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Resumen

Con la popularidad de la Web y, mas recientemente, el amplio uso de las redes sociales, la
necesidad de procesar y encontrar información en grafos muy grandes impone varios desafíos:
Cómo procesar grafos muy grandes e�cientemente, dado que probablemente son muy grandes
para la memoria disponible, o incluso si la memoria es su�ciente, realizar un paso sobre el
grafo es todavía caro computacionalmente? Cómo almacenar esos grafos e�cientemente, para
ser archivados, o para ejecutar algoritmos de grafos? Cómo descubrir información relevante
tal como componentes densos, comunidades, u otras estructuras?

Se han propuesto tres enfoques para manejar grafos grandes. El primero es usar formatos
de grafos comprimidos que permiten consultas de navegación básicas directamentee sobre la
estructura comprimida, sin la necesidad de descompresión. Esto permite simular cualquier
algoritmo de grafo en memoria principal usando mucho menos espacio que la representación
plana. Una segunda línea de investigación se focaliza en usar modelos de stream o semi-
stream de datos de manera de procesar secuencialmente, idealmente en un paso sobre el
disco, usando una cantidad limitada de memoria principal. La tercera línea es el uso de
sistemas distribuidos y paralelos donde la memoria es agregada sobre múltiples unidades de
procesamiento para procesar el grafo en paralelo.

En esta tesis presentamos varios enfoques para manejar grafos grandes (con arcos sin
etiquetas) considerando los tres enfoques. Primero, buscamos por patrones que aparecen
en grafos de la Web y redes sociales los que podemos representar en forma compacta, en
particular mostramos como generalizar algoritmos para encontrar cliques o bicliques para
encontrar sub-estructuras densas que comprimen ambas. Segundo, basado en estos subgrafos
densos, proponemos esquemas comprimidos que soportan consultas de vecinos directos y
reversos, así como otras consultas mas complejas sobre subgrafos densos. Algunas de las
contribuciones combinan técnicas del estado del arte mientras otras incluyen representaciones
comprimidas novedosas basadas en estructuras de datos compactas. Encontrar subgrafos
densos es una tarea que consume tiempo y espacio, así que proporcionamos algoritmos de
streaming and algoritmos de memoria externa para descubrir subgrafos densos, asi como
también algoritmos distribuidos para construir las estructuras básicas que usamos para las
representaciones comprimidas.



Abstract

With the popularity of the Web and, more recently, the widespread use of social networks,
the need to process and �nd information in very large graphs imposes several challenges:
How to process such large graphs e�ciently, since they probably do not �t in main memory,
or even if they do, performing one pass over the graph is still expensive? How to store those
graphs e�ciently, be it for archival, or to run graph algorithms? How to discover relevant
information such as dense components, communities, or other substructures?

Three main approaches have been proposed to manage large graphs. The �rst is to use
graph compression formats that support basic navigation queries directly over the compressed
structure, without the need of decompression. This allows simulating any graph algorithm
in main memory using much less space than a plain representation. A second line of research
focuses on using data streaming or semi-streaming models, so as to process graphs sequen-
tially, ideally in one pass over the disk, using limited main memory. The third line is the
use of parallel and distributed systems, where memory is aggregated over multiple processing
units that process the graph in parallel.

In this thesis we present several approaches for managing large graphs (with unlabeled
edges) considering the three approaches. First, we look for patterns that arise in Web and
social graphs and enable us to represent them compactly, in particular showing how to gener-
alize algorithms that �nd cliques or bicliques, so as to �nd dense substructures that comprise
both. Second, based on those dense subgraphs, we propose compression schemes that support
out/in-neighbor queries, as well as other more complex queries over dense subgraphs. Some of
the contributions combine state-of-the-art techniques while others include novel compressed
representations based on compact data structures. Finding the dense subgraphs is a time
and space consuming task, so we provide streaming and external memory algorithms for dis-
covering dense subgraphs, as well as distributed algorithms for building the basic structures
we use in our compressed representations.
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Introduction

Massive graphs appear in a wide range of domains including the Web, social networks, RDF
graphs, protein networks and many more. For instance, on a recent estimation the Web graph
has more than 7.8 billion pages with more than 200 billion edges1, and the social network
Facebook has more than 950 million active users worldwide.2 Other large graphs include
LinkData with about 31 billion of RDF triples and 504 million RDF links3. Managing and
mining large graphs imposes several challenges triggered by di�erent aspects, such as the
data volume itself, data complexity, how fast the data is being generated, and application
needs [109]. In our research, we focus speci�cally on large Web graphs and social networks,
where graphs are modeled with unlabeled edges.

Web graphs represent the link structure of the Web. They are usually modeled as directed
graphs where nodes represent pages and edges represent links among pages. On the other
hand, social networks represent relationships among social entities. These networks are
modeled by undirected or directed graphs depending on the relation they model. For instance,
the friendship relation in Facebook is symmetric and then it is modeled by an undirected
graph, whereas the �following� relation on Twitter and LiveJournal is not symmetric and
therefore it is modeled by a directed graph.

