
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

AN RDF DATABASE COMPACT REPRESENTATION FOR TIME- AND
SPACE-EFFICIENT REGULAR PATH QUERIES

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERA CIVIL EN COMPUTACIÓN

JOSEFA IGNACIA ROBERT PARRA

PROFESOR GUÍA:
GONZALO NAVARRO BADINO

MIEMBROS DE LA COMISIÓN:
BENJAMÍN BUSTOS CÁRDENAS
IVANA BACHMANN ESPINOZA
CECILIA HERNÁNDEZ RIVAS

Este trabajo ha sido parcialmente financiado por FONDECYT Grant 1-230755

SANTIAGO DE CHILE
2024

RESUMEN DE LA TESIS PARA OPTAR

AL GRADO DE MAGÍSTER EN CIENCIAS

DE LA INGENIERÍA, MENCIÓN COMPUTACIÓN

Y MEMORIA PARA OPTAR AL TÍTULO DE

INGENIERA CIVIL EN COMPUTACIÓN
POR: JOSEFA IGNACIA ROBERT PARRA
FECHA: 2024

PROF. GUÍA: GONZALO NAVARRO BADINO

UNA REPRESENTACIÓN COMPACTA DE BASES DE DATOS RDF PARA LA
RESOLUCIÓN EFICIENTE EN TIEMPO Y ESPACIO DE RPQS

Esta tesis contribuye al problema de manejar y consultar bases de datos tipo Resource De-
scription Framework (RDF) de manera eficiente, con un enfoque en las Two-way Regular
Path Queries (2RPQs). La primera contribución de este trabajo es la implementación de
una representación compacta para grafos introducida por Navarro, junto con un conjunto de
métodos para extraer información valiosa del grafo. Desarrollamos, sobre esta representación,
un algoritmo para resolver 2RPQs, que utiliza autómatas de Glushkov para manejar las ex-
presiones regulares y que simula el autómata en el grafo para identificar los caminos válidos.
Para llevar a cabo esto, se utilizan en gran medida los métodos implementados anteriormente
para el grafo. Evaluaciones emṕıricas muestran mejoras en la velocidad de procesamiento
de las consultas y en el uso del espacio en comparación con soluciones existentes, particu-
larmente para 2RPQs que involucran una única variable. En general, esta tesis presenta un
enfoque competitivo para resolver 2RPQs y establece un rumbo para futuras investigaciones
en el área.

i

AN RDF DATABASE COMPACT REPRESENTATION FOR TIME- AND
SPACE-EFFICIENT REGULAR PATH QUERIES

This thesis contributes to the problem of efficiently managing and querying Resource Descrip-
tion Framework (RDF) databases, with a focus on Two-way Regular Path Queries (2RPQs).
The first contribution is the implementation of a compact representation for graphs intro-
duced by Navarro, along with a body of methods for extracting valuable information from
the graph. We develop, over this representation, a novel algorithm for solving 2RPQs, which
uses Glushkov automata for handling regular expression and simulates the automaton on
the graph to pinpoint matching paths. Carrying out this relies heavily on the previously
implemented methods for the graph. Experimental evaluations demonstrate improvements
in query processing speed and space usage when compared to existing solutions, particularly
for 2RPQs involving a single variable. Overall, this thesis presents a competitive approach
to solving 2RPQs and sets a course for future research in the field.

ii

Acknowledgments

Mi más profundo agradecimiento y reconocimiento a Navarro por su apoyo como director de
tesis. Su profesionalismo y minuciosidad son admirables.

Adrián, gracias por la paciencia, por responder todas mis preguntas y por ayudarme con los
experimentos. ¡Perdón por los mini infartos! Jajaja.

Sandra, muchas gracias por su ayuda con los asuntos administrativos.

Gracias a I. Bachmann, B. Bustos y C. Hernández por formar parte del comité y por sus
valiosos comentarios.

A Basti, mi familia y mis amigos, soy tremendamente afortunada de tenerlos en mi vida.

Un especial agradecimiento a todas las personas anónimas de internet que comparten sus
conocimientos desinteresadamente.

iii

Table of content

Introduction 1

1 Background and Related Work 4
1.1 Resource Description Framework . 4

1.1.1 SPARQL . 5
1.2 Regular Path Queries . 7
1.3 Glushkov Automata . 10
1.4 Compact Data Structures . 13

1.4.1 Bitvectors . 13
1.4.2 GMR Sequences . 14
1.4.3 SDSL: Succinct Data Structure Library 17

2 Graph Representation 18
2.1 Description of the Data Structure . 18
2.2 Basic Graph Operations . 20
2.3 Additional Graph Operations . 25
2.4 Time and Space Complexities . 27
2.5 Construction Algorithm . 28

3 2RPQ Evaluation 30
3.1 Single-variable 2RPQs . 30
3.2 Double-variable 2RPQs . 33

4 Experimental Evaluation 35
4.1 Benchmark and Implementation Details . 35

4.1.1 Benchmark Systems . 35
4.1.2 Benchmark Database . 36
4.1.3 Implementation Details . 37

4.2 Experimental Results . 38

5 Conclusions and Future Work 44

Bibliography 49

iv

Introduction

The Resource Description Framework (RDF) was developed by the World Wide Web Consor-
tium to facilitate data exchange on the web. These databases rely on triples, each consisting
of a subject, a predicate, and an object, which together form what is known as an RDF graph.
The strengths of RDF databases lie in their flexibility and ability to efficiently integrate and
query data from varied sources. Due to this, RDF databases have become relevant beyond
the semantic web, in fields such as bio-informatics, linguistics and geographic information
systems.

SPARQL (a recursive acronym for SPARQL Protocol and RDF Query Language) is the
standard query language for RDF databases. One of its important features is that it allows
users to define patterns that RDF triples must match, through so-called Property Path
queries. These types of queries can be intricately combined and allow for the definition of
complex relationships between resources.

Today’s massive growth of digital information poses challenges not only in storing and effi-
ciently managing RDF graphs, but also in fully exploiting the value of the data itself, that is,
being able to perform queries on the data that return relevant results in reasonable time. To
address these issues, numerous indexes for RDF graphs have been proposed, focusing on pro-
viding different operations and trade-offs between time efficiency and space consumption.[1]

One set of operations of interest, which are particular instances of Property Path queries,
are Regular Path Queries (RPQs). RPQs are used in graph databases to find paths between
nodes that match patterns specified by regular expressions. They are especially useful in
scenarios where either the path’s structure or length is not known in advance, or when one
wants to study the graph’s topology. RPQs can also be enhanced to traverse edges in both
forward and backward directions, known as two-way regular path queries or 2RPQs. The
problems related to efficiently handling 2RQPs and RQPs in the context of graph databases
are under active research. [19, 30, 6]

This work intends to address the research question: How can we efficiently solve 2RPQs on
RDF databases in terms of space and time? To this end, our main objective is to implement
a compact structure to represent RDF graphs and use it to develop a competitive algorithm
for solving 2RPQs.

Our starting point is the compact index for labelled directed graphs that has been recently
introduced by Navarro [26]. This index is inspired by the Burrows-Wheeler transform for
data compression, as it is based on encoding the graph as sequences of symbols that follow

1

certain special orderings akin to those of this technique. This approach avoids explicitly
storing all the nodes of the graph and results in asymptotically optimal space usage.

The sequences composing the index are supported using succinct structures such as bitvectors
[10] and GMR-arrays [17]. These structures are equipped with efficient Rank, Select and
Access (RSA) operations, while requiring negligible additional space beyond the optimum.
Based on this, we implement the body of methods designed by Navarro to retrieve valuable
information from the database, such as those for identifying neighboring nodes and extracting
the neighbors of a given node.

The next step in this work is to develop an algorithm that solves 2RPQs for this particular
representation of the database. We follow the approach of Arroyuelo et al. [3] and rely on
two central ideas. The first one is the handling of the regular expressions in the 2RQPs
using Glushkov automata, which has the advantage of a parallel traversal. Then, solving a
2RPQ corresponds to computing the pair of nodes that can be simultaneously traversed by
a path in the graph and by an accepted path in the automaton. The second important idea
is that the traversal in the graph can be efficiently carried out using the methods that we
implemented in the first part of the thesis. We hypothesize that the index’s methods, along
with this parallel product graph approach, will lead to a competitive solution for 2RPQS

We conduct several experiments for testing the time performance and space usage of our
algorithm. These are based on a popular real world RDF database: Wikidata [31]. The
competing algorithms that we consider are among the most popular stores systems for RDF
databases –Jenna, Virtuoso and Blazegraph–, along with the store of Arroyuelo et al. which
our approach is based on [3].

We propose the following specific objectives:

(1) Implement the compact structure for representing RDF graphs introduced by Navarro
[26].

(2) Implement a body of methods over the representation for an efficient retrieval of the
data.

(3) Implement an algorithm for solving 2RPQs based on a product graph approach that
integrates the aforementioned methods and a parallel traversal.

(4) Conduct experimental evaluations to measure and compare the time performance and
space efficiency of our solution using real-world RDF datasets.

Organization

We begin with Chapter 1, which introduces key concepts and reviews relevant literature on
RDF, SPARQL, RPQs, and compact data structures.

In Chapter 2, we present the proposed compact graph representation model, detailing its
structure, construction, and the operations it supports.

We describe, in Chapter 3, the algorithms for solving 2RPQs, covering both single-variable

2

and double-variable 2RPQs, utilizing the previously introduced representation.

In Chapter 4 we present the experiments conducted on a real-world RDF database, comparing
the model against existing benchmarks in query processing and space efficiency.

Chapter 5 concludes the document with a summary of the main findings and suggests direc-
tions for further research.

3

Chapter 1

Background and Related Work

This chapter is devoted to introduce the preliminaries that will be useful for the understanding
of the upcoming chapters.

1.1 Resource Description Framework

The Resource Description Framework [11], or RDF for short, is a database model that has
as atomic statements triples of the form (subject, predicate, object), where:

• the subject is an Internationalized Resource Identifier (IRI) [12] or a blank node, and
corresponds to an entity (e.g., a person or a building),

• the predicate is an IRI corresponding to a characteristic of the entity (e.g., profession
or location),

• the object is an IRI, a literal or a blank node, and corresponds to the value of the
predicate for the entity in question (e.g., musician or Santiago).

Here, IRIs represent resource identificators, literals represent strings and datatype values,
and blank nodes are for existential variables. IRIs, literals and blank nodes are collectively
known as RDF terms and are distinct and distinguishable. We call a set of RDF triplets an
RDF graph. Figure 1.1 illustrate a sample RDF graph, showcasing a network of academics
both in graphical format and represented as triples.

The simplicity and extensibility of this model have contributed to its widespread adoption
in various domains, including medicine, linguistics, and geography. Moreover, RDF is one of
the fundamental components of the semantic web, facilitating the interconnection of diverse
data sources across the Internet.

Large-scale projects encompassing hundreds of millions of triples, like YAGO [29] and Wiki-
Data [31], have motivated initiatives aimed at designing space and time efficient represen-
tations for RDF data and the algorithms that query such data. Luo et. al. [22] classify
these efforts according to three perspectives: relational, entity-centric, and graph-based ap-
proaches.

4

Subject Predicate Object
Alice mentored Bob
Alice cited Alice
Alice cited Dan
Bob refereedFor Dan
Dan cited Alice
Dan coauthorOf Grace
Dan coauthorOf Eve
Dan cited Bob
Eve cited Grace
Eve mentored Grace
Eve mentored Dan
Eve cited Bob
Eve coauthorOf Dan
Grace refereedFor Alice
Grace coauthorOf Dan

Figure 1.1: The table on the right describes an RDF database of researchers and their
relationships. The labeled directed graph on the left is a graphical representation of this
database. For simplicity, the terms are not prefixed with IRIs as it is usually the case.

The relational perspective represents the data by mapping it to relational database structures.
Here, much of the literature focuses on adapting techniques previously developed for this
class of databases. A straightforward example along these lines is a relational table where
the subjects, predicates and objects of the triples are the columns. Additional schemes that
follow this approach can be found in the works by Sakr et al. [28] and Luo et al. [22].

The entity perspective takes a node-centric view and interprets RDF subjects and objects
as entities with properties, where the latter correspond to the predicates. For this type
of representation, it is common to use inverted index data structures in conjunction with
techniques from the area of information retrieval [1].

Finally, the graph-based perspective, as its name suggests, represents the information as a
graph, where subjects and objects are nodes and predicates are the labels of directed edges.
For this method, it is common to adapt techniques used in other graph-oriented databases.
TurboHOM++ [20], DOGMA [9] and gStore [35] are examples of graph-based RDF stores.

1.1.1 SPARQL

Among the various query languages for RDF (such as RQL, RDQL or SeRQL), SPARQL -a
recursive acronym for SPARQL Protocol and RDF Query Language- has been accepted by
the community as the standard querying language [1].

The fundamental building blocks of SPARQL queries are basic graph patterns. A basic graph
pattern is essentially a group of triple patterns that are matched against the RDF data graph.
A triple pattern specifies a condition that data must satisfy. It has the form of an RDF triple
with the difference that one or more variables can substitute the values of subject, predicate

5

and object.

