSort, 2(p+1)Hp−4p
[8] (this can also be seen by writing down T (p) = T (p, p)
and noting that the very same QuickSort recurrence is
obtained), so that

∑k−1
p=0 T (p, p) = k(k +1)Hk− k

2 (5k−
1). We also write p′ for k−p−1 and rewrite the second

sum as
∑k−1

p′=1 T (m− k + p′, p′).

T (m, k) = m− 1 +
1

m

(

k(k + 1)Hk −
k

2
(5k − 1)

+

k−1
∑

p=1

T (m− k + p, p) +

m−1
∑

p=k

T (p, k)

)

(4.7)

We make some pessimistic simplifications now. The
first sum governs the dependence on k of the recurrence.
To avoid such dependence, we bound the second argu-
ment to k and the first to m, as T (m, k) is monotonic on
both its arguments. The new recurrence, Eq. (4.8), de-
pends only on parameter m and treats k as a constant.

T (m) = m− 1 +
1

m

(

k(k + 1)Hk −
k

2
(5k − 1)

+(k − 1)T (m) +

m−1
∑

p=k

T (p)

)

(4.8)

We subtract m T (m) − (m − 1)T (m − 1) using
Eq. (4.8), to obtain Eq. (4.9) and Eq. (4.10). Since T (k)

is actually T (k, k), we use again QuickSort formula in
Eq. (4.11). We bound the first part by 2m + 2kHm−k

and the second part by 2kHk to obtain Eq. (4.12).

T (m) = 2
m− 1

m− k + 1
+ T (m− 1)(4.9)

= 2

m
∑

i=k+1

(

1 +
k − 2

i− k + 1

)

+ T (k)(4.10)

= 2(m− k) + 2(k − 2)(Hm−k+1 − 1)

+ (2(k + 1)Hk − 4k)

(4.11)

< 2(m + kHm−k + kHk)(4.12)

This result does not yet look good enough, but we
plug it again into Eq. (4.7). In this case, we bound the

sum
∑k−1

p=1 T (m − k + p, p) with
∑k−1

p=1 2(m − k + p +

pHm−k + pHp) = (k − 1)
(

2m + k
(

Hm−k + Hk − 3
2

))

.
Upper bounding again and multiplying by m we get a
new recurrence in Eq. (4.13). Note that this recurrence
only depends on m.

m T (m) = m(m− 1) + k(k + 1)Hk −
k

2
(5k − 1)

+ (k − 1)

(

2m + k

(

Hm−k + Hk −
3

2

))

+
m−1
∑

p=k

T (p)

(4.13)

Subtracting again m T (m)−(m−1)T (m−1) we get

Eq. (4.14). Noting that (k−1)k
(m−k)m = (k − 1)

(

1
m−k

− 1
m

)

,

we get Eq. (4.15), which is solved in Eq. (4.16).

T (m) = 2
m + k − 2

m
+

(k − 1)k

(m− k)m
+ T (m− 1)

(4.14)

<
m
∑

i=k+1

(

2 + 2
k − 2

i
+ (k − 1)

(

1

i− k
− 1

i

))

+ T (k)

(4.15)

= 2(m− k) + 2(k − 2)(Hm −Hk)

+ (k − 1)(Hm−k −Hm + Hk)

+ (2(k + 1)Hk − 4k)

(4.16)

Note that Hm−Hk < m−k
k+1 and thus (k− 2)(Hm −

Hk) < m−k. Also, Hm−k ≤ Hm, so collecting terms we
obtain Eq. (4.17). Therefore, IQS is also O(m+k log k)
in the average-case when we choose pivots at random.

(4.17) T (m, k) < 4m−8k+(3k+1)Hk < 4m+3kHk

As a final remark, note that when we use QSS a
portion of the QuickSort partitioning work repeats
the work made in the previous QuickSelect calling.

1

A2

p2

p1

k
QSS QuickSort stage

A1 A2
p1

QSS QuickSelect stage

A

Figure 4: Partition work performed by QSS. First, QSS

uses QuickSelect for finding the k-th element (left).
Later, it uses QuickSort on the left array segment as a
whole ([A1 p1 A2]) neglecting the previous partitioning
work (right).

