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Autoíndices Comprimidos para Texto 
 
Los autoíndices comprimidos para texto ofrecen una funcionalidad similar a la de los índices 
clásicos, ocupan espacio proporcional al tamaño del texto comprimido, y además lo reemplazan, 
pues son capaces de reproducir cualquier subcadena del texto. Aunque un índice comprimido es 
más lento que su versión clásica, puede funcionar en memoria principal en casos en que un índice 
tradicional tendría que recurrir a la memoria secundaria, que es órdenes de magnitud más lenta. 
Por otra parte, los autoíndices comprimidos para texto actuales sufren de varias deficiencias, 
como la falta de practicidad, la lentitud para localizar un patrón y para extraer un texto, y la falta 
de mecanismos de construcción eficientes en espacio, de versiones en memoria secundaria o de 
capacidades para actualizar el índice. Esta tesis aporta soluciones para todos estos problemas. 
 
Nuestra primera contribución es una estructura de datos para arreglos de bits, sencilla y eficiente, 
que soporta las consultas de rank y select, y que se ha hecho muy popular por su practicidad. 
También se creó el sitio Pizza&Chili, que contiene una colección de textos y de índices 
comprimidos, y se realizó un estudio práctico que compara los índices más prometedores. Cabe 
destacar que este sitio se ha convertido en una referencia habitual en la comunidad. 
 
Se desarrolló un nuevo índice comprimido para texto, basado en regularidades del arreglo de 
sufijos, el cual permite localizar ocurrencias rápidamente, y aún es más pequeño que los índices 
clásicos. Esta estructura se basa en Re-Pair, un compresor que posee propiedades de localidad 
que no tienen los índices comprimidos clásicos. 
 
Se desarrolló un codificador estadístico de secuencias, que permite el acceso directo a cualquier 
parte de la secuencia y logra una compresión de alto orden. Esta es una herramienta clave para 
lograr velocidad y localidad en la extracción de texto en un índice comprimido. 
 
Aprovechando esta localidad en la localización y en la extracción, se presentó un nuevo índice 
para memoria secundaria cuyo tiempo de acceso mejora gracias a la compresión, en lugar de 
empeorar como es lo normal en otros autoíndices. Este índice ofrece un compromiso muy 
competitivo entre espacio y tiempo. 
 
Por último, se desarrolló una nueva estructura comprimida para secuencias dinámicas, con 
soporte de rank y select. Esta estructura reúne las mejores características de trabajos previos, y se 
utilizó para obtener uno de los mejores resultados en índices comprimidos que permiten 
actualizaciones al texto. También se aplicó en la construcción eficiente de índices comprimidos 
para texto, obteniéndose uno de los mejores resultados a la fecha. 
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Abstract
Compressed full-text self-indexing is a recent trend that builds on the discovery that

traditional text indexes like suffix trees and suffix arrays can be compacted to take space
proportional to the compressed text size, and moreover be able to reproduce any text
substring. Therefore self-indexes replace the text, take space close to that of the compressed
text, and in addition provide indexed search into it. Although a compressed index is slower
than its uncompressed version, it can run in main memory in cases where a traditional
index would have to resort to the (orders of magnitude slower) secondary memory. In those
situations a compressed index is extremely attractive. On the other hand, existing compressed
text indexes suffer from several weaknesses, such as lack of practicality, slowness in locating a
pattern and in extracting text, and absence of space-efficient construction, secondary memory
versions or update capabilities. This thesis contributes in all of these problems.

Our first contribution is a simple and efficient data structure for uncompressed bitmaps
supporting rank and select queries, that has become very popular for its practicality. We also
introduce the Pizza&Chili site, which contains a testbed for experimenting on compressed
text indexes, including a standardized collection of texts and indexes, and a practical survey
that covers and compares the most promising self-indexes. The site has also become a usual
reference for practitioners.

We also develop a novel compressed text index based on well-known regularity properties
of suffix arrays, which permits locating the occurrences very fast, while still being significantly
smaller than classical indexes. The scheme is based on Re-Pair, a dictionary-based
compressor, and enjoys locality properties that are absent in classical compressed indexes.

We also develop a statistical encoding of sequences, which permits direct access to any
part of the sequence while achieving high-order compression. This is a key point to achieve
speed and locality when extracting text on a compressed index.

We profit from this locating and extracting locality to introduce a new index for secondary
memory, whose access time improves thanks to compression, instead of worsening as is the
norm in other self-indexes. The index offers a very competitive space/time tradeoff.

Finally, we develop a novel structure supporting dynamic compressed sequences with rank
and select capabilities. This result brings together the best features of previous works, and
is used to obtain one of the best dynamic compressed text indexes (i.e., supporting updates
to the text). We also apply it to the space-efficient construction of text indexes, obtaining
one of the best results up to date.

There are other important byproducts. We study the relationship between the entropy of
a text, its wavelet tree, and its Burrows-Wheeler transform. We develop a new technique to
reduce the dictionary of rules of the Re-Pair algorithm. We generalize the well-known partial
sums problem to handle a collection of somehow “synchronized” sequences, creating a new
data structure to solve it. We also obtain new algorithms to construct suffix arrays and the
Burrows-Wheeler transform of a text.
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Chapter 1

Introduction

The digital information we process every day has been increasing sharply over time.
Although the storage space required for this data is rarely a problem by itself given
the availability of cheap massive storage (e.g., disk), the access time to this storage has
not improved much for decades. For example, currently an access to disk can be up
to one million times slower than to main memory. This huge difference in access time
has motivated the research in compressed data structures, whose size is ideally bounded
by the entropy of the original data, since they permit one to maintain more information
in a faster memory (e.g., main memory) and leave as few data as possible on the
slower one (e.g., disk). The use of compressed data structures in main memory may
dramatically improve the execution times compared to their uncompressed counterparts when
handling large data repositories. Several compressed data structures nowadays exist for the
representation of sequences [Mun96, RRR02, GMR06, BGMR06, GHSV07b, MN08], trees
[MR97, BDMR99, GRRR04, FLMM05, BHMR07], graphs [MR97, CN07], permutations and
functions [MRRR03, MR04], binary relations [BGMR06, BHMR07], texts [GGV03, Sad03,
MN04, FM05, GV06, MN05, NM07, GHSV07a, FMMN07, MN08], discrete grids [MN06b],
partial sums [HSS03b], and many others.

One of the cases where compressed data structures have been particularly successful is
that of managing large text collections. This is essential in applications like bio-informatics,
computational linguistics, multimedia databases, search engines, and text processing and
retrieval in general. Compressed text indexing copes with the problem of giving indexed
access to those large text collections without using up too much space. The current trend
in compressed indexing is full-text compressed self-indexes [NM07]. Such a self-index (for
short) replaces the text by providing fast access to arbitrary text substrings, and in addition
gives indexed access to the text by supporting fast search for the occurrences of arbitrary
patterns. These indexes take little space, usually from 30% to 150% of the text size (note
that this includes the text). This is to be compared with classical indexes such as suffix trees
[Wei73] and suffix arrays [MM93], which require at the very least 10 [Kur99] and 4 times,

1



Chapter 1 Introduction 1.1 Weaknesses of Compressed Text Indexes

respectively, the space of the text, plus the text itself. In theoretical terms, to index a text
T = t1 . . . tn over an alphabet of size σ, the best self-indexes require nHk + o(n log σ) bits for
any k ≤ α logσ n and any constant 0 < α < 1, where Hk ≤ log σ is the k-th order empirical
entropy of T [Man01, NM07]1. Just the uncompressed text alone would need n log σ bits,
and classical indexes require O(n log n) bits on top of it.

The basic search functionality of self-indexes is given via three operations. The first is,
given a pattern P = p1 . . . pm, count the number of times P occurs in T . The second is to
locate those occurrences, that is, list their positions in T . The third is to extract an arbitrary
text portion. Current self-indexes achieve a counting performance that is comparable in
practice with that of classical indexes. In theoretical terms, for the best self-indexes the
complexity is O(m(1 + log σ

log log n
)) [FMMN07] and even O(1 + m

logσ n
) [GGV03], compared to

O(m logσ) or O(m) of suffix trees and O(m log n) or O(m + log n) of suffix arrays. For
locating and extracting , however, they are far behind. This is discussed next, together with
several other limitations.

1.1 Weaknesses of Compressed Text Indexes

Despite the great success of self-indexes, which have almost reached their theoretical limits
both in counting time and index space, much more is necessary in order to have practical
and useful structures. By the time this thesis started the weakest points of this technology
were the following:

I Practicality. Many self-index structure proposals bear importance only at a theoretical
level, being in practice utterly inefficient. Theoretical analysis is not always sufficient
to predict practical performance. In particular, in this area, theory and practice were
diverging dangerously. For example one could find o(n)-size structures whose real size
was 2(log log n)4 = o(n), but indeed larger than n for n < 265536. Most theoretical proposals
do involve interesting ideas, but cannot be implemented verbatim. This motivated us to
explore new approaches to implementations that could yield smaller, faster and simpler
indexes. A good practical survey, including implementations and practical comparisons,
would be a contribution to the state of the art.

II Locating and extracting. Locating is in most self-indexes many times slower than in
their classical counterparts. While classical indexes pay O(occ) time to locate the occ
occurrences, self-indexes pay O(occ logǫ n), where ǫ can in theory be any constant larger
than zero but is in practice larger than 1. Moreover, in a self-index it is essential to be
able to extract part of the text, because the text itself is discarded once we construct
the index. An important disadvantage of self-indexes is their slowness in extracting

1In this thesis log stands for log2.
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Chapter 1 Introduction 1.2 Contributions of the Thesis

the text, a consequence of their non-local access patterns to the data. For example,
the original FM-index (Section 2.9.1) takes O(σ log1+ǫ n) time to locate an occurrence
and O(σ

(
l + log1+ǫ n

)
) to display a text substring of length l, for any constant ǫ > 0.

The CSA (Section 2.9.2) takes O(logǫ n) time to locate an occurrence and O(l + logǫ n)
to display a text substring of length l, but the mechanism is rather complex and an
O(log1+ǫ n) solution was implemented instead. The term log1+ǫ n, together with the
lack of access locality, makes the locating and extracting time hundreds to thousands
times times slower than in classical indexes. The only implemented self-index which has
more local accesses and faster locate is the LZ-index [Nav04], yet its counting time is not
competitive. This issue claimed for alternative research lines aiming at novel solutions.

III Construction. Constructing these compressed structures using limited working
memory is not an easy task. This is an important point, because no matter how
compressed these structures are, if they cannot be built within the available memory,
they will not be useful. For example, a solution exists for the CSA [LSSY02], but it
is slow and requires more space than the final index. For the FM-index, they outline
a solution that requires first to construct the CSA. For the LZ-index, in [AN05] they
presented an efficient method that needs space close to that of the final index, yet that
is not too compressed.

IV Secondary memory. Despite the chances of fitting a compressed index in main memory
are higher, there will be applications where the text is large enough to force the use
of secondary memory. The memory access patterns of self-indexes are highly non-
local, which makes their potential secondary-memory versions rather unpromising. For
example, a compressed self-index in secondary memory is proposed in [MNS04]. Yet, it
has not been implemented and its complexity is still not satisfactory. This makes up a
very interesting area of research.

V Dynamism. The problem of maintaining a collection of texts upon insertions and
deletions arises in many applications. Some solutions are presented, for example, in
[FM00, CHL04]. Let n be the total length of the collection. In [FM00] the complexity
to search for a pattern P = p1 . . . pm is O(m log3 n + occ log n). Adding a text T to the
collection takes O(|T | logn) amortized time and deleting a text T takes O(|T | log2 n)
amortized time. In [CHL04] they propose a index of size O(σn) bits (note this is much
more than the n log σ bits used by the text). In this index, the search cost is O(m logn+
occ log2 n) time and the cost to insert or delete a text T is O (|T |σ log n) time. The space
can be reduced to O(n logσ), but deletions costs raise by an O(log n) factor.

1.2 Contributions of the Thesis

This thesis contributes in all the weak points outlined above, both in theory and in practice.
Our specific contributions are as follows:
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1. Design, implementation and experimental evaluation of data structures for
uncompressed bitmaps supporting rank and select queries. Those are essential data
structures for all compressed indexes and hence this contribution was our first step to
obtain practical compresseded indexes (point I). This work has been published in the
4th Workshop on Efficient and Experimental Algorithms (WEA’05) [GGMN05].

2. Implementation and experimental evaluation of most relevant compressed
text indexes. We present these results in our Pizza&Chili site
(http://pizzachili.dcc.uchile.cl), which also contains a testbed for experiments,
including a variety of implemented self-indexes and text collections. This contribution
permits the first thorough practical comparison of several compressed indexes (point
I). An experimental survey related to this work has been uploaded to arXiv [FGNV07]
and has been submitted to ACM Journal of Experimental Algorithmics (JEA).

3. Design, analysis, implementation and experimental evaluation of a new type of
compressed suffix array called locally compressed suffix array. This contribution solves
the problem of locating (point II) by proposing a scheme which maintains the locality
of reference in a compressed suffix array, thus allowing for much faster locate. We also
present an efficient way of constructing it on secondary memory (point III). This work
has been published in the 18th Annual Symposium on Combinatorial Pattern Matching
(CPM’07) [GN07b], and a journal version has been submitted to ACM Transactions
on Algorithms (TALG).

4. Design and analysis of statistical encoding of sequences permitting direct access. This
contribution solves the problem of extracting any subpart of a text efficiently (point II)
thanks to local access. This work has been published in the 17th Annual Symposium
on Combinatorial Pattern Matching (CPM’06) [GN06].

5. Design, analysis, implementation and experimental evaluation of a novel compressed
text index on secondary memory. This brings contributions 3 and 4 to secondary
memory while retaining access locality, and yields a new competitive data structure
for point IV. This work has been published in the 18th International Workshop
on Combinatorial Algorithms (IWOCA’07) [GN07a]. A journal version, comprising
also the results of contribution 4, was invited to appear on special issue of the
Journal of Combinatorial Mathematics & Combinatorial Computing, devoted to the
best IWOCA’07 papers.

6. Design and analysis of a novel structure supporting dynamic compressed sequences
with rank and select capabilities. This contribution improves previous works on
compressed index construction and on dynamic compressed indexes, points III and
V respectively. This has been published in the 8th Latin American Symposium on
Theoretical Informatics (LATIN’08) [GN08]. A journal version of this paper was invited
to a special issue of Theoretical Computer Science (TCS).
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Chapter 1 Introduction 1.3 Thesis Organization

Our contributions enrich the compressed text indexing area, approaching the problem
from different points, and are a step forward towards the solution of the many problems
outlined in Section 1.1. Table 1.1 depicts this relation in detail.

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

hh

Research Problem

Contribution
1 2 3 4 5 6

I X X

II X X

III X X

IV X

V X

Table 1.1: Contribution per research problem.

We have also obtained several byproducts along this thesis. The most prominent follow:

• From contribution 3: We developed a new technique to reduce the dictionary of rules
of the Re-Pair algorithm.

• From contribution 4: We obtain some relationships between the entropy of a text, its
wavelet tree, and its Burrows-Wheeler transform.

• From contribution 5: We generalize our sequence representation with direct access to
secondary memory. We also present a new data structure for bitmaps supporting rank
queries in secondary memory.

• From contribution 6: We generalize the well-known partial sums problem to handle a
collection of somehow “synchronized” sequences, creating a new data structure to solve
it. We also obtain new solutions to build suffix arrays and to compute the Burrows-
Wheeler transform in reduced space.

1.3 Thesis Organization

This document is divided into eight chapters, as follows:

In chapter Basic Concepts we introduce the background necessary to follow the
document. This includes a number of concepts from a wide set of areas.

In chapter Compressed Text Indexes: From Theory to Practice we present a practical
data structure for bitmaps supporting rank and select, which is an essential block in the
implemention our compressed text indexes, and use it to improve several existing self-index
implementations. We also present the first implementation of the compressed text index
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Chapter 1 Introduction 1.3 Thesis Organization

that provides one of the best theoretical space/time trade-offs [FMMN07]. We introduce the
Pizza&Chili site, devoted to implementation of compressed text indexes. This site contains
several collections of texts, and establishes an API for new implementations. We present a
series of experiments based on the contents of our Pizza&Chili site.

In chapter Locally Compressed Suffix Arrays we present a suffix array compression
technique that preserves locality of reference, therefore permitting fast locating of patterns.
We show how to use it standalone, as a reduced-space classical index, as well as plugged into
a compressed text index.

In chapter Statistical Encoding of Succinct Data Structures we present a scheme to
convert any sequence of symbols into a compressed representation that permits recovering
any substring of the original sequence. We apply it to compressed text indexing.

In chapter A Compressed Text Index on Secondary Memory we make up a new index
by adapting three substructures to secondary memory: one based on the FM-index, another
based on the locally compressed suffix array, and the last one based in our statistically
encoded structure. The last two structures perform better due to their locality of access.

In chapter Rank/Select on Dynamic Compressed Sequences we present a structure to
handle dynamic compressed sequences with rank and select capabilities. We also present
several byproducts of independent interest applicable to partial sums, text indexes, suffix
arrays, and the Burrows-Wheeler transform.

In chapter Conclusions we review our results with a more global perspective, and give
further research directions.
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Chapter 2

Basic Concepts

Let us introduce some notation. In this thesis log stands for log2, unless otherwise stated.
We will ignore most floors and ceilings for simplicity in our descriptions. We will refer to
sequences or strings in several ways as S = S[1, ℓ] = S1,ℓ = s1s2 . . . sℓ. These sequences will
be over an alphabet Σ of size σ, unless otherwise stated. By S[i, j] = Si,j = sisi+1 . . . sj we
will denote substrings of S, which will be called prefixes if i = 1 or suffixes if j = ℓ. The
length of a string will be written |S| = |S1,ℓ| = ℓ, and the reverse of a string will be written
Sr = sℓsℓ−1 . . . s1.

In this thesis we will call succinct data structure to a data structure that provides some
functionalities using a space proportional to that of the uncompressed data. We also call
compressed data structure to a data structure whose size is proportional to the entropy (see
next section) of the original data. For example, if a sequence uses n log σ bits of space,
the suffix array of that sequence is not succinct because it uses O(n log n) bits of space. A
data structure that uses O(n log σ) bits is succinct, and one that uses O(nH0(S)) bits is
compressed.

2.1 Entropy, Modeling and Coding

In this thesis we use the empirical entropy as our compressibility measure for strings. The
empirical entropy resembles the entropy defined in the probabilistic setting (for example,
when the input comes from a Markov source [Ash65]). However, the empirical entropy is
defined for any individual string and can be used to measure the performance of compression
algorithms without any assumption on the input [Man01].

Given a sequence S[1, n] over an alphabet Σ of size σ, the empirical k-th order entropy
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Chapter 2 Basic Concepts 2.1 Entropy, Modeling and Coding

is defined using that of zero-order. This is defined as

H0(S) = −
∑

a∈Σ

na
S

n
log

na
S

n
(2.1)

with na
S the number of occurrences of symbol a in sequence S.1 This definition extends to

k > 0 as follows. Let Σk be the set of all sequences of length k over Σ. For any string w ∈ Σk,
called a context of size k, let wS be the string consisting of the concatenation of characters
following w in S. Then, the k-th order empirical entropy of S is

Hk(S) =
1

n

∑

w∈Σk

|wS|H0 (wS) . (2.2)

The k-th order empirical entropy captures the dependence of symbols upon their context.
For k ≥ 0, nHk(S) provides a lower bound to the output of any compressor that considers
a context of size k to encode every symbol of S. Note that the uncompressed representation
of S takes n log σ bits, and that 0 ≤ Hk(S) ≤ Hk−1(S) ≤ . . . ≤ H1(S) ≤ H0(S) ≤ log σ.

Statistical compression is carried out via the interaction of two actors. A modeler
estimates the probability of each symbol in S, π1, π2, . . . , πn. An encoder generates codes
for each symbol based on those probabilities. It is well known that the ideal (i.e. shortest)
encoding gives length −πi log πi to symbol si [Sha48]. Hence −∑n

i=1 πi log πi is a lower bound
(independent of the modeler) to how good compression can be.

There are two main methods to model an input, adaptive and semi-static modeling.
The main difference is how they initialize and maintain the model (i.e., the probabilities).

Adaptive modeling works as follows:

1. Initialize all the probabilities with the same value.

2. While there are more symbols to encode:

(a) Encode the next symbol using the model.

(b) Update the model based on this last symbol.

Semi-static modeling, instead, proceeds as follows:

1. Initialize the probabilities by doing a first pass over all the symbols to be encoded.

2. While there are more symbols to encode:

1We assume 0 log 0 = 0.
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Chapter 2 Basic Concepts 2.2 Statistical Encoding

(a) Encode the next symbol using the model.

The decoding follows the same idea in both cases. Note that, while a semi-static modeler
poses the disadvantage of having to read the input twice and having to transmit (or store)
the model separately, it permits in principle to access the data at arbitrary point without
reading the input from the beginning.

In particular, a semi-static k-th order modeler will actually estimate πi ≈
Pr(si|si−k . . . si−1) using the formula πi =

n
si
wS

|wS | , where w = si−k . . . si−1. It is not hard to

see, by grouping all the terms with the same w in the summation [Man01, GGV03], that

−
n∑

i=k+1

πi log πi = nHk(S). (2.3)

2.2 Statistical Encoding

Given a k-th order modeler as described in Section 2.1, which yield the probabilities
π1, π2, . . . , πn for the successive symbols in S, we will encode S trying to use −πi log πi

bits for si. If we reach exactly −πi log πi bits, then the overall number of bits produced will
be nHk(S) + O(k log n), according to Eq. (2.3) of Section 2.1.

Different encoders provide different approximations to the ideal −πi log πi bits. The
simplest encoder is probably Huffman coding [Huf52], while the best one, from the point of
view of the number of bits generated, is Arithmetic coding [BCW90].

Given a statistical encoder E and a semi-static modeler over sequence S[1, n] yielding
probabilities π1, π2, . . . , πn, we call E(S) the bitwise output of E for those probabilities, and
|E(S)| its bit length. We call fk(E, S) = |E(S)|− (−∑

1≤i≤n πi log πi) the extra space in bits
needed to encode S using E, on top of the entropy of the model. For example, the wasted
space of Huffman encoding is bounded by 1 bit per symbol, and thus fk(Huffman, S) < |S|
(tighter bounds exist but are not relevant for this thesis [BCW90]). On the other hand,
Arithmetic encoding approaches −πi log πi as closely as desired, requiring only at most
two extra bits to terminate the whole sequence [BCW90, Section 5.2.6 and 5.4.1]. Thus
fk(Arithmetic, S) ≤ 2. Again, we can relate the model entropy of π1, π2, . . . , πn with the
empirical entropy of S using Eq. (2.3), achieving that, say, Arithmetic coding encodes S
using at most nHk(S) + O(k log n) + 2 bits.

The idea of the Huffman coding [Huf52] is to use fewer bits to encode symbols that
appear more frequently. The Huffman encoding can be represented by a binary tree,
where each leaf contains a symbol and its probability, and each internal node contains the
accumulated probability of all its leaves. To know the coding of a symbol, we traverse the
tree until we reach its leaf, writing down a 0 when we go to a left child and a 1 otherwise. One
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way to obtain this Huffman tree is to use a priority queue (the node with lowest probability
has the highest priority). The algorithm is as follows:

1. We create a leaf for each symbol and insert them into the priority queue.

2. We remove two nodes from the priority queue and make them children of a new node
that has a probability equal to the sum of the two nodes.

3. We insert this new node into the priority queue

4. If the priority queue has more than two nodes we go to step 2 again, otherwise we go
to step 5.

5. The unique remaining node is the root of our Huffman tree.

Arithmetic coding essentially expresses S using a number in [0, 1) which lies within a
range of size Π = π1 × π2 × · · · × πn. We need − log Π = −∑

log πi bits to distinguish a
number within that range (plus two extra bits for technical reasons). Thus each new symbol
si, which appears within its context nπi times, requires − log πi bits to be encoded. This
totalizes −n

∑
πi log πi + 2 bits.

There are usually some limitations to the near-optimality achieved by Arithmetic coding
in practice [BCW90]. One is that many bits are required to manipulate Π, which can be
cumbersome. This is mainly alleviated by emitting the most significant bits of the final
number as soon as they are known, and thus scaling the remainder of the number again to
the range [0, 1) (that is, dropping the emitted bits from our number). Still, some symbols with
very low probability may require many bits. To simplify matters, fixed precision arithmetic is
used to approximate the real values, and this introduces a very small (yet linear) inefficiency
in the coding.

Another limitation applies to adaptive encoding, where some kind of aging technique is
used to let the model forget symbols that have appeared many positions away in the sequence.
This does not apply when using semi-static encoding.

2.3 Variable-Length Integer Encoding

A variable-length integer encoding is used in applications where it is needed to represent
a sequence of integers in compact form [BCW90, Appendix A]. We introduce two variable-
length integer encodings, which are relevant for this thesis.

Given a positive integer x and its binary representation X, where X starts with the
most significant 1, the γ-encoding of x is γ(x) = 0|X|−1X, where 0|X|−1 stands for a sequence
of |X| − 1 zeros. For example, γ(13) = γ(1101) = 031101 = 0001101.
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Let y = x− 2|X|−1, then the δ-encoding of x is δ(x) = γ(|X|)Y ′, where Y ′ is the binary
representation of y using |X| − 1 bits. Note that y is x without its most significant bit. For
example, δ(13 = 23 + 5) = δ(1101) = γ(4)101 = 00100101.

The γ-encoding works well for sequences where small integers are much more frequent
than large integers. For bigger integers, the δ-encoding may be more compact. The length,
in bits, of these encodings are:

• |γ(x)| = 2⌈log(x + 1)⌉ − 1 = O(log x).

• |δ(x)| = γ(|X|) + |X| − 1 = (2⌈log(⌊log x⌋ + 2)⌉ − 1) + (⌈log(x + 1)⌉ − 1) = log x +
O(log log x).

To decode a γ-encoding we count the 0s until we reach the first 1. Let Z be the number
of 0s read. Then we read Z + 1 bits including the 1 just visited; this number is the integer
encoded. This can be done in constant time by using a precomputed table Γ, where Γ(X)
gives the position of the first 1 in X.

To decode a δ-encoding, we first decode a γ-encoded integer; we call this interger N .
Then the result is 2N−1 plus the binary representation formed by the next N − 1 bits. Again
this can be done in constant time.

2.4 Rank and Select Queries

Operations rank and select on sequences have a great impact on many other data structures,
especially on those aimed at compressed text indexing, but also on the space-efficient
representation of trees, graphs, permutations and functions, to name a few. In this section
we present different variants of rank and select problems.

Rank/select over Binary Sequences. Let B1,n be a binary sequence. In this case
rank1(B, i) gives the number of 1-bits in B[1, i] and select1(B, i) gives the position of the i-th
1 in B. Similarly, we can define rank0 and select0. Note that, rank0 can be easily obtained
from rank0, but select0 is not directly related. By default, we will refer with rank and select
to their 1s version.

Both rank and select can be computed in constant time using o(n) bits of space in
addition to B [Mun96], or nH0(B) + o(n) bits [RRR02]. In both cases the o(n) term is
Θ(n log log n/ log n). From the compressed representation one can easily retrieve B[i] =
rank(B, i) − rank(B, i − 1) in constant time, so the compressed representation replaces B
and in addition gives rank/select functionality on it.

The solution using n+o(n) bits is detailed in Section 3.1.1.1. We briefly survey here the
compressed one. The binary sequence B1,n is divided into blocks, each representing ⌊1

2
log n⌋
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bits. We represent each block using a (c, o)-pair encoding. The c part is of fixed width and
tells how many 1’s are there in the block, whereas the o part is of variable width and gives the
identifier of the block among those sharing the same c component. Each c component uses at
most log log n bits; while the o components use at most 1

2
log n bits each, and overall add up to

nH0(B)+O(n/ log n) bits. The c components, together with several accumulators for partial
rank solutions and directories to access the o sequence, add up to O(n log log n/ log n) = o(n)
bits of extra space.

Let s be the number of one-bits in B1,n. Then nH0(B) = s log n
s

+ O(s), and thus the
o(n) terms above are too large if s is far from n/2. Existing lower bounds [Mil05, Gol07] show
that constant-time rank and select can only be achieved with Ω(n log log n/ log n) extra bits
on top of B (if B is represented verbatim). In Chapter 6 we will have s << n, so we are also
interested in techniques with less overhead over the entropy, even if not of constant-time.
One such rank dictionary [GHSV07a] encodes the gaps between successive 1’s in B using δ-
encoding (Section 2.3) and adds some data to support a binary-search-based rank and select.
It requires s(log n

s
+ log n

log s
+2 log log n

s
)+O(log n) bits of space and supports rank and select in

O(log s) time. This structure is called BSGAP (binary searchable gap encoding). Recently
[GGG+07], constant-time rank and select has been achieved using nH0(B) + O(n log log n

log2 n
)

bits, but the practicality of this approach has not yet been established .

Rank/select over General Sequences. Given a sequence S[1, n] over an alphabet
of size σ, one aims at a (hopefully compressed) representation efficiently supporting the
following operations:

• access(S, i) returns the symbol S[i].

• rankc(S, i) returns the number of times symbol c appears in the prefix S[1, i].

• selectc(S, i) returns the position of the i-th c in S.

The first structure providing support for rank and select on a sequence of symbols was
the wavelet tree [GGV03]. The wavelet tree is a perfect binary tree of height Θ(log σ), built
on the alphabet symbols, such that the root represents the whole alphabet and each leaf
represents a distinct alphabet symbol. If a node v represents alphabet symbols in the range
Σv = [i, j], then its left child vl represents Σvl = [i, i+j

2
] and its right child vr represents

Σvr = [ i+j
2

+ 1, j]. We associate to each internal node v the subsequence Sv of S formed by
the symbols in Σv. Sequence Sv is not really stored at the node, but it is replaced by a bit
sequence Bv such that Bv[i] = 0 if Sv[i] is a symbol whose leaf resides in the left subtree of
v. Otherwise, Bv[i] is set to 1. Leaves are actually not represented.

The power of the wavelet tree is to reduce rank and select operations over general
alphabets to rank and select operations over a binary alphabet, so that the rank/select-
machinery above can be used in each wavelet-tree node. Precisely, let us answer the query
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rankc(S, i). We start from the root v of the wavelet tree (with associated vector Bv), and
check which subtree encloses the queried symbol c. If c descends into the right subtree, we set
i← rank1(B

v, i) and move to the right child of v. Similarly, if c belongs to the left subtree,
we set i← rank0(B

v, i) and go to the left child of v. We repeat this until we reach the leaf
that represents c, where the current i value is the answer to rankc(S, i). If the binary ranks
take O(1) time, the overall rankc operation takes O(logσ) time.

Now, let us answer the query selectc(S, i). We start from the parent v of the leaf
representing c. Say that c is represented in v by bit b, that is, b = 0 if the leaf for c is the
left child of v, and b = 1 if it is v’s right child. Then we calculate i′ = selectb(B

v, i). This
value indicates the corresponding position within v. We repeat this query over the parent of
v, selectb′(parent(v), i′), where b′ now is the value associated to node v in parent(v), i.e, 0
if v is the left child of its parent and 1 otherwise. We repeat this process until we reach the
root node, and the position within the root node is our answer. If a binary select takes O(1)
time, then the overall selectc operation takes O(log σ) time.

We note that the wavelet tree can replace S as well: to obtain S[i], we start from the
root v of the wavelet tree. If Bv[i] = 0, then we set i← rank0(B

v, i) and go to the left child.
Similarly, if Bv[i] = 1, then we set i← rank1(B

v, i) and go to the right child. We repeat this
process until we reach a leaf, where the symbol associated to the leaf is the answer. Again,
this takes O(log σ) time.

The wavelet tree has similar space occupancy than the original sequence, as it requires
n log σ (1 + o(1)) bits of space. A practical way to reduce the space occupancy to about the
zero-order entropy of S is to replace the balanced tree structure by the Huffman tree of S
[GGV03] (see Section 2.2). Now we have to follow the binary Huffman code of a symbol to
find its place in the tree. It is not hard to see that the total number of bits required by such
a tree is at most n(H0(S) + 1) + o(n log σ) and the average time taken by rank, select and
access operations is O(H0(S)+1) if the query position is chosen uniformly over the sequence
S. This structure is the key tool in our implementation of SSA and AF-index (Section 3.4).
Another way to achieve zero-order compression is to use a balanced wavelet tree where each
Bv is compressed using the structure presented in [RRR02]; this yields nH0(S) + o(n log σ)
bits of space.

Rank/select over Dynamic Sequences. Chan et al. [CHL04] considered dynamic
capabilities for the sequences, by including insert/delete operations. We focus on this problem
in Chapter 7, which we now define formally.

The Dynamic Sequence with Indels problem consists in maintaining a sequence S =
s1s2 . . . sn of symbols over an alphabet Σ of size σ, supporting the queries access(S, i),
rankc(S, i), and selectc(S, i) as defined previously, as well as the operations:

• insertc(S, i) inserts symbol c between S[i− 1] and S[i].