SELECT ?mentor ?mentee

WHERE {

?mentor mentored ?mentee .

?mentee refereedFor ?person .

}

?mentor ?mentee
Eve Grace
Alice Bob

Figure 1.2: SPARQL query utilizing a basic graph pattern to retrieve pairs of individuals
where one has mentored the other, and the mentee served as a referee for someone. The
evaluation of this query against the RDF data of Figure 1.1 results in the two pairs showed
in the table.

Figure 1.2 shows a SPARQL query for a basic graph pattern and its resulting evaluation.
The SPARQL syntax is similar to that of the SQL language, and the results obtained can be
returned in the form of tables or in a template to generate new data.

Property paths

Property paths queries are a feature added in SPARQL 1.1 that permits defining patterns
of relationships between resources by matching arbitrary length paths in the RDF graph. A
trivial case is a property path of length exactly 1, which is a triple pattern. The end of a
property path may be an RDF term or a variable. Variables cannot be used as part of the
path itself, only at the ends.

We follow the work of Kostylev et al. [21], and describe a property path query as follows. Let
I be a set of IRIs, L the set of literals, B the blank nodes, and V an infinite set of variables.
We set T = I ∪ L ∪ V . A property path expression is an expression of the grammar

e := a; ê; e1/e2; e1|e2; e+; e∗; e?; !a1, . . . , ak; !â1, . . . âk,

with a, a1, . . . , ak ∈ I. Here, ê denotes the inverse expression, / is the concatenation operator,
| is the logical disjunction, + is the Kleene plus, ∗ is the Kleene star, and !a1, . . . , ak is the
expression that avoids all the ai. Then, a property path pattern is a tuple in (I ∪ B ∪ V) ×
E × (T ∪ V), where E is the set of property path expressions. Finally, a property path query
is a SPARQL query with at least one property path pattern.

An example of a property path for the database from Figure 1.1 is the following:

(?x, ̂mentored/!(mentored|cited), ?y)

This query asks for all tuples (x, y) in which x has been mentored by someone who has
a relationship with y that is not mentoring or citing. The only pair that satisfies these
conditions is (Bob, Grace).

Another important type of query that allows pattern matching and traversal through graph
data structures are regular path queries (RPQ). While the syntax and applications of RPQs

6

and property paths differ, solving RPQs is roughly equivalent to solving property paths that
do not use inverses (ê) or negations (!a). The focus of our work will be to develop methods
for handling RPQs. We introduce them in the next section.

1.2 Regular Path Queries

Regular path queries, or just RPQs, are a fundamental concept for graph databases [24]. It
allows searching for paths within a graph that match a certain regular expression condition
over the edge or node labels. RPQs are instrumental in a wide range of applications where the
relationships between the entities and therefore the topology of the graph are as important as
other data attached to the entities, such as social networks, biological networks or semantic
web data.

Definitions

We formalize RPQs as follows. Let G = (V,E) be a graph, where E ⊆ V ×L× V is a set of
labeled edges and V the set of nodes. A path ρ in G is a sequence of edges (e1, ..., en), with
n ≥ 0 and ei = (si, pi, oi), such that oj = sj+1, for j ∈ {1, . . . , n − 1}. In other words, each
edge within a path initiates from the node where the preceding edge ends. If n = 0, then we
call ρ the empty path. The labels of ρ is the sequence labels(ρ) = (p1, ..., pn). Finally, we say
that s1 is the starting node of ρ and on is the ending node of ρ.

A regular expression over an alphabet L is obtained as follows:

(1) Any element of L is a regular expression.

(2) The element ϵ is a regular expression, called the empty path.

(3) If R,R1, and R2 are regular expressions, then the Kleene star R∗, the concatenation
R1/R2, and the disjunction R1|R2 are regular expressions.

We abbreviate R∗/R as R+ and ϵ|R as R?.

A regular path query Q is an expression of the form (x,R, y) where x, y are either in V or are
variables representing an element of V , and R is a regular expression over L. We define the
evaluation of Q on G as the set of pairs (s, o) such that there exists a path ρ starting at s,
ending at o, and where labels(ρ) matches R.

To illustrate the definitions, let us consider again the RDF graph of Figure 1.1. Imagine we
wish to identify the individuals linked through a sequence of citations starting from Alice,
and then obtain a list of their students. The RPQ that encodes this query is

(Alice, cited+/mentored, ?x),

which, in this case, yields one solution tuple: (Alice, Bob).

If we now want to obtain the mentors of those who are linked through a sequence of citations
starting from Alice, instead of their students, we need to traverse certain edges in the opposite
direction. To address this issue, RPQs are often augmented with the capability to traverse

7

edges both forwards and backwards. The queries obtained in this way are called two-way
regular path queries, or 2RPQs for short.

We formalize a 2RPQ as follows. Let L̂ = {ŝ : s ∈ L} be the set of formal inverses of the
symbols in L, and let L↔ = L ∪ L̂. The inverses satisfy L ∩ L̂ = ∅ and s = ˆ̂s. We denote by
Ĝ = {(y, p̂, x) : (x, p, y) ∈ G} the inverse of the graph G, and by G↔ = G∪ Ĝ the completion
of G or the extended G.

A 2RPQ is a regular expression over L↔. Note that the inverse R̂ of a 2RPQ R, which is
defined as R read backwards and with each symbol inverted, is also a 2RPQ. A 2RPQ is an
RPQ (x,R, y) on G↔, and its evaluation on G is the same as its evaluation on G↔ as an
RPQ over L↔. Thus, 2RPQs are essentially the same as property path queries that do not
use negations.

The 2RPQ that modifies the prior example and asks for the mentors of those who are linked
through a sequence of citations starting from Alice, is the following:

(Alice, cited+/ ̂mentored, ?x)

The evaluation of this query results in the pairs (Alice, Alice) and (Alice, Eve).

Solving RPQs

Efficiently retrieving results for RPQs has motivated the development of various strate-
gies. These efforts can be broadly categorized into datalog-based, search-based, index-based,
automata-based strategies or a combination of them. We summarize the approaches in the
following.

(1) Datalog-based strategies involve rewriting the RPQs using Datalog rules, for example
by translating the Kleene star operator into recursive Datalog or SQL programs, and
the subsequent utilization of Datalog engines for the query evaluation over the graph
data. These approaches particularly excels in handling extensive, distributed graph
databases, although its expressive power is limited to the Datalog/SQL-based methods.

(2) Search-based approaches mainly rely on graph traversal algorithms to find the paths
complying with the RPQ. Common techniques encompass pattern matching, BFS, DFS
or using an auxiliary distance matrix. As an example, Baier et al. [6] use the classic
AI search A∗-algorithm.

(3) The index-based approaches, as their name suggests, employ auxiliary indexes for speed-
ing up specific operations. Some examples are 3-Dimensional distance matrices, d-Path
indexes, or Join-ahead pruning. The main challenge of this method is the potential
massive index size. For instance, the computational cost associated with the indexes
from [19, 30, 34], is O(|V |2), where |V | represents the number of nodes in the graph
database. This increase is not practical when dealing with massive databases, especially
when working with in-memory storage.

(4) Automata-based approaches involve converting the regular expression and the graph
into nondeterministic or deterministic finite automata, for example using Thompson’s

8

construction, to subsequently navigate them to guide the search for matching paths.
It is also common to intersect the resulting automata, as that yields the subgraph
specified by the query. The downside is that automata-based methods may lead to a
runtime complexity of O(|V | · |S|), where |V | is the number of nodes in the graph and
|S| is the number of automaton states. This means mapping every state onto every
node, which can be inefficient.

The Ring

Let us briefly describe the work of Arroyuelo et. al. [3], which is an important motivation to
our approach for solving RPQs and the main benchmark we use in Chapter 4.

Originally developed to optimize join queries [5], the ring is an in-memory compressed RDF
graph representation that uses almost the same amount of storage as a basic representation
of graph triples.

The ring, inspired by the Burrows-Wheeler Transform (BWT), adapts a previously dictionary-
encoded RDF graph into a bidirectional, circular index that covers all triple permutations.
Specifically, the n RDF triples are rotated according to the patterns (s, p, o), (p, o, s), and
(o, s, p), where s denotes the subjects, p predicates, and o objects. For each of these rotation
patterns, the triples are sorted lexicographically and the last term of the triples are stored
into three sequences: Lo, Ls, and Lp. The concatenation of the resulting sequences is what is
akin to the Burrows–Wheeler Transform (BWT) of the concatenation of all triples. Formally:

• Lo[1 . . . n] contains the objects o from the list of lexicographically sorted triples (s, p, o).

• Ls[1 . . . n] contains the subjects s from the list of lexicographically sorted triples (p, o, s).

• Lp[1 . . . n] contains the predicates p from the list of lexicographically sorted triples
(o, s, p).

In a later article [3], the authors used the ring to design a novel algorithm that evaluates
RPQs. We give an overview of their approach.

The case with double-variables queries is handled by reducing it to a set of single-variable
queries. Furthermore, the authors reduce queries of the form (s, R, x) to the case (x, R̂, s),
where R is the inverted regular expression. This reduction is possible as they build the ring
on an extended version of the RDF graph that includes the inverted edges. This also has
the advantage of enabling 2RPQs, but it has the drawback of using twice the storage of a
compact data representation.

Let us now describe their method for solving a single-variable RPQ of the form (y,R, o),
where y is the variable. They first build the bit-parallel Glushkov automaton for the reg-
ular expression R, as presented in Subsection 1.3. Then, they simultaneously, traverse the
Glushkov automaton and the ring, starting from the final states of the automaton and from
the vertex o. Each step consists of three parts:

(1) Identify the predicates associated to the current object o, which are the elements of an
interval in Lp containing all edges with object o.

9

(2) For each obtained predicate p, identify the subjects s of edges of the form (s, p, o),
which are the elements of an interval in Ls.

(3) Reinterpret each subject s as an object o, and for each of them create a new branch
that starts from part 1.

Branches are discarded after parts 1 and 2 if the resulting ranges in Lp or Ls become empty,
or if the automaton becomes inactive. The current node s is reported as a solution when the
initial state of the automaton is reached.

One of the advantages of the ring is that obtaining the predicates and subjects in part 1
and 2, respectively, can be computed in batch using the ring’s so-called backward search.
Furthermore, they use wavelet trees [18] to store the sequences, which have the ability to
work on ranges of symbols to carry out steps 1 and 2 in such a way that optimal time is
spent in identifying the resulting predicates and subjects.

As a result of the previous two advantages and the use of the bit-parallel navigation of the
automaton, the authors achieved on average 2.8 times faster query performance than their
competitors, and 3–5 times less storage compared to the state-of-the-art graph databases
designed for RPQs [3].

1.3 Glushkov Automata

We proceed to describe an efficient method for determining if a word satisfies a given regular
expression. The starting point is the description of a regular expression as a nondeterministic
finite automaton (NFA), which we now define.

LetR be a regular expression. An automaton describing R is a quintupleGR = (Q,LR,∆, q0, F),
where:i need to put a — inside a

(1) Q is a set of states with |Q| elements,

(2) LR is the set of symbols occurring in R together with, maybe, the empty word ε,

(3) ∆ are the transitions,

(4) q0 is the initial state,

(5) F is a binary word of length |Q| that indicates the set of final states,

such that a word w satisfies R if and only if there is a path in GR reading w from the initial
state to a final state.

There are several constructions for an automaton describing R. The one that best fits our
needs is the Glushkov Automaton [14]. This is a type of NFA with interesting properties
that makes it useful in the context of formal language theory and regular expressions. Its
main properties are stated in Theorem 1.1 below.

10

Theorem 1.1 ([7, 14]) Let R be a regular expression on m symbols. There is an automaton
GR = (Q,LR,∆, q0, F) describing R, –Glushkov automaton– such that:

(1) There are no ε-transitions, i.e., ε ̸∈ LR.

(2) There are exactly m+ 1 states, that is, |Q| = m+ 1.

(3) All the transitions arriving at a state have the same label.

The automaton can be constructed in O(m2) time and uses Θ(m2) space.

The properties in Theorem 1.1 permit to define procedures to traverse the Glushkov automa-
ton non-deterministically. In the rest of this section, we present the bit-parallel traverse of a
Glushkov automaton, which has the advantage of allowing fast, non-deterministic traversal
of the automaton, both forwards and backwards.

LetR be a regular expression withm symbols in L andGR = (Q,LR,∆, q0, F) be its Glushkov
automaton. We start with the following observation: The properties in Theorem 1.1 imply
that

(□) In GR, the states reached in one step from a set X of states by symbol c are the
intersection of those reached from X in one step and those states reached by c from
any state.

Let us write, for simplicity, LR = {1, . . . , σ}, Q = {1, 2, . . . ,m + 1} and q0 = 1. We denote
by

(1) D a binary word containing m + 1 bits, which represents a non-deterministic state of
GR, i.e., a subset of Q,

(2) B[1, . . . , σ] a table containing binary words of length m + 1, in which B[c] indicates
with 1s the states targeted by transitions labeled c,

(3) T [0, . . . , 2m+1−1] a table storing in T [X], whereX is a (m+1)-bit argument representing
a subset of Q, the set of states reachable from X in one step using any symbol.