Fig. 4 illustrates this, showing that upon finding the k-
th element, the QuickSelect stage has produced par-
titions A1 and A2, however the QuickSort that follows
processes the left partition as a whole ([A1p1A2]), thus
ignoring the previous partitioning work done over it.
On the other hand, IQS sorts the left segment by pro-
cessing each partition independently, because it knows
their limits (as they are stored in the stack S). This also
applies to PQS and it explains the finding of Conrado
Mart́ınez that PQS, and thus IQS, makes 2k−4Hk +2
less comparisons than QSS [15].

5 IQS and the minimum spanning tree

In this section we explore a practical application of
IQS: improving the performance of Kruskal’s Minimum
Spanning Tree (MST) algorithm.

Let us recall the MST problem. Let G(V, E) be a
connected graph with a nonnegative cost function d(e)
assigned to its edges e ∈ E. A minimum spanning tree
mst of the graph G(V, E) is a tree composed by edges of
E that connect all the vertices of V at the lowest total
cost

∑

e∈mst d(e). Note that, given a graph, its MST is
not necessarily unique.

Let n = |V |, m = |E|. The most popular algorithms
to solve the MST problem are Kruskal’s [14] and Prim’s
[18], whose basic versions have complexity O(m log m)
and O(n2), respectively. We call Kruskal1 and Prim1

these basic versions. In sparse graphs, with |E| = O(n),
it is recommended to use Kruskal1, whereas in dense
graphs, with |E| = O(n2), Prim1 is recommended
[4, 21]. There are other MST algorithms compiled by
Tarjan [20].

Recently, Chazelle [3] gave an O(mα(m, n)) algo-
rithm, where α ∈ ω(1) is the very slowly-growing in-
verse Ackermann’s function. Later, Pettie and Ra-

machandran [17] proposed an algorithm that runs in
optimal time O(T ∗(m, n)), where T ∗(m, n) is the mini-
mum number of edge-weight comparisons needed to de-
termine the MST of any graph G(V, E) with m edges
and n vertices. The best known upper bound of this al-
gorithm is also O(mα(m, n)). These algorithms almost
reach the lower bound Ω(m), yet they are so compli-
cated that their interest is mainly theoretical.

Experimental studies on MST are given in [16, 12,
13]. In [16], they compare several Kruskal’s, Prim’s
and Tarjan’s versions, concluding that the best MST
version is Prim’s using paring heaps [6], we call Prim2

this algorithm. Their experiments show that neither
Cheriton and Tarjan’s [20] nor Fredman and Tarjan’s
algorithm [7] ever approach the speed of Prim2. On
the other hand, they show that Kruskal1 can run very
quickly when it uses an array of edges that can be
overwritten during sorting, instead of an adjacency list.
Moreover, they show that it is possible to use heaps
to improve Kruskal’s algorithm, calling Kruskal’s with
demand sorting this variant (we call it Kruskal2). The
result is a rather efficient MST version.

In [12, 13], they give an algorithm that works as
follows. It generates a subgraph G′ by selecting

√
mn

edges from G at random. Later, it builds the minimum
spanning forest T ′ of G′. Then, it filters each edge
e ∈ E using the cycle property: discard e if it is
the heaviest edge on a cycle in T ′ ∪ {e}. Finally,
it builds the MST of the subgraph that contains the
edges of T ′ and the edges that were not filtered out.
We call iMax this algorithm. We obtain the iMax

and also the optimized Prim2 implementations from
www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz.

5.1 Kruskal’s MST algorithm. The Kruskal’s al-
gorithm starts with n single-node components, and it
merges them until it produces a sole connected compo-
nent. To do this, Kruskal1 begins by setting the mst
to (V, ∅), that is, n single-node trees. Later, in each it-
eration, it adds to the mst the cheapest edge of E that
does not produce a cycle on the mst, that is, it only
adds edges whose vertices belong to different connected
components. Once the edge is added, both components
are merged. The process ends when the mst becomes a
single connected component. At this point the mst is a
minimum spanning tree of G(V, E).

To manage the component operations, we use the
Union-Find data structure C with path compression,
see [4, 21] for a comprehensive explanation. Given
two vertices u and v, we use the find(u) operation
to compute which component u belongs to, and use
union(u, v) to merge the components of u and v. The
amortized cost of find(u) is O(log∗ n) and the cost of

Kruskal1 (Graph G(V, E))
1. UnionFind C ← {v ∈ V, {v}}

// the set of all connected components
2. mst← ∅ // the growing minimum spanning tree
3. ascendingSort(E), k ← 0
4. While |C| > 1 Do

// select an edge in ascending order
5. (e = {u, v})← E[k], k← k + 1
6. If C.find(u) 6= C.find(v) Then

7. mst← mst ∪ {e}, C.union(u, v)
8. Return mst

Figure 5: The basic version of Kruskal’s MST algorithm
(Kruskal1). To carry out the heap-based optimization
(Kruskal2), we change line 3 to heapify(E) and line
5 to (e = {u, v})← E.getMin(), E.extractMin().

union(u, v) is constant.
Fig. 5 depicts the basic Kruskal’s MST algorithm.

