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Resumen

Document Retrieval (DR) apunta a la recuperarción eficiente de documentos relevantes de una
colección, para las consultas del usuario. Una variante que surge como desaf́ıo es cuando los
documentos provienen de una gran coleción de textos arbitrarios. Este escenario ocurre con
colecciones de secuencias de ADN o protéınas, repositorios de software, secuencias multimedia
e idiomas del Lejano Oriente, entre otros entornos. Varias estructuras de datos comprimidas
para DR han sido desarrolladas a fin de hacer frente a este desaf́ıo, ofreciendo diferentes
complejidades en tiempo/espacio. Sin embargo, en la práctica las propuestas con el mejor
rendimiento en tiempo, requieren a su vez de demasiado espacio extra.

Esta tesis innova tres aspectos: (1) constrúımos ı́ndices para DR en base a la compresión
Lempel-Ziv 1978 (LZ78) en lugar de arreglos de sufijos; (2) manipulamos colecciones al-
tamente repetitivas en base a la compresión Lempel-Ziv 1977 (LZ77); (3) comenzamos a
estudiar cómo entregar respuestas aproximadas en dicho escenario de DR, lo cual es una
práctica común en textos de lenguaje natural.

Nuestra principal contribución es un nuevo enfoque para DR basado en la compresión
de datos LZ78, ofreciendo estructuras que resuelven los dos problemas fundamentales del
campo de DR: Document Listing (DL) y Top-k Retrieval. Nuestros nuevos ı́ndices ofrecen
desempeño competitivo en tiempo/espacio en ambos casos. Además nuestras propuestas
también entregan respuestas aproximadas, ahorrando considerable espacio y/o tiempo com-
parado con cualquier otra estructura que entregue una respuesta completa a alguno de estos
problemas.

También diseñamos una estructura que indexa colecciones de texto altamente repetitivo
y resuelve el problema de DL, basada en la compresión LZ77. Este el primer intento dirigido
a resolver un problema de DR utilizando compresión de datos LZ77, que además es el mejor
esquema de compresión para dichas colecciones.

Por otro lado, relizamos mejoras sobre estructuras de datos básicas utilizadas en DR.
Presentamos un diseño alternativo a la mejor solución teórica para Range Minimum Queries,
manteniendo sus buenas complejidades en términos de espacio utilizado y tiempo de consulta.
Logramos una formula más sencilla obteniendo como resultado la implementación más rápida
y compacta conocida hasta hoy.

Además implementamos varias propuestas teóricas promisorias para el arreglo de sufijos,
de las cuales no existen implementaciones previas. Finalmente, diseñamos e implementamos
un ı́ndice de texto comprimido para colecciones altamente repetitivas que resuelve el pattern
matching, el cual se basa en la compresión LZ77, y que además es la base para nuestro ı́ndice
sobre el LZ77 para DR.
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Abstract

Document Retrieval (DR) aims at efficiently retrieving the documents from a collection that
are relevant to user queries. A challenging variant arises when the documents are arbitrary
strings and the collection is large. This scenario arises in DNA or protein sequence collections,
software repositories, multimedia sequences, East Asian languages, and others. Several DR
compressed data structures have been developed to face this challenge, offering different
space/time complexities. However, in practice the proposals with the best time performance
require too much extra space.

This thesis innovates in three aspects: (1) we build on Lempel-Ziv 1978 (LZ78) compres-
sion, instead of suffix arrays, to build DR indices; (2) we build on Lempel-Ziv 1977 (LZ77)
compression to handle highly repetitive collections; (3) we start the study of approximate
answers in this DR scenario, which is common in DR on natural language texts.

In this aspect, our main contribution is a new approach to DR based on LZ78 data
compression, offering structures to solve the two most fundamental problems in the DR
field: Document Listing (DL) and Top-k Retrieval. Our novel indices offer a competitive
space/time tradeoff for both situations. Besides, our proposals are also capable of retrieving
approximate answers, saving a lot of space and/or time compared with any structure that
returns the full answer for any of these problems.

Our second main contribution is the design of a structure for indexing highly repetitive
text collections that solves the DL problem, which is built on the LZ77 parsing. This is
the first attempt to solve DR problems using LZ77 data compression, which is the best
compression scheme for such collections.

On the other hand, we improve on basic data structures used, among others, in DR.
We present an alternative design to the best theoretical Range Minimum Queries solution,
maintaining its good complexities in space usage and query time. We obtain a simpler formula
that leads to the fastest and most compact practical implementation to date.

We also implemented various promising theoretical proposals for compressed suffix ar-
rays, for which no previous implementations existed. Finally, we design and implement a
compressed text index for highly repetitive collections that solves pattern matching, which
is based on the LZ77 compression, and which is the basis for our LZ77-based DR index.
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Chapter 1

Introduction

This chapter describes the scope of this thesis, the open problems in the field and the concrete
contributions of our research. First of all we give the context in which we describe the
challenges that have motivated this study. The chapter ends summarizing each one of the
results obtained by this research.

1.1 Motivation

This thesis belongs to the Document Retrieval (DR) field, which deals with the study of
procedures to represent text collections and offers search functionality in order to efficiently
locate the documents that better satisfy an information need at query time.

Several of the most important challenges in Computer Science are related to finding effi-
cient algorithms to solve Search Problems. Independently of the scope of these algorithms,
many of them have as their main goal to retrieve specific information from a digital data
base. In research fields such as Text Searching and Document Retrieval, these kind of al-
gorithms operate on sequences of symbols or strings. Search problems can be as simple as
string matching (i.e., find occurrences of a string) or as complex as ranked document re-
trieval (i.e., find documents most relevant to a query). Besides, the search tasks become
more complex because we usually have to handle large data sets. We are then faced with
additional problems related to the storage and representation of massive amounts of data,
which implies that not only we need efficient search algorithms on them, but also to build
compressed representations to maintain memory usage under control.

A classic example is a Web Search Engine, where a user needs to know where a specific
information is located on the “World Wide Web”. In the process, the user gives a brief
description (typically a short string) about what he/she needs and waits for the output.
Behind the user interface, an Information Retrieval System is working to search for the
required information in the data representation.

As we have illustrated with Web searches, there are many other classical environments

1



where DR takes great relevance. In software repositories, a frequent task for developers is to
find where an object is mentioned in their source code files; for instance with user function
calls. Hence, pieces of source code are treated as documents and a DR framework is built
as a part of the development environment. In music collections, we also find various tasks
related to Music Information Retrieval (MIR). In MIDI sequence analysis1, one of the most
relevant concerns is to locate the occurrences of a theme in a piece of music. The theme can
be a melody or a sequence of notes called a musical pattern. The music is simply a song file in
MIDI format, a set of symbolically encoded notes that form the musical sequences represent-
ing each document, which is obtained from a digital-to-symbolic conversion of audio data.
Bioinformatics is another research area where DR solutions are often sought [8]. Advances
in DNA sequencing have produced databases of thousands of human genomes, which implies
additional problems related to data storage and how to retrieve pieces of sequences from
it. The challenge is again to build small representations for these big biological sequences
and to offer methods to carry out efficient searches on them. These sequences must be well-
compressed in data structures that allow us to filter biological documents without the need
to decompress the whole representation. In DNA sequencing, a popular problem is to list all
the genes where a DNA marker appears, where the sequence is composed only of base pairs
from the set {A, C, T, G}. Another frequent task, related with protein sequences, is to find
all the proteins where an amino acid sequence appears frequently.

The Inverted Index [5] is the most widely used data structure to solve DR problems when
the texts can be split into words. It is very similar to a book index, where for a set of
pre-determined words, we store for each word a list of all the documents that contain it. In
order to answer a DR query, where queries are sets of words, the inverted index finds the lists
of documents where each query word appears. After that, it must solve operations for sets
such as union, intersection or differences between the retrieved lists. The type of operation
depends on the problem to solve, and other variables are included to build the final answer,
such as scores for each document or weighting documents according to query word frequen-
cies. However, this approach is not easily applicable to human languages such as Chinese,
Korean, Thai, and other Asian languages, because these texts have no delimiters to mark
word boundaries. The same problem happens with agglutinating languages as Hungarian,
Turkish or Finnish, where sentences are concatenated into words. Another example is the
biological sequence analysis on DNA sequences, where as we mentioned the alphabet is a set
composed of only four characters without any delimiter. There are also many applications
where inverted indexes cannot be applied because the concept of word does not exist: source
and binary codes in software repositories, MIDI files, or any other multimedia database.
Consequently, the indexes of general string collections must be more general than inverted
indexes.

In this given context, an elementary and closely related problem (widely studied in text
indexing [88]) is Pattern Matching. It aims to locate all the positions where a given arbitrary
string, called the search pattern, occurs in a text given beforehand. The Suffix Tree (ST)
[116] is the most popular data structure used to solve this problem in optimal time and
linear space. For a given text T1..n and a search pattern p1..m that matches occ times in T ,

1MIDI is an acronym for the Musical Instrument Digital Interface, and has taken on multiple meanings as
the data in a Standard MIDI File (SMF). That standard describes the format designed to work with MIDI
hardware devices [110].
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the ST requires O(n log n) bits2 and solves a query for any p1..m in O(m+ occ) time. Instead,
DR problems aim to find which texts (or documents) in the collection satisfy a well-defined
relation with the query pattern, and they are much less developed than Pattern Matching.

The most elementary problem in DR is Document Listing (DL), which consists in finding
all documents that contain at least one match of p. Although solving DL using only the
suffix tree of the whole text collection (called Generalized Suffix Tree (GST)) is possible, it
can also be inefficient. This is because the number of occurrences of P in the collection can
be much higher than the number of documents where P appears.

Muthukrishnan [84] added some data structures to the GST that maintain the size com-
plexity in O(n log n) bits and solve DL in optimal time. After this work several succinct/com-
pressed indexes3 for DL have appeared trying to reduce the space requirements of Muthukr-
ishnan’s structure, both in theory and in practice. However, these smaller structures do not
maintain the optimal query time.

The highest-level task in DR is the so-called Top-k Retrieval. The objective is to determine
the k most relevant documents for the queried pattern. This relevance is a predefined criterion
that may depend on the document itself (e.g., PageRank in Web searches) and/or on the
occurrences of the pattern in the document (the most used one is the term frequency).
Something similar to DL happened with the progress of top-k solutions. Hon et al. [58] gave
a useful framework to solve top-k in linear space (i.e., O(n log n) bits), which is based on
the GST, achieving a query time near to the optimal. Navarro and Nekrich [89] reduced the
time to optimal. Their proposal also uses linear space, but the constants involved in the size
complexities are very large. Subsequent works tried to reduce the size of their proposal, but
their time is not optimal.

We focus on solutions for DR on general string collections, aiming at obtaining low space
and query time. Below we list the formal definitions for the two fundamental DR problems
that we address in this thesis.

Fundamental Document Retrieval Problems

Suppose that we are given a collection∇ of documents d1 , d2 , ..., dD of total length
∑D

j=1 |dj| =
n, which must be preprocessed to build an index for ∇, such that later we can efficiently
support on-line queries for any pattern string p1..m

4. On these assumptions, the following are
two of the most fundamental problems in DR:

Document Listing (DL). List all the documents of ∇ that contain p as a substring. If
in addition we give the number of occurrences of p in each document reported, the problem
is called DL with Frequencies.

2All the complexities that we describe in this thesis are based in the word RAM model, which can perform
any arithmetic operation on ω = Ω(log n)-bit integers in constant time.

3We say that an index is succinct when it provides fast search functionalities in a space proportional to
that of the text itself (say, two times the text size). If the size is proportional to that of the compressed text
then it is called a compressed index [88] (see Section 2.2).

4In this document we use indistinctly tx..y or t[x..y] to indicate the substring of t from x to y.
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Top-k Document Retrieval (Top-k). The goal is to list the k most relevant documents
of ∇ for a given string query p, in decreasing order of relevance. We define that the document
di is more relevant than document dj for a pattern p if, and only if, w(di , p) > w(dj ,P), where
w(d , p) is a function that assigns a numeric weight to the document d given the string p. In
this thesis we use the term frequency score tf(P, d) as function w(d , p), which is the number
of times that p appears in d .

1.2 Improving Current DR Solutions

1.2.1 Design of Data Structures to Use in DR Solutions

A practical way to obtain improvements in the field is to develop intermediate tools that
can be used as a part of the data structures that solve DR problems. There are a several of
those useful structures commonly used by DR solutions. Among them, a Full-Text Index is
usually necessary to carry out searches for patterns in the collection of files. For instance,
the popular compressed structure of Sadakane, which solves DL [106], uses a Compressed
Suffix Array (see Section 2.6.1) to obtain the interval of all the suffixes that contain the
pattern as a substring. Therefore, an improved full-text index has a positive impact on most
DR solutions. This thesis offers (Chapter 4) various implementations of compressed full text
indexes that had not been implemented before, although they do not outperform the best
current variants.

Another useful structure in DR is the Document Array (DA), introduced by Muthukrish-
nan [84], which requires of ndlogDe bits in plain form5. Today there are several proposals
to represent it succinctly, or alternative structures that can replace its functionality on par-
ticular scenarios [114, 46, 45, 91]. We tried various approaches to compress the DA, but had
no good results.

Yet another useful structure used in DR indexes, generally associated with the document
array, is one that can locate the position of the smallest element inside an array interval. Such
data structure is called Range Minimum Query (RMQ). Fisher and Heun [40] gave a method
to build, from an input array of length n, an RMQ structure that requires only 2n + o(n)
bits, and can answer queries in constant time. Any improvement in the implementation
of RMQ structures impacts on most DL and Top-k solutions. This thesis offers an RMQ
implementation using 2.2n bits that answers queries in a few microseconds (Chapter 5),
outperforming all the previous alternatives.

1.2.2 Design of Compressed Indexes to solve DR Problems

Another approach is to directly design improved indexes to solve DR problems. Most current
solutions [87] build on (possibly compressed) suffix arrays or trees (the only exception is

5In this thesis, we denoted log x (or just lg x) to the logarithm in base two of x, unless that we specify
another base.

4



the grammar-based DL index of Claude and Munro [23]). The main reason is that these
contributions are based in the pioneer DL optimal-time structure of Muthukrishnan [84],
which is built on the suffix tree. Therefore, subsequent proposals try to reduce the size of
that structure, as well as augment it in order to solve Top-k retrieval. In this thesis we
focus on brand new approaches, based on full text indexes that build on LZ77 [117] or LZ78
[118] compression. In Chapter 6 we adapt such a full-text index for LZ78 [85] to perform
DL, and in Chapter 7 we extend it to Top-k. The results are very competitive DR indexes
that, in addition, are much more efficient to deliver partial or approximate answers, which are
usually tolerated in DR scenarios. This offers a new research path that had not been explored
much. On highly repetitive collections, LZ77 is much stronger than LZ78. In Chapter 8 we
introduce another approach to build a DL index based on the LZ77 parser, and also show
how to retrieve the frequencies in the output documents. However, this work has not been
implemented yet; we plan to do it after this thesis work.

1.3 Thesis Statement

This thesis is focused on developing theoretical and/or practical contributions to solve fun-
damental problems in Document Retrieval more efficiently, in terms of time and/or space.

We design and implement new algorithms to build compressed data structures that: (i)
can be used as part of DR solutions, or (ii) index general collections of symbol sequences to
support DR queries. We obtain various solutions with better space and/or time performance
than the state of the art.

1.3.1 Thesis Contributions

The contributions of this thesis have been divided into separate chapters, which are related
with different topics:

Chapter 4. Contributions in Text Indexing. This chapter describes various implementa-
tions of text indexes. These indexes perform pattern matching, which is frequently a
preliminary process in document retrieval queries.

Section 4.1. Structures for Compressed Suffix Arrays. It describes two implementa-
tions for different theoretical proposals of compressed suffix arrays [54, 55, 100], for
which no previous implementations are known despite their good theoretical guar-
antees. We show experimentally that these proposals, in practice, do not perform
better than the current and popular implementations in the field, both in query
time and in required space. Although it is a negative result, clearly establishing
this fact is valuable for researchers and practitioners.

This result has been included as a part of an article appeared in the
ACM Journal of Experimental Algorithmics (2014) [51].
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Section 4.2. Hybrid Indexing on Repetitive Datasets. It introduces a simple technique
for reducing the size of conventional indexes on highly repetitive texts. Given
upper bounds on pattern lengths and edit distances, we preprocess the text with
LZ77 to obtain a filtered text, for which we store a conventional index. Later,
given a query, we find all matches in the filtered text, then use their positions
and the structure of the LZ77 parse to find all matches in the original text. Our
experiments show this significantly reduces space and query times.

This result was published in the Philosophical Transactions of the
Royal Society A (2014) [29].

Chapter 5. Improved Range Minimum Queries. Fischer and Heun [40] proposed the first
Range Minimum Query (RMQ) data structure on an array A[1, n] that uses 2n+ o(n)
bits and answers queries in O(1) time without accessing A. Their scheme converts the
Cartesian Tree of A into a general tree, which is represented using DFUDS [16]. We
show that, (i) by using BP representation [83] instead of DFUDS, the formula becomes
simpler since border conditions are eliminated; (ii) for the BP representation, the Range
Min-Max Tree [107] with only minimum values is sufficient to implement the formula
and it significantly reduces the space requirements. This leads to the fastest and most
compact practical implementation to date, which uses around 2.2n bits and takes 1–4
microseconds per query.

This result was published in the Proceedings of the 26th Data Compression
Conference (DCC 2016) [32]. It won the Capocelli Prize (best student paper
award).

Chapter 6. An LZ-based Index for Document Listing. It describes the first attempt to solve
the DL problem using an LZ78 compressed index of the text collections. We show that
the resulting solution is very fast to output most of the output documents, taking
more time for the final ones. This makes this index particularly useful for interactive
scenarios or when listing some documents is sufficient. Yet, it also offers a competitive
space/time tradeoff when returning the full answers.

This result was published in the Proceedings of the 20th International Sym-
posium on String Processing and Information Retrieval (SPIRE 2013)
[30].

Chapter 7. An LZ-based Index for Top-k Retrieval. It introduces a top-k retrieval index
for general string collections, which is based on the index described in the previous
chapter. Our implementations achieve competitive space/time tradeoffs compared to
existing solutions, dominating a significant part of the space/time tradeoff map. The
approximate variant of our index (LZ-TopkApp) is orders of magnitude faster, and uses
much less space, than previous work. Typically it uses 4–7 bits per symbol and returns
each result in about 1–5 microseconds. We show that the quality of its answers improves
asymptotically with the size of the collection, reaching over 90% of the accumulated
term frequency of the real answer already for patters of length ≤ 8 on rather small
collection, and improving for larger ones.
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This result was published in the Proceedings of the 21st International Sym-
posium on String Processing and Information Retrieval (SPIRE 2014)
[31].

Chapter 8. LZ77 Based Index for Document Retrieval. This is a preliminary work based
on the LZ77 parsing, where we detail how we can adapt the structure described in
Section 4.2 for the Hybrid-Index, which solves the pattern matching problem, to solve
document listing queries and also to retrieve term frequencies. The implementation
and refinement of these structures is left as future work, which we expect to continue
after this PhD thesis.

Additionally to the detailed contributions, this thesis work has been presented at the
Encuentro de tesistas - Jornadas Chilenas de Computación (ET-JCC 2014). We also expect
other two publications. The first one is the extended version of the main work described in
Chapters 6 and 7, which has been submitted to the journal Information and Computation.
The other publication is the extended version of our paper Improved Range Minimum Queries
[32] described in Chapter 5, which has been invited to a special issue in the Journal of Discrete
Algorithms.

Practical Contributions

As practical contributions of this thesis, there are several implementations available in public
repositories:

• The Compressed Suffix Array implementations of Grossi and Vitter (GVCSA) and of
Rao (RaoSA), from Section 4.1.
http://pizzachili.dcc.uchile.cl/additionalSuffixArrays.html

• The implementation of the Hybrid-Index to solve pattern matching, as a result of
Section 4.2.
https://www.cs.helsinki.fi/u/gagie/hybrid/

• The libraries to build an RMQ compressed structure, from Chapter 5.
https://github.com/hferrada/rmq.git

https://github.com/hferrada/rmqFischerDFUDS.git

• A compressed LZ-based index to solve DL, from Chapter 6.
https://github.com/hferrada/LZ-DLIndex.git

• The implementations of Sadakane’s index for DL, from Chapter 6.
https://github.com/hferrada/Sada-DLIndex.git

• A compressed LZ-based approximation for top-k queries, from Chapter 7.
https://github.com/hferrada/LZ-AppTopK.git

• A compressed LZ-based index to solve top-k (full answers), from Chapter 7.
https://github.com/hferrada/LZ-Topk.git
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1.4 Thesis Structure

Chapter 2 gives the basic concepts that are necessary to understand the rest of this document.
Chapter 3 details the most important solutions for the DR problems addressed in this thesis.

The content specifically related with the detailed contributions is organized in parts:

First part. It comprises Chapters 4 and 5, which focus on intermediate tools that can be
used as a part of compressed structures to solve DR problems. Chapter 4 presents the study
of full text indexes and Chapter 5 details how to improve the current way to compute Range
Minimum Queries.

Second part. It comprises Chapters 6 and 7. These detail the LZ-based indexes to solve
document listing and top-k retrieval problems, respectively.

Third part. It comprises Chapter 8. It describes an LZ77-based index for DL useful when
the documents are highly repetitive.

Chapter 9 summarizes the conclusions obtained from this research, it discusses the impacts
and describes possible future work directions.
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Chapter 2

Basic Background

We have adopted the standard word random access model (RAM) as the computation model,
where if n is the maximum size of the problem, the basic operations between words of
maximum size O(log n), or reading/writing O(log n) bits of memory, can be done in constant
time.

Throughout this thesis we consider the text T = d1$1d2$2..dD$D as a concatenation of D
text documents. Each document di is a finite sequence built over an alphabet Σ of size σ (Σ
is a totally ordered set of symbols), such that $1 <$2 < .. <$D and $D < c for any character
c of Σ. Then, for any pair of strings a, b of Σ∗ and any i , j ≤ D, it is possible to determine
which word a$i or b$j is the lexicographically lowest. This yields a total order � between
suffixes of documents.

2.1 Text Compression

In text processing, we usually have to handle several texts, facing the problem of how to
store them. The simplest way is to store the whole collection explicitly without resizing the
data. This is ideal only when the total amount of data is small and we have enough resources
to save them. However, in many practical cases the explicit storage is prohibitive given the
space restrictions –at least in main memory. The solution then is to look for techniques
that can be applied on the texts to reduce their size, which is called Text Compression (TC)
[14]. The objective of TC is to obtain an equivalent structure for the input text, called a
representation, which is smaller than the input text, does not lose information, and can be
used instead of the original data.

Salomon [108] defines Data Compression (DC) as the process of converting an input data
stream (the source stream or the original raw data) into another data stream (the output,
the bitstream, or the compressed stream) that has a smaller size. Accordingly, the process
of DC is promoted by two important motivations. The first one is related to the limitations
of the memory architecture. No matter how big the available space is to handle data, there
will always be a time when this resource cannot offer more storage. DC aims at delaying
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that moment. The second one is in relation to the transfer rate by communication channels.
The larger the amount of data that will be transferred, the longer the time of the transfer.
DC also aims to reduce this time.

A more complex scenario

The above considers only the problem of storing large volumes of texts, without regarding
the access time to the compressed data nor how to quickly find within it any information
when it is needed. Taking into account that the time needed to access secondary storage is
orders of magnitude slower than manipulating data in main memory, it is convenient to build
smaller representations that avoid using secondary memory. Furthermore, searching and
locating text are one of the activities most frequently associated with text collections. These
considerations have motivated the recent trend of designing data structures for indexing the
text and accelerating the search tasks. These are called Text Indexes, which require generally
more space than the data indexed. For that reason, the most useful indexes are those that
require (at most) space proportional to what is needed to store the text collection. Even
more desirable is that the indexes implement TC and do not need to decompress the whole
index in order to carry out text searches.

Through this thesis we will introduce different levels of compressibility in structures that
index the data. We refer to a Full Text Index as an index enabled to carry out text searches
much faster than sequentially searching the collection. In the field there is a standard nomen-
clature used to classify indexes, which considers the structure size and its dependency with
the indexed text. The next paragraph, extracted from the survey of G. Navarro [88], defines
a hierarchy of three compression levels1:

“A succinct index is an index that provides fast search functionality using a space pro-
portional to that of the text itself (say, two times the text size). A stronger concept is that
of a compressed index, which takes advantage of the regularities of the text to operate in
space proportional to that of the compressed text. An even more powerful concept is that of
a self-index, which is a compressed index that, in addition to providing search functional-
ity, contains enough information to efficiently reproduce any text substring. A self-index can
therefore replace the text.”

Whatever the level of compressibility of a structure, we refer to it as a Compact Data
Structure if its space requirements are (at least) in proportion to the data representation
while it supports useful operations without the need to decompress the whole structure. In
particular, our objective is to search directly in the compressed DR index (in our compact
data structure) instead of decompressing it.

1In other cases, succinct denotes an index of size |data|+ o(|data|), whereas an index of size O(|data|) is
called compact.

10



2.2 Measures of Compressibility

A key point of our interest when designing structures for DR is in relation to the representa-
tion of text documents. When building a full text index, it is necessary to represent the entire
input collection in a data structure that offers search functionalities over it. In particular,
we aim to build a representation as small as the compressed data itself, which supports fast
DR capabilities on the documents.

To compress the space we must take advantage of the regularities of the data. Under
this context, we need tools to measure how good is the compression we achieved. The In-
formation Theory [111, 14, 4] offers an accurate way to quantify information with metrics
that answer the question: “how much information is included in a piece of data?”. Using it,
we can estimate how good a representation like an index is, with respect to the information
contained in the original data.

The Kolmogorov-Chaitin complexity (KCC) [66] defines the complexity of an object, like
a binary string, as the number in bits of the shortest program that generates it. In simple
words it is the length of the shortest program that can list, print, or write in a text file the
original sequence. This measure tells us which is the best result in terms of space resources
that we could get from building a representation of the object. Therefore, if the KCC of a
bitstring S is as long as the sequence itself, for instance in a random bitstring, we can say
that S is incompressible. On the other hand, when the KCC is shorter than the sequence, for
instance in S ′ = 110110110..., such that a loop in a program can write 110 until obtaining
S ′, we say that S ′ can be compressed.

Chaitin [20] studied the shape of binary strings, observing that the common bitstrings
used in practice, which represent text, images and sound are placed, on average, between S
and S ′ (the kind of bitstrings indicated in the previous paragraph). He showed that most
of these sequences are neither incompressible (not random), nor repetitive sequences like S ′.
The conclusion is that it is possible to obtain different levels of compression for general bit-
sequences. Considering that we need represent text documents, one of the challenges in this
research is to find how to get compression in full text indexes for DR.

Although the concept of KCC is clear, it is not computable, so we need a “bridge” between
theory and practise. For that we consider the Entropy of Shannon [111], which in information
theory is closely related to KCC but not so general. The entropy of an object x, H(x), is a
quantity number that measures the average uncertainty of x. It is the smallest number of
bits required, on average, to identify an object from a set (the length of a code for x). It
then gives the average lower bound, in bits, to encode each object.

The codelength that we give to each symbol is crucial to obtain a smaller representation
of the data. The Worst-Case entropy, denoted as HWC , is used when there is no other option
than to assign codes with identical length to all the symbols. HWC is the shortest possible
codelength to univocally identify each element from a set source U :

11



HWC(U) = lg |U|.

A better situation is when we can handle codes with variable lengths. Suppose that there
is a small percentage of symbols in U that are very frequent in a sequence S. If we assign
shorter codes to these highly frequent elements, though the less frequent ones are longer, we
could save space by rewriting S with these encodings.

Shannon gave a formula to compute the entropy when we have the occurrence probabilities
of the symbols, that is, a symbol u appears in the sequence with probability Pr(u). He defined
the entropy for a probability distribution Pr, where Pr : U → [0.0, 1.0] as:

H(Pr) =
∑
u∈U

Pr(u) · lg 1
Pr(u)

Empirical Entropy

The Empirical entropy is a compressibility measure for symbol sequences that lower bounds
the performance of certain types of compressors without assuming the sequence comes from
a particular distribution. This is useful because we usually do not know the probability of
the occurrence of symbols. The value Hk corresponds to the k-th Order Empirical Entropy
defined for finite texts [79]. It provides a lower bound to the number of bits needed to
compress T using any compressor that encodes each character considering only the context
of k characters that follow it in T .