• delete(S, i) deletes S[i] from S.
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Chan et al. presented a structure for binary sequences taking O(n) bits of space and
performing all the operations in O(log n) time. Blanford and Blelloch [BB04] improved the
space to O(nH0), and finally Mäkinen and Navarro [MN06a, MN08] achieved nH0(S) + o(n)
bits of space, still solving all the operations in O(log n) time. This is achieved with a binary
tree that stores Θ(log2 n) bits at the leaves, and at internal nodes stores summary rank/select
information on the subtrees.

The solution is easily extended to handle sequences. A wavelet tree using dynamic
bitmaps yields a dynamic sequence representation that takes nH0(S) + o(n log σ) bits and
solves all the operations in time O(log n log σ) [MN06a].

Recently, Lee and Park [LP07] managed to improve the time complexities of this
solution. They show that the O(log n) time complexities can be achieved for alphabets
of size up to σ = O(log n), but only in an amortized sense. They combine this tool with a
multiary wavelet tree to achieve O(log n(1 + log σ

log log n
)) amortized time.

The key to the success of Lee and Park is a clever detachment of two roles of tree
leaves that are entangled in Mäkinen and Navarro’s solution [MN08]: In the latter, the leaves
are the memory allocation unit (that is, whole leaves are allocated or freed), and also the
information summarization unit (that is, the tree maintains information up to leaf granularity,
and the rest has to be collected by sequentially scanning a leaf). In Lee and Park’s solution
[LP07] leaves are the information summarization unit, but handle an internal linked list with
smaller memory allocation units. This permits moving symbols to manage the space upon
insertions/deletions within a leaf, without having to update summarization information for
the data moved. This was the main bottleneck that prevented the use of larger alphabets in
O(logn) time in Mäkinen and Navarro’s method [MN08].

2.5 Searchable Partial Sums with Indels

The Searchable Partial Sums with Indels (SPSI) problem [HSS03b] consists in maintaining a
sequence S of nonnegative integers s1, . . . , sn, each one of k = O(log n) bits, supporting the
following queries and operations:

• sum(S, i) is
∑i

l=1 sl.

• search(S, y) is the smallest i′ such that sum(S, i′) ≥ y.

• update(S, i, x) updates si to si + x (x can be negative as long as the result is not).

• insert(S, i, x) inserts a new integer x between si−1 and si.

• delete(S, i) deletes si from the sequence.
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It is possible to solve the SPSI problem using kn + o(kn) bits of space and O(logn)
time per operation, in a way similar to that used for dynamic rank and select on sequences
[MN08].

2.6 Classical Full-Text Indexes

Many different indexing data structures have been proposed in the literature for text
searching, most notably suffix trees and suffix arrays.

The suffix tree [Gus97] of a text T1,n is a trie (or digital tree) built on all the n suffixes Ti,n

of T , where unary paths are compressed to ensure O(n) words of space. The suffix tree has
n leaves, each corresponding to a suffix of T , and each internal suffix tree node corresponds
to a unique substring of T that appears more than once. The suffix tree can count the occ
occurrences of pattern P1,m in time O(m), independent of n and occ, by descending in the
tree according to the successive symbols of P1,m (each node should store the number of leaves
that descend from it). Afterwards, it can locate the occurrences in optimal O(occ) time by
traversing the subtree of the node arrived at counting. The suffix tree, however, uses much
more space than the text itself. In theoretical terms, it uses Θ(n log n) bits whereas the text
needs n log σ bits. In practice, a suffix tree requires from 10 to 20 times the text size [Kur99].

The suffix array [MM93] is a compact version of the suffix tree. It still requires Θ(n log n)
bits, but the constant is smaller: 4 times the text size in practice. The suffix array A[1, n]
of a text T1,n contains all the starting positions of the suffixes of T listed in lexicographical
order, that is, TA[1],n < TA[2],n < . . . < TA[n],n. A can be obtained by traversing the leaves of
the suffix tree, or it can be built directly by naive or sophisticated ad-hoc sorting methods
[PST07].

Any substring of T is the prefix of a text suffix, thus finding all the occurrences of P
is equivalent to finding all the text suffixes that start with P . Those form a lexicographical
interval in A, which can be binary searched in O(m log n) time, as each comparison in the
binary search requires examining up to m symbols of the pattern and of a text suffix. The
time can be boosted to O(m + log n), by using an auxiliary structure that doubles the space
requirement of the suffix array [MM93], or even to O(m+logσ) by adding some further data
structures (called suffix trays [CKL06]). Once the interval A[sp, ep] containing all the text
suffixes starting with P has been identified, counting is solved as occ = ep− sp + 1, and the
occurrences are located at A[sp], A[sp + 1], . . . A[ep].

For technical convenience we will assume that the last text character is tn = $, a special
end-marker symbol that belongs to Σ but does not appear elsewhere in T nor P , and that is
lexicographically smaller than any other symbol in Σ.
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2.7 Backward Search

In the previous section we described the classical binary search method over suffix arrays.
Here we review an alternative approach which has been proposed in [FM00], hereafter named
backward search. For any i = m, m − 1, . . . , 1, this search algorithm keeps the interval
A[spi, epi] storing all text suffixes which are prefixed by Pi,m. This is done via two main
steps:

Initial step. We have i = m, so that it suffices to access a precomputed table that stores
the pair 〈spm, epm〉 for all possible symbols pm ∈ Σ.

Inductive step. Let us assume we have computed the interval A[spi+1, epi+1], whose suffixes
are prefixed by Pi+1,m. The present step determines the next interval A[spi, epi] for Pi,m

from the previous interval and the next pattern symbol pi. The implementation is not
obvious, and leads to different realizations of backward searching in several compressed
indexes, with various time performances (see Section 2.9).

The backward-search algorithm is executed by decreasing i until either an empty interval
is found (i.e. spi > epi), or A[sp1, ep1] contains all pattern occurrences. In the former case no
pattern occurrences are found; in the latter case the algorithm has found occ = ep1− sp1 + 1
pattern occurrences.

2.8 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) [BW94] is a key tool in designing compressed full-
text indexes. It is a reversible permutation of T , which has the nice property of putting
together symbols followed by the same context. This ensures that the permuted T offers
better compression opportunities: a locally adaptive zero-order compressor is able to achieve
on this string the k-th order entropy of T (recall Eq. (2.2))2. The BWT works as follows:

1. Create a conceptual matrix M , whose rows are cyclic shifts of T .

2. Sort the matrix rows lexicographically.

3. Define the last column of M as the BWT of T , and call it T bwt.

2Here the k-th order entropy considers the context of size k that follows each symbol, but the difference
with the original k-th order entropy where the contexts precede the symbols (Section 2.1) is asymptotically
negligible [FM05].
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There is a close relationship between matrix M and the suffix array A of text T , because
when we lexicographically sort the rows, we are essentially sorting the suffixes of T (recall
indeed that tn = $ is smaller than any other alphabet symbol). Specifically, A[i] points to
the suffix of T which prefixes the i-th row of M . Hence, another way to compute T bwt is
to concatenate the symbols that precede each suffix of T in the order listed by A, that is,
T bwt = tA[1]−1 tA[2]−1 . . . tA[n]−1, where we assume that t0 = tn.

Given the way matrix M has been built, all columns of M are permutations of T . So
the first and last column of M are indeed one a permutation of the other. The question is
how to map symbols in the last column T bwt to symbols in the first column. It is easy to see
[BW94] that occurrences of equal symbols preserve their relative order in the last and the first
columns of M (as in both cases they are ordered by the suffix that follows them in T ). Thus
the j-th occurrence of a symbol c within T bwt corresponds to the j-th occurrence of c in the
first column. If c = T bwt[i], then we have that j = rankc(T

bwt, i) in the last column; whereas
in the first column, where the symbols are sorted alphabetically, the j-th occurrence of c is at
position C[c] + j, where C[c] counts the number of occurrences in T of symbols smaller than
c. By plugging one formula in the other we derive the so called Last-to-First column mapping
(or, LF-mapping): LF (i) = C[c] + rankc(T

bwt, i). We talk about LF-mapping because the
symbol c = T bwt[i] is located in the first column of M at position LF (i).

The LF-mapping allows one to navigate T backwards: If tk = T bwt[i], then tk−1 =
T bwt[LF (i)] because row LF (i) of M starts with tk and thus ends with tk−1. As a result
we can reconstruct T backwards by starting at the first row, equal to $T , and repeatedly
applying LF for n steps.

2.9 Compressed Text Indexes

Compressed text indexes provide an efficient, reduced space, alternative to classical indexes.
They have undergone significant development in the last years, so that we count now in the
literature many solutions that offer a plethora of space-time tradeoffs [NM07]. In theoretical
terms, the most compressed index [FMMN07] achieves nHk(T )+o(n logσ) bits of space, and
for any fixed ǫ > 0, requires O(m(1 + log σ

log log n
)) counting time, O(log1+ǫ n) time per located

occurrence, and O(ℓ(1 + log σ
log log n

) + log1+ǫ n) time to extract a substring of T of length ℓ.3

This is a surprising result because it shows that whenever T [1, n] is compressible it can be
indexed into smaller space than its plain form and still offer search capabilities in efficient
form.

In the following, we present the most competitive compressed indexes for which there is
an implementation we are aware of. We will review the FM-index family, which builds on the

3These locating and extracting complexities are better than those reported in [FMMN07], and can be

obtained by setting their sampling step to log1+ǫ

n

log σ
· log log n.
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BWT and backward searching; Sadakane’s Compressed Suffix Array (CSA), which is based
on compressing the suffix array via a so-called Ψ function that captures text regularities; and
the LZ-index, which is based on Lempel-Ziv compression. All of them are self-indexes since
they include the indexed text, which therefore may be discarded.

A self-index built on a text T supports at least the following queries:

• count(P ): counts the number of occurrences of pattern P in T .

• locate(P ): locates the positions of all those occ occurrences of P .

• extract(l, r): extracts the substring Tl,r of T , with 1 ≤ l, r ≤ n.

2.9.1 The FM-index Family

The FM-index is composed of a compressed representation of T bwt plus auxiliary structures
for efficiently computing rank queries on it. The main idea [FM00, FM05] is to obtain a text
index from the BWT and then use backward searching for identifying the pattern occurrences
(Sections 2.7 and 2.8). Several variants of this algorithmic scheme exist [FM01, FM05, MN05,
GNP+06, FMMN07] which induce several time/space tradeoffs for the counting, locating, and
extracting operations.

Counting. The counting procedure takes a pattern P and obtains the interval A[sp, ep] of
text suffixes prefixed by it (or, which is equivalent, the interval of rows of the matrix M
prefixed by P , see Section 2.8). Figure 2.1 gives the pseudocode to compute sp and ep.

Algorithm FM-count(P1,m)
i← m, sp← 1, ep← n;
while ((sp ≤ ep) and (i ≥ 1)) do

c← pi;
sp← C[c] + rankc(T

bwt, sp− 1) + 1;
ep← C[c] + rankc(T

bwt, ep);
i← i− 1;

if (sp > ep) then return “no occurrences of P” else return 〈sp, ep〉;

Figure 2.1: Algorithm to get the interval A[sp, ep] of text suffixes prefixed by P , using an
FM-index.

The algorithm is correct: Let [spi+1, epi+1] be the range of rows in M that start with
Pi+1,m, and we wish to know which of those rows are preceded by pi. These correspond
precisely to the occurrences of pi in T bwt[spi+1, epi+1]. Those occurrences, mapped to the
first column of M , form a (contiguous) range that is computed with a rationale similar to
that for LF (·) in Section 2.8, and thus via just two rank operations.
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Locating. Algorithm FM-locate in Figure 2.2 obtains the position of the suffix that prefixes
the i-th row of M . The basic idea is to logically mark a suitable set of rows of M , and
keep their positions in T (that is, we store the corresponding A values). Then, FM-locate(i)
scans backwards the text T using the LF-mapping until a marked row i′ is found, and then
it reports A[i′] + t, where t is the number of backward steps used to find such i′. This is
because we logically move one position backwards in T each time we apply LF. To compute
the position of all occurrences of a pattern P , it is thus enough to call FM-locate(i) for every
sp ≤ i ≤ ep.

Algorithm FM-locate(i)
i′ ← i, t← 0;
while A[i′] is not explicitly stored do

i′ ← LF (i′);
t← t + 1;

return A[i′] + t;

Figure 2.2: Algorithm to obtain A[i] using an FM-index.

The sampling rate of M ’s rows, hereafter denoted by sA, is a crucial parameter that
trades space for query time. Most FM-index implementations mark all the A[i] that are a
multiple of sA, via a bitmap B[1, n]. All the marked A[i]s are stored contiguously in suffix
array order, so that if B[i] = 1 then one finds the corresponding A[i] at position rank1(B, i) in
that contiguous storage. This guarantees that at most sA LF-steps are necessary for locating
the text position of any occurrence. The extra space is n log n

sA
+ n + o(n) bits.

A way to avoid the need of bitmap B is to choose a symbol c having some suitable
frequency in T , and then store A[i] if T bwt[i] = c [FM01]. Then the position of A[i] in the
contiguous storage is rankc(T

bwt, i), so no extra space is needed other than T bwt. In exchange,
there is no guarantee of finding a marked cell after a given number of steps.

Extracting. The same text sampling mechanism used for locating permits extracting text
substrings. Given sA, we store the positions i such that A[i] is a multiple of sA, now in text
order (previously we followed the A-driven order). To extract Tl,r, we start from the first
sample that follows the area of interest, that is, sample number d = ⌈(r + 1)/sA⌉. From it
we obtain backwards the desired text with the same mechanism for inverting the BWT (see
Section 2.8), here starting with the value i stored for the d-th sample. We need at most
sA + r − l + 1 applications of LF.

2.9.2 The Compressed Suffix Array (CSA)

The compressed suffix array (CSA) was not originally a self-index, and required O(n log σ)
bits of space [GV00, GV06]. Sadakane [Sad00, Sad02, Sad03] then proposed a variant which
is a self-index and achieves high-order compression.
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The CSA represents the suffix array A[1, n] by a sequence of numbers Ψ(i), such that
A[Ψ(i)] = A[i] + 1. It is not hard to see [Sad03] that Ψ is piecewise monotone increasing in
the areas of A where the suffixes start with the same symbol. In addition, if T is compressible
there are long runs where Ψ(i + 1) = Ψ(i) + 1, and these runs can be mapped one-to-one
to the equal-letter runs in T bwt [NM07]. These properties permit a compact representation
of Ψ and its fast access. Essentially, we compute the differences Ψ(i)−Ψ(i− 1), run-length
encode the long runs of 1’s occurring over those differences, and for the rest use an encoding
favoring small numbers (see Section 2.3). Absolute samples are stored at regular intervals
to permit the efficient decoding of any Ψ(i). The sampling rate (hereafter denoted by sΨ)
gives a space/time tradeoff for accessing and storing Ψ. In [Sad03] it is shown that the
index requires O(nH0(T ) + n log log σ) bits of space. The analysis has been then improved
in [NM07] to nHk(T ) + O(n log log σ) for any k ≤ α logσ n and constant 0 < α < 1.

Counting. The original CSA [Sad00, Sad03] used the classical binary searching to count
the number of pattern occurrences in T . The actual implementation, proposed in [Sad02],
uses backward searching (Section 2.7): Ψ is used to obtain 〈spi, epi〉 from 〈spi+1, epi+1〉 in
O(logn) time, for a total of O(m log n) counting time. Precisely, A[spi, epi] is the range of
suffixes A[j] that start with pi and such that A[j] + 1 (= A[Ψ(j)]) starts with Pi+1,m. The
former is equivalent to the condition [spi, epi] ⊆ [C[pi]+ 1, C[pi +1]]. The latter is equivalent
to saying that spi+1 ≤ Ψ(j) ≤ epi+1. Since Ψ(i) is monotonically increasing in the range
C[pi] < j ≤ C[pi + 1] (since the first characters of suffixes in A[spi, epi] are the same), we
can binary search this interval to find the range [spi, epi]. Figure 2.3 shows the pseudocode
for counting using the CSA.

Algorithm CSA-count(P1,m)
i← m, sp← 1, ep← n;
while ((sp ≤ ep) and(i ≥ 1)) do

c← pi;
〈sp, ep〉 ← 〈min, max〉 {j ∈ [C[c] + 1, C[c + 1]], Ψ(j) ∈ [sp, ep]};
i← i− 1;

if (ep < sp) then return “no occurrences of P” else return 〈sp, ep〉;

Figure 2.3: Algorithm to get the interval A[sp, ep] prefixed by P , using the CSA. The
〈min, max〉 interval is obtained via binary search.

Locating. Locating is similar to the FM-index, in that the text is sampled at regular intervals
of size sA. However, instead of using the LF-mapping to traverse the text backwards, this
time we use Ψ to traverse the text forward, given that A[Ψ(i)] = A[i] + 1. This points
out an interesting duality between the FM-index and the CSA. Yet, there is a fundamental
difference: function LF (·) is implicitly stored and calculated on the fly over T bwt, while
function Ψ(·) is explicitly stored. The way these functions are calculated/stored makes the
CSA a better alternative for large alphabets.
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Extracting. Given C and Ψ, we can obtain TA[i],n symbolwise from i, as follows. The first
symbol of the suffix pointed to by A[i], namely tA[i], is the character c such that C[c] < i ≤
C[c + 1], because all the suffixes A[C[c] + 1], . . . , A[C[c + 1]] start with symbol c. Now, to
obtain the next symbol, tA[i]+1, we compute i′ = Ψ(i) and use the same procedure above to
obtain tA[i′] = tA[i]+1, and so on. The binary search in C can be avoided by representing it
as a bit vector D[1, n] such that D[C[c]] = 1, thus c = rank1(D, i).

Now, given a text substring Tl,r to extract, we must first find the i such that l = A[i]
and then we can apply the procedure above. Again, we sample the text at regular intervals
by storing the i values such that A[i] is a multiple of sA. To extract Tl,r we actually extract
T⌊l/sA⌋·sA,r, so as to start from the preceding sampled position. This takes sA + r − l + 1
applications of Ψ.

Another index based on a similar idea is Mäkinen’s Compact Suffix Array (Mak-CSA)
[Mäk03]. In a suffix array A a run is an interval that appears in another place of the suffix
array shifted by 1 (these runs correspond exactly to the runs in Ψ). For example, a run of
length l+1 that start in j is such that A[j +s] = A[i+s]+1 for 0 ≤ s ≤ l. If the suffix array
can be partitioned into nr runs, then the Mak-CSA stores nr blocks. Each block stores the
partition where the interval repeats, the offset from the origin of that partition, the length
of the repetition, and the explicit value of the first element of the interval. Any run can
then be recovered by (recursively) expanding the definition and shifting the explicit values.
This index uses 2nHk log n + O(n log log n) bits of space plus the text, and answers count
in O(m log n + log2 n/ log log n) time, locate in O(log2 n/(log log n)2) time, and extract of l
symbols in O(l) time (the text is available).

2.9.3 The Lempel-Ziv Index

The Lempel-Ziv index (LZ-index) is a compressed self-index based on a Lempel-Ziv
partitioning of the text. There are several members of this family [Nav04, ANS06, FM05], yet
we focus on the version described in [Nav04, ANS06] and available in the Pizza&Chili site.
This index uses the LZ78 parsing [ZL78] to generate a partitioning of T1,n into n′ phrases,
T = Z1, . . . , Zn′. These phrases are all different, and each phrase Zi is formed by appending
a single symbol to a previous phrase Zj, j < i (except for a virtual empty phrase Z0). Since
it holds Zi = Zj · c, for some j < i and c ∈ Σ, the set is prefix-closed. We can then build a
trie on these phrases, called LZ78-trie, which consists of n′ nodes, one per phrase.

The original LZ-index [Nav04] is formed by (1) the LZ78 trie; (2) a trie formed with
the reverse phrases Zr

i , called the reverse trie; (3) a mapping from phrase identifiers i to the
LZ78 trie node that represents Zi; and (4) a similar mapping to Zr

i in the reverse phrases.
The tree shapes in (1) and (2) are represented using parentheses and the encoding proposed
in [MR97] so that they take O(n′) bits and constant time to support various tree navigation
operations. Yet, we must also store the phrase identifier in each trie node, which accounts
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for the bulk of the space for the tries. Overall, we have 4n′ log n′ bits of space, which can
be bounded by 4nHk(T ) + o(n log σ) for k = o(logσ n) [NM07]. This can be reduced to
(2 + ǫ)nHk(T ) + o(n log σ) [ANS06, ANS08] by noticing that the mapping (3) is essentially
the inverse permutation of the sequence of phrase identifiers in (1), and similarly (4) with
(2). It is possible to represent a permutation and its inverse using (1+ǫ)n′ log n′ bits of space
and access the inverse permutation in O(1/ǫ) time [MRRR03].

An occurrence of P in T can be found according to one of the following situations:

1. P lies within a phrase Zi. Unless the occurrence is a suffix of Zi, since Zi = Zj · c,
P also appears within Zj, which is the parent of Zi in the LZ78 trie. A search for
P r in the reverse trie finds all the phrases that have P as a suffix. Then the node
mapping permits, from the phrase identifiers stored in the reverse trie, to reach their
corresponding LZ78 nodes. All the subtrees of those nodes are occurrences.

2. P spans two consecutive phrases. This means that, for some j, P1,j is a suffix of some
Zi and Pj+1,m is a prefix of Zi+1. For each j, we search for P r

1,j in the reverse trie
and Pj+1,m in the LZ78 trie, choosing the smaller subtree of the two nodes we arrived
at. If we choose the descendants of the reverse trie node for P r

1,j, then for each phrase
identifier i that descends from the node, we check whether i + 1 descends from the
node that corresponds to Pj+1,m in the LZ78 trie. This can be done in constant time
by comparing preorder numbers.

3. P spans three or more phrases. This implies that some phrase is completely contained
in P , and since all phrases are different, there are only O(m2) different phrases to check,
one per substring of P . Those are essentially verified one by one.

Notice that the LZ-index carries out counting and locating simultaneously, which renders
it not competitive for counting alone. Extracting text is done by traversing the LZ78 paths
upwards from the desired phrases, and then using mapping (3) to continue with the previous
or next phrases. The LZ-index is very competitive for locating and extracting, in exchange
for using more space than other compressed indexes.

2.10 Re-Pair

Re-Pair [LM00] is a dictionary-based compressor that permits fast local decompression using
only the dictionary. It consists of repeatedly finding the most frequent pair of symbols in
a sequence and replacing it with a new symbol; this is repeated until every pair appears
only once. Given a text T = t1 . . . tn over an alphabet Σ of size σ, the Re-Pair compression
algorithm is as follows:
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1. Identify the most frequent pair ab in T .

2. Create a new symbol s, larger than all existing symbols in T , and add rule s → ab to
a dictionary R.

3. Replace every occurrence of ab in T by s.4

4. Iterate until every pair has frequency 1.

The result of the compression algorithm is the dictionary of rules R plus the sequence C
of (original and new) symbols into which T has been compressed. Note that R can be easily
stored as a vector of pairs, so that rule s→ ab is represented by R[s− σ] = a : b.

Any portion of C can be easily decompressed in optimal time and fast in practice. To
decompress C[i], we first check if C[i] ≤ σ. If it is, then it is an original symbol of T and we
are done. Otherwise, we obtain both symbols from R[C[i]−σ], and expand them recursively
(they can in turn be original or created symbols, and so on). We reproduce u characters of
T in O(u) time, and the accesses pattern is local if R is small.

Since R grows by 2 integers (a, b) for every new pair, we could stop creating pairs when
the most frequent one appears only twice. R can be further reduced by preempting the
process earlier, which trades its size for overall compression ratio.

4If a = b it might be impossible to replace all occurrences, e.g. aa in aaa. But, in such case, one can at
least replace each other occurrence in a row.
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Chapter 3

Compressed Text Indexes: From
Theory to Practice

A compressed full-text self-index represents a text in a compressed form and still answers
queries efficiently. This represents a breakthrough over the text indexing techniques of the
previous decade, whose indexes required several times the size of the text. Although it
is relatively new, this technology has matured up to a point where theoretical research is
giving way to practical developments. Nonetheless this deserves significant programming
skills, a deep engineering effort, and a strong algorithmic background to dig into the research
results. Up to the time of this thesis only isolated implementations and focused comparisons
of compressed indexes had been reported, and they missed a common API, which prevented
their re-use or deploy within other applications.

The goal of this chapter is to introduce the Pizza&Chili site, which offers tuned
implementations and a standardized API for the most successful compressed full-text self-
indexes, together with effective testbeds and scripts for their automatic validation and test.
We have extensively tested these codes with the aim of demonstrating the practical relevance
of this novel and exciting technology.

At the beginning of this thesis, we noted that one of the essential building blocks of
many compressed data structures, namely the data structure to perform rank and select
operations over a bit array, had not been carefully studied in practice. Section 3.1 shows
some results in this respect, which suggest that in many practical cases simpler solutions are
better in terms of time and extra space. These results are a basic building block for almost
all the compressed text indexes presented in our Pizza&Chili site. Section 3.2 describes how
the main practical indexes implement the basic theoretical ideas, in particular including the
first implementation of the alphabet-friendly FM-index [FMMN07]. Section 3.3 presents the
Pizza&Chili site, and next Section 3.4 comments on a large suite of experiments aimed at
comparing the most successful implementations of the compressed indexes present in this site.
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Finally, Section 3.5 discusses the open challenges derived from this experimental evaluation,
which have driven the development of the rest of this thesis.

The Pizza&Chili site and the experiments were a joint work with Paolo Ferragina and
Rossano Venturini, University of Pisa, Italy.

3.1 Practical Binary Rank and Select Queries

Given a binary sequence B[1, n], in Section 2.4 we saw that operation rank(B, i) is the
number of 1’s in B[1 . . . i] and select(B, j) is a kind of inverse of rank(), that is, the position
of the j-th bit set in B. The first results on this problem achieving constant time on rank
and select [Mun96, Cla96] used n + o(n) bits. In those schemes, n bits are used by B itself
and o(n) additional bits are needed by the data structures used to answer rank and select
queries. Further refinements [Pag99, RRR02] achieved constant time on the same queries by
using nH0(B) + o(n) bits overall, where H0(B) is the zero-order entropy of B (Section 2.1).
In this case, a further nontrivial query that is solved is to determine B[i] given i.

It is not clear at all how efficient are in practice those solutions, nor how irrelevant is
the o(n) extra space in practical cases. In this section we will focus on the most promising
solutions among those that use n + o(n) bits.

In Section 3.1.1 we analyze the structures used to answer rank, beginning with the
classical one, to follow with the analysis of several tune-ups. In Section 3.1.2 we study
structures used to answer select queries, considering first select techniques based on rank
structures, to follow with a structure that answers select in constant time. In Section 3.1.3
we study a particular case of select dubbed selectNext.

All of our experiments in this section ran on an AMD Athlon of 1.5 GHz, 1 GB of
RAM, 256 KB L2 cache, running Linux. We use the GNU gcc compiler for C++ with full
optimizations. We measure user times.

3.1.1 Rank Queries

3.1.1.1 The Constant-Time Classical Solution

The constant-time solution for rank is relatively simple [Jac89, Mun96, Cla96]. We divide
the bit array into blocks of length b = ⌊log(n)/2⌋. Consecutive blocks are grouped into
superblocks of length s = b · ⌊log n⌋.

For each superblock j, 0 ≤ j ≤ ⌊n/s⌋ we store a number Rs[j] = rank(B, j · s). Array
Rs needs overall n/b = O(n/ log n) bits since each Rs[j] value needs log n bits and there are
n/s = n/(b log n) entries.
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For each block k of superblock j = k div ⌊log n⌋, 0 ≤ k ≤ ⌊n/b⌋ we store a number
Rb[k] = rank(B, k · b)− rank(B, j · s). Array Rb needs (n/b) log s = O(n log log n/ log n) bits
since there are n/b blocks overall and each Rb[k] value needs log s bits, as it represents the
number of bits set inside a superblock.

Finally, for every possible bit stream S of length b and for every position i inside S, we
precompute Rp[S, i] = rank(S, i). This requires O(2b · b · log b) = O(

√
n log n log log n) bits.

The above structures need O(n/ logn + n log log n/ log n +
√

n log n log log n) = o(n)
bits. They permit computing rank in constant time as follows:

rank(B, i) = Rs[i div s] + Rb[i div b] +

Rp[B[(i div b) · b + 1 . . . (i div b) · b + b], i mod b]

This structure can be implemented with little effort and promises to work fast. Yet,
consider its extra space, for example, for n = 230 bits. Rs poses a space overhead of 6.67%,
Rb of 60%, and Rp of 0.18%. Overall, the o(n) additional space is 66.85% of n, which is not
so negligible.

3.1.1.2 Resorting to Popcounting

The term popcount (population count) refers to counting how many bits are set in a bit array.
We note that table Rp can be replaced by popcounting, as Rp[S, i] = popcount(S & 1i), where
“&” is the bitwise and and 1i is a sequence of i 1’s (obtained for example as 2i − 1). This
permits us removing the second argument of Rp, which makes the table smaller. In terms
of time, we perform an extra and operation in exchange for either a multiplication or an
indirection to handle the second argument. The change is clearly convenient.

Popcounting can be implemented by several means, from bit manipulation in a single
computer register to table lookup. Probably the best example of the first family, which
computes popcount(x), is the following

bx = x - ((x>>1) & 0x77777777) - ((x>>2) & 0x33333333) - ((x>>3) & 0x11111111)

popcount = ((bx + (bx>>4)) & 0x0F0F0F0F) % 0xFF

where a computer word of w = 32 bits is assumed. However, we have found that the
implementation of GNU g++ is about twice as fast:

popc = { 0, 1, 1, 2, 1, 2, 2, 3, 1, ... }

popcount = popc[x & 0xFF] + popc[(x >> 8) & 0xFF]

+ popc[(x >> 16) & 0xFF] + popc[x >> 24]
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where popc is a precomputed popcount table indexed by bytes.

Yet, this table lookup solution is only one choice among several alternatives. The width
of the argument of the precomputed table has been fixed at 8 bits and b has been fixed at 32
bits, hence requiring 4 table accesses. In a more general setup, we can choose b = log(n)/k
and the width of the table argument to be log(n)/(rk), for integer constants r and k. Thus
the number of table accesses to compute popcount is r and the space overhead for table Rb

is k log log n/ log n. What prevents us to choose minimal r and k is the size of table popc,

which is n
1

rk log log n. Hence we need rk > 1, which yields a space/time trade-off.

In practice, b should be a multiple of 8 because the solutions to popcount work at
least by chunks of whole bytes. With the setting s = b · ⌊log n⌋, and considering the range
216 < n ≤ 232 to illustrate, the overall extra space (not counting Rp) is 112.5% with b = 8,
62.5% with b = 16, 45.83% with b = 24 and 34.38% with b = 32.

We have tried the reasonable (k, r) combinations for b = 16 and b = 32: (1) b = 32
and a 16KB popc table needing 2 accesses for popcount, (2) b = 16 and a 16KB popc table
needing 1 access for popcount, (3) b = 16 and a 256-byte popc table needing 2 accesses for
popcount, and (4) b = 32 and a 256-byte popc table needing 4 accesses for popcount. Other
choices require too much space or too many table accesses. We have also excluded b = 8
because its space overhead is too high and b = 24 because it requires non-aligned memory
accesses (see later).

Figure 3.1 shows execution times for n = 212 to n = 230 bits. For each size we randomly
generate 200 arrays and average the times of 1,000,000 rank queries over each. We compare
the four alternatives above (labeled (1)-(4)) as well as the mentioned method that does not
use tables (label “no tables”). As it can be seen, the combination (4), that is, b = 32 making
4 accesses to a table of 256 entries, is the fastest in most cases, and when it is not, the
difference is negligible. The alternative without tables is clearly inferior due to the many
operations.

Up to now we have stick to s = b · ⌊log n⌋. However, it is preferable to read word-aligned
numbers than numbers that occupy other number of bits such as log n, which can cross word
boundaries and force reading two words from memory. In particular, we have considered the
alternative s = 28, which permits storing Rb elements as bytes. The space overhead of Rb

is thus only 25% with b = 32 (and 50% for b = 16), and accesses to Rb are byte-aligned.
The price for such a small s is that Rs gets larger. For example, for n = 220 it is 7.81%,
but the sum is still inferior to the 34.38% obtained with the basic scheme s = b · ⌊log n⌋.
Actually, for little more space, we could store Rs values as full 32-bit integers (or 16-bit if
log n ≤ 16). The overhead factor due to Rs becomes now 32/256 (or 16/256), which is at
most 12.5%. Overall, the space overhead is 37.5%, close to that of the non-aligned version.
Figure 3.1 shows that this alternative is much faster than any other, and it will be our choice
for popcount-based methods.

Note that up to n = 220 bits, the original bit array together with the additional
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Figure 3.1: Comparison of different popcount methods to solve rank.

structures need at most 176 KB with b = 32, and 208 KB with b = 16. Thus our 256
KB cache accommodates the whole structure. However, for n = 222, we need 512 KB just
for the bit array. Thus the cache hit ratio decreases as n grows.