We need O(n) time to initialize both C and mst, and
O(m log m) time to sort the edge set E. Then we make
at most m O(log∗ n)-time iterations of the While cycle.
Therefore, Kruskal1 complexity is O(m log m).

Assuming we are using graphs whose cost edges are
assigned at random independently of the rest (using any
continuous distribution), the subgraph composed by V
with the edges reviewed by the algorithm is a random
graph [11]. Therefore, based on [11], we expect to finish
the MST construction upon reviewing 1

2n lnn edges,
which can be much lower than m. So, it is not necessary
to sort the whole set E, but it is enough with selecting
and extracting one by one the minimum-cost edges until
we complete the MST. The common solution of this
type consists in min-heapifying the set E, and later
performing as many min-extraction of the lowest cost
edge as needed (in [16], they do this in their Kruskal’s
demand sorting version). This is an implementation of
Incremental Sort. For this sake we modify lines 3 and
5 of Fig. 5: line 3 changes to heapify(E) and line 5 to
(e = {u, v})← E.getMin(), E.extractMin().

Kruskal2 needs O(n) time to initialize both C and
mst, and O(m) time to heapify E. We expect to review
1
2n lnn edges in the While cycle. For each of these
edges, we use O(log m) time to select and extract the
minimum element of the heap, and O(log∗ n) time to
perform the union and find operations. Therefore,
Kruskal2 average complexity is O(m + n log n logm).
As n− 1 ≤ m ≤ n2, Kruskal2 average complexity can
also be written as O(m + n log2 n).

Kruskal3 (Graph G(V, E))
1. UnionFind C ← {v ∈ V, {v}}

// the set of all connected components
2. mst← ∅ // the growing minimum spanning tree
3. Stack S, S.push(m), k ← 0 // m = |E|
4. While |C| > 1 Do

// select the lowest edge incrementally
5. (e = {u, v})← IQS(E, k, S), k ← k + 1
6. If C.find(u) 6= C.find(v) Then

7. mst← mst ∪ {e}, C.union(u, v)
8. Return mst

Figure 6: Our Kruskal’s MST variant (Kruskal3).
Note the changes in lines 3 and 5 with respect to
Kruskal1.

5.2 IQS-based implementation of the Kruskal’s

MST algorithm. We can use IQS in order to incre-
mentally sort E. After initializing C and mst, we create
the stack S, and push m into S. Later, inside the While

cycle, we call IQS in order to obtain the k-th edge of E
incrementally. Fig. 6 shows our Kruskal’s MST variant,
that we call Kruskal3. Note that the expected number
of pivoting edges that we store in S is O(log m).

We need O(n) time to initialize both C and
mst, and constant time for S. We expect to review
1
2n lnn edges within the While cycle, thus we need

O(m + n log2 n) overall expected time for IQS and
O(n log n log∗ n) time for all the union and find op-
erations. Therefore, Kruskal3 average complexity is
O(m + n log2 n), just as Kruskal2.

6 Experimental results

We ran two experimental series with IQS. In the first
series we compare IQS against other alternatives. In
the second we evaluate our Kruskal3 algorithm. The
experiments were run on an Intel Xeon of 3.06 GHz,
2 GB of RAM and local disk. The weighted least
square fittings were performed with R [19]. In order to
illustrate the precision of our fittings, we also show the
average percent error of residuals with respect to real
values (|y−ŷ

y
|100%) for fittings belonging to the 44% of

the largest values.

6.1 Evaluating IQS. We compared IQS against
PQS, QSS, and the heap-based approach (called
HEx). The idea is to verify that IQS is in practice a
competitive algorithm for the Partial Sorting problem.
For this sake, we use random permutations in [0, m−1],
for m ∈ [105, 108], and we select the k first elements with

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1000 10000 100000 1e+06 1e+07 1e+08

C
P

U
 ti

m
e

[s
ec

]

amount of selected elements k

IQS, PQS, QSS and HEx CPU time m = 100e+06

IQS
PQS
QSS
HEx

(a) CPU time for the four algorithms.