The zero-order empirical entropy of T1..n, where its symbols come from the set Σ, is defined
as:

H0(T ) =
∑

ω∈Σ,nω>0

nω
n

log
n

nω
,

where nω is the number of occurrences of character ω in T1..n.

The k-order empirical entropy of T1..n is defined as:

Hk(T ) =
∑

s∈Σk,T s 6=ε

|T s|
n
H0(T ),

where ε denotes the empty string and T s is the subsequence of T formed by all the characters
that occur followed by the context s in T . In order to have a context for the last k characters of
T , we pad T with k characters “$” (in addition to Tn = $). More precisely, if the occurrences
of s in T2,n$k start at positions p1, p2, ..., then T s = Tp1−1Tp2−1....

For example, let s =carretera. We have H0 = 21
9

log 9 + 22
9

log 9
2

+ 1
3

log 3 ' 2.197. For
H1(s), we have cs = a, as = r, rs = rea, es = tr and ts = e; with H0(a) = H0(r) = H0(e) = 0,
H0(rea) = 1.585 and H0(tr) = 1. Then H1(s) = 1

9
(H0(a) + H0(r) + H0(e) + 3H0(rea) +

2H0(tr)) ' 0.751.
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2.3 Bitvectors

A bitvector is one of the most fundamental data structures in text indexing. It is a repre-
sentation of a bit sequence equipped with additional functionality, for the purpose of quickly
answering queries about the bits stored in relation to any sequence’s prefix. It replaces the
original sequence S, by allowing the retrieval of the bit value at any position in S. Formally,
a bitvector B1..n is an explicit or compressed representation of a sequence of n bits, which
supports the following operations in constant time (or very close to it) on the RAM model:

• access(B, i) returns the bit at position i , for any 1 ≤ i ≤ n.

• rankb(B, i) returns the numbers of bits b ∈ {0, 1} up to position i , for any 1 ≤ i ≤ n.

• selectb(B, i) returns the position of the ith bit b ∈ {0, 1}, for any 1 ≤ i ≤ rankb(B, n).

In the current state of the art we find uncompressed and compressed solutions to build
bitvectors. The best uncompressed proposals use o(n) extra bits to compute the three pre-
vious operations in constant time (see for instance [60, 82, 22]). For compressed bitvectors,
the best solutions [99, 96, 6] typically require nH0(B) + o(n). The key to saving size is to
consider blocks instead of individual bits to build the representation. Additionally, small
tables are used during rank and select operations to compute the answer for single blocks in
constant time.

2.4 Fundamental Text Indexes

A basic and simple data structure that can be used as a general index for a text builds on
the Digital Tree or Trie [42, 65]. This structure organizes and stores a set of strings in a
tree, so that the search of a string p1..m can be performed efficiently in time proportional
to the length m. Each node represents a different prefix of the set, where the root node
represents the empty string ε, and each edge stores a symbol c used to guide the search. The
construction of this tree can be done in time proportional to the total length of the strings
to be stored. The search is performed from the root node down through the tree, consuming
the pattern p1..m symbol by symbol, and selecting the correct edge labeled with the symbol
read. Additional data structures are necessary to retrieve the correct child during the search
in constant time, for example a perfect hash table. If we only store the children ordered in an
array, we then must implement a binary search in each internal node, increasing the search
time to O(m log σ), where σ is the alphabet size.

The Suffix Tree (ST) was proposed by Weiner [116]. It is a digital trie of all the suffixes of
a text, where unary paths (sequences of intermediate nodes with a unique child) are replaced
by a single edge labeled with the concatenation of all the symbols of the replaced edges. The
children of an intermediate node are placed from left to right in lexicographical order. The
leaves represent each of the n suffixes of the text T1..n, and they store the position of their
corresponding suffix.
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Figure 2.1: A Trie on the strings: she$1, sees$2 and cheese$3, and also the GST and GSA for

the text: she$1sees$2cheese$3. For simplicity, in GST and GSA the corresponding suffixes of
symbols $i have been omitted.

A Generalized Suffix Tree (GST) is a suffix tree built on a concatenation of all text doc-
uments of the collection, T1..n = d1$1d2$2...dD$D. As every occurrence of p in T is a prefix
of some suffix, pattern matching is performed similarly to the trie, but taking into account
that now the edges could have more than one symbol. If at some point the path given by p
cannot be followed, then p does not occur in T . Otherwise, we will consume all the symbols
of p, arriving at a node v. Then, all the leaves of the subtree rooted at v are the occ occur-
rences sought. With this structure we solve the pattern matching problem in optimal time,
O(m+ occ), but it is necessary to access the text when we reach a leaf x and the number of
symbols from the root to x is lower than m. Nevertheless, this structure requires O(n log n)
bits of space to be stored, which in practice is 10-20 times the text size.

The Suffix Array (SA) [77] is a structure that reduces the size of the suffix tree, but
supports fewer functionalities. The SA consists of an array of integers that represents a
permutation of the n suffixes of T1..n, which are lexicographically ordered from left to right
in the array. Due to this ordering, all the suffixes that start with the same prefix of length
m are in consecutive positions on the array. The SA can be used to delimit the segment
of all the suffixes starting with p1..m by two binary searches (for these searches, as in the
ST, it is necessary to access the text). Therefore, the time complexity with this structure is
O(m log n), and the data structure requires exactly n dlog ne bits of space. That time can
be reduced to O(m + log n) by adding some structures. Like the GST, when the text is a
concatenation of several text documents, the SA is called Generalized Suffix Array (GSA).
The suffix array can be created from the suffix tree, placing all of the tree leaves in the
same order from left to right. However, it is preferable to build it directly by ordering the
suffixes with any efficient algorithm, some of which build the SA for T1..n in linear time [98].
Figure 2.1 shows an example of these structures.

These fundamental text indexes require much space, that is, Θ(n log n), which is more than
a few times the collection itself, hence these are not compact. Section 2.6 covers compressed
text indexes, most of which are based on the SA and frequently used in DR.
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Figure 2.2: The Wavelet Tree for the sequence S=”she sees cheese$” over the alphabet Σ =
{$, , c, e, h, s}. For example in the root node, the bits of B are set to 0 for the symbols set {$, , c},
whose characters belong to the lower half of the alphabet. For computing rank (S, 10) = 2, where
i = 10, the figure shows the re-computation of the i values in each step as we go down, using
by rank operations relative to the previous bitvector B. For selects(S, 4) = 14, where i = 4, we
illustrate how to recalculate the new values of i , by select operations, while climbing the tree from
the leaf of the symbol s. The internal rank/select operations are always computed on the bitvector
B of the node recently visited in the path.

2.5 Other Useful Data Structures

2.5.1 Wavelet Trees

According to Grossi et al. [52], the Wavelet Tree (WT) for a symbol sequence S1..n over
an alphabet Σ of size σ is a binary tree, which is able to compute S[i ], rankc(S, i) and
selectc(S, i)

2, ∀ c ∈ Σ. The classical version of WT consists of a balanced binary tree that
computes access, rank and select queries in O(log σ) time. It requires (1 + o(1))n log σ bits,
thus it is a succinct text index, and can be constructed in O(n log σ) time. Each internal node
represents a subsequence of characters of S. For this purpose the node stores an uncompressed
bitvector that supports rank/select. The binary string at the root node contains n bits for
representing the complete sequence S1..n, and handles all symbols of Σ. Any internal node v,
located at depth i , for 0 ≤ i ≤ dlog σe, handles a subset of σ′ = dσ/2ie symbols. Then each
bit of its bit-sequence is set to 0 when the corresponding character is among the dσ′/2e lower
symbols with respect to the node i , otherwise the bit is set to 1. Consequently, its left and
right children represent the symbols of the lower half (bits in 0) and upper half (bits in 1)
of v, respectively. According to this model, the tree contains n bits in each of the O(log σ)
levels, which are used to guide the search. Also, the WT has σ leaves located in order from
left to right; these correspond to the distinct symbols of Σ (see an example in Figure 2.2).

For computing access, that is, S[i ], we move down in the tree until we reach the correct

2In Section 2.3 we defined rank and select on bit sequences (i.e, |Σ| = 2), here we refer to these same
operations, but now restricted to symbol sequences with alphabets of any size.
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Figure 2.3: A wavelet tree where we shadowed the O(log n) nodes that cover the leaves range
[ym, yM ]. The range is covered with at most two maximal nodes per level. It is sufficient to
map an original range [xm, xM ] from the root to those O(log n) nodes to find all the points
in [xm, xM ]× [ym, yM ]. Then those points can be reported one by one, or their total amount
can be counted in time O(log n).

leaf and report its symbol. We go down to the left if the ith bit is 0 and to the right if it is
1, and recompute in each step the value of the index i , depending on whether we go down
to the left or right child. We recalculate i = rank0(B, i) on the left (or rank1 on the right),
where B is the bitvector of the current internal node at this step. To compute rankc(S, i),
we update in each step the value of the relative index i as in operation access. Here, we
move down to the left if c is in the first half of the subset of symbols handled by the current
node, otherwise we go down to the right. When we reach the leaf c, the current value of
i is the answer. For computing selectc(S, i), we start from the leaf corresponding to the
symbol c, at position i and go up to the root. Each time we go up, we update the index with
i = select1(B, i) if we go up from the right child, or select0 from the left child. Figure 2.2
shows an example of rank/select operations.

Wavelet trees can also represent an n×n grid with n points, one per column: (1, y1), (2, y2),
. . . , (n, yn), by regarding the points as a sequence S1..n = y1y2 . . . yn on the alphabet [1..n].
The wavelet tree takes n lg n + o(n log n) bits to represent the points, and can retrieve the
t points in any rectangle [xm, xM ] × [ym, yM ] in time O((t + 1) log n), as follows. We start
at the root bitvector Bv with the range [xm, xM ]. Then we go to the left child with the
new range [rank0(Bv, xm − 1) + 1, rank0(Bv, xM)], and to the right child with the range
[rank1(Bv, xm − 1) + 1, rank1(Bv, xM)]. We stop the recursion at any node v where either
the range is empty or there is no intersection between the sub-alphabet of [1..n] handled by
v and the range [ym, yM ]. When we reach a leaf, we report its corresponding y value (we
can report the x value as well, by going upwards as for select). Since the range [ym, yM ] is
covered by O(log n) wavelet tree nodes, it is possible to count the number t of points in a
rectangle in O(log n) time, by adding up xM − xm + 1 on those nodes that cover [ym, yM ],
instead of tracking all their points up to the leaves. Figure 2.3 exemplifies the process.
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2.5.2 Succinct Tree Representations

Ordinal Trees and Cardinal Trees are the major families of data structures for trees. The
first are rooted trees and their nodes can have any degree. They are also called ordered trees,
because the order of the children of any node is significant. In the second family of trees,
each node reserves k fixed slots for its children, and in every node its slots can be occupied or
free. Though the cardinal trees are very important (a binary tree is an example with k = 2),
we focus only on the succinct representation of ordinal trees, because these data structures
are the most used ones in the field of document retrieval.

Observe that we need Θ(log n) bits to store a pointer to a node of a tree T with n
nodes. So a pointer-based tree representation needs Θ(n log n) bits. However, there are
only 4n/Θ(n3/2) trees with n nodes, so log(4n/Θ(n3/2)) = 2n−Θ(log n) ≤ 2n bits should be
sufficient according to the information theory lower bound. Mainly, there are four approaches
for the succinct representation of ordinal trees:

1. Balanced Parenthesis Sequences (BPS). BPS was proposed by Munro and Raman [83],
where an ordinal tree is encoded in 2n bits by performing a depth-first traversal of T
(i.e., the nodes are listed in preorder). This encoding is formed as follows. We append
an opening parenthesis each time we arrive at a new node, and a closing parenthesis
when we definitively leave the node in the traversal. Thus we use a pair of parentheses
“( )” for each node in the resulting sequence P [1..2n].

2. Depth First Unary Degree Sequences (DFUDS). This scheme was proposed by Benoit
et al. [16]. In order to build this sequence P , with the same depth-first traversal of
the tree, we encode the arity of each node in unary (for a node of degree d, we put d
opening parentheses plus one closing parenthesis). As a result we obtain a sequence of
2n balanced parentheses.

3. Level Order Unary Degree Sequences (LOUDS). The idea of Jacobson [60] is to build a
sequence of length 2n by a level-order traversal of the tree. For each level in increasing
order, we encode the arities of all the nodes from left to right in unary codes, as for
DFUDS.

4. Tree Covering (TrC). In this approach, given by Geary et al. [47], the representation
of T also occupies 2n bits. The method consists of a tree decomposition into a set of
connected mini-trees, each of which is also decomposed into a set of connected micro-
trees.

The four representations of ordinal trees can be stored in 2n + o(n) bits, supporting a
large number of navigation operations. Figure 2.5 shows an example of BPS, DFUDS and
LOUDS succinct representations for the same tree.

Sadakane and Navarro [107] proposed a succinct representation of ordinal trees in 2n+o(n)
bits with a BPS approach and maximum functionality. The proposal is based on a data
structure called range min-max tree TmM . The method handles a virtual array of excess
of opening minus closing parentheses E[1..2n] built over P , where E[i ] = rank((P, i) −
rank)(P, i). Later, we partition the BPS P into blocks of fixed size, and for each partition,
we create a leaf TmM node that stores summary measures, such as minimum and maximum
values of E. We then create a multi-ary hierarchy of internal TmM nodes, with information on
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Figure 2.4: The Cartesian Tree on the input array A[1..16], with an illustration of the relation
between LCACT (8, 14) = 11 and RMQCT (8, 14) = 11.

the ranges of E, until building the root node, which stores the information of the whole range
E[1..2n]. They use this information stored in the tree structure to achieve constant time for
many tree navigation operations. They also show how with a base set of five operations, we
can compute many others. These essential operations on the BPS sequence are: rank, select,
findopen(i)/findclose(i) (position of parentheses matching P [i ]), and enclose(i) (position of
tightest open parentheses enclosing node i). This approach can be extended to dynamic
trees with the same asymptotic space, but the time requirement becomes O(log n) for most
operations.

2.5.3 Cartesian Tree

The Cartesian Tree (CT) [115] is a binary tree data structure built on an array A[1..n] of
elements that have a total order. The Cartesian Tree is defined as follows: The root of the
Cartesian Tree is A[i ] = min {A[1], ..., A[n]}; its left sub-tree and right sub-tree are Cartesian
Trees too, which are computed on A[1], ..., A[i − 1] and A[i + 1], ..., A[n] respectively (see the
example in Figure 2.4). If the array A contains equal elements, then there are different CTs
for A. On the other hand, if we always choose the leftmost minimum, the result is called a
Canonical Cartesian Tree. The Cartesian Tree can be represented succinctly in 2n + o(n)
bits, such structure supports several navigation operations (see previous section); and it can
be built efficiently in O(n) time [39].

2.5.4 Lowest Common Ancestor and Range Minimum Query

The Lowest Common Ancestor (LCA) between two nodes v and w in a tree T is the deepest
node l = LCAT (v, w) that is an ancestor of both nodes v and w, assuming that any node is
an ancestor of itself. LCA is a commonly required functionality in many problems, including
DR.
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On the other hand, the Range Minimum Query (RMQ) problem is defined as follows.
Given an array A[1, n] with elements from a totally ordered set, an RMQ data structure
returns the position of the minimum value in any range of A. Formally, it receives a pair of
positions 1 ≤ i ≤ j ≤ n and returns

rmqA(i , j) = argmini≤k≤jA[k].

In many cases one prefers the leftmost position when there are more than one minima in
A[i ..j].

These two operations are closely related. Gabow et al. [43] showed that LCA in a static
tree T can be reduced to RMQ as follows: We store the depths of the nodes in an array H
in the same order in which they are visited during an in-order tree traversal of T , and store
in I[j] the node from which the depth H[j] comes. Then, letting R be the inverse array of I
(i.e., I[R[j]] = j), it holds LCAT (v, w) = I[RMQH(R[v], R[w])]. On the other hand Bender
and Farach [15] compute rmqA(i , j) = inorderCT (inorder−1

CT (i), inorder−1
CT (j)), where CT is

the Cartesian Tree of A.

For RMQ, Fischer and Heun [40] gave an optimal size solution, which requires 2n+o(n) bits
and computes RMQA(i , j) in constant time, under the word-RAM model, without accessing
the original array at query time. This structure is based on a labeled and ordered tree
called 2d-Min-Heap, MA. The nodes of MA are v0, v1, ..., vn, where vi corresponds to the cell
A[i ]. The node v0 is the root and corresponds to a virtual cell A[0] = −∞. The parent
node of vi is vj if j < i , A [j] < A[i ], and A[k] ≥ A[i ] for all j < k < i . This rule sets
a vertical and horizontal order in the tree, such that the labels between sibling nodes are
non-increasing from left to right, and for ancestor nodes their labels are increasing from the
root node to each leaf. Then, for a node v with children v1, ..., vk, it holds A[v] < A[vj] and
A[vj] ≤ A[vj−1] for all 1 < j ≤ k. They store MA with a succinct tree representation in
2n + o(n) bits (see Section 2.5.2) [107], and enable the structure to compute LCA queries.
Thereby to obtain RMQA(i , j), we let l = LCAMA

(vi, vj). If l = i then RMQA(i , j) = i , and
otherwise RMQA(i , j) is given by the child of l on the path from l to j. An example is given
in Figure 2.5, where l =LCAMA

(i , j) =LCAMA
(8, 14) = 7 6= i ⇒ RMQA(8, 14) = 11.

2.6 Compressed Text Indexes Based on the SA

We have already mentioned how useful is the suffix tree for text indexing. However its great
problem is the required space to store its structure, which is around 20 times the size of the
indexed text. For that reason, when it is needed to index a big amount of text data it is
preferable to replace it by a smaller index. The suffix array (SA) then arises as the ideal
candidate to index the text, which still maintains many of the features of the ST. The SA
A[1..n] for a text T1..n = t1t2..tn can be used to compute count and locate, two of the most
important operations in text indexing. Given a query pattern p, count refers to the number
of times p appears in T . The indices corresponding to every string that starts with the same
pattern are in consecutive SA positions. The occurrence interval Ic = [sp, ep] of a pattern
p1..m can be found in O(m log n) time by two binary searches on A (accessing T to compare
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Figure 2.5: The 2d-Min-Heap data structure on the array A and the BPS, DFUDS and LOUDS
succinct representations of the tree. Observe that RMQA(8, 14) = 11 is given by the child of
l =LCAMA

(8, 14) = 7 on the path from l to j = 14.

symbols). After that, count is determined as ep− sp+ 1. On the other hand, locate obtains
the value of A[i ] for every suffix of Ic, which can be done in constant time per value with a
plain representation of A.

Even though the SA requires only around 20% of the suffix tree size, it still needs too
much space for large text collections. The challenge then is to build a smaller representation
of the SA. Next we describe some of the most important compressed SA structures.

First we describe the two most important families of text indexes, most of which are
self-indexes. These are text indexes that, additionally to computing count and locate, can
generate any text substring (extract operation), that is, a self-index replaces the text itself. A
self-index structure performs all of these operations in a space close to that of the compressed
text, using at most the plain text size plus a sub-linear extra space.

2.6.1 The Compressed Suffix Array

These indexes take advantage of the regularities of the suffix array to represent it in little
space. The CSA was introduced by Grossi and Vitter [54] in the year 2000, where it applied
only to texts over a binary alphabet. It is not a self-index, because it needs the text to operate.
Sadakane turned this CSA into a self-index with some improvements [101, 104]. Grossi and
Vitter generalized their initial CSA to general alphabets [55], but it still does not replace the
text. The general method of these proposals consists of a hierarchical decomposition of the
SA by sampling some cells, and obtaining a smaller sampled SA. The non sampled cell values
are obtained from the sampled ones using a so-called function ψ. The ψ function, used in
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CSA Required bits count time Conditions
locate time

[100] O(nt(log n)1/t) O(mt log n) 1 ≤ t ≤ log log n
N/A

[104] n
ε
H0 +O(n log log σ) + σ log σ O(m log n) ε is a constant,

O(logε n) 0 < ε ≤ 1

[52] n
ε
Hk + o (n log σ) O(m log σ + log2+ε n) 0 < ε ≤ 1, k ≤ α logσ n,

O(log1+ε n) 0 < α < 1; ε,α constants
[55] (1 + ε−1)n log σ + o(n log σ) O(m/ log n+ logε n) ε is a constant,

O(logε n) 0 < ε ≤ 1

Table 2.1: Time-space complexities of most popular CSAs. The time construction for these
indexes is O(n log σ).

each level, is a permutation of [1, n]. In the i -th position it stores the index of the suffix that
is lexicographically the successor to the i -th smallest suffix; that is, ψ[i ] = SA−1[SA[i ] + 1] if
SA[i ] < n, otherwise ψ[i ] = SA−1[1]. Array ψ can be compressed because it is formed by σ
(the alphabet size) increasing sub-sequences. At the last level, the shortest sampled SA can
be directly stored.

S. Rao also worked on a similar representation of the suffix array over binary text [100].
His method generalizes of the hierarchical decomposition of the SA above. It chooses the
cells that are multiples of a given parameter l, and with these he creates a sampled SA. For
the rest of the cells, he uses a generalization of the ψ function, where the cells point to the
next position that is a multiple of l and also indicate the distance from the current cell to
that multiple, d − (A[i ] mod l).

The summary of the complexities for the main CSAs is shown in Table 2.1.

2.6.2 The FMI Family

FM-Indexes are another approach to compress the SA. In this instance the SA is present
implicitly through the LF Function. The LF function is the inverse of ψ. It is used to
move backwards over SA, that is, LF [i ] gives the lexicographic ranking of the suffix with
position SA[i ]−1 in the text. Counting and locating are solved by a method called Backward
Search [33], using an extension of the LF function, and not by a binary search like the SA
or CSA. A backward search first considers the last symbol of the pattern p, computing the
interval [spm, epm] of all the suffixes that begin with symbol pm. The next step is to find the
subinterval with all suffixes that begin with the string pm−1,m. The process is repeated until
the symbol p1 is processed.

The FM-Indexes are based on the Burrows-Wheeler Transform (BWT) of T , T bwt [18].
The BWT of T is a permutation of the text symbols. It is formed by orderly traversing the
SA and concatenating the symbol preceding each suffix of the text pointed by the SA, where
the first suffix is preceded by T [n]. T bwt replaces the text and is usually more compressible
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Index Required bits count time Conditions
locate time

[33] 5nHk + o(n log σ) O(m) σ = O(1), 0 < ε ≤ 1,
O(log1+ε n) k ≤ logσ(n/ log n)− ω(1)

[35] nHk + o(n log σ) O(m log σ) k ≤ α logσ n, 0 < α < 1
O(log σ log2 n/ log log n) σ = o(n)

[36] nHk + o(n log σ) O(m(1 + log σ/ log log n)) k ≤ α logσ n, 0 < α < 1
O(log1+ε n log σ/ log log n) 0 < ε ≤ 1, σ = o(n)

[7] nH0 + o(n)(H0 + 1) O(m log log σ) σ = o(n)
O(log n log log log n log log σ)

[12] nHk + o(nHk) +O(n) O(m) k ≤ logσ n− logσ log n
O(log n) for any σ

Table 2.2: Time-space complexity of main self-indexes of the FM-Index family. The time
construction for these indexes is generally O(n log σ).

than the text itself. It is also useful for backward search. Observe that the BWT and the LF
array have a close relationship, because LF [i ] is the lexicographic ranking of the suffix that
begins with the symbol T bwti . A powerful property of the BWT is that the LF values can
be computed from any representation of T bwt that supports rankT bwti

(T bwt, i) queries. If we

maintain additionally a vector C[1..σ], which stores in C[c] the number of times that symbols
less than c appear in T bwti , it is not necessary to store the LF array: We can compute the LF
values by LF (i) = C[T bwti ] + rankT bwti

(T bwt, i). Backward search requires the more general

operation rankc(T
bwt, i).

During the year 2000, Ferragina and Manzini [33] designed the first index with this ap-
proach, which worked for constant alphabets only. Ferragina et al. [35] improved these
previous results with their Alphabet-Friendly FM-Index. In this same line of research, they
offered later another variation of this index [36]. An improvement was achieved by Barbay
et al. [7], who reduced the o(n log σ) bits in the index space and speeded up the time to
compute rank. Finally, Belazzougui and Navarro [12] improved all the previous results, lo-
cating occurrences in time independent of the alphabet size. They offered a FMI that uses
nHk(T ) + o(nHk(T )) + O(n) bits, computing count and locate in O(m) and O(log n) time
respectively, for any σ value. Table 2.2 summarizes these main results in the FM-index
family.

2.6.3 The Locally Compressed Suffix Array

Some of the previous compressed indexes described (CSA or FMI) compute count in O(m)
time, for a query pattern of length m. This is an excellent result considering that they work
in reduced space. After count, the most frequent task is to compute locate. In this case,
the performance of these indexes to retrieve SA values is far from optimal. While by using
the plain suffix array it is sufficient to do only one access to memory (i.e., O(1) time), the
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Algorithm 1 LCSA Re-Pair on A′

1: Let ab the most frequent pair (A′[i ], A′[i + 1]) in A′ with frequency fab.
2: while fab > 1 do
3: Create a new integer symbol s, larger than all existing symbols in A′.
4: Add a new rule to the dictionary: R = R ∪ {s→ ab}
5: Replace every occurrence of ab in A′ by s.
6: Let ab the most frequent pair (A′[i ], A′[i + 1]) in A′ with frequency fab.
7: end while

compressed representations need around O(lgε n) time, where ε > 1 in practice. This is even
more relevant when it is necessary to retrieve several consecutive positions, as occurs with
locate when retrieving each value of the occurrence interval A[sp, ep]. The Locally Compressed
Suffix Array (LCSA) [51] tries to reduce this gap between the compressed indexes, which take
a lot of time to solve locate, and the plain representation that achieves optimal time.

The main advantage of the LCSA is the capability to display the values in a contiguous
range of A: it can extract any c consecutive cells A[i , i + c − 1] in time O(c + lgε n lg lg n).
The structure is based in grammar compression and implements a highly-local compression
method. This means that an arbitrary segment of the suffix array can be decompressed by
accessing mostly contiguous memory areas. The space complexity is given in function of ρ,
which is the number of runs in A. A run is a maximal segment of length l that differs by one
value from another segment, that is A[i + r] = A[j + r] + 1, ∀ 0 ≤ r < l. The LCSA requires
O(ρ(1 + lg n

ρ
) lg n+ n lg1−ε n) bits, for some i , j. Mäkinen and Navarro [74, 75] showed that

ρ is smaller as T is more compressible, and if Hk(T ) ≤ 1 then ρ ≤ nHk(T ) + σk. This space
can reach, in practice, as little as 25% of the original suffix array size.

The basic structure of the LCSA represents A[1..n] in differential form A′[1..n], where
A′[1] = A[1] and A′[i ] = A[i ]−A[i − 1], ∀ 1 < i ≤ n. The regularity to exploit is that a run
A[i + r] = A[j+ r] of length l in A produces repetitions in A′[i , i + l−1], A′[i + r] = A′[j+ r]
for all 1 ≤ r < l. Thus they apply Re-Pair, a grammar-based compression technique [71],
on A′, as described in Algorithm 1. Re-Pair obtains a dictionary of rules R plus a reduced
sequence C (the final A′). The alphabet of C is the union of the original alphabet and the
new symbols s created.

To decompress C[i ], if C[i ] ≤ n, it is an original value of A′. Otherwise, we obtain both
symbols from R[C[i ]−n], and expand them recursively. We can reproduce the corresponding
u cells of A′ in O(u) time.

The index is completed with some additional structures to retrieve A[i , i + c − 1] from
A′[i , i + c− 1]. The total cost to access c contiguous cells is O(l + d + c), where l is the size
of a sampling of A and d is a limit for the maximum number of original symbols that can be
expanded from any non-terminal symbol.

The second structure applies Re-Pair on on the Ψ function [55], using the observation that
runs in A are also runs of 1s in Ψ and vice versa.
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Figure 2.6: At the top, the resulting z = 29 phrases after applying the LZ77 parsing on the
text T1..77:“tu gusto no gusta del gusto que gusta mi gusto, tu gusto no gusta de mi gusto”.
The dictionary phrases are enumerated on the text and the boundaries are indicated with
points. At the bottom, we illustrate the two types of occurrences in the parsed text.