We use the symbol & to denote the bit-wise and operator. Then, (□) ensures that

(△) T [D] & B[c] is the binary array of length m + 1 indicating the states of GR that are
reachable from D using a transition labeled c.

Then, the non-deterministic forward traversal of GR can be done as follows:

(1) Set D ← 2m+1 to activate the initial state q0.

(2) If D & F ̸= 0, then we have reached a final state, and the word that has been read so
far is accepted.

(3) If D = 0, then there are no more active states, and the procedure ends.

11

(4) For each input symbol c, we use (△) to update D as

D ← T [D] & B[c].

(5) Return to the second step.

It is also possible to read the input text in reverse. For this, we first build a table T ′[0, . . . , 2m+1−
1] such that T ′[X] marks with 1s the states that reach some state in X in one step. Then,
use the following procedure:

(1) Set D ← F to activate the final states.

(2) If D & 2m+1 ̸= 0, then we have reached a final state, and the word that has been read
so far is accepted.

(3) If D = 0, then there are no more active states, and the procedure ends.

(4) For each input symbol c, we update D using the formula

D ← T ′[D & B[c]].

(5) Return to the second step.

The space complexity of the forward or backward traversal is of O(2m+σ) bits. Precomputing
B and T (or T ′) takes O(2m) time.

As an example, consider the set of symbols consisting of the predicates from Figure 1.1. The
regular expression

(cited+/ ̂mentored)|cited (1.1)

can be represented by the Glushkov automaton depicted in Figure 1.3.

Figure 1.3: Glushkov Automaton for the regular expression from (1.1). Note that, in this
case, m = 3.

12

1.4 Compact Data Structures

Amidst the rapid growth in data storage and processing, the demand for efficient and space-
saving data structures has become increasingly important. Compact structures address this
need by aiming to prioritize minimal memory usage while upholding robust data representa-
tion and functionality.

Three basic operations when working with compact structures are rank, select and access (or
RSA). We define them as follows.

Let S[1, n] be a sequence on the alphabet Σ = {1, . . . , σ} and a ∈ Σ a letter, then:

• access(S, i) returns the letter in S[i], for any 1 ≤ i ≤ n.

• ranka(S, i) returns the number of occurrences of a in S[1, i], for any 1 ≤ i ≤ n. In
particular, we assume ranka(S, 0) = 0.

• selecta(S, j) returns the position of the j-th occurrence of a in S, for j ≥ 0. We assume
selecta(S, 0) = 0 and selectc(S, j) = n+ 1 if j > ranka(S, n).

We write by default rank1 and select1 as rank and select, respectively.

Two important algorithms that are enabled by the RSA operations are the predecessor and
the successor functions. The predecessor preda(S, i) gives the position of the last occurrence
of a in S[1 . . . i], and can be computed using the formula

preda(S, i) = selecta(S, ranka(S, i)).

Similarly, succc(S, i) = selecta(S, ranka(S, i− 1) + 1) is the position of the first occurrence of
c in S[i . . . n].

We now present the compact data structures for storing binary and general sequences that
we will use in later chapters.

1.4.1 Bitvectors

A bitvector (also known as bitmask or bit array) B is a structure that describes a sequence
of size n over the alphabet Σ = {0, 1}. Bitvectors are the basis of many compact structures,
so numerous representations have been developed. There is usually a trade-off between
availability and time complexity of the RSA operations and space complexity of the structure.
For instance, a length-n bitvector B can be stored using n ·H0(B) bits, where H0 is the zero-
order entropy, at the same time that rank and select can be done in O(1) and O(log n) time,
respectively. In turn, if we increase the store complexity to n+ o(n), then we can implement
the so-called plain bitvector, which supports constant time for the three RSA operations.

In this work, we will use plain bitvectors. Their main properties are summarized in the
theorem below.

Theorem 1.2 ([10]) Let B be a binary sequence of length n. Then, it is possible to store B
in such a way that:

13

(1) n+ o(n) bits are used, and

(2) rank, select and access require O(1) time.

We briefly describe the structure of binary sequences used in Theorem 1.2 and how their
RSA algorithms achieve O(1) time.

The discrete interval {1, 2, . . . , k} is denoted by [k]. Let B be a binary sequence of length n.
We use n bits to store it as a regular array, which permits computing access in constant time.
For each of rank and select, we will introduce additional structures of o(n) bits to ensure O(1)
time for those operations.

Let us start with rank. We divide B into super-blocks Bi of length p = (log n)2/2. We
store in an array S[1, n/p] the answers to rank1(B, i) for all positions i that indicate the end
of a super-block Bi. Since S[1, n/p] only contains integers in [p], we require no more than
(n/p) · log p = o(n) bits to store S[1, n/p].

Next, we divide each super-block Bi into blocks Bi,j of length q = (log n)/2. As with super-
blocks, we store in an array Ri[1, p/q] the results of rank1(Bi, k) for all positions k that
indicate the end of a block Bi,j. This time, we use (p/q) · log(p/q) bits for each Ri; since
there are n/p arrays Ri, the total used space is of at most n · (2 log log n)/ log n bits, which
is o(n).

The last step of the construction is storing in a table T : [2q] × [q] → [q] the results of rank
for all binary sequences C of length q (note that C is seen as an element of [2q]). This uses
at most 2q · q · log(q) = O(n1/2 log log n) bits, which is o(n) space complexity.

The final step is to recover rank from S, R and T . Note that, for binary sequences,
rank1(B, i) = i − rank0(B, n), so it is enough to implement rank1(B, i). For i ∈ [n], we
decompose i in terms of the lengths of the hierarchical decomposition that we have defined
for B. More precisely, we can uniquely write i = j · p + k · q + r where j ∈ [n/p], k ∈ [p/q]
and r ∈ [q]. Then,

rank1(B, i) = S[j] +R[j · (p/q) + k] + T [C][r],

where C = B[j · p+ k · q, j · p+(k+1) · q]. The decomposition of i is O(1) time, so rank ends
up having O(1) time.

It rests to implement select. This can be done with the same idea that we used for rank, but
with a modification: instead of using constant-length blocks (super-blocks), we choose their
lengths in such a way that the numbers of 1s in each block (super-block) is constant. This
will require o(n) additional bits and yield O(1) time for select.

1.4.2 GMR Sequences

We now turn to consider sequences over general alphabets. We will focus on the compact
data structure introduced by Golynski, Munro and Rao [17], which we call GMR sequences.
The following theorem summarizes the main aspects of this representation.

Theorem 1.3 (Item (1), Theorem 2.2, [17]) Let Σ = {1, 2, . . . , t} be a finite alphabet and

14

x ∈ Σn be a sequence over Σ of length n ≥ t. The GMR representation of x is such that

(1) it can be stored using n log(t) + o(n log(t)) bits, and

(2) it supports rank and access in O(log log(t)) time, and select in O(1) time.

We review, in the rest of this subsection, the construction of the GMR sequences. Let x ∈ Σn

be a sequence over Σ = {1, . . . , t}. The construction used in Theorem 1.3 has three parts.
First, we decompose x into chunks and blocks, and define efficient block operations, based on
bitvectors, to access to them. Then, we treat each chunk independently and introduce local
operations for them. Finally, the two types of operations are combined to get support for
rank, access and select.

We start with some preliminaries. Let us write [k] for the discrete interval {1, 2, . . . , k}. As
t ≤ n, we can assume for simplicity that t divides n.

Let T : [t]× [n]→ {0, 1} be the binary table such that

T [c, i] = 1 if and only if c occurs at position i of x.

We define the bitvector B as the concatenation of the rows of T [c, 1]T [c, 2] . . . T [c, n] in
increasing order. Note that B has length tn. Also, there is a simple relationship between the
operations rankc(x, j) selectc(x, i) on x and rank1(B, j) and select1(B, i) on B:

rankc(x, j) = rank1(B, (c− 1)n+ i)− rank1(B, (c− 1)n),

selectc(x, i) = select1(B, rank1(B, (c− 1)n) + i))− (c− 1)n.

We now describe the main part of the construction.

Part 1. Partitioning x into chunks. We decompose x into chunks Ci = x[it + 1]x[it +
2] . . . x[(i + 1)t] of length t. Similarly, B is partitioned into blocks Bi of length t. Note that
there are n/t chunks and n blocks. Observe also that B is obtained from x in the same way
that BiBi+n/t . . . Bi+(t−1)n/t is obtained from Ci. Thus, to obtain access to the chunks Ci, it
is enough to have adequate algorithms for B. We provide such algorithms in the following.

Define the block operations:

rank-b(it) = rank1(B, ti) and select-b(i) =

⌊
select1(B, i)

t

⌋
. (1.2)

We have that rank-b(it) is the number of 1s seen in B1B2 . . . Bi, and that select-b(it) is the
block number to which the i-th 1 of B belongs.

We implement the operations in (1.2) as follows. Set ki = rank-b(it) − rank-b((i − 1)t) and
B′ = 1k101k20 . . . 1kn0. Observe that the block operations in (1.2) can be computed using
RSA algorithms on B′:

rank-b(it) = rank1(B
′, select0(B

′, i)),

select-b(i) = rank0(B
′, select1(B

′, i)).

15

Thus, as B′ has length 2n, a plain bitvector implementation for B′ (see Subsection 1.4.1)
yields 2n + o(n) bit-space complexity and O(1) time complexity for both block operations
rank-b(it) and select-b(i).

Part 2. Local operations on chunks. The local operations are based on the efficient represen-
tation of permutation of Munro et al. [25]. Let Ci be a chunk of x, ℓi,j be the number of times
that j occurs in Ci, and ki,j(1), ki,j(2), . . . , ki,j(ℓi,j) the (possibly empty) list of positions at
which j occurs in Ci, written in increasing order. We define the sequence

πi = ki,1(1), . . . , ki,1(ℓi,1), ki,2(1), . . . , ki,2(ℓi,2) . . . ki,t(1), . . . , ki,t(ℓi,t).

Then, πi is a permutation of [t]. We encode πi using the representation of Munro et al. [25],
which has the following properties:

(1) it uses t log(t) + o(t log t) bits of space, and

(2) it supports computing π in O(1) time and π−1 in O(log log(t)) time.

We also define the bitvector
Di = 01ℓi,101ℓi,2 . . . 01ℓi,t .

As Di has length 2t, using the plain bitvector implementation from Subsection 1.4.1 yields
2t + o(t) bit-space complexity and O(1) time for RSA operations. This bitvector facilitates
the computation of the local operations access and select on Ci:

access(Ci, j) = rank0(Di, select1(Di, π
−1
i (j))),

selectc(Ci, j) = πi(select0(Di, c) + j − c).

Remark that these formulas yield the time complexities O(log log(t)) and O(1), respectively.

It rests to implement the local operation rank on Di. For j ∈ [t], we store the positions Ei,j

corresponding to log(t)-th occurrence of j in Ci within a y-fast trie Fi,j [33]. As j occurs
ki,j times in Ci, there are at most ki,j/ log(t) elements stored in Fi,j. Hence, Fi,j satisfies the
following:

(1) it uses O(ki,j) bits;

(2) it supports rank1(Fi,j, k) in O(log log(t)) time.

Note that rank1(Fi,j, k) permits to approximate rank1(Ci, k) using that

log(t) · rank1(Fi,j, k) ≤ rank1(Ci, k) < log(t) · rank1(Fi,j, k) + log(t). (1.3)

Then, a binary search between the positions log(t) · rank1(Fi,j, k) and log(t) · rank1(Fi,j, k) +
log(t) of Ei,j yields the value rank1(Ci, k).

The time cost for computing the approximation (1.3) is O(log log(t)), which is also the cost of
a binary search in Ei,j in an interval of length at most log(t). Therefore, this implementation
of rank1(Ci, k) has a time cost of O(log log(t)). To estimate the space complexity, we first
note that there are n/t permutations πi, n/t bitvectors Di, and that the sum of the ki,j is

16

exactly the length n of x. Hence, we have used no more than

(n/t) · (t log(t) + o(t log(t))) + (n/t) · (2t+ o(t)) +
∑
i,j

O(ki,j) = n log(t) + o(n log t) bits.

Part 3. From block and local operations to global ones. It is not difficult to check that

rankc(x, j) = rank-b(it) + rankc(Ci, j − it), and

access(x, j) = access(Ci, j − it),

where i = ⌊j/t⌋, and that

selectc(x, j) = selectc(Ci, j − rank-b(it− t)) + (i− 1)t,

where i = select-b(j). It then follows from the computations from Parts 1 and 2 that
rankc(x, j), access(x, j) and selectc(x, j) can be computed in O(log log(t)), O(log log(t)) and
O(1) time, respectively.

1.4.3 SDSL: Succinct Data Structure Library

The Succinct Data Structure Library (SDSL) [15] is a C++ library that provides a collection
of compressed data structures and algorithms for efficiently managing and manipulating
large volumes of data, and has been shown in practice to obtain spaces and times close to
the theoretical ones.