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 1000 10000 100000 1e+06

C
P

U
 ti

m
e

[s
ec

]

amount of selected elements k

IQS, PQS and QSS CPU time m = 100e+06

IQS
PQS
QSS

(b) Detail of CPU time for IQS, PQS

and QSS.

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 1000 10000 100000 1e+06 1e+07 1e+08

C
P

U
 ti

m
e

[s
ec

]

amount of selected elements k

IQS CPU time

IQS, m=100+e06
IQS, m= 70+e06
IQS, m= 40+e06
IQS, m= 10+e06

(c) IQS CPU time as a function of k

and m.

Figure 7: Performance comparison between IQS, PQS, QSS and HEx as a function of the amount of searched
elements k for different values of set size m. Note the logscales in the plots.

Fitting Error
PQScpu 19.70m + 14.21k log2 k 3.90%
PQScmp 2.047m + 1.301k log2 k 3.55%
IQScpu 19.88m + 14.21k log2 k 3.89%
IQScmp 2.047m + 1.301k log2 k 3.55%
QSScpu 20.00m + 14.52k log2 k 3.89%
QSScmp 2.050m + 1.362k log2 k 3.61%
HExcpu 25.96m + 85.88k log2 m 5.05%
HExcmp 1.892m + 1.875k log2 m 0.65%

Table 1: IQS, PQS, QSS and HEx weighted least
square fittings. CPU time is measured in nanoseconds.

k = 2j < m. The selection is incremental for IQS and
HEx, and in one shot for PQS and QSS. We measure
CPU time and the number of key comparisons.

We summarize the experimental results in Figs. 7
and 8, and Table 1. As can be seen from the least
squares fittings of Table 1, IQS CPU time performance
is only 0.18% slower than that of its offline version PQS.
The number of key comparisons is exactly the same,
as we expected from Section 4. This is an extremely
small price for permitting incremental sorting without
knowing in advance how many elements we wish to
retrieve, and shows that IQS is practical. Moreover,
as the pivots in the stack help us reuse the partitioning
work, our online IQS is 1.99% faster in CPU time and
uses 4.00% less key comparisons than the offline QSS.
Finally, the online HEx is slowest by far, as it takes 6.02
times more CPU time and 44% more key comparisons
than IQS.

Fig. 7(a) compares the four algorithms. As can be
seen, HEx has by far the worst CPU performance for
all k, despite that it uses less key comparisons than

 150

 200

 250

 300

 350

 400

 450

 500

 100000 1e+06 1e+07
ke

y
co

m
pa

ris
on

s
x

10
e+

06
amount of selected elements k

IQS, PQS, QSS and HEx key comparisons m = 100e+06

IQS
PQS
QSS
HEx

Figure 8: Detail of key comparisons for IQS, PQS,
QSS and HEx for m = 108 varying k. Note the logscale
in the plot.

others when extracting few objects, see Fig. 8 (for
high values of k, HEx also uses more key comparisons
than others). This is because the heap-based approach
has more overhead. Fig. 7(b) shows that PQS is
the fastest algorithm, but IQS and QSS have rather
similar behavior, confirming the results of our fittings
of Table 1. Finally, Fig. 7(c) shows that, as k grows,
IQS behavior changes as follows. When k ≤ 0.01m,
there is no difference in the first k element incremental
sorting, namely, the term m dominates the cost. When
0.01m < k ≤ 0.04m, there is a slight increase of both
CPU time and key comparisons, that is, both terms
m and k log k take part in the cost. Finally, when
0.04m < k ≤ m, term k log k leads the cost.

6.2 Evaluating Kruskal3. We now evaluate how
IQS improves Kruskal’s MST algorithm, so we compare
its three versions. To do this, we use synthetic graphs
with edges chosen at random, and with edge costs
uniformly distributed in [0, 1]. We consider graphs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16 18 20

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 2%

Kruskal1
Kruskal2
Kruskal3

Prim2
iMax

(a) MST CPU time, dependency on ρ.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18 20

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 16%

Kruskal1
Kruskal2
Kruskal3

Prim2
iMax

(b) MST CPU time, dependency on n.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16 18 20

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 100%

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
iMax

(c) MST CPU time, dependency on n.