2.7 LZ-Based Compressors

Lempel and Ziv studied different ways to take advantage of the repetitiveness in sequences
of symbols. The idea is to represent text segments by pointers to their previous occurrences.
They offered the following two important results.

2.7.1 LZ77 Compression

The LZ77 parse [117] is a commonly used compression scheme. That parser obtains compres-
sion by replacing strings with pointers to their previous occurrences in the text, achieving
one of the best results in terms of compressibility for very similar texts. The parsing scans
the text from left to right. In each step of the process it creates a new phrase by searching
the preceding text for the longest prefix of the remaining text.

More formally, suppose that we have processed the text T1..i−1, and there is at least one
match of Ti ..i+k in T1..i+k−1 but not for Ti ..i+k+1 in T1..i+k. We then create a new LZ77
phrase for Ti ..i+k+1 pointing to the earliest match found in T1..i+k−1. Note that under these
conditions, a prefix of a LZ77 phrase can be also the suffix of its own source. The parsing
then replaces Ti ..i+k+1 by the pointer to the early occurrence for Ti ..i+k plus the string length
(when k > 1) and the mismatch character Ti+k+1, as (start, k, Ti+k+1). The exceptions are
the first occurrences of each alphabet’s character; in that case we only store the symbol.
There are some variants in the way to create the LZ77 phrases, for instance LZ-End [69],
which aims at easier decompression of individual phrases.

The LZ77 compression scheme induces a classification of the occurrences of any string in
the parsed text [63]. A primary occurrence (or primary match) for a pattern p1..m occurs when
the match Ti ..i+m−1 includes a phrase boundary, or when m = 1 and it is the first occurrence
of that symbol; otherwise it is a secondary occurrence. Figure 2.6 gives an example where
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Figure 2.7: The resulting phrases when applying the LZ78 parsing of a collection with 3 texts,
T =abaabaabccaba$1bbaaabacabac$2bbabababababa$3. The result is a dictionary of n′ = 17
phrases, which are enumerated and separated by points in the figure. We also show how the
phrases are organized in a trie.

the LZ77 parsing outputs z = 29 phrases. It also illustrates the two types of occurrences
considering the phrase boundaries.

2.7.2 LZ78 Compression

The LZ78 compression algorithm [118] also parses the text T1..n to be compressed into a
sequence of phrases. Each phrase is formed by appending a new character to the longest
possible previous phrase, and is represented with the index of the phrase used and the new
character appended. The result is a collection of n′ phrases, where n′ ≤ n/ logσ n, and thus
the output of the compressor has at most n′(lg n′+lg σ) ≤ n lg σ+o(n log σ) bits if σ = o(n).
On compressible texts, however, the space decreases. Actually, the number of bits output by
the LZ78 compressor can be bounded as |LZ78| = n′(lg n+ lg σ) ≤ nHh(T ) + o(n log σ) [68]
for any h = o(logσ n).

Figure 2.7 shows an example of LZ78 parsing. The output of the LZ78 compressor are the
pairs:
(0, a)(0, b)(1, a)(2, b)(1, b)(0, c)(6, a)(4, $1)(2, b)(3, a)(4, c) (5, a)(6, $2)(9, a)(4, b)(12, b)(12, $3).

Phrase number 0 corresponds to the empty string, otherwise phrase number i refers to
the ith phrase formed during the parsing. The figure also shows a trie with all the phrases,
where the node numbers are the phrase indices. Note that the set is prefix-closed, that is, the
prefix of a phrase is also a phrase, and thus every trie node corresponds to a distinct phrase.

This trie is used for efficient parsing in O(n) time. It is built as we parse: we traverse the
trie with the text to be parsed, and every time we fall off the trie we add a new child with
the symbol that was not found among the children, thus creating the new phrase, and return
to the root.
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Figure 2.8: The three types of occurrences according to how they span blocks (or phrases).
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Figure 2.9: The structures to report occurrences of type 1.

2.8 The LZ-Index

This section describes a technique to index text, whose approach is based on LZ78 compres-
sion [118] (detailed in Section 2.7.2). Given that two of the results detailed in this thesis (in
Chapters 6 and 7) are built on the index of Navarro [85], we now describe the basic members
of that structure.

2.8.1 The Basic Structure

The basic LZ-Index [85] builds on the LZ78 parsing of the text T1..n to index. Its first two
components are two tries, which store the set of phrases obtained for T using LZ78 (called
LZTrie, the same shown in Figure 2.7), and the trie of the reversed phrases (called RevTrie),
that is, the phrases read backwards. Note that LZTrie can be used to find the phrases that
start with p, and RevTrie to find those that end with p (by looking for the reverse of p). Note
that the set of reversed phrases is not prefix-closed, therefore RevTrie may contain nodes that
do not correspond to any phrase.

These two tries are represented in compact form (Section 2.4), so that they support efficient
navigation. Apart from basic navigation toward children and parents, we can find in constant
time the preorder index of a node v, the node with a given preorder index, and the range of
preorder values for the subtree rooted at v. We also store an array that associates the phrase
number with each node. The space per trie is n′ lg n′ +O(n′ log σ) bits [85, 3].

During the search process, it is necessary to travel from a node in RevTrie to the node
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Figure 2.10: The scheme to report the occurrences of type 2.

in LZTrie that represents the same phrase. For this task, the index includes an array called
Node, which does the mapping between phrase identifiers and preorder values in LZTrie. This
array uses other n′ lg n′ bits.

The last basic member of the LZ-Index, Range, is a data structure used to find the
occurrences that begin inside a phrase and end in the next one. This is a two-dimensional
n′ × n′ grid where we store n′ points. If the (k+ 1)th text phrase is represented by the node
with preorder i in LZTrie and the kth phrase is represented by the node with preorder j in
RevTrie (counting only nodes that represent phrases), then a point at row i and column j
is placed in the grid. Note that with the LZTrie preorder value (i.e., the row) we obtain the
phrase identifier of a point. The grid is implemented with a wavelet tree (see Section 2.5.1)
using n′ lg n′(1 + o(1)) bits, so that all the t points in a rectangular query range are retrieved
in time O((t+ 1) log n′).

With these components, the occurrences of a pattern p1..m in T1..n are found as follows,
according to the three possible ways p can occur across the phrases of T (see Figure 2.8).

1. Find the occurrences completely contained in a single phrase (occt1 occurrences of type
1). Search for pr (the reversed pattern) in RevTrie, arriving at node vr. Every node ur

in the subtree of vr corresponds to an occurrence of p at the end of a phrase. Any other
phrase formed from that of ur also contains p, and those form all the occurrences of type
1. Thus, any occurrence of type 1 is at an LZTrie node that descends from u, where u
is the LZTrie node that corresponds to ur. Therefore, for each node ur, we travel from
RevTrie to LZTrie using Node, and report every phrase in the corresponding subtree of
LZTrie. The search time for pr in RevTrie is O(m), and then each occurrence of type
1 is reported in O(1) time, for a total time of O(m+ occt1). See Figure 2.9.

2. Find the occurrences that span two consecutive phrases (occt2 occurrences of type 2).
The pattern is split in every possible way into p = pstart · pend. For each such split, we
search for prstart in RevTrie (finding locus vr) and for pend in LZTrie (finding locus u).
Both searches take O(m) time (for each division of p), and obtain the preorder ranges
[lv, rv] and [lu, ru] of occurrences for all prefixes and suffixes. Now we query Range for
[lv, rv]× [lu, ru], retrieving all the phrase numbers k that end with pstart such that k+ 1
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starts with pend. Since this is done for every split, the cost isO(m2+m log n+occt2 log n).
See Figure 2.10.

3. Find the occurrences that span more than two consecutive phrases (occt3 occurrences
of type 3). Since a phrase must contain a substring of p in each such occurrence, and
every phrase is distinct in the LZ78 parsing, there are only O(m2) possible occurrences
of this type. These are found with a more laborious process [85] that takes time O(m3).

The total space of the LZ-Index is 4n′ lg n′ + O(n′ log σ) bits, which is at most 4nHh +
o(n log σ) for any h = o(logσ n). The time for locating occ occurrences is O(m3 + m log n +
occ log n). Later improvements on this structure [3] reduce both time and size: the time
to O(m2 + m log n + occ log n) and the size to (2 + ε)nHh + o(n log σ) bits, for any ε > 0.
A practical advantage of the LZ-Index compared to CSAs is that it is faster when many
occurrences must be reported [86, 2]. Note that, in this case, the pattern p is usually short
and then most of the occurrences are of type 1, which are reported in O(1) time. We exploit
this property in our DR indices.
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Chapter 3

Document Retrieval Review

This review presents the most important results for document listing and top-k retrieval
problems. The first two sections focus in describing data structures on general texts, and the
last one on solutions for repetitive texts. Several of our solutions build on these techniques.

3.1 Document Listing

We begin by introducing the method offered by Muthukrisman [84], which is the first optimal
time solution for document listing in linear space. He builds his structure on the Generalized
Suffix Tree (GST) (Section 2.4) of the text T1..n = d1$1d2$2 . . . dD$D. T is the result of
concatenating the D documents of the collection, adding a special and unique endmarker
symbol $i for each document di.

In that proposal he introduces a useful array in the document retrieval field, called Doc-
ument Array E[1..n]. E[i ] stores the document ID in which the suffix SA[i ] begins, that is,
E[i ] = j iff TSA[i ] belongs to document dj. Then, given a suffix rank he uses E to retrieve di-
rectly a document ID when it is needed. His structure considers another array C[1..n], where
C[j] = i < j iff i is the largest index before j such that E[i ] = E[j]. If i does not exist,
then C[j] = −1. To complete the framework, he builds an RMQ structure (Section 2.5.4) on
the array C.

In order to list the documents that contain a pattern p1..m, the first task is to search for
p in the GST, reaching the node v = locus(p). Then v represents the lexicographic range of
suffixes Iv = [l, r] that start with p (this is equivalent to SA[l, r]). After that, Muthukrisman
finds each different ID recursively. In each step he determines i = RMQC(l, r), and if
C[i ] < l, he reports the document E[i ]. Next, he continues recursively with the subintervals
[l, i −1] and [i + 1, r]. Each recursion stops when C[i ] ≥ l. Figure 3.1 illustrates this process.

The disadvantage of Muthukrishnan’s data structure is the space requirement. His struc-
ture considers the text T , the generalized suffix tree, the two arrays C and E, and the struc-
ture for RMQ on C. Altogether, it takes O(n) words of space with a high constant factor.
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Figure 3.1: The generalized suffix tree of the text T and the arrays E and C that form the
structure of Muthukrisman to solve DL queries. We indicate the locus node for the pattern
“e”, and the three positions, in the arrays, that are reported by the recursive process (i.e.,
the documents E[4], E[2] and E[3]).

Sadakane [102] avoids this drawback by presenting a succinct data structure for that proposal.
He reduces these O(n log n) bits to |CSA|+4n+o(n)+O(D log n

D
) bits, where |CSA| denotes

the size in bits of some compressed suffix array (see Section 2.6.1). However, the resulting
time for document listing is not optimal. The method takes O(search(p) + ndoc · lookup(n))
time, where search(p) is the time to find the interval [l, r] of all suffixes starting with p using
the CSA, and lookup(n) is the time to compute an entry of the SA (or its inverse array) with
the CSA. To replace the C array, he constructs another tree τC that has 2n nodes, adding a
unique leaf for each node in the Cartesian tree (see Section 2.5.3). With this he solves RMQ
in C by computing LCA over τC , storing the tree with a succinct representation of ordinal
trees (for instance using [107]). Therefore, his RMQ structure needs 4n + o(n) bits without
storing C. To replace the E array, he stores a sparse bitvector B[1..n] that marks the first
position of each document in the concatenated text, so that E[j] = rank1(B, SA[j]). This
bitvector has D 1s out of n and thus is represented in D log n/D +O(D) + o(n) bits [99].

As we described in Section 2.5.4, Fisher [37] achieves the same optimal time to solve range
minimum queries using only 2n + o(n) bits. Therefore, we can include this improvement
to reduce the size of Sadakane’s structure in 2n bits. Additionally Sadakane incorporates a
bitstring V1..D needed to mark the documents that have already been reported, which replaces
the need to compare C[i ] with l. This process is shown in Algorithm 2.

In order to obtain the interval of occurrences of the pattern p1..m, he uses his CSA, which
requires O(m log σ) time. A document listing query is then solved in O(m log σ + ndoc ·
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Algorithm 2 Sadakane’s adaptation of Muthukrishnan’s algorithm to find in O(ndoc) time
all the ndoc different documents corresponding to the suffix interval SA[l..r].

1: procedure CDLP(l, r)
2: if l > r return
3: x← RMQC(l, r)
4: d ← rank1(B, SA[x])
5: if V [d ] = 0 then
6: output d
7: V [d ]← 1
8: CDLP(l, x− 1)
9: CDLP(x+ 1, r)

10: end if
11: end procedure

log1+ε n) time with |CSA| + O(n) bits; the time O(log1+ε n) corresponds to computing an
entry of the SA using his CSA, where ε > 0 is a constant.

The wavelet tree (Section 2.5.1) was first used for DR solutions by Välimäki and Mäkinen
[114]. To answer document listing queries, they proposed a structure that uses |CSA|+ 2n+
n log D(1+o(1))) bits and reports the ndoc documents in O(search(m)+ndoc·log D) time. In
this structure, they construct the wavelet tree on the document array E[1..n] and use it to find
any entry of E in O(log D) time. The wavelet tree computes rankd(E, i), or selectd(E, i),
for any document d and any index i , in O(log D) time. One advantage of this tree is that
it does not need storing the vector C, because any entry C[i ] of Muthukrishnan’s algorithm
is easily determined as C[i ] = selectE[i ](E, rankE[i](E, i)− 1). This proposal also includes a
structure for RMQ in 2n+ o(n) bits to apply the recursive algorithm of Muthukrishnan [84]
to solve document listing.

Gagie et al. [46, 45] showed that a wavelet tree can be used for document listing without
the need to make range minimum queries, but just a Depth First Search (DFS) traversal.
They can report the distinct ndoc documents in E[l, r] with their respective frequencies, in
O(search(m) + ndoc lg(D/ndoc)) time. Navarro et al. [91] achieved nearly 50% compression
of the wavelet tree in practice, at the price of nearly doubling the time required. They use
this tree to solve DL and top-k retrieval

Hon et al. [58] reduced the space for document listing by modifying the structure of
Sadakane. This solution requires |CSA|+D log(n/D) +o(n) bits, and answers DL queries in
O(search(m) + ndoc log1+ε n · lookup(n)) time, for any ε > 0. They split Muthukrishnan’s C
vector into segments of size logε n, and for each segment they take the smallest value to build
a reduced Cartesian tree Ct. To solve queries for a pattern p, they also use the CSA to obtain
the interval of all occurrences of p, Ip = [l, r]. In order to report the different documents in Ip,
they select the nodes in Ct that are smaller than l. Next, they report all different documents
found among the segments represented by these selected nodes. They also adopted Sadakane’s
method for obtaining document identifiers and for not reporting repeated IDs; that is using
the CSA for the collection, the bitvector B in O(D log(n/D)) + o(n) bits and the bitvector
V1..D, as shown in Algorithm 2.
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In order to extend his index to report frequencies, Sadakane [106] adds to his classic
DL proposal a single CSA for each document of the collection. Then each time he finds a
document d to report, he obtains its tf(p, d) by solving count in the CSAd of that document.
First, he determines the interval of all occurrences of the pattern Ip = [l, r] by using the
generalized CSA in time search(m). Next, for each document d to report he obtains the
indexes i and j of the leftmost and rightmost occurrences of d in Ip. While i is given by the
recursive process of Muthukrishnan, he builds a reciprocal structure to solve Range Maximum
Queries, and replicates the recursive process, now obtaining the j values. With the bitvector
B, Sadakane determines the position z of the first character of d in T1..n, z = select1(B, d).
Then, tf(p, d) = j′− i ′+ 1, where i ′ = SA−1

d [SA[i ]− z+ 1] and j′ = SA−1
d [SA[j]− z+ 1] are

computed in time lookup(n) using the CSA and CSAd. Hence, the total time to solve DL
with frequencies is O(search(m) + ndoc(lookup(n) + log log ndoc)) using 2|CSA|+O(n) bits1.
An important observation is that even though it is an attractive theoretical way to obtain
frequencies, in practice this method does not have good performance in terms of space used.
Navarro and Valenzuela [94] showed that the extended structure can increase the total size
more than three times in practice.

Välimäki and Mäkinen [114] gave the tf(p, d) for each document reported with the same
wavelet tree of their index, by simply computing tf(p, d) = rankd(E, r) − rankd(E, l − 1).
This means that they do not add another data structure and report frequencies in the same
asymptotic query time.

Another approach was given by Belazzougui et al. [13]. They use monotone minimum
perfect hash functions2 (mmphf) for counting document frequencies from the interval of oc-
currences Ip. This additional data structure requires of O(n log logD) bits and O(1) time,
or O(n log log logD) bits of space and O(log logD) time to compute a frequency. So the
total time is O(search(m) + ndoc · lookup(n)) or O(search(m) + ndoc(lookup(n) + log logD)),
respectively.

3.2 Top-k Retrieval

Several structures to solve top-k problem have been proposed with different trade-offs between
query time and space usage. One of the most promising theoretical framework was proposed
by Hon et al. [58]. They consider the generalized suffix tree of the collection and say that
an internal node v contains an entry of document d if and only if at least two children of
v contain the document d in their respective subtrees. So, for each internal node v that
contains an entry of any document d, we store the following values in a structure called
N-structure: the document d, the pointer to the lowest ancestor that also has an entry for
the same document d and its document frequency. The N-structure entries are ordered by
the preorder value of nodes. Reciprocally, for each N-structure entry we store in another
structure, called I-Structure, an entry with the preorder of the node from which the pointer
originates, the same document d and its frequency stored in the N-structure entry for this

1The log log ndoc time is needed to pair leftmost and rightmost position of each document via sorting.
2A minimal perfect hash function maps a set S of n keys into the set {0, 1, ..., n − 1} bijectively. In a

monotone minimum perfect hash function the bijection must preserve the order of the keys [9].
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pointer. These entries in I-structure are sorted by rank values of their pointers.

To answer a query for the parameters k, p, we first find v = locus(p), which has a preorder
range [lv, rv]. Next, we check each of the O(m) ancestors u of v, searching for the sub-
interval [lu, ru] within [lv, rv] in their I-structure. Notice that it is not necessary to check
the nodes inside the subtree of v, because the N-structure of the subtree of v has a unique
pointer corresponding to each different document that points to an ancestor of v for the
same document d . They also proved that using an RMQ structure and given a set S of t
non-overlapping ranges, we can find the k largest numbers in the union of all the t ranges of
S in O(t + k log k) time. Altogether, the whole structure requires O(n log n) bits and finds
the k documents where p appears most frequently in O(m+ k log k) time.

Hon et al. [58] also gave a structure that uses 2|CSA|+ o(n) +D log n
D

+ O(D) bits and
outputs the top-k answer in O(search(m)+k log3+ε n·lookup(n)) time, for an ε > 0. Again the
|CSA| corresponds to the size of a compressed suffix array, which is able to compute SA[i ]
or SA−1[i ] in lookup(n) time, and performs the search for p1..m in search(m) time. Then,
giving a k value, the method splits the tree leaves into segments of fixed size g = k log2+ε n,
taking the leaves in order from left to right. On this partition, they build a reduced tree
τk incorporating all first and last leaves of each segment. The internal nodes of τk are the
lowest common ancestors between any consecutive pair of chosen leaves. In an internal
node v of τk, they store the top-k answer associated with the leaves below v in the GST.
They also include the term-frequency for each document in the sorted list, in decreasing
order. The complete structure considers a tree τk for every k value that is a power of 2,
k ≤ D. It is called a Sparsified Generalized Suffix Tree (SGST). As each individual tree takes
O((n/g)k log n) = O(n/ log1+ε n) bits, the size for all trees is O(n/ logε n) = o(n) bits.

This framework enables the following algorithm to find the k most frequent documents
for a pattern p1..m. We chose the lowest power of two k′ ≥ k, we search the locus node v in
τk′ , and retrieve the answer top′ stored in it. Note that v represents an interval I ′ = [sp′, ep′]
that is a subinterval of the leaves interval [sp, ep] of the occurrences of p in GST, that is,
sp ≤ sp′ and ep′ ≤ ep. We then need to consider the document array intervals E[sp, sp′ − 1]
and E[ep′ + 1, ep] to give the final answer to the query. As each of these two segments is
shorter than g, this final step is made in time O(g(lookup(n) + log k)) using a priority queue
of length k.

Navarro and Nekrich [89] presented a data structure to solve top-k queries with optimal
O(m+ k) time and linear space. This work is based on the scheme of Hon et al. [58]. They
mark all the nodes that have any N-structure entry and use the corresponding term frequency
as a weight. This weight is the relevance score of a document d with respect to the string
path(v), where path(v) corresponds to the string formed from the root node to the node v
(i.e., it is tf(path(v), d)). Later, with a preorder traversal of the tree, they assign a unique
index value for every entry in the marked nodes. For each marked node v they denote by
[lv, rv] the integer interval that encloses all indexes assigned to v or its descendants. They
store in v the limits lv, rv, and encode the unique pointer that points to an ancestor of v with
the same document (given the properties of N-structure [58]). For each document d that
points to some ancestor u of v, they store a point (lv+offset , depth(u)), where depth(u) is
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the depth of node u and lv+offset is the index of this entry. The weight of the points is the
term frequency.

In order to solve top-k queries, they find v = locus(p) and find the k heaviest points in the
range [0, depth(v)−1]×[lv, rv], where lv is the preoder value of v and rv = lv+subtreesize(v)−
1. The points can be found in O(depth(v) + k) = O(m + k) time using this grid [64]. The
final space can be reduced to O(n(logD+log σ)) bits. Konow and Navarro [67] implemented
this index, obtaining a structure that uses 3.3–4.0 bits per character (bpc) and answers top-k
queries in k to 4k microseconds (µsec). Their time complexity is O(m+(k+log log n) log log n)
with high probability, on statistically typical texts. Gog and Navarro [49] also implemented
the compressed solution of Hon et al. [58]. They overcame the results obtained by Konow
and Navarro [67], reducing the size from 3.3–4.0 to 2.5–3.0 bpc and maintaining the response
time. They achieved this applying two main ideas. First, simplifying the mapping from
suffix tree nodes to the grid used in the original and theoretical work. Second, by a smaller
representation of the grid. Consequently, this result is the best implementation to date for
top-k retrieval on general collections.

Navarro et al. [91] experimented with several reduced-space proposals to solve top-k docu-
ments. They worked on the succinct structure of Hon et al., the SGST. Navarro et al. studied
various ways to make the rectification on [sp, sp′−1]∪ [ep′+1, ep] more efficient and represent
the SGST in less space. Their best experimental result is (generally) to build a unique tree,
with LOUDS representation (see Section 2.5.2), combined with a rectification using a variant
of Culpepper et al.’s greedy method for wavelet tree structures [25]. Their space reaches 12–
24 bpc, depending on the compressibility of the collection, and retrieval times are between 1
to 10 milliseconds, where the time complexity is upper-bounded by O(m log σ + k log4+ε n).

As we have seen, Belazzougui et al. [13] offered a proposal for DL with frequencies.
Additionally, in this same work, they offered a solution to top-k document retrieval using
their monotone minimal perfect hash functions (mmphf). Their structure takes a total time
of O(search(m) + lookup(n)k log k log1+ε n), and the mmphf structures add O(n log log logD)
bits to the CSA of the collection. There are several other theoretical proposals [87] that
promise to use much less space than current implementations, but that are most likely to be
even slower in practice (as already hinted in current studies [91]).

3.3 Document Listing in Repetitive Texts

The next chapter describes a proposal to solve document listing in repetitive texts. Although
there are not many document listing structures for repetitive texts, we highlight some at-
tractive results here.

First we introduce the index of Claude and Munro [23], which is based on a grammar-
compressed representation of the input text. The proposal starts by compressing the text
with a grammar compressor [71] generating a grammar-compressed sequence.
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First we give some basic definitions.

Our grammar is a tuple G = (X = {X1, X2, ..., Xn}, σ,Γ : X → X+ ∪ σ, s), where:
– X represents the set of non-terminal symbols.
– σ corresponds to the set of terminal symbols.
– Γ is the set of rules that transform a non-terminal into a sequence of non-terminals or

just one terminal symbol. It does not allow cycles in the rules, and there is only one
rule expanding each non-terminal. That is enough to make sure the grammar generates
only one sequence.

– s is the identifier of the start symbol Xs.
– We define N as the sum of all the right sides in the grammar, that is.

N =
n∑

i=1

|Γ(Xi)|

We define F(Xi) as the result of recursively replacing the non-terminal, s, in Xi until ob-
taining a sequence of terminal symbols. In a similar way, F(Xi)

R is called reversed se-
quence, which is obtained by reading F(Xi) from right to left. We then say that G compresses
T = t1t2...tu, if F(Xs) = T . Finally, we define the height of the grammar as the longest path
from the start symbol to a terminal symbol in the parse tree.

Given a pattern p, we call primary occurrences all those non-terminals that contain p
because two or more non-terminals generated by their rule, after being concatenated, contain
the pattern. On the other hand, secondary occurrences are those non-terminals that contain
p because they generate a single non-terminal that contains p.

The structure builds a grammar-compressed sequence from the generalized text T =
$0T1$1T2...$D−2TD−1$D−1TD$D. We have included D + 1 symbols $i that are not present in
the collection. The next step is to compress T with Re-Pair (see Algorithm 1), and with
these results to build a grammar index [23]. The rules are:

– Xs generates d non-terminals Xt1 , Xt2 , ..., XtD .
– Xti generates the symbols between $i−1 and $i, that is F(Xti) = Ti

The structure is augmented by adding inverted lists recording the documents where each
non-terminal symbol is present. As several of such lists can be very similar to others, they
again apply grammar-compression on the inverted lists by using Re-Pair. Therefore, in order
to solve document listing for a pattern p, first we retrieve the inverted lists associated with
each non-terminal where p appears. Then the lists are merged to remove duplicates.

The whole structure for an input text T [1..u] is formed by: (i) the the grammar-index,
which requires 2N log n+N log u+ εn log n+ o(N log n) bits, 0 < ε ≤ 1; and (ii) the inverted
lists, which use t logD bits, where t is the number of document identifiers stored. The size
of the inverted lists also can be bounded by u logσ u bits. The time for a document listing
query is O(ttsearch(p) + occP · ndoc) in the worst case, where ndoc is the output size and occP
is the number of primary occurrences of the pattern p.

An important observation is that this approach does not start from Muthukrisman’s struc-
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ture, and does not use a suffix array, as all the previous indexes described. This is the first
structure that introduces a grammar-index to solve document listing.

We now introduce another structure that also solves document listing on repetitive texts.
This index, by Gagie et al. [44], uses a more traditional approach based on suffix arrays,
more precisely on the Run-Length Compressed Suffix Array (RLCSA) [76]. The idea is to
augment the RLCSA structure to answer document listing queries, specifically they store the
so-called Interleaved Longest Common Prefix array (ILCP).

We define the LCP array LCPS for a string S[1..n] as follows. LCPS stores 0 in its first
position and for any value, 2 < i ≤ n, LCPS[i ] is the length of the longest common prefix of
the lexicographically (i−1)th and ith suffixes in S. That is, S[SAS[i−1]..n] and S[SAS[i ]..n]
have a maximum common prefix of length LCPS[i ].

Another vector is introduced in this index, the ILCP array, defined as follows. Given the
generalized text T [1..n] = T1$1T2$2...TD$D, the document array E[1..n] associated to the SA
of T , and the longest common prefix array LCPT , the interleaved LCP array of T is defined as:

ILCPT [i ] = LCPTE[i]
[rankE[i ](E, i)], for any 1 ≤ i ≤ n,

that is, it interleaves the local LCP array of the documents in the order of the global LCP
array.

Let ρ be the number of runs (a segment of equal values) in ILCPT . The authors store
the structure in |RLCSA| + ρ lg(n/ρ) + O(ρ) + D lg(n/D) + O(D) bits, such that DL can
be solved in O(search(m) + ndoc(lg lg n+ lookup(n))) time. The value ρ is low on repetitive
collections.