3.1.1.3 Using a Single Level Plus Sequential Scan

At this point we still follow the classical scheme in the sense that we have two levels of
blocks, Rs and Rb. This forces us to make two memory accesses in addition to accessing the
bit array block. We consider now the alternative of using the same space to have a single
level of blocks, Rs, with one entry each s = 32 · k bits, and using a single 32-bit integer to
store the ranks. To answer a rank(B, i) query, we would first find the latest Rs entry that
precedes i, and then sequentially scan the array, popcounting in chunks of w = 32 bits, until
reaching the desired position. The procedure looks as follows:

rank(B, i) = Rs[i div s]

+
∑

j=(((i div s)·s) div w)+1...(i div w)−1

popcount(B[j · w + 1 . . . j · w + w])

+ popcount(B[(i div w) · w + 1 . . . (i div w) · w + w] & 1i mod w)

Note that the sequential scan accesses at most k memory words, and the space overhead
is 1/k. Thus we have a space/time trade-off. For example, with k = 3 we have approximately
the same space overhead as in our preferred two-level version.

Figure 3.2 compares the execution time of different trade-offs against the classical and
the best previous alternatives. For the variant of using only one level of blocks, we have
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considered extra spaces of 5%, 10%, 25%, 33% (close to the space of our best two-level
alternative), and 50%.
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Figure 3.2: Comparison of different approaches to solve rank: classical solution, popcounting
with two levels of blocks, and popcounting with one level of blocks.

We can see that the implementation of the classical solution, presented in 3.1.1.1, is
far from competitive: It wastes the most space and is among the slowest. Our two-level
popcount alternative is usually the fastest by far, showing that the use of two levels of blocks
plus an access to the bit array is normally better than using the same space (and even more)
for a single level of blocks. Yet, note that the situation is reversed for large n. The reason is
the locality of reference of the one-level versions: They perform one access to Rs and then a
few accesses to the bit array (on average, 1 access with 50% overhead, 1.5 accesses with 33%
overhead and 2 accesses with 25% overhead). Those last accesses are close to each other,
thus from the second on they are surely cache hits. On the other hand, the two-level version
performs three accesses (Rs, Rb, and the bit array) with no locality among them (access to Rp

is surely a cache hit). When the cache hit ratio decreases significantly, those three nonlocal
accesses become worse than the two nonlocal accesses (plus some local ones) of the one-level
versions.

Thus, which is the best choice among one and two levels depends on the application.
Two levels is usually better, but for large n one can use even less space and be faster. Yet,
there is no fixed concept of what is “large”, as other data structures may compete for the
cache and thus the real limit can be lower than in our experiments, where only the rank
structures are present.
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3.1.2 Select Queries

3.1.2.1 Binary Searching with Rank

A simple, yet O(logn) time, solution to select(B, j), is to binary search in B the position i
such that rank(B, i) = j and rank(B, i − 1) = j − 1. Hence, the same structures used to
compute rank(B, i) in constant time can be used to compute select(B, j) in O(log n) time.

More efficient than using rank(B, i) as a black box in this scheme is to take advantage
of its layered structure, so as to first binary search for the proper superblock using Rs, then
binary search that superblock for the proper block using Rb, and finally binary search for the
position inside the correct block.

For the search within the superblock of s bits, there are three alternatives: (2a) binary
search using Rb, (2b) sequential search using Rb (since there are only a few blocks inside a
superblock), and (2c) sequential search using popcount. The latter alternative consists of
simply counting the number of bits set inside the superblock, and has the advantage of not
needing array Rb at all. For the search in the last block of b bits, binary search makes little
sense because popcount proceeds anyway bytewise, so we have considered two alternatives:
(3a) bytewise search using popcount plus bitwise search in the final byte, and (3b) sequential
bitwise search of the b bits.

In the case of select, the density of the bit array may be significant. We have generated
bit arrays of densities (fraction of bits set) from 0.001 to 1. For each density we randomly
generated 50 different arrays of each size. For each array, we average the times of 400,000
select queries.

The results in this subsection are almost independent of the density of bits set in B,
hence we show in Figure 3.3 only the case of density 0.4. We first compare alternatives
(2a, 3b), (2b, 3b) and (2c, 3b). Then, as (2c, 3b) turns out to be the fastest, we consider also
(2c, 3a), which is consistently the best. We have also plotted the basic binary search (not
level-wise) to show that it is much slower than any other. In this experiment we have used
b = 32 and s = b · ⌊log n⌋. Note that the best alternative only requires space for Rs, as all
the rest is solved with sequential scanning.

From Figure 3.3 we conclude that using a single level is preferable for select. Now, to
speed up the access to Rs we consider to use 32-bit integers (or 16-bits when log n ≤ 16)
instead of log n bits. Moreover, we can choose any sampling step of the form s = k · b = k ·32
so that the sequential scan accesses at most k blocks and we pay 1

s
· 32 = 1/k overhead.

Figure 3.4 compares different space overheads, from 5% to 50%. We also include the
case (2c, 3a), which is the best version where s = b · ⌊log n⌋ and Rs stores log n bits per
entry instead of 32 bits; the overhead of this version is 1

32 log n
· log n = 1/32. It can be seen

that these word-aligned alternatives are generally faster than using exactly log n bits for Rs.
Moreover, there is a clear cache effect as n grows. For small n, higher space overheads yield
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Figure 3.3: Comparison of alternatives to solve select by binary search.

better times as expected, albeit the difference is not large because the binary search on Rs

is a significant factor that smoothes the differences in the sequential search. For larger n,
the price of the cache misses during the binary search in Rs is the dominant factor, thus
lower overheads take much less time because their Rs arrays are smaller and their cache hit
ratios are higher. The sequential search, on the other hand, is not so important because
only the first access may be non-local, all the following ones are surely cache hits. Actually,
the variant of (2c, 3a) with, 100

32
% = 3.125% overhead is finally the fastest, albeit it stores

non-aligned Rs values.

The best alternative is the one that balances the number of cache misses during binary
search on Rs with those occurring in the sequential search on the bit array. It is interesting,
however, that a good solution for select requires little space. Still, note that rank can be
made one order of magnitude faster by using more space (see Figure 3.2).

3.1.2.2 The Constant-Time Solution

The constant-time solution to select(B, j) is significantly more complex than for rank(B, i).
We focus on Clark’s version [Cla96], as the previous solution [Jac89] is O(log log n) time.
Clark’s structure requires 3n

⌈log log n⌉ + O(
√

n log n log log n) bits of extra space. The idea is to
use a three-level directory tree to store information of the bits set in B.

The first directory, d1, stores the position of each (⌈log n⌉⌈log log n⌉)-th bit set. Each

of these entries requires ⌈log n⌉ bits, totalizing
⌊

n
⌈log log n⌉

⌋

bits for d1. The entries of d1 are
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defined as d10 = 0 and

d1k = select(B, ⌈log n⌉⌈log log n⌉ · k), 1 ≤ k ≤
⌊

n

⌈log n⌉⌈log log n⌉

⌋

.

In the second directory, d2, let us define rk = d1k − d1k−1, 1 ≤ k ≤
⌊

n
⌈log n⌉⌈log log n⌉

⌋

,

that is, the number of bits in B between two successive bits represented in d1. We state that

the representation for each such range should occupy
⌊

rk

⌈log log n⌉

⌋

bits, so that added over all

ranges we occupy
⌊

n
⌈log log n⌉

⌋

bits for d2. It is easy to find the data of the k-th range in d2,

as the sum of the lengths of all previous ranges is r1 + r2 + . . . rk−1 = d1k−1, thus the k-th

range starts at position 1 +
⌊

dk−1

⌈log log n⌉

⌋

.

Let us see how to reach the bound
⌊

rk

⌈log log n⌉

⌋

bits per range. There are ⌈log n⌉⌈log log n⌉
bits set in each range. Explicitly storing all those positions requires ⌈log n⌉2⌈log log n⌉ bits.
There are two cases. If ⌊

rk

⌈log log n⌉

⌋

≥ ⌈log n⌉2⌈log log n⌉ (3.1)

then we have enough space to store explicitly all the positions of bits set. Thus, for these
entries k, we store all

d2k,j = select(B[d1k−1 + 1 . . . d1k], j), 1 ≤ j ≤ ⌈log n⌉⌈log log n⌉.

Otherwise, we have
rk < (⌈log n⌉⌈log log n⌉)2 (3.2)
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and thus we subdivide the range, in the same way as for d1, except that now we store the
position of every (⌈log rk⌉⌈log log n⌉)-th bit set. This position is stored as an offset inside the

range, thus we need ⌈log rk⌉ bits per entry. As there are at most
⌊

rk

⌈log rk⌉⌈log log n⌉

⌋

entries, we

use at most
⌊

rk

⌈log log n⌉

⌋

bits per range. Thus, d2k,0 = 0 and we store all

d2k,j = select(B[d1k−1 + 1 . . . d1k], ⌈log rk⌉⌈log log n⌉ · j), 1 ≤ j ≤
⌊

rk

⌈log rk⌉⌈log log n⌉

⌋

.

Finally, for this second case, we use a third directory, d3. Let us define r′k,j = d2k,j −
d2k,j−1, that is, the number of bits in B between two consecutive entries of d2k. In this range
there are at most ⌈log rk⌉⌈log log n⌉ bits set. In order to explicitly store those positions, we

need ⌈log r′k,j⌉⌈log rk⌉⌈log log n⌉ bits. Again, we require to use
⌊

r′
k,j

⌈log log n⌉

⌋

bits per subrange,

so that after adding over j we do not surpass the
⌊

rk

⌈log log n⌉

⌋

bits limit per range. We have

again two cases. If
⌊

r′k,j

⌈log log n⌉

⌋

≥ ⌈log r′k,j⌉⌈log rk⌉⌈log log n⌉ (3.3)

then we have enough space to store them explicitly. Thus for this k, j, we store all

d3k,j,i = select(B[d1k−1 + d2k,j−1 + 1 . . . d1k−1 + d2k,j], i), 1 ≤ i ≤ ⌈log rk⌉⌈log log n⌉.

For the remaining case we have

r′k,j < ⌈log r′k,j⌉⌈log rk⌉⌈log log n⌉2 (3.4)

and together with Eq. (3.2) it is easy to derive r′k,j < 16⌈log log n⌉4, which is asymptotically
smaller than ⌈log n⌉. Therefore, we set up a table containing, for each possible sequence of
⌈log(n)/2⌉ bits, the number of bits set in the sequence and the position of each of them. The
space required by this table is O(

√
n log n log log n). With a constant number of lookups into

this table we solve select for a subrange of length r′k,j: take successive chunks of ⌈log n⌉ bits
and track how many bits set have we seen, until finding the final answer in the chunk where
the argument of select is reached or exceeded.

Thus, the overall space we use is 3n
⌈log log n⌉ + O(

√
n log n log log n) bits. For example, for

n = 230, the overhead is 60%. Figure 3.5 shows the pseudocode for select(B, ℓ).

Figure 3.6 shows the execution times for our implementation of Clark’s select (we show
different lines for different densities of the bit arrays). We note that, although the time is
O(1), there are significant differences as we change n or the density of the arrays (albeit
of course those differences are bounded by a constant). Note, for example, that for density
0.001 the search is extremely fast, as there is only one superblock and all the answers are
explicitly stored in d2.
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Algorithm select(B, ℓ)
k ← ℓ div ⌈log n⌉⌈log log n⌉
j ← ℓ mod ⌈log n⌉⌈log log n⌉
if j = 0 return d1k

rk ← d1k − d1k−1

if rk ≥ (⌈log n⌉⌈log log n⌉)2 return d1k + d2k,j

j′ ← j div ⌈log rk⌉⌈log log n⌉
i← j mod ⌈log rk⌉⌈log log n⌉
if i = 0 return d1k + d2k,j′

r′k,j′ ← d2k,j′ − d2k,j′−1

if r′k,j′ ≥ ⌈log r′k,j′⌉⌈log rk⌉⌈log log n⌉2 return d1k+ d2k,j′ + d3k,j′,i

use the lookup table to find the position p of the i-th bit set in B[d1k + d2k,j′ + 1, n]
return d1k + d2k,j′ + p

Figure 3.5: Pseudocode to calculate select(B, ℓ)

Density 0.01 is the strangest case, as times grow and then decrease with n. The reason
is that, for fixed density d, we have that the expectation of rk is 1

d
log n log log n, and thus

the probability of storing d2 values explicitly decreases as n grows (see Eq. (3.1)). The
same happens to d3 in Eq. (3.3). When n is large enough, however, there is a beneficial
effect related to the final sequential scanning, which is constant but quite large. That is, the
number of steps of the final sequential scan is 2r′k,j/ log n, where the expectation of r′k,j is
1
d
log log n(log log n + log log log n + log 1

d
), and therefore this heavy part of the computation

decreases with n.

For higher densities the last sequential scan is not that heavy and thus there is no such
a significant decrease of the cost for large n. As n grows the probability of storing explicit
values in d2 and d3 decreases. This effect does show up, although the effect is milder as
the density increases. This is why, once all directory levels are used, times decrease as the
density increases.

The plot also shows the time for our binary search versions using 5% and 50% space
overhead. For very low densities (up to 0.005 and sometimes 0.01), Clark’s implementation is
superior. However, we note that for such low densities, the select problem is trivially solved
by explicitly storing all the positions of all the bits set (that is, precomputing all answers), at
a space overhead that is only 32% for density 0.01. Hence this case is not very interesting. For
higher densities, our binary search versions are superior up to n = 222 or 226 bits, depending
on the space overhead we chose (and hence on how fast we want to be for small n). After some
point, however, the O(logn) nature of the binary search solution shows up, and the constant-
time solution of Clark finally takes over. We remark that Clark’s implementation imposes a
space overhead of 60% at least. Moreover, Clark’s select is totally oriented to answer queries
over 1’s, if we want select0 we must replicate all the structure. The case of binary search is
easily adapted to answer select0 (remember that rank0(B, i) = i− rank1(B, i)).
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Figure 3.6: Comparison of Clark’s select on different densities and two binary searches based
implementations using different space overheads.

3.1.3 SelectNext Queries

It turns out that several applications require a restricted version of select, namely select(B, i+
1) given j = select(B, i)+1. We call this operation selectNext(B, j), which gives the position
of the first bit set in B[j . . . n], or n + 1 if no such bit set exists.

Of course one choice is to exploit the equivalence selectNext(B, j) = select(B, 1 +
rank(B, j − 1)) and solve the query using the traditional rank and select. We propose now
a simpler solution, specific for selectNext.

We divide B as for rank, into blocks and superblocks of sizes b = ⌊1
2
log n⌋ and s =

b · ⌊log n⌋, respectively. For each superblock j, 1 ≤ j ≤ ⌊n/s⌋ we store a number Ns[j] =
selectNext(B, j · s +1). Array Ns needs overall O(n/ log n) bits since each Ns[j] value needs
O(logn) bits.

For each block k of superblock j = k div ⌊log n⌋, 1 ≤ k ≤ ⌊n/b⌋, we store a number
Nb[k] = selectNext(B[j · s + 1 . . . (j + 1) · s], k · b − j · s + 1). Array Nb needs overall
O(n log log n/ log n) bits since each Nb[k] value needs O(log log n) bits, as it represents a
position inside a superblock of length O(log2 n).

Finally, for every possible bit stream S of length b and for every position i inside S, we
precompute Np[S, i] = selectNext(S, i). This requires O(2b · b · log b) = O(

√
n log n log log n)

bits. Note that Np[S, i] = b + 1 if S[i . . . b] contains all zeros.

As before, the structures require O(n log log n/ log n) bits, with exactly the same
overhead as for rank. With them, we can answer selectNext(B, i) in O(1) time as as shown
in Figure 3.7.
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Algorithm selectNext(B, i)
ib ← (i div b) · b
pos← Np[B[ib + 1 . . . ib + b], i− ib + 1]
if pos ≤ b return ib + pos // there is a bit set in B[i . . . ib + b− 1]
// at this point selectNext(B, i) = selectNext(B, ib + b), so find the
// answer corresponding to the beginning of the next block
pos← Nb[(i div b) + 1]
if pos ≤ s return ((ib + b) div s) · s + pos
// at this point there are all zeros in B[i . . . is + s− 1],
// where is = (i div s) · s, so selectNext(B, i) = selectNext(B, is + s)
return Ns[(i div s) + 1]

Figure 3.7: Pseudocode to calculate selectNext(B, i)

A much simpler alternative solution to selectNext(B, j) is to sequentially scan all the
bits in B[j . . . n] until finding a bit set. We search word by word rather than bit by bit (that
is, we scan B from i onwards until finding the first word different from zero). When we finally
find a nonzero word, we use a precomputed table that, for every byte, tells the position of the
first bit set. Then, in at most four access to the table, we find the position of the first bit set
in the word where the sequential scanning stopped. We have considered other alternatives
such as (1) using two accesses to a table of 216 entries for the last step, and (2) going by
chunks of 16 bits and performing one single access to a table of 216 entries for the last step,
but these were slightly worse.

Figure 3.8 compares both solutions, for different densities. As it can be seen, the brute
force solution (sequential scan) not only requires much less extra space but also is consistently
faster, even with densities as low as 1000 (that is, where we have to scan 500 bits on average
to find the answer). Note that the constant-time solution also worsens for lower densities
because it is more probable to require more accesses (1, 2 or 3 table accesses). Finally,
we point out that the solutions for selectNext are significantly faster than any solution for
general select.

3.1.4 Discussion

We have obtained in this section several important practical results on rank, select and
selectNext on binary sequences.

• For rank, it is better to replace the table access of the third level by popcounting,
yet the other two levels have to be maintained to obtain competitive times. It is also
beneficial to word-align the numbers, even at the cost of slightly more space. The space
overhead of our two-level version is 37.5%, half of the theoretical solution in practice.
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Figure 3.8: Comparison of different alternatives to solve selectNext, with different bit
densities. On the left, the constant-time solution, on the right, sequential scanning.

A one-level version requiring even less space is competitive for large bit arrays due to
cache effects. In our machine, rank needs 0.02 to 0.7 microseconds as n moves from
220 to 230.

• For select, the constant-time solution by Clark requires at least 60% extra space in
practice, while a simple O(log n) binary search based on rank succeeds with very little
space overhead (5%, for example). The binary search is actually faster until the bit
array gets very long and the constant time of Clark takes over. This comparison holds
for sufficiently dense bit sequences, yet for sparser ones even more naive solutions are
the best. In our machine, select requires 0.2 microseconds for n ≤ 220. For n = 230, it
requires 0.4 to 2.2 depending on the density.

• For selectNext, even with very sparse bit sequences (density of bits set d = 1/1000),
a brute-force solution based on O(1/d)-time sequential scanning and almost no extra
space is faster than a constant-time and O(n log log n/ log n) extra space solution we
design in Section 3.1.3. In our machine, selectNext takes 0.02 to 0.4 microseconds as
n goes from 220 to 230, if d > 1/1000. For the case d = 1/1000, the times are 0.1 to 0.6
microseconds.

This research has not only interest by itself, but it also has great impact over the text
indexing structures that use rank and select. In the next section we use these new structures
in our practical compressed text indexes.
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3.2 Implementing Indexes

Over the course of this thesis, we implemented various indexes of the FM-index family. In
this section we show how to achieve practical implementations. In particular, we present the
only existing implementation of the so-called Alphabet-Friendly FM-index, which provides the
best current theoretical space/time guarantees. We are not going into the implementation
details of the compressed suffix array (CSA) or the Lempel-Ziv index (LZ-index), as those
were already implemented. However, those indexes are explained in Sections 2.9.2 and 2.9.3.

3.2.1 Implementing the FM-index

As can be seen in Section 2.9.1, all the query complexities in the FM-index are governed
by the time required to obtain C[c], T bwt[i], and rankc(T

bwt, i) (all of them implicit in LF
as well). While C is a small table of σ log n bits, the other two are problematic. Counting
requires up to 2m calls to rankc, locating requires sA calls to rankc and T bwt, and extracting
ℓ symbols requires sA + ℓ calls to rankc and T bwt. In what follows we briefly comment on the
solutions adopted to implement those basic operations.

The original FM-index implementation (FM-index [FM01]) compresses T bwt by splitting
it into blocks and using independent zero-order compression on each block. Values of rankc

are precomputed for all block beginnings, and the rest of the occurrences of c from the
beginning of the block to any position i are obtained by sequentially decompressing the block.
The same traversal finds T bwt[i]. This is very space-effective: It approaches in practice the k-
th order entropy because the partition into blocks takes advantage of the local compressibility
of T bwt. On the other hand, the time to decompress the block makes computation of rankc

relatively expensive. For locating, this implementation marks the BWT positions where some
chosen symbol c occurs, as explained in Section 2.9.1.

A very simple and effective alternative to represent T bwt has been proposed with the
Succinct Suffix Array (SSA) [FMMN07, MN05]. It uses a Huffman-shaped wavelet tree
(Section 2.4), plus the marking of one out of sA text positions for locating and extracting.
The space is n(H0(T )+ 1)+ o(n logσ) bits, and the average time to determine rankc(T

bwt, i)
and T bwt[i] is O(H0(T ) + 1). The space bound is not much appealing because of the zero-
order compression, but the relative simplicity of this index makes it rather fast in practice.
In particular, it is an excellent option for DNA text, where the k-th order compression is not
much better than the zero-th order one, and the small alphabet makes H0(T ) ≤ log σ small
also in absolute terms.

For performance reasons, we want that the length of the Huffman code for any symbol
does not exceed 32 bits (our word size). This way we need fewer operations to manage
the codes, which are used in all the operations that access the wavelet tree. To obtain all
codes shorter or equal to 32 bits, we can use an optimal construction as proposed in [ML00],
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but we prefer to use a simpler approach, that loses at most 0.2% of compression for n ≤
1GB. (In our text collections the code lengths go from 12 to 27 bits, so this rarely occurs in
practice.) Let π1 be the probability of the least frequent symbol. An upper bound to the
maximum length of a code is min{⌊− logφ π1⌋, σ − 1}, where φ = (1 +

√
5)/2 [Bur93]. Thus,

if π1 ≥ π = φ−32 ≥ 0.206 ·10−6, then no Huffman code is longer than 32 bits. So we just need
to increase the frequency of the symbols with probability lower than π, by virtually adding
more of these symbols at the end of the text. Now we construct the Huffman code for this
extended text, and apply it to encode the original text. The result is shorter than applying
the code to the virtual text (as more symbols are to be encoded with the same code), and
this in turn is shorter than applying the original code to the virtual text (as the original
code is not optimal for the virtual text). Hence we analyze the latter to upper bound the
extra space incurred. We lose at most (σ − 32) n

φ32 logφ n bits of space, where σ − 32 is an
upper bound to the number symbols with Huffman code greater than 32, n

φ32 is an upper
bound to the number of symbols that we need to add to obtain the probability π, and logφ n
(π1 ≥ 1/n) is an upper bound to the length in bits for any Huffman code. For example, for
a text of size 200MB, our scheme implies that any symbol must appear at least 44 times and
we lose at most 0.2% of compression.

The Run-Length FM-index (RLFM) [MN05] was introduced to achieve k-th order
compression by applying run-length compression to T bwt prior to building a wavelet tree on
it. The BWT generates long runs of identical symbols on compressible texts [MN05], which
makes the RLFM an interesting alternative in practice. The price is that the mappings
from the original to the run-length compressed positions slow down the query operations
somewhat, in comparison to the SSA. This index uses nHk log σ + 2n + o(n log σ) bits of
space, and answers count in O(m(1 + log σ

log log n
)) time, locate in O(log1+ǫ n) time and extract

of l symbols in O(l(1 + log σ
log log n

) + log1+ǫ n) time. These complexities are for σ = o(n),
k ≤ α logσ n, and constants 0 < α < 1 and ǫ > 0. The implementation of the RLFM uses a
Huffman-shaped wavelet tree over the first symbols of the runs.

3.2.2 The Alphabet-Friendly FM-index

The Alphabet-Friendly FM-index (AF-index) [FMMN07] resorts to the definition of k-th order
entropy in Eq. (2.2) of Section 2.1, by encoding each substring wS up to its zero-order entropy.
Since all the wS are contiguous in T bwt (regardless of which k value we are considering), it
suffices to split T bwt into blocks given by the k-th order contexts, for any desired k, and to use
a Huffman-shaped wavelet tree (see Section 2.4) to represent each such block. In addition,
we need all rankc values precomputed for every block beginning, as the local wavelet trees
can only answer rankc within their blocks. In total, this achieves nHk(T ) + o(n log σ) bits,
for moderate k ≤ α logσ n and constant 0 < α < 1.

Actually the AF-index does better, by splitting T bwt in an optimal way, thus
guaranteeing that the space bound above holds simultaneously for every k. This is done
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by resorting to the idea of compression boosting [FM04, GS03, FGMS05]. The compression
booster finds the optimal partitioning of T bwt into t nonempty blocks, s1, . . . , st, assuming
that each block sj will be represented using |sj|H0(sj) + f(|sj|) bits of space, where f(· )
is a nondecreasing concave function supplied as a parameter. Given that the partition is
optimal, it can be shown that the resulting space is upper bounded by nHk +σkf(n/σk) bits
simultaneously for every k. That is, the index is not built for any specific k.

As explained, the AF-index represents each block sj by means of a Huffman-shaped
wavelet tree wtj , which will take at most |sj|(H0(sj) + 1) + σ log n bits. The last term
accounts for the storage of the Huffman code. In addition, for each block j we store an array
Cj[c], which tells the rankc values up to block j. This accounts for other σ log n bits per
block. Finally, we need a bitmap R[1, n] indicating the starting positions of the t blocks
in T bwt. Overall, the formula giving the excess of storage over the entropy for block j is
f(|sj|) = 2|sj|+ 2σ log n.

To carry out any operation at position i, we start by computing the block where position
i lies, j = rank1(R, i), and the starting position of that block, i′ = select1(R, j). Hence
T bwt[i] = sj[i

′′], where i′′ = i − i′ + 1 is the offset of i within block j. Then, the different
operations are carried out as follows.

• For counting, we use the algorithm of Figure 2.1. In this case, we have rankc(T
bwt, i) =

Cj[c] + rankc(sj, i
′′), where the latter is computed using the wavelet tree wtj of sj .

• For locating, we use the algorithm of Figure 2.2. In this case, we have c = T bwt[i] =
sj[i

′′]. To compute sj[i
′′], we also use the wavelet tree wtj of sj .

• For extracting, we proceed similarly as for locating, as explained in Section 2.9.1.

As a final twist, R is actually stored using 2
√

nt rather than n bits. We cut R into
√

nt
chunks of length

√

n/t. There are at most t chunks which are not all zeros. Concatenating
them all requires only

√
nt bits. A second bitmap of length

√
nt indicates whether each chunk

is all-zero or not. It is easy to translate rank and select operations into this representation.
A refinement of this method was later called recrank in the literature [OS07].

Using binary wavelet trees, the AF-index complexities are O(m log σ) for counting,
O(log1+ǫ n) for locating, and O(ℓ logσ + log1+ǫ n) for extracting ℓ symbols.

A stronger version of wavelet trees are multiary wavelet trees [FMMN07], which achieve
the same space but reduce all log σ to 1 + log σ

log log n
in the time complexities. The trick is to

make the tree ρ-ary for some ρ = O(logα n) and constant 0 < α < 1, so that its height
is reduced. Now the tree does not store a bitmap per level, but rather a sequence over an
alphabet of size ρ. They show how to do rank/select on those sequences in constant time
for such a small ρ.
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Using multiary wavelet trees we achieve in theory the complexities claimed in Section 2.9.
In practice, however, using ρ > 2 yields much higher space occupancy, due the extra space
needed to represent some partial sums for the ρ symbols. This also applies to the practical
implementation of the SSA and the RLFM. In all cases we opted for (binary) Huffman-shaped
wavelet trees.

3.3 The Pizza&Chili Site

The Pizza&Chili site has two mirrors: one in Chile (http://pizzachili.dcc.uchile.cl)
and one in Italy (http://pizzachili.di.unipi.it).1 Its goal is to push towards the
technology transfer of this algorithmic development. In order to achieve this goal, the
Pizza&Chili site offers publicly available and highly tuned implementations of various
compressed indexes. The implementations follow a suitable C/C++ API of functions which
should allow any programmer to easily plug the provided compressed indexes within his/her
own software. The site also offers a collection of texts for experimenting with and validating
the compressed indexes. In detail, it offers three kinds of material:

• A set of compressed indexes which are able to support the search functionalities
of classical full-text indexes (e.g., substring searches), but requiring succinct space
occupancy and offering, in addition, some text access operations that make them useful
within text retrieval and data mining software systems.

• A set of text collections of various types and sizes useful to test experimentally the
available (or new) compressed indexes. The text collections have been selected to
form a representative sample of different applications where indexed text searching
might be useful. The size of these texts is large enough to stress the impact of data
compression over memory usage and CPU performance. The goal of experimenting with
this testbed is to conclude whether compressed indexing is beneficial over uncompressed
indexing approaches, like suffix trees and suffix arrays. And, in case it is beneficial,
which compressed index is preferable according to the various application scenarios
represented by the testbed.

• Additional material useful to experiment with compressed indexes, such as scripts for
their automatic validation and efficiency test over the available text collections.

The Pizza&Chili site hopes to mimic the success and impact of other initiatives, such as
data-compression.info and the Calgary and Canterbury corpora, just to cite a few. Actually,
the Pizza&Chili site is a mix, as it offers both software and testbeds. Several people have

1Up to now we have counted, in the Chilean version of the site, accesses from more than 700 different IPs
and more than 200 registered users (registration is optional).
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already contributed to make this site work and, hopefully, many more will contribute to turn
it into a reference for all researchers and software developers interested in experimenting and
developing the compressed indexing technology. The API we propose (see Appendix A) is
thus intended to ease the deployment of this technology in real software systems, and to
provide a reference for any researcher who wishes to contribute to the Pizza&Chili repository
with his/her new compressed index.

3.3.1 Indexes

The Pizza&Chili site provides several index implementations, all adhering to a common API.
All indexes, except CSA and LZ-index, are built through the deep-shallow algorithm of
Manzini and Ferragina [MF04] which constructs the suffix array using little extra space and
fast in practice. Unless otherwise stated they were implemented by ourselves.

• The Suffix Array [MM93] is a plain implementation of the classical index (see Section
2.6), using either n log n bits of space or simply n computer integers, depending on the
version.

• The SSA [FMMN07, MN05] uses a Huffman-based wavelet tree over the string T bwt

(Section 2.9.1). It achieves zero-order entropy space with little extra overhead and
striking simplicity. It was implemented in cooperation with Veli Mäkinen, University
of Helsinki, Finland.

• The AF-index [FMMN07] combines compression boosting [FGMS05] with the above
wavelet tree data structure (Section 3.2.2). It achieves high-order compression, at the
cost of being more complex than SSA.

• The RLFM [MN05] is an improvement over the SSA (Section 2.9.1), which exploits
the equal-letter runs of the BWT to achieve k-th order compression, and in addition
uses a Huffman-shaped wavelet tree. It is slightly larger than the AF-index. It was
implemented in cooperation with Veli Mäkinen.

• The FMI-2 is an engineered implementation of the original FM-index [FM01], where
a different sampling strategy is designed in order to improve the performance of the
locating operation. It was implemented by Paolo Ferragina and Rossano Venturini.

• The CSA [Sad03, Sad02] is the variant using backward search (Section 2.9.2). It
achieves high-order compression and is robust for large alphabets. It was implemented
by Kunihiko Sadakane and then adapted by us to adhere the API of the Pizza&Chili
site. To construct the suffix array, it uses the qsufsort library by Jesper Larsson and
Kunihiko Sadakane [LS99].
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• The LZ-index [Nav04, ANS06, AN08] is a compressed index based on LZ78 compression
(Section 2.9.3), implemented by Diego Arroyuelo and Gonzalo Navarro. It achieves
high-order compression, yet with relatively large constants. It is slow for counting but
very competitive for locating and extracting.

These implementations support any byte-based alphabet of size up to 255 symbols: one
symbol is automatically reserved by the indexes as the terminator “$”.

3.3.2 Texts

We have chosen the texts forming the Pizza&Chili collection by following three basic
considerations. First, we wished to cover a representative set of application areas where
the problem of full-text indexing might be relevant, and for each of them we selected texts
freely available on the Web. Second, we aimed at having one file per text type in order to
avoid unreadable tables of many results. Third, we have chosen the size of the texts to be
large enough in order to make indexing relevant and compression apparent. These are the
current collections provided in the repository:

• dna (DNA sequences). This file contains bare DNA sequences without descriptions,
separated by newline, obtained from files available at the Gutenberg Project site
(http://www.gutenberg.org/): namely, from 01hgp10 to 21hgp10, plus 0xhgp10 and
0yhgp10. Each of the four DNA bases is coded as an uppercase letter A,G,C,T, and
there are a few occurrences of other special symbols.

• english (English texts). This file is the concatenation of English texts selected
from the collections etext02—etext05, obtained from the Gutenberg Project site
(http://www.gutenberg.org/). We deleted the headers related to the project so as
to leave just the real text.

• pitches (MIDI pitch values). This file is a sequence of pitch values (bytes whose values
are in the range 0-127, plus a few extra special values) obtained from a myriad of MIDI
files freely available on the Internet. The MIDI files were converted into the IRP format
by using the semex tool by Kjell Lemstrom [LP00]. This is a human-readable tuple
format, where the 5th column is the pitch value. The pitch values were coded in one
byte each and concatenated all together.