Figure 9: Evaluating Kruskal3. MST CPU time, dependence on n = |V | in (a), (b) and (c) for ρ = 2%, 16% and
100%, respectively. For n = 20, 000, in (a) Kruskal1, Kruskal2 and iMax reaches 1.01, 0.43 and 0.57 seconds;
in (b) Kruskal1, Kruskal2 and iMax reaches 9.22, 1.82 and 2.36 seconds; in (c) Kruskal1 and Prim1 reaches
68.40 and 18.02 seconds, respectively.

Fitting Error
Sorted edges 0.532n lnn 1.47%
Kruskal1cpu 12.23m log2 m 6.74%
Kruskal2cpu 51.62m + 34.84n log2 n log2 m 9.62%

Kruskal3cpu 21.67m + 10.01n log2
2 n 9.75%

Table 2: Weighted least square fittings for Kruskal’s
MST versions (n = |V |, m = |E|). CPU time is
measured in nanoseconds.

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 100 64 32 16 8 4 2 1 0.5

C
P

U
 ti

m
e

[s
ec

]

graph edge density [%]

MST CPU time, n = 20,000

Kruskal1
Kruskal2
Kruskal3

Prim2
iMax

Figure 10: Evaluating Kruskal3. MST CPU time,
dependency on ρ. For ρ = 100% Kruskal1 reaches
68.4 seconds. Note the logscale.

with |V | ∈ [1,000, 20,000], and graph edge densities
ρ ∈ [0.5%, 100%], where ρ = 2m

n(n−1)100%. We also show

results for Prim1 in complete graphs. Additionally,
we compare Kruskal3 against the iMax and Prim2

implementations from [12].
For Kruskal’s versions we measure the CPU time

and the size of the edge subset reviewed during the MST
construction. Note that those edges are the ones we

incrementally sort. As the three versions run over the
same graphs, they review the same subset of edges. For
Prim1, Prim2 and iMax we only measure CPU time.

We summarize the experimental results in Figs. 9
and 10, and Table 2. Fig. 10 compares the Kruskal’s
versions, Prim2 and iMax for n = 20, 000 and graph
edge density ρ ∈ [0.5%, 100%]. As can be seen,
Kruskal1 is, by far, the costlier version, and, Kruskal3

is systematically the best for all ρ. We also notice that,
as ρ increases, the advantage of our MST variant is more
remarkable against basic Kruskal’s MST algorithm. We
could not complete the series for Prim2 and iMax,
as their structures require too much space. For 20,000
vertices and ρ ≥ 32% these algorithms reach the 2 GB
out-of-memory threshold of our machine.

Figs. 9(a), 9(b) and 9(c) show the comparison
for three edge densities ρ = 2%, 16% and 100%,
respectively. In the three plots Kruskal3 is always
the best Kruskal’s version for all sizes of set V and
all edge densities ρ. Moreover, Fig. 9(c) shows that
Kruskal3 is also better than Prim1, even in complete
graphs. On the other hand, Kruskal3 is better than
iMax in the three plots, and very competitive against
Prim2, beating Prim2 in graphs with many nodes (for
|V | ≥ 17,000, 16,000 and 11,000 vertices in ρ = 2%,
16% and 100%, respectively). We suspect that this is
due the high memory usage of Prim2, which affects
cache efficiency. Note that with ρ = 100% we could not
finish the series with Prim2 and iMax because of their
memory requirements.

Table 2 shows our least squares fittings for the MST
experiments. First of all, we compute the fitting for the
number of lowest cost edges Kruskal’s MST algorithm
reviews to build the tree. We obtain 0.532 |V | ln |V |,

which is very close to the theoretically expected value
1
2 |V | ln |V |. Later, we compute fittings using the theo-
retical models for the three versions. Note that, in terms
of CPU time, Kruskal1 is 15.6 times and Kruskal2 is
2.35 times slower than Kruskal3.

7 Conclusions

We have presented IncrementalQuickSelect

(IQS), an algorithm to incrementally retrieve the
next smallest element from a set. IQS has the same
complexity than existing solutions, but it is consider-
ably faster in practice, as fast as the best algorithm
that knows beforehand the number of elements to
retrieve. We have applied IQS to solve the graph
MST problem, showing that the IQS-based Kruskal’s
version is competitive against the best state-of-the-art
alternatives.