Gagie et al. [44] also experimented with another structure to solve DL on repetitive collec-
tions. Given the observation that on highly repetitive documents their associated document
array E also is repetitive, they store compressed precomputed answers to document listing
queries covering long intervals of suffixes. Given a block size b and a constant β ≥ 1 they
build a sparse suffix tree Γ, storing in each node v the DL answer of its SA interval Av,
as follows. The leaves of Γ are the highest nodes v1, v2, .., vL such that these nodes are not
ancestors of others and |Avi | ≤ b, for 1 ≤ i ≤ L. In order to select internal nodes for Γ, they
consider the lowest group of leaves u1, u2, ..., uk of Γ, from left to right, so that the total size
of sets Du1 , Du2 , .., Duk is bigger than β · |Dv|, where v = LCA(u1, u2, .., uk) in the suffix tree;
then they include v in Γ and store its DL answer, Dv. They continue until they cover all
the leaves of Γ. After that, they process all the internal nodes in the same way, considering
now groups of nodes u1, u2, .., uk not ancestors of others, going up until reaching the root and
completing Γ. As a final result, they obtain a structure where each node v of Γ satisfies one
of the next two conditions:

1. |Av| < b, thus the documents for v, Dv, can be found in time O(b · lookup(n)), where
lookup(n) is the time to obtain a suffix value from the RLCSA index.

2. Dv can be obtained as the union of some sets Du1 , Du2 , .., Duk of total size at most
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β ·Dv, whose nodes u1, u2, .., uk are in Γ.

The precomputed answers of the nodes of Γ are compressed with a grammar-based com-
pressor, which exploits the repetitiveness in the lists. With this, the complete structure
includes the RLCSA index, the reduced grammar-compressed lists, the representation of the
sparse suffix tree Γ, and some bitvectors. In total, with this structure they solve DL for a
pattern p1..m in O(search(m)+log log n+β ·h ·ndoc) time if the answer is stored in Γ, where h
is the height of Γ, or O(search(m) + log log n+ b · lookup(n)) if it is not. Experimentally they
compared this structure with their previous index based on ILCP array, LCP-DL-Index, and
a brute force technique, considering only the RLCSA and a bitvector V [1..n]. With respect
to the two others structures they sowed that the time can be improved up to 2 orders of
magnitude at the expense of increasing the size. Sometimes, in the same space required for
the LCP-DL-Index, the new DL time is around 10 times faster than their previous solution.
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Chapter 4

Contributions in Text Indexing

This chapter describes the first contributions in this thesis, which are focused in the process
of text indexing. Even though these results are not properly from the document retrieval
field, they deal with fundamental aspects in which most DR indexes build.

The first section describes two implementations of different theoretical proposals to build
compressed representations for suffix arrays. These implementations and their results have
been included as a part of a previous work published in the Journal of Experimental Algo-
rithmics [51]. The experiments included in this section show that these proposals, in practice,
do not perform better than other current and popular implementations in the field, both at
query time and required space. Still, demonstrating this is an important contribution to the
field, since these promising theoretical proposals had not been tested before.

The second section describes an index, the Hybrid-Index, to solve efficiently the pattern
matching problem on highly repetitive texts. This structure introduces a simple technique for
reducing the size of conventional indexes when the text contains several segments of repeated
strings. We experimentally show its performance in comparison with a conventional index,
like the FMI [33, 35, 36], and an index for repetitive text, like the LZ77 of Kreft and Navarro
[69], both in query time and required space. This work was published in the Philosophical
Transactions of the Royal Society of London [29].

The Hybrid-Index is also the base of Chapter 8, which illustrates how to adapt this basic
structure in order to answer document retrieval queries.

4.1 Structures for Compressed Suffix Arrays

This section describes part of the work published in [51], specifically in the section of exper-
iments. We implemented and tested two compressed representations of the suffix array: the
structure of Grossi and Vitter [54, 55] (GVCSA) and the proposal of Rao [100] (RaoCSA),
which had not been implemented.
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A feature in common of these proposals is that their structures need to compress sequences
of increasing numbers. To do that, both proposals have used the encoding of non-decreasing
integers given by Elias-Fano [26, 27] and Okanohara and Sadakane[95], which do not only
guarantee compression, but also to retrieve any number in constant time. We start then
describing below that encoding scheme before giving the details of each index.

4.1.1 Elias-Fano Coding

An array of non-decreasing integer numbers X = {x1 ≤ x2 ≤ ... ≤ xn}, from a universe U =
{1, ...,m}, can be stored explicitly in ndlgme bits. However the same set can be stored using
less space, and maintaining the constant time to retrieve any number, in n lg(m/n)+2n+o(n)
bits by using the Elias-Fano code [26, 27, 95].

The method splits the dlgme bits for each xi in two parts: hi and ri; such that the
dlg ne most significant bits of xi are hi and the remaining dlgme − dlg ne ones are ri. They
encode the sequence H = {h1, h2 − h1, h3 − h2, ..., hn − hn−1} by unary coding; that is, a
number k is represented with k + 1 bits, k copies of 0 followed by 1. We build a bitvector
H of length n + 2lgn = 2n, so this bitvector requires 2n + o(n) bits. Note that the i-th
1 in H corresponds to the last bit in the unary code of hi, and the number of 0s to that
position is hi itself. So with H we can retrieve any hi value in constant time computing
hi = rank0(H, select1(H, i)) = select1(H, i)− i .

The sequence R = {r1, r2, ..., rn}, of the least significant bits of X, is stored explicitly.
Then R requires n(lgm− lg n) = n lg(m/n) bits of storage1.

For instance, if we apply Elias-Fano code to X = {7, 12, 17, 17, 25, 30} we have n = 6,
dlg ne = 3, m = 30 and dlgme = 5. The binary codes for X are X(2) = {00111, 01100, 10001,
10001, 11001, 11110}(2); so the sequence of header numbers hi, 〈h1, ..., h6〉, is 〈001, 011, 100,
100, 110, 111〉(2) = 〈1, 3, 4, 4, 6, 7〉(10). Consequently H = {h1, h2−h1, ..., h6−h5} = {1, 2, 1, 0,
2, 1}(10), which concatenating each unary code yields H = 〈0100101100101〉. The remaining
bits are stored explicitly in R = {r1, ..., r6} = {11, 00, 01, 01, 01, 10}(2). Therefore we can
determine x5 by concatenating the bits of h5 with r5; where h5 = select1(H, 5)−5 = 11−5 =
6 = 110(2) and r5 = 01(2). Then x5 = 11001(2) = 25(10).

4.1.2 The Suffix Array of Grossi and Vitter

The compressed suffix array proposed by Grossi and Vitter [54, 55] represents in a hierar-
chical structure the suffix array A[1..n] for a text T [1..n]. The method applies a recursive
decomposition of A in t levels. In each level k, 0 ≤ k < t − 1, it receives an input array
Ak[1..nk] (in the first level A0 = A), and represents it in structures that require less size
than its explicit storage. The even numbers of Ak are divided by two and stored in the array
Ak+1[1..nk/2], which will be processed in the next level. For the odd numbers they showed
that, given the characteristics of the suffix array, it is possible to build an increasing sequence

1To simplify the explanation, we write lgm− lg n for dlgme − dlg ne.

39



Figure 4.1: GVCSA with t = 2 levels of decomposition, where the suffix array A[1..n], n = 24,
corresponds to the text T1..n = “la sal sala la ensalada$”. We shadowed all the positions that
we have to access in order to retrieve A[9], according to Algorithm 3.

that represents them. They then compress these sequences in a structure that offers direct
access to its values. The scheme finishes by storing explicitly the n/2t values in the last array
At, which stores original numbers of A divided by 2t.

A hierarchical structure. The general idea is summarized as follows. In each level of the
decomposition, they divide by two the even values of Ak[1..nk], nk = n/2k, and store them
in a new array Ak+1[1..nk/2] in the next level. For the other half of Ak, i.e., for each odd
value Ak[i ], the index stores the position where its next suffix Ak[i ] + 1 appears in Ak. The
representation then starts in the first level with A0[1..n0] = A[1..n], marking in a bitvector
B0[1..n0] all the positions where A0[i ] is even. They divide these numbers by two and store
them, forming a new permutation A1 of n/2. If the value A0[i ] is odd then we set B0[i ] = 0
and in the array ψ0 they store the position where A0[i ] + 1 occurs. Any Ai is then passed
on to the next level i + 1. In general, in order to represent Ak[1..n/2

k], 0 ≤ k < t − 1,
we let a bitvector Bk[1..n/2

k] identify when Ak[i ] is an even value, and it stores Ak[i ]/2 in
Ak+1[1..n/2k+1]. For odd values, we set Bk[i ] = 0 and in the array ψk[1..n/2

k+1] we save
the position where the value Ak[i ] + 1 is. This scheme is repeated for t = log logσ n levels,
to finish with the last array At, saved explicitly. An example of this structure is given in
Figure 4.1 for t = 2.

A key point of this process is the way followed to store the arrays ψk[1..nk/2]. They
showed that each ψk can be seen as a list that concatenates σ2k increasing lists. Therefore,
they transform ψk into a unique increasing list Lk putting, before each ψk[i ], the bits required
to form the value j · nk, where j is the list number where ψk[i ] appears in this concatenated
sequence (i.e., with 2k log σ + log nk bits per item). They compress the sequence Lk with
Elias-Fano codes [26, 27] —described in Section 4.1.1— offering constant time to retrieve any
item.

Algorithm. In order to retrieve A[i ] from the representation, we need to call the function
GVCSA-LOOKUP(i , 0), detailed in Algorithm 3. As this structure can extract in O(1) time
per level, the index retrieves any A[i ] in O(t) = O(log logσ n) time. An example is given
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Algorithm 3 Retrieving A[i ] from Grossi and Vitter’s data structure.

function GVCSA-lookup(i , k)
if k = t then return At[i ]
end if
if Bk[i ] = 1 then return 2·GVCSA-lookup(rank1(Bk, i), k + 1)
else return GVCSA-lookup(ψk[rank0(Bk, i)], k)−1
end if

end function

in Figure 4.1, where according to this algorithm, to retrieve A[12] we have to extract the
following values:

A[12] = A0[12] = A0[ψ0[rank0(B0, 12]]− 1 =
= A0[ψ0[8]]− 1
= A0[18]− 1
= (2A1[rank1(B0, 18)])− 1
= (2A1[8])− 1
= (2(A1[ψ1(rank0(B1, 8))]− 1))− 1
= (2(A1[ψ1(5)]− 1))− 1
= (2(A1[2]− 1))− 1
= (2((2A2[rank1(B1, 2)])− 1))− 1
= (2((2A2[2])− 1))− 1
= (2((2 · 3)− 1))− 1 = 9

Required space. The explicit array At[1..nt], nt = n/2t, requires n
2t

log n
2t

= n logn−nt
2t

bits.

If we set t = log logσ n, the size becomes n logn−nt
2log logσ n

≤ n logn
logσ n

= n log σ bits.

The length of the t bitvectors Bk is n + n
2

+ n
4

+ .. + n
2t−1 ≤ 2n. The size then for these

bitvectors, which includes support to rank/select queries in O(1) time, is 2n+ o(n) bits.
Each sequence ψk is encoded with Elias-Fano. As we showed, we create a unique increasing
list Lk of length nk/2 = n/2k+1, such that each number in Lk requires log(σ2k) + log nk =
2k log σ + log nk bits. Then each ψk is encoded with 2nk + nk

2
(2k log σ + log nk − log nk

2
) =

5nk
2

+ nk2
k−1 log σ bits. Therefore all the ψk sequences, for the t = log logσ n levels, require

the following amounts of bits:

t−1∑
i=0

(5
2
nk + nk2

k−1 log σ) = 5n
2

t−1∑
i=0

1
2k

+ tn
2

log σ

< 5n+ 1
2
n log logσ n · log σ

Considering all together, the space becomes:

n log σ + 2n+ o(n) + 5n+ 1
2
n log logσ n · log σ = (1 + 1

2
log logσ n)n log σ +O(n) bits.

A generalized structure. Grossi and Vitter also generalized the process, not only classi-
fying even and odd numbers. First, they choose the values of Ak that are multiple of a given
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parameter l, to be stored (divided by l) in the array Ak+1 of the level k + 1. So, they mark
these positions in the bitvector (i.e., Bk[i ] = 1 iff Ak[i ] is a multiple of l). The remaining
values, in positions where Bk[i ] = 0, are stored in ψk[1, (1− 1/l)nk].

Note that under this scheme we have to access ψk up to l − 1 times before proceeding to
the next level. So, the time becomes O(lṫ). The space analysis is very similar to the previous
structure, except that 2k is replaced by lk. The space for the array Al is n

lt
log n

lt
< n log σ

lt

bits, the bitvectors Bk also require O(n) bits, and the sub-sequences ψk add n(log σ+ 1
2k−1 )+

O( n
2k log logn

) bits.

Then the total space is (1 − 1
l
)n log σ · n logl logσ n + O(n log σ). In particular, choosing

l = logεσ n for a constant 0 < ε < 1, we have t = 1/ε, the space is (1
ε

+ O(1))n log σ bits and
the time is O((1/ε) logε n).

4.1.3 The Suffix Array of Rao

Similar to the GVCSA, the compressed suffix array of Rao [100] consists of a recursive
and hierarchical decomposition of the suffix array. However there are key subtle differences
between them. The main idea is that, instead of iterating up to l−1 times in a level k before
moving to level k + 1, he stores vectors dk[1..nk] with the value dk[i ] = (l− 1)− ((Ak[i ]− 1)
mod l), that is, at which distance is the value Ak[i ] from the next multiple of l. The idea is
then that ψk[i ] stores the position in Ak where the value Ak[i ] + dk[i ] is. Therefore we jump
directly to the cell answering in one step, not dk[i ] steps as the GVCSA. The final answer
is thus Ak[ψk[i ]] − dk[i ]. Unfortunately, this new ψk array does not enjoy the monotonicity
properties seen before; these hold only within the subsequence associated to a single value
of dk. Thus the array is split into l − 1 arrays ψδk, 1 ≤ δ < l, containing the values ψk[i ]
such that dk[i ] = δ. At level k, we also store l − 1 bitvectors V δ

k [1..nk] where V δ
k [i ] = 1 iff

dk[i ] = δ. Then the value ψk[i ] is found at ψδk[rank1(V δ
k , i)] if dk[i ] = δ. Figure 4.2 illustrates

the hierarchical decomposition of Rao’s CSA.

Now ψδk is formed by σδl
k

increasing lists with values in [1, nk]. The renumbering scheme
of Section 4.1.2 yields a single list of nk/l values in [1, σδl

k
nk], with nk = n/lk. Therefore each

representation ψδk with Elias-Fano (Section 4.1.1) yields (δ/l)n log σ + O((nk/l) log l) bits.
Summing for 1 ≤ δ < l, at level k we have O(l · n log σ + nk log l) bits for the lists. Vector
dk adds O(nk log l) bits and vectors V δ

k add O(l · nk) bits, for a total of O(l · n log σ + l · nk)
bits at level k. Added over t levels and considering the final explicit array At we have
O(t · l ·n log σ+ l ·n+(n/lt) log n) bits. Choosing l = log1/t

σ n we get space O(t · log1/t
σ n)n log σ

bits, andO(t) time to compute anyA[i ]. This gives a number of space/time tradeoffs, consider
for example t = 1/ε or t = log logσ n.

Algorithm. In order to retrieve A[i ] form the representation, we call RaoCSA-LOOKUP(i , 0)
in Algorithm 4. The structure of Rao can extract in O(1) time per level, so the index retrieves
any A[i ] value in O(t) time.

An example is given in the Figure 4.2, where to retrieve A[18], according to this algorithm,
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Figure 4.2: RaoCSA with t = 1 level of decomposition and for l = 4. The suffix array
A0[1..n], n = 24, corresponds to the text T1..n = “la sal sala la ensalada$”. We shadowed all
the positions that, according to Algorithm 4, we have to access in order to retrieve A[18].

Text log σ H0 H4 gzip bzip2 PPMDi

dna 4.000 1.974 1.910 2.162 2.076 1.943

english 7.814 4.525 2.063 3.011 2.246 1.957

proteins 4.644 4.201 3.826 3.721 3.584 3.276

sources 7.845 5.465 1.852 1.790 1.493 1.016

xml 6.585 5.257 1.045 1.369 1.908 0.745

Table 4.1: Main characteristics for the texts considered in the experiments with the indexes.
We show the entropy of order 0 and 4, and also the real compressibility for these texts, using
the best-known compressors: gzip (option −9), bzip2 (option −9) and PPMDi (option −1 9).

we have to extract the following values:

A[18] = A0[18] = A0[ψ
d0[18]
0 [rankd0[18](d0, 18]]− d0[18] =

= A0[ψ2
0[5]]− 2 =

= A0[3]− 2
= (4 · A1[rank1(B0, 3)])− 2
= (4 · A1[2])− 2
= (4 · 3)− 2 = 10

4.1.4 Experimental Results

We use text collections obtained from the PizzaChili site2. This site offers a collection of
texts of various types and sizes. We use the five types (dna, english, proteins, sources,
and xml) for which 100MB files are available. Using larger datasets gives no additional clues
on the performance. Table 4.1 summarizes some of their properties.

2http://pizzachili.dcc.uchile.cl/texts.html
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Algorithm 4 Retrieving A[i ] from Rao’s data structure.

function RaoCSA-lookup(i , k)
if k = t then return At[i ]
end if
if Bk[i ] = 1 then return l·RaoCSA-lookup(rank1(Bk, i), k + 1)

else return RaoCSA-lookup(ψ
dk[i ]
k [rankdk[i ](dk, i)], k)−dk[i ]

end if
end function

The experiments were run on an Intel Core2 Duo, running at 3.0 GHz, with 6MB cache
and 8GB RAM. The operating system was Linux 64-bit with kernel 2.6.24-31-server, and the
compiler was g++ version 4.2.4 with -O3 optimization and -m32 flag (as required by several
packages tested). We include the text when we measure the space of the indices.

GVCSA

We implemented a verbatim variant of this data structure, where we used sparse bitvector
implementations from the libcds library3. Note that one can access any position of any list
of ψk in constant time by knowing the list number and offset. However, to know the list
number we need to know the positions in A where the suffix beginning with any tuple of Σk

starts. This requires σk lg n additional bits.

We implemented a second variant of this structure. Instead of using the σk contexts
(many of which may actually be empty), we detect maximal runs of increasing numbers in
ψk and take those as the lists. The beginning of the lists are marked in a sparse bitmap
Sk[1..nk]. Then, in order to retrieve ψk[i ] we compute j = rank1(Sk, i), to find that i belongs
to the j-th list, and use the same numbering scheme as before: since ψk[i ] is represented
as L[i ] = j · nk + ψk[i ], we compute L[i ] from the representation using H and L, and then
subtract j · nk. The space for Sk is just O(nk) bits, and thus the space and time analysis
stays the same.

Figure 4.3 compares various (t, l) combinations, t levels marking multiples of l, for both
variants of the structure (the basic one and the one using runs), on all the texts; the results
are similar It is clear that the best tradeoffs are obtained when using t = 1, that is, not using
a recursive structure but just one level of sampling, and then storing the samples in plain
form. Space can be reduced by using a larger t (i.e., more levels of recursion), but it is always
faster to reduce the same space by using a larger l value (i.e., a sparser sampling at the first
level). Only on dna there are some dominating points using t = 2. It is also clear that our
variant using runs is much better when using t > 1 levels (indeed, the basic variant is almost
never affordable for t > 2), but there is almost no difference between variants on t = 1.

Figure 4.6 (left) compares the two variants, for all the texts, using the dominating points

3https://sourceforge.net/projects/libcds/files/
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Figure 4.3: Space/time tradeoffs for accessing one cell using various options for (t, l) for
GVCSA. On the X-axis we show the value Index size/Text size. On the left we show the
basic scheme, and on the right our improvement using runs, showing one curve per t value;
the results with l value from 2 onwards are shown right to left in the curve.
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Figure 4.4: Various options for (t, l) for RaoCSA. On the left we show the basic scheme, on
the right our improvement using wavelet trees.
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Figure 4.5: Various options for (t, l) for our improvement in RaoCSA using runs and wavelet
trees. We show one curve per t value; the l values are marked in the curves.
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Figure 4.6: Time-space tradeoffs to access one cell. On the left, basic GVCSA versus the
version with runs, for all the texts. On the right, the best variants of RaoCSA.

of each scheme (mostly corresponding to t = 1, as mentioned). It can be seen that, when
using only one level, the differences are minimal. We will use the version with runs as the
representative of GVCSA when we compare it with other CSAs in Figure 4.8.

RaoCSA

In practice the V δ
k bitvectors may occupy considerable space. We implement a second variant

where we completely remove them, and instead represent vector dk as a wavelet tree [52]
(see Section 2.5.1). This occupies O(nk log l) bits of space instead of O(lnk), and supports
rankδ(dk, i) = rank1(V δ

k , i) within O(log l) time instead of O(1). In theory, the asymptotic
space does not change and the access time grows to O(t log l) = O(log log σn), which is a
mild growth. In practice, this is advantageous, as we see soon.

Figure 4.4 shows the space/time tradeoffs obtained to access a random cell using various
(t, l) combinations for this index. On the left we show the basic scheme, where it always
holds that the combination (t = 1, l = 2) dominates all the others (note this combination
corresponds to the GVCSA). On the right we show the scheme where the bitvectors are
replaced by wavelet trees. In this case the combination (t = 2, l = 2) offers better space
sometimes. Figure 4.5 shows the variant replacing the strict numbering by runs.

Figure 4.6 (right) shows the results obtained choosing the dominating (t, l) combinations
of this variant, for all the texts. This time many more (t, l) combinations are feasible, and
various alternatives with l = 2 (and even l = 3 or l = 4) offer relevant space/time tradeoffs.
It is also clear that the variant with wavelet trees and runs is always the best. Those will be
used to represent RaoCSA in the main experiments with other CSAs in Figure 4.8.
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Comparing with Other CSAs

In this section we compare these two CSAs against various alternative suffix array represen-
tations. Various of the compressed suffix arrays we wish to compare with [73, 104, 34, 76]
already have competitive implementations, which we have used.

LCSA The LCSA from PizzaChili4, considering variants LCSA = RPSP and LCSAΨ =
RPΨSP, with the parameters set as indicated in the paper [51] (s = 8, δ = 3/4 and
γ = log n), and using samplings l = 64 and d = 256.

MakCSA The Compact Suffix Array of Mäkinen [73], implemented by himself5. The code
can only search for patterns and list their positions. In order to extract arbitrary ranges
of A we added a bitvector [99] of length n, marking the starting positions of the blocks,
so that we could convert positions in A to positions in the compacted array.

SadCSA The Compressed Suffix Array of Sadakane [104], implemented by himself (the im-
plementation is available at PizzaChili6). This has two parameters: sΨ, the sampling
step to access the compressed Ψ array, which is left at sΨ = 128, where it performs best,
and sA, the sampling step to store samples of A, which is used as the space/time trade-
off parameter. We consider values sA = {4, 8, 16, 32, 64, 128, 256}. We used routines
tailored to extract various consecutive cells, taking advantage of runs of consecutive Ψ
values, that were already in Sadakane’s code.

RLCSA The Run-Length Compressed Suffix Array [76], implemented by Jouni Sirén (the
implementation is available at PizzaChili7). The RLCSA is a variant of SadCSA spe-
cialized on handling repetitive texts. It has the same parameters sΨ (which we use
at its default value 32) and sA, which we use as the space/time tradeoff parameter,
considering values sA = {4, 8, 16, 32, 64, 128, 256}. RLCSA also has routines tailored to
extract various consecutive cells.

FMindex The FM-index [34] using a recent and efficient variant [62] implemented by them-
selves8. We used the suffix array sampling parameters sA = {4, 8, 16, 32, 64, 128, 256},
and the text sampling parameter set to infinity. We only show the variant using plain
bitmaps, as the time/space obtained with compressed bitmaps were almost identical in
this scenario.

We remind that SadCSA, RLCSA and FMindex are self-indexes, but we are not interested
in this feature for this experiment. We only evaluate their ability to retrieve a cell.

Figure 4.7 compares construction space and time for all the indexes. We have not consid-
ered the space and time to build the suffix array, as this is orthogonal to the index construction
problem and must be done for all the indexes. It can be seen that all construction spaces are
relatively close, except that of LCSA, which in bad cases can require as much as 40 bytes per

4At http://pizzachili.dcc.uchile.cl/indexes/Locally_Compressed_Suffix_Array/
5Downloaded from http://www.cs.helsinki.fi/u/vmakinen/software/csa.zip
6At http://pizzachili.dcc.uchile.cl/indexes/Compressed_Suffix_Array
7At http://pizzachili.dcc.uchile.cl/indexes/RLCSA/
8Thanks to Simon Puglisi for handing us the code.
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Figure 4.7: Construction time and space for the different indexes on each text.

entry. Those requiring the least space, around 7–9 bytes per entry, are GVCSA, SadCSA,
and FMindex. The others are usually within 12 bytes per entry, except RaoCSA and RLCSA,
which may require up to 16–17 bytes per entry.

With respect to construction time, SadCSA again excells, requiring less than 0.2 seconds
per million cells, whereas the next faster indexes (FMindex, RLCSA, MakCSA, and LCSA,
more or less in that order) build at a rate of around 1 second per million cells. The other
indexes build ten times slower.

LCSA builds fast (at about 1 second per million cells) but it may require too much extra
space (up to 40 times the text size). Variant LCSAΨ, although slower to build (about 10
seconds per million cells, which is still affordable even for large texts), requires reasonable
space (near 12 times the text size, not far from the state of the art).

Figure 4.8 shows the space/time tradeoffs, for all the indexes on all the texts, to access a
random cell. The space is shown as the index size in bytes divided by n, that is, in bytes per
cell.

It can be seen that SadCSA and FMindex are the clear winners in all cases, being faster
and smaller than all the others. The size of these indexes is sensitive to the high-order
entropy of the texts, whereas GVCSA and RaoCSA are more dependent on the alphabet
size. Among the two, GVCSA is always better than RaoCSA. RLCSA, instead, is sensitive
to the repetitiveness of the text, performing worst on dna and best on xml. Finally, in both
MakCSA and the variants of LCSA the space depends more on the relation between the high
and the zero order entropies of the texts, Hk/H0. Thus, they perform particularly bad on
dna and proteins, much better on english and sources, and particularly well on xml. Yet,
they are still slower than SadCSA and FMindex.

The relation between MakCSA and LCSA variants is mixed. In cases like dna and english,
the former performs better in time and space. On proteins and sources, LCSA competes in
space, but the time is either equal or dominated by that of MakCSA. Finally, on xml, where
both perform best in space, the LCSA variants use less space than MakCSA, and dominate
it in time too.
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Figure 4.8: Time/space tradeoffs to access one random cell for the different indexes on each
text.
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4.2 Hybrid Indexing on Repetitive Datasets

Sometimes the text documents that will be indexed share many identical segments. In that
case we wish to store them compressed, such that we can later support searches for patterns
faster than if we only use a classical text index for general sequences. That technique is
called Text Indexing on Repetitive Text.

4.2.1 Hybrid Indexing

Given an upper bound on pattern lengths M , we preprocess the text T [1..n] with the LZ77
parser (see Section 2.7.1) to obtain a filtered text T ′[1..n′], n′ ≤ n, for which we store a
conventional index IM(T ′). Later, given a query, we find all matches in the filtered text
(i.e, in a reduced text) using IM(T ′), and then use their positions and the structure of
the LZ77 parser to find all matches in the original text. In that process we report secondary
matches using the data structure of Kärkkäinen and Ukkonen [63] built on the LZ77-structure
(Section 2.7.1). Our structure locates all the occ occurrences of a pattern p[1..m] in the text
in O(ttsearch(m)+occ) time, where ttsearch(m) is the time to search the pattern using the index
IM(T ′) on T ′, and occ is the number of times that p appears in T .

Our original work [29] is focused on the Approximate Pattern Matching Problem, where
the index finds matches between strings that are within a maximal allowed edit distance L.
However, as in this thesis we are not interested in approximate matching, we simplified the
structure and consider only the parameter M .

Finding Primary Matches

Let T ′(M) be the text containing the characters of T within distance M to their nearest LZ77-
phrase boundaries; characters not adjacent in T are separated in T ′(M) by a special character
# not in the normal alphabet. We then replace a segment of characters out of a distance M
by the symbol #. For example, if T is the text in the Figure 2.6, then T ′(3) is

tu gusto no gusta del gu#to que gu#ta mi gusto, tu # de mi#sto

Note how the parsed text T ′(3) was reduced from n = 77 to n′ = 62 characters. This is more
evident in bigger repetitive collections such as a human genome, for example.