We will implement the graph representation from Chapter 2 by relying on the SDSL li-
brary. Specifically, for the plain bitvectors we use the class bit vector with the methods
rank support v and select support mcl, and, for the GMR sequences, we use the class
wt gmr.

17

Chapter 2

Graph Representation

This chapter is devoted to describing the implementation of the compact graph structure
introduced by G. Navarro [26] and the operations it supports. We also analyze its theoretical
time- and space-complexities and present its building algorithm.

2.1 Description of the Data Structure

Let G be a directed labeled graph over a set of labels L. We represent G as a pair G = (V,E),
where V is the set of nodes and E ⊆ V × L × V is the set of edges. We write the edges
of G as (s, l, o) and use the language of graph databases, that is, we call the elements in L
predicates or labels, and the elements in V subjects or objects. The cardinalities of V , E and
L are denoted by n, e and λ, respectively. For simplicity, we assume that V = {1, . . . , n}
and L = {1, . . . , λ}.

Our representation consists of sequences L, BL, N and BN , that we define as follows.

Consider the set {(si, li, oi) : 1 ≤ i ≤ e} of all edges, lexicographically sorted, first with
respect to s, then o and finally l. Then, we define L as the sequence [l1, l2, . . . , le]. In this
way, L can be seen as an ordered concatenation of subsequences Ls (for s ∈ V), which contain
the labels for all the triples with subject s. Similarly, for each Ls, we have smaller divisions
Ls,o representing all the edges with subject s and object o.

To identify the length of each segment Ls, we define the binary sequenceBL = 10|L1|10|L2|1 · · · 0|Ln|.
Note that |BL| = n+ e.

The sequences N and BN are defined similarly. Let {(si, li, oi) : 1 ≤ i ≤ e} be the set
of all edges, lexicographically sorted, first with respect to l, then s and finally o. We set
N = [o1, . . . , oe]. Observe that N is the ordered concatenation of the subsequences Nl (for
l ∈ L) containing the objects oi such that li = l, and that, for each Nl, we have smaller
divisions Nl,s representing all the edges with predicate l and subject s. Based on the lengths
of the Nl segments, we define BN = 10|N1|10|N2|1 · · · 0|Nλ|. We have that |BN | = λ+ e.

Figure 2.1 shows the sequences N,L,BL, and BN for the database from Figure 1.1.

18

Figure 2.1: The figure is divided into two parts: On the left, we present the numerically
encoded version of the graph from Figure 1.1, along with its corresponding translation to
the original terms. The diagram on the right shows how N is derived from the triples sorted
by p, then s, then o, with the red arrows highlighting transitions in the predicates. These
transitions mark the beginnings of the Nl segments and lead to the 1s in BN . Similarly, the
equivalent figure for L and BL is illustrated using the triples under the other order.

19

Note that our representation does not explicitly store the subjects of the edges, as they are
only implicitly associated with the Ls segments. To retrieve the original triplets and other
useful information about the graph, we can use RSA operations on the sequences L, BL, N
and BN . This will be detailed in the next section.

2.2 Basic Graph Operations

The first group of methods that our representation supports corresponds to classical opera-
tions from the literature: to obtain, for a given node, its indegree, outdegree, neighbors set
and reverse neighbors set; and to decide whether two nodes are adjacent. We formalize these
operations as follows.

• adj(G, u, v): Returns 1 if there exists an edge from u to v; equivalently, whether
(u, l, v) ∈ G belongs to G for some l.

• neigh(G, u): returns the list of neighbors of u, i.e., {v : ∃l s.t. (u, l, v) ∈ G}.

• rneigh(G, v): returns the list of reverse neighbors of v, i.e., {u : ∃l s.t. (u, l, v) ∈ E}.

• outdegree(G, u): returns the number of neighbors of u, i.e., |neigh(u)|.

• indegree(G, v): returns the number of reverse neighbors of v, i.e., |rneigh(v)|.

We also aim to support the analogous operations adjl, neighl, rneighl, outdegreel and
indegreel, which do the same as the ones above but work on the subgraph Gl consisting of
all the edges with label l.

Let us start by computing the outdegree of a node v. Note that a segment Lv is associated
with all the triplets having that fixed v. Thus, the length of Lv is equal to the outdegree of
v. We can obtain the beginning and end of Lv using select(BL, v) and select(BL, v + 1),
respectively. To obtain the indegree of a node v, we can simply count the occurrences of v
as an object in N using rankv(N, e). The methods for outdegree and indegree are shown in
Algorithm 1.

Algorithm 1

1: procedure Outdegree(G, v)
2: b1 ← select(BL, v)
3: b2 ← select(BL, v + 1)
4: return b2 − b1 − 1

5: procedure Indegree(G, v)
6: return rankv(N, e)

We now explain how to compute Neigh(G, v). The strategy is the following. Let j ≥ 1. We
first find the j-th element l of Lv, which is associated with a certain edge e ∈ E. Then, we
search the segment Nl for the object corresponding to e. Finally, to obtain the neighbors set
of v, we iterate the previous procedure over the all the indexes j ∈ [1,Outdegree(v)].

20

The starting point of Lv is equal to select(BL, v)−v; then, the position of l in Lv is obtained
by including the offset j, that is,

l = L[p], with p = select(BL, v)− v + j.

Next, we can identify the beginning of the segment Nl as select(BN , l)− l. It only remains
to add the offset in Nl of the occurrences of the labels l that appear before, in L, than the
label of the j-th neighbor of v. This can be obtained by counting the occurrences of l in
L[1, . . . , p] using rankl(L, p). Therefore, the j-th neighbor of v is equal to

N [select(BN , l)− l + rankl(L, p)].

Algorithm 2 details this method. Note that there is no additional cost in returning the label
associated with each neighbor.

Algorithm 2

1: procedure Neigh(G, v)
2: for each j ∈ [1 . . . outdegree(v)] do
3: p← select(BL, v)− v + j
4: l← access(L, p) ▷ label associated with the j-th neighbor
5: q ← select(BN , l)− l
6: m← rankl(L, p)
7: S[j]← access(N, q +m)

8: return S

We continue with rneigh. Let j ≥ 1. We first consider the j-th occurrence of v in N , which
is associated with a certain edge e ∈ E and is contained in a segment Nl. Then, we search
the segment L for the label corresponding to e. This occurrence is contained in a segment Ls,
and s is reported as the j-th reverse neighbor of v. Finally, the reverse neighbors set of v is
obtained by iterating the previous procedure over the all the indexes j ∈ [1, Indegree(v)].

The j-th occurrence of v in N is at position p = selectv(N, j). Then, p is contained
in the segment Nl, where l = select0(BN , p) − p. Now, the segment Nl in N starts at
q = select(BN , l)− l+1. Thus, the j-th occurrence of v in N corresponds to the (p−q+1)-
th e labeled l, and therefore to the position r = selectl(L, p − q + 1) of L. We finally
obtain our target node as s = select0(BL, r)− r. The pseudocode of this method is given
in Algorithm 3.

Algorithm 3

1: procedure Rneigh(G, v)
2: for each j ∈ [1 . . . indegree(v)] do
3: p← selectv(N, j)
4: l← select0(BN , p)− p ▷ label associated with the j-th reverse neighbor
5: q ← select(BN , l)− l + 1
6: r ← selectl(L, p− q + 1)
7: S[j]← select0(BL, r)− r

8: return S

21

One of the disadvantages of our representation is that there is no direct way of checking if
two nodes are adjacent. The only way of doing so is by iterating the method Adjl for each
label l, which we now define.

Let l ∈ [1, . . . , λ]. To decide whether there is an edge from v to u in the subgraph Gl, we
identify the subsegment of Nl corresponding to the subject v (recall that the lexicographical
order we used to define N was with respect to p, then s, and finally o) and check if u occurs
in it. To do this, we first locate the beginning of the segment Nl using r = select(BN , l)− l.
Then, to get the offset at which the objects associated with v begin, we must count the
number of edges having predicate l and whose subjects are less than v. This can be done
using the formula

q1 = rankl(L, p1), where p1 = select(BL, v)− v.

Note that p1 is the beginning of the segment Lv and that r + q1 is the beginning of the
subsegment of Nl for the subject v. Similarly, p2 is the end of Lv and r + q2 is the end the
subsegment of Nl for the subject v, where

p2 = select(BL, v + 1)− (v + 1) and q2 = rankl(L, p2).

Then, there is an edge from v to u if and only if

ranku(N, r + q2)− ranku(N, r + q1) is equal to 1.

We refer the reader to Algorithm 4 for the pseudocodes of Adj(v, u) and Adjl(v, u, l).

Algorithm 4

1: procedure Adj(G, u, v)
2: for each l← 1 . . . λ do
3: if Adjl(G, u, v, l) then
4: return True

5: return False

6: procedure Adjl(G, v, u)
7: r ← select(BN , l)− l
8: p1 ← select(BL, v)− v
9: p2 ← select(BL, v + 1)− (v + 1)

10: q1 ← rankl(L, p1)
11: q2 ← rankl(L, p2)
12: if rankN(r + q2, u)− rankN(r + q1, u) = 1 then
13: return True

14: else
15: return False

Let us now implement Outdegreel and Indegreel. To get the outdegree of a node v in
the subgraph Gl, we can count all the edges l in the interval L1 . . . Lv and then subtract the

22

number of those in L1 . . . Lv−1. The ends of these intervals correspond to the beginning and
end of Lv, so they are given by

p1 = select(BL, v)− v and p2 = select(BL, v + 1)− (v + 1), respectively.

Finally, the answer is given by rankl(L, p2)− rankl(L, p1).

Similarly, Indegreel is equal to the difference between the number of times that v appears
in N1 . . . Nl−1 and in N1 . . . Nl. Note that ends of these intervals are given by

r1 = select(BN , l)− l and r2 = select(BN , l + 1)− (l + 1), respectively.

So, Indegreel = rankv(N, r2)− rankv(N, r1).

Algorithm 5 presents the pseudocode for Outdegreel and Indegreel.

Algorithm 5

1: procedure Outdegreel(G, v)
2: p1 ← select(BL, v)− v
3: p2 ← select(BL, v + 1)− (v + 1)
4: return rankl(L, p2)− rankl(L, p1)

5: procedure Indegreel(G, v)
6: r1 ← select(BN , l)− l
7: r2 ← select(BN , l + 1)− (l + 1)
8: return rankv(N, r2)− rankv(N, r1)

We end the section by describing the algorithms for Neighl and Rneighl.

The neighbors of v in the subgraph Gl are the objects in the subsegment Nl,v of Nl that
corresponds to the subject v. Recall that we determined the subsegment Nl,v when we
presented the algorithm for Adjl. In particular, we know that its beginning is at r+q, where

r = select(BN , l)− l, q = rankl(L, p) and p = select(BL, v)− v.

Then, the neighbors set of v in Gl is given by

{N [r + q + j] : j ∈ [1 . . .Outdegreel(v)]}.

We now describe how to obtain the j-th reverse neighbor of v in Gl. Recall that Nl starts at
position r = select(BN , l)− l of N . Thus, the position in N of the j-th occurrence of v in
Nl can be calculated as

t = selectv(N, p), where p = rankv(N, r) + j.

The position t in N corresponds to the position q = selectl(L, t − r) of L. Then, q is a
position inside a subinterval Ls, and we report s as the j-th neighbor.

The last two procedures are detailed in Algorithm 6. Illustrative examples for Neighl and
Rneighl are depicted in Figures 2.2 and 2.3, respectively.

23

Algorithm 6

1: procedure Neighl(G, v)
2: p← select(BL, v)− v
3: q ← rankl(L, p)
4: r ← select(BN , l)− l
5: for each j ∈ [1 . . . Outdegreel(v)] do
6: S[j]← access(N, r + q + j)

7: return S

8: procedure Rneighl(G, v)
9: r ← select(BN , l)− l

10: for each j ∈ [1 . . . Indegreel(v)] do
11: p← rankv(N, r) + j
12: t← selectv(N, p)
13: q ← selectl(L, t− r)
14: S[j]← select0(BL, q)− q

15: return S

Figure 2.2: Illustration of the computation of neigh2(G, 4) for the graph from Figure
2.1. This query is equivalent to retrieving the neighbors of Eve who are connected by the
coauthorOf relationship. The variables r, q and p correspond to those in Algorithm 6.

Figure 2.3: Illustration of the computation of rneigh1(G, 2) for the graph from Figure 2.1.
This query asks for the reverse neighbors of Bob that are connected to him by an edge whose
label is cited. The variables r, p, t and q correspond to those in Algorithm 6.

24

2.3 Additional Graph Operations

Due to the nature of our representation, other operations that provide additional information
about the graph can be implemented efficiently. We describe them in this section.

• accessl(G, j): returns the j-th edge with label l in Gl.

• countl(G): returns the number of edges with label l, i.e., |{(u, v) : (u, l, v) ∈ E}|.

• sourcesl(G): returns the nodes u that are the origin of an edge with label l, i.e.,
{u : ∃v s.t. (u, l, v) ∈ E}.