• proteins (protein sequences). This file contains bare protein sequences without
descriptions, separated by newline. It was downloaded from the Swissprot database
at ftp://ftp.ebi.ac.uk/pub/databases/swissprot/. Each of the 20 amino acids is
coded as an uppercase letter.
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Text Size (MB) Alphabet size Inv. match prob.

dna 200 16 3.86
english 200 225 15.12
pitches 50 133 40.07
proteins 200 25 16.90
sources 200 230 24.81
xml 200 96 28.65

Table 3.1: General statistics for our indexed texts.

• sources (source program code). This file is formed by C/Java source codes
obtained by concatenating all the .c, .h, .C and .java files of the linux-2.6.11.6
(http://ftp.kernel.org/) and gcc-4.0.0 (http://ftp.gnu.org/) distributions.

• xml (structured text). This file is in XML format and provides bibliographic information
on major computer science journals and proceedings. It was downloaded from the
DBLP archive at http://dblp.uni-trier.de/.

For the experiments we have limited the short file pitches to its initial 50 MB, whereas
all the other long files have been cut down to their initial 200 MB. We show now some statistics
on those files. These statistics and the tools used to compute them are also available at the
Pizza&Chili site.

Table 3.1 summarizes some general characteristics of the selected files. The last column,
inverse match probability, is the reciprocal of the probability of matching between two
randomly chosen text symbols. This may be considered as a measure of the effective alphabet
size — indeed, on a uniformly distributed text, it would be precisely the alphabet size.

Table 3.2 provides some information about the compressibility of the texts by reporting
the value of Hk for 0 ≤ k ≤ 4, measured as number of bits per input symbol. As a comparison
on the real compressibility of these texts, Table 3.3 shows the performance of three well-
known compressors (sources available in the site): gzip (Lempel-Ziv-based compressor), bzip2

(BWT-based compressor), and PPMDi (k-th order modeling compressor). Notice that, as k
grows, the value of Hk decreases but the size of the dictionary of length-k contexts grows
significantly, eventually approaching the size of the text to be compressed. It is interesting
to note in Table 3.3 that the compression ratios achievable by the tested compressors may
be superior to H4, because they use (explicitly or implicitly) longer contexts. For example,
typical ratios achieved by PPMDi are around H5 or H6.
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1st order 2nd order 3rd order 4th order
Text log σ H0 H1 # H2 # H3 # H4 #

dna 4.000 1.974 1.930 16 1.920 152 1.916 683 1.910 2, 222

english 7.814 4.525 3.620 225 2.948 10, 829 2.422 102, 666 2.063 589, 230

pitches 7.055 5.633 4.734 133 4.139 10, 946 3.457 345, 078 2.334 3, 845, 792

proteins 4.644 4.201 4.178 25 4.156 607 4.066 11, 607 3.826 224, 132

sources 7.845 5.465 4.077 230 3.102 9, 525 2.337 253, 831 1.852 1, 719, 387

xml 6.585 5.257 3.480 96 2.170 7, 049 1.434 141, 736 1.045 907, 678

Table 3.2: Ideal compressibility of our indexed texts. For every k-th order model, with
0 ≤ k ≤ 4, we report the number of distinct contexts of length k, and the empirical entropy
Hk, measured as number of bits per input symbol.

Text H4 gzip bzip2 PPMDi

dna 1.910 2.162 2.076 1.943
english 2.063 3.011 2.246 1.957
pitches 2.334 2.448 2.890 2.439
proteins 3.826 3.721 3.584 3.276
sources 1.852 1.790 1.493 1.016
xml 1.045 1.369 0.908 0.745

Table 3.3: Real compressibility of our indexed texts, as achieved by the best-known
compressors: gzip (option -9), bzip2 (option -9), and PPMDi (option -l 9).

3.4 Experimental Results

In this section we report the experimental results concerning a subset of the compressed
indexes available at the Pizza&Chili site. All the experiments were executed on a 2.6 GHz
Pentium 4, with 1.5 GB of main memory, and running Fedora Linux. The searching and
building algorithms for all compressed indexes were coded in C/C++ and compiled with gcc

or g++ version 4.0.2.

We restricted our experiments to the following indexes: Succinct Suffix Array (SSA,
version SSA v2 in Pizza&Chili), Alphabet-Friendly FM-index (AF-index, version AF-
index v2 in Pizza&Chili), Compressed Suffix Array (CSA in Pizza&Chili), and LZ-index
(LZ-index, version LZ-index-4 in Pizza&Chili), because they are the best representatives of
the three classes of compressed indexes we discussed in Section 2.9. This small number will
provide us with a succinct, yet significant, picture of the performance of all known compressed
indexes [NM07].

Further algorithmic engineering of the indexes in Pizza&Chili could possibly change
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Index count locate / extract

AF-index − sA = {4, 16, 32, 64, 128, 256}
CSA sΨ = {128} sA = {4, 16, 32, 64, 128, 256}; sΨ = {128}
LZ-index ǫ = {1

4
} ǫ = {1, 1

2
, 1

3
, 1

4
, 1

5
, 1

10
, 1

20
}

SSA − sA = {4, 16, 32, 64, 128, 256}

Table 3.4: Parameters used for the different indexes in our experiments. The cases of multiple
values correspond to space/time tradeoff curves.

the results shown below. However, we believe that the overall conclusions drawn from our
experiments should not change significantly, unless new algorithmic ideas are devised for
them. Indeed, the experimental results have two goals: to quantify the space and time
performance of compressed indexes over real datasets, and to motivate further algorithmic
research by highlighting the limitations of the present indexes and their implementations.
The latter point is discussed in Section 3.5.

3.4.1 Construction

Table 3.4 shows the parameters used to construct the indexes in our experiments. Table 3.5
shows construction time and space for one collection, namely english, as all the others
give roughly similar results. The bulk of the time of SSA and CSA is that of suffix array
construction (prior to its compression). The times differ because different suffix array
construction algorithms are used (see Section 3.3.1). The AF-index takes much more time
because it needs to run the compression boosting algorithm over the suffix array [FGMS05].
The LZ-index spends most of the time in parsing the text and creating the LZ78 and reverse
tries. In all cases construction times are practical, 1–4 sec/MB with our machine.

The memory usage might be problematic, as it is 5–9 times the text size. Albeit
the final index is small, one needs much memory to build it first2. This is a problem
of compressed indexes, which is attracting a lot of practical and theoretical research
[LSSY02, AN05, HSS03a, MN06a]. In Section 7.4 we obtain a new theoretical solution to
build FM-index and the suffix array in compressed space.

We remark that the indexes allow different space/time tradeoffs. The SSA and AF-index
have a sampling rate parameter sA that trades locating and extracting time for space. More
precisely, they need O(sA) accesses to the wavelet tree for locating, and O(sA + r − l + 1)
accesses to extract Tl,r, in exchange for n log n

sA
additional bits of space. We can remove those

structures if we are only interested in counting.

2In particular, this limited us to indexing up to 200 MB of text in our machine.
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Index Build Time (sec) Main Memory Usage (MB)

AF-index 772 1, 751
CSA 423 1, 801
LZ-index 198 1, 037
SSA 217 1, 251

Table 3.5: Time and peak of main memory usage required to build the various indexes over
the 200 MB file english. The indexes are built using the default value for the locate tradeoff
(that is, sA = 64 for AF-index and SSA; sA = 64 and sΨ = 128 for CSA; and ǫ = 1

4
for the

LZ-index).

The CSA has two space/time tradeoffs. A first one, sΨ, governs the access time to Ψ,
which is O(sΨ) in exchange for n log n

sΨ
bits of space required by the samples. The second,

sA, affects locating and extracting time just as above. For pure counting we can remove the
sampling related to sA, whereas for locating the best is to use the default value (given by
Sadakane) of sΨ = 128. The best choice for extracting is less clear, as it depends on the
length of the substring to extract.

Finally, the LZ-index has one parameter ǫ which trades counting/locating time per space
occupancy: The cost per candidate occurrence is multiplied by 1

ǫ
, and the additional space

is 2ǫnHk(T ) bits. No structure can be removed in the case of counting, but space can be
halved if the extract operation is the only one needed (just remove the reverse trie).

3.4.2 Counting

We searched for 50, 000 patterns of length m = 20, randomly chosen from the indexed texts.
The average counting time was then divided by m to display counting time per symbol. This
is appropriate because the counting time of the indexes is linear in m, and 20 is sufficiently
large to blur small constant overheads. The exception is the LZ-index, whose counting time
is superlinear in m, and not competitive at all for this task.

Table 3.6 shows the results on this test. The space of the SSA, AF-index, and CSA
does not include what is necessary for locating and extracting. We can see that, as expected,
the AF-index is always smaller than the SSA, yet they are rather close on dna and proteins

(where the zero-order entropy is not much larger than higher-order entropies). The space
usages of the AF-index and the CSA are similar and usually the best, albeit the CSA
predictably loses in counting time on smaller alphabets (dna, proteins), due to its O(m logn)
rather than O(m log σ) complexity. The CSA takes advantage of larger alphabets with good
high-order entropies (sources, xml), a combination where the AF-index, despite of its name,
profits less. Note that the space performance of the CSA on those texts confirms that its
space occupancy is related to the high-order entropy.
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SSA AF-index CSA LZ-index plain SA
Text Time Space Time Space Time Space Time Space Time Space

dna 0.956 0.29 1.914 0.28 5.220 0.46 43.896 0.93 0.542 5

english 2.147 0.60 2.694 0.42 4.758 0.44 68.774 1.27 0.512 5

pitches 2.195 0.74 2.921 0.66 3.423 0.63 55.314 1.95 0.363 5

proteins 1.905 0.56 3.082 0.56 6.477 0.67 47.030 1.81 0.479 5

sources 2.635 0.72 2.946 0.49 4.345 0.38 162.444 1.27 0.499 5

xml 2.764 0.69 2.256 0.34 4.321 0.29 306.711 0.71 0.605 5

Table 3.6: Experiments on the counting of pattern occurrences. Time is measured in
microseconds per pattern symbol. The space usage is expressed as a fraction of the original
text size. We put in boldface those results that lie within 10% of the best space/time tradeoffs
(excluding plain suffix array).

Text # patterns # occurrences

dna 10 2, 491, 410
english 100 2, 969, 876
pitches 200 2, 117, 347
proteins 3, 500 2, 259, 125
sources 50 2, 130, 626
xml 20 2, 831, 462

Table 3.7: Number of searched patterns of length 5 and total number of located occurrences.

With respect to time, the SSA is usually the fastest thanks to its simplicity. Sometimes
the AF-index gets close and it is actually faster on xml. The CSA is rarely competitive for
counting, and the LZ-index is well out of bounds for this experiment. Notice that the plain
suffix array (last column in Table 3.6) is 2–6 times faster than any compressed index, but its
space occupancy can be up to 18 times larger.

3.4.3 Locating

We locate sufficient random patterns of length 5 to obtain a total of 2–3 million occurrences
per text (see Table 3.7). This way we are able to evaluate the average cost of a single locate
operation, by making the impact of the counting cost negligible. Figure 3.9 reports the
time/space tradeoffs achieved by the different indexes for the locate operation.

We remark that the implemented indexes include the sampling mechanism for locate
and extract as a single module, and therefore the space for both operations is included in
these plots. Therefore, the space could be reduced if we only wished to locate. However,
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Figure 3.9: Space-time tradeoffs for locating occurrences of patterns of length 5.
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dna english pitches proteins sources xml

plain SA 0.005 0.005 0.006 0.007 0.007 0.006

Table 3.8: Locate time required by plain SA in microseconds per occurrence, with m = 5.
We recall that this implementation requires 5 bytes per indexed symbol.

as extracting snippets of pattern occurrences is an essential functionality of a self-index, we
consider that the space for efficient extraction should always be included.3

The comparison shows that usually CSA can achieve the best results with minimum
space, except on dna where the SSA performs better as expected (given its query time
complexity, see before), and on proteins for which all indexes perform the same. The CSA
is also the most attractive alternative if we fix that the space of the index should be equal to
that of the text (recall that it includes the text), being the exceptions dna and xml, where
the LZ-index is superior.

The LZ-index can be much faster than the others if one is willing to pay for some extra
space. The exceptions are pitches, where the CSA is superior, and proteins, where the
LZ-index performs poorly. This may be caused by the large number of patterns that were
searched to collect the 2–3 million occurrences (see Table 3.7), as the counting is expensive
on the LZ-index.

Table 3.8 shows the locating time required by an implementation of the classical suffix
array: it is between 100 and 1000 times faster than any compressed index, but always 5 times
larger than the indexed text. Unlike counting, where compressed indexes are comparable in
time with classical ones, locating is much slower on compressed indexes. This comes from
the fact that each locate operation (except on the LZ-index) requires to perform several
random memory accesses, depending on the sampling step. In contrast, all the occurrences
are contiguous in a classical suffix array. As a result, the compressed indexes are currently
very efficient in case of selective queries, but traditional indexes become more effective when
locating many occurrences. In Chapter 4 we present a compressed index that is much faster
for locating, and more comparable with plain suffix array performance.

3.4.4 Extracting

We extracted substrings of length 512 from random text positions, for a total of 5 MB of
extracted text. Figure 3.10 reports the time/space tradeoffs achieved by the tested indexes.
We still include both space to locate and extract, but we note that the sampling step affects
only the time to reach the text segment to extract from the closest sample, and afterwards

3Of course, we could have a sparser sampling for extraction, but we did not want to complicate the
evaluation more than necessary.
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the time is independent of the sampling. We chose length 512 to smooth out the effect of
this sampling.

The comparison shows that, for extraction purposes, the CSA is better for sources and
xml, whereas the SSA is better on dna and proteins. On english and pitches both are
rather similar, albeit the CSA is able to operate on reduced space. On the other hand, the
LZ-index is much faster than the others on xml, english and sources, if one is willing to
pay for some additional space.4

It is difficult to compare these times with those of a classical index, because the latter
has the text readily available. Nevertheless, we note that the times are not bad: using
the same space as the text (and some times up to half the space) for all the functionalities
implemented, the compressed indexes are able to extract around 1 MB/sec, from arbitrary
positions. This shows that self-indexes are appealing as compressed-storage schemes with
the support of random accesses for snippet extraction. To achieve better times one should
improve the access locality of text extraction. This is what we pursue in Chapter 5.

3.5 Discussion and Open Challenges

In this chapter we have addressed the novel technology of compressed text indexing from a
practical viewpoint. We have explained the main principles used by those indexes in practice,
and presented the Pizza&Chili site, where implementations and testbeds are readily available
for use. Finally, we have presented experiments that demonstrate the practical relevance of
this emerging technology. Table 3.9 summarizes our experimental results by showing the
most promising compressed index(es) depending on the text type and task.

count locate extract

dna SSA LZ-index / SSA SSA
english SSA / AF-index CSA / LZ-index CSA / LZ-index
pitches AF-index/ SSA CSA CSA
proteins SSA SSA SSA
sources CSA / AF-index CSA / LZ-index CSA / LZ-index
xml AF-index CSA / LZ-index CSA / LZ-index

Table 3.9: The most promising indexes given the size and time they obtain for each
operation/text.

For counting the best indexes are SSA and AF-index. This stems from the fact that they
achieve very good zero- or high-order compression of the indexed text, while their average

4Actually the LZ-index is not plotted for pitches and proteins because it needs more than 1.5 times
the text size.
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Figure 3.10: Space-time tradeoffs for extracting text symbols.
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counting complexity is O(m(H0(T ) + 1)). The SSA has the advantage of a simpler search
mechanism, but the AF-index is superior for texts with small high-order entropy (i.e. xml,
sources, english). The CSA usually loses because of its O(m log n) counting complexity.

For locating and extracting, which are LF-computation intensive, the AF-index is hardly
better than the simpler SSA because the benefit of a denser sampling does not compensate
for the presence of many wavelet trees. The SSA wins for small-alphabet data, like dna and
proteins. Conversely, for all other high-order compressible texts the CSA takes over the
other approaches. We also notice that the LZ-index is a very competitive choice when extra
space is allowed and the texts are highly compressible.

The ultimate moral is that there is not a clear winner for all text collections. Nonetheless,
our results provide an upper bound on what these compressed indexes can achieve in practice:

Count. We can compress the text within 30%–50% of its original size, and search for 20,000–
50,000 patterns of 20 chars each within a second.

Locate. We can compress the text within 40%–80% of its original size, and locate about
100,000 pattern occurrences per second.

Extract. We can compress the text within 40%–80% of its original size, and decompress its
symbols at a rate of about 1 MB/second.

The above figures are from one (count) to three (locate) orders of magnitudes slower
than what one can achieve with a plain suffix array, at the benefit of using up to 18 times less
space. This slowdown is due to the fact that search operations in compressed indexes access
the memory in a non-local way thus eliciting many cache/IO misses, with a consequent
degradation of the overall time performance. Nonetheless compressed indexes achieve a
(search/extract) throughput which is significant and may match the efficiency specifications
of most software tools which run on a commodity PC. We therefore hope that this site will
spread their use in any software that needs to process, store and mine text collections of any
size.

On the other hand, the experimental results clearly point out some challenges not
yet fulfilled. The following chapters are devoted to addressing these challenges. The most
important are (a more extensive description of them can be found in Section 1.1):

• Locating and extracting. A disadvantage of the compressed text indexes presented
until now, is their slowness (compared to the uncompressed ones) in locating patterns
and in extracting any part of the text This is a direct consequence of their non-
local access. In Chapters 4 and 5 we address the locating and extracting problem,
respectively.
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• Secondary memory. The memory access patterns of compressed text indexes
are highly non-local, which makes their potential secondary-memory versions rather
unpromising. In Chapter 6 we present a compressed text index on secondary memory,
as well as an algorithm to construct it on secondary memory.

• Dynamism and compressed construction. A compressed index may be useless if
we do not have enough main memory space to build it efficiently. In Chapter 7 we
present a novel structure supporting dynamic compressed sequences with rank and
select capabilities. This improves the current best solutions on dynamic compressed
text indexes and on compressed text index construction.
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Chapter 4

Locally Compressed Suffix Arrays

In this chapter we present a suffix array compression technique that builds on well-
known regularity properties that show up in suffix arrays when the text they index is
compressible (more precisely, we refer to the runs in the Ψ function of the suffix array,
or which is the same, the number of equal-letter runs in the Burrows-Wheeler transform
of the text, Section 2.9.2). This regularity has been exploited in several ways in the past
[Mäk03, GV06, GGV03, Sad03, MN05], but we present a completely novel technique to take
advantage of it. We represent the suffix array using differential encoding, which converts
the regularities into true repetitions. Those repetitions are then factored out using Re-Pair
[LM00], a compression technique that builds a dictionary of phrases and permits fast local
decompression using only the dictionary (whose size one can limit at will, at the expense
of losing some compression). We then introduce novel techniques to further compress the
Re-Pair dictionary, which can be of independent interest. We also use specific suffix array
properties to obtain a much faster compression method that loses just up to 1% of compression
ratio.

Our so-called locally compressed suffix array (LCSA) is shown to reduce the suffix array
to 20–70% of its original size, depending on the compressibility of various text types. This
reduced index can still extract any portion of the suffix array very fast by adding a small
set of sampled absolute values. By using the deep connection with function Ψ, we prove
that the size of the result is O(Hk log 1

Hk
n log n) bits1 for any k ≤ α logσ n and any constant

0 < α < 1. Note that this reduced suffix array is not yet a self-index as it cannot reproduce
the text.

This structure can be used in two ways. One way is to attach it to a self-index able
of counting, which in this process identifies as well the segment of the (virtual) suffix array
where the occurrences lie. We can then locate the occurrences by decompressing that segment

1This result is meaningful for Hk < 1. The general result is O(N log n

N
log n) bits, where N is the number

of runs in Ψ. According to [MN05], N ≤ nHk + σk for any k.
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using our structure. The result is a self-index that needs 1–3 times the text size (that is,
considerably larger than current self-indexes but also much smaller than classical indexes) and
whose counting and locating times are competitive with those of classical indexes, far better
for locating than current self-indexes. In theoretical terms, assuming for example the use of an
alphabet-friendly FM-index [FMMN07] for counting, our index needs O(Hk log 1

Hk
n log n+n)

bits of space, counts in time O(m(1 + log σ
log log n

)) and locates the occ occurrences of P in time

O(occ + log n). In practice, even letting classical self-indexes use the same amount of space
to speed up their locating time, they are much slower than our LCSA for reporting more
than a few occurrences (2–10).

A second and simpler way to use the structure is, together with the plain text, as a
replacement of the classical suffix array. In this case we must not only use it for locating the
occurrences but also for binary searching. The binary search is done over the samples first
and then we decompress the area between two consecutive samples to finish the search. This
yields a very practical alternative requiring 0.8–2.4 times the text size (as opposed to 4) plus
the text, in exchange for being just 2–28 times slower for locating.

Achieving compressed indexes able of counting in competitive time was the first
important breakthrough in this area. We believe this chapter is a first important step towards
compressed indexes with practical locating times. This is up to date the major concern for
adopting compressed indexes in practical applications (recall Section 3.5).

In Section 4.1 we describe our LCSA. In Section 4.2 we analyze its compression ratio,
relating it to the compressibility of the text. In Section 4.3 we show how to use the LCSA as
part of various indexing schemes. Finally, in Section 4.4 we carry out several experimental
tunings and comparisons with alternative compressed and classical indexes.

4.1 A Locally Compressed Suffix Array (LCSA)

Suffix arrays turn out to be compressible whenever T is. The k-th order empirical entropy of
T (Section 2.1), shows up in its suffix array A in the form of large segments A[i, i + ℓ] that
appear elsewhere in A[j, j+ℓ] with all the values shifted by one position, A[j+s] = A[i+s]+1
for 0 ≤ s ≤ ℓ. Actually, one can partition A into runs of maximal segments that appear
repeated (shifted by 1) elsewhere, and the number of such runs is at most nHk + σk for any
k [MN05, NM07].

This property has been used several times in the past to compress A. Mäkinen’s
Compact Suffix Array (CSA) [Mäk03] replaces runs with pointers to their definition (copy)
elsewhere in A, so that the run can be recovered by (recursively) expanding the definition and
shifting the values (see Section 2.9.2). Mäkinen and Navarro [MN05] use the connection with
FM-indexes (runs in A are related to equal-letter runs in the Burrows-Wheeler transform
of T , basic building block of FM-indexes) and run-length compression (see Section 3.2.1).
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Yet, the most successful technique to take advantage of those regularities has been the
definition of function Ψ(i) = A−1[A[i] + 1] (or A−1[1] if A[i] = n). It can be seen that
Ψ(i) = Ψ(i − 1) + 1 within runs of A, and therefore a differential encoding of Ψ is highly
compressible [GGV03, Sad03], recall Section 2.9.2.

4.1.1 Basic LCSA Idea

We present a completely different method to compress A. We first represent A in differential
form A′:

Definition 4.1. Let A[1, n] be an array of integers. Then we define A′[1, n] as follows:
A′[1] = A[1] and A′[i] = A[i]− A[i− 1] for all 1 < i ≤ n.

The next simple lemma shows that runs of A become true repetitions in A′.

Lemma 4.1. Consider a run of A of the form A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ ℓ. Then
A′[j + s] = A′[i + s] for 1 ≤ s ≤ ℓ.

Proof. A′[j+s] = A[j+s]−A[j+s−1] = (A[i+s]+1)−(A[i+s−1]+1) = A[i+s]−A[i+s−1] =
A′[i + s].

We can now exploit those repetitions using any classical compression method. In
particular, we seek a method that allows fast local decompression of A′. We resort to Re-Pair
[LM00], a dictionary-based compression method (Section 2.10).

Apart from R and C as described in Section 2.10, we need a few more structures to
recover arbitrary positions of A:

• An array S such that S[i] = A[i· l], that is, a sampling of absolute values of A at regular
intervals l.

• A bitmap L[1, n], marking the positions where each symbol of C (which could represent
several symbols of A′) starts in A′.

• o(n) further bits to answer rank queries on L in constant time (Section 2.4).

With these structures, the algorithm to retrieve A[i, j] is as follows:

1. Check if there is a multiple of l in [i, j], extending i to the left or j to the right to
include such a multiple if necessary.
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2. Use the mechanism to decompress one symbol in C (described in Section 2.10) to obtain
A′[i, j], by expanding C[rank(L, i), rank(L, j)]. We expand from right to left, so the
first symbol may be not fully expanded.

3. Use any absolute sample of A included in S[⌊i/l⌋, ⌊j/l⌋] to obtain, using the differences
in A′[i, j], the values A[i, j].

4. Return the values in the original requested interval [i, j].

The overall time complexity of this decompression is the output size plus what we have
expanded the interval to include a multiple of l (i.e., O(l)) and to ensure an integral number
of symbols in C. The latter can be controlled by limiting the length of the uncompressed
version of the symbols we create.

4.1.2 Compression using Ψ

A weak point of using Re-Pair is its compression speed and space usage. Re-Pair can be
implemented in O(n) time, but this needs too much space [LM00]. Instead of using the
original Re-Pair, we opt for a technique that needs less space and usually runs in O(n logn)
time. This technique is not too interesting (and we do not describe it) except as a control
value to test our more important contribution: We introduce a fast approximate technique
specialized to compressing suffix arrays A. We show that Ψ (which is easily built in O(n)
time from A) can be used to obtain a much faster compression algorithm, which in practice
compresses almost as much as the original Re-Pair.

Recall that Ψ(i) tells where in A is the value A[i] + 1. The idea is that, if A[i, i + ℓ]
is a run such that A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ ℓ (and thus A′[j + s] = A′[i + s] for
1 ≤ s ≤ ℓ), then Ψ(i + s) = j + s for 0 ≤ s ≤ ℓ. Thus, by following permutation Ψ we
have a good chance of finding repeated pairs in A′. The basic idea is to choose the pairs
while following permutation Ψ, cycling several times over A′, until no further replacements
can be done. This does not guarantee to choose the same pairs of the original Re-Pair, but
we expect them to be sufficiently good.

Data Structures. To compress using Ψ we need only two arrays and one bitmap.

• An array D[1, n], which initially stores the suffix array of text T in differential form,
D[i] = A′[i] ∀i. At the end, we compact the valid values of D to obtain C.

• An array P [1, n], which initially stores the values of function Ψ of text T , P [i] = Ψ(i) ∀i.
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• The bitmap L[1, n], where L[i] = 1 indicates that D[i] is a valid value. In the beginning
L[i] = 1 ∀i. At the end, L can be preprocessed for rank queries and is ready for
querying.

When we replace a pair with a new symbol, array D becomes sparse. A way to find
the next valid symbol in constant time is as follows: If a valid symbol D[i] is followed by
an invalid symbol D[i + 1] (that is, L[i, i + 1] = 10), then D[i + 1] can be used to store the
distance i′ − i to the next valid symbol D[i′] (we use i′ with this meaning, for any i, in the
next algorithm description). This permits obtaining any pair of the sparse D in constant
time.

In practice, it turns out to be faster to calculate i′ = selectNext(L, i), which returns
the position of the first 1 in L[i + 1, n], by scanning the bitmap word-wise. In Section 3.1.3
we study different approaches to solve selectNext.

Algorithm. We make a number of passes over D. Each pass starts at i = 1 (where value
A′[1] = A[1] = n will not be replaced by Re-Pair as it is unique). For each i visited along
the pass, we see if D[i]D[i′] = D[P [i]]D[P [i]′]. If this does not hold, we move on to i← P [i]
and iterate. If, instead, equality holds, we start a chain of replacements: We add a new pair
s → D[i]D[i′] to R, make the replacements at i and P [i] (invalidating i + 1 and P [i] + 1),
and move on to i← P [i], continuing the replacements until the pair changes. In this process,
when a position P [j] becomes invalid, we set P [j]← P [P [j]], so that the position is skipped
in the next pass. When the pair finally changes, that is, D[i]D[i′] 6= D[P [i]]D[P [i]′], we
restart the process with i ← P [i], looking again for a new pair to create. We keep running
passes over D (using P ) as long as we replace at least αn′ pairs in a pass, where 0 < α < 1
is a constant and n′ is the number of valid elements in D in the previous pass. Figure 4.1
shows a more detailed pseudocode.

Cost. Let ni be the number of elements in the i-th pass, then ni+1 ≤ (1 − α)ni. Since
n0 = n, it holds ni ≤ (1 − α)in. The i-th pass costs O(ni) time. Let k be the number of
passes doing more than αn′ replacements. So the total cost is at most

k∑

i=0

(1− α)in + (1− α)kn ≤ n
∑

i≥0

(1− α)i + (1− α)kn ≤
(

1 +
1

α

)

n = O(n).

Thus our algorithm achieves linear time while requiring only the space for D (overwritten
on A′ and finally leaving there C), for P (overwritten on Ψ), and for L (which is also needed
in the final structure). It is also simple and fast in practice.
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Algorithm Compress(D, P , α)
s← n, R← ∅
for i← 1 . . . n do L[i]← 1
n′ ← n, rep← 0
do n′ ← n′ − rep

rep← 0
j ← 1, j′ ← selectNext(L, j)
do

do i← j, i′ ← j′

while L[P [i]] = 0 do P [i]← P [P [i]]
j ← P [i], j′ ← selectNext(L, j)

while j 6= 1 and D[i]D[i′] 6= D[j]D[j′]
if j 6= 1 then

ab← D[i]D[i′], s← s + 1, R← R ∪ {s→ ab}
D[i]← s, L[i′]← 0, rep← rep + 1
do D[j]← s, L[j′]← 0, rep← rep + 1

i← j, i′ ← j′

while L[P [i]] = 0 do P [i]← P [P [i]]
j ← P [i], j′ ← selectNext(L, j)

while j 6= 1 and ab = D[j]D[j′]
while j 6= 1

while (rep > αn′)
j ← 1
for i← 1 . . . n do

if L[i] = 1 then D[j]← D[i], j ← j + 1
return (C[1, n′] = D, R, L)

Figure 4.1: Algorithm to compress D = A′ using P = Ψ in O(n) time.
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4.1.3 Stronger Compression based on Ψ

The only advantage of using the original Re-Pair is that it yields better compression and
enforces the property that each new rule in the dictionary removes no more pairs than
the previous rule. The latter comes from the fact that the pairs in Re-Pair are replaced
in decreasing order of frequency. This prevents less frequent pairs to break longer chains
of replacements. We now modify the algorithm that uses Ψ to obtain compression ratios
as close to Re-Pair’s as desired, at the expense of O(n log n) complexity (multiplied by a
constant that increases as the compression ratio improves). The key idea is to replace longer
chains first.

Algorithm. The algorithm is as follows:

• We make one pass searching for the longest chain of equal pairs obtained by following
Ψ, let f be its length.

• We apply the previous algorithm, yet we only replace the chains of length at least
t0 = δ · f , where 0 < δ < 1 is a constant.

• Again we apply the previous algorithm using t1 = δ · t0 then t2 = δ · t1 and so on, until
ti ≤ γ. At this point we decrement ti one by one until we reach ti = 1. Here γ is
another parameter.

Cost. We already know that the total cost of all passes that replace more than (1 − α)n′

elements adds up to O(n). The number of passes where we replace less than (1−α)n′ pairs,
on the other hand, is at most logδ f + γ. This is, logδ f for the part where t(·) decreases by a
δ fraction, plus γ for the part where t(·) decreases one by one. Thus the total cost is at most:

1

α
n + (logδ f + γ) n.

Now, if we choose a constant s, α = 1/(s· logn), and γ = log n, the total time is
O(n logn). Choosing other values of s, δ and γ we obtain better complexities, but worsen
the compression quality. Within O(n log n) complexity, we can improve the compression ratio
by tuning δ and s.

4.1.4 Compressing the Dictionary

We now develop a technique to reduce the dictionary of rules R without affecting C. This can
be of independent interest for Re-Pair in general. We note that the dictionary compression
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methods in the original Re-Pair article [LM00] achieve much more compression. The
advantage of our scheme is that we can decompress parts of the text without decompressing
the dictionary. This permits handling larger dictionaries in main memory.

A first observation is that, if we have a rule s→ ab and s is only mentioned in another
rule s′ → sc, then we could perfectly remove rule s→ ab and rewrite s′ → abc. This gives a
net gain of one integer, but now we have rules of varying length. This is easy to manage, but
we prefer to go further. We develop a technique that permits eliminating every rule definition
that is used within R, once or more, and gain one integer for each such rule eliminated. The
key idea is to write down explicitly the binary tree formed by expanding the definitions (by
doing a preorder traversal and writing 1 for internal nodes and 0 for leaves), so that not only
the largest symbol (tree root) can be referenced later, but also any subtree.

For example, assume the rules R = {s → ab, t→ sc, u→ ts}, and C = tub. We could
first represent the rules by the bitmap RB = 100100100 (where s corresponds to position
1, t to 4, and u to 7) and the sequence RS = ab1c41 (we are using letters for the original
symbols of A′, and bitmap positions as the identifiers of created symbols). We express C as
47b. To expand, say, 4, we go to position 4 in RB and compute rank0(RB, 4) = 2. Thus
the corresponding symbols in RS start at position 2 + 1 = 3. We extract one new symbol
from RS for each new zero we traverse in RB, and stop when the number of zeros traversed
exceeds the number of ones (this means we have completed the subtree traversal). This way
we obtain the definition 1c for symbol 4.