In this first part we only need a structure to find matches that cross at least one phrase
boundary. As explained, we locate these primary occurrences with a conventional full text
index for the filtered text IM(T ′), for instance using an FM-Index [33, 35, 36]. However,
IM(T ′) alone is not sufficient to check if a string is a primary or a secondary match; we
also need to locate the positions of these occurrences in T to validate them as primary. For
this, we will use additional structures to: (i) map from any position i ′ in T ′ to its respective
position i in the original text; and (ii) know if the match in T ′ spans more than one phrase
or it includes the first occurrence of a symbol.
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Let L be the sorted list containing the positions of the first character of each phrase in
the parse of T , and let L(M) be the sorted lists containing the positions of the corresponding
characters in T ′(M). We store L and L(M). If T [i ] is the first occurrence of a distinct character

in T and T(M)[j] is the corresponding character in T(M), then we mark j in L(M).

For our example, L is:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22, 29, 30, 31, 32, 39, 40, 41, 47, 48, 49, 69]

and L(3) (with asterisks indicating marked numbers) is:

[1∗, 2∗, 3∗, 4∗, 5, 6∗, 7, 8∗, 9, 10∗, 11, 12, 17∗, 18, 19∗, 20∗, 21∗, 22, 29∗, 30, 31, 32, 39∗, 40∗, 41,
47∗, 48, 49, 56]

The first part of the algorithm consists in finding all the primary occurrences of the query
pattern p[1..m], m ≤M , with the following process, which uses the lists L and L(M) and the
FM-Index IM(T ′).

Given a substring T ′(M)[i
′..j′] that does not contain any symbol #, we can use the lists

L and L(M) to map from T ′(M)[i
′..j′] to its correct match T [i ..j]; and also to check if this is

a primary occurrence. To do this, we use binary search to find i ’s successor L(M)[s]. After
that, we check:

• if i ′ < L(M)[s] ≤ j′ then T ′(M)[i
′..j′] crosses a phrase boundary;

• if j′ < L(M)[s] then T ′(M)[i
′..j′] neither contains the first occurrence of a distinct char-

acter nor crosses a phrase boundary;

• if i ′ = L(M)[s] then T ′(M)[i
′..j′] contains the first occurrence of a distinct character or

crosses a phrase boundary if and only if L(M)[s] is marked or L(M)[s+ 1] ≤ j′.

If the substring T ′(M)[i
′..j′] contains the first occurrence of a distinct character or crosses

a phrase boundary, we map its respective string T [i ..j] computing i = L[s] + i ′−L(M)[s] and
j = i + j′ − i ′ + 1.

Finding Secondary Matches

We use Kärkkäinen and Ukkonen’s method [63] to find secondary matches. They observed
that, given the characteristics of the LZ77 parsing, any secondary match is completely con-
tained in a LZ77 phrase. Therefore, any phrase that contains a secondary match has also a
match inside its own source substring, and this earlier match can be primary or secondary.
That observation leads to the next conclusion: any secondary occurrence always comes from
an earlier primary match that was copied one or more times through the text. We then find
all the secondary occurrences from the primary ones using the LZ77 structure as follows.

For each primary match T [`..r], we find each phrase T [i ..j] whose source T [i ′..i ′ + j − i ]
includes T [`..r] — i.e., such that i ′ ≤ ` ≤ r ≤ i ′ + j − i . This phrase contains the secondary
occurrence T [`′..r′] = T [`..r], where `′ = i + ` − i ′ and r′ = i − i ′ + r (see Figure 4.9). We
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Figure 4.9: The Basic scheme to find secondary matches. A primary occurrence T [l..r] is
also found inside T [l′..r′].

record T [`′..r′] as a secondary occurrence and recurse on it to find all the secondary matches
that include T [`′..r′] as part of its source. To do this, we need a representation that enables
us to find all the sources that completely cover a specified text segment. That can be see as a
grid G[1..z′], z′ = z−σ (σ is the alphabet size), where each of its z′ points is a representation
of a source T [x..y] that originates the phrase r in the position L[r]. Then G is composed
of triplets (x, y, r) and we partially store the x and y-coordinates in the arrays X[1..z′] and
Y [1..z′] respectively. For our example the grid G[1..z′], z′ = z − σ = 29− 15 = 14, is:

[(2, 2, 5); (1, 1, 7); (3, 3, 9); (8, 8, 11); (3, 7, 12); (3, 3, 14); (3, 9, 18); (5, 5, 20); (16, 16, 21);
(12, 18, 22); (3, 8, 25); (3, 3, 27); (1, 20, 28); (38, 46, 29)]

We report secondary occurrences by processing all the primary matches found, searching
G for sources that cover each text segment corresponding to any primary match. We must
also process each located secondary match in the same way, to look for more secondary
matches.

4.2.2 Implementation

The structure to find primary occurrences is composed by a conventional index IM(T ′) on
the reduced text T ′(M)[1..n

′], the two lists L and L(M), and a list Lσ to find the σ marked
positions of the first occurrence of each distinct symbol in T . Then we don not mark these
characters with the list L and use a separate list Lσ to do this. We do not restrict the index
IM(T ′) to a particular family or approach. However, in this implementation we used an FMI
[33, 35, 36].

We store L and L(M) using gap coding — i.e., storing the differences between consecutive
values — with every gth value stored in plain form, where g is a parameter. We write the
differences as dlog de-bit integers, where d is the largest difference in the list, and we write
the plain values as dlog ne-bit integers. To speed up binary search in LM,K , we also sample
every bth value in it, where b is another parameter (typically a multiple of g).

Instead of marking values in L(M), we store an array containing the position in L(M) of
the first occurrence of each distinct character, in order of appearance. We note, however,
that this array is only necessary if there may be matches of length 1.

To find secondary matches, we build a structure to search for points in a given range
[x..y] on the grid G[1..z′], similar than searches with a two-sided range reporting structure
— it was described in Section 4.2.1. We sort the grid by x-coordinate and store separate
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Algorithm 5 Report secondaty matches from T [l..r] by RMQs

function SecondaryReport(l, r)
1.- Find, by a binary search, the predecessor X[k] of l in the array X.
2.- Use recursively RMQs to find all the values in Y [1..k] that are at least r, using the

Range Maximum structure on the array Y .
3.- For each point (i ′, j′) we find with i ′ ≤ l ≤ r ≤ j′, compute the coordinates (l′, r′)

of the phrase whose source is T [i ′..j′] as described in Section 4.2.1 (illustrated in Figure
4.9).

4.- Append the pair (l′, r′) to List and recursively call SecondaryReport(l′, r′).
end function

structures for each coordinate. First, we store the x-coordinates in the array X[1..z′] with gap
encoding in the same way as the lists L and L(M). Second, we do not store the y-coordinates
themselves, but instead build a structure to answer range maximum queries. Fischer and
Heun [40] gave an optimal query time structure to find the positions of the smallest value in
any array interval A[l..r], where the items of the static array A can be sorted (see Section
2.5.4). We trivially adapt it to find range maximum values on the y-coordinates stored in
Y [1..z]; after that we discard Y . We report the primary matches found (occpri) and put all
of them in a linked list List that will be used in the next step of the process. Then, we
report secondary occurrences by applying recursively a process that emulate a 2-sided range
reporting by RMQs. We summarize this process in the following steps:

1. Using IM(T ′), L, L(M) and Lσ, find the occpri primary occurrences and store them in
the list List.

2. For each primary match Tl..r in List, call the function SecondaryReport(l, r), which is
described in Algorithm 5.

When the process finishes, the list List contains the endpoints of all primary matches
followed by the endpoints of all secondary matches. The described process is very similar to
the method followed by Kreft and Navarro [69] to report secondary matches.

4.3 Experiments

In our experiments, we compared a Hybrid-Index based on an FM-Index for the filtered text,
to an FM-Index and an LZ77-Index (described in Section 2.7.1). We always used the same
implementation for the FM-Index9. We set the parameter for the suffix array sampling in
32 and 256, and fixed the sampling for the inverse-SA in 1024 cells. The implementation
used to test the LZ77-Index is given by Kreft and Navarro10 [69], with default parameters.
We performed our experiments on an Intel Xeon with with 96 GB RAM and 8 processors at
2.4 GHz with 12 MB cache, running Linux 2.6.32-46-server. We compiled both indexes with
g++ using full optimization.

9https://github.com/simongog/sdsl-lite
10http://pizzachili.dcc.uchile.cl/indexes/LZ77-index
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Figure 4.10: Index sizes for prefixes of cere of 100, 200, 300 and 400 MB. We test the LZ77
Index, two variants of the FMI with SA-sampling Sa = {32, 256}, and four variants of the
Hybrid-Index with SA-FMI-sampling Sa = {32, 256}, and supporting queries for patterns of
lengths M = {50, 100} characters.

Text file 7zip LZ77 FMI(32) FMI(256) Hyb(50,32) Hyb(50,256) Hyb(100,32) Hyb(100,256)

cere 440 5.0 31.06 134.32 90.71 32.28 27.85 41.61 34.56
einstein 445 0.3 1.66 73.50 29.30 1.44 1.31 1.71 1.51

fib41 256 0.5 0.04 31.66 7.20 0.01 0.01 0.01 0.01
kernel 246 2.0 15.42 65.53 42.99 11.73 10.79 12.39 11.31

Table 4.2: Sizes in MB of the uncompressed files, the files compressed with 7zip and the three
indexes: the LZ77-Index of Kreft and Navarro (with default values), the FM-Indexes with
SA-FMI-sampling in 32 and 256, and the hybrid indexes with maximum patterns lengths M
in 50 and 100, with SA-FMI-sampling in 32 and 256 in the internal FM-Index for the filtered
text. Between parentheses are the parameter values for the FMIs and the hybrid indexes.

We used benchmark datasets from the repetitive corpus of the Pizza&Chili website11.
Specifically, we used the following files:

cere — 37 Saccharomyces cerevisiae genomes from the Saccharomyces Genome Resequencing
Project;

einstein — versions of the English Wikipedia page on Albert Einstein up to November 10th,
2006;

fib41 — the 41st Fibonacci word F41, where F1 = 0, F1 = 1, Fi = Fi−1Fi−2;

kernel — 36 versions of the Linux 1.0.x and 1.1.x kernel.

We set M = {50, 100}, as that seemed a reasonable value for many applications. Based
on preliminary tests, we set the sampling parameters g and b for our Hybrid-Index to 32 and
512, respectively. Notice these parameters have no effect on the other indexes.

11http://pizzachili.dcc.uchile.cl/repcorpus.html
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Figure 4.11: Average query times for the different indexes to locate occurrences with patterns
of different lengths. The two variants of the FM-Index and the Hybrid-Index have SA-
sampling Sa = {32, 256}. The Hybrid-Index can support queries for maximum length M =
100.

Table 4.2 shows the sizes of the uncompressed files, the files compressed with 7zip 12 (which
does not support pattern matching), the FM-indexes, and the hybrid indexes.

The first experiment estimates how well the Hybrid and LZ77 indexing take advantage
of the repetitive structure, relative to FM-indexing. We truncated cere at 100, 200, 300 and
400 MB, and then built the indexes for those prefixes. Figure 4.10 shows the sizes of those
indexes. As expected, the space used by the indexes designed for repetitive text is always
less than the space required by the FMI, and does not grow linearly with the file size.

For pattern lengths 20, 40, 60, 80 and 100, we randomly chose 5000 substrings of those
lengths from cere and searched for them with the indexes (we validate that the patterns
contain at least 2 different characters). Figure 4.11 shows the average query times, using a
logarithmic scale. It is not surprising that the Hybrid-Index and the LZ77-Index perform well
here: while the FM-index finds all matches with its locate functionality, the Hybrid and LZ77
indexes find secondary matches with a recursive algorithm, which is relatively fast; since cere
consists of 37 genomes from individuals of the same species, most matches are secondary.

When indexing repetitive text and searching for small patterns (M ≤ 50), the Hybrid-
Index slightly outperforms the LZ77-Index. Figure 4.12 indicates that the Hybrid-Index,
with SA-FMI-sampling Sa = 32, is about as fast as the LZ77 Index, while using less space
to find patterns of length M ≤ 40.

12http://www.7zip.org
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Figure 4.12: Index sizes and locate query time for the Hybrid-Index against the LZ77-Index.
We show two variants of the Hybrid-Index, with SA-FMI-sampling Sa = {32, 256}, that
support queries for patterns of maximum length M characters.

4.4 Conclusions

In Section 4.1 we have detailed the implementations and practical optimization of two com-
pressed structures to represent the suffix array. These are the first practical results for those
theoretical proposals, which have shown that current implementations, of more popular in-
dexes, indeed perform better.

The best results of the two implementations, GVCSA and RaoCSA, always occur when
we use only one level of decomposition in those hierarchical structures (or at most two
levels in some cases). This corresponds to the simpler SadaCSA index, which has a better
performance. Therefore, our main contribution here is that we confirm that those theoretical
proposals do not yield better results that the best currently implemented indices.

Section 4.2 introduces a simple technique, called hybrid indexing, for reducing the size of
conventional indexes on highly repetitive texts. In our experiments, this technique is able to
match the search speed of the LZ77-Index within less space, provided that maximum pattern
length is limited to at most 40 at indexing time.
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Chapter 5

Improved Range Minimum Queries

Section 2.5.4 defined the RMQ problem and also described the optimal time solution of
Fischer and Heun [40] to answer RMQs without accessing the input array, with a structure
that requires 2n+o(n) bits. This chapter gives a complete overview of the state of the art with
respect to RMQ solutions, and then describes our faster and smaller implementation with
a simpler formula to solve RMQs. Our work was published in the 26th Data Compression
Conference [32], where it won the Capocelli Prize (best student paper award). An extended
version of this work was invited to a special issue of the Journal of Discrete Algorithms.

The RMQ problem is a fundamental one and has a long history, intimately related to
another key problem: the LCA (lowest common ancestor) problem on general ordinal trees
is, given nodes u and v, return lca(u, v), the lowest node that is an ancestor of both u and
v. Gabow et al. [43] showed that RMQs can be reduced to computing LCAs on a particular
tree, called the Cartesian tree 2.5.3 of A[1, n]. Later, Berkman and Vishkin [17] showed that
the LCA problem on any tree can be reduced to an RMQ problem, on an array derived
from the tree. In this array, consecutive entries differ by ±1. Bender and Farach [15] then
gave a solution for this so-called ±1-RMQ problem in constant time and linear space (i.e.,
O(n) words). Sadakane [105] improved the space of that solution, showing that LCAs on
a tree of n nodes can be handled in constant time using 2n + o(n) bits (including the tree
representation [83]). Finally, Fischer and Heun [40] showed that the Cartesian tree can be
represented using 2n + o(n) bits so that RMQs on A can be transformed into LCA queries
on the succinct tree, and this lead to an RMQ solution that also uses 2n+ o(n) bits and does
not need to access A at query time.

Fischer and Heun’s solution has become a fundamental building block for many succinct
data structures, for example for ordinal trees [105, 61, 93], suffix trees [105, 41], document
retrieval [106, 67], two-dimensional grids [90], Lempel-Ziv parsing [21], etc.

Their RMQ computation [40] uses three kinds of operations: several rank/selects on bitvec-
tors [60, 22], one ±1-RMQ [15], and one open on parentheses [83]. Although all can be im-
plemented in constant time, in practice the last two operations are significantly slower than
rank/select [1]. In particular, open is needed just to cover a border case where one node is
an ancestor of the other in the Cartesian tree. Grossi and Ottaviano [53] replaced open by
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further rank/selects in this case, thus improving the time significantly.

Their formula [40, 53] represents the Cartesian tree using DFUDS [16]. We show that, if
we use instead the BP representation for the tree [83], the RMQ formula can be considerably
simplified because the border case does not need special treatment. The result is the fastest
and most compact RMQ implementation.

5.1 State of the Art

Gabow et al. [43] showed that RMQs can be reduced to computing LCAs on a particular
tree, called the Cartesian tree 2.5.3 of A[1, n]. This is a binary tree whose root is the position
p of a minimum in A[1, n] (the leftmost/rightmost one if we want that RMQs return the
leftmost/rightmost minimum). Then its left and right children are the Cartesian trees of
A[1, p − 1] and A[p + 1, n], respectively. Any cell A[p] is thus represented by the Cartesian
tree node with inorder position p, and it holds

rmqA(i , j) = inorder(lca(innode(i), innode(j))), (5.1)

where inorder and innode map from nodes to their inorder values and vice versa. Figure 5.1
shows an example array A and its Cartesian tree, and the translation of a query (ignore the
other elements for now).

Later, Berkman and Vishkin [17] showed that the LCA problem on any tree can be reduced
to an RMQ problem, on an array D[1, 2n] containing the depths of the nodes traversed along
an Eulerian tour on the tree: the LCA corresponds to the minimum in D between a cell of u
and a cell of v in the array. Note that consecutive cells in D differ by ±1. Bender and Farach
[15] represented those entries as a bitvector E[1, 2n]: E[i ] = 1 if D[i ] −D[i − 1] = +1 and
E[i ] = 0 if D[i ]−D[i − 1] = −1, with E[1] = 1. On top of E, they gave a simple O(1)-time
solution to this restricted ±1-RMQ problem using O(n) words of space. Figure 5.1 also shows
this arrangement.

Therefore, one can convert an RMQ problem on A into an LCA problem on the Cartesian
tree of A, then convert this problem into a ±1-RMQ problem on the depths of the Eulerian
tour of the Cartesian tree, and finally solve this restricted ±1-RMQ problem in constant
time. This solution requires O(n) words of space.

Interestingly, the bitvector E[1, 2n] used to answer LCA queries on a tree of n nodes defines
the topology of the tree. If we traverse the tree in DFS order and write an opening parenthesis
when we first arrive at a node and a closing one when we leave it, the resulting sequence
of parentheses, P [1, 2n], is exactly E[1, 2n] if we interpret the opening parenthesis as a 1
and the closing one as a 0. In particular, consider the following two operations on bitvectors:
rankb(E, i) is the number of bits equal to b in E[1, i], and selectb(E, j) is the position of the jth
bit b in E. Both operations can be implemented in O(1) time using just o(n) additional bits
on top of E [60, 22]. Then, if we identify a node x with the position of its opening parenthesis
in P (which is a 1 in E), then the preorder position of x is preorder(x) = rank1(E, x), the
node with preorder i is prenode(i) = select1(E, i), x is a leaf iff E[x+ 1] = 0, and the depth
of x is D[x] = rank1(E, x)− rank0(E, x) = 2 · rank1(E, x)− x.
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Figure 5.1: An example array A[1, 12] (top right) and its Cartesian tree (left). We choose
preorder numbers as node identifiers (in bold under the nodes), and also write inorder values
on top of the nodes, in slanted font. The left rectangle on the bottom shows how query
rmqA(2, 10) translates into query lca(4, 6) on the Cartesian tree. We also show how this
query, in turn, maps into rmqD(4, 10), on the array D of depths of the tree. Array E tells if
consecutive entries of D increase or decrease, and is the same as a BP representation of the
tree. The right rectangle on the bottom shows how query lca(4, 10) is solved using rmqE(4, 10)
and parent on the parentheses. This rmqE query is a simpler ±1-RMQ problem. Now the
nodes 4, 10, and 1 do not refer to preorders but to positions in BP, obtained from preorders
with prenode. The corresponding preorder values are written below the BP array.

This parentheses representation (called BP, for Balanced Parentheses) was indeed known,
and it was even possible to navigate it in constant time by using just 2n+ o(n) bits [83, 48].
This navigation was built on top of three primitives on parentheses: open(x)/close(x) gave
the position of the opening/closing parenthesis matching the closing/opening one at P [x],
and enclose(x) gave the opening parenthesis position y so that [y, close(y)] contained P [x]
most tightly. Many tree traversal operations are built on top of those primitives, for example
the parent of x is parent(x) = enclose(x), its next sibling is close(x) + 1 (if it exists), its first
child is x + 1 (if it exists), its subtree size is (close(x) − x + 1)/2, x is an ancestor of y iff
x ≤ y ≤ close(x), etc.

Now, since E coincides with P , one could add the powerful lca operation to the BP
representation! Bender and Farach’s solution [15] applied on the bitvector E[1, 2n] actually
implements RMQs on the virtual array D. However, their ±1-RMQ solution used O(n)
words. Sadakane [105] improved their solution to use O(n(log log n)2/ log n) = o(n) bits, and
thus obtained a constant-time algorithm for lca(x, y) on the BP representation (let x < y):

if y ≤ close(x) then return x

else return parent(rmqE(x, y) + 1)

where the first line addresses the special case where x is an ancestor of y, and rmqE refers
to the ±1-RMQ solution on E[1, 2n]. The rationale of the second line is that, since x and y
descend from two distinct children of z = lca(x, y), then D[x, y] is minimized at the closing
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parenthesis that terminates each child of z, from the one that contains x to the one preceding
that containing y. Adding 1 we get to the next sibling of that child, then we return its parent
z. See Figure 5.1 once again.

Benoit et al. [16] presented an alternative format to represent a general tree using 2n
parentheses, called DFUDS. We traverse the tree in DFS order, but this time, upon arriving
for the first time to a node with d children, we write d opening parentheses and a closing
one (in particular, a leaf is represented with a closing parenthesis). Nodes are identified with
that closing parenthesis1. It can be shown that the resulting sequence is also balanced if we
append an artificial opening parenthesis at the beginning, and many traversal operations can
be carried out with the primitives open, close, and enclose. In particular, we can directly arrive
at the ith child of x with next0((close(x−i)+1), where next0(t) = select0(rank0(t−1)+1) finds
the first 0 from t. The number of children of x can be computed as d = x−prev0(x)+1, where
prev0(t) = select0(rank0(t − 1)) finds the last 0 before t. In DFUDS, nodes are also listed in
preorder, and there is a closing parenthesis terminating each, thus preorder(x) = rank0(E, x).

Jansson et al. [61] showed that lca(x, y) can also be computed on the DFUDS representa-
tion, as follows (let x < y):

return parent(next0(rmqE(x, y − 1) + 1)),

where no check for ancestorship is needed2. The rationale is similar as before: since in
DFUDS D decreases by 1 along each subtree area, rmqE(x, y − 1) finds the final closing
parenthesis of the child of z = lca(x, y) that precedes the one containing y. Adding 1 and
finding the parent gives z. The formula for parent(w) in DFUDS is next0(open(prev0(w))).
Figure 5.2 shows our example, now on DFUDS. The formula with DFUDS turns out to be
simpler than with BP.

Now we could represent a tree of n nodes in 2n+o(n) bits and compute lca on it in constant
time, and Eq. (5.1) allowed us to convert rmqA into an lca operation on its Cartesian tree. It
seems that there is a way to build a constant-time rmqA structure using just the 2n+o(n) bits
of its Cartesian tree, and without accessing A. However, there was still a problem: how to
support the operations inorder and innode on the Cartesian tree. Sadakane [105] had solved
the problem on suffix trees, but in his case the tree had exactly one leaf per entry in A, so one
only needed to find the ith leaf, and this could be done by extending rank/select operations
to find 10s (BP) or 00s (DFUDS) in E. In the general case, one could add artificial leaves to
every node, but this would increase the space to 4n+ o(n) bits.

Fischer and Heun [40] found a solution that used just 2n + o(n) bits, which also turned
out to be asymptotically optimal. The idea is to use a known isomorphism (see, e.g., [83])
between binary trees of n nodes and general ordinal trees of n+ 1 nodes: We create an extra
root for the general tree, and its children are the nodes in the leftmost path of the binary
tree. Recursively, the right subtree of each node x in the leftmost path is converted into a
general tree, using x as its extra root. A key property of this transformation is that inorders
in the binary tree become preorders (plus 1) in the general tree. Fischer and Heun called
it tree as 2d-Min-Heap. As seen, we can easily map between nodes and their preorders in

1In some cases, the first opening parenthesis is used, but the closing one is more convenient here.
2The check is present in their paper, but it is unnecessary (K. Sadakane, personal communication).
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Figure 5.2: The same arrangement of Figure 5.1, now on the DFUDS representation of the
Cartesian tree. The query rmqA(2, 10) becomes lca(4, 6), which we translate into lca(10, 14)
when the node identifiers become positions in DFUDS instead of preorders (the translation
is shown on the bottom of the sequence PDFUDS).

general trees. Figure 5.3 continues our example.

However, the lca in the Cartesian tree (which is what we want) is not the same lca in the
resulting general tree; some adjustments are necessary. Fischer and Heun chose to use DFUDS
for their rmqA(i , j) solution, where it turns out that the adjustments to use a general tree
actually remove the need to compute parent, but add back the need to check for ancestorship:

w ← rmqE(select0(i + 1), select0(j))

if rank0(open(w)) = i then return i (5.2)

else return rank0(w)

The select0 operations find the nodes with preorder i and j − 1 (recall there is an extra root
with preorder 1), then w is the position of the closing parenthesis of the result. The next line
verifies that x is not an ancestor of y, and the last line returns the corresponding preorder
value. For this formula to be correct, it is necessary that rmqE returns the position of the
leftmost minimum. Figure 5.3 (top left) shows a query.

Grossi and Ottaviano [53] replaced the ancestorship test by one that does not use the
costly open operation:

w ← rmqE(select0(i + 1), select0(j))

if D[select0(i) + 1] ≤ D[w − 1] then return i (5.3)

else return rank0(w)

where as explained we can compute D[k] = 2 · rank1(E, k)− k.
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Figure 5.3: The general tree (at middle) derived from the example Cartesian tree. Note how
inorder numbers of the binary Cartesian tree became preorder numbers in the general tree
(we start preorders from 0 to help see the mapping). On the right, the formulas used by
Fischer and Heun based on DFUDS (on the top) and the one proposed in this paper, based
on BP (on the bottom). To reuse the same isomorphism of Fischer and Heun, we illustrate
the variant of our formula that uses the leftmost path of the tree as the root children.

5.2 A Simplified Implementation

The current implementations of rmqA build on the DFUDS representation of the general
tree derived from the Cartesian tree, and follow either the formula of Fischer and Heun [40]
(Eq. (5.2), in SDSL), or that of Grossi and Ottaviano [53] (Eq. (5.3), in Succinct). We show
that, if we use the BP representation instead of DFUDS, we obtain a simpler formula. Let us
assume, as before, that rmqE returns the leftmost minimum. Then, our conversion from the
binary Cartesian tree into a general tree must go in the opposite direction: the children of
the extra root are the nodes in the rightmost path of the binary tree, and so on recursively.
With this representation, it turns out that a correct formula is

rmqA(i , j) = rank0(rmqE(select0(i), select0(j))) (5.4)

where no checks for ancestorship are necessary. Now we prove this formula is correct.

Lemma 5.2.1. On a rightmost-path general tree built from the Cartesian tree of A, Eq. (5.4)
holds.

Proof. On the rightmost-path representation, the binary tree node with inorder i becomes
the general tree node with postorder i , which is easily seen by induction. The closing paren-
theses of nodes x and y, which have postorders i and j, are thus found with p = select0(i)
and q = select0(j). Now let z = lca(x, y). Then, in the Cartesian tree, x descends from the
left child of z, zl, and y descends from the right child, zr. In the general tree, zl is the first
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child of z, whereas zr is its next sibling. Therefore the closing parenthesis of z, at position r,
is between p and q. Further, y descends from some sibling z′ to the right of z. Between p and
q, the minima in D occur at the closing parentheses of z and of its siblings to the right, up
to (but not including) z′. Thus the leftmost of those positions is precisely r, where z closes.
Finally, rank0(r) is the postorder position of z, and the inorder position of the cell in A.

The formula also works if y descends from x in the Cartesian tree. Since i < j, the inorder
of x is smaller than the inorder of y, and thus y can only descend from the right child of x.
Then the first minima in [p, q] is precisely p, the closing parenthesis of x, and thus z = x.

If we want to use the leftmost-path mapping, we need that rmqE returns the rightmost
minimum position in the range. In this case, it holds

rmqA(i , j) = rank1(rmqE(select1(i + 1)− 1, select1(j + 1))) (5.5)

In this case, we must subtract 1 from p (which is now the position where node x opens) to
ensure that the rightmost minimum in [p − 1, q] is actually p − 1 when y descends from x.
Figure 5.3 (bottom right) shows a query.