• targetsl(G): returns the nodes v that are the target of an edge with label l, i.e.,
{v : ∃u s.t. (u, l, v) ∈ E}.

In the rest of this section, we describe algorithms for implementing the previous operations.

We can straightforwardly implement countl using rankl(L, e). See Algorithm 7.

Algorithm 7

1: procedure countl(G)
2: return rankl(L, e)

Next, we consider accessl(G, j). Let e = (v, l, u) be the edge associated with the j-th
occurrence of l in L. That occurrence of l in L is at position p = selectl(L, j). Then, Lv

is the subsegment of L containing p, where v = select0(BL, p) − p. Finally, to obtain the
position of u in N , we compute the start of the subsegment Nl using select(BN , l)− l and
then add the offset j, that is,

u = access(N, q), where q = select(BN , l)− l + j.

The pseudocode is shown in Algorithm 8.

Algorithm 8

1: procedure accessl(G, j)
2: p← selectl(L, j)
3: v ← select0(BL, p)− p
4: q ← select(BN , l)− l + j
5: u← access(N, q)
6: return (v, l, u)

To implement sourcesl, we start by computing the first occurrence of l in L with the formula
p = selectl(L, 1). We report the subject s of the Ls interval to which L[p] belongs. To avoid
adding duplicates (which occurs if the same subject is connected to two different objects by
the same label), we move forward until we reach the end of Ls at c = succ1(BL, s+p)−(s+1).
Note that the last occurrence of l in Ls is the rankl(L, c)-th one. We repeat this procedure by

25

looking for the next occurrence of l (which occurs at position p = selectl(L,rankl(L, c)+1))
until we get to the last occurrence of l in L. The pseudocode is given in Algorithm 9 .

Algorithm 9

1: procedure Sourcesl(G)
2: c← 0
3: next← 1
4: while true do
5: p← selectl(L, next)
6: s← select0(BL, p)− p
7: append(S, s)
8: c← succ1(BL, s+ p)− (s+ 1)
9: next← rankl(L, c) + 1

10: if next > countl(L) then ▷ If we have found them all.
11: return S

Figure 2.4: Example for sources3(G), equivalent to retrieving the subjects of triples with
mentored as a predicate. The variables s, p, and, c correspond to those in Algorithm 9.

It is left to implement targetsl(G). Note that the objects of the edges with label l are
stored consecutively in Nl. So, it is enough to find the beginning and the end of this segment
and then remove the duplicates. The ends of Nl are at

p1 = select(BN , l)− l + 1 and p2 = select(BN , l + 1)− (l + 1).

We remove the duplicates using a classic sort algorithm with duplicates removal.

There are array data structures that permit removing duplicates more efficiently, such as the
wavelet tree [18], which implement an intersect method efficiently. However, this is not the
case for GMR arrays.

We refer the reader to Algorithm 10 for the pseudocode.

Algorithm 10

1: procedure Targetsl(G)
2: p1 ← select(BN , l)− l + 1
3: p2 ← select(BN , l + 1)− (l + 1)
4: for each k in [p1, . . . , p2] do
5: append(S,access(N, k))

6: return SortAndRemoveDuplicates(S)

26

2.4 Time and Space Complexities

In this section we present the time and space complexities of the structures and methods
developed.

Recall that G has n nodes, e edges and that there are λ distinct labels. We assume that
λ ≤ n ≤ e, which is almost always the case in practical situations.

We use the plain bitvector implementation from Subsection 1.4.1 for BN and BL, and the
GMR arrays from Section 1.4.2 for L and N . Tables 2.5 and 2.6 summarize the resulting
space and time complexities for the structures and their methods. Note that the total space
used by our representation is

(1 + o(1))(e log(λn) + n+ λ) bits

which is asymptotically optimal.

Given the pseudocodes provided previously, it is a routine computation obtaining the time
complexities of the algorithms from Sections 2.2 and 2.3. We refer the reader to Table 2.7
for an overview of these times.

Structure Space Complexity
N e log n+ o(e log n)
L e log λ+ o(e log λ)
BN e+ λ+ o(e+ λ)
BL e+ n+ o(e+ n)

Figure 2.5: Space complexity of storing BL, BN , N and L.

Method Time Complexity
Any RSA for BL or BN O(1)
rank and access for N O(log log n)
rank and access for L O(log log λ)
select for N and L O(1)

Figure 2.6: Time complexities of the RSA operations for BL, BN , N and L.

27

Method Time Complexity
outdegree(G, v) O(1)
indegree(G, v) O(log log n)
neigh(G, v) outdegree(G, u) ·O(log log n)
rneigh(G, v) indegree(G, v) ·O(1)
adj(G, u, v) λ ·O(log log λ)
adjl(G, u, v) O(log log λ)
outdegreel(G, v) O(log log λ)
indegreel(G, v) O(log log n)
neighl(G, v) outdegreel(G, v) ·O(log log n)
rneighl(G, v) indegreel(G, v) ·O(log log n)
countl(G) O(log log λ)
accessl(G, v, j) O(log log n)
sourcesl(G) |sourcesl(G)| ·O(log log λ)
targetsl(G) countl(G) ·O(log log n+ log countl(G)) 1

Figure 2.7: Time complexities of the algorithms from Sections 2.2 and 2.3.

2.5 Construction Algorithm

A naive implementation of the compact representation (BL, BN , N, L) requires performing
two sorts on an array of length e, which may be overly time-consuming. This final section is
devoted to describing how this representation of G can be computed using just one O(e log e)-
time sort, along with other additional O(e) time operations.

Let us write E = {(si, li, oi) : i = 1, . . . , e} for the set of edges of G. We start by sorting
E lexicographically according to the pattern (s, o, l). Let objs = [o1, o2, . . . , oe] and preds =
[l1, l2, . . . , le].

The next step is to build two auxiliary arrays for each of objs and preds. We explain the
procedure only for objs, as for preds it is analogous. Let Nacc be the array of length n + 1
that contains in its position v the total number of occurrences of nodes v′ < v in objs. Then,
BN satisfies

BN = 10Nacc[2]−Nacc[1]10Nacc[3]−Nacc[2]10Nacc[4]−Nacc[3] . . . 10Nacc[n+1]−Nacc[n].

It is possible to compute Nacc and BN in O(e) time using the following procedure: First, we
traverse objs and save in N ′

acc[l] the number of times l ∈ [1 . . . λ] appears in objs. Observe
that Nacc[l] = N ′

acc[1] + · · · + N ′
acc[l − 1] and that the 1s of BN are at positions Nacc[l] + l.

Therefore, Nacc and BN can be computed from N ′
acc in λ steps, yielding a O(e) total time.

Let Lacc and BL be the arrays analogously obtained from preds. Remark that Lacc has length
λ+ 1. Since E was sorted according to the pattern (s, o, l), L is equal to preds.

It only rests to compute N . The central observation is the following: Suppose that, for
i ∈ [1 . . . e], ki is the number of times li occurs in preds[1 : i]. Then,

N [Nacc[li] + ki] = oi for every i ∈ [1 . . . e].

28

This completely determines N . Moreover, N can be computed in O(e) time by iterating
through i ∈ [1 . . . e] at the same time we maintain updated variables k′

l, l ∈ L, so that k′
l is

the number of times l occurs in preds[1 : i].

Algorithm 11 gives the pseudocode of the procedure described above.

Algorithm 11 Pseudocode for the index building algorithm. The input E = [(si, li, oi) :
i = 1, . . . , e] of Build-Index is an array containing the edges (s, l, o) of the graph, and the
output are the sequences N , BN , L and BL that describe the compact representation of the
graph. The procedure Build-Auxs receives an array A with values in [1 . . .m] and computes
two auxiliary arrays.

1: procedure Build-Index(E)
2: Sort E lexicographically according to the pattern (s, o, l)
3: objs← [o1, o2, . . . , oe]
4: preds← [l1, l2, . . . , le]
5: Nacc, BN ← Build-Auxs(objs, λ)
6: Lacc, BL ← Build-Auxs(preds, n)

7: idx BN ← zero-initialized array of length λ
8: N ← new array of length e+ λ
9: for each i in [1 . . . e] do

10: (o, l)← (objs[i], preds[i])
11: N [Nacc[l] + idx BN [l]]← o
12: idx BN [l]← idx BN [l] + 1

13: N ← Build-GMR-Array(N)
14: L← Build-GMR-Array(preds)

15: procedure Build-Auxs(A, m)
16: Aacc ← zero-initialized array of length m+ 1
17: for each x in A do
18: Aacc[x+ 1]← Aacc[x+ 1] + 1

19: B ← zero-initialized bitvector of length Length(A) +m
20: for each i in [1 . . .m− 1] do
21: Aacc[i+ 1]← Aacc[i+ 1] + Aacc[i].
22: B[Aacc[i] + i]← 1

23: return Aacc, B

We conclude this chapter with a practical consideration on the memory limitations of the
machines utilized. It is not difficult to adjust Algorithm 11 to use, at any time, only the
k needed bits for storing E, plus o(k) bits. This can be achieved by immediately freeing
memory once a variable is no longer needed, using an in-place sorting algorithm and by
writing structures to disk during the construction.

29

Chapter 3

2RPQ Evaluation

The objective of this chapter is to provide to the compact data structure from Chapter 2 an
algorithm that efficiently solves 2RPQs. We start by defining the general notation that will
be used throughout the sections, and then explain the strategy of the algorithm. The cases
of single-variable and double-variable queries will be treated separately in Sections 3.1 and
3.2, respectively.

Notation

Let G = (V,E) be a graph, where V is the set of nodes and E ⊆ V ×L×V is a set of labeled
edges. We consider 2RPQs of the form (s, R, x), (y,R, o) and (x,R, y), where s, o ∈ V , R is
a regular expression over L↔ = L ∪ L̂ and x, y are variables representing an element of V .
The first two types of queries correspond to single-variable queries, while the last one is a
double-variable query.

We denote by GR the Glushkov automaton of the regular expression R with m symbols, as
it was introduced in Section 1.3. Recall that GR is a non-deterministic finite automaton,
which we describe as a quintuple GR = (Q,LR,∆, q0, F). Let us write, for simplicity, LR =
{1, 2, . . . , λ}. We will use the forward and backward bit-parallel simulation of GR from
Section 1.3. To this end, we use the tables D, B, T and T ′ introduced therein. Recall that
for forward traversal starting from state D and a label c we update

D ← T [D] & B[c], (3.1)

and that for backward traversal, we use

D ← T ′[D & B[c]]. (3.2)

3.1 Single-variable 2RPQs

We start by discussing a symmetry in the queries : A pair (s, o) is a solution for the 2RPQ
(s, R, x) if and only if (o, s) is a solution for (y, R̂, s), where R̂ is the inverse of R. Hence,
when solving single-variable queries, we can freely choose the position of the variable. Queries

30

of the form (s, R, x) involve traversing GR forwards, otherwise backwards. This gives us an
important degree of freedom: we can choose to traverse GR forwards or backwards.

Each traversal direction yields a slightly different algorithm.

We first present the algorithm for a query with right-side variable and then show how it can
be modified to solve the other case. Consider a query of the form (s, R, x). The base idea is
the following: The solutions are the ends of paths ρ in G starting at s such that labels(ρ) is
accepted by GR. Thus, the problem boils down to simultaneously traversing GR and G. To
carry out this idea, we encode each step of the traversal as an inductive pair (D, v), with D
representing a (non-deterministic) state in GR and v being a node of G.

Then, a jump in GR is executed by first choosing a label l as one of the outgoing edges from
D, and then computing the new state D′ using Formula (3.1). The equivalent jump in G
is to the nodes v′ obtained using the methods neighl(G, v) or rneighl(G, v) from Section
2.2, depending on whether l is an inverse label or not. By performing these jumps, for each
initial choice of l, we obtain a set of inductive pairs (D′, v′), which we add to an induction
stack.

There are two critical checks that we make when considering an inductive pair (D, v). First,
we have to determine whether v is part of the solution. This is done by verifying that D is
an accepting state. Second, we need to check if the algorithm is looping. To that end, we
maintain a structure that keeps track of the previously seen inductive pairs.

Let us now explain the exact computations required in each substep. We will denote by
(D, v) the current inductive pair of the substeps.

A. Initializing the induction stack The traversal of GR is forwards, so we start from
the initial state q0; and, in G, we start from s to move to the solutions represented by
y. Hence, the induction stack has, at first, (q0, s).

B. Avoiding redundancies and loops If we have previously seen an inductive pair
of the form (D′, v), where D′ shares active states with D, then the intersection D&D′

gives rise to branches that have already been considered. This is inefficient and can
even cause the algorithm to loop.

To avoid redundancy and loops, we employ a table seen[1 . . . , n] containing in seen[v]
the bitvector of length m+1 that represents all the states that have been activated by
a previously seen pair of the form (D′, v). During Step B, we remove from D the states
seen[v], as they have already been considered. We then update seen[v] by adding the
new states from D. Formally, we update:

D ← D &∼seen[v] and seen[v]← seen[v] |D,

where ∼ is the bitwise logical NOT.