More generally, R can be seen as R = {s1 → a1b1, s2 → a2b2, . . . , sν → aνbν}, where
indeed sν = n + ν (as n = A′[1] = A[1] is the maximum value in A′). Thus, we write down
RB, RS and the new C as follows (note that positions in RB are written in RS shifted by n
to distinguish them from the original symbols):

• RB = (100)ν.

• RS = a1b1a2b2 . . . aνbν = r1r2r3 . . . r2ν , except that if ri > n we set it to ri = n + 1 +
3(ri − n− 1), so that they point to the 1’s in RB.

• C = c1c2 . . . cn′ undergoes the same transformation: if ci > n, we set it to ci = n + 1 +
3(ci − n− 1).

Let us now reduce the dictionary, in our example, by expanding the definition of s within
t (even if s is used elsewhere). The new bitmap is RB = 11000100 (where t = 1, s = 2, and
u = 6), the sequence is RS = abc12, and C = 16b. We can now remove the definition of t by
expanding it within u. This produces the new bitmap RB = 1110000 (where u = 1, t = 2,
s = 3), the sequence RS = abc3 and C = 21b. Further reduction is not possible because u’s
definition is only used from C.2 At the cost of storing at most 2|R| bits (for RB), we can
reduce R by one integer for each definition that is used at least once within R.

2It is tempting to replace u in C, as it appears only once, but our example is artificial: A symbol that is
not mentioned in R must appear at least twice in C.
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The reduction can be easily implemented in linear time, avoiding the successive
renamings of our example, as follows: We first check for each rule if it is used within R,
marking this in a bitmap U . Then we traverse R and only write down (the bits of RB and
the sequence RS for) the entries that are not used within R. We recursively expand those
entries, appending the resulting tree structure to RB and leaf identifiers to RS. Whenever we
find a created symbol that does not yet have an identifier, we give it as identifier the current
position in RB and recursively expand it. We store these new identifiers in an array NV .
Otherwise the expansion finishes and we write down a leaf (a "0") in RB and the identifier in
RS. Then we rewrite C using the renamed identifiers. Figure 4.2 shows detailed pseudocode.

Algorithm Compress Dictionary(R = {s1 → a1b1, . . . , sν → aνbν}, C = c1 . . . cn′)
for i← 1 . . . ν do U [i]← 0
for i← 1 . . . ν do

if ai > n then U [ai − n]← 1
if bi > n then U [bi − n]← 1

for i← 1 . . . ν do NV [i]← 0
j ← 1, RB ← 〈〉, RS ← 〈〉
LRB ← 0 // length in bits of bitmap RB

for j ← 1 . . . ν do
if U [j] = 0 then Expand Rule(j)

for i← 1 . . . n′ do
if ci > n then ci ← NV [ci − n] + n

return (RB, RS, C)

Algorithm Expand Rule(j)
RB ← RB : 1, LRB ← LRB + 1
NV [j]← LRB

if aj ≤ n then
RS ← RS : aj , RB ← RB : 0, LRB ← LRB + 1

else if NV [aj − n] > 0 then
RS ← RS : NV [aj − n] + n, RB ← RB : 0, LRB ← LRB + 1

else Expand Rule(aj − n)
if bj ≤ n then

RS ← RS : bj , RB ← RB : 0, LRB ← LRB + 1
else if NV [bj − n] > 0 then

RS ← RS : NV [bj − n] + n, RB ← RB : 0, LRB ← LRB + 1
else Expand Rule(bj − n)

Figure 4.2: Algorithm to compress the dictionary R and update C in O(n) time. RB, RS,
NV , and LRB act as global variables. “〈〉” is the empty sequence and “:” the concatenation
operator.

We can further compress the dictionary, if we take into account that a rule only uses
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previous rules or original symbols. That is, the i-th rule can only point to elements with
representation of length ⌈log2 i⌉ bits. With a simple arithmetic computation we can directly
access any rule.

Another way to further compress the dictionary, yet with a time penalty, is as follows:
Instead of using the position i of a rule inside bitmap RB, use j = rank1(RB, i). Given that
j, we find the position in RB where the rule starts with i = select1(RB, j). We gain at least
1 bit per rule in the dictionary and in the text.

4.2 Analysis of Compression Ratio

We analyze the compression ratio of our data structure, first for the exact and then for our
approximate method based on Ψ.

Let N be the number of runs in Ψ. As shown in [MN05, NM07], N ≤ min(1, Hk)n + σk

for any k ≥ 0.3 Except for the first cell of each run, we have that A′[i] = A′[Ψ(i)] within the
run. Thus, we cut off the first cell of each run, to obtain up to 2N runs in A′. Every pair
A′[i]A′[i+1] contained in such runs must be equal to A′[Ψ(i)]A′[Ψ(i)+1], thus the only pairs
of cells A′[i]A′[i + 1] that are not equal to the “next” pair are those where i is the last cell of
its run. This shows that there are at most 2N different pairs in A′, as a traversal following
Ψ permutation will change pairs only 2N times.

Exact Re-Pair. Since there are at most 2N different pairs, the most frequent pair appears
at least n

2N
times. Because of overlaps, it could be that only each other occurrence can

be replaced, thus the total number of replacements in the first iteration is at least βn, for
β = 1

4N
.

After we choose and replace the most frequent pair, we end up with at most n(1 − β)
integers in A′. The number of runs has not varied, because a replacement cannot split a run.
Thus, the same argument shows that the second time we end up with at most n(1 − β)2

symbols, and so on.

After M iterations, the length of C is at most n(1 − β)M and the length of R is 2M .

The total size is optimized for M∗ =
lnn+ln ln 1

1−β
−ln 2

ln 1
1−β

, where it is
2(ln n+ln ln 1

1−β
−ln 2+1)

ln 1
1−β

. (Re-

Pair shortens the total file size in each new iteration, so the final result cannot be worse
than that after M∗ iterations.) Since ln 1

1−β
= ln 4N

4N−1
= 1

4N
(1 + O( 1

N
)), the total size is

8N ln n
4N

+ O(N) integers. Since N ≤ Hkn + σk, if we stick to k ≤ α logσ n for any constant
0 < α < 1, it holds σk = O(nα) and the total space is O(Hk log 1

Hk
n log n) + o(n) bits, as

even after the M∗ replacements the numbers need Θ(log n) bits.

3For simplicity, we will use just Hk along the chapter, whereas it should actually be min(1, Hk).
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Theorem 4.1. After running exact Re-Pair, our structure represents A′ using R and C in
O(N log n

N
) integers, where N is the number of runs in Ψ. This is O(Hk log 1

Hk
n log n)+o(n)

bits, for any k ≤ α logσ n and any constant 0 < α < 1.

As a comparison, Mäkinen’s Compact Suffix Array [Mäk03] needs O(Hkn log n) bits of
space [NM07], which is always better as a function of Hk. Yet, both tend to the same space
as Hk goes to zero. Other self-indexes are usually smaller.

Approximate Re-Pair. We now show that the simplified replacement methods of
Sections 4.1.2 and 4.1.3 reach the same asymptotic space complexity.

Just as for the exact method, the traversal using Ψ will create up to 2N pairs per pass.
Assume for simplicity that, as we find each new pair in the traversal using Ψ, we always
replace the pair, even if this involves creating it in R for just one occurrence in C (this is
never better than the real algorithm). Thus we try to make all the |A′| replacements, but
we may fail because replacements overlap. That is, assume we have abcd and first replace
s→ bc. In the new sequence asd we cannot make a replacement s′ → ab nor s′ → cd. Indeed,
in the best case we can carry out ⌊|A′|/2⌋ replacements, whereas in the worst case this is
only ⌊|A′|/3⌋ (when we first choose all multiples of 3 as initial pair positions).

This shows that, in the first pass over Ψ, we add up to 4N integers to R and remove at
least n/3 integers from A′. For the next pass, the key point is that the number of runs is still
limited by 2N : If we had that A′[i] = A′[Ψ(i)], the fact stays valid after we replace both A′[i]
and A′[Ψ(i)] by a new symbol (cells A′[i + 1] and A′[Ψ(i) + 1] are invalid for the next pass).
Therefore we can analyze the process using recurrence S(n) = 4N + S(2n/3). If we repeat
the process i times and then call C the remaining cells of A′, we get S(n) = 4Ni + (2/3)in,
which is optimized for i∗ = log3/2(n/4N) − 1 iterations, where we get S(n) = O(N log n

N
)

integers. Even after adding O(Ni∗) new symbols these integers need Θ(log n) bits.

Stronger approximate Re-Pair. This analysis is similar to that of exact Re-Pair. The
relevant invariant, which is easy to check from the description of Section 4.1.3, is as follows:
The approximate algorithm always replaces a pair that appears at least δ · f times, being
f the frequency of the currently most frequent pair. In this sense, the algorithm acts as a
δ-approximation.

In exact Re-Pair, we first replace the most frequent pair, which appears at least n
2N

times. In this case, we first replace a pair that appears at least δn
2N

times. This gives us a
total number of replacements in the first iteration of at least β ′n, where β ′ = δβ = δ

4N
. The

same occurs at each stage of the algorithm. Applying the same arguments of the analysis
of exact Re-Pair with this new β ′, and the fact that 0 < δ < 1 is a constant, we obtain the
same result as in Theorem 4.1.
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Theorem 4.2. The process of replacing pairs following permutation Ψ, in either of its
variants, achieves a data structure that fits in O(N log n

N
) integers, where N is the number

of runs in Ψ. This is O(Hk log 1
Hk

n log n)+ o(n) bits, for any k ≤ α logσ n and any constant
0 < α < 1.

4.3 Towards a Text Index

As explained at the beginning of the chapter, the LCSA is not by itself a text index. We
explore now some alternatives to upgrade it to a full-text index.

4.3.1 A Smaller Classical Index

A simple and practical alternative is to use our LCSA just like the classical suffix array, that
is, not only for locating but also for searching, keeping the text in uncompressed form as
well. This is not really a compressed index, but a practical alternative to a classical index.

The binary search of the interval that corresponds to P will start over the absolute
samples of our LCSA. Only when we have identified the interval between consecutive samples
of A where the binary search must continue, we decompress the whole interval and finish the
binary search. If the two binary searches finish in different intervals, we will also need to
decompress the intervals in between for locating all the occurrences. For displaying, the text
is at hand.

The cost of this search is O(m log n) plus the time needed to decompress the portion
of A between two absolute samples. We can easily force the compressor to make sure
that no symbol in C spans the limit between two such intervals, so that the complexity
of this decompression can be controlled with the sampling rate l. For example, l = O(logn)
guarantees a total search time of O(m logn+occ), just as the suffix array version that requires
4 times the text size (plus text).

Theorem 4.3. There exists a full-text index for text T of length n over an alphabet of size
σ and k-th order entropy Hk, which requires O(Hk log 1

Hk
n log n+n log1−ǫ n) bits of space in

addition to T , for any constant 0 ≤ ǫ ≤ 1, any k ≤ α logσ n and any constant 0 < α < 1.
It can count the occurrences of a pattern of length m in time O(m logn) and locate its occ
occurrences in time O(occ + logǫ n).

The theorem is obtained by considering that C and R use O(Hk log 1
Hk

n log n) bits, to

which we must add O((n/l) logn) bits for the absolute samples in A′, and the extra cost to
limit the formation of symbols that represent very long sequences. If we limit such symbol
lengths to l as well, we have an overhead of O((n/l) logn) bits, as this can be regarded as
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inserting spurious symbols every l positions in A′ to prevent the formation of longer symbols.
By choosing l = logǫ n we have O(Hk log 1

Hk
n log n + n log1−ǫ n) bits of space. The time is

O(m logn + logǫ n) for counting, and O(occ + logǫ n) for locating the occurrences.

4.3.2 A Compressed Self-Index

Another choice to achieve a full-text index is to plug our LCSA to any of the many self-
indexes able of giving the suffix array range of the occurrences of P within little space
[FM05, FMMN07, Sad03, GGV03]. Given the area [sp, ep] where the occurrences lie in A,
locating the occurrences boils down to decompressing A[sp, ep] from our LCSA structure.

To fix ideas, consider the alphabet-friendly FM-index [FMMN07]. It takes nHk +
o(n log σ) bits of space for any k ≤ α logσ n and constant 0 < α < 1, and can count in
time O(m(1 + log σ

log log n
)). Our additional structure dominates the space complexity, requiring

O(Hk log 1
Hk

n log n + n log1−ǫ n) bits.

Extracting substrings can be done with the same FM-index, but the time to display ℓ
text characters is, using n log1−ǫ n additional bits of space, O((ℓ + logǫ n)(1 + log σ

log log n
)). By

using instead the structure proposed in Chapter 5, we have other nHk + o(n log σ) bits of
space for k = o(logσ n) (this space is asymptotically negligible) and can extract the characters
in optimal time O(1 + ℓ

logσ n
).

Theorem 4.4. There exists a self-index for text T of length n over an alphabet of size σ
and k-th order entropy Hk, which requires O(Hk log 1

Hk
n log n + n log1−ǫ n) + o(n log σ) bits

of space, for any 0 ≤ ǫ ≤ 1. It can count the occurrences of a pattern of length m in time
O(m(1 + log σ

log log n
)) and locate its occ occurrences in time O(occ + logǫ n). For k = o(logσ n) it

can display any text substring of length ℓ in time O(1 + ℓ
logσ n

). For larger k ≤ α logσ n, for

any constant 0 < α < 1, this time becomes O((ℓ + logǫ n)(1 + log σ
log log n

)).

4.4 Experimental Results

We present three series of experiments in this section. The first one regards compression
performance, the second the use of our technique as a classical index using reduced space,
and the third the use as a plug-in for boosting the locating performance of a compressed
self-index.

We use text collections obtained from the Pizza&Chili site. We use all the text types
available, with sizes of 50MB and 100MB for our experiments. The experiments were run on
a Pentium IV, 2.0 GHz with 2GB RAM using Linux with kernel 2.4.31 and GNU g++ with
-O3 optimization.
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Compression performance. In Section 4.1.2 we mentioned that the compression time
of exact Re-Pair would be an issue, and gave two approximate methods based on Ψ which
should be faster.

In this section we call RP our implementation of the exact Re-Pair compression
algorithm4, RPΨ0 the Ψ-based approximation that runs in O(n) time (Section 4.1.2), and
RPΨ the Ψ-based approximation that runs in O(n log n) time (Section 4.1.3). We also include
the methods RPSP, RPΨ0SP, and RPΨSP. These forbid a rule to cross a 256-cell boundary.
In all cases, we take absolute A′ samples each 64 positions.

In practice, RPΨ0 and RPΨ0SP are very fast in comparison with the rest of the methods,
yet compress less. Considering this, we could relax the stopping condition with the aim of
better balancing these factors. In Figure 4.3 we show space reduction achieved from ine
pass to the next, using RPΨ0SP. For example, in the case of xml (the one needing the most
passes), we remove 45% of the file in the first pass, and 40% of that in the second, but after
8 passes the compression gain is less than 0.01%. Considering this, we force at least 8 passes
after reaching less than αn′ replacements per pass. We use α = 1/4, which gives good results.
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Figure 4.3: Compression achieved per pass using RPΨ0SP. We use files of size 100MB.

To tune the parameters of the approximate variant RPΨSP, we test different values on
two small files (english and xml, truncated to 50MB). We show, among several we carried
out, the following experiments, as they best reflect the choice of parameters. Table 4.1 shows
that the compression gain for increasing s loses importance for s > 8. Table 4.2, on the other
hand, shows that increasing δ does not give any gain on english, yet it slightly improves
compression ratio on xml. A fair choice of parameters for RPΨSP, which we use for the rest
of the experiments, is s = 8, δ = 3/4 and γ = log n.

Table 4.3 shows that the compression ratio varies widely. On xml data we achieve
23.5% compression (the reduced suffix array is smaller than the text!), whereas compression

4Those we could find freely available did not work properly.
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s Compr. ratio Compr. ratio Compr. time Compr. time
xml english (sec) xml (sec) english

1 26.03% 55.47% 766 1,374
2 25.95% 55.35% 905 1,475
4 25.91% 55.32% 1,080 1,621
8 25.89% 55.30% 1,241 1,837

16 25.88% 55.29% 1,344 2,028
32 25.87% 55.28% 1,519 2,425
64 25.87% 55.28% 1,645 2,801

128 25.87% 55.28% 1,717 3,213

Table 4.1: Compression ratio obtained using different values of s for the approximation
RPΨSP. In this case we use δ = 1/2. The percentage is computed by comparing with the 4n
bytes required by a standard suffix array implementation.

δ Compr. ratio Compr. ratio Compr. time Compr. time
xml english (sec) xml (sec) english

1/2 25.89% 55.30% 1,241 1,837
3/4 25.81% 55.29% 1,573 2,159
7/8 25.74% 55.29% 2,091 2,786

15/16 25.68% 55.29% 2,835 4,184
31/32 25.60% 55.29% 4,185 7,150

Table 4.2: Compression obtained using different values of δ using approximation RPΨSP. In
this case we use s = 8.

is extremely poor on dna. In many text types of interest we slash the suffix array to around
half of its size. Below the name of each collection we wrote the percentage H3/H0, which gives
an idea of the compressibility of the collection independent of its alphabet size (e.g. it is very
easy to compress dna to 25% because there are mainly 4 symbols but one chooses to spend
a byte for each symbol in the uncompressed text, otherwise dna is almost incompressible).
The measure turns out to be an excellent predictor of the compression, except for proteins
where we are closer to H5/H0.

We exclude dna to state the following numbers, because of its poor compression
ratio. The approximation RPΨ0 runs up to 180 times faster and just loses 3.3%–17.8%
in compression ratio compared to RP. The approximation RPΨ runs up to 25 times faster
and just loses up to 3.5% in compression ratio. RP runs at 25 to 1000 sec/MB, RPΨ0 runs at
5 to 10 sec/MB and RPΨ runs at 31 to 56 sec/MB. Suffix array construction is the same in
all the methods and takes around 100 seconds overall in all cases. Thus, most of the indexing
time shown in Table 4.3 is spent by the compression methods.

Other statistics are also available in Table 4.3. In column 6 we measure the average
length of a cell of C if we choose uniformly in A (longer cells are in addition more likely to
be chosen for decompression). Those numbers explain the times obtained for the next series
of experiments. Note that they are related to compressibility, but not as much as one could
expect. Rather, the numbers obey to a more detailed structure of the suffix array: they are
higher when the compression is not uniform across the array. In every case, we can limit the

69



Chapter 4 Locally Compressed Suffix Arrays 4.4 Experimental Results

Coll. size Method Index size Compr. Compr. Expected Dict. Compr. 2%
(MB),H3/H0 (MB) ratio time (s) decompr. compr. in RAM
xml,100, RP 93.56 23.39% 29,800 6,936.54 57.22% 34.08%
26.28% RPSP 99.52 24.88% 25,472 134.91 58.29% 35.84%

RPΨ0 103.06 25.76% 625 7,570.49 57.46% 91.42%
RPΨ0SP 116.13 29.03% 651 83.79 58.68% 91.59%
RPΨ 94.26 23.56% 3,547 6,948.85 57.18% 36.15%
RPΨSP 102.90 25.73% 3,598 95.83 58.23% 40.63%

dna,100, RP 336.53 84.13% 8,511 5.01 79.49% 92.45%
97.02% RPSP 337.11 84.28% 8,402 4.25 79.72% 92.56%

RPΨ0 342.52 85.63% 931 4.73 78.20% 99.17%
RPΨ0SP 343.11 85.78% 899 4.04 78.44% 99.18%
RPΨ 336.37 84.09% 4,279 5.03 79.19% 93.19%
RPΨSP 336.96 84.24% 4,260 4.28 79.41% 93.30%

english,100, RP 227.59 56.90% 87,285 238.31 59.27% 88.15%
53.05% RPSP 230.04 57.51% 86,273 30.37 59.71% 88.33%

RPΨ0 249.03 62.26% 974 202.79 59.70% 98.56%
RPΨ0SP 252.08 63.02% 944 26.83 60.19% 98.56%
RPΨ 227.74 56.94% 4,621 215.12 59.17% 88.92%
RPΨSP 230.26 57.56% 4,600 29.99 59.60% 89.12%

pitches,50, RP 116.58 58.29% 11,454 33.96 69.51% 67.41%
61.37% RPSP 117.61 58.81% 11,067 17.00 70.08% 67.78%

RPΨ0 126.56 63.28% 279 26.38 66.86% 97.32%
RPΨ0SP 127.83 63.91% 535 14.21 67.23% 97.34%
RPΨ 117.98 58.99% 1,618 28.89 68.67% 70.17%
RPΨSP 119.18 59.59% 1,807 15.66 69.00% 71.03%

proteins,100, RP 284.61 71.15% 2,642 58.98 79.72% 75.63%
97.21% RPSP 285.94 71.48% 2,732 13.87 80.09% 76.00%

RPΨ0 294.08 73.52% 1,045 52.52 75.16% 92.13%
RPΨ0SP 296.24 74.06% 1,032 10.79 75.03% 92.30%
RPΨ 285.94 71.49% 5,719 58.46 78.98% 76.77%
RPΨSP 287.73 71.93% 5,764 11.92 78.80% 77.31%

sources,100, RP 154.88 38.72% 107,371 2,041.88 57.63% 65.16%
40.74% RPSP 159.34 39.83% 103,292 60.48 58.33% 65.85%

RPΨ0 181.38 45.34% 684 1,778.79 58.09% 96.67%
RPΨ0SP 187.52 46.88% 677 50.97 58.80% 96.70%
RPΨ 156.18 39.04% 4,380 1,928.86 57.48% 68.00%
RPΨSP 161.21 40.30% 4,778 56.89 58.13% 69.15%

Table 4.3: Index size and build time using Re-Pair and its Ψ-based approximations. We also
include versions with rules up to length 256 (SP extension). Compression ratio compares
with the 4n bytes needed by a plain suffix array representation.
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maximum length of a C cell. The SP variants show how this impacts compression ratio and
decompression speed. We can see that their compression ratio is almost the same, worsening
at most by 6.37% (RP), 12.68% (RPΨ0), or 9.17% (RPΨ) on dna (and much less on others).

In column 7 we show the compression ratio achieved on the dictionary part using the
technique of Section 4.1.4, charging it the bitmap introduced as well. It can be seen that
the technique is rather effective, approaching in some cases the limit of 50% to its possible
effectiveness. (We remark that the compression ratios of previous columns do account for
the dictionary space and all the necessary structures to operate.)

The last column shows how much compression we would achieve if the structures that
must reside on RAM were limited to 2% of the original suffix array size. We still obtain
attractive compression performance on texts like xml, sources and pitches (recall that
on secondary memory the compression ratio translates almost directly to decompression
performance). As expected, RPΨ0 does a much poorer job here, as it does not choose the
best pairs early, but RPΨ achieves almost the same performance as RP.

A classical reduced index. We test RPΨSP (from now on LCSA) as a replacement of
the suffix array, that is, adding it the text and using it for binary searching, as explained in
Section 4.3.1. We compare it with a plain suffix array (SA) and Mäkinen’s Compact Suffix
Array (Mak-CSA [Mäk03]), as the latter operates similarly, recall Section 2.9.2.

Figure 4.4 shows the result. Mak-CSA offers space-time tradeoffs, whereas those of our
index (sample rate for absolute values) did not significantly affect the time. Our structure
stands out as a relevant space/time tradeoff, especially when locating many occurrences (i.e.,
on short patterns). In particular, LCSA is usually noticeably faster than Mak-CSA for the
same space, yet the latter is able of using less space (at least on english). Compared to a
plain suffix array, LCSA requires 0.9–2.4 times the text size (as opposed to 4) plus the text,
at the price of being 2–28 times slower for locating. Compared to current state of the art in
compressed indexing (Section 3.4.3), this slowdown is rather modest.

A plugin for self-indexes. Section 4.3.2 considers using our reduced suffix array as a
plugin to provide fast locate on existing self-indexes. In this experiment we plug our structure
to the counting structures of the alphabet-friendly FM-index (AF-index [FMMN07]), and
compare the result against the original AF-index, Sadakane’s CSA [Sad03] and the SSA
[FMMN07, MN05], all from Pizza&Chili. We increased the sampling rate of the locating
structures of AF-index, CSA and SSA, to match the size of our LCSA. Figure 4.5 and
Table 4.4 show the results. We only show four texts, as the others yield similar conclusions.

The experiment in Figure 4.5 consists in choosing random ranges of the suffix array
and obtaining the values in them . This simulates a locating query where we can control
the amount of occurrences to locate. Our reduced suffix array has a constant time overhead
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Figure 4.4: Simulating a classical suffix array to binary search and locate the occurrences.
Each file is of size 100MB.
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Text Suffix Array LCSA LZ-index

xml Index size 5.0000 1.8504 0.9529
100 MB Time for m=5 0.0137 0.0922 0.6647

Time for m=15 0.0143 0.0926 0.6911
Time for m=50 0.0664 0.6681 9.7823

english Index size 5.0000 3.0368 1.7395
100 MB Time for m=5 0.0145 0.1213 1.1075

Time for m=15 0.0807 0.3433 5.7775
Time for m=50 0.9226 9.3267 250.5900

proteins Index size 5.0000 3.5630 2.4889
100 MB Time for m=5 0.0750 0.2054 10.7664

Time for m=15 0.2312 0.8743 11.1488
Time for m=50 0.4584 4.2309 75.6887

sources Index size 5.0000 2.4736 1.7328
100 MB Time for m=5 0.0144 0.1242 0.6684

Time for m=15 0.0158 0.1189 0.7371
Time for m=50 0.0589 0.6311 10.0147

Table 4.4: Locate time required by the classical suffix array, the LCSA and the LZ-index, in
seconds per 106 occurrences, with different texts and pattern lengths.

(which is related to column 6 in Table 4.3 and to the sample rate of absolute values) and from
then on the cost per located cell is very low. As a consequence, it crosses sooner or later all
the other indexes. For example, it becomes the fastest on xml after locating 2 occurrences,
and after 8 occurrences it becomes the fastest on proteins. Particularly on xml, this success
owes to the fact that our LCSA uses the RPΨSP variant (cutting phrases at length 256 as
explained). If instead we used RPΨ to gain a little further compression, the result would be
very inefficient due to the long phrases that need to be decompressed. In the case of xml,
RPΨ becomes the fastest only after locating 3,800 occurrences, not 2. In other texts where
compression is not so good, there is not much difference between RPΨ and RPΨSP (both in
time and space).

Table 4.4 shows the locate time required by a classical suffix array, our LCSA plugged
to the SSA, and the LZ-index. The times are in seconds per 106 occurrences for different
texts and pattern lengths. In our LCSA, we forbid a rule to cross a 256-cell boundary and
take absolute A′ samples each 64 positions. For the SSA we store no samples for locate, but
we sample each 1024 positions for extract. We use the fastest LZ-index for our experiments
(LZ-Index in Pizza&Chili site). We show the values for the suffix array as a reference. Our
index is 1.4–2 times larger than the LZ-index, but for short patterns (m = 5) we are 5–50
times faster and for long patterns (m = 50, where the time for counting is more important)
we are 14–27 times faster.
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Chapter 5

Statistical Encoding of Sequences

Several succinct data structures are built over a sequence of symbols S[1, n] = s1s2 . . . sn,
from an alphabet Σ of size σ, and require only o(|S|) = o(n log σ) additional bits in addition
to S itself (S requires n log σ bits). A more ambitious goal is a compressed data structure,
which takes overall space proportional to the compressed size of S and is still able to recover
any substring of S and manipulate the data structure.

A recent result by Sadakane and Grossi [SG06b] gives a tool to convert any succinct
data structure on sequences into a compressed data structure. More precisely, they show that
S can be encoded using nHk(S)+O( n

logσ n
(k log σ +log log n)) bits of space1. Their structure

permits retrieving any substring of S of Θ(logσ n) symbols in constant time. Under the RAM
model of computation this is equivalent to having S in explicit form.

In particular, for sufficiently small k = o(logσ n), the space is Hk(S) + o(n log σ). Any
succinct data structure that requires o(n log σ) bits in addition to S can thus be replaced
by a compressed data structure requiring nHk(S) + o(n log σ) bits overall, where any access
to S is replaced by an access to the novel structure. Their scheme is based on Ziv-Lempel
encoding.

In this chapter we show how the same result can be achieved by much simpler means.
We present an alternative scheme based on semi-static k-th order modeling plus statistical
encoding, just as a normal semi-static statistical compressor would process S (Sections 2.1
and 2.2). By adding some extra structures, we are able of retrieving any substring of S
of Θ(logσ n) symbols in constant time. Although any statistical encoder works, we obtain
the best results (matching exactly those of [SG06b]) using Arithmetic encoding [BCW90].
Furthermore, we show that we can append symbols to S without changing the asymptotic

1The term k log σ appears as k in [SG06b], but this is a mistake [SG06a]. The reason is that they take
from [KM99] an extra space of the form Θ(kt + t) as stated in Lemma 2.3, whereas the proof in Theorem
A.4 gives a term of the form kt log σ + Θ(t).
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Chapter 5 Statistical Encoding 5.1 A New Entropy-Bounded Data Structure

space complexity, in constant amortized time per symbol. We call our scheme EBDS (entropy-
bounded data structure).

In addition, we study the applicability of this technique to full-text self-indexes.
Compressed self-indexes replace a text T [1, n] by a structure requiring O(nH0(T )) or
O(nHk(T )) bits of space. In order to provide efficient pattern matching over T , many of
those structures [FM05, MN05, FMMN07] achieve space proportional to nHk(T ) by first
applying the Burrows-Wheeler Transform [BW94] over T , S[1, n] = T bwt (Section 2.8), and
then struggling to represent S in efficient form, recall Section 2.9.1. An additional structure
of o(|S|) bits gives the necessary functionality to implement the search. One could thus apply
the new structure over S, so that the overall structure requires nHk(S) + o(|S|) bits. Yet,
the relation between Hk(S) and Hk(T ) remains unknown. In this chapter we move a step
forward by proving a positive result: H1(S) ≤ Hk(T ) log σ + o(1) for small k = o(logσ n).
Thus we can, for example, achieve essentially the same result of the Run-Length FM-Index
[MN05] (Section 3.2.1) just by using the new structure on S, without the involved techniques
they use.

Several indexes, however, compress S = T bwt by means of a wavelet tree [GGV03] on
S, wt(S). This is a balanced tree storing several binary sequences (Section 2.4). Each such
sequence B can be represented using |B|H0(B) bits of space. If we call nH0(wt(S)) the overall
resulting space, it turns out that nH0(wt(S)) = nH0(S). A natural idea advocated in [SG06b]
is to use a k-th order representation for the binary sequences B, yielding space nHk(wt(S)).
Thus the question about the relationship between Hk(wt(S)) and Hk(S) is raised. In this
section we exhibit examples where either is larger than the other. In particular, we show
that when moving from wt(S) to S, the k-th order entropy may grow at least by a factor of
Θ(log k).

5.1 A New Entropy-Bounded Data Structure

Given a sequence S[1, n] over an alphabet Σ = {a1, . . . , aσ} of size σ, we encode S into a
compressed data structure S ′ within entropy bounds. To perform all the original operations
over S under the RAM model, it is enough to allow extracting any aligned block of b = 1

2
logσ n

consecutive symbols of S, using S ′, in constant time.

5.1.1 Data Structures for Substring Decoding

We describe our data structure to represent S in essentially nHk(S) bits, and to permit the
access of any aligned substring of size b = ⌊1

2
logσ n⌋ in constant time. This structure is built

using any statistical encoder E as described in Section 2.2.
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Structure. We divide S into blocks of length b = ⌊1
2
logσ n⌋ symbols. Each block will be

represented using at most b′ = ⌊1
2
log n⌋ bits (and hopefully less). We define the following

sequences indexed by block number i = 0, . . . , ⌊n/b⌋:

• Si = S[bi + 1, b(i + 1)] is the sequence of symbols forming the i-th block of S.

• Ci = S[bi − k + 1, bi] is the sequence of symbols forming the k-th order context of the
i-th block (a dummy value is used for C0).

• Ei = E(Si) is the encoded sequence for the i-th block of S, initializing the k-th order
modeler with context Ci.

• ℓi = |Ei| is the size in bits of Ei.

• Ẽi =

{
Si if ℓi > b′

Ei otherwise
, is the shortest sequence among Ei and Si.

• ℓ̃i = |Ẽi| = min(b′, ℓi) is the size in bits of Ẽi.

The idea behind Ẽi is to ensure that no encoded block is longer than b′ bits (which
could happen if a block contains many infrequent symbols). These special blocks are encoded
explicitly.

Our compressed representation EBDS of S stores the following information:

• W [0, ⌊n/b⌋]: A bit array such that

W [i] =

{
0 if ℓi > b′

1 otherwise
,

with the additional o(n/b) bits to answer rank queries over W in constant time [Mun96].