The distinct operations involved in the solutions for rmqA, even if constant-time, take
widely different times in practice. The original formula of Eq. (5.2) includes 2 operations
rank and 2 operations select, one ±1-RMQ (rmqE), and one operation open. The last two
operations are much costlier than rank and select. For example, in a study of succinct
tree representations [1], operations rank required about 50 nanoseconds (ns), select required
around 200 ns, open required 200–500 ns, and rmqE required 400-700 ns. In that paper, they
used a succinct tree implementation that used about 2.4n bits, based in the so-called Range
Min-Max Tree (RMM-tree) [93]. While their operation time is in theory logarithmic, they
show that the time growth with n is practically unnoticeable. Other constant-time solutions
for open [48] were shown to be significantly slower in practice if using similar space. Our new
formula in Eq. (5.4) requires only 2 operations select, one rank, and one rmqE. In Section
5.4 we show that our formula yields a significant time reduction compared to DFUDS-based
ones.

5.2.1 Construction

This representation is easily built in a way similar to the DFUDS-based one [40]. Consider
the version using the rightmost-path mapping (the other is similar). We will write the
parentheses of E[1, 2n] right-to-left, starting with a 0 (i.e., a closing parenthesis) at its end.
We start with an empty stack S, and traverse A[n] to A[1]. At the point where we are to
process A[i], the stack S maintains left-to-right minima in A[i + 1, n]. To process A[i], we
pop from S all the elements ≥ A[i], prepending a 1 (i.e., an opening parenthesis) to E each
time an element is popped, until S becomes empty or its top is < A[i]. Now we push A[i] in
S and prepend a 0 to E. This is continued until A[1] is processed. Finally, we prepend as
many 1s to E as necessary to complete 2n bits.

This process requires O(n) time and its extra space for S is proportional to the height of
the Cartesian tree of A. While this is usually negligible, the space can become O(n) words
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in the worst case. Fischer and Heun [40, Sec. 5.2.2] reduce it to n bits in a way that we can
use verbatim in our case.

5.3 Implementing Balanced Parentheses

The most successful implementation of Balanced Parentheses uses Range Min-Max Trees
(rmM-trees) [93, 1]. The BP sequence E[1, 2n] is cut into blocks of length b. Each block
then becomes a leaf of the rmM-tree, which stores several variables. To describe them, let
us introduce the notion of excess, which is the number of 1s minus the number of 0s in a bit
string up to certain position:

excess(S, i) = rank1(S, i)− rank0(S, i) = 2 · rank1(S, i)− i,

where we note that, if D[1, 2n] is the sequence of depths we have been using and E[1, 2n] is
the associated bit sequence, then D[i] = excess(E, i).

Then the relevant variables associated with each rmM-tree leaf representing bits L[1, b] are
e = excess(L, b) (the local excess produced by the leaf), and m = min1≤i≤b excess(L, i) (the
minimum left-to-right excess along the leaf). The rmM-tree is a perfect binary tree on those
leaves, where the internal nodes store the same fields e and m with respect to the area they
cover. That is, let v have left and right children vl and vr, respectively, then v.e = vl.e + vr.e
and v.m = min(vl.m, vl.e + vr.m).

We can then compute any operation rmqE(p, q) as follows. First, we determine the max-
imal block-aligned range [p′, q′] inside [p, q]. Then we scan the range [p, p′ − 1] sequentially,
obtaining the minimum excess min and its excess exc = excess(p, p′−1). Then, if [p′, q′] is not
empty, we start at the rmM-tree leaf v started by position p′. We set min← (min, exc+v.m)
and update exc← exc+ v.e. Now we start climbing up the path from v. If v is a right child
of its parent, we just move to its parent. Otherwise, we see if its right sibling v′ is contained
in [p′, q′]. If it is, we process it (setting min ← min(min, exc + v′.m) and exc ← exc + v′.e)
and then go to the parent of v. If, instead, v′ is not contained in [p′, q′], we switch to v ← v′

and start the descent: Let vl and vr be the left and right children of v, respectively. Then,
if vl is is contained in [p′, q′] we process vl as before and descend to vr, otherwise we descend
to vl. At the end, we reach the leaf of position q′ + 1, which is traversed sequentially up to
position q to complete the process.

Once the minimum value is clear, we must find its leftmost occurrence in E[p, q]. If it
occurred in [p, p′ − 1], or occurred only in [q′ + 1, q], then we already know its position.
Otherwise, its leftmost occurrence is in some rmM-tree node v we know. We then move
down from v to find its position: if vl.m ≤ vl.e + vr.m, we descend to vl, otherwise to vr. We
finally reach a leaf and scan it to find the position of the leftmost minimum.

By setting b = Θ(log2 n) and using precomputed tables to process the leaves by chunks of
(log n)/2 bits, the total time is O(log n) and the extra space of the rmM-tree and precomputed
tabls is O(n/ log n) = o(n).

Operations rank and select can be solved similarly, the former by computing exc =
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excess(E, i) and then using rank1(i) = (exc+ i)/2 or rank0(i) = (i− exc)/2. For select1(j) we
move down from the rmM-tree root looking for the position i where excess(E, i) = 2 · j − i,
and for select0(j) we aim to excess(E, i) = i− 2 · j.

Our implementation carries out the following optimizations:

1. Instead of the fields e in all the nodes, we store an array exc[1, 2n/b] with exc[i] =
excess(E, b · i), using as many bits as necessary (in many cases, the maximum excess is
not large). Further, when b is even, those sampled excesses are also even, so we save
one further bit. To solve rank, we use the table exc to find the rank up to the previous
sampled position, and process the last block sequentially.

2. To solve select(j), we store a table giving the blocks where the answer to every bth value
of j fall, using as many bits as necessary. We then compute rank up to that block and
sequentially scan from its beginning until reaching the desired rank j. In the conference
version [32] we just used binary search on table exc, which saved little space but was
considerably slower.

3. To solve rmqE, we avoid scanning the last area [q′ + 1, q] if its block minimum is not
smaller than our current minimum value min. Note that its block minimum may be
smaller than the minimum in [q′ + 1, q], but not larger. In the conference version we
stored the position of the minimum to avoid the descent, but this turns out to take too
much extra space for a small saving in time.

4. The precomputed tables process bytes of the leaf, so they are very small and usually
fit in cache, and we read aligned data.

5.4 Experimental Results

Our first experiment compares our improved implementation with the standard one, which
was used in our conference version [32] with block size b = 256. We show various block sizes
for our new version, so as to choose a good representative. The data are arrays A of sizes from
n = 104 to n = 1010, with randomly chosen ranges [i, j] of fixed length 10,000. Figure 5.4
shows the results, where “rmq-Old” stands for the standard implementation and “rmq-b” for
the new ones. The space shown is in addition to the 2n bits used by the parentheses.

It can be seen that our new implementation is far more efficient, in space and especially in
time. For the rest of the experiments, we will choose b = 512 as a compromise value between
space and time.

We compare our implementation with those in SDSL and Succinct, which are based on
DFUDS (Eqs. (5.2) and (5.3), respectively). As a control, we also implement ourselves the
DFUDS-based solution of Eq. (5.2) using rmM-trees and our rank/select components; this is
called DFUDS in our charts.

We first compare the four implementations on the same randomly generated arrays A of
the previous experiment. Figure 5.5 shows the results (Succinct did not build on the largest
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Figure 5.4: Query space and time on random arrays, for ranges of size 10,000, comparing the
standard with our new implementations.
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Figure 5.5: Query space and time on random arrays, for ranges of size 10,000.

arrays). Our implementation uses always below 2.1 bits per element (bpe), that is, 0.1 on top
of the 2 bpe needed by the BP (or DFUDS) representation. Our DFUDS implementation,
instead, increases the space because the average excess grows with n in this format, and thus
the rmM-tree counters need more bits. The implementations in SDSL and Succinct use at
least 2.6–2.8 bpe.

Our solution is also the fastest, taking 1–3 microseconds (µsec) per query as n grows.
It is followed by Succinct and, far away, by SDSL. Our DFUDS implementation is fast for
short arrays, but it becomes slower when n grows. This is probably because operation open
matches a farther parenthesis as n grows; the same effect can be seen in SDSL. In Succinct,
instead, operation open is avoided, and thus the growth is much milder. In our BP-based
implementation, the growth with n is also mild, owing only to traversing a higher rmM-tree.

Figure 5.6 shows how the times are affected by the size of the query range. As it can be
seen, our implementation and Succinct show a very slow increase, whereas times grow much
faster in SDSL and DFUDS. This may be due to the open operation, whose time grows in
practice with the distance to its parent. Larger intervals return nodes closer to the root,
whose former siblings are larger, and so is the distance to the parent in DFUDS.
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Figure 5.6: Query time on random arrays, for ranges of increasing size and two values of n.

Our final experiment measures the effect of the order in A on the space and time of the
structures. Given a parameter ∆, our entry A[i] is chosen at random in [i−∆, i + ∆], or in
[n− i−∆, n− i+∆], thus the smaller ∆, the more sorted is A in increasing/decreasing order.
Figure 5.7 shows the results.

Our implementation maps the leftmost path of the Cartesian tree to the children of the
general tree. As a result, the structure takes slightly more space and time when the array is
more sharply increasing, because the general tree is deeper and the rmM-tree stores larger
values. Instead, it does not change much when A is decreasing (one could use one mapping
or the other as desired, since we know A at construction time, thus never using more than
2.1 bpe). DFUDS shows the opposite effect, because the DFUDS excesses are smaller when
the tree is deeper. The effect is more pronounced than in our structure, and it also affects
the time performance. It is not clear how can one use the rightmost-path mapping in the
case of DFUDS, however, as it is not symmetric (we can reverse the array if we do not mind
returning the rightmost position of the minimum). The space of SDSL and Succinct is not
affected at all by the lack of randomness, but SDSL turns out to be faster on less random
arrays, regardless of whether they are increasing or decreasing. Succinct performs better
when the values tend to be decreasing and worse when they are increasing. Our times are,
just like the space, negatively affected by increasing values, but still they are much better
than the others and, as said, we can choose to map the rightmost path in this case.

5.5 Conclusions

We have presented an alternative design to Fischer and Heun’s RMQ solution that uses
2n + o(n) bits and constant time [40]. Our implementation uses 2.1n bits and takes 1–3
microseconds per query. This is noticeably smaller and faster than the current implemen-
tations in libraries SDSL and Succinct, which follow Fischer and Heun’s design. By using
BP instead of DFUDS succinct tree representation, our RMQ formula simplifies consider-
ably, and besides we performed some optimizations to the BP implementation. We have left
our implementation publicly available at https://github.com/hferrada/rmq.git, and our
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Figure 5.7: Query time on pseudo-sorted arrays, n = 106 and ranges of size 10,000.

DFUDS-based one at https://github.com/hferrada/rmqFischerDFUDS.git.

Any ±1-RMQ implementation can be used together with our new formula. Our current
implementation of ±1-RMQs is not formally constant time, as it builds on rmM-trees [93, 1].
Although truly constant-time solutions are not promising in practice [105, 93], and we have
shown that the time of rmM-trees grows very slowly with n, it would be interesting to devise
a practical and constant-time solution.
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Chapter 6

An LZ-based Index for Document
Listing

We propose an index to solve the document listing problem, which is based on the classical
LZ-Index [85] (detailed in Section 2.8). The resulting index is called LZ-DLIndex, which
was published in the 20th International Symposium on String Processing and Information
Retrieval [30]. A journal version, together with the results of Chapter 7, was submitted to
Information and Computation.

We search the documents by considering the same 3 types of occurrences of pattern match-
ing. The key idea is, instead of collecting each individual occurrence of p, to simulate
Sadakane’s variant of Muthukrishnan’s algorithm (Section 3.1) on ranges of occurrences,
even when the information is more fragmented on the LZ-Index than on a suffix array.

For the occurrences of type 1, the pattern matching algorithm finds the locus vr of pr in
RevTrie and traverses its whole subtree. It maps each node ur in the subtree of vr to u in
LZTrie, and then traverses the whole subtree of u. Now we want to report all the distinct
documents found across this process. We virtually expand each node ur in RevTrie with
the subtree of u, recording the document where each node belongs. The result is an array
analogous to E1..n, where we can use Sadakane’s document listing algorithm on the range
covered by vr (see Algorithm 2). We do not store E itself, but just the RMQ structure on
the corresponding array C (virtual too). The RMQ structure uses 2n + o(n) bits (see the
definition in Section 2.5.4) and allows us to find each new document in O(1) time. We present
a review of the state of the art on the RMQ problem and our proposal in Chapter 5.

For the occurrences of type 2, we find the O(log n) nodes that cover the y-interval [lu, ru]
and project the x-interval [lv, rv] to each such node. Each point to report belongs to some
document, and we want again to report all the distinct documents. We can do it by brute force
(reporting the document of every individual point, avoiding repetitions), or apply Sadakane’s
algorithm on each of the O(log n) ranges [xm, xM ] in the wavelet tree nodes that cover the
y-coordinate interval. For this sake, we attach the RMQ structures on the virtual C arrays
for the points represented in each wavelet tree node. Therefore, to each bitvector Bv we add
an RMQ structure using 2|Bv|+ o(|Bv|) bits [90].
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Finally, occurrences of type 3 are O(m2) in total and are dealt with one by one. The
whole process takes time O(m2 log n+ ndocm log2 n). However, the ndoc1 documents found
with occurrences of type 1 are listed in time O(m+ ndoc1). Now we describe the techniques
precisely.

We modify the LZ78 parsing so that no phrase crosses a document boundary. The index
is composed of the following structures.

6.1 Structure

Tries. We store the topology of RevTrie and LZTrie and also the letters, but only for
RevTrie because we perform the searches exclusively with reverse patterns. We then able
the index to navigate RevTrie and to search it for patterns in constant time per symbol [3].
These require 2n′ lg σ + O(n′) bits and support constant-time traversals. Note that LZTrie
has n′ nodes, and thus its topology is represented with 2n′+o(n′) bits (Section 2.4). However,
RevTrie may have up to n nodes, because not every node corresponds to a phrase. From
those nodes, some are unary, that is, have just one child, and some are empty, that is, do not
represent any phrase. Since RevTrie has at most n′ leaves and exactly n′ nonempty nodes, it
has at most 2n′ non-unary nodes. Thus we can represent only the (at most) 3n′ nodes that
are non-unary or nonempty, and collapse the remaining unary paths. Only the symbols that
are not in those paths are stored. This leads to a representation that uses 2n′ lg σ + O(n′)
bits. The symbols from unary paths are extracted via the connection with the LZTrie [85, 3].
We also store a bitvector of O(n′) bits to compute preorder numbers of nonempty nodes. So,
we use in this first group the following structures:

Plz: The LZTrie topology represented with parentheses in a preorder traversal, and made
navigable in O(1) time, using 2n′ + o(n′) bits (FF [1]).

Prev: The tree topology using parentheses and made constant-time navigable, using 2trev +
o(trev) bits (FF [1]).

Erev: A bitvector marking empty nodes, in preorder, using trev + o(trev) bits.

Urev: A bitvector marking empty unary nodes (i.e., contracted), from those that are marked
empty in Erev, using trev − n′ bits.

Lrev: A sequence of the nrev letters that label the non-contracted edges leading to the nodes,
in preorder. Used to find the child nodes at searching.

Mrev: A sequence of the trev − nrev letters that label the contracted edges leading to the
nodes, in preorder. Used to check that the characters in the contracted edge match the
search pattern.

Documents. Instead of storing the phrase identifiers for the n′ nodes of LZTrie, we store
the identifiers of the document where they occur. We also store the RMQ structure associated
with a virtual array of all the documents where each phrase in RevTrie is transitively used.
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Figure 6.1: The structures to report documents for occurrences of type 1.

In total we store n′ lgD + 3n + o(n) bits, in the following structures (see the arrays on the
bottom of Figure 6.1).

Doclz: The array of n′ document identifiers of the LZTrie phrases in preorder order, stored
explicitly in n′ lgD bits. This is equivalent to the document array of Muthukrishnan
(Section 3.1), but restricted to phrases.

Docrev: A sequence of n document identifiers built as follows. We traverse RevTrie in pre-
order, and for each nonempty node vr, let v be the corresponding LZTrie node. Let
Doclz[lv, rv] be the range of all the descendants of v (included). We append Doclz[lv, rv]
to Docrev. The total length of Docrev is n because n is the internal path length (sum
of all node depths) in LZTrie, and each LZTrie node is appended to Docrev once per
ancestor it has in LZTrie.

We do not store Docrev, but only the 2n+o(n)-bits RMQ structure on its corresponding
C array (Section 3.1). This will be sufficient to run Sadakane’s DL algorithm [106]
on top of Docrev. Recall that the RMQ structure does not need to access Docrev
(Section 2.5.4)

LDocrev: A bitvector of n bits that marks theDocrev positions where the intervalsDoclz[lv, rv]
start. Since it has only n′ bits set, it is represented in compressed form (Section 2.3),
so it can use less than n bits.

Node. A mapping from RevTrie to LZTrie. If the node vr in RevTrie with nonempty
preorder i corresponds to the node v in LZTrie with preorder j, then Node[i ] = j. Array
Node uses n′ lg n′ bits.

Range. An enhanced binary wavelet tree. Each wavelet tree node implicitly represents
a sequence of points (i.e., pairs of phrases (k, k + 1)). Now consider the array of their
corresponding documents (we are not interested in pairs of phrases that span two documents,
as no matches occur there). In addition to the bitvector Bv of node v, we store the RMQ
structure corresponding to the C array of its (virtual) array of documents (Section 3.1). The
total space of Range is then 3n′ lg n′ + o(n′ log n′) bits.
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Space. Overall, the LZ-DLIndex requires 4n′ lg n′ + n′ lgD + 2n′ lg σ + o(n′ log n′) + 3n +
o(n) ≤ 5nHk(T ) + 3n + o(n log σ) bits. This is close to the original LZ-Index size [85].
The total LZ-DLindex size includes 2n′ lg n′ + o(n′ lg n′) bits for the RMQ structures in the
wavelet tree of Range. A way to reduce this size is to exclude those RMQ structures, paying
instead the cost in time to check every secondary occurrence one by one. In that case, the
size becomes ≤ 3nHk(T ) + 3n + o(n log σ) bits, which is similar to the space achieved by
Arroyuelo et al. [3] plus the n′ lgD + 3n + o(n) bits required to store the documents for all
the LZTrie nodes and the associated RMQ structure. We test this variant in the experiments
of Section 6.3.

Observation. Since phrases are cut at the end of documents, there may appear a few
repeated phrases across the collection. Therefore, at construction time, we have to consider
the special case when two or more documents end with the same phrase. This is handled by
storing a short linked list, both in RevTrie and LZTrie, attached to the nodes representing
phrases that appear more than once.

6.2 Queries

As we have introduced, we solve DL incrementally, considering the three types of occurrences.

Occurrences of type 1

We search for pr in RevTrie, arriving at node vr. This means that all the occurrences of
type 1 are represented by vr. In particular, as RevTrie is not a typical trie, because we
contracted paths of empty nodes, we have to be careful during the search of vr. We need
then to validate, using Urev, when an edge contains more than one symbol and retrieve these
from Mrev. Once that we get the node, let [iv, jv] be the range of preorders of nonempty nodes
descending from vr. We find the interval I = Docrev[sv, ev] of all the documents that contain
occurrences of type 1, where sv = select1(LDocrev, iv) and ev = select1(LDocrev, iv + 1)− 1.
Next, we report all the distinct documents in I with Sadakane’s algorithm using RMQs. For
each new position pos of a document Docrev[pos] reported by an RMQ, we need to report the
document identifier. We determine the nonempty preorder j = rank1(LDocrev, pos) of the
RevTrie node holding that position, and then the preorder of this node in LZTrie, i = Node[j].
The difference d = pos − select1(LDocrev, j) provides the offset of this position within the
leaf interval of the LZTrie node with preorder i . Thus, the document is Doclz[i + d ]. The
overall time of this step is thus O(m+ ndoc1).

Occurrences of type 2

We proceed as in the original LZIndex for reporting occurrences from Range, but now we
use the RMQ structures in the wavelet tree of Range to report documents. We consider
all the m − 1 partitions p = pstart · pend and search for these prefixes and suffixes in the
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tries. Each such partition then becomes a range search for [lv, rv] × [lu, ru] in Range, and is
decomposed into O(lg n′) intervals [xm, xM ] in different wavelet tree nodes v. Each point in
those intervals represents a position in a document. The distinct documents in each interval
[xm, xM ] are obtained using Sadakane’s algorithm on the RMQs built for the node. To obtain
the document identifier for each reported position pos ∈ [xm, xM ], we track the position down
in the wavelet tree until reaching the leaf, which indicates the row of Range. Since the rows
of Range correspond to LZTrie preorders, we simply access Doclz at the leaf index. This
scheme is shown in the Fig. 2.10.

Although unlikely, in the worst case we can output the same document in each of the
O(lg n′) intervals for each of the m − 1 partitions, and each requires O(log n′) time for
tracking the point down to the leaves. This gives O(m2) time for the RevTrie searches plus
a (very pessimistic) worst-case bound of O(ndoc2m lg2 n) time for the ndoc2 occurrences of
type 2. The Figure 6.2 illustrates how we use these RMQ’structures, stored in each level of
the wavelet tree, to evaluate occurrences type 2 obtained by RMQ.

Occurrences of type 3

The last step is to report documents where the pattern appears as occurrence type 3. We
follow the original LZindex search algorithm, yet we have fewer data structures now. First,
and following that method, all the searches for all the substrings p[i , j] are carried out in
RevTrie, in time O(m2), and we record the RevTrie and LZTrie preorder values of each. We
use Node to retrieve the LZTrie preorder giving a RevTrie node. For each i , we store in array
Ai the information for the substrings of the form p[i , j], sorted by LZTrie preorder value.
Note that we have not stored phrase numbers, yet we can still use Range to determine the
LZTrie preorder t of the phrase following that of p[i , j], which has RevTrie preorder tr. If
we traverse the wavelet tree of Range starting at position tr in the root bitmap and track it
to the leaves, the final position is precisely t. This operation takes O(lg n′) time. Now we
implement a binary search on Aj+1 for LZTrie preorder t, and if we find it corresponding to
a phrase p[j + 1, j′], we can concatenate p[i , j] to get p[i , j′]. We can therefore carry out the
same process for finding maximal concatenations [85], in total time O(m2 lg n). Finally, we
have to check if p[1..i − 1] precedes the maximal concatenation and if p[j + 1,m] follows it.
The first question is equivalent to computing whether the preorder interval for p[1..i − 1]r

in RevTrie is connected with the LZTrie preorder value t of the first phrase in the maximal
concatenation. The second question corresponds to computing the LZTrie preorder interval
of p[j + 1,m] (which can be done using RevTrie, as before) and then asking if the RevTrie
preorder value tr of the last phrase in the maximal concatenation is connected with some
point in the LZTrie interval. We check these connections following the same technique that
uses Range. These tests increase the time in O(m lg n).

Time

The total query time is O(m2 lg n + ndocm lg2 n), where we remind that this is a very pes-
simistic upper bound. We also note that the occurrences of type 1 are reported very early, in

75



Figure 6.2: The scheme to report the occurrences of type 2 using RMQ structures in each
level of the wavelet tree of Range. Suppose that we are looking for points in the rectangle
[l0..r0] × [L..R] of Range. Then, we start at the root with the interval [l0..r0], in the first
bitstring B0. We continuing go down by the tree updating the new limits [l′, r′] for each node
that we visit in the trip. Then, when we reach at node i ′, which represents the subinterval
Bh−3[l..r], we obtain a query interval Iq = [l′..r′], where l ≤ l′, r′ ≤ r, mapping from the
original segment [l0..r0] of the root to Bh−3. We check that [l, r] ⊆ [L,R], then any of the
(r′− l′+ 1) positions of Iq are occurrences type 2 that we have to evaluate. For this we apply
the traditional DL algorithm on Iq using the RMQ structure stored. In this illustration, the
first RMQ answer is mapping, go down in the tree, until to obtain the document X in the
correct leaf of the tree.

time O(m+ ndoc1). If the text is generated by an ergodic source, the occurrences of any pat-
tern p appear regularly, every d positions on average (e.g., d = σm if the symbols are generated
uniformly and independently). On the other hand, since n′ ≤ n/ lgσ n, only O((n/d)m/ lgσ n)
of those occurrences hit a phrase boundary on average. This means that a fraction of
1−O(m/ lgσ n) of the occurrences are of type 1, and also ndoc2 = O(ndocm/ lgσ n) = o(ndoc)
if m = o(lgσ n). Thus we report almost all of the occurrences in O(1) time each. If we just
lose those o(ndoc) occurrences not of type 1, our time is the optimal O(m+ ndoc).

We show in the experiments that, indeed, our index is particularly competitive to show
the first occurrences (those of type 1), which are the most for short patterns.

6.3 Implementation

To obtain a practical implementation of the scheme, we make some changes that, although
do not preserve the space and time guarantees, perform much better in practice. These refer
largely to the implementation of the tries.

The mechanism to avoid storing symbols of unary paths in RevTrie and instead extract
them from LZTrie is slow in practice. Instead, we will store them in RevTrie. Moreover, we
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will perform all the searches in RevTrie, and do not represent LZTrie at all. RevTrie then
has trev nodes, which can be as large as n, but in practice it is much less.

We represent RevTrie in DFUDS form, using 2trev + o(trev) bits, plus a bitvector that
marks the nonempty nodes in DFUDS order, so as to compute the nonempty preorders that
are used in searches. We also store a string with the 2trev symbols that label the edges, in
the same order they are stored in DFUDS. This allows (1) performing binary searches on
the labels toward the children of a node, to find the one to follow efficiently, (2) having in
consecutive positions the symbols that label unary paths, so as to compare them efficiently
with p. The constant-time method to find the label given in DFUDS [16] is theoretical, and
is better replaced with searches on this string.

RevTrie is used directly to find the occurrences of type 1, and also to search for prstart when
looking for occurrences of type 2. To find pend, since we cannot search in LZTrie, we look for
prend in RevTrie. If it does not exist, or it leads to an empty node, then pend is not a phrase
and there are no phrases starting with pend (phrases are built incrementally symbol by symbol
in LZ78). If instead we reach a node ur, with nonempty preorder t, then i = Node[t] is the
LZTrie preorder of the corresponding node u, which represents pend. It is also the left end lu =
i of the preorder interval of the descendants of u. To find the right end, ru, we compute the
size ` of its interval in Doclz using LDocrev: ` = select1(LDocrev, t+ 1)− select1(LDocrev, t),
and then ru = lu + `− 1. Now we have the row interval to search Range.

Finally, we can reduce the space of the RMQs in Range by storing them only for the highest
levels of the wavelet tree. The lowest ones have shorter bitvectors, and then traversing them
sequentially is not much different from applying Sadakane’s algorithm to find the different
documents (moreover, as they are closer to the leaves, obtaining their document identifiers
is cheaper). This gives a space/time tradeoff.

6.3.1 Experimental Results

We run our experiments on several text collections that were already considered in previous
work [92, 67], as well as other larger ones.

• ClueWiki: A sample of ClueWeb09. These are Web pages from the English Wikipedia
(boston.lti.cs.cmu.edu/Data/clueweb09/).

• Wiki: A collection of more and shorter documents than ClueWiki.

• KGS: A collection of sgf-formatted Go game records from year 2009
(www.u-go.net/gamerecords).

• Proteins: A collection of sequences of human and mouse proteins
(www.ebi.ac.uk/swissprot).

• DNA: A synthetic collection, slightly repetitive with 5% mutations among documents.

• Influenza: A repetitive collection of the genomes of influenza viruses. We take the
first 70MB.

• TodoCL: A collection formed by snapshots of the Chilean Web. This includes real
queries, which we use to measure quality. We take the first 100MB for most experiments,
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Collection n D n/n′ compress
(MB) (bpc)

ClueWiki 131 3,334 17.24 2.78
Wiki 80 40,000 9.58 3.34
KGS 25 18,838 14.97 1.85
Proteins 56 143,244 6.38 4.61
DNA 95 10,000 11.50 2.68
Influenza 70 49,588 21.18 1.89
TodoCL 100 22,850 9.02 3.82
TREC 3500 846,869 19.42 3.74

Table 6.1: Main characteristics of the text collections.

and up to 2.05GB for experiments on collection growth.