C. Deciding to report a solution To check whether the path traversed so far repre-
sents a solution to the query, we must check if the current active states of GR contain
one of the final states of the automaton, i.e., if D & F is not equal to zero. Note,
however, that v may already be in the solution set if it is reachable from multiple ac-

31

cepted paths. To avoid reporting duplicated answers, we must verify before adding v
that there is no previously seen pair (D′, v), where D′ contains an accepted state. This
can be done by verifying that seen[v]&F is equal to zero.

D. Jumping to new inductive pairs It rests to perform the simultaneous jump in
G and GR.

First, we find the set PD of all the elements l ∈ LR that are the label of an edge in GR

leaving D. Note that, by (3.1), l is in PD if and only if

T [D] & B[l] ̸= 0. (3.3)

Hence, we can obtain PD by iterating through all the labels l ∈ LR and keeping those
for which (3.3) holds. Since we may encounter D multiple times throughout the induc-
tive process, it is convenient to define a table P [0, . . . , 2m+1 − 1] and store PD in the
coordinate D of it as a bitvector of length m+ 1.

For a fixed l ∈ PD, we jump to the new state D′ reached from D by l using Formula
(3.1). The corresponding jump in G is to the neighbors of v with label l if l ∈ L and
to the reverse neighbors of v with label l̂ if l ∈ L̂. These neighbors are computed using
the methods neighl(v) and rneighl̂(v) from Section 2.2.

In this way, every l ∈ PD yields a new state D′ and a set of neighbors v′ of v. For each
resulting pair (D′, v′), a new branch of the algorithm is created by adding (D′, v′) to
the induction stack.

The previous procedure can be modified to solve a left-variable query (y,R, o). The steps are
the same but we traverse GR backwards. This means that F and q0 take the opposite roles
and that the jump in GR is backwards. More precisely:

(1) In substep A we initialize the stack with the inductive pair (F, o).

(2) We report v as a solution, in substep C, if D& q0 ̸= 0 and seen[v]&q0 is equal to zero.

(3) In substep D, P [D] now corresponds to the ingoing predicates, which are determined
as those l ∈ LR such that D & B[l] ̸= 0. To obtain the new state D′, Formula (3.2) is
used, and the jump in G is to the reverse neighbors of v with label l if l ∈ L and to its
neighbors with label l̂ if l ∈ L̂.

The precise procedure can be found in Algorithm 12.

32

Algorithm 12 Pseudocode of the algorithm that solves single-variable RPQs presented in
Section 3.1, using a forward traversal of GR. The comments on the right side give the
necessary modifications for a backward traversal.

1: procedure Single-Var-RPQ(query)
2: is left← true if query has its variable on its left side; false otherwise
3: if is left then ▷ if ∼is left
4: query← inverse(query)

5: Parse query as (s, R, x) ▷ Parse query as (y,R, o)
6: (LR, T, T

′, B, q0, F)← BuildGlushkov(R)
7: Push(induction stack, (q0, s)) ▷ Push(induction stack, (F, o))

8: while induction stack is not empty do
9: (D, v)← Pop(induction stack)

10: D ← D &∼seen[v]
11: if D ̸= 0 then
12: seen[v]← seen[v] |D
13: if D & F is not 0 then ▷ if D & q0 is not 0
14: if seen[v]&F is 0 then ▷ if seen[v] & q0 is 0
15: Add(solutions, v)

16: if P [D] has not been initialized then
17: for each l in LR do
18: if T [D] &B[l] is not 0 then ▷ if D &B[l] is not 0
19: Append(P [D], l)

20: for each l in P [D] do
21: D′ ← T [D] &B[l] ▷ D′ ← T ′[D &B[l]]
22: if l is not in L̂ then
23: V ′ ← neighl(v) ▷ V ′ ← rneighl(v)
24: else
25: V ′ ← rneighl̂(v) ▷ V ′ ← neighl̂(v)

26: for each v′ in V ′ do
27: Push(induction stack, (D′, v′))

3.2 Double-variable 2RPQs

It remains to treat double-variable queries (x,R, y). The naive approach is solving the single-
variable queries (v,R, y) for all v ∈ V (or, symmetrically, the queries (x,R, v)). This is highly
inefficient as it may happen that many objects v do not lead to any solution to the original
query. We improve this basic method by first obtaining a feasible set V ′, which is a (typically)
small subset of V that contains all the nodes v for which (v,R, y) leads to at least one solution
to (x,R, y).

The set V ′ is defined as follows. Let L′ be the set of l ∈ LR that are labels of edges in GR

33

starting at q0. Then, we set

V ′ =
⋃

l∈L′∩L

sourcesl(G) ∪
⋃

l∈L′∩L̂

targetsl̂(G).

It is not difficult to check that all the subjects in the solutions given by the algorithm from
Section 3.1 to the queries (x,R, o), o ∈ V , are in V ′. Therefore, the solution set of (x,R, y)
is equal to the collection of all solutions of the queries (v,R, y), v ∈ V ′.

Let us now describe in detail how we get the elements of V ′. First, the labels l connected
to q0, are those that lead to at least one active state when jumping from q0, i.e., those such
that T [q0] & B[l] ̸= 0. Then, for each such l, we need all subjects of triples with label l in
G↔. These are given by sourcesl(G) if l is not inverted and by targetsl̂(G) otherwise.

We present in Algorithm 13 the pseudocode of the described strategy.

Algorithm 13 Pseudocode of the algorithm that solves double-variable RPQs presented in
Section 3.2, using a forward traverse of GR.

1: procedure Get-Feasible-Set(query)
2: Parse query as (x,R, y)
3: (LR, T, T

′, B, q0, F)← BuildGlushkov(R)
4: for each l in LR do
5: if T [D] &B[l] ̸= 0 then
6: if l in L then
7: Push(feasible set, sources(l))
8: else
9: Push(feasible set,targets(l̂))

10: return feasible set
11: procedure Double-Var-RPQ(query)
12: Parse query as (x,R, y)
13: feasible set← Get-Feasible-Set(query)
14: for each v in feasible set do
15: single var query← (v,R, y)
16: Push(solutions,Single-Var-RPQ(single var query))

17: return solutions

34

Chapter 4

Experimental Evaluation

To evaluate the efficiency of the 2RPQ algorithm proposed, we have taken an empirical
approach and measured its performance on a real-world RDF database. We use the Ring [3]
as our primary benchmark due to the fact that our proposal is inspired by it. To this end, we
replicate the experimental setup from [3] and compare with all the systems tested therein,
focusing on contrasting our solution with the Ring.

The structure of the chapter is the following. Subsection 4.1.1 introduces the RDF database
systems that we compare to our algorithm, and Subsection 4.1.2 the specific database and
queries used in the benchmarks. Then, in Subsection 4.1.3, we discuss some implementation
details, including hardware and software specifications and certain aspects of our algorithm
that have not been precised. Finally, Section 4.2 is dedicated to presenting and analyzing
the results of the experiments.

4.1 Benchmark and Implementation Details

4.1.1 Benchmark Systems

In addition to the Ring, we compare our algorithm to some well-known platforms for man-
aging and querying RDF databases. We briefly describe them below.

(1) Blazegraph is the official SPARQL endpoint used by Wikidata (which is our benchmark
database) and by other large customers [8].

(2) Apache Jena is a widely used graph database and the reference implementation of the
SPARQL standard [2].

(3) Virtuoso is a multi-model database that accommodates RDF data, which hosts the
public DBpedia endpoint, among others [13].

An important design detail of Jena, Blazergraph and Virtuoso is that they treat constant- and
variable-length RPQs (i.e. queries with and without the operators ∗ and +) differently. For
constant-length queries, they translate it into a SPARQL graph pattern without RPQs, and

35

then evaluate it under bag semantics. The other queries are solved by applying set semantics,
according to the SPARQL standard. Jena and Blazegraph use a BFS-style function, while
Virtuoso employs a transitive closure operator.

The particular implementation of the algorithm over the Ring is the one provided by its
creators [3], and can be downloaded from their GitHub page [4]. Jena, Blazegraph and
Virtuoso are simply run according to their vendor configurations.

4.1.2 Benchmark Database

Wikidata, created by the Wikimedia Foundation and built upon the RDF framework, is a
collaborative and multilingual repository of structured data about various topics [31], which
contains 15, 019, 738, 576 triples as of August 2023. Hogan et al. argue that the raw database
is not adequate for RPQ benchmarks since it contains information in several different lan-
guages and additional information that is not relevant for RPQs, among other things [1].
They propose instead the Wikidata Graph Pattern Benchmark (WGPB) as a benchmark,
which is obtained by removing multilingual labels (and keeping only English labels), aliases
and descriptions. The result is a graph having e = 958, 844, 164 edges, |V | = 348, 945, 080
nodes, |S| = 106, 736, 662 subjects, |L| = 5, 419 predicates, and |O| = 295, 611, 216 ob-
jects. This amounts to a total of 10.7 GB in plain form (with 32-bit integers for each
triple component, and thus 12 bytes per tuple) and 7.9 GB in packed form (i.e., using
⌈log |S|⌉+ ⌈log |P |⌉+ ⌈log |O|⌉ bits, or 8.63 bytes per tuple). Some of the advantages of the
WGPB over other benchmarking databases is its high volume, that it is not synthetic, its
interesting graph patterns (such as cycles), and its complex schemata (with over 5000 labels).
This database can be downloaded from [32].

Queries

In order to get challenging, real-world RPQs, the authors of [3] extracted all the RPQs done
to the Wikidata Query Service that threw timeout error, i.e. that needed more than 60
seconds, from the Wikidata Query Logs [23]. After filtering RPQs using Wikidata-specific
features, mentioning constants not used in the dataset, having one label, normalizing variable
names, and removing duplicates, this process yielded 1,952 unique queries.

Furthermore, they only keep the 1,583 queries with less than 1 million unique results for
comparability reasons (as Virtuoso has a hard-coded limit of 220 ≈ 1 million results). All
queries are run with a timeout of 60 seconds under set semantics (using DISTINCT in the
case of SPARQL).

We classify the RPQs according to their pattern by mapping nodes/variables to constan-
t/variable types and erasing their predicates (that is, we keep only the regular expression
operators). For instance, (x, p1/p

+
2 , v) has the pattern (v, /+, c). Table 4.1 presents the 20

most common RPQ patterns in our query set.

Additionally, we will categorize our results based on the query type, distinguishing between
single-variable and double-variable queries, as well as by the number of solutions yielded.
Table 4.2 shows the distribution of the query types. It is noteworthy that the queries are
highly unbalanced, as the majority of them fall into the single-variable category with the

36

constant to the right, and with over half of them producing a relatively small number of
results (less than 3,000).

Query pattern Count Query pattern Count
v /∗ c 450 v /? c 20
v ∗ c 421 v ∧ v 14
v + c 107 v | v 13
c ∗ v 101 v | c 9
c /∗ v 100 v ∗ v 8
v / c 48 c |∗ v 7

v ∗/∗ c 30 v /+ c 7
v |∗ c 30 v //∗ c 6

v ∗/∗/∗/∗/∗ c 28 v /| c 6
v / v 26 v ?/∗ c 5

Table 4.1: Top 20 patterns representing 90.7% of the total queries

Query type Number of Queries
Double-variable 81
Single-variable 1502
Left-side constant 258
Right-side constant 1244

Table 4.2: Distribution of the queries according to their type

4.1.3 Implementation Details

The benchmarks for Jena, Virtuoso and Blazegraph were provided to us by the authors of
[3]. To test the Ring and our algorithm, we closely replicate their experimental setup.

Our benchmarks were conducted on an isolated Intel(R) Xeon(R) CPU E5-2407 v2 running
at 2.40GHz, with 10 MB of cache and 264 GB of RAM. The operating system is GNU/Linux
Devuan 2.1, with kernel 4.9.0-18-amd64. Our implementation is written in C++11, using
the compiler g++ version 6.3.0 and the flags -std=c++11, -O3 and -msse4.2. All experiments
are single-threaded. We used the SDSL library[16] to get support for bitvectors and GMR
arrays, and the Glushkov automata implementation of [4]. The complete source code and
the instructions for compiling it can be found in the repository [27].

Let us comment on an aspect of our index. As well as in the Ring, our representation assumes
the nodes and labels are in intervals {1, . . . , n} and {1, . . . , λ}, respectively (see the beginning
of Chapter 2). Wikidata, and most real-world databases, do not satisfy this hypothesis, so
we need to integer-encode beforehand the database and construct two dictionaries (one for
nodes and the other for labels) to recover the original information. It has been observed that
recovering the original values from the dictionaries has marginal space- and time-cost [3].

37

4.2 Experimental Results

Index construction

Constructing the dictionary-encoded database takes 5.2 hours using the algorithm provided
by Arroyuelo et at. [3]. Once the encoded database is available, constructing the index takes
0.4 hours. The resulting index uses 6.87 GB, that is, 7.17 bytes per triple.