• C[1, rank(W, ⌊n/b⌋)]: C[rank(W, i)] = Ci, that is, the k-th order context for the i-th
block of S if ℓi ≤ b′, with 1 ≤ i ≤ ⌊n/b⌋.

• U = Ẽ0Ẽ1 . . . Ẽ⌊n/b⌋: A bit sequence obtained by concatenating all the variable-length

Ẽi.

• T : Σk × 2b
′

−→ 2b: A table defined as T [α, β] = γ, where α is any context of size k, β
represents any encoded block of at most b′ bits, and γ represents the decoded form of
β, truncated to the first b symbols (as less than the b′ bits will be usually necessary to
obtain the b symbols of the block).

• Information to answer where each Ẽi starts within U . We group together every c =
⌈log n⌉ consecutive blocks to form superblocks of size Θ(log2 n) and store two tables:
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– Rg[0, ⌊n/(bc)⌋] contains the absolute position of each superblock.

– Rl[0, ⌊n/b⌋] contains the relative position of each block with respect to the
beginning of its superblock.

5.1.2 Substring Decoding Algorithm

We want to retrieve Sj = S[j · b, (j +1) · b− 1] in constant time. To achieve this, we take the
following steps:

1. We calculate h = j div c, h′ = (j + 1) div c and u = U [Rg[h] + Rl[j] . . . Rg[h
′] + Rl[j +

1]− 1], then

• if W [j] = 0 then we have Sj = u.

• if W [j] = 1 then we have Sj = T [C[rank(W, j)], u′], where u′ is u padded with
b′ − |u| dummy bits.

We note that |u| ≤ b′ and thus it can be manipulated in constant time.

Lemma 5.1. For a given sequence S[1, n] over an alphabet Σ of size σ, we can access any
aligned substring of S of b symbols in O(1) time using the EBDS.

5.1.3 Space Requirement

Let us now consider the storage size of our structures.

• We use the constant-time solution to answer the rank queries over W (Section 2.4),
totalizing 2n

logσ n
(1 + o(1)) bits.

• Table C requires at most 2n
logσ n

k log σ bits.

• The size of U is |U | =
∑⌊n/b⌋

i=0 |Ẽi| ≤
∑⌊n/b⌋

i=0 |Ei| = nHk(S) + O(k log n) +
∑⌊n/b⌋

i=0 fk(E, Si), which depends on the statistical encoder E used, recall Section 2.2.
For example, in the case of Huffman coding, we have fk(Huffman, Si) < b, and thus
we achieve nHk(S) + O(k log n) + n bits. For the case of Arithmetic coding, we have
fk(Arithmetic, Si) ≤ 2, and thus we have nHk(S) + O(k log n) + 4n

logσ n
bits.

• The size of T is σk2b′b log σ = σk log n
2

n1/2 bits.
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• Finally, let us consider tables Rg and Rl. Table Rg has ⌈n/(bc)⌉ entries of size ⌈log n⌉,
totalizing 2n

logσ n
bits. Table Rl has ⌈n/b⌉ entries of size ⌈log(b′c)⌉, totalizing 4n log log n

logσ n

bits.

Since any substring of Θ(logσ n) symbols can be extracted in constant time by applying
O(1) times the procedure of Section 5.1.2, we have the final theorem.

Theorem 5.1. Let S[1, n] be a sequence over an alphabet Σ of size σ. The EBDS uses
nHk(S)+O( n

logσ n
(k log σ+log log n)) bits of space for any k < (1−ǫ) logσ n and any constant

0 < ǫ < 1, and it supports access to any substring of S of size Θ(logσ n) symbols in O(1)
time.

Note that, in our scheme, the size of T can be neglected only if k < (1
2
− ǫ) logσ n, but

this can be pushed as close to 1 as desired by choosing b = 1
s
logσ n for constant s ≥ 2.

Corollary 5.1. The EBDS takes space nHk(S) + o(n log σ) if k = o(logσ n).

We note that, if we use Arithmetic coding, we will never have the problem of symbols
with very low probability (which can require many bits, recall Section 2.2), because we do
not encode any sequence that requires more than log n

2
bits. As soon as a representation

exceeds log n
2

bits we switch to plain symbol-wise encoding. We also notice that we run into

no efficiency problems at all at decoding time, as we will use the log n
2

-bit compressed stream
as an index to a precomputed table that will directly yield the uncompressed symbols.

Our results match exactly those of [SG06b], once one corrects their k to k log σ as
explained. Our method is simpler than theirs. However, their result holds simultaneously for
all k, while in our structure k must be chosen beforehand.

Note that we are storing some redundant information that can be eliminated. The last
characters of block Si are stored both within Ẽi and as Ci+1. Instead, we can choose to
explicitly store the first k characters of all blocks Si, and encode only the remaining b − k
symbols, Si[k + 1, b], either in explicit or compressed form. This improves the space in
practice, but in theory we cannot prove it to be better than the scheme we have given.

5.2 Supporting Appends

We can extend our scheme to support appending of symbols, while maintaining the same
space and query complexity, with each appended symbol having constant amortized cost.
Assume our current static structure holds n symbols. We use a buffer of n′ = n/ log n
symbols that are stored explicitly. When the buffer is full we use our EBDS (Section 5.1)
to represent those n′ symbols and then we empty the buffer. We repeat this until we have
log n EBDS’s. At this moment we reencode all the structures plus our original n symbols,
generating a new single EBDS, and restart the process with 2n symbols.
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5.2.1 Data Structures

We describe the additional structures needed to append symbols to the EBDS.

• BF [1, n′] is the sequence of at most n′ = n/ log n uncompressed symbols.

• APi is the i-th EBDS, with 0 ≤ i ≤ N . N ≤ log n is the number of EBDS we currently
have. We call ASi the sequence APi represents. AP0 is the original EBDS. So |AS0| = n
and |ASi| = n/ log n, i > 0.

5.2.2 Substring Decoding Algorithm

We want to retrieve Sj = S[j · b, (j + 1) · b − 1]. To achieve this, we algebraically calculate
the index 0 ≤ t ≤ N + 1 where the position j · b belongs; N + 1 represents BF .

If t = N + 1 then the symbols of Sj are explicitly represented in BF . Else we apply the
technique of Section 5.1.2 to APt.

5.2.3 Construction Time

Just after we reencode everything we have that n/2 symbols have been reencoded once,
n/4 symbols twice, n/8 symbols 3 times and so on. The total number of reencodings is
∑

i≥1 n i
2i = 2n. On the other hand, we are using a semi-static statistical encoder, which

takes O(1) time to encode each symbol. Thus each symbol has a worst-case amortized
appending cost of O(1).

5.2.4 Space Requirement

Let us now consider the storage of the appended structures.

• Buffer BF requires n/ logσ n bits

• Each APi is an EBDS, using |ASi|Hk(ASi) + O( |ASi|
logσ |ASi|(k log σ + log log |ASi|)) bits of

space.

Lemma 5.2. The space requirement of all APi, for 0 ≤ i ≤ N , is
∑log n

i=0 |APi| ≤ |S
AS1 . . . ASN |Hk(S AS1 . . . ASN)+O( n

logσ n
(k log σ + log log n)) +O(σk+1 log2 n)+O(k log2 n)

bits, where n = |S| ≤ |S AS1 . . . ASN |/2.
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Proof. Consider summing any two entropies (recall Eqs. (2.1) and (2.2)).

|AS1|Hk(AS1) + |AS2|Hk(AS2) =
=

∑

w∈Σk |wAS1
|H0(wAS1

) +
∑

w∈Σk |wAS2
|H0(wAS2

)

≤∑

w∈Σk

(

log
( |wAS1

|
|na1

AS1
|,|na2

AS1
|,...,|naσ

AS1
|
)

+ log
( |wAS2

|
|na1

AS2
|,|na2

AS2
|,...,|naσ

AS2
|
)
)

+ O(σk+1 log n)

≤∑

w∈Σk log
( |wAS1

|+|wAS2
|

|na1
AS1

|+|na1
AS2

|,|na2
AS1

|+|na2
AS2

|,...,|naσ
AS1

|+|naσ
AS2

|
)

+ O(σk+1 log n)

≤ |AS1AS2|Hk(AS1AS2) + O(σk+1 log n) + O(k log n)

where O(σk+1 log n) comes from the relationship between the zero-order entropy and the
combinatorials, and O(k log n) comes from considering the symbols in the border between
AS1 and AS2. Note that σk+1 log n = o(n) if k < (1− ǫ) logσ n. Then the lemma follows by
adding up the N ≤ log n EBDS’s.

Theorem 5.2. The structure of Theorem 5.1 supports appending symbols in constant
amortized time and retains the same space and query time complexities, being n the current
length of the sequence.

5.3 Application to Full-Text Indexing

In this section we give some positive and negative results about the application of the
technique to full-text indexing, as explained in the beginning of the chapter. We have a
text T [1, n] over alphabet Σ and wish to compress a transformed version X of T with our
technique. Then, the question is how does Hk(X) relate to Hk(T ).

5.3.1 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform, S = T bwt, is used by many compressed full-text self-indexes
[FM05, FMMN07, MN05]. We have introduced it in Section 2.8.

We show that there is a relationship between the k-th order entropy of a text T and
the first order entropy of S = T bwt. For this sake, we will compress S with a first-order
compressor, whose output size is an upper bound to nH1(S).

A run in S is a maximal substring formed by a single letter. Let rl(S) be the number
of runs in S. In [MN05] they prove that rl(S) ≤ nHk(T ) + σk for any k. Our first-order
encoder exploits this property, as follows:

• If i > 1 and si = si−1 then we output bit 0.

• Otherwise we output bit 1 followed by si in plain form (log σ bits).
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Thus we encode each symbol of S by considering only its preceding symbol. The total

number of bits is n + rl(S) log σ ≤ n(1 + Hk(S) log σ + σk log σ
n

). The latter term is negligible
for k < (1− ǫ) logσ n, for any 0 < ǫ < 1. On the other hand, the total space obtained by our
first-order encoder cannot be less than nH1(S). Thus we get our result:

Lemma 5.3. Let S = T bwt, where T [1, n] is a text over an alphabet of size σ. Then H1(S) ≤
1 + Hk(T ) log σ + o(1) for any k < (1− ǫ) logσ n and any constant 0 < ǫ < 1.

We can improve this upper bound if we use Arithmetic encoding to encode the 0 and
1 bits that distinguish run heads. Their zero-order probability is p = Hk(T ) + σk

n
, thus we

spend −p log p − (1 − p) log(1 − p) ≤ 1 bits per symbol. Likewise, we can encode the run
heads si up to their zero-order entropy. These improvements, however, do not translate into
clean formulas.

This shows, for example, that we can get (at least) about the same results of the Run-
Length FM-Index (Section 3.3.1) by compressing T bwt using our structure.

5.3.2 The Wavelet Tree

Several FM-Index variants [MN05, FMMN07] use wavelet trees to represent S = T bwt, while
others [GGV03] use them for other purposes. As explained in Section 2.4, wt(S) is composed
of several binary sequences. By compressing each such sequence B to |B|H0(B) bits, one
achieves nH0(S) bits overall. The natural question is, thus, whether we can prove any bound
on the overall space if we encode sequences B to |B|Hk(B) bits using our technique. Let
nHk(wt(S)) be the space usage in bits that comes from encoding each binary sequence B to
|B|Hk(B) bits in the wavelet tree of S. We present next two negative examples.

• First, we show a case where Hk(S) < Hk(wt(S)). We choose S = (ak
3a

k
1a

k
0a

k
2a

k
0)

n, then

wt(S) =

................................................................................................................................................................

................................................................................................................................................................

10

ν1 = (1k0k0k)n ν2 = (1k0k)n

ν0 = (1k0k0k1k0k)n

a2a3a0a1

Let us compute Hk(S) according to Section 2.1. Note that H0(wS) = 0 for all contexts
except w = ak

0, where wS = a2(a3a2)
n−1$, being “$” the sequence terminator. Thus

|wS| = 2n and H0(wS) = − n
2n

log n
2n
− n−1

2n
log n−1

2n
− 1

2n
log 1

2n
= 1 + O( log n

n
). Therefore

Hk(S) ≃ 2
5k

.

On the other hand, Hk(wt(S)) =
∑2

i=0 Hk(νi) ≃
2

5k
log k

︸ ︷︷ ︸

ν0

+
1

3k
+

log k

3k
︸ ︷︷ ︸

ν1

, as Hk(ν2) ≃ 0.

Therefore, in this case, Hk(S) < Hk(wt(S)), by a Θ(log k) factor.
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• Second, we show a case where Hk(S) > Hk(wt(S)). Now we choose S = (ak
0a

k
3a

k
0a

k
2)

n,
then

wt(S) =

................................................................................................................................................................

................................................................................................................................................................

10

ν1 = (0k0k)n ν2 = (1k0k)n

ν0 = (0k1k0k1k)n

a2a3a0a1

In this case, Hk(S) ≃ 2
4k

and Hk(wt(S)) =
∑2

i=0 Hk(νi) = O( log n
n

). Thus Hk(S) >
Hk(wt(S)) by a factor of Θ(n/(k log n)).

Lemma 5.4. The ratio between the k-th order entropy of the wavelet tree representation of a
sequence S, Hk(wt(S)), and that of S itself, Hk(S), can be at least Ω(log k). More precisely,
Hk(wt(S))/Hk(S) can be Ω(log k) and Hk(S)/Hk(wt(S)) can be Ω(n/(k log n)).

What is most interesting is that Hk(wt(S)) can be Θ(log k) times larger than Hk(S). We
have not been able to produce a larger gap. Whether Hk(wt(S)) = O(Hk(S) log k) remains
open.

There are other results in this line of analysis. In [FGM06] they show that if we
compress the wavelet tree bitmaps using run-length encoding and γ-encode the run lengths
(Section 2.3), we obtain at most 4nH0(S) + 2σ + 2 log n − 1 bits of space. In [MN07] they
show that if we compress T bwt using a balanced wavelet tree where each bitmap is compressed
using the structure presented in [RRR02] (Section 2.4), we obtain nHk(T ) + o(n log σ) bits
of space for any k ≤ α logσ(n)− 1 and any constant 0 < α < 1.
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Chapter 6

A Compressed Text Index on
Secondary Memory

Compressed full-text self-indexing, as explained in Section 2.9, can run in main memory in
cases where a traditional index would have to resort to secondary memory. In those situations
a compressed index is extremely attractive.

There are, however, cases where even the compressed index is too large to fit in main
memory. One would still expect some benefit from compression in this case (apart from the
obvious space savings). For example, sequentially searching a compressed text is much faster
than a plain text, because fewer disk blocks must be scanned [ZMNBY00]. However, this
has not been usually the case on indexed searching. The existing compressed text indexes
for secondary memory are usually slower than their uncompressed counterparts, due to their
poor locality of access.

The most relevant text indexes for secondary memory follow (refer to Section 2.6 and
2.9 for the description of the base structures). We have different ways to express the size of a
disk block: b̄ will be the number of bits, b = b̄/ log σ the number of symbols, and b̃ = b̄/ log n
the number of integers in a block.

• The String B-tree [FG99] is based on a combination between B-trees and Patricia tries.
In this index locate(P1,m) takes O(m+occ

b̃
+logb̃ n) worst-case I/O operations. This time

complexity is optimal, yet the string B-tree is not a compressed index. Its static version
takes about 5–6 times the text size, plus text.

• The Compact Pat Tree (CPT) [CM96] represents a suffix tree in secondary memory in
compact form. It does not provide theoretical space or time guarantees, but the index
works well in practice, requiring 2–3 I/Os per query. Still, its size is 4–5 times the text
size, plus text.

84



Chapter 6 Index on Secondary Memory

• The disk-based Suffix Array [BYBZ96] is a suffix array on disk plus some memory-
resident structures that improve the cost of the search. The suffix array is divided into
blocks of h elements, and for each block the first m symbols of its first suffix are stored.
It takes at best 4 + m/h times the text size, plus text, and needs 2(1 + log h) I/Os for
counting and ⌈occ/b̃⌉ I/Os for locating. This is not yet a compressed index.

• The disk-based Compressed Suffix Array (CSA) [MNS04] adapts the CSA [Sad03] to
secondary memory. It requires n(H0 + O(log log σ)) bits of space. It takes O(m logb̃ n)
I/O time for count(P1,m). Locating requires O(log n) accesses per occurrence, which is
too expensive.

• The disk-based LZ-Index [AN07] builds on the LZ-index [Nav04]. It uses 8nHk(T ) +
o(n log σ) bits, for any k = o(logσ n). It does not provide theoretical bounds on time
complexity, but it is quite competitive in practice.

• The disk-based Geometric Burrows-Wheeler Transform (GBWT) [CHSV08] uses
O(n logσ) bits, with constant > 2. Locating takes O(m/b̃ + logσ n logb̃ n + occ logb̃ n)
I/Os. There is no implementation nor simulations as far as we know.

In this chapter we present a practical self-index for secondary memory, which is built
from three components: for count, we develop a novel secondary-memory version of backward
searching; for locate we adapt our LCSA (Chapter 4) and for extract we adapt our EBDS
that compresses sequences to k-th order entropy while retaining random access (Chapter 5).
Depending on the available main memory, our data structure requires 2(m− 1) to 4(m− 1)
accesses to disk for count(P1,m) in the worst case. It locates the occurrences in ⌈occ/b̃⌉ I/Os
in the worst case, and on average in cr · occ/b̃ I/Os, 0 < cr ≤ 1 being the suffix array
compression ratio achieved by the LCSA: the compressed divided by the original suffix array
size. Similarly, the time to extract Tl,r is ⌈(r− l + 1)/b⌉ I/Os in the worst case. On average,
this gets multiplied by cs, 0 < cs ≤ 1 being the text compression ratio achieved by our
EBDS: the compressed divided by the original text size. With sufficient main memory our
index takes O(Hk log(1/Hk)n log n) bits of space, which in practice can be up to 4 times
smaller than classical suffix arrays. Thus, our index is the first in being compressed and at
the same time taking advantage of compression in secondary memory, as its locate and extract
operations are faster when the text is compressible. Counting time does not improve with
compression but it is usually better than, for example, disk-based suffix arrays and CSAs.
We show experimentally that our index is very competitive against the alternatives, offering
a relevant space/time tradeoff when the text is compressible.
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6.1 An Entropy-Compressed Rank Dictionary

on Secondary Memory

As we will require several bitmaps in our structure with few bits set, we describe an entropy-
compressed rank dictionary, suitable for secondary memory, to represent a binary sequence
B1,n. In case it fits in main memory, we use BSGAP (Section 2.4), which encodes the gaps
between ones. Otherwise we will use DEB, a disk-based form of BSGAP : we δ-encode the
gaps between consecutive 1’s in B (Section 2.3). If s is the number of one-bits in B1,n then
DEB uses at most s log n

s
+ 2s log log n

s
+ O(log n) bits of space [MN07, Section 3.4.1]. We

split DEB into blocks of at most b̄ bits: if a δ-encoding spans two blocks we move it to
the next block. Each block is stored in secondary memory and, at the beginning of block i,
we also store the number of 1’s accumulated up to block i − 1; we call this value OBi. To
access DEB, we use in main memory an array Ba, where Ba[i] is the number of bits of B
represented in blocks 1 to i− 1. Ba uses (s log n

s
+ 2s log log n

s
+ O(log n)) log n

b̄
bits of space.

To answer rank1(B, i) with this structure, we carry out the following steps: (1) We
binary search Ba to find j such that Ba[j] ≤ i < Ba[j + 1]. (2) We read block j from disk.
(3) We decompress the δ-encodings in block j until reaching position i, summing up the bits
set. (4) rank1(B, i) will be the previous sum plus OBi, the accumulator of 1’s stored in the
block.

Overall this costs O(log s
b̄
+ log log n

s
+ b̄) CPU time and just one disk access. When we

use these structures in this chapter, s will be Θ(n/b) and the CPU time will be O(log s
b̄
+ b̄).

Table 6.1 shows some real sizes and times obtained for the structures, when s = n/b. As it
can be seen, we require very little main memory for the second scheme. For moderate-size
bitmaps even the BSGAP option is good, and gives O(log n

b̄
) CPU time.

6.2 An Entropy-Bounded Data Structure for Sec-

ondary Memory

We now modify our data structure presented in Chapter 5 to operate on secondary memory.

Structures maintained in main memory. We store in main memory the data generated
by the modeler, that is, table T , which requires σk log n

2
n1/2 bits. This restricts the maximum

possible k to be used.

Structures in secondary memory. To store the structure in secondary memory we split
the sequence U = Ẽ0Ẽ1 . . . Ẽ⌊n/β⌋ and W into disk blocks of b̄ bits (thus the overhead over
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Structure Space (bits)
CPU time
for rank

BSGAP s log n
s + s log n

log s + 2s log log n
s + O(log n) O(log s)

DEB+ s log n
s + 2s log log n

s + O(log n) + O(log s + b̄

Ba (s log n
s + 2s log log n

s + O(log n)) log n
b̄

+ log log n
s )

Structure
Real space if s = n/b

n = 1 Tb 1 Gb 1 Gb 1 Mb
b = 32 KB 8 KB 4 KB 4 KB

BSGAP 100 MB 354 KB 667 KB < 1KB

DEB+ 93 MB 326 KB 613 KB < 1KB
Ba 14 KB < 1KB < 1KB < 1KB

Table 6.1: Different sizes and times obtained to answer rank, for some relevant choices of n
and b. DEB is stored in secondary memory and is accessed using Ba. Ba and BSGAP reside
in main memory. Tb, Gb, etc. mean terabits, gigabits, etc. TB, GB, etc. mean terabytes,
gigabytes, etc.

the entropy is n
b
fk(EN, b̄), where EN is the statistical encoder used and function fk(, ) is as

defined in Section 2.2). Also each block will contain the context Cj of order k of the first
entry of U , Ẽj, stored in the disk block (using k log σ bits).

To know where a symbol of the sequence S is stored we need a compressed rank
dictionary ER (Section 6.1), which is built over a bitmap of length n, that has marked
(with a one) the position in S of the first symbol of each disk block. This replaces tables
Rg and Rl (Section 5.1.1). ER can be chosen to reside in main or in secondary memory, the
latter choice requiring one more I/O access.

The algorithm to extract Sl,r is: (1) Find the block j = rank1(ER, l) where Sl is stored.
(2) Read block j and decompress it using T and the context of the first entry. (3) Continue
reading and decompressing them until reaching Sr.

Using this scheme we have at most ⌈(j − i + 1)/b⌉ I/O operations, which on average is
⌈(j − i + 1)Hk(S)/b̄⌉. We add one I/O operation if we use the secondary memory version
of the rank dictionary. The total CPU time is O( j−i

logσ n
+ b̄ + log n). Term b̄ can be removed

by directly accessing inside the block. This requires maintaining in each disk block the Rl of
each Ẽi stored inside the block, which adds other o(n log σ) bits of space. We have assumed
b̄ = ω(k log σ) in this analysis for simplicity and practicality.
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6.3 A Compressed Secondary Memory Structure

We introduce a structure on secondary memory which is able to answer count, locate and
extract queries. It is composed of three substructures, each responsible for one type of query,
and allows diverse trade-offs depending on how much main memory space they occupy.

6.3.1 Counting

We run the algorithm of Figure 2.1 (Section 2.9.1) to answer a counting query. Table C uses
σ log n bits and easily fits in main memory, thus the problem is how to calculate rankc over
T bwt.

To calculate rankc(T
bwt, i), we need to know the number of occurrences of symbol c

before each block on disk. To do so, we store a two-level structure: the first level stores for
every t-th block the number of occurrences of every c from the beginning, and the second
level stores the number of occurrences of every c from the last t-th block. The first level is
maintained in main memory and the second level on disk, together with the representation
of T bwt (i.e., the entry of each block is stored within the block). Let K be the total number
of blocks. We define:

• Ec(j): number of occurrences of symbol c in blocks 0 to (j − 1)· t, with Ec(0) = 0,
1 ≤ j < ⌊K/t⌋.

• E ′
c(j): j goes from 0 to K − 1. For j mod t = 0 we have E ′

c(j) = 0, and for the rest
we have that E ′

c(j) is the number of occurrences of symbol c in blocks from ⌊j/t⌋ · t to
j − 1.

Now we can compute rankc(T
bwt, i) = Ec(j div t) + E ′

c(j) + rankc(Bj, offset), where j
is the block where i belongs, offset is the position of i within block j, and rankc(Bj, offset)
is the number of occurrences of symbol c within block Bj up to offset. Now we present four
ways to represent T bwt, each with its pros and cons. This will give us four different ways to
calculate j, offset, and rankc(Bj , offset).

Version 1. The simplest choice is to store T bwt directly without any compression. As a
disk block can store b symbols, we will have K = ⌈n/b⌉ blocks. rankc(Bj , offset) is calculated
by traversing the block and counting the occurrences of c up to offset. As the layout of blocks
is regular, we know that that T bwt[i] belongs to block j = ⌊i/b⌋, and offset = i− j · b.
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Figure 6.1: Block propagation over the wavelet tree WT . Making ranks over the first level
of WT (rank0(12) = 6, rank0(24) = 10 and rank1(i) = i − rank0(i)), we determine the
propagation over the second level of WT , and so on.

Version 2. We represent the T bwt chunks with a wavelet tree (Section 2.4) to speed up
the scanning of the block. We divide the first level of WT = wt(T bwt) into blocks of b bits.
Then, for each block, we gather its propagation over WT by concatenating the subsequences
in breadth-first order, thus forming a sequence of b log σ bits (just like the plain storage of
the chunk of T bwt). In this case the division of T bwt is uniform and uncompressed, thus we
can still easily determine j and offset. Figure 6.1 illustrates. Note that this propagation
generates 2ℓ−1 intervals at level ℓ of WT . Some definitions follow:

• Bℓ
i : the i-th interval of level ℓ, with 1 ≤ ℓ ≤ ⌈log σ⌉ and 1 ≤ i ≤ 2ℓ−1.

• Lℓ
i : the length of interval Bℓ

i .

• Oℓ
i/Z

ℓ
i : the number of 1’s/0’s in interval Bℓ

i .

• Dℓ = Bℓ
1 . . . Bℓ

2ℓ−1 with 1 ≤ ℓ ≤ ⌈log σ⌉: all concatenated intervals from level ℓ.

• B = D1D2 . . .D⌈log σ⌉: concatenation of all the Dℓ, with 1 ≤ ℓ ≤ ⌈log σ⌉.

Some relationships hold: (1) Lℓ
i = Oℓ

i + Zℓ
i . (2) Zℓ

i = rank0(B
ℓ
i , L

ℓ
i). (3) Lℓ

i = Zℓ−1
(i+1)/2

if i is odd (Bℓ
i is a left child); Lℓ

i = Oℓ−1
i/2 otherwise. (4) |Dℓ| = L1

1 = b for ℓ < ⌊log σ⌋, the

last level can be different if σ is not a power of 2. With those properties, Lℓ
i , Oℓ

i and Zℓ
i are

determined recursively from B and b. We only store B plus the structures to answer rank
on it in constant time. Note that any rank(Bℓ

i ) is answered via two ranks over B.

Figure 6.2 shows how we calculate rankc in O(log σ) constant-time steps. Some
precisions are in order:
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Algorithm rankc(B, j)
node← 1; ans← j; des← 0; B1

1 = B[1, b];
for ℓ← 1 to ⌈log σ⌉ do

if c belongs to the left subtree of node then
ans← rank0(B

ℓ
node, ans);

len← Zℓ
node;

node← 2·node− 1;
else ans← rank1(B

ℓ
node, ans);

len← Oℓ
node; des← Zℓ

node;
node← 2·node;

Bℓ
node = B[ℓ · b + des + 1, ℓ · b + des + len];

return ans;

Figure 6.2: Algorithm to obtain the number of occurrences of c inside a disk block, for Version
2.

1. Block Dℓ begins at bit (ℓ− 1)· b + 1 of B, and |B| = b log σ.

2. To know where Bℓ
i begins, we only need to add to the beginning of Dℓ the length of

Bℓ
1, . . . , B

ℓ
i−1. Each Bℓ

k, with 1 ≤ k ≤ i − 1, belongs to a left branch that we do not
follow to reach Bℓ

i from the root. So, when we descend through the wavelet tree to Bℓ
i ,

every time we take a right branch we accumulate the number of bits of the left branch
(zeroes of the parent).

3. node is the number of the current interval at the current ℓ.

4. We do not calculate Bℓ
node, we just maintain its position within B.

The extra space on top of the n log σ bits is still O(n log σ log log n
log n

) = o(n log σ), even if

compression is local to the block. This is achieved by maintaining the block sizes of 1
2
log n bits

in the rank structures (Section 2.4). The consequence is a small table of O(
√

n polylog(n))
bits in main memory.

Version 3. We aim at compressing T bwt so as to achieve k-th order compression of T . We
compress the blocks B from Version 2 using the (c, o)-pair compression [RRR02] (Section
2.4). In this case the division of T bwt is not uniform; rather we add symbols from T bwt to the
disk block as long as its compressed WT fits in the block. By doing this, we compress T bwt to
at most nHk +σk+1 log n+o(n logσ) bits for any k [MN07]. To calculate rankc(B, offset), we
apply the same algorithm of Version 2, but now the bitmap is not stored explicity. Constant
time ranks on the bitmaps are supported by the compressed representation [RRR02].

As the block size is variable, determining j is not as simple as before. Compression
ensures that there are at most n/b blocks. We use a binary sequence EB1,n to mark where
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each block starts. Thus the block of T bwt[i] is j = rank1(EB, i). We use an entropy-
compressed rank dictionary (BSGAP , Section 2.4) for EB. If we need to use the DEB
variant, we add up one more I/O per access to T bwt (Section 6.1).

Version 4. We aim at compressing T bwt directly without wavelet trees. We represent T bwt

with our entropy-bounded data structure on secondary memory (Section 6.2). Again, the
division of T bwt is not uniform, rather we add symbols from T bwt to the disk block as long as its
compressed T bwt fits in the block. By doing this, we compress T bwt to nHk(T

bwt)+ o(n log σ)
bits for k = o(logσ n). To calculate rankc(B, offset), we decompress block B and apply the
decoding algorithm presented in Section 6.2.

Space usage of E and E ′. In Versions 1 and 2, if we sum up all the entries, E uses
⌈K/t⌉· σ log n bits and E ′ uses Kσ log t·n

K
bits. In Version 3, the numbering scheme [RRR02]

(Section 2.4) has a compression limit n/K ≤ b · log n/(2 log log n). Thus, for Version 3, E ′

uses at most K· σ log(t· b log n
2 log log n

) bits. In Version 4, there is no lower bound to how many
original symbols can fit in a particular compressed block. To avoid an excessively large E ′, we
can impose an artificial limit: if more than b log n symbols are compressed into a single disk
block, we stop adding symbols there. This guarantees that log(t · b log n) bits are sufficient
for each entry of E ′. The growth in the compressed file we cause cannot be more than b̄ bits
per b log n symbols, that is, O( nb̄

b log n
) = o(n log σ) bits overall.

Costs per call to rankc. In Versions 1 and 2, we pay one I/O per call to rankc. In
Versions 3 and 4, we pay one or two I/Os per call to rankc. In Versions 1 and 4, we spend
O(b) CPU operations per call to rankc. In Versions 2 and 3, this is reduced to O(logσ) per
call to rankc.

Table 6.2 shows the different sizes and times needed for our four versions. We added
the times to do rank on the entropy-compressed bit arrays. Versions 3a and 4a use an in-
memory rank dictionary BSGAP costing O(log n

b̄
) CPU time per access, while 3b and 4b

use the DEB variant costing O(log n
b̄

+ b̄) CPU time (Section 6.1). The space complexity
of Version 3 depends on Hk(T ) but Version 4 depends on Hk(T

bwt). Note that, as shown in
Section 5.3, there is no obvious connection between Hk(T ) and Hk(T

bwt), except H1(T
bwt) ≤

1 + Hk(T ) log σ + o(1) for any k < (1 − ǫ) logσ n and any constant 0 < ǫ < 1. We have
assumed b̄ = ω(σ log(tb)) (Versions 1 and 2) and b̄ = ω(σ log(tb log n)) (Versions 3 and 4) for
simplicity, otherwise E ′ must be stored separately and the disk accesses doubled.
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Version Main Memory Secondary Memory I/O CPU
1 n

bt
· σ log n n log σ + n

b
·σ log(t· b) 2(m − 1) O(m· b)

2 n
bt
·σ log n + o(

√
n log2 n) n log σ(1 + o(1)) + n

b
· σ log(t· b) 2(m − 1) O(m log σ)

3a
n
bt
· σ log n nHk(T ) + o(n log σ) + σk+1 log n

2(m − 1) O(m(log σ + log n
b
))

+o(
√

n log2 n) + bsgap + n
b
·σ log(t · b log n)

3b
n
bt
· σ log n nHk(T ) + o(n log σ) + σk+1 log n

4(m − 1) O(m(b + log n
b
))

+o(
√

n log2 n) + gap log n
b

+gap + n
b
· σ log(t · b log n)

4a
n
bt
· σ log n nHk(T bwt) + o(n log σ) + σk+1 log n

2(m − 1) O(m(b + log n
b
))

σk
√

n log n
2

+ bsgap + n
b
·σ log(t · b log n)

4b
n
bt
· σ log n nHk(T bwt) + o(n log σ) + σk+1 log n

4(m − 1) O(m(b + log n
b
))

σk
√

n log n
2

+ gap log n
b

+gap + n
b
· σ log(t · b log n)

gap = n
b
(log b + 2 log log b) + O(log n) = O(n

b
log n)

bsgap = n
b
(log b + log n

log b
+ 2 log log b) + O(log n) = O(n

b
log n).