The link structure of Web graphs is often used by ranking algorithms such as PageRank
[21] and HITS [77], as well as for spam detection [13, 104], for detecting communities [80, 56],
and for understanding the structure and evolution of the network [54, 56]. A social network
structure is often used for mining and analysis purposes, such as identifying interest groups or
communities, detecting important actors [105], and understanding information propagation
[89, 30]. Those algorithms require a graph representation that supports at least forward
navigation (i.e., to the out-neighbors of a node, or those pointed from it), and many require
backward navigation as well (i.e., to the in-neighbors of a node, or those that point to it).

In the last decade, various algorithms have been proposed to address problems associated
with large graphs. However, just from the size point of view, it is unlikely that we can store
graphs with a billion nodes and even more edges, in the memory of a single commodity
machine. For this reason di�erent approaches have been used to manage large graphs, such
as using compression, data streaming and parallel/distributed systems.

1http://www.worldwidewebsize.com, on August 6, 2012.
2http://newsroom.fb.com/content/default.aspx?NewsAreaId=22 considering June 2012.
3http://www.w3.org/
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Compressed data structures aim to reduce the amount of memory used by representing
graphs in compressed form while being able to answer the queries of interest without decom-
pression. Even though these compressed structures are usually slower than uncompressed
representations, they are still much faster than incurring I/O costs: They can be orders of
magnitude faster when they can �t completely in main memory graphs that would otherwise
require disk storage. Most compression methods are based on exploiting patterns that pro-
vide compression opportunities, such as locality and similarity of adjacency lists, sparseness
and clustering of the adjacency matrix, node ordering algorithms, and representing dense
patterns more compactly.

Streaming and semi-streaming techniques can be applied with the goal of processing the
graph sequentially, ideally in one pass, although a few passes are allowed. The idea is
to use main memory e�ciently, avoiding random access to disk [52]. External memory
algorithms de�ne memory layouts that are suitable to run graph algorithms, where the goal
is to exploit locality in order to reduce I/O costs, reducing random accesses to disk [115].
Another approach is the use of parallel and distributed systems, where distributed memory
is aggregated to process the graph [111].

A brief outline of the thesis is presented here. In addition, we provide a list of the
accepted and published papers that derive from it. It is important to note that our sequential
implementation for building the graph factoring edges is not re�ned enough to support the
largest Web graph available at the Webgraph project web site (http://law.di.unimi.it/
datasets.php) on a server with 96GB of main memory. Such graph has almost 1 billion
nodes with 43 billion edges. However, we were able to use the second largest Web graph
snapshot (with 50 million nodes and 2 billion edges). Based on the performance trend we
observe on the graphs we tried, it is reasonable to expect that we would probably achieve
similar results with larger graphs using a more re�ned version of the application.

Basic Concepts

This chapter reviews basic concepts including data compression, encodings, graph compres-
sion, and compact data structures for arbitrary sequences and bitmaps. The chapter de-
scribes state-of-the-art compression patterns and techniques used for Web and social graph
compression with navigation capabilities. In particular, it describes Re-Pair and subsequent
improvements [42, 39], VNM [29], the Webgraph framework and improvements [19, 18, 16],
using BFS node ordering [9], k2tree [22, 81], and MPk and improvements [85, 39].

Discovering Graph Patterns

In Chapter 2, our goal is to study di�erent patterns found on graphs that might help to
represent them in a compact form. Some previous patterns that have been studied include
grammar-based such as Re-Pair [42]. Discovering dense subgraphs in large graphs is a chal-
lenging task that has many applications, including community mining, spam detection, social
analysis, recommendation systems and bioinformatics. In this context, we �nd that repre-
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senting dense structures such as complete bipartite cliques (bicliques) and more general dense
subgraphs allows us to compress them.

We improve discovery algorithms for detecting dense substructures that can be used for
reducing edges, and algorithms for extracting such structures. We compare our new algo-
rithm with clustering algorithms such as MCL (Markov Clustering Algorithm) [114]. We use
synthetic graph generators and real graphs for evaluation in terms of quality and processing
times. We show that our algorithm is similar to MCL in terms of the solution quality, but
much faster.

Compression

This part of the thesis is divided in two chapters. Chapters 3 and 4 describe how to exploit
the di�erent patterns we discover to compress the graphs and at the same time, provide
di�erent types of navigation over compressed representations. In particular, we exploit dense
structures, such as complete bipartite cliques (bicliques), and less restrictive dense subgraph
patterns. We achieve compression using compact data structures as well as other compression
techniques.

We �rst describe a compression scheme that considers, as dense subgraphs, subgraphs that
are complete bipartite graphs (biclique) where each biclique is formed by two nonoverlapping
sets S and C. Using this dense subgraph de�nition we describe a compression scheme that
transforms the original graph into a graph where the edges between S and C are factored by
adding a virtual node between them. The result is a graph that has between four and ten
times fewer edges than the original graph. We apply di�erent compression techniques over
this graph and achieve good compression and access times for Web graphs. We also present
a compact data structure, based on the collection of bicliques extracted, using two sequences
and two bitmaps. We achieve competitive space results, but a much slower in/out-neighbor
support. We also evaluate other queries of interest over such representations.