The running space used is 10.28 bytes per triple. This equates to the index space plus the size
of the variables that only depend on the regular expression (such as those of the automaton,
which are on the order of 10−5 bytes per triple and therefore negligible) plus the space used
by the seen table, which uses 3.11 bytes per triple.

Table 4.3 presents the construction time and resulting space usage of our index compared
to the other systems. Our index is the most space-efficient, with the Ring being the closest
contender, using slightly more than twice the space. This is consistent with the fact that we
do not duplicate the edges for dealing with the inverted predicates, as the Ring does.

In terms of index construction time, our index maintains a competitive edge with a completion
time of 5.6 hours. While Virtuoso leads the group with the fastest index time of 3.0 hours, the
Proposed Index’s construction time is notably less than that of Ring, which takes 7.5 hours.
It also far outpaces Jena and Blazegraph, which require 37.4 and 39.4 hours respectively.

Proposed Index Ring Jena Virtuoso Blazegraph
Index space 7.17 16.41 95.83 60.07 90.79
Index time 5.6 7.5 37.4 3.0 39.4

Table 4.3: Index space in bytes per triple and construction time in hours for the different
systems. The times for the Ring and the Proposed Index include the dictionary encoding
time.

Comparison of variations

In Chapter 4, we discuss that the Glushkov automata can be traversed forwardly or back-
wardly. We implement both versions. Additionally, we explore further variations by omitting
the lazily initialized table P in Algorithms 12 and 13. Recall that P [D] is responsible for
storing the labels of the edges outgoing a state D. Hence, omitting storing P offers an advan-
tage in terms of memory efficiency, potentially saving up to O(m ·2m+1) bytes. However, this
comes at the cost of having to compute the labels associated with D at each inductive step.
Taking these variants into account, we end up with four distinct algorithms: fwd (forward
with precomputed table P), bwd (backward with precomputed table P), fwd-noP (forward
without precomputed table P), and bwd-noP (backward without precomputed table P).

Figure 4.1 shows the execution times for the variations according to two query types and the
four most common query patterns. Table 4.4 details the exact median and average times.

Across the entire spectrum of queries, the average execution time for fwd-noP is approximately
3% higher than that of fwd. In contrast, bwd-noP has an average time increase of around 30%
when compared to bwd. This difference is notably more pronounced in the case of backward

38

traversal, especially for single-variable queries, where the noP variant is approximately 40%
slower on average. A plausible explanation for this could be that the computation of D&B[l]
is more expensive than that of T [D] &B[l].

The overall execution time differences between fwd and bwd fall within the microsecond
range, making them almost negligible. Note that fwd exhibits marginally faster performance,
especially when the execution times are low. This observation is consistent with three factors.
One is that the number of traversals leading to a valid solution is the same irrespective of
the starting point in the automaton, and therefore of the type of traversal. The second one
is that the queries are imbalanced, predominantly favoring scenarios where the constant is
on the right side and the predicates in the RPQ are non-negated. This imbalance results in
a disparity in the frequency of calls to rneigh() and neigh(), both of which have a time
complexity of O(log log(n)); however, the implied constants in each case are different. Lastly,
the initialization of the table P in the backward process involves an additional “T [D]” step.
This may not be negligible when there are few inductive steps (and therefore low execution
times).

In the sequel, we fix fwd as our benchmark algorithm due to its slightly better performance.

Figure 4.1: Execution times of the four algorithm variants for two query patterns and the
four most common query types. Remark that in the case c ∗ v, where fwd shows markedly
superior performance, the execution time lies in the range of 10−4 seconds

39

v ∗ c v + c v ∗ c c ∗ v single-var double-var
bwd Mean 0.40 0.41 0.18 0.14 0.32 7.88

Median 0.03 0.06 0.01 0.00 0.01 4.48
bwd-noP Mean 0.61 0.48 0.21 0.14 0.45 9.38

Median 0.05 0.07 0.01 0.00 0.01 4.49
fwd Mean 0.39 0.42 0.17 0.14 0.32 7.88

Median 0.03 0.05 0.00 0.00 0.01 4.48
fwd-noP Mean 0.41 0.43 0.19 0.14 0.33 8.01

Median 0.03 0.06 0.01 0.00 0.01 4.43

Table 4.4: Mean and median execution times in seconds for the cases depicted in Figure 4.1.

Comparing with other systems

We turn to present the results that compare our algorithm fwd with the Ring, Virtuoso,
Blazegraph and Jenna. Figure 4.2 shows the performance of these algorithms for the 12 most
popular query patterns, and Figure 4.3 does so for the different query types.

The results show that our algorithm fwd performs consistently well in single-variable queries
and that offers competitive results across all query patterns. Notably, in simple patterns
such as v ∗ c, v + c, v |∗ c and v ∗/∗ c, fwd greatly outperforms its counterparts. For
more complex query patterns, such as v ∗/∗/∗/∗/∗ c, Jenna, Virtuoso and Blazegraph have
some of their worst times, suggesting some difficulty in dealing with the added complexity.
In contrast, the Ring and fwd surpass the other algorithms, while performing similarly as in
the other scenarios.

In the case of double-variable queries, fwd shows a notably poorer performance, characterized
by significant variability and some of the highest time measurements. One possible reason for
this performance could be the algorithm’s naive approach of reducing double-variable queries
to iterating over single-variable ones. This method heavily depends on finding a good initial
set of possibilities, which, in the least favorable cases, might be as large as the number of
nodes, with none of its elements leading to a solution.

Another factor might be the specialized optimizations integrated into the other algorithms
for specific query types. For instance, the Ring treats queries such as (s, p1|p2, x) by solving
(s, p1, x) and (s, p2, x) separately, and then merging the results. Similarly, for queries of
the form (x, p1/p2, x), it divides them into (s, p1, x) and (s, p2, x) and then performs a join
operation on the results. Blazegraph takes one step further and employs advanced strategies
to convert every fixed-length RQPs (i.e., those not involving + and ∗) into join queries.

Regarding timeouts, Virtuoso recorded the least with just two, despite its volatile perfor-
mance and above-average results. Our algorithm fwd and the Ring follow, with 13 and 18
timeouts, respectively. Blazegraph and Jena experienced considerably more timeouts, with
42 and 93 respectively.

40

fwd Ring Jena Virtuoso Blazegraph

Average 0.65 0.83 1.41 2.23 1.81
Median 0.01 0.09 0.18 0.14 0.13
Timeout 13 18 93 2 42

Average 1v 0.32 0.65 1.33 1.86 1.83
Median 1v 0.01 0.08 0.17 0.11 0.13
Timeout 1v 2 2 59 1 39

Average 2v 7.9 5.1 1.8 10 2.0
Median 2v 4.51 1.47 1.19 4.82 0.14
Timeout 2v 11 16 34 1 3

Table 4.5: Performance comparison detailing number of timeouts (more than 60 seconds of
execution time) and the average and median times for the different algorithms. The median
and average times do not include the timeouts. The symbol 1v represents the set of single-
variable queries, and 2v represents the set of double-variable queries.

Comparison with the Ring

Our algorithm shows similar performance to the Ring, in line with their theoretical similari-
ties. In this subsection, we further examine the time differences between the two systems.

Figure 4.4 compares the execution times of the Ring and fwd, according to the number of
results yielded by the queries and the query type. For single-variable queries, fwd performs
better in almost all instances, especially as the number of results increases. With double-
variable queries, the Ring tends to be more efficient, but the times of fwd relative to those
of the Ring improve again as the queries yield more results.

The main issue with fwd seems to be that it incurs in a very high initial cost for queries
having few results. This is consistent with what we discussed previously: our algorithm may
frequently encounter feasible sets having many nodes that do not ultimately lead to solution
tuples. Another factor that might explain this phenomenon is that the GMR arrays used in
fwd have faster access times than the wavelet trees used by the Ring. Hence, as the number
of results increases, more accesses are required to retrieve the nodes, further highlighting the
time differences.

41

Figure 4.2: Time taken by the different algorithms across the most common query patterns.
Note that the results for the query patterns c ∗ v and c /∗ v of the Ring and fwd are very
close to the x-axis, as it is the case for Blazegraph for the patterns v / v and v v. In the
results for the pattern v ∗/∗/∗/∗/∗ c, Jenna does not appear as it timed out on all the 28
queries.

Figure 4.3: Time taken by the different algorithms across the three query types.

42

Figure 4.4: Execution times of the Ring and fwd (x-axis) according to the number of results
yielded by the queries (y-axis). The figure above shows the results for double-variable queries,
and the one below for single-variable queries.

43

Chapter 5

Conclusions and Future Work

RDF databases provide a simple scheme based on triples for structuring and linking data
that has gained widespread adoption, notably by the Semantic Web. In response to the
scalability challenges posed by the continuous increase of the data volumes, the community
actively seeks space- and time-efficient algorithms for managing RDF databases.

In this thesis, we have implemented a compact index for RDF databases introduced by
Navarro [26], which uses bitvectors and GMR-sequences as underlying data structures. Build-
ing upon this, we developed a novel algorithm for solving 2RPQs, a central query class for
these databases. The resulting index and algorithm excel in storage efficiency and single-
variable query processing, while maintaining competitive performance for double-variable
queries.

The implemented index is inspired by the Burrows-Wheeler transform, a string compression
algorithm. It is build by considering strategically chosen orderings of the RDF triples and
storing, according to them, two arrays containing its subjects and objects, together with
two space-negligible bitvectors that contain information about the orderings. This method
avoids explicitly storing the objects, allowing asymptotically optimal space-usage. Methods
for recovering useful data, such as neighboring nodes or all subjects for a fixed predicate,
were implemented making use of the structure of the index.

One of the advantages of this index is its flexibility in the data structures that can be used
for its implementation. Indeed, the methods for accessing the data only use RSA operations
on the arrays and bitvectors. Our particular implementation employs plain bitvector and
GMR-arrays, which were selected for their well-known good space and time performance.

Our algorithm for solving 2RPQs takes advantage of the index’s retrieval functions, combined
with an automaton-based approach for handling regular expressions. Specifically, it uses
Glushkov automata due to its capability of non-deterministic traversal. This enabled us
to navigate the graph and the automaton concurrently, with branching occurring only in
response to interactions with the database.

We conducted a series of benchmarks using Wikidata to compare our algorithm with leading
RDF systems –Blazegraph, Jena, and Virtuoso– as well as the Ring, an index with simi-

44

lar theoretical design to ours. These evaluations revealed that our approach is the most
space-efficient, requiring only half the storage space of the Ring, its nearest competitor. The
construction of our index was completed in approximately 5.6 hours, making it the sec-
ond fastest, only surpassed by Virtuoso. For single-variable 2RPQs, our solution exhibited
remarkable performance, consistently outperforming the other systems in every scenario, re-
gardless of the constant’s position in the query or the complexity of the regular expression.
However, while still competitive, the performance of our algorithm for double-variable queries
was found to be unsatisfactory, which indicates potential areas for further improvement.

Future work

The high variability in outcomes for double-variable 2RPQs highlights the need for further
refinement and testing of this case. We propose the following concrete ideas for analyzing
this problem:

• As our algorithm first computes a feasible set, it is important to check whether it tends
to be much bigger than the optimum, i.e., than the set of constants leading to at
least one solution. In addition to a substantial discrepancy between these two sets, the
process of discarding constants not shared by both may be excessively time-consuming.

• It is possible that merely computing the feasible set, which primarily involves calls
to sources or targets followed by filtering duplicate nodes, constitutes a main time-
consuming step.

• Considering that the other algorithms use specialized subroutines when dealing with
certain query types (for instance, the queries of type v/v are usually solved using join
operations), it is relevant to test the performance of our algorithm according/in line
with/as per to the competitors’ used subroutines. Depending on these results, it might
be necessary to optimize our algorithm by query type, as the competitors do. We
remark that this may also improve our single-variable query performance.

Another interesting idea for future research is that, since the experiments showed that our
index is by far the most space-efficient one, it is viable to trade used space for query processing
time. This can be done by either using heavier structures with better performance or by
storing additional information about the database structure.

With respect to the first point, we can explore other data structures for handling sequences
that may offer faster RSA times or additional methods, such as enhanced duplicate element
management. For instance, without deviating far from the current structures, the article in
which GMR arrays are introduced include a variant of it that swaps the time costs of select
and access, while slightly increasing the time complexity of rank to O(log log(σ) log log log(σ)).
This yields a different interplay between the different methods used in our algorithm, and
thus potentially different performance.

We can also store additional information of the database.A concrete example that can be
found in the literature is storing node connectivity data, which helps to reduce queries to a
small set of simpler ones by “splitting” the original query at a weakly connected node.

Lastly, our index offers several efficient functions for retrieving graph information, of which

45

we primarily utilize only four. Future iterations of the algorithm can explore the remaining
functions or focus on introducing new ones. For instance, given an inductive pair (D, v),
we can derive the next step’s predicates by examining those connected to v in the graph,
rather than inspecting labels associated with D in the automaton. To this end, the outgoing
predicates of v can be retrieved by locating and accessing the corresponding Lv segment of L,
while the ingoing ones can be obtained by adapting the algorithm that implements sources,
replacing L with N , BL with BN , and selectl with selectv.