Table 6.2: Different sizes and times obtained to answer count(P1,m).

6.3.2 Locating

Our locating structure will be a variant of the LCSA (Chapter 4). The array C from LCSA
(Section 2.10) will be split into disk blocks of b̃ integers. Also, we will store in each block
the absolute value of the suffix array at the beginning of the block. To minimize the I/Os,
the dictionary will be maintained in main memory. So we compress the differential suffix
array until we reach the desired dictionary size. Finally, we need a compressed bitmap LB
(Section 6.1) to mark the beginning of each disk block. LB is entropy-compressed and can
reside in main or secondary memory.

For locating every match of a pattern P1,m, we first use our counting substructure to
obtain the interval [sp, ep] of the suffix array of T (see Section 2.9.1). Then we find the block
sp belongs to, j = rank1(LB, sp). Finally, we read the necessary blocks until we reach ep,
decompressing them using the dictionary of the LCSA.

We define occ = ep − sp + 1 and occ′ = cr· occ, where 0 < cr ≤ 1 is the compression
ratio of the LCSA (more precisely, of the C sequence). This process takes, without counting,
⌈occ/b̃⌉ I/O accesses, plus one if we store LB in secondary memory. This I/O cost is optimal
and on average improves, thanks to compression, to ⌈occ′/b̃⌉. We perform O(occ + b̃) CPU
operations to decompress the LCSA interval.

6.3.3 Extracting

To extract arbitrary portions of the text we store T in compressed form using the variant of
our entropy-bounded data structure for secondary memory, see Section 6.2.
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Figure 6.3: On the left, compression ratio achieved on XML (for different lengths) as a
function of the percentage allowed to the dictionary (R). Both are percentages over the size
of A. On the right, the different texts.

6.4 Experiments

We consider two text files for the experiments: the text wsj (Wall Street Journal) from
the trec collection from year 1987, of size 126 MB, and the 200 MB XML file provided
in Pizza&Chili. We searched for 5,000 random patterns, of length from 5 to 50, generated
from these files. As in previous work [FG96, AN07], we assume a disk page size of 32 KB.
We first study the compressibility we achieve as a function of the size of the compressed
dictionary, as it must reside in RAM. Let |R| be the size of the structures obtained from
compressing R (Section 4.1.4). Recall that A is the suffix array. Figure 6.3 (left) shows
that the compressibility depends on the percentage |R|/|A| and not on the absolute size
|R|. Figure 6.3 (right) shows the relation between |R|/|A| and |C|/|A| for the texts used
in the experiments. In the following, we let our dictionary use 2% of the suffix array size
|R|/|A| = 2%. For counting we use Version 1 (Section 6.3.1) with t = log n, and BSGAP
for the LB locating structure (Section 6.3.2). With this setting our index uses 19.15 MB of
RAM for XML, and 12.54 MB for WSJ. It compresses the suffix array of XML to 34.30%
and that of WSJ to 80.28% of its original size.

We compared our results against String B-tree [FG99], Compact Pat Tree (CPT)
[CM96], disk-based Suffix Array (SA) [BYBZ96] and disk-based LZ-Index [AN07]. We add
our results to those of [AN07, Section 4]. We omit the disk-based CSA [MNS04] and disk-
based GBWT [CHSV08] as they are not implemented (even for simulations), but also because
they can be predicted to be strictly worse than ours in these experiments.

Figure 6.4 shows counting experiments (GN-index being ours). Our structure needs at
most 2(m − 1) disk accesses, but usually less as both ends of the suffix array interval tend
to fall within the same disk block as the counting progresses. We present our index with
and without the substructures for locating. It can be seen that our structure is extremely
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competitive for counting, being much smaller and/or faster than all the alternatives.

Figure 6.5 shows locating experiments. This time our structure grows due to the
inclusion of the LCSA. Note that, for m = 5, we are able to report more occurrences than
those the block could store in raw format. This time the competitiveness of our structure
depends a lot on the compressibility of the text. In the highly-compressible XML our index
occupies a very relevant niche in the tradeoff curves, whereas in WSJ it is subsumed by String
B-trees.

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7

D
is

k 
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - XML text, m=5

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7

D
is

k 
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - WSJ text, m=5

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7

D
is

k 
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - XML text, m=15

 0

 10

 20

 30

 40

 50

 60

 70

 0  1  2  3  4  5  6  7

D
is

k 
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - WSJ text, m=15

LZ-index
GN-index

GN-index w/o loc
String B-trees

SA
CPT

Figure 6.4: Counting cost vs. space requirement for the different texts and indexes tested,
lower is faster. Recall that m is the pattern length.

We have used texts up to 200 MB, but our results show that the compression ratio
stays similar if we maintain a fixed percentage for the dictionary size (Figure 6.3 (left)), that
the counting cost is at most 2(m− 1), and that the locating cost depends on the number of
occurrences of P and on the LCSA compression ratio. Thus it is very easy to predict other
scenarios.
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higher is faster. Recall that m is the pattern length.
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6.5 LCSA Construction in Secondary Memory

Particularly for the application described in Section 6.3.2, where the LCSA does not fit in
main memory, a natural question is whether is it possible to efficiently build it in secondary
memory. Secondary memory algorithms to build the suffix array A are well-known [KR03,
CF02, DKMS05], yet the algorithms we have presented in Section 4.1 for compressing A′

are highly non-local. We now show that the algorithms to compress A′ by using Ψ can
be adapted efficiently to secondary memory, and also how to compress the dictionary in
secondary memory.

6.5.1 Compressing the Differential Suffix Array

When we compress in main memory by using Ψ (Sections 4.1.2 and 4.1.3), we notice that
Ψ traverses the suffix array in increasing values of A[· ]. That is, if j is the position where
A[j] = 1, then A[Ψ[j]] = 2, A[Ψ[Ψ[j]]] = 3 and so on. The idea is to store for each position i
of A′ the information that permits us to compress A′[i] after we sort it by increasing values
of A, that is, by text order. For each position in A′ we define:

• A′[i] = A[i]− A[i− 1], 1 < i ≤ n; A′[1] = A[1]. This is the differential form of A.

• A′′[i] = A′[i + 1], 1 < i < n; A′′[n] =⊥ denotes an invalid value.

• V ′[i] = A[i], 1 ≤ i ≤ n. We will use this array to sort the rest.

• NV ′[i] = A[i+1], 1 ≤ i < n; NV ′[n] =⊥. This is the position of the next valid symbol
of A′[i] after sorting.

• N2V ′[i] = A[i + 2], 1 ≤ i < n − 1; NV ′[n − 1] = NV ′[n] =⊥. This is the position of
the next-next valid symbol of A′[i] after sorting.

• PV ′[i] = A[i − 1], 1 < i ≤ n; PV ′[1] =⊥, the position of the previous valid symbol of
A′[i] after sorting.

Now we sort {A′[i], A′′[i], V ′[i], NV ′[i], N2V ′[i], PV ′[i]}1≤i≤n by the values of V ′ = A.
Given that A is a permutation of {1, . . . , n}, the effect of the sorting is that of composing
the arrays with A−1. We call the reordered arrays as follows:

• Ã′[j] = A′[A−1[j]] = A[A−1[j]]−A[A−1[j]− 1], 1 ≤ j ≤ n, j 6= A[1]; Ã′[A[1]] = A[1].

• Ã′′[j] = A′′[A−1[j]] = A[A−1[j] + 1]− A[A−1[j]], 1 ≤ j ≤ n, j 6= A[n]; Ã′′[A[n]] =⊥.

• V [j] = V ′[A−1[j]] = A[A−1[j]] = j, 1 ≤ j ≤ n.
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• NV [j] = NV ′[A−1[j]] = A[A−1[j] + 1], 1 ≤ j ≤ n, j 6= A[n]; NV [A[n]] =⊥.

• N2V [j] = N2V ′[A−1[j]] = A[A−1[j] + 2], 1 ≤ j ≤ n, j 6= A[n], j 6= A[n − 1]; NV [A[n −
1]] = NV [A[n]] =⊥.

• PV [j] = PV ′[A−1[j]] = A[A−1[j]− 1], 1 ≤ j ≤ n, j 6= A[1]; PV [A[1]] =⊥.

Now that we have the arrays {V [j], Ã′[j], Ã′′[j], NV [j], N2V [j], PV [j]}1≤j≤n, the sequen-
tial traversal of these arrays is equivalent to navigating the original ones using Ψ. More
precisely, let j = A[i] (and thus i = A−1[j]), then Ã′[j] = A′[i] and Ã′′[j] = A′′[i] = A′[i + 1].
Moreover, Ã′[j +1] = A′[Ψ(i)] and Ã′′[j +1] = A′[Ψ(i)+1]. Hence the check for pair equality
between A′[i]A′[i + 1] and A′[Ψ(i)]A′[Ψ(i) + 1] reduces to checking whether Ã′[j]Ã′′[j] =
Ã′[j + 1]Ã′′[j + 1], which can be carried out sequentially on Ã′ and Ã′′.

The other arrays are used to maintain consistency upon changes in A′: When we change
Ã′[j] and Ã′′[j], corresponding to A′[i] and A′[i + 1], we have the problem that the pair
A′[i−1]A′[i], which is explicitly stored at Ã′[PV [j]] and Ã′′[PV [j]], must be updated as well.
Similarly, NV serves to locate the place where the pair corresponding to A′[i + 1]A′[i + 2] is
stored after the sorting. Thus, as the arrays are now sorted by j = A[i], arrays PV and NV
serve as a doubly-linked list to let us move to i− 1 and i + 1 in the sorted array. Those lists
must be updated upon removals across the compression process, and they are also useful to
maintain the current values of Ã′′[j] up to date when elements in the chain are removed.

Let τ be the total size in integers of these arrays. We divide them into l chunks of size
τ/l and, for each chunk, we keep in main memory a buffer of b̃ integers. Let M be the size
in integers of the main memory, then τ/l + l· b̃ ≤ M must hold (we consider later the case
where M is smaller). The algorithm to carry out a single pass on A′ in secondary memory is
as follows. Note that this is the main subroutine of both approximate methods based on Ψ
(Sections 4.1.2 and 4.1.3).

1. We read the first chunk from disk and initialize empty buffers.

2. We find sequentially in the chunk the first j satisfying Ã′[j]Ã′′[j] = Ã′[j +1]Ã′′[j +1]. If
no such j is found we go on with the next chunk. In the stronger approximate method
we require equality between several Ã′[j + r]Ã′′[j + r] pairs before proceeding to the
next step.

3. From that j, we start a chain of replacements: We add a new pair s← Ã′[j]Ã′′[j] to R,
make the replacements at j and j + 1 and move on with j ← j + 1, replacing until the
pair changes. When the pair changes, that is Ã′[j]Ã′′[j] 6= Ã′[j +1]Ã′′[j +1], we restart
the search for pairs at Step (2).

4. If we reach the end of the block, the replacement chain may continue at the next one.
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To consistently perform a replacement Ã′[j] : Ã′′[j]← s :⊥ in Step (3), maintaining also
the linked lists, we must carry out the following actions (in parallel; we overline variables
to indicate that we use their original values prior to any assignment): (a) Ã′[j] ← s, (b)
Ã′[NV [j]] ←⊥, (c) Ã′′[j] ← Ã′′[NV [j]], (d) NV [j] ← N2V [j], (e) PV [N2V [j]] ← j, (f)
N2V [j] ← N2V [NV [j]], (g) Ã′′[PV [j]] ← s, and (h) N2V [PV [j]] ← N2V [j]. From those,
only (a) and (d) can be executed locally, whereas the others may require reading/writing
data from/to other chunks not yet in main memory. If this is the case, we “send messages”
to read/update other chunks. Those will be stored in their corresponding buffers, and carried
out right before those chunks are processed. (If a buffer gets full it is written out to disk into
a log of actions the chunk must execute.) Some of those messages will then send messages
back to the current chunk to update its values, and this update will be executed when the
current chunk is read again. This is not a problem because we will not access cell j again
until the next pass. (The updates that happen to belong to the current chunk, instead, must
be executed immediately.)

Each message is of the form action(dest, parameters), where dest is the destination
position that determines the chunk ⌈dest/l⌉ that will execute it; see Table 6.3 for the meaning
of each action. The global instructions we described are then translated into the following
instructions and messages sent: (a) Ã′[j]← s, (b) send DL(NV [j], j) (will solve (c) and (f)
in the next pass), (d) NV [j] ← N2V [j], (e) send UP (N2V [j], j), (g) send UA′′(PV [j], s),
and (h) send UN2(PV [j], N2V [j]). Figure 6.6 shows the operations that are performed after
a replacement; this occurs in three steps. Thus, at the end of the pass, we must carry out
two extra passes in order to process the messages sent and their responses, before finishing
the pass properly.

action parameter what it does at position dest

UA′ sym Updates Ã′ to sym, Ã′[dest]← sym.

UA′′ sym Updates Ã′′ to sym, Ã′′[dest]← sym.
UN2 next Updates N2V to next, N2V [dest]← next.
DL from Marks dest as deleted and responds with

UA′′(from, Ã′′[dest]) and UN2(from, N2V [dest])
UP prev Updates PV to prev, PV [dest]← prev.

Table 6.3: Message types and meanings used by the secondary memory construction
algorithm.

The invalid entries we produce must be compacted for the next passes. Apart from
removing the invalid entries, we must update the pointers NV , N2V , and PV . We first
sort all the arrays by the NV values. The result will be an increasing sequence of NV [i]
values, with some missing integers due to the removed entries. Thus we assign NV [i]← i to
effectively remove the invalid entries. We repeat the process of sorting and reassigning for
N2V and PV . Finally we sort again by V , and are ready for the next pass.
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PV [j] j NV [j] N2V [j]

Ã′ s ← (a)

Ã′′

PV

NV N2V [j]

N2V (d)

(b,c,f) DL(NV [j], j)(g) UA′′(PV [j], s)

(e) UP (N2V [j], j)(h) UN2(PV [j], N2V [j])

(I)

PV [j] j NV [j] N2V [j]

Ã′ s ← (a) ⊥ ← (b)

Ã′′ s ← (g)

PV j(e) →
NV N2V [j] ← (d)

N2V N2V [j] ← (h)

(c) UA′′(j, Ã′′[NV [j]])

(f) UN2(j, N2V [NV [j]])

(II)

PV [j] j NV [j] N2V [j]

Ã′ s ← (a) ⊥ ← (b)

Ã′′ s ← (g) Ã′′[NV [j]] ← (c)

PV j(e) →
NV N2V [j] ← (d)

N2V N2V [j] ← (h) N2V [NV [j]] ← (f)

(III)

Figure 6.6: Operations generated by a replacement. (I) shows the replacement and the
messages generated by it. (II) shows the effect of the messages, one of which generates two
more messages. (III) shows the final state product of a replacement.
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Thus, each pass of the original algorithm over an array of size n′ costs us, in I/O terms,
O(n′/b̃) for the traversal plus O((n′/b̃) logM/b̃(n

′/M)) = O(Sort(n′)) for the sortings. It

is easy to see that, because the n′s are of the form (1 − α)in, the linear-time algorithm of
Section 4.1.2 costs O(Sort(n)) in secondary memory. Similarly, the O(n log n) time algorithm
of Section 4.1.3 costs O(Sort(n) logn) time. This is almost I/O optimal with respect to the
original algorithms.

As a practical note, Figure 4.3 shows that indeed 8 passes are sufficient, even on xml,
to achieve most of the compression on the variants we tried.

With respect to the extra secondary memory needed, it is O(n) words for the arrays,
plus the message logs. Since each position can receive O(1) messages from elsewhere, all the
message logs add up to O(n) words as well.

Finally, we consider the case τ/l + l· b̃ > M , that is, there is no space to store one
disk page per chunk in main memory. In this case we replace the in-memory buffers by a
secondary-memory priority queue, where the messages are inserted with priority given by
dest. Those sent from a chunk i to a position dest < i will be inserted with priority n+dest,
so that they are processed in a second traversal. Each new chunk reads from the priority
queue (by means of extracting minima) all the messages that correspond to it, and inserts new
messages. As there are overall O(n) messages, optimal-I/O priority queues (e.g. [BCFM00])
yield O((n′/b̃) logM/b̃(n

′/b̃)) overall time, which raises only slightly the O(Sort(n′)) time per
pass we had.

6.5.2 Compressing the Dictionary

When we compress the dictionary in main memory, we start expanding the first (i.e. earliest)
rule sj that has not been used by another one, U [j] = 0 (see Section 4.1.4). Then we expand
the next rule sj′ that has U [j′] = 0, and so on. The idea here is to group together all the rules
that are used in the same expansion of a rule with value U [·] = 0, so that when we expand
it we will have almost all the information needed to do the expansion in main memory.

We can regard the dictionary as R = {s1 → a1b1, s2 → a2b2, . . . , sν → aνbν}, where
si = i + n. For each rule we define:

• R0[i] = si, the value of the i-th rule.

• R1[i] = ai, the left symbol of the i-th rule. It can be a rule or an original symbol.

• R2[i] = bi, the right symbol of the i-th rule. It can be a rule or an original symbol.

• Q[i] =

{
min{sj , si is used by sj ∧ U [j] = 0} if U [i] = 1,
si otherwise.

The min is the lowest (i.e. earliest) rule that contains si and has value U [·] = 0. Rules
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with the same value of Q will be used in the same expansion, so Q will be a kind of
group identifier.

Given the non-locality of reference between rules, to calculate the values of Q we need
to send messages of the form UQ(dest, parameter), to achieve Q[dest] ← parameter, with
1 ≤ dest, parameter ≤ ν. Note that a position dest could receive multiple messages and that
always dest < parameter.

We maintain a secondary-memory priority queue PQ, where the messages are inserted
with priority given by dest (larger first). We process the arrays from higher values of R0

first, i.e., in reverse order. To process cell i we extract from PQ all the messages for dest = i
and set Q[i] to the minimum parameter for that i. If there are no messages for i, we assign
a new Q[i] ← si (i.e., we do not need to store U). Then we insert message UQ(R1[i], Q[j])
(UQ(R2[i], Q[j])) into PQ, if R1[i] (R2[i]) is not an original symbol. Since any rule R0[j]
that uses rule R0[i] has been visited before we reach position i, necessarily the message
UQ(R0[i], Q[j]) is in PQ by that time. Thus we compute array Q in one pass.

Now we sort these arrays by increasing values of the pair (Q[i], R0[i]), i.e., by Q and
using R0 to break ties, obtaining Q̃, R̃0, R̃1, R̃2. These arrays can be partitioned into η groups,
each one with the same value of Q. Let ηk be the position where the k-th group finishes. Note
that if the length of the longest phrase is µ then any group has at most µ elements. Now, for
each group, we compress the dictionary almost the same way as in algorithm Expand Rule
(see Figure 4.2, page 62). There are four differences with the original algorithm:

1. We write down RB and RS to disk instead of maintaining them in main memory. The
array NV is not used.

2. We expand R̃0[ηk], the last element of the k-th group, because by construction these
rules use all the other rules in the same group.

3. To process rule R̃0[i], which is expanded to R̃1[i]R̃2[i], we do as follows. If R̃1[i] is not
an original symbol, and it does not belong to the same group of R̃0[i], then it must have
been defined in a previous group. Hence we must not expand it further, but instead
write its final value in RS. Yet this value is only know within the other group. We
send message NRS(pos, R̃1[i]), where pos is the current position where we are writing
in RS. The same goes for R̃2[i].

4. We also write down to disk the pair (sj, LRB[sj ]) (second line of algorithm
Expand Rule), where sj is the rule and LRB[sj ] is its final value (i.e., the current
value of variable LRB).

After carrying out the previous steps, we still need to execute the messages NRS

to update RS. We sort the messages by dest (their first component) obtaining NRS =
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(dest, parameter), and sort the pairs (sj, LRB[sj ]) by its first coordinate, obtaining (sj , LRB).
Because the compressed dictionary will hold at least ν integers in RAM, we can use that RAM
space across the process. From now on LRB will reside completely in main memory, so we can
access it at random. To apply the messages we traverse NRS and RS making the necessary
replacements in RS, that is, RS[dest[i]] = LRB[parameter[i] − n]. These replacements are
done by increasing values of dest, so we traverse only once the arrays NRS and RS. Using
again LRB we traverse C, changing the values of the rules to their final ones.

Let M be the size in integers of the main memory. The breakdown of the cost is as
follows:

• When we calculate Q there are overall O(ν) messages. Using optimal-I/O priority
queues (e.g. [BCFM00]) yields O((ν/b̃) logM/b̃(ν/b̃)) time.

• When we expand a rule we need to find both children. Each such search within their
group takes at most log µ CPU time. Overall there are at most 2ν of these searches,
totalizing O(ν log µ) CPU time.

• We take O(ν/b̃) I/Os to read/write all the needed arrays from disk.

• There are three sortings, which in total take O(Sort(ν)) time.

• Updating C to the new rule values takes O(n′/b̃) I/Os .

Overall, time is O((ν/b̃) logM/b̃(ν/b̃) + n′/b̃) I/Os. The extra space on disk is O(ν)
integers. Note that 4µ ≤M must hold to be able to compress a group in main memory.

If LRB does not fit in main memory, we pre-process the messages first, that is, we
first sort NRS by parameter, then we traverse it in synchronization with LRB updating
parameter ← LRB(parameter), and then we sort again NRS by dest. Now we only need
to traverse RS and NRS together, to update RS. This add an extra O(Sort(ν)) time to
the cost, which does not affect our complexity. Something similar can be done to update
C, which incurs an extra cost of O(Sort(n′)). This would affect the complexity, but is still
within the cost paid in Section 6.5.1 to build C.
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Chapter 7

Rank/Select on Dynamic Compressed
Sequences

In this chapter we are interested in the case where the collections can be updated via
insertions and deletions of symbols, while maintaining rank and select capabilities. Two
current solutions stand out as the best in the tradeoff of space versus time (when considering
all the operations). One solution, by Mäkinen and Navarro [MN08], achieves compressed
space (i.e., nH0 + o(n log σ) bits) and O(log n log σ) worst-case time for all the operations.
The other solution, by Lee and Park [LP07], achieves O(log n(1 + log σ

log log n
)) amortized time

and uncompressed space, i.e. n log σ + O(n) + o(n log σ) bits.

In this chapter we show that the best of both worlds can be achieved. We combine the
solutions to obtain nH0 + o(n log σ) bits of space and O(logn(1 + log σ

log log n
)) worst-case time

for all the operations. Apart from the best current solution to the problem, we obtain several
byproducts of independent interest applicable to partial sums, text indexes, suffix arrays, the
Burrows-Wheeler transform, and others.

We remind that there is a static sequence representation [GMR06] that requires
n log σ + n o(log σ) bits and answers the queries in O(log log σ) time. There has been work
on dynamizing this structure [GHSV07b], where they achieve the same space plus o(n) bits,
the query times are increased by O(1

ǫ
log log n), and the update times are O(1

ǫ
nǫ) amortized,

for any constant 0 < ǫ < 1. In fact the method can be used to dynamize any other scheme
(such as the wavelet-tree-based ones [FMMN07]), at the same extra cost. This is extremely
relevant when query times are more important than update times. In this chapter we focus
on achieving the best time for all the operations. In particular, this is crucial when using the
scheme to achieve good construction times within compressed space.

In Section 7.1 we describe a solution to handle a collection of several synchronized
partial sums. This is used in Section 7.2 to design a dynamic rank/select solution for small
alphabets (O(logn)) with no compression. In Section 7.3 we introduce compression, first

103
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for even smaller alphabets (o(log n/ log log n)), and then generalizing for arbitrary alphabets
via multi-ary wavelet trees. In Section 7.4 we explore general applications of our result, in
particular to compressed text indexes.

As for the model of computation, our results (and all the mentioned ones) assume a
RAM model with word size w = Ω(log n), so that operations on O(log n) contiguous bits can
be carried out in constant time. For the dynamic structures, we always allocate ω(log n)-bit
chunks of the same size (or a finite set of sizes), which can be handled in constant time and
asymptotically no extra space [RR03].

7.1 Collection of Searchable Partial Sums with Indels

In this section we generalize the well-known partial sums problem (Section 2.5) to handle a
collection of somehow “synchronized” sequences. Apart from having independent interest,
this will be an essential tool for the main development in the chapter. We now define our
extension of this problem.

The Collection of Searchable Partial Sums with Indels (CSPSI) problem consists
in maintaining a collection of σ sequences C = {S1, . . . , Sσ} of nonnegative integers
{sj

i}1≤j≤σ,1≤i≤n, each one of k = O(log n) bits. The following operations must be supported:

• sum(C, j, i) is
∑i

l=1 sj
l ;

• search(C, j, y) is the smallest i′ such that sum(C, j, i′) ≥ y;

• update(C, j, i, x) updates sj
i to sj

i + x;

• insert(C, i) inserts 0 between sj
i−1 and sj

i for all 1 ≤ j ≤ σ.;

• delete(C, i) deletes sj
i from the sequence Sj for all 1 ≤ j ≤ σ; To perform delete(C, i)

it must hold sj
i = 0 for all 1 ≤ j ≤ σ.

Note the limitations about inserting/deleting only zeros, and at the same place in all
sequences. In the sequel we show how to solve the CSPSI problem in O(σ+log n) time, using
O(σkn) bits of space.

Data structure. We construct a red-black tree over C [CLRS01, Chapter 13], where each
leaf contains a non-empty superblock, whose size goes from 1

2
log2 n to 2 log2 n bits. The left-

most leaf contains s1
1 · · · s1

b1
s2
1 · · · s2

b1
· · · sσ

1 · · · sσ
b1

, the second leftmost leaf contains s1
b1+1 · · · s1

b2

s2
b1+1 · · · s2

b2
· · · sσ

b1+1 · · · sσ
b2

, and so on. The size of the leftmost leaf is σkb1 bits, the size of
the second leftmost leaf is σk(b2 − b1) bits, and so on. The size of the leaves is variable and
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bounded, so b1, b2, . . . are such that 1
2
log2 n ≤ σkb1, σk(b2− b1), . . . ≤ 2 log2 n.1 Each internal

node v stores counters {rj(v)}1≤j≤σ and p(v), where rj(v) is the sum of the integers in the
left subtree for sequence Sj and p(v) is the number of positions stored in the left subtree (for
any sequence).

Each superblock is further divided into blocks of
√

log n log n bits, so each superblock
has between 1

2

√
log n and 2

√
log n blocks. We maintain these blocks using a linked list. Only

the last block in the list could have some free space, all the other use all of their bits. To scan
a leaf we proceed block by block. To directly access an arbitrary element in a leaf we must
also follow the links of the blocks until we arrive at the correct block. This takes O(

√
log n)

steps.

Computing sum(C, j, i). We traverse the tree to find the leaf containing the i-th position.
We start with sum ← 0 and v ← root. If p(v) ≥ i we enter the left subtree, otherwise we
enter the right subtree with i ← i − p(v) and sum ← sum + rj(v). We reach the leaf that
contains the i-th position in O(logn) time. Then we scan the leaf, summing up from where
the sequence Sj begins, in chunks of size 1

2
log n bits using a universal precomputed table Y ,

until we reach position i. Table Y receives any possible sequence of dk bits, for d = ⌊
1
2

log n

k
⌋,

and gives the sum of the d k-bit numbers encoded. The last (at most d − 1) integers must
be added individually.2 The sum query takes in total O(log n) time, and table Y adds only
O(
√

n polylog(n)) bits of space.

Block boundaries do not affect the procedure. If the sequence of dk bits we must input
to Y is split between the current and next block, we read the corresponding bits from both
blocks to compose the sequence before applying Y . Thus the complexities are not affected.

Computing search(C, j, y). We traverse the tree to find the smallest i′ such that
sum(C, j, i′) ≥ y. We start with pos ← 0 and v ← root. If rj(v) ≥ y we enter the left
subtree, otherwise we enter the right subtree with y ← y − rj(v) and pos ← pos + p(v).
We reach the leaf that contains the i′-th position in O(log n) time. Then we scan the leaf,
summing up from where the sequence Sj begins, in chunks of size 1

2
log n bits using table

Y , until this sum is greater than y after adding up i′ integers; the answer is then pos + i′.
(More precisely, once an application of the table exceeds y, we must reprocess the last chunk
number-wise.) The search query takes in total O(log n) time.

Operation update(C, j, i, x). We proceed similarly to sum, updating rj(v) as we traverse
the tree. That is, we update rj(v) to rj(v)+x each time we go left from v. When we reach the

1If σk > 2 log2 n, we just store σk bits per leaf. All the algorithms in the sequel get simplified and the
complexities are maintained.

2Note that if k > 1
2

log n we can just add each number individually within the time bounds.
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leaf we directly update sj
i to sj

i + x in O(
√

log n) time (direct access). The update operation
takes in total O(log n) time.

For the next operations, we note that a leaf has at most m = ⌊2 log2 n
σk
⌋ integers from

any sequence. Then a subsequence of a given sequence has at most mk bits. So if we copy
a subsequence in chunks of 1

2
log n bits, the process will take 1 + ⌈ 2mk

log n
⌉ = O(1 + log n

σ
) time

in the RAM model3. As we have σ sequences, we can copy a given subsequence of them all
in O(σ + log n) time. The next operations are solved by a constant number applications of
these copying operations. Again, block boundaries do not affect the complexities.

Operation insert(C, i). We traverse the tree similarly to sum, updating p(v) as we traverse
the tree. That is, we increase p(v) by 1 each time we go left from v. Then we create a new
copy of the leaf arrived at (by allocating new blocks as needed), adding a 0 between sj

i−1

and sj
i for all j. This is done by first copying the subsequences . . . sj

i−1 for all j, then adding

0 to each sequence, and finally copying the subsequences sj
i . . . for all j. As we have just

explained, this can be done in O(σ + log n) time.

If the new leaf uses more than 2 log2 n bits, it is split into two. An overflowed leaf has

m = ⌊2 log2 n
σk
⌋+1 integers in each sequence. So we store in the left leaf the first ⌊m/2⌋ integers

of each sequence and in the right leaf we store the rest. These two copies can be done again
in O(σ + log n) time. The new leaves are made children of a new node µ. We compute each
rj(µ) by scanning and summing on the left leaf. This summing can be done in O(σ + log n)
time using table Y . We also set p(µ) = ⌊m/2⌋. Finally, we check if we need to rebalance the
tree. If needed, the red-black tree is rebalanced with O(1) rotations and O(log n) red-black
tag updates [CLRS01, Chapter 13.3]. After a rotation we need to update rj(· ) and p(· ) only
for one tree node, which is easily done in O(σ) time. The insert operation takes in total
O(σ + log n) time.

Operation delete(C, i). We traverse the tree similarly to sum, updating p(v) while we
traverse the tree. That is, we decrease p(v) by 1 each time we go left from v. Then, similarly
to insert, we make a new copy of the leaf (allocating blocks as needed), deleting sj

i for all j.
This takes O(σ + log n) time.

There are three possibilities after this deletion: (i) The new leaf uses more than 1
2
log2 n

bits, in which case we are done. (ii) The new leaf uses less than 1
2
log2 n and its sibling is also

a leaf, in which case we merge it with its sibling, again in O(σ + log n) time. Note that this
merging removes the leaf’s parent but does not require any recomputation of rj(· ) or p(· ).
(iii) The new leaf uses less than 1

2
log2 n and its sibling is an internal node µ, in which case

3This requires shifting bits, which in case it is not supported by the model, can be handled using small
universal tables of the kind of Y .
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by the red-black tree properties we have that µ must have two leaf children4. In this case we
merge our new leaf with the closest child of µ, updating the counters of µ in O(σ) time, and
letting µ replace the parent of our original leaf.

In cases (ii) and (iii), the merged leaf might use more than 2 log2 n bits. In this case
we split it again into two halves, just as we do in insert (and including the recomputation
of rj(· ) and p(· )). The tree might have to be rebalanced as well. The delete operation takes
in total O(σ + log n) time.

The breakdown of the space requirement for the structure is as follows.

• All the sequence representations add up to σkn bits of space.

• Each pointer of the linked list of blocks uses O(log n) bits and we have O( σkn√
log n log n

)

full blocks, totalizing O( σkn√
log n

) bits.

• The last block in each superblock is not necessarily fully used. We have at most ⌈ 2σkn
log2 n
⌉

superblocks, each of which can waste an underused block of size
√

log n log n bits,
totalizing O( σkn√

log n
) bits.

• For each internal node we have two pointers, red-black data, a counter p(· ), and σ
counters rj(· ) ≤ 2k · n, totalizing O(log n) + σ(k + log n) = O(σ log n) bits per node.
So, the internal nodes use O( σkn

log2 n
σ log n) = O(σ2kn

log n
) bits overall.

We have proved our main result in this section.