• TREC: The TREC Corpus FT91 to 94 (http://trec.nist.gov). We take the first
3.5GB and use it for experiments on collection growth.

Table 6.1 summarizes the main characteristics of these collections: size n, number of
documents D, average LZ78 phrase length n/n′ (the larger, the more compressible for our
index), and bpc obtained by the LZ78-based Unix compress program (another measure of
LZ78 compressibility).

The machine used for all experiments is an Intel Xeon with 8 processors of 2.4GHz and
12MB cache, with 96GB RAM. It runs on Linux 2.6.32-46-server, and we use gcc with full
optimization.

A 64-bit implementation of our index, LZ-DLIndex, is left public 1. We also use an RMQ
implementation of our own2, which requires around 2.2n bits. The bitvector implementations
are obtained from the sdsl-library 3.

We also implement the classical DL solution of Sadakane [106], which we also leave public4.
As the CSA, we use the FM-Index implemented in the sdsl-library, and try different suffix
array samplings to obtain space/time tradeoffs.

Space study

Table 6.2 gives the space obtained by our LZ-DLIndex structure on the collections described in
Table 6.1. The total bpc for each main component is shown in bold, and between parenthesis
its percentage of the total size of the structure. Influenza, ClueWiki and KGS are the most
compressible ones, reaching 6.3–8.2 bpc, whereas DNA, Wiki, TodoCL and Proteins are the
least compressible ones. All are, as roughly expected from the space analysis, 3.7–5.2×|LZ78|,
where |LZ78| = n′(dlog n′e + dlog σe)/n. We show how |LZ78| relates to n/n′, and how it
roughly coincides with the output size of Compress, a classical LZW Unix compressor (shown

1At https://github.com/hferrada/LZ-DLIndex.git.
2Available at https://github.com/hferrada/rmq.git.
3From https://github.com/simongog/sdsl-lite.git.
4At https://github.com/hferrada/Sada-DLIndex.git.
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Collection RevTrie Doc Node Range Total (/|LZ78|) |LZ78| (n/n′)
ClueWiki 1.69(23%) 3.30(45%) 1.33(18%) 1.04(14%) 7.39 (4.31×) 1.71 (17.24)

0.18(topology) 0.70(Doclz)
1.39(labels) 2.34(RMQC)
0.12(empty) 0.26(LDocrev)

Wiki 1.93(18%) 4.38(40%) 2.51(23%) 2.07(19%) 10.89 (3.68×) 2.96 (9.58)
0.18(topology) 1.67(Doclz)
1.39(labels) 2.34(RMQC)
0.12(empty) 0.37(LDocrev)

KGS 2.03(25%) 3.65(44%) 1.40(17%) 1.13(14%) 8.21 (4.56×) 1.80 (14.97)
0.23(topology) 1.00(Doclz)
1.61(labels) 2.36(RMQC)
0.19(empty) 0.29(LDocrev)

DNA 1.10(12%) 3.87(42%) 2.09(23%) 2.08(23%) 9.14 (3.89×) 2.35 (11.50)
0.24(topology) 1.22(Doclz)
0.80(labels) 2.32(RMQC)
0.06(empty) 0.33(LDocrev)

Proteins 2.06(11%) 5.63(37%) 3.76(25%) 3.76(25%) 15.21 (4.33×) 3.51 (6.38)
0.44(topology) 2.82(Doclz)
1.51(labels) 2.34(RMQC)
0.11(empty) 0.47(LDocrev)

Influenza 0.95(15%) 3.36(53%) 1.04(17%) 0.95(15%) 6.30 (5.21×) 1.21 (21.18)
0.14(topology) 0.75(Doclz)
0.75(labels) 2.34(RMQC)
0.06(empty) 0.27(LDocrev)

TodoCL 2.05(18%) 4.40(39%) 2.66(23%) 2.21(20%) 11.32 (3.24×) 3.40 (9.02)
0.35(topology) 1.66(Doclz)
1.51(labels) 2.35(RMQC)
0.19(empty) 0.39(LDocrev)

Table 6.2: Space breakdown of the main components in our LZ-DLIndex structure, with
values in bpc. For RevTrie and Doc columns the space is the sum of the components detailed
below them (bpc values in italics). The Range columns does not include the RMQ structures
to speed up the index. The percentages refer to the total size of the index. The column
(/|LZ78|) indicates the ratio of the total size over |LZ78|, and the last column, in turn, gives
also (n/n′).

in Table 6.1).

The Doc component dominates the space, with at 37%–53% of the total index size. It
includes the document identifiers with their boundary values and the RMQC data structure
on RevTrie. For Range we used the lowest and smallest version of the index, where the
wavelet tree of Range does not include any RMQ structure (this corresponds to the highest
point of the LZ-DLIndex in Figures 6.3 and 6.4). Range uses 15%–25% of the index size.
The distribution varies a bit on the less compressible collections, where the fraction of Node
and Range increases, reaching 25%. Note that component Range can be omitted if we only
want to list the occurrences of type 1, in which case the index size is reduced by 15%–25%.

Table 6.3 shows the number of documents listed by the queries, averaging over 3,000
patterns randomly extracted from the collections. Many of the listed documents are obtained
as type-1 occurrences (70%–96% for m = 6, and 50%–92% for m = 10 if we exclude DNA).
This shows that we could obtain a significant part of the result using just the fastest listing
and without representing Range.
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m = 6 m = 10
Collection Type 1 Type 2 Type 3 ndoc Type 1 Type 2 Type 3 ndoc D
ClueWiki 1860.51 69.37 0.24 1930.12 1437.01 119.79 2.05 1558.85 3,334

96.4% 3.6% 0.0% 57.89% 92.2% 7.7% 0.1% 46.76%
Wiki 921.66 290.04 0.16 1211.86 135.79 76.50 0.97 213.26 40,000

76.1% 24.0% 0.0% 3% 63.7% 35.9% 0.5% 0.5%
KGS 4702.26 1691.87 1.40 6395.53 2012.27 739.57 4.66 2756.49 18,839

73.5% 26.5% 0.0% 33.9% 73.0% 26.8% 0.2% 14.63%
DNA 7527.03 1630.21 0.01 9157.25 32.72 98.37 0.14 131.22 10,001

82.2% 17.8% 0.0% 91.56% 24.9% 75.0% 0.1% 1.31%
Proteins 52.01 21.53 0.07 73.61 25.57 16.59 3.50 45.66 143,244

70.7% 29.2% 0.0% 0.05% 56.0% 36.3% 7.7% 0.03%
Influenza 16901.13 3302.72 0.09 20203.94 995.46 452.63 1.18 1449.27 49,588

83.7% 16.3% 0.0% 57.89% 68.7% 31.2% 0.1% 2.92%
TodoCL 467.09 173.88 0.16 641.13 35.85 35.34 0.93 72.12 22,850

72.9% 27.1% 0.0% 2.81% 49.7% 49.0% 1.3% 0.03%

Table 6.3: Number of occurrences of each type, for pattern lengths m = 6 and m = 10.
Under each number, we give the percentages of the documents output. For the three types
of occurrences these refer to ndoc, and for column ndoc this refers to D.

Space/time tradeoffs

Figures 6.3 and 6.4 compare our LZ-DLIndex structures in three modes: (i) the full mode
where it returns all the documents for a DL-query (called LZ-Index in the plots); (ii) a mode
where it also can return all the documents but we take the time needed to return only those
that were found for occurrences of type 1, and use the minimum space for Range (called “up
to type 1”); and (iii) a mode where it can only return the documents found by occurrences of
type 1 as it does not store Range at all (called “only type 1”). For the full mode, we obtain a
space/time tradeoff by representing RMQs only for the highest levels of Range, as explained.

We also compare Sadakane’s DL structure [106], showing seven points that use suffix array
sampling steps of 4, 8, 16, 32, 64, 128 and 256. We also compare some variants of the proposal
that stores a wavelet tree of the document array [92]: (i) the variant using document arrays as
plain wavelet trees [114] (WT Plain), (ii) a representation with grammar-compressed wavelet
trees (WT RePair), and (iii) an intermediate one called WT Alpha5. In order to compute the
occurrences interval SA[l, r] in this index we incorporate a CSA with no sampling in order
to minimize space (the sampling is not needed here). We use a FM-Index as the CSA in the
Sadakane’s proposal.

It can be seen that adding RMQs to Range, while theoretically appealing, increases the
space without giving a significant speedup in practice. Our LZ-DLIndex is between, on one
extreme, Sadakane and WT RePair, which use less space but may be orders of magnitude
slower, and on the other extreme, WT Plain, which is orders of magnitude faster but uses
much more space. In some collections, like ClueWiki, Wiki, DNA, and TodoCL, WT Re-
Pair outperforms the LZ-DLIndex in both time and space, whereas in KGS, Proteins, and
Influenza, the LZ-DLIndex is much faster. The LZ-DLIndex is comparable to WT Alpha
in various cases, but it is much easier to tune.

5We ran the 32-bit code given by the authors [92], which can build the variants (i) and (ii) for any data
collection. The “alpha” structure could be built only on the four data collections used in their publication,
which include ClueWiki, KGS, and Proteins.
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Figure 6.3: Space/time comparison for pattern length m = 6.
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Figure 6.4: Space/time comparison for pattern length m = 10.
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The non-full variants of the LZ-DLIndex reach much better time, similar and even faster
than those of WT Plain. They return about one result per microsecond. Therefore, in
scenarios where we return the occurrences progressively, for example to be displayed in an
interface, the “up to type 1” structure is very efficient, as it retrieves the first occurrences
very fast.

The variant that can only return the occurrences of type 1 is also significantly smaller.
Next we study the fraction of the total set that is found with this type of occurrences.

Quality

Now we measure the quality of our small and fast approximation of the LZ-DLIndex. As
explained, it returns the documents where p is contained in at least one full phrase. Our
analysis showed that, as n grows, the fraction of these documents should asymptotically
approach the total answer set.

Figure 6.5 explores the behavior on a large collection, TodoCL, with a real query log. We
tested one-word and two-word queries. As expected, the ratio of documents returned grows
with n and decreases with the query length. When we reach the 2.2GB, the approximation
returns about 80% of all the answers. Note that this was already around 75% on just 200MB.

6.4 Conclusions

This chapter has introduced the first document listing data structure based on Lempel-Ziv
compression. Apart from offering a competitive space/time tradeoff in general, an interesting
feature of the index is its ability to retrieve a large number of documents very fast. The index
outputs the most of the documents only in a few microseconds and always using less than
7 bpc (excluding Proteins which is less compressible). The structure is also able to output
the complete answer at cost of extra size and time. However it continues to offer competitive
trade-off between time response and space usage. This makes it an ideal choice in interactive
scenarios, where one must show some answers immediately and others can be calculated in
the background, and in cases where only some answers are sufficient.
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Chapter 7

An LZ-based Index for Top-k
Retrieval

This chapter introduces the extended version of the index described in Chapter 6, which
computes approximate answers for top-k queries. We detail both how to retrieve the com-
plete output for a top-k query, and an approximate answer. This work was published in
the 21th International Symposium on String Processing and Information Retrieval [31]. A
journal version, together with the results of Chapter 6, was submitted to Information and
Computation.

The LZ-DLIndex of Chapter 6 is fast to retrieve a large portion of the documents where p
appears, and estimating the top-k from this list might also yield a good approximation to the
top-k set where p occurs most often. Our approximate top-k index, LZ-TopkApp, builds on
this idea to be small and fast, close to the LZ-DLIndex variant “only type 1”. Compared to
that index, it also stores the top-κ documents for some RevTrie nodes, for a κ that depends
on the number of occurrences of the node. A top-k query on that node where k ≤ κ can
simply return the first k precomputed answers. Otherwise, we solve the query by brute force,
extracting all the occurrences of type 1.

This idea is has some resemblances with the succinct approach of Hon et al. [58, 92],
which stores this information for some chosen suffix tree nodes. A parameter g determines
the RevTrie nodes that will store their top-κ answer. The (empty or nonempty) RevTrie
nodes representing a string with at least g occurrences of type 1 are then marked in a
bitvector Btop. Yet, we never mark empty unary nodes because their set of occurrences is
the same as for their child. Each marked node, however, stores a different number κ of
documents where it appears most often: if the node has o occurrences of type 1, then it
stores κ = bo/gc precomputed answers. This guarantees that, if k > κ and we need to find
all the o occurrences by brute force, it is because p has less than gk occurrences of type 1,
and thus the effort to collect them individually is no more than O(g) per result returned.

The exact top-k index, LZ-TopkIndex, also stores the structures to collect the occurrences
of type 2 and 3 by brute force.
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7.1 Structure

The structure of LZ-TopkIndex includes the LZTrie, RevTrie, and Node components of the
LZ-DLIndex. We also include Doclz, but not Docrev nor LDocrev. In addition we include
Range, to find the occurrences of type 2, but not the RMQ structures the LZ-DLIndex
associates with it. In exchange, we include a new structure, Top, where the precomputed
top-κ answers are maintained. Apart from the bitvector Btop that tells which nodes are
marked, we store the top-κ answers for each marked node in an array Ktop, and mark the
beginning of each answer set in a bitvector LKtop. The detail is as follows:

Btop: A bitvector marking which RevTrie nodes have top-κ answers precomputed, in preorder.

Ktop: The sequences of κ most frequent documents where each node marked in Btop appears,
concatenated in the same order of Btop. The identifiers are stored using lgD bits, in
decreasing frequency order.

LKtop: A bitvector marking the starting positions of the sequences in Ktop.

Atop: Since there may be less than κ distinct documents where the marked node appears,
this bitvector indicates whether a node marked in Btop already lists all of the possible
documents.

Space. The larger g, the fewer RevTrie nodes store their top-κ documents. Consider a
RevTrie node. If it has o occurrences, then it stores κ ≤ o/g precomputed answers (including
zero, being not marked, if o < g). Adding over all the RevTrie nodes representing strings
of the same legnth, no more than n/g precomputed results are stored, since the occurrences
must be disjoint and can only add up to n. Therefore, if h is the maximum length of a
phrase (or, equivalent, the height of LZTrie), we can have n/g results per length, adding
up to h(n/g) lgD bits in total. If we assume that the text is generated by a memoryless
source, then the LZTrie can be thought of as the trie induced by n′ infinite and statistically
independent strings. Under a wide set of probabilistic models, the height of such a trie is
O(log n′) [112]. The result still holds if T is generated by a finite-memory source, where each
symbol depends on O(1) previous symbols.

Under these assumptions, the space of Top structures is O((n/g) log n′ logD) bits. By
choosing g = Θ(log n′ logD), this space becomes O(n) bits. The bitvectors Btop, LKtop and
Atop add just other O(n′) bits. Thus the overall space is n′(lg n′ + lgD + 2 lg σ) + O(n) ≤
2nHk(T ) +O(n) + o(n lg σ) bits.

7.2 Queries

At query time, we perform in RevTrie an optimal time search for the locus vr of p. This
means that there are at least one occt1 for p which are represented by vr. We have the same
precautions than the searches with the LZ-DLIndex, with edges that represent more than
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one symbol in RevTrie, because we also contracted paths for empty nodes. And we need
to validate using Urev these nodes and to retrieve the extra letters from Mrev in order to
compare them.

Once that we have retrieved vr, the next step is to check Btop to see if vr is a marked node
(i.e., the index contains stored the top-k answers for some k∗ in Ktop). If that happens, by
rank/select queries on LKtop we obtain the range of document identifiers stored k∗. So, if this
range indicates that it stores k′ ≥ k top documents, we return the top-min(k, κ) documents
stored for vr in Ktop and finish. Otherwise, we check in Atop if vr stores all the documents
for p, and return the complete range of identifiers stored in Ktop.

Otherwise, the stored answers are not sufficient (or do not exist or when vr is not found)
and we have to proceed by brute force. Then, just as for the basic index, we collect all
the occurrences of type 1, by construction, this takes place only if vr has k′ < k answers
stored (including the case k′ = 0). This indicates that if k∗ < k is the power of 2 closest
to k, then vr does not store its top-k∗ answer (perhaps there is a list stored for a lower k∗).
We map every descendant ur of vr to node u in LZTrie using Node, and traverse the range
of Doclz covered by u. In order to obtain each identifier document for vr sequentially, we
use Prev to compute its preorder iv and its subtree size sv. Thus all the subtree of vr has
the preorder interval [iv, iv + sv − 1]. We then use rank on Erev to map it to the interval
[i1, i2] of nonempty preorder values. For each i in this interval, we compute iu = Node[i ],
which is the preorder of the corresponding node in LZTrie, and then use Plz to obtain the
corresponding node u in LZTrie. Then, we similarly compute the size su of u from Plz and
obtain the interval [iu, iu + su − 1] of all the descendants of u in LZTrie. We process all the
document identifiers in Dlz[iu, iu + su − 1], for all the nodes u in LZTrie that correspond to
all the RevTrie descendants ur of vr. Along this process, we accumulate the frequencies of
the documents found in an initializable array [81, Sec. III.8.1], and at the end collect the k
documents with the highest frequencies. In case of the LZ-TopkIndex, we also collect the
occurrences of type 2 and 3, to ensure that the answer is completely correct.

Figure 7.1 illustrates the main components of our index and how we retrieve top-k answers
in both cases: when the locus of the pattern contains the answer precomputed, or when the
output is computed by brute force.

Time. The LZ-TopkIndex guarantees to spend O(g lg n′) time per occurrence returned
when p has occurrences of type 1. Otherwise, there is no guarantee. However, let us follow
the analysis of Section 6.2. On texts generated by ergodic sources, the probability that p,
appearing o times in T , has no occurrences of type 1, is (1−Θ(m/ logσ n))o. Taking the worst
value m = 2 and multiplying by the cost O(o log n′) to find all such occurrences, this is upper
bounded by e−Θ(o/ logσ n)o log n, which is maximized for o = Θ(logσ n). Thus we absorb this
case, on average, by adding O(log2 n) time. Considering the time for searching the tries and
handling the occurrences of type 3, we obtain O(m log2 n+ kg log n) time. The LZ-TopkApp
structure, instead, reports nothing when p has no occurrences of type 1, and otherwise spends
O(g) time per occurrence returned. Thus its total time is always O(m+ kg).

If we assume that the text is generated by a memoryless source, then the LZTrie can be
thought of as the trie induced by n′ infinite and statistically independent strings. Under a
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Figure 7.1: The main data structures of our approximate top-k index. The search for the
pattern qr reaches node wr in RevTrie, which is marked in Btop. The marks in LKtop also
indicate that there are κ ≥ k document identifiers stored. Therefore, the answer is retrieved
from Ktop using the marks in LKtop. The search for pr, instead, reaches node vr in RevTrie.
Since this node is not marked, the answer is computed by accumulating frequencies from the
document array of phases, Dlz. We use k∗ for κ in the drawing.

wide set of probabilistic models, the height of such a trie is h = O(log n′) [112]. The result
still holds if T is generated by a finite-memory source, where each symbol depends on O(1)
previous symbols. Therefore, we have that g = h lgD = O(log2 n). Our previous calculations
then yield time O(m log2 n+k log3 n) for LZ-TopkIndex and O(m+k log2 n) for LZ-TopkApp.

7.3 Improving the Quality

A simple way to improve the quality of the approximation is to note that, when top-κ answers
are precomputed, we can perfectly do the precomputation for the actual top-κ answers,
instead of using just the occurrences of type 1. Note that the length of these stored sequences
is the same, then the size for Ktop will be maintained. We just need to locate the occurrences
for some RevTrie’s paths and accumulate the document frequencies to determine the top-
ranked documents. This process can be implemented by using, at construction, a temporal
self-index of the collection. Later, to sort the the document frequencies we can use a maximum
priority queue of length k. The process needs extra time to build the self-index and compute
each top-k answer for marked nodes. Then, in practical terms, the cost to have a better answer
will imply that the construction time will increase. However, the structure will retrieve the
right answer when it finds it precomputed. It will only give an approximation when it has
to scan all the occurrences of p one by one.
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7.4 Experimental Results

We leave public a 64-bit implementation of our index, called LZ-TopKApp1. We also included
the version that gives the full answer for Top-k, called LZ-TopkIndex2. We compare our
index with previous work [67, 92] in terms of query time and space usage. We use the same
document collections described in Table 6.1.

7.4.1 Space study

Figure 7.2 gives the space breakdown for our index, for various values of g. We group the
data structures in four components: (1) LZTrie contains the tree topology and the document
identifiers Doclz; (2) RevTrie considers the tree topology, the symbols of the edges, and the
other bitvectors to perform pattern searches; (3) Node is the array mapping RevTrie to LZrie;
and (4) Top counts the storage of the best documents for marked nodes and the bitvectors
to extract them. Only the size of Top varies with g. It can be seen that reasonable values
of g, depending on the collection, start at 32–256. The impact of g is slightly smaller on
DL-TopkIndex.

7.4.2 Space/time tradeoffs

We compare our top-k indexes with the best previous solutions. We denote IDX-KN the
implementation [67] of a fast and large structure [89] (there is an even more recent imple-
mentation [49], but it is not very different from the one we show in the range of interest of
this paper). We also include a choice of relevant space/time tradeoffs from the small and
slow structure based on Hon et al.’s sampling [58] combined with wavelet trees [92], which
we call HON-WT.

We consider search patterns of lengths m = 6 and for m = 10 in Figures 7.3 and 7.4.
We take strings from random positions in the collection, checking that they appear in at
least k documents3. We test k = 10 and k = 100. For LZ-TopKApp, we try the values
g = 256, 128, 64 . . . until the size of component Top exceeds 24 bpc. For LZ-TopkApp we
also include the case g = +∞ (i.e., not precomputing any answer) to see if storing answers
is worth the space.

Since n/n′ is the average node depth in LZTrie, we set g = (n/n′) lgD as a natural value.
According to Table 6.1, this yields values in the range 110–330 for g. In most texts LZ-
TopkApp uses 4–7 bpc with those values of g (except Proteins, where it uses 10 bpc), and
solves top-k queries in around k–5k µs. LZ-TopkIndex uses 5–8 bpc (12 bpc on Proteins)
and solves queries in 10k–100k µs. Using a smaller g improves performance significantly in

1At https://github.com/hferrada/LZ-AppTopK.git.
2At https://github.com/hferrada/LZ-TopK.git.
3It does not make much sense to compute the top-k documents for patterns whose DL-list is shorter than

k.
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Figure 7.2: Space breakdown of our structures for different g values (g is the x-axis).
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Figure 7.3: Space/time comparison for pattern length m = 6 (left) and m = 10 (right).
Space (bpc) is the x-axis.
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Figure 7.4: Space/time comparison for pattern length m = 6 (left) and m = 10 (right).
Space (bpc) is the x-axis.
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some cases, while increasing the space still within competitive bounds. Instead, not using
top-κ answers at all significantly increases the times.

The structure HON-WT can use similar or less space than LZ-TopKApp, but at the cost
of being 3–6 orders of magnitude slower. Even if using much more space, HON-WT is at
least 2 orders of magnitude slower than LZ-TopKApp. On the side of the large and fast
structures, IDX-GN obtains time similar to LZ-TopkApp, but it uses 2–4 times more space.

7.4.3 Quality

Our LZ-TopkApp index offers an excellent space/time tradeoff. However, it does not always
ensure that the answer is completely accurate. In order to estimate how good the approxi-
mation is, we computed two measures of quality for the top-k approximation. The first one
is the traditional recall, measured in the following way: for each value k′ ∈ [1, k], we measure
how many of the (correct) top-k′ documents are reported within the (approximate) top-k
results. This is shown in Figure 7.5. In this experiment we have selected the largest g value
for each collection, which ensures that the total size of the index is around 12–16 bpc.

The point at k′ = 1 (i.e., 0.1 in the x-axis for k = 10 and 0.01 for k = 100) indicates how
many times the most relevant document is contained in the top-k approximate answer. The
point at k′ = k (i.e., 1.0) gives traditional recall: how many of the correct top-k documents
are actually returned.

This indicator is useful for applications where the top-k answer is postprocessed with a
more sophisticated relevance function in order to deliver a final answer of k′ � k results. For
example, except for m = 10 on Proteins (where few occurrences of type 1 are found), we
obtain a recall of 70%–100% if we use this top-k approximation to later extract the best 30%
of the results (0.3 in the plots).

In most collections the recall is 60%–100% even for k′ = k (except on Proteins and DNA,
which do not compress well). There are no large differences between k = 10 and k = 100.
When there are, the quality is much better for k = 100.

If our index fails to return a top-k document, but returns another one with the same
frequency, we take it as a hit, as both are equally good. In this sense, recall is too strict of a
measure of relevance: if the system returns a document with only slightly fewer occurrences
than the correct one, it counts as zero. As the frequency is only a rough measure of relevance,
a fairer measure of quality is the sum of the frequencies of the documents in the approximate
top-k answer as a fraction of the sum in the correct top-k answer. This is the second indicator
we compute. We omit the figures because the improvement is not that large compared to
recall: now we obtain 70%–100% of quality for k′ = k (except for Proteins and DNA, which
do not improve much), and 80%–100% for k′ = 30% of k (except for Proteins).

On the other hand, the fact that better quality is obtained for shorter patterns coincides
with our probabilistic analysis. Figure 7.6 illustrates this effect more closely, for increasing
pattern lengths (using our second measure of quality from now on). For the moderate col-

93



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

ClueWiki

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

Wiki

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

KGS

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

Proteins

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

DNA

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

Influenza

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

re
c
a
ll

TodoCL

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

Figure 7.5: Recall of our approximate top-k solution, as a function of the fraction of the
answer (x-axis).
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Figure 7.6: Quality of our approximate top-k solution, as a function of the pattern length,
for top-10 (left) and top-100 (right). Each pattern appears at least in k documents.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

fr
a
c
ti
o
n
 o

f 
fr

e
q
u
e
n
c
y

GB

TodoCL - 1-word queries

All k=10
All k=100
Eq. k=10

Eq. k=100

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

fr
a
c
ti
o
n
 o

f 
fr

e
q
u
e
n
c
y

GB

TodoCL - 2-word queries

All k=10
All k=100
Eq. k=10

Eq. k=100

Figure 7.7: Fraction of the real answer found by LZ-AppTopK for real queries, as a function
of the prefix size of TodoCL for words (left) and phrases of two words (right). Solid lines
include new sets of query-patters for each prefix (labels “All k”). Dashed lines consider
always the same set of query-patterns from the first 200MB of the collection (labels “Eq.
k”).

lection sizes of 25–130 MB we considered, we obtain quality well above 80% for m = 2–8
in top-10 (Proteins, again, is the exception). In most of the collections, the quality is over
90% for m ≤ 10. For top-100, we obtain quality well above 80% for m ≤ 14 (except for DNA,
where the results are good only up to m ≤ 12).

Our analysis also predicts that the quality improves as n grows. In the next experiment
we build the structure for increasing prefixes of TodoCL. Figure 7.7 (solid lines) shows the
quality obtained for real query words (of length > 3 to exclude most stopwords), with average
length 7.2, and 2-word phrases, with average length 8.0. We convert TodoCL to lowercase
(as the distinction is generally not made in natural language queries). As predicted, the
quality improves with n, from 44%–52% on 200MB (n/n′ = 10.1) up to 56%–67% on 2.05GB
(n/n′ = 12.7) for words; and for 2-word phrases from 34%–42% on 200MB up to 42%–52%
on 2.05GB.
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Figure 7.8: Fraction of the real answer found by LZ-TopkApp as a function of the prefix size
of TREC, for arbitrary patterns of lengths 6 and 10, in top-10 and top-100.

The percentages are much lower than before, because many queries may appear just a few
times in the collection. In those cases, a brute-force pattern matching is a better approach.
Our LZ-TopKApp index performs better then the words appear many times, and thus a
top-k query is more relevant. Figure 7.7 (dashed lines) repeats the experiment, but now we
only use patterns that appear in the first 200MB, to query the structure for all the prefixes.
The results are much better because the queries appear more often.

In the last experiment, we measure the improvement with n without the problem of real
queries that may appear infrequently, and with another large text collection, TREC. We extract
patterns of lengths m = 6 and m = 10 from random text positions, and that appear at least
in k documents, for k = 10 and k = 100. The resulting quality is shown in Figure 7.8. Once
again, our index gives an answer of high quality on large text collections.