46

Bibliography

[1] Waqas Ali et al. “A survey of RDF stores and SPARQL engines for querying knowledge
graphs”. In: The VLDB Journal 31 (Nov. 2021). doi: 10.1007/s00778-021-00711-3.

[2] Apache Jena. https://jena.apache.org/.
[3] Diego Arroyuelo et al. “Optimizing RPQs over a compact graph representation”. In:

The VLDB Journal (2023). issn: 0949-877X. doi: 10.1007/s00778-023-00811-2.
url: http://dx.doi.org/10.1007/s00778-023-00811-2.

[4] Diego Arroyuelo et al. Ring-RPQ. https://github.com/darroyue/Ring-RPQ. 2022.
[5] Diego Arroyuelo et al. “Worst-Case Optimal Graph Joins in Almost No Space”. In:

SIGMOD ’21: International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. Ed. by Guoliang Li et al. ACM, 2021, pp. 102–114. doi: 10.1145/
3448016.3457256. url: https://doi.org/10.1145/3448016.3457256.

[6] Jorge A. Baier et al. “Evaluating Navigational RDF Queries over the Web”. In: Pro-
ceedings of the 28th ACM Conference on Hypertext and Social Media, HT 2017, Prague,
Czech Republic, July 4-7, 2017. Ed. by Peter Dolog et al. ACM, 2017, pp. 165–174. doi:
10.1145/3078714.3078731. url: https://doi.org/10.1145/3078714.3078731.

[7] Gerard Berry and Ravi Sethi. “From regular expressions to deterministic automata”.
English (US). In: Theoretical Computer Science 48.C (1986), pp. 117–126. issn: 0304-
3975. doi: 10.1016/0304-3975(86)90088-5.

[8] Blazegraph. https://www.blazegraph.com/.
[9] Matthias Bröcheler, Andrea Pugliese, and V. S. Subrahmanian. “DOGMA: A Disk-

Oriented Graph Matching Algorithm for RDF Databases”. In: The Semantic Web -
ISWC 2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA,
USA, October 25-29, 2009. Proceedings. Ed. by Abraham Bernstein et al. Vol. 5823.
Lecture Notes in Computer Science. Springer, 2009, pp. 97–113. doi: 10.1007/978-
3-642-04930-9_7. url: https://doi.org/10.1007/978-3-642-04930-9%5C_7.

[10] V. Chandru and V. Vinay, eds. Foundations of Software Technology and Theoretical
Computer Science. Springer Berlin Heidelberg, 1996, pp. 37–42. doi: 10.1007/3-540-
62034-6. url: https://doi.org/10.1007/3-540-62034-6.

[11] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and Ab-
stract Syntax. W3C Recommendation. 2014. url: https://www.w3.org/TR/rdf11-
concepts/.

[12] Martin J. Dürst and Michel Suignard. “Internationalized Resource Identifiers (IRIs)”.
In: RFC 3987 (2005), pp. 1–46. doi: 10.17487/RFC3987. url: https://doi.org/10.
17487/RFC3987.

[13] Orri Erling and Ivan Mikhailov. “RDF Support in the Virtuoso DBMS”. In: Networked
Knowledge - Networked Media: Integrating Knowledge Management, New Media Tech-

47

https://doi.org/10.1007/s00778-021-00711-3
https://jena.apache.org/
https://doi.org/10.1007/s00778-023-00811-2
http://dx.doi.org/10.1007/s00778-023-00811-2
https://github.com/darroyue/Ring-RPQ
https://doi.org/10.1145/3448016.3457256
https://doi.org/10.1145/3448016.3457256
https://doi.org/10.1145/3448016.3457256
https://doi.org/10.1145/3078714.3078731
https://doi.org/10.1145/3078714.3078731
https://doi.org/10.1016/0304-3975(86)90088-5
https://www.blazegraph.com/
https://doi.org/10.1007/978-3-642-04930-9_7
https://doi.org/10.1007/978-3-642-04930-9_7
https://doi.org/10.1007/978-3-642-04930-9%5C_7
https://doi.org/10.1007/3-540-62034-6
https://doi.org/10.1007/3-540-62034-6
https://doi.org/10.1007/3-540-62034-6
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.17487/RFC3987
https://doi.org/10.17487/RFC3987
https://doi.org/10.17487/RFC3987

nologies and Semantic Systems. Ed. by Tassilo Pellegrini et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 7–24. isbn: 978-3-642-02184-8. doi: 10.1007/
978-3-642-02184-8_2.

[14] V M Glushkov. “The abstract theory of automata”. In: Russian Mathematical Surveys
16.5 (Oct. 1961), pp. 1–53. doi: 10.1070/rm1961v016n05abeh004112. url: https:
//doi.org/10.1070/rm1961v016n05abeh004112.

[15] Simon Gog et al. “From Theory to Practice: Plug and Play with Succinct Data Struc-
tures”. In: 13th International Symposium on Experimental Algorithms, (SEA 2014).
2014, pp. 326–337. url: https://github.com/simongog/sdsl-lite.

[16] Simon Gog et al. SDSL - Succinct Data Structure Library. https://github.com/
simongog/sdsl-lite. 2016.

[17] A. Golynski, J. Munro, and S. Rao Satti. “Rank/Select Operations on Large Alphabets:
a Tool for Text Indexing”. In: Jan. 2006, pp. 368–373. doi: 10.1145/1109557.1109599.

[18] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. “High-order entropy-compressed
text indexes”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA. ACM/SIAM,
2003, pp. 841–850. url: http://dl.acm.org/citation.cfm?id=644108.644250.

[19] Andrey Gubichev, Srikanta J. Bedathur, and Stephan Seufert. “Sparqling kleene: fast
property paths in RDF-3X”. In: First International Workshop on Graph Data Manage-
ment Experiences and Systems, GRADES 2013, co-located with SIGMOD/PODS 2013,
New York, NY, USA, June 24, 2013. Ed. by Peter A. Boncz and Thomas Neumann.
CWI/ACM, 2013, p. 14. doi: 10.1145/2484425.2484443. url: http://event.cwi.
nl/grades2013/14-gubichev.pdf.

[20] Jinha Kim et al. “Taming Subgraph Isomorphism for RDF Query Processing”. In: Proc.
VLDB Endow. 8.11 (2015), pp. 1238–1249. doi: 10.14778/2809974.2809985. url:
http://www.vldb.org/pvldb/vol8/p1238-kim.pdf.

[21] Egor V. Kostylev et al. “SPARQL with Property Paths”. In: The Semantic Web - ISWC
2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-
15, 2015, Proceedings, Part I. Ed. by Marcelo Arenas et al. Vol. 9366. Lecture Notes in
Computer Science. Springer, 2015, pp. 3–18. doi: 10.1007/978-3-319-25007-6_1.
url: https://doi.org/10.1007/978-3-319-25007-6%5C_1.

[22] Yongming Luo et al. “Storing and Indexing Massive RDF Datasets”. In: Semantic
Search over the Web. Ed. by Roberto De Virgilio, Francesco Guerra, and Yannis
Velegrakis. Data-Centric Systems and Applications. Springer, 2012, pp. 31–60. doi:
10.1007/978-3-642-25008-8_2. url: https://doi.org/10.1007/978-3-642-
25008-8%5C_2.

[23] Stanislav Malyshev et al. “Getting the Most out of Wikidata: Semantic Technology
Usage in Wikipedia’s Knowledge Graph”. In: Proceedings of the 17th International
Semantic Web Conference (ISWC’18). Ed. by Denny Vrandečić et al. Vol. 11137. LNCS.
Springer, 2018, pp. 376–394.

[24] Wim Martens and Tina Trautner. “Dichotomies for Evaluating Simple Regular Path
Queries”. In: ACM Trans. Database Syst. 44.4 (2019), 16:1–16:46. doi: 10 . 1145 /
3331446. url: https://doi.org/10.1145/3331446.

[25] J. Ian Munro et al. “Succinct Representations of Permutations”. In: Automata, Lan-
guages and Programming. Ed. by Jos C. M. Baeten et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 345–356. isbn: 978-3-540-45061-0.

48

https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1070/rm1961v016n05abeh004112
https://doi.org/10.1070/rm1961v016n05abeh004112
https://doi.org/10.1070/rm1961v016n05abeh004112
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://doi.org/10.1145/1109557.1109599
http://dl.acm.org/citation.cfm?id=644108.644250
https://doi.org/10.1145/2484425.2484443
http://event.cwi.nl/grades2013/14-gubichev.pdf
http://event.cwi.nl/grades2013/14-gubichev.pdf
https://doi.org/10.14778/2809974.2809985
http://www.vldb.org/pvldb/vol8/p1238-kim.pdf
https://doi.org/10.1007/978-3-319-25007-6_1
https://doi.org/10.1007/978-3-319-25007-6%5C_1
https://doi.org/10.1007/978-3-642-25008-8_2
https://doi.org/10.1007/978-3-642-25008-8%5C_2
https://doi.org/10.1007/978-3-642-25008-8%5C_2
https://doi.org/10.1145/3331446
https://doi.org/10.1145/3331446
https://doi.org/10.1145/3331446

[26] Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, 2016, pp. 285–291. doi: 10.1017/CBO9781316588284.

[27] Josefa Robert.A compact graph structure for efficiently solving RPQs. https://github.com/j-
rparra/compactGraph. 2023.

[28] Sherif Sakr and Ghazi Al-Naymat. “Relational processing of RDF queries: a survey”.
In: SIGMOD Rec. 38.4 (2009), pp. 23–28. doi: 10.1145/1815948.1815953. url:
https://doi.org/10.1145/1815948.1815953.

[29] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. “YAGO: A Core of Seman-
tic Knowledge”. In: Proceedings of the 16th international conference on World Wide
Web (2007), pp. 697–706.

[30] Frank Tetzel et al. “An Analysis of the Feasibility of Graph Compression Techniques for
Indexing Regular Path Queries”. In: Proceedings of the Fifth International Workshop on
Graph Data-management Experiences & Systems, GRADES@SIGMOD/PODS 2017,
Chicago, IL, USA, May 14 - 19, 2017. Ed. by Peter A. Boncz and Josep Lluis Larriba-
Pey. ACM, 2017, 11:1–11:6. doi: 10.1145/3078447.3078458. url: https://doi.
org/10.1145/3078447.3078458.

[31] Denny Vrandecic and Markus Krötzsch. “Wikidata: a free collaborative knowledge-
base”. In: Commun. ACM 57.10 (2014), pp. 78–85. doi: 10.1145/2629489. url:
https://doi.org/10.1145/2629489.

[32] Wikidata Graph Pattern Benchmark. http://compact-leapfrog.tk/. 2020.
[33] Dan E. Willard. “Log-logarithmic worst-case range queries are possible in space Θ(N)”.

In: Information Processing Letters 17.2 (1983), pp. 81–84. issn: 0020-0190. doi: https:
//doi.org/10.1016/0020-0190(83)90075-3. url: https://www.sciencedirect.
com/science/article/pii/0020019083900753.

[34] Lei Zou et al. “Efficient processing of label-constraint reachability queries in large
graphs”. In: Inf. Syst. 40 (2014), pp. 47–66. doi: 10.1016/J.IS.2013.10.003. url:
https://doi.org/10.1016/j.is.2013.10.003.

[35] Lei Zou et al. “gStore: Answering SPARQL Queries via Subgraph Matching”. In: Proc.
VLDB Endow. 4.8 (2011), pp. 482–493. doi: 10.14778/2002974.2002976. url: http:
//www.vldb.org/pvldb/vol4/p482-zou.pdf.

49

https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1145/1815948.1815953
https://doi.org/10.1145/1815948.1815953
https://doi.org/10.1145/3078447.3078458
https://doi.org/10.1145/3078447.3078458
https://doi.org/10.1145/3078447.3078458
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
http://compact-leapfrog.tk/
https://doi.org/https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/https://doi.org/10.1016/0020-0190(83)90075-3
https://www.sciencedirect.com/science/article/pii/0020019083900753
https://www.sciencedirect.com/science/article/pii/0020019083900753
https://doi.org/10.1016/J.IS.2013.10.003
https://doi.org/10.1016/j.is.2013.10.003
https://doi.org/10.14778/2002974.2002976
http://www.vldb.org/pvldb/vol4/p482-zou.pdf
http://www.vldb.org/pvldb/vol4/p482-zou.pdf

	Introduction
	Background and Related Work
	Resource Description Framework
	SPARQL

	Regular Path Queries
	Glushkov Automata
	Compact Data Structures
	Bitvectors
	GMR Sequences
	SDSL: Succinct Data Structure Library

	Graph Representation
	Description of the Data Structure
	Basic Graph Operations
	Additional Graph Operations
	Time and Space Complexities
	Construction Algorithm

	2RPQ Evaluation
	Single-variable 2RPQs
	Double-variable 2RPQs

	Experimental Evaluation
	Benchmark and Implementation Details
	Benchmark Systems
	Benchmark Database
	Implementation Details

	Experimental Results

	Conclusions and Future Work
	Bibliography