Theorem 7.1. The Collection of Searchable Partial Sums with Indels problem with σ
sequences of n numbers of k bits can be solved, in a RAM machine of w = Ω(log n) bits,
using σkn(1 + O( 1√

log n
+ σ

log n
))) bits of space, supporting all the operations in O(σ + log n)

worst-case time. Note that, if σ = O(logn) the space is O(σkn) and the time is O(logn).

If we had tried to solve the CSPSI problem by just managing σ SPSI individual problems,
the time complexities would have raised to O(σ log n).

We note that we have actually assumed that w = Θ(log n) in our space computation (as
we have used w-bit system pointers). The general case w = Ω(log n) can be addressed using
the same technique developed in previous work [MN08, Sections 4.5, 4.6, and 6.4], which uses
a more refined memory management with pointers of (log n)±1 bits, and splits the sequence
into three in a way that retains the worst-case complexities.

4For each node, all paths from the node to descendant leaves contain the same number of black nodes and
all the leaves are black. In particular, if the sibling of the deleted leaf is an internal node and it is red then
its children must be black leaves.
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The three subsequences are called previous, current and next [MN08, Section 4.5]. Let
l = ⌈log n⌉ be the current pointer width in use, where n is the current length of the sequences.
A prefix of all sequences is in previous using l − 1 bits, and a suffix in next using l + 1 bits.
The middle part is in current and uses l bits. Upon insertions and deletions, some elements
are moved across the three structures so as to ensure that, when n becomes a new power of
2 (i.e., ⌈log n⌉ changes), all the elements reside in previous (if n becomes n/2) or in next (if
n becomes 2n) and we can smoothly change l.

To carry out the queries over this split structure we must maintain, for each of the three
trees, summary p(·) and rj(·) data on the whole trees. This allows us to know on which of
the trees to operate and also gives us information to translate the local result of one tree into
the final answer of the structure.

7.2 Uncompressed Dynamic Rank-Select Structures

for a Small Alphabet

We now turn our attention into the dynamic rank/select problem on a sequence T [1, n]
over an alphabet Σ of size σ. We start with a simpler setting, where the alphabet is small,
σ = O(logn), and we do not yet attempt to achieve compressed space. In the next section
we build on this one to achieve our stronger result.

Data structure. We construct a red-black tree over T [1, n] where each leaf contains a
non-empty superblock of size up to 2 log2 n bits. Each internal node v stores counters r(v)
and p(v), where r(v) is the number of superblocks in the left subtree and p(v) is the number
of symbols stored in the left subtree.

A superblock storing less than log2 n bits will be called sparse. Operations insert and
delete will maintain the invariant that no two consecutive sparse superblocks may exist. This
ensures that every consecutive pair of superblocks holds at least log2 n bits from T , and thus
there are at most 1 + 2n log σ

log2 n
superblocks.

For each superblock i, we maintain sj
i , the number of occurrences of symbol j in

superblock i, for 1 ≤ j ≤ σ. We store all these sequences of numbers using a Collection
of Searchable Partial Sums with Indels, C (Section 7.1). The length of each sequence will
be at most 1 + 2n log σ

log2 n
integers, we assume σ = O(log n), and k = O(log log n) holds because

sj
i ≤ 2 log2 n

log σ
. So the partial sums operate in O(log n) worst-case time (Theorem 7.1).

Just as in Section 7.1, each superblock is further divided into blocks of
√

log n log n bits,
so each superblock has up to 2

√
log n blocks. We maintain these blocks using a linked list.

Only the last block could be not fully used, the rest use all of their bits.
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The overall space usage of our structure is n log σ + O(n log σ√
log n

), as σ = O(log n):

• The text itself uses n log σ bits of space.

• The CSPSI C uses O(σ log log nn log σ
log2 n

) = O(n log log n log σ
log n

) bits of space.

• Each pointer of the linked list of blocks uses O(log n) bits and we have full O( n log σ√
log n log n

)

blocks, totalizing O(n log σ√
log n

) bits.

• The last block in each superblock is not necessarily fully used. We have at most
1+ 2n log σ

log2 n
superblocks, each of which can waste an underused block of size

√
log n log n

bits, totalizing O(n log σ√
log n

) bits.

• The tree pointers and counters use O(n log σ
log2 n

· log n) = O(n log σ
log n

) bits.

Now we show how to carry out all the queries/operations in O(log n) time. First, it is
important to notice, as in Section 7.1, that each block can be scanned or shifted in O(

√
log n)

time, using tables that process chunks of 1
2
log n bits5. Given that there are O(

√
log n) blocks

in a superblock, we can scan or shift elements within a superblock in O(log n) time, even
considering block boundaries.

Computing access(T, i). We traverse the tree to find the leaf containing the i-th position.
We start with sb ← 1 and pos ← i. If p(v) ≥ pos we enter the left subtree, otherwise we
enter the right subtree with sb ← sb + r(v) and pos ← pos − p(v). We reach the leaf that
contains the i-th position in O(log n) time. Then we directly access the pos-th symbol of
superblock sb.6 Note that, within the same O(logn) time, we can extract any O(log2 n)-bit
long sequence of symbols from T (by moving to next leaves if necessary).

Computing rankc(T, i). We find the leaf containing the i-th position, just as for access.
Then we scan superblock sb from the first block summing up the occurrences of c up to the
position pos, using a table Z to sum the c’s. Z receives a symbol c and ⌊1

2
logσ n⌋ symbols

(≤ 1
2
log n bits), and tells how many times does c appear in the sequence (again, we can just

proceed symbolwise if log σ > 1
2
log n). We add to this quantity sum(C, c, sb−1), the number

of times that c appears before superblock sb. The rank query takes in total O(logn) time.
Table Z requires O(σ

√
n polylog(n)) = O(

√
n polylog(n)) bits.

5Again, if log σ > 1
2

log n, we can process each symbol individually within the time bounds. This can
happen even if σ = O(log n).

6Actually we do not need to know the superblock number sb for the access query, but we need it for the
next ones.
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Computing selectc(T, i). We calculate j = search(C, c, i); this way we know that the
i-th c belongs to superblock j and it is the i′-th appearance of c within superblock j, for
i′ = i − sum(C, c, j − 1). Then we traverse the tree to find the leaf representing superblock
j. We start with sb ← j and pos ← 0. If r(v) ≥ sb we enter the left subtree, otherwise we
enter the right subtree with sb← sb− r(v) and pos← pos + p(v). We reach the correct leaf
in O(log n) time. Then we scan superblock j from the first block, searching for the position
of the i′-th appearance of symbol c within superblock j, using table Z. To this position we
add pos to obtain the final result. The select query takes in total O(log n) time.

Operation insertc(T, i). We obtain sb and pos just like in the access query, except that
we start with pos ← i − 1, so as to insert right after position i − 1. Then, if superblock
sb contains room for one more symbol, we insert c right after the pos-th position of sb, by
shifting the symbols through the blocks as explained. If the insertion causes an overflow in
the last block of sb, we simply add a new block at the end of the linked list to hold the
trailing bits.

We also carry out update(C, c, sb, 1) and retraverse the path from the root to sb adding
1 to p(v) each time we go left from v. In this case we finish in O(logn) time.

If, instead, the superblock is full, we cannot carry out the insertion yet. We first move
one symbol to the previous superblock (creating a new one if this is not possible): We first
delete(T, d) the first symbol c′ from block sb (the global position of c′ is d = i−pos), and this
cannot cause an underflow of sb. Now, we check how many symbols does superblock sb− 1
have (this is easy by subtracting the pos numbers corresponding to accessing blocks sb − 1
and sb). If superblock sb− 1 can hold one more symbol, we insert the removed symbol c′ at
the end of superblock sb − 1. This is done by calling insertc′(T, d), a recursive invocation
that now will arrive at block sb − 1 and will not overflow it (thus no further recursion will
occur).7

If superblock sb− 1 is also full or does not exist, then we are entitled to create a sparse
superblock between sb− 1 and sb, without breaking the invariant on sparse superblocks. We
create such an empty superblock and insert symbol c′ into it, using the following procedure:
We retraverse the path from the root to sb, updating r(v) to r(v) + 1 each time we go left
from v. When we arrive again at leaf sb we create a new node µ with r(µ) = 1 and p(µ) = 1.
Its left child is the new empty superblock, where the single symbol c′ is inserted, and its right
child is sb. We also execute insert(C, sb) and update(C, sb, c′, 1).

After creating µ, we must check if we need to rebalance the tree. If it is needed, it can
be done with O(1) rotations and O(log n) red-black tag updates. After a rotation we need
to update r(· ) and p(· ) only for one tree node. These updates can be done in constant time.

7We note that, if one deletes the first symbol of a block and reinserts it at the same position, it will get
inserted into the previous block.
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Now that we have finally made room to carry out the original insertion, we rerun
insertc(T, i) and it will not overflow again. The whole insert operation takes O(logn) time.

Operation delete(T, i). We obtain sb and pos just as in the access query, updating p(v)
to p(v) − 1 each time we go left from v. Then we delete the pos-th position (let c be the
symbol deleted) of the sb-th superblock, by shifting the symbols back through the blocks. If
this deletion empties the last block, we free it. In any case we call update(C, c, sb,−1) on the
partial sums.

There are three possibilities after this deletion: (i) superblock sb is not sparse after the
deletion, in which case we are done; (ii) sb was already sparse before the deletion, in which
case we have only to check that it has not become empty; (iii) sb turned to sparse due to
the deletion, in which case we have to care about the invariant on sparse superblocks.

If superblock sb becomes empty, we retraverse the path from the root to it, updating
r(v) to r(v)−1 each time we go left from v, in O(log n) time. When we arrive at leaf sb again,
we remove it and invoke delete(C, sb). Finally, we check if we need to rebalance the tree, in
which case O(1) rotations and O(log n) red-black tag updates suffice, just as for insertion.
After a rotation we also need to update r(· ) and p(· ) only for one tree node. These updates
take constant time.

If, instead, superblock sb turned to sparse, we make sure that neither superblocks sb−1
or sb + 1 are also sparse. If they are not, then superblock sb can become sparse and hence
we finish without further intervention.

If superblock sb + 1 is sparse, we delete(T, d) its first symbol c′ (at position d), and
insertc′(T, d) at the end of superblock sb (as done for the insertion). This recursive call
brings no problems because sb + 1 is already sparse, and we restore the non-sparse status
of sb. If superblock sb + 1 becomes empty, we remove it just as explained for the case of
superblock sb. The action is symmetric if sb + 1 is not sparse but sb− 1 is.8

The delete operation takes in total O(log n) time.

Theorem 7.2. Given a text T of length n over a small alphabet of size σ = O(log n), the
Dynamic Sequence with Indels problem under RAM model with word size w = Ω(log n) can be
solved using n log σ + O(n log σ√

log n
) bits of space, supporting all the queries access, rank, select,

insert and delete, in O(logn) worst-case time.

We note again that we have actually assumed that w = Θ(log n) in our space
computation. The general case w = Ω(log n) can be obtained using exactly the same
techniques developed previously [MN08, Sections 4.5, 4.6, and 6.4], with no changes.

8For the symmetric case one needs a slightly different version of procedure insert, which inserts after, not
before, position i.
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7.3 Compressed Dynamic Rank-Select Structures

We now extend our results to use a compressed sequence representation, by just changing
the way we store/manage the blocks. The key idea is to detach the representational and the
physical (i.e., compressed) sizes of the storage units at different levels.

We use the same red-black tree over T [1, n], where each leaf contains a non-empty
superblock representing up to 2 log2 n bits of the original text T (they will actually store more
or less bits depending on how compressible is the portion of T they represent). The same
superblock splitting/merging policy related to sparse superblocks is used. Each internal node
has the same counters and they are managed in the same way. So all the queries/operations
are exactly the same up to the superblock level. Compression is encapsulated inside the
superblocks.

In physical terms, a superblock is divided into blocks just as before, and they are still of
the same physical size,

√
log n log n bits. Depending on compressibility, blocks will represent

more or less symbols of the original text, as their physical size is fixed.

In logical terms, a superblock is divided into segments representing ⌊1
2
logσn⌋ original

symbols9 from T . We represent each segment using the (c, o)-pair encoding of Ferragina et
al. [FMMN07]: The c part is of fixed width and tells how many occurrences of each alphabet
symbol are there in the segment; whereas the o part is of variable width and gives the identifier
of the segment among those sharing the same c component. Each c component uses at most
σ log log n bits; while the o components use at most 1

2
log n bits each, and overall add up to

nH0(T ) + O(n log σ/ log n) bits [FMMN07, Section 3.1].

In a block of
√

log n log n bits, we store as many bits as they fit. The universal tables
(like Y ) used to sequentially process the blocks in chunks of 1

2
log n bits must now be modified

to process the compressed sequence of (c, o) pairs. This is complex because an insertion in a
segment introduces a displacement that propagates over all the segments of the superblock,
which must be completely recomputed and rewritten (and it can even cause the physical size
of the whole superblock to double!). Fortunately all those tedious details have been already
sorted out in previous work [MN08, Sections 5.2, 6.1, and 6.2], where their “superblocks”
play the role of our “blocks”, and their tree rearrangements are not necessary for us because
we are within a leaf now. Their “partial blocks” mechanism is also not useful for us, because
we can tolerate those propagations to extend over all the blocks of our superblocks. Hence
only the last block of our superblocks is not completely full.

The time achieved in there [MN08] is O(1) per Θ(log n) physical bits. Even in the worst
case (where compression does not work at all in the superblock), the number of physical bits

will be 2 log2 n
1
2

log n
(σ log log n + 1

2
log n) = O(log2 n + σ log n log log n), and thus the time to solve

any query or carry out any update on a superblock will be O(log n + σ log log n).

9Or just one symbol if 1
2

logσ n < 1.
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Let us now consider the space usage of these new structures, focusing only on what
differs from the uncompressed version:

• The text itself (as a sequence of pairs (c, o)) uses nH0(T ) + O(σn log log n
logσ n

) bits.

• The number of full blocks is O(
nH0(T )+ σn log log n

logσ n√
log n log n

), and thus the space wasted by their

pointers is O(n log σ(σ log log n+log n)√
log n log n

) bits.

• The extra space for the tables to operate the (c, o) encoding is O(
√

n σ polylog(n))
bits.

It can be seen that the time and space complexities depend sharply on σ. Thus the
solution is indeed of interest only for rather small σ = o(log n/ log log n). For such a small
alphabet we have the following theorem. Again, all the issues of varying ⌈log n⌉ and the case
w = ω(log n) are handled just as in previous work [MN08, Sections 4.5, 4.6, and 6.4]

Theorem 7.3. Given a text T of length n over a small alphabet of size σ = O(
√

log n
log log n

) and

zero-order entropy H0(T ), the Dynamic Sequence with Indels problem under RAM model with
word size w = Ω(log n) can be solved using nH0(T ) + O(n log σ√

log n
) bits of space, supporting the

queries access, rank, select, insert and delete in O(log n) worst-case time.

To extend our results to a larger alphabet of size σ = Ω(
√

log n/ log log n), we use a
generalized ρ-ary wavelet tree [FMMN07] over T , where ρ = Θ(

√
log n/ log log n). Essentially,

this generalized wavelet tree makes a sequence with the first log ρ bits of the symbols at the
first level, the next log ρ bits at the second level (where the symbols with the same first log ρ
bits are grouped in the same child of the root), and so on. The tree has O(logρ σ) = O( log σ

log log n
)

levels. We store on each level a sequence over an alphabet of size ρ, which is handled using
the solution of Theorem 7.3, for which ρ is small enough. Hence each query and operation
takes O(log n) time per level, adding up O(log n log σ

log log n
) worst-case time overall.

As shown by Ferragina et al. [FMMN07], the sum of the zero-order entropy re-
presentations of the sequences at each level adds up to the zero-order entropy of T . In
addition, the generalized ρ-ary wavelet tree handles changes in ⌈log n⌉ automatically, as this
is encapsulated within each level. We thus obtain our main theorem, where we have included
the case of small σ as well. We recall that, within the same time, access can retrieve
O(logσ n log n) consecutive symbols from T .

Theorem 7.4. Given a text T of length n over an alphabet of size σ and zero-order entropy
H0(T ), the Dynamic Sequence with Indels problem under RAM model with word size w =
Ω(log n) can be solved using nH0(T )+O(n log σ√

log n
) bits of space, supporting queries access, rank,

select, insert and delete in O(log n(1 + log σ
log log n

)) worst-case time.
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7.4 Discussion

We have shown that the best two existing solutions to the Dynamic Sequence with Indels
problem [MN08, LP07] can be merged so as to obtain the best from both. This merging is
not trivial and involves some byproducts that can be of independent interest. In particular,
we have shown how to handle efficiently a synchronized collection of partial sums. We show
now a couple of immediate consequences of our improved result.

Very recently [MN08, MN07] it has been shown that a wavelet tree built over the
Burrows-Wheeler Transform T bwt of a text T [BW94], and compressed using the (c, o) pair
technique (Section 7.3), achieves high-order entropy space, namely nHk(T ) + o(n log σ) for
any k + 1 ≤ α logσ n and constant 0 < α < 1. This is used by Mäkinen and Navarro [MN08]
to obtain a dynamic text index that handles a collection C of texts and permits searching
for patterns, extracting text snippets, and inserting/deleting texts in/from the collection.
Using their definitions [MN08, Section 7] and using their same sampling step, we can state a
stronger version of those theorems:

Theorem 7.5. The Dynamic Text Collection problem can be solved with a data structure of
size nHk(C) + o(n log σ) + O(σk+1 log n + m log n + w) bits, simultaneously for all k. Here n
is the length of the concatenation of m texts, C = 0 T10 T2 · · · 0 Tm, and we assume that σ =
o(n) is the alphabet size and w = Ω(log n) is the machine word size under the RAM model.
The structure supports counting of the occurrences of a pattern P in O(|P | logn(1+ log σ

log log n
))

time, and inserting and deleting a text T in O(|T | logn(1+ log σ
log log n

)) time. After counting, any

occurrence can be located in time O(log n + logσ n log log n). Any substring of length ℓ from
any T in the collection can be displayed in time O(log n + logσ n log log n + ℓ(1 + log σ

log log n
)).

For k ≤ (α logσ n) − 1, for any constant 0 < α < 1, the space complexity simplifies to
nHk(C) + o(n log σ) + O(m log n + w) bits.

When the alphabet is of moderate size, that is, σ = O(polylog(n)), the times
obtained above become O(|P | logn) for counting, O(|T | logn) for text insertion/deletion,
O(logσ n log log n) for locating, and O(logσ n log log n + ℓ) for displaying.

Another important application that derives from this one is the compressed construction
of text indexes. For example, a variant of the FM-index [FMMN07] (Section 2.9.1) requires
k-th entropy space once built, but in order to build it we need O(n log n) bits of space. The
previous theorem can be used to build the FM-index of a text by starting with an empty
collection and inserting the text T of interest. Our new results make this process faster.

Theorem 7.6. The Alphabet-Friendly FM-index of a text T [1, n] over an alphabet of size σ
can be built using nHk(T ) + o(n log σ) bits, simultaneously for all k ≤ (α logσ n)− 1 and any
constant 0 < α < 1, in time O(n logn(1 + log σ

log log n
)).

We note that this is the same asymptotic space required for the final, static, FM-index
[FMMN07]. This FM-index is not only relevant by itself, but also as an intermediate step
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to compute other important structures such as the suffix array [MM93] and the Burrows-
Wheeler Transform (BWT) [BW94] of T . Both are easily derived from our dynamic FM-
index. Although the final product takes in this case more space than our intermediate
representation, we can output the result in order, so that we do not need to maintain the
large representation in memory. Our next discussion assumes this model: we must output
the suffix array or the BWT sequentially (as otherwise there is no point in building them in
little space).

The BWT is the simpler problem for us. We can easily derive it sequentially from the
FM-index, by obtaining one by one the symbols in O(1 + log σ

log log n
) time each, and sending

them to the output. Overall we need O(n logn(1+ log σ
log log n

)) time and nHk + o(n log σ) bits of

space. The best previous result we know of, in terms of space complexity [Kär04], achieves
O(n log2 n) time (O(n log n) on average) using O(n) bits in addition to the n log σ bits of the
text. This is asymptotically worse than our space and time for any σ. We note that, using
previous work [MN08], one achieves O(n log n log σ) time, which may be as bad as O(n log2 n)
for large σ.

Using our result to build the suffix array is a bit more complicated. Let us focus on
the case σ = O(polylog(n)), where our FM-index worst-case construction time becomes
O(n logn). To obtain the suffix array sequentially we must carry out one locate operation for
each cell, which can be made as fast as O(log n) time per cell if we spend O(n) additional bits
of space. Thus we can build the suffix array sequentially within n log σ + o(n log σ) + O(n)
bits (even on uncompressible texts) and in O(n log n) time. This was indeed the best known
time complexity to build the suffix array until a few years ago [PST07]. Nowadays linear-time
algorithms exist, yet all of them require O(n log n) bits of space. On the other hand, the
best current result on compressed suffix array construction [HLS+07] takes O(n log σ) bits
of space and O(n log n) time for arbitrary alphabets (note that the space is not compressed
and its constant term is not 1).
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Conclusions

Since year 2000, a rapid sequence of achievements showed how to relate information theory
with string matching concepts, in a way that index regularities that show up when the text
is compressible were discovered and exploited to reduce index occupancy. The overall result
has been the design of full-text indexes whose size is proportional to that of the compressed
text. Moreover, those indexes are able to reproduce any text portion without accessing the
original text, and thus they replace the text. This way compressed text indexes allow one to
add search and random access functionalities to compressed data. For example, it is feasible
today to index the 3 GB Human genome on a 1 GB RAM desktop PC.

These compressed text indexes, however, presented several weaknesses (see Section 1.1).
In this thesis, we have addressed these weaknesses and proposed some solutions to them. In
the following we summarize our main contributions. At the end, we give some directions for
further work.

8.1 Contribution of this Thesis

8.1.1 Compressed Text Indexes: From Theory to Practice

We have first considered the basic problem of performing rank/select queries over a binary
sequence, focusing on succinct data structures that pose a sublinear space overhead. This is
an intensive area of theoretical research with lots of applications. Yet, there had been little
effort in assessing how practical are the best theoretical solutions, compared to more naive
alternatives that not always guarantee the same complexities. Our conclusions are that, in
many cases, a clever implementation of a theoretically more naive solution can outperform
the best theoretical solution. In other cases, the theoretical solution is a good choice provided
it is cleverly implemented.
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Although a comprehensive survey on compressed text indexing has recently appeared
[NM07], the implementation of these indexes requires a significant programming skill, a deep
engineering effort, and a strong algorithmic background. Only isolated implementations and
focused comparisons of compressed indexes had been reported, and they missed a common
API, which prevented their re-use or deploy within other applications. The research presented
in Chapter 3 had therefore three main purposes:

1. We review the most successful compressed indexes that have been implemented so far,
and present them in a way that may be useful for software developers, by focusing on
implementation choices as well on their limitations. This point of view complements
the existing survey [NM07] and fixes the state-of-the-art for this technology, possibly
stimulating improvements in the design of such sophisticated algorithmic tools.

In addition, we introduce novel implementations of compressed indexes, which combine
the best existing theoretical guarantees with a competitive space/time tradeoff in
practice.

2. We experimentally compare a selected subset of implementations. This not only serves
to help programmers in choosing the best index for their needs, but also gives a grasp
of the practical relevance of this fascinating technology.

3. We introduce the Pizza&Chili site, which was developed with the aim of providing
publicly available implementations of compressed indexes. Each implementation is well-
tuned and adheres to a suitable API of functions which should allow any programmer
to easily plug the provided compressed indexes within his/her own software. The site
also offers a collection of texts and tools for experimenting and validating the proposed
compressed indexes. We hope that this simple API and the good performance of those
indexes will spread their use in several applications.

The use of compressed indexes is obviously not limited to plain text searching, but to
storing, searching and retrieving collections of strings in little space.

8.1.2 Locally Compressed Suffix Arrays

We have presented a suffix array compression method that retains fast locating of the
occurrences of a pattern. We have proved analytically that the resulting size is related
to the k-th order entropy of the text. The method has been used to obtain a compressed
self-index with fast locate (where the norm is to be extremely slow), and a small index that
is a viable alternative to classical suffix arrays. Our experiments show that our structure
is very practical and relevant. In particular, we showed that the regularities that Re-Pair
exploits on the differential suffix array are closely related to the runs in Ψ. Thus we could
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take advantage of the locality properties of Re-Pair, and also used the close relation with
Ψ to analyze the compression achieved and design faster Re-Pair algorithms. These new
algorithms are approximations, yet we show that their compression loss is negligible.

A byproduct, which might be of general interest, is a compact data structure to represent
the Re-Pair dictionary. This structure can reduce the dictionary space by up to 50%, and
operates in compressed form, that is, it permits decompressing parts of the text without
decompressing the dictionary.

8.1.3 Statistical Encoding of Sequences

We have presented a scheme based on k-th order modeling plus statistical encoding to convert
any data structure on sequences into a compressed data structure. This structure permits
retrieving any string of S of Θ(logσ n) symbols in constant time. This is an alternative to the
first work achieving the same result [SG06b], which is based on Ziv-Lempel compression. We
also show how to append symbols to the original sequence within the same space complexity
and with constant amortized cost per appended symbol. This method also works on the
structure presented in [SG06b].

We also analyze the behavior of this technique when applied to full-text self-indexes, as
advocated in [SG06b]. We prove some results on the application of this technique over the
Burrows-Wheeler Transform [BW94] and over the wavelet tree [GGV03] of a sequence.

As followup of our work, Ferragina and Venturini [FV07] proposed an even simpler
storage scheme, which does not use any compressor (either statistical or Ziv-Lempel) and
achieves the same space usage of our scheme. To prove their space usage, however, their
build on our results.

8.1.4 A Compressed Text Index on Secondary Memory

We have presented a practical self-index for secondary memory that, when the text is
compressible, takes much less space than the suffix array. It also provides good I/O times
for locating, which in particular improve when the text is compressible. In this aspect our
index is unique, as most compressed indexes are slower than their classical counterparts on
secondary memory. We show experimentally that our index is very competitive against the
alternatives, offering very relevant space/time tradeoffs.

We also presented a secondary memory construction for those approximations, which
run almost I/O-optimally and extends the applicability of the methods to compress suffix
arrays that do not fit in main memory.
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8.1.5 Rank/Select on Dynamic Compressed Sequences

We combine previous works [MN08, LP07] to obtain, for a sequence S, a structure that
(1) takes nH0(S) + o(n log σ) bits of space, and (2) performs all the operations (access,
rank, select, insert and delete) in O(log n(1 + log σ

log log n
)) worst-case time. (This is achieved

even for the case where ⌈log n⌉ changes and so does the length of the structure pointers
in order to maintain the promised space bounds.) The result becomes the most efficient
dynamic representation of sequences, both in time and space, and its benefits have immediate
applications to other compressed data structures such as compressed text indexes.

Lee and Park [LP07] spend O(n) extra bits in bitmaps that maintain leaf-granularity
information on rank/select. We show that this can be replaced by dynamic partial sums,
which use sublinear space. However, we need σ partial sums and cannot afford to update
them individually upon a leaf insertion/deletion. Hence we create a new structure where a
collection of σ sequences are maintained in synchronization, and this can be of independent
interest. The second problem was that leaf splitting/merging in Lee and Park’s work [LP07]
triggered too many updates to summarization data, which could not be handled in O(logn)
worst-case time, only in O(logn) amortized time. To get rid of this problem we redefined
the leaf fill ratio invariants, preferring a weaker condition that still ensures that leaves are
sufficiently full and can be maintained within the O(logn)-worst-case-time bound. This can
also be of independent interest.

Our result is not only interesting by itself, but also derives into the best current algorithm
to maintain a dynamic collection of texts that can be searched for patterns, and to build
indexes for static text collections within compressed space. In addition, our results permit
building suffix arrays [MM93] in competitive time, improving in particular the best algorithm
to build it within O(n log σ) bits of space when the alphabet is not too large. Finally, we
derive the best current algorithm to compute the Burrows-Wheeler Transform [BW94] within
n log σ + O(n) bits of space.

8.2 Further Work

Our work on practical compressed text indexes opens several future development lines.
In the short term, we plan to do some upgrades on the Pizza&Chili site: To add new
indexes; to add new functionalities to the indexes; to improve the API to support several
simultaneously active indexes and to add iterators for locate and display. As an ambitious
longer-term project, we want to convert Pizza&Chili into a more general site on compressed
data structures. We also seek to implement our secondary memory index, which is right now
a theoretical proposal (our experimental results are obtained with simulations). In this latter
line, we are working on merging the CPT structure [CM96] with our LCSA. We believe the
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result would be extremely competitive in practice. We also seek to implement the secondary
memory construction of our LCSA.

Our work on compressed sequences also leaves several future challenges. High-
order entropy compression requires better understanding of how entropies behave upon
transformations such as Burrows-Wheeler or the wavelet tree. Also, there is no good rank
and select support for this space occupancy. Finally the dynamic support for high-entropy
compressed sequences, even considering just access, is currently null or very rudimentary
[SG06b, GN06, FV07].

On the other hand, we showed that one can give good support for dynamic sequences
while compressing them to zero-order entropy. Yet, more can be done. Chan et al. [CHLS07]
recently showed that rank and select on bits (σ = 2) can be solved in O( log n

log log n
) time for all

operations, using O(n) bits of space (this is striking because the rank/select problem was
conjectured to have the same Ω(log n) lower bound of partial sums [PD06]). Combining with
multiary wavelet trees one immediately achieves O(n log σ) bits of space and O( log n

log log n
(1 +

log σ
log log n

)) time for general alphabets. This time matches the lower bound of Fredman and Saks

for rank/select [FS89] as long as σ = O(polylog(n)), whereas it is not known whether the
result would be time-optimal for larger σ. In any case, this raises the challenge of achieving
that complexity within nH0 + o(n log σ) bits of space, or even nHk + o(n log σ).

Finally, one can wish to handle a stronger set of operations. In particular, our wavelet
trees are markedly static in shape, and thus supporting changes in the alphabet Σ looks
challenging. This would have applications in a dynamic scenario where the set of symbols is
not known in advance.

In a more conceptual view, we believe this thesis is a first step towards compressed text
indexes with competitive locating times, in particular via locality of access. Our resulting
index is still far from achieving the space used by the smallest self-indexes, which are however
extremely slow to locate. This rises some questions: Is there a fundamental lower bound to
the tradeoff one can achieve between space and time for locating? Is there a limit to what
can be achieved via local compression?
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API for Text Indexes

The Pizza&Chili indexes are used through an API written in C/C++ language. This API is
sketched below. We use uchar for denoting unsigned char and ulong for unsigned long. The
interface assumes that each text symbol is represented with one byte. The integer e returned
by any procedure indicates an error code, if it is different of zero. The error message can be
retrieved by calling the procedure char *error index(e). Text and pattern indexes start
at zero.

• Error management

– char *error index (int e) returns a string describing the error associated with
e. The string must not be freed, and it will be overwritten with subsequent calls.

• Building the index

– int build index (uchar *text, ulong length, char *build options,

void **index) creates an index from text[0..length-1]. Note that the index
is an opaque data type (i.e. it uses void-type). Build options must be passed in
string build options, whose syntax depends on the index and is described in its
accompanying documentation. The index must always work with some default
parameters, if build options is NULL. The returned index is ready to be queried.

– int save index (void *index, char *filename) saves index on disk by using
single or multiple files, using proper extensions.

– int load index (char *filename, void **index) loads index from one or
more files named filename with proper extensions.

– int free index (void *index) frees the memory occupied by index.

– int index size(void *index, ulong *size) tells the memory occupied by
index in bytes. This must be the internal memory the index needs to operate.
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• Querying the index

– int count (void *index, uchar *pattern, ulong length, ulong

*numocc) writes in numocc the number of occurrences of the substring
pattern[0..length-1] found in the text indexed by index.

– int locate (void *index, uchar *pattern, ulong length, ulong

**occ, ulong *numocc) writes in numocc the number of occurrences of
pattern[0..length-1] in the text indexed by index. It also allocates *occ

(which must be freed by the caller) that contains the locations of the *numocc

occurrences, in arbitrary order.

• Accessing the indexed text

– int extract (void *index, ulong from, ulong to, uchar **snippet,

ulong *snippet length) allocates snippet (which must be freed by the caller)
and writes the substring text[from..to] into it. Returns in snippet length

the length of the text snippet actually extracted, since this could be less than
to-from+1 if to is larger than the text size.

– int display (void *index, uchar *pattern, ulong length, ulong

numc, ulong *numocc, uchar **snippet text, ulong **snippet lengths)

displays the text snippet surrounding every occurrence of the substring
pattern[0..length-1] within the indexed text. The snippet must include
numc symbols before and after the pattern occurrence, totalizing length+2*numc

symbols, or less if the text boundaries are reached. The number of pattern
occurrences is stored in numocc, and their snippets are stored in the arrays
snippet text and snippet lengths (which must be freed by the caller). The
first array is a symbol array of numocc*(length+2*numc) symbols, with a new
snippet starting at every multiple of length+2*numc. The second array contains
integers, each indicating the real length of each of the numocc extracted snippets.

– int length (void *index, ulong *length) obtains the length of the text
indexed by index, in bytes.
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