We finish with two remarks. The first is that we can
use the IQS stack-of-pivots underlying idea to partially
sort in increasing/decreasing order starting from any
place of the array. For instance, if we want to perform
an incremental sorting in increasing order with a stack
initialized as the set size, we first use QuickSelect to
find the first element we want, storing in the stack all
the pivots larger than the first element, and later we
use IQS with the stack to search for the next elements
(the other pivots would be useful for decreasing order,
initializing the stack with −1). Moreover, with two
stacks we can make centered searching, namely, finding
the k-th element, the (k + 1)-th and (k − 1)-th, the
(k + 2)-th and (k − 2)-th, and so on.

The second remark is we can use IQS as an
underlying implementation of the Heap data structure
[4, 21]. (Naturally, this allow us to speed up HeapSort

[22].) In this application, we heapify the set A by
using IQS to search for the first element, paying on
average O(m) CPU time, and then we extract elements
by using IQS incrementally, paying average amortized
time O(log k) for the k-th extraction. To insert a new
element x, we need to know which is the array segment
that corresponds to x (see Fig. 1). To do this it is
enough with reviewing the pivot stack S. Assume
S = {|A|, p1, p2, ..., pj}. From Lemma 2.1, we know that
A[p1] > A[p2] > . . . > A[pj]. So, to insert x we need
to find the first pivot pi such that A[pi] < x, so as to
place x at A[pi−1]. Then, we put A[pi−1] at position
pi−1 + 1 (and increment pi+1 is S). Then, we move the
old A[pi−1 + 1] value to A[pi−2], and so on. Note that
as pivot closer to the bottom cover exponentially large
areas, the insertion takes O(1) time on average.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

[2] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and
R. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences, 7(4):448–461, 1973.

[3] B. Chazelle. A minimum spanning tree algorithm with
inverse-ackermann type complexity. Journal of the
ACM (JACM), 47(6):1028–1047, 2000.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[5] R. W. Floyd. Algorithm 245 (treesort). Communi-
cations of the ACM, 7:701, 1964.

[6] M. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan.
The pairing heap: a new form of self-adjusting heap.
Algorithmica, 1(1):111–129, 1986.

[7] M. Fredman and R. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms.
Journal of the ACM (JACM), 34(3):596–615, 1987.

[8] G. Gonnet and R. Baeza-Yates. Handbook of Algo-
rithms and Data Structures. Addison-Wesley, 2nd edi-
tion, 1991.

[9] C. A. R. Hoare. Algorithm 65 (find). Communications
of the ACM, 4(7):321–322, 1961.

[10] C. A. R. Hoare. Quicksort. Computer Journal,
5(1):10–15, 1962.

[11] S. Janson, D. Knuth, T. Luczak, and B. Pittel. The
birth of the giant component. Random Structures &
Algorithms, 4(3):233–358, 1993.

[12] I. Katriel, P. Sanders, and J. Träff. A practical
minimum spanning tree algorithm using the cycle
property. Research Report MPI-I-2002-1-003, Max-
Planck-Institut für Informatik, October 2002.

[13] I. Katriel, P. Sanders, and J. Träff. A practical
minimum spanning tree algorithm using the cycle
property. In 11th European Symposium on Algorithms
(ESA’03), LNCS 2832, pages 679–690, 2003.

[14] J. Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical Society, 7:48–50, 1956.

[15] C. Mart́ınez. Partial quicksort. In Proc. 6th ACM-
SIAM Workshop on Algorithm Engineering and Ex-
periments and 1st ACM-SIAM Workshop on Analytic
Algorithmics and Combinatorics, pages 224–228, 2004.

[16] B. Moret and H. Shapiro. An empirical analysis of
algorithms for constructing a minimum spanning tree.
In Proc. 2nd Workshop Algorithms and Data Structures
(WADS’91), LNCS 519, pages 400–411, 1991.

[17] S. Pettie and V. Ramachandran. An optimal minimum
spanning tree algorithm. Journal of the ACM (JACM),
49(1):16–34, 2002.

[18] R. Prim. Shortest connection networks and some gen-
eralizations. Bell System Technical Journal, 36:1389–
1401, 1957.

[19] R Development Core Team. R: A language and
environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, 2004.

[20] R. Tarjan. Data structures and network algorithms.

Society for Industrial and Applied Mathematics, 1983.
[21] M. Weiss. Data structures & algorithm analysis in

Javatm. Addison-Wesley, 1999.
[22] J. Williams. Algorithm 232 (heapsort). Communica-

tions of the ACM, 7(6):347–348, 1964.