7.5 Conclusions

We have introduced a top-k retrieval index for general string collections, based on Lempel-
Ziv compression. Our implementations achieve competitive space/time tradeoffs compared
to existing solutions, dominating a significant part of the space/time tradeoff map. The
approximate variant of our index (LZ-TopkApp) is orders of magnitude faster, and uses much
less space, than previous work. It typically uses 4–7 bpc and returns each result in about
1–5 microseconds. As its results are approximate, we have shown that its quality improves
asymptotically with the size of the collection, reaching over 90% of the accumulated term
frequency of the real answer already for patters of length ≤ 8 on rather small collection, and
improving for larger ones. This makes our index an ideal low-cost structure to obtain a quick
and rough approximate top-k answer, which might then be postprocessed (as in many real
applications).
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We have strived for speed in our index. A variant using less space, yet possibly somewhat
slower, can be obtained by avoiding the representation of the explicit arrays of documents,
Dexp. Instead, we can represent the documents associated to LZTrie nodes, which are only
n′, and at query time traverse all the RevTrie descendants ur of vr, map them to u in LZTrie,
and traverse the documents of the subtree of u. That is, avoid the concatenation done to
build Dexp, and instead do it on the fly at query time. This process has less locality of
reference than the current one, and it requires mapping a fair number of nodes from RevTrie
to LZTrie, but given the large performance gap, it is likely to still be many times faster
than competing schemes. In exchange for the sharp reduction in the size of Dexp, we need to
represent the LZTrie topology and Node mapping of the LZIndex, but the reduction of space
should still be significant.

In natural language, retrieving approximate top-k answers to improve efficiency is a com-
mon practice. This avenue has not been explored much for general string collections. Our
work shows that this idea is promising, as large space and time reductions are possible while
still returning answers of good quality.
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Chapter 8

An LZ77 Based Index for Document
Listing

Collections of highly repetitive texts are usually bigger than sets of traditional files, and
unfortunately classical text indexing is not designed to take advantage of the repetitiveness
among the files. Nowadays, these types of databases have become very common in many
fields. A good example is the encyclopedia Wikipedia, which is composed of millions of
versioned documents, where any person can create new articles or suggest corrections to
existing items. This process generates multiple versions of documents.

In view of the above, repetitive documents need special treatment in their storage and
query if we want an efficient document retrieval system on them. The challenge then is to
build a representation that takes advantage of the similarity between documents in order
to index the full text, answering queries quickly and using smaller size compared to the
approaches designed for conventional text collections.

This chapter presents the first attempts to use the LZ77 parsing in order to solve document
listing on collections of highly repetitive texts.

8.1 A Document Listing Approach Based on the Hybrid-

Index

Section 4.2 describes the Hybrid Index, which uses the LZ77 parsing to solve the pattern
matching problem restricted to a predefined maximum pattern length M . The general idea
to solve queries is first to find primary matches using a conventional index on a reduced text,
in which consecutive phrase boundaries are located at maximum distance (2M + 1) of one
another. In a second step, beginning with each primary occurrence found, it locates secondary
matches using the structure of Kärkkäinen and Ukkonen [63] built on the LZ77-structure.

The Hybrid Index locates all the occ occurrences of a pattern p1..m in O(locatepri(m)+occ)
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time, where locatepri(m) is the time to locate all the primary occurrences of the pattern using
the index IM(T ′) on a reduced text T ′, and occ is the number of times that p appears in T .

The New Idea. This proposal adapts the Hybrid-Index in order to report documents
instead of occurrences, in the following way. The original structure to find primary matches
and its algorithm are maintained. Additionally we augment the structure so as to determine
the identifiers of documents associated with each primary occurrence. We include a bitvector
of length z, which marks the first phrase of each document. The document can be easily
identified using the LZ77 structure and this bitvector. With respect to secondary matches, we
design a scheme that takes a primary occurrence Tl..r and can retrieve the list of documents
containing phrases that have copied Tl..r from this primary match. We adapt the basic
algorithm in order to find only one secondary occurrence per document in each one of the
t primary matches found. Our method finds documents by querying separate structures,
depending on whether the source of a secondary occurrence is shared with another source.

As a result, our proposal solves any document listing query in O(locatepri(m) + t · ndoc)
time, where ndoc is the output size.

8.1.1 The Structure for Primary Matches

The first task, like with the hybrid indexing, is to parse the input text T1..n with the LZ77
parser, which obtains a dictionary of z phrases and the list L[1..z] that contains the positions
where each phrase starts in T . We also build a bitvector B1..z whose D positions associated
with the first phrase in each document are set to 1. B requires z + o(z) bits. So, in order to
find the document dj that contains the phrase r, we just compute j = rank1(B, r).

We handle the special case when the length of the queried pattern is 1, storing in an
additional list Lσ the σ phrases corresponding to the first occurrence of each one of the σ
different characters of the alphabet. This list uses σdlog ze bits.

The next step is to filter the input text T1..n to create the reduced text T ′ (see Section 4.2.1)
plus the list L(M) to map positions from T ′ to T . The list L(M) stores the positions where
each phrase starts in the filtered text T ′. We complete the structure building a conventional
full text index, I (T ′), for the filtered text.

8.1.2 The Structure for Secondary Matches

Given the characteristics of the original method to find secondary matches, we see that in
the recursive algorithm, for each primary match the secondary occurrences are found in
increasing order of positions in T . We start from a primary match Tl..r and find all the
secondary matches s1, s2, ..., sk whose sources include Tl..r. These occurrences can be in the
same document of Tl..r or in later ones. Next, we repeat the same procedure with each of
the occurrences si. We exploit this order with a method to obtain increasing sequences of
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Figure 8.1: The basic scheme with non-overlapped phrase sources. Two phrases Pi and Pj in
the document dU , whose sources Tx..y and Tu..v (framed with segmented gray boxes) are also
in the same document, and Tu..v overlaps Pi.

documents that contain these secondary matches si. It is clear that if we simply retrieve the
document for each secondary occurrence found, we obtain an inefficient solution for DL with
O(ttsearch(m) + occ) time, where occ is the number of times that the pattern p1..m appears in
the whole collection. In order to avoid exploring the complete set of secondary occurrences
generated by each primary occurrence, we have to overcome at least two problems. One
is to modify the original grid (described in Section 4.2.1), so that now, for each primary
occurrence we will retrieve only one phrase per different document. The second and main
problem happens when a substring is shared by more than one source of subsequent phrases.
These succeeding phrases can belong to the same document, so we can report the same
identifier several times.

We propose to store inverted lists for all segments that are used by two or more sources,
For those that have a single match we adapt the structure to retrieve a different document in
each step of the recursive algorithm. We build a structure that can retrieve the ki different
documents obtained from the ith primary occurrence in O(ki) time.

Non-Overlapped Phrase Sources

Let us consider the most basic situation, which is illustrated in Figure 8.1. It shows two
phrases Pi and Pj in a document dU , with their sources Tx..y and Tu..v in the same document
and the source of Pj overlapping Pi. Consequently, the original grid G includes the points
{(x, y, Pi), (u, v, Pj)}. Under that scheme, if we find a secondary match inside the phrase Pi,
it would be possible to include it in the source Tu..v of the phrase Pj. Therefore we will report
the same document 3 times, one for the primary match of the pattern in Tx..y and the other
two secondary matches in the phrases Pi and Pj. Therefore we modify the grid G to avoid
the described redundancy.

Step 1.- Deleting unnecessary points. Note that none of the two points that represent
the phrases illustrated in Figure 8.1 are necessary. We then delete these from the grid G. In
general, we delete from G every point whose phrase and source are in the same document
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Figure 8.2: An example with non-overlapped phrase sources distributed in two documents
dU and dV . There are three phrases Pi, Pj and Pk, whose sources Tx..y, Tu..v and Tp..q,
respectively are pointed with solid arrows and framed with gray boxes in dashed line. The
red boxes indicate offsets from the beginning of the phrases with respect to the beginning of
other phrase sources. There are four occurrences of a pattern: the primary one Tx′..y′ and
the three subsequent secondary matches that have been copied from Tx′..y′ .

and the phrase does not overlap with any other source. This is the case of phrase Pj in
Figure 8.1, and after it is deleted, the same situation occurs with phrase Pi. Consequently
both points are deleted. This rule ensures that the algorithm reports once the document dU
(i.e., only for its primary occurrence inside the source Tx..y). It is possible, however, that dU
is reported again by other primary matches. Besides, note that under these conditions, we
also delete every point whose source possibly overlaps with other source.

Consider now Figure 8.2, which shows two documents dU and dV . Inside dU there are two
phrases Pi and Pj whose sources Tx..y and Tu..v are also in the same document. In dV the
phrase Pk has its sources Tp..q in the previous document dU . The original grid G represents
the described scenario with the points {(x, y, Pi), (u, v, Pj), (p, q, Pk)}. Suppose now that we
found a primary match Tx′..y′ inside the source Tx..y, as the figure shows, x ≤ x′ < y′ ≤ y.
Then given the characteristics of the LZ77 parser, the string Tx′..y′ is also in the phrases Pi,
Pj and Pk in this example. Therefore, the original algorithm locates the primary occurrences
and the three subsequent secondary ones inside those phrases, meaning that a document
is reported several times under the original scheme. We now describe a solution for that
situation.

Step 2.- Building a new grid G Let focus only in the phrases Pj and Pk of Figure 8.2 and
forget Pi for the moment. Observe that the phrase source Tp..q of Pk includes the substring
Tpj ..qj of the phrase Pj. Therefore, if we replace the point (u, v, Pj) by (u, u + (qj − pj), Pk)
we ensure that if, and only if, we find a secondary match inside Tu..u+(qj−pj) in the source
of the phrase Pj, we will obtain a secondary match inside Pk too, reporting a different
document as we desire. We will also have to search for other sources that cover the string
Tu..u+(qj−pj), but now inside the phrase Pk. For that reason another component is necessary
in the structure that specifies where the string Tu..u+(qj−pj) starts inside the phrase Pk, so
that we can continue accurately with the recursive algorithm. Figure 8.2 indicates the offset
Oj from the beginning of Pk that we need to consider in order to know where the substring
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Original Grid New Grid

(p, q, Pk) (p, q, Pk, 0)
(u, v, Pj) (u, u+ qj − pj, Pk, Oj)
(x, y, Pi) (x+Oi, y, Pk, Oj)

Table 8.1: New points in the grid G for the three phrases of our example at Figure 8.2.

Tu..u+(qj−pj) begins in the phrase and to continue with the recursion. Similarly, in the same
figure if we found an occurrence inside the source the phrase Pi, we then need the offset Oi

to continue the search of phrases whose sources include the substring Tx+Oi..y. Therefore,
for each source non-overlapped with any other source but overlapped with another phrase in
another document, we add an offset in the fourth element of its point as follows —remember
that the list L[1..z] stores the starting positions for each phrase in the text.

1. If the phrase Pk and its source Tp..q are in different documents, then we change (p, q, Pk)
by (p, q, Pk, 0) (i.e., we include the offset Ok = 0).

2. If the phrase Pj and its source Tu..v are in the same document dU , and also there is a
phrase Pk in a different document dV whose source includes the substring Tpj ..qj of Pj
in T(L[k]+Oj)..(L[k]+Oj+qj−pj), then we change (u, v, Pj) by (u′, u′+(qj−pj), Pk, Oj), where
u′, u ≤ u′ ≤ v is the point where the string Tpj ..qj starts inside Tu..v. This new point
added may trigger further opportunities to apply this rule. In our example, once we
change (u, v, Pj), we can modify (x, y, Pi).

Note that points that have not been deleted in Step 1 can satisfy only one of these two
previous conditions. As an example, Table 8.1 shows the new values for the points corre-
sponding to the scheme illustrated in Figure 8.2. In the figure, we see that the offset Oi is
included in the final part of the offset Oj and Oi = (y − x)− (vi − ui).

Overlapped Phrase Sources

Considering Figure 8.3, where there are four phrases Pi, Pj, Pk and Pl, whose sources are
Tc..f , Ta..g, Td..h and Tb..e, respectively. These phrases can be in the same document dU or
any other subsequent document in the text. Observe that the sources share substrings in
common with each other, which implies that the search of secondary matches in this point
will extend in many different ways. We handle this case by storing inverted lists.

The idea is that for each primary occurrence ppri, we find the documents recursively in
our new grid (created in Step 2) until either we find an inverted list with all the remaining
documents for ppri or there is no other secondary match in G in this search branch generated
by ppri. When that happens, we move on to the next primary match and again search for
secondary matches.

Step 3.- Creating inverted lists. In a new structure IL, for all the segments in sources
that overlap with at least one other source, we store their inverted lists with all the subsequent

102



Figure 8.3: An example with several overlapped phrase sources in a document dU .

documents that contain a substring copied from here. In other words, if a segment Tx..y is
shared by more than one source in a document dU , then we save the increasing list with
all the subsequent documents (to the right of U) that contain phrases that have copied the
segment Tx..y from dU . As an example, the following inverted lists correspond to the scheme
of Figure 8.3:

Tb..e → Lb..e, for the overlapped segment between the sources Pj and Pl.

Tc..f → Lc..f , for the overlapped segment between the sources Pi and Pj.

Td..g → Ld..g, for the overlapped segment between the sources Pj and Pk.

Tc..d → Lc..d, for the overlapped segment between the sources Pi, Pj and Pl.

Td..f → Ld..f , for the overlapped segment between the sources Pi, Pj and Pk.

Td..e → Ld..e, for the overlapped segment between all the sources.

Observe that with this structure a substring s would be included in more than one inverted
list. In that case, our algorithm selects the bigger list (i.e., the inverted list for the smallest
segment that covers s). Note that, for example, we do not include Tb..c because its list Lb..c
contains the same elements as the longer interval Tb..e.

To represent all the nI overlapped segments Tx..y and their inverted lists we use separate
structures. We store the x-coordinates in an array XI [1..nI ], the length of each segment in
the array Len[1..nI ] and the NI documents of all the inverted lists in IL[1..NI ]. Then for any
string Txi..yi with its associated inverted list with i ′ documents we have an entry in this new
structure with three components: (XL[i ] = xi, Len[i ] = yi−xi + 1, IL[k..k+ i ′− 1]), for some
k. In order to obtain the position k where a list starts we use a bitvector VI [1..NI ] to mark
these positions. We sort the entries of these structures by their x-coordinates and store XI

with gap encoding as done with the array X in the grid G. We save the array Len explicitly
in nLdlogmaxme, where maxm is the maximum length among all the overlapped segments.
Given that we create increasing inverted lists, we can store these with gap encoding too,
concatenating all these lists in the array IL and marking in VI the first document of each list.
In Section 8.1.4 we will describe how to store the inverted lists in order to save more space
and we also give a method to search the lists efficiently.

After we have created the inverted lists we cannot simply delete all these points from G,
because there are non-overlapped segments that we need to cover, such as Ta..b and Tg..h in
our example. Additionally, we need to consider larger substrings Ta′..b′ , a ≤ a′ < b < b′ ≤ g,
that have not been covered by the lists. Consequently, we only delete the points (x, y, Pi)
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Algorithm 6 Find documents with secondary matches from the string Tl..r

1: function SecondaryMatchesDL(l, r)
2: Find the biggest inverted list Li[1..i

′] that covers Tl..r.
3: if (Li is not NULL) then
4: Merge the list Li with occ, updating V and the counter for ndoc
5: else
6: Find, by a binary search, the predecessor X[k] of l in the array X.
7: Use recursively RMQs to find all the maximal values in Y [1..k] that are at least
r, using the Range Maximum structure on the array Y .

8: for each point (i ′, j′), we find (l′, r′) of the phrase Tl′..r′ whose source is Ti′..j′ do:
9: doc = rank1(B, l′)

10: if (V [doc] = 0) then
11: occ[ndoc] = doc
12: ndoc = ndoc + 1
13: V [doc] = 1
14: end if
15: SecondaryMatchesDL(l′, r′)
16: end if
17: end function

from G whose source Tx..y is completely covered by an overlapped string (i.e., there is a
document list associated to this string). Otherwise, we conserve the point to be processed as
we detailed in Step 2.

8.1.3 The Document Listing Algorithm

The following process returns the list occ[1..ndoc] with the ndoc documents that contain the
queried pattern p1..m as a substring. Similar to Sadakane’s method to check if a document
has already been reported or not, we use the same bit-string V [1..D] to mark documents. We
follow the original method of the hybrid indexing to locate all the primary matches occpri, by
using the conventional index for the filtered text, I (T ′), plus the lists L and L(M) to map from
T ′[i ′..j′] to its correct match T [i ..j]. Next, for each primary match Ti..j found, we determine
its document by computing doc = rank1(B, i). We use V to check if doc is not in occ, before
including it in the output list and increasing the counter for ndoc. After that we call the
function SecondaryMatchesDL(i , j) defined in Algorithm 6, which finds all the documents
with secondary occurrences that have copied the pattern from this primary occurrence.

The line 2 of Algorithm 6 checks if a string Tx..y is covered by an inverted list. We
then perform a search for the predecessor k of Tx in the sorted array XI and validate that
(y−XI [k]) > Len[k]. We do this with the same method implemented for predecessor search
in the array X of the grid G. In this point, it is possible that we find various segments for
the same starting position XI [k] = XI [k+1] = ... = XI [k+k′] (i.e., various inverted list too);
if this is the case, we need to obtain the greatest inverted list, which is associated with the
segment of minimum length that is bigger than y−XI [k]. There are some structures to store
Len and perform this search efficiently, for instance with Elias-Fano codes (see Section 4.1.1).
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However, in Section 8.1.4 we will detail another method to perform this search efficiently and
at the same time saving space in the inverted lists. Once we obtain the correct list Li[1..i

′],
we merge it with the output list occ. In the line 8, we compute the coordinates (l′, r′) of the
phase whose source is Ti′..j′ as described in Section 4.2.1 (scheme illustrated in Figure 4.9).
Each time a new document Li[t] is included in occ (as V [Li[t]] = 0), we set V [Li[t]] = 1 and
increment the counter for ndoc.

8.1.4 Reducing the Size of the Inverted Lists

Two improvements are detailed below in relation with the space usage of the inverted lists.

In Section 8.1.2, we defined how to build the inverted lists. For a pair of overlapped
phrase sources in a document dU , we detailed how to generate the increasing inverted list
Li[1..ki] with all the ki documents that contain the overlapped string copied from dU . Each list
Li[1..ki] is stored with gap encoding using ki log(max{Li[0], di}) bits, where di is the maximum
difference between any consecutive cells of the list Li, di = max0≤j<ki−1(Li[j + 1] − Li[j]).
Because Li[0] can be a bigger value (Li[0] ≤ D), the required space for the list Li also
can be proportional to this initial document Li[0]. However, we see that these documents
are to the right of dU , and therefore we know that Li[0] > dU . Hence, we can rewrite
the header of the list Li corresponding to the first document Li[0] as (Li[0] − dU), because
at query time we easily know the value of the initial document dU . As a result, we now
require ki log(max{Li[0] − dU , di}) bits, which helps reduce the size of the list. This first
improvement looks minimal, but we believe that it can be significant in reducing the bits for
each cell when dU is close to d . Applying that rule we obtain a complete sequence of gap
coding values (including the first position Li[0]) for the array IL.

The second and more significant improvement to reduce the size of the lists takes into
account the containment relationships between sets. Returning to the example of Figure 8.3,
let us focus on the overlapped strings contained in other overlapped zones. For instance, Tc..d
is covered by Tc..f , which implies that the inverted list Lc..f corresponding to the longer string
is a subset of the inverted list Lc..d associated with the shorter string. Another dependency
between sets is given by the segments Td..e, Td..f and Td..g, where for their lists we have
Ld..g ⊆ Ld..f ⊆ Ld..e. We will exploit these containments between inverted lists in order to
save space. Observe that in Section 8.3 we forced all overlapped strings to either start at the
same position of the text or end in a common position in T . Therefore, these relationships
can be determined by the y-coordinates of the segment Tx..y, as it happens between Tc..f and
Td..f or by the x-coordinates of these segments, which we store in the array XI . Observe the
situation illustrated in Figure 8.3, where the overlapped strings Tc..d and Tc..f start in a same
point c of the text, and the overlapped strings Td..e, Td..f and Td..g start in Td, sharing their
initial point. We take advantage of this order as follows.

Suppose that we have identified some containment relationships between sets given by k
lists, whose the respective overlapped strings are Tl..r1 , Tl..r2 , ..., Tl..rk , such that r1 < r2 <
... < rk. Then, for their lists we have Ll..rk ⊆ Ll..rk−1

⊆ ... ⊆ Ll..r1 ; we call these lists
complementary lists. Formally, at construction time, for each one of these complementary
lists whose overlapped strings start in Tl, we do the following:
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1. We store the lists from the smallest one (at the left) to the biggest one (to the right),
that is Ll..rk , Ll..rk−1

, ..., Ll..r1 from left to right.

2. The first list is stored without changes, and for the subsequent lists only the documents
that have not been included in the early ones are stored. Then we assure that each
document can be present once in the complete representation for each complementary
list. Then the final sets to store are: {Ll..rk}, {Ll..rk−1

− Ll..rk}, {Ll..rk−2
− (Ll..rk−1

∪
Ll..rk)}, ..., {Ll..r1 − (Ll..r2 ∪ ... ∪ Ll..rk−1

∪ Ll..rk)}.
3. We order the bitvector VI [1..NI ] to indicate where each list starts.

We now describe how to find the inverted list we need in line 2 of Algorithm 6. Once
we have obtained the predecessor XI [k] for the string queried Tl..r as we detailed previously,
we add to the output all the complementary lists whose segment length is at least Len[k].
Therefore, we first validate that (r − XI [k]) > Len[k]; if it is true we add to occ the kth
inverted list from the position sp = select1(VI , k) to ep = select1(VI , k + 1) in IL. We
continue validating if the segment of the next list, k + 1, also starts in XI [k], checking if
XI [k] = XI [k + 1]. If it is true then we validate the length (r −XI [k]) > Len[k + 1] before
merging the list k + 1. We continue with this process until a list k + k′ does not start in the
same point, that is, XI [k] < XI [k+k′], or the length of the segment does not cover the string,
that is, (r − XI [k + k′]) ≤ Len[k]. This method ensures optimal O(ki) time to retrieve the
ki documents from the inverted lists that include the segment Tl..r. Note also that, for the
complementary lists we can store their segment lengths of the array Len with gap encoding
too, because these values are in decreasing order.

Additionally, we have to add the first document retrieved from any inverted list the value
of the document dU where the overlapped string occurs and the list was generated, which is
obtained at query time. Then we include in the procedure SecondaryMatchesDL a third
parameter dU . For the first call dU will be the document where the primary occurrence was
found.

8.2 Including Frequencies

We follow the most natural way to retrieve the frequencies of the documents reported. We
extend the presented structure to include new arrays that store the frequencies for the inverted
lists and the points of the grid G. For the case of the lists, we will store all the frequencies
corresponding to the concatenated array of inverted lists IL[1..NI ] in a new array FI [1..NI ].
Then, during the construction, we compute these values by accumulating the number of
secondary matches for these documents respect to each overlapped segment that we have
associated with an inverted list. We just store explicitly each of these frequencies using
k logdMie bits, where Mi is the maximum frequency among all the documents included in IL.

With respect to the new grid (detailed in the second step of Section 8.1.2), we consider
a new array FG to store the frequencies of each point, but only when it is greater than one.
We then include another bitvector BF to mark the points that have an associated frequency
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in FG.

In order to include the frequencies associated with the document reported in our DL algo-
rithm, we use a temporary array FV [1..D] to accumulate the frequencies for the documents
found at query time. The accumulated frequencies of FV are associated with the marked
positions in V , updating their frequencies each time we find a document.

8.3 Conclusions

We have introduced a novel structure based in the LZ77 parser to index repetitive texts and
solve document listing queries. Since we have reduced the number of points to store in the
grid G for secondary occurrences, and we efficiently store a reduced number of inverted lists;
we can anticipate that our structure (without frequencies) will use space similar to that of the
original Hybrid-Index (described in Section 4.2), now finding documents instead of pattern
occurrences.
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Chapter 9

Conclusions and Further Research

This PhD thesis offers novel contributions in the Document Retrieval (DR) field. As a result
of this research we propose new approaches to building compressed data structures that
help solve the most important DR problems on general string collections. Our overview of
the state of the art showed that most of the proposals are built on indexes based on the
Suffix Array or the Suffix Tree, which are used to find the set of all the suffixes that contain
the search pattern as a prefix. On these suffixes, different techniques are used to identify
the documents to output. In particular, for document listing (DL) all the solutions follow
the pioneer optimal time solution of Muthukrisman [84]. Various improvements in space
requirements result in compact DL solutions whose answer time is far from optimal. On
the other hand, the most useful structure for Top-k was offered by Hon et al. [58], which
stores precomputed answers for some suffix tree nodes and its answer time is close to the
optimal. Again, most of the subsequent structures improve the space but affect the answer
time adversely.

The central contribution of this thesis is a new approach to DR based on the LZ78 parser
[118] instead of on suffix arrays and trees. We started from the basic LZ-Index of Navarro [85]
and designed two novel indexes for solving DL (the LZ-DLIndex [30]) and Top-k retrieval
(the LZ-TopkIndex [31]). The experiments show that our structures are very competitive
both in query time and space requirements compared to the best previous approaches. Our
novel indices are also capable of retrieving approximate answers for both problems, using
much less space and/or time. The LZ-DLIndex outputs most of the documents in only a few
microseconds and generally uses less than 7 bpc (bits per character). It gives the complete
answer at the cost of some extra space and time. On the other hand, the LZ-TopkApp index
offers an excellent approximation to the LZ-TopkIndex. It uses 4–7 bpc for most collections
and offers a query time around k µs per query. We have shown that the quality of this
approximation improves asymptotically with the size of the collection, reaching over 90%
of the accumulated term frequency of the real answer already for patterns of length ≤ 8
on rather small collections, and improving for larger ones. The tradeoff between time-space
consumption and the quality of its answer makes our structures very relevant in scenarios
where approximate answers to these problems are sufficient.

Our second main contribution are the first steps in developing DR solutions for highly
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repetitive text collections. We build on the LZ77 parser [117], which is the best for such
collections. We first develop an efficient pattern-matching index. Given an upper bound
on pattern lengths M , our Hybrid-Index [29] offers better search time than the LZ77-Index
[69] and better space and occurrence location time than the FM-Index [33, 35, 36], given a
sufficiently low bound M . The experiments indicate that the Hybrid-Index is the best option
to locate patterns of length less than 40 characters, a boundary that is sufficient in many
applications.

On the Hybrid-Index we design a new solution for DL. Our new DL index is then useful
on highly repetitive texts, and it is capable of retrieving the frequency for each reported
document. While not yet implemented, this is undoubtedly a promising result for the DR
field, and the first one building on LZ77 compression to solve DR problems.

We also contributed to basic data structures that are used, in particular, for DR. Our main
result is an alternative design to Fischer and Heun’s Range Minimum Query (RMQ) solution
[40], which was the best proposal to date in terms of time and space. It uses 2n+o(n) bits and
answers RMQs in constant time. We simplified their formula using a Balanced Parenthesis
tree representation [83] instead of a DFUDS [16] one. Our implementation uses 2.2n bits
and takes 1–4 microseconds per query, for any input array of length n. This is noticeably
smaller and faster than the current implementations in libraries SDSL and Succinct, which
follow Fischer and Heun’s design.

We also implemented and tested the Compressed Suffix Arrays (CSAs) of Grossi and
Vitter [54, 55] and Rao [100], since all classical compact solutions use a CSA. However, we
did not obtain good results in terms of space usage and query time with these indexes. These
negative outcomes are also of interest.

Further Research

Our thesis has opened important research avenues. The first is the use of Ziv-Lempel based
indexing to solve document retrieval problems. We have shown that this path is promising
and that competitive space/time tradeoffs can be obtained.

The second is the research in indexes that provide incomplete or approximate solutions to
these problems. While this is a very natural direction on DR in natural language, because
in most cases inaccurate answers are acceptable, it had not been explored before on general
strings collections. We have shown that much better space/time tradeoffs can be obtained,
while retaining good quality in the results.

The third is the search on DR on highly repetitive text collections, which are becoming a
central actor in the sharp growth of the available digital data. There are almost no previous
solutions of this kind.

We expect that these three future research lines will flourish in the next years, and also to
participate in them. In particular, we plan to implement our DL proposal for highly repetitive
text collections. We also plan to further improve our RMQ solution and to do further research
in the redundancy of the document array, which we believe admits compression beyond the
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current results.
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