Next, we show that discovering dense bipartite graph patterns, with overlapping sets S
and C, we can improve compression with in/out-neighbor query support. We show that if
we use these dense subgraphs with virtual nodes, apply BFS traversal on the node ordering
and then k2tree, we obtain the best state-of-the-art compression for Web graphs. However,
in/out-queries are twice as slow. We also describe a compressed structure based on a compact
data structure that represents the edges between S and C implicitly, using only one symbol
sequence and one bitmap. We achieve competitive compression and in/out-neighbor access
for Web graphs. In the case of social graphs it is possible to improve compression and in/out-
neighbor access if used in combination with the MPk implementation given by Claude and
Ladra [39]. In addition, this structure enables mining queries based on the discovered dense
subgraphs.
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Streaming and External Memory

Chapter 5 describes algorithms for discovering our dense subgraphs using semi-streaming and
external algorithms with the goal of reducing the main memory and achieving good quality
results and processing times. We propose an external memory algorithm based on R-way
merge sort and a semi-streaming algorithm based on Hierarchical Heavy Hitters [112]. We
show that using a two level R-way merge sort enables us to reduce by a half main memory
requeriments, yet doubling processing time, with respect to the original algorithm and keeping
the same quality results. We also show that applying HHH does not allow reducing much
main memory, but helps identify larger dense subgraphs.

Distributed and Parallel Systems

We also aim to provide algorithms that exploit parallelism and are able to use distributed
memory to deal with large amounts of data.

In Chapter 6, we design and implement distributed and parallel algorithms for our dense
subgraphs discovery algorithm. We �rst describe a MapReduce algorithm that extracts dense
subgraphs and apply them on Web and social graphs. Second, we provide parallel algorithms
based on BSP for building compressed structures using dense subgraphs with virtual nodes.
We also provide a BSP algorithm for extracting dense subgraphs using dynamic load bal-
ancing in order to build the compressed structure based on implicit representation. Using
dynamic load balancing is crucial for achieving good speedups and resource e�ciency. We
show that data locality of our graphs is an important factor for providing scalable algorithms.

Publications derived from the Thesis

The main contributions of the thesis have appeared in the following papers.

1. Compression of Web and Social Graphs supporting Neighbor and Community Queries.
Cecilia Hernández and Gonzalo Navarro. The 5th SNA-KDD Workshop, August 21,
2011, San Diego, CA, USA. Copyright 2011 ACM 978-1-4503-0225-8. Chapter 3 Section
3.2 and 4 Section 4.2 describe the main results of this paper.

2. Compressed Representation of Web and Social Networks via Dense Subgraphs. Cecilia
Hernández and Gonzalo Navarro. The 19th International Symposium String Processing
and Information Retrieval, SPIRE 2012. Cartagena de Indias, Colombia, October 2012.
Chapter 3 Section 3.3.1 and Chapter 4 Section 4.4 describe the main results of this
paper.

3. Compressed Representations for Web and Social graphs. Cecilia Hernández and Gon-
zalo Navarro. Knowledge and Information Systems. Vol. 40, number 2, pages 279-313,
2014. Chapters 2, 3, and 4 describe the results of this paper.

4. Discovering Dense Subgraphs in Parallel for Compressing Web and Social networks.
Cecilia Hernández and Mauricio Marín. The 20th International Symposium String
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Processing and Information Retrieval, SPIRE 2013. Jerusalem, Israel, October 2013.
Chapter 6 describes the results of this paper.

5



Chapter 1

Basic Concepts

This chapter describes the basic concepts needed to read this thesis. We include basic data
compression topics such as encodings, graph compression methods and compact data struc-
tures.

1.1 Data Compression

Data compression is usually referred as to coding with the goal of using less space to represent
the same data. Compressing data is relevant for data storage and data transmission since
using less space improves resource utilization. Using less resources, such as storage, has the
important consequence of improving the overall processing time, since it may be possible to
store data at a higher level (and then faster) in the memory hierarchy.

Compression methods are usually evaluated in terms of Information theory concepts, such
the entropy, which quanti�es the amount of information in a given sequence. The information
theory of Shannon [107] measures the amount of information in terms of bits, and more
precisely provides the means of measuring the compressibility of a given object. For instance,
if a given text sequence has redundancy, then it is possible to compress it by transforming
it to a shorter sequence without losing information. Thus, the same amount of information
can be represented with fewer bits. In other words, the compressed representation has more
information per bit, so it is more unpredictable because it has less redundancy, and therefore
it has higher entropy than the original text.

Shannon's de�nition of entropy, is H(X) =
∑

x∈X P (x) log 1
P (x)

, where X is a discrete
random variable with possible values x1, x2, ..., xn and P (x) is its probability. When taken
from a �nite input sequence the entropy can be measured in terms of frequencies instead of
probabilities. Furthermore, it has been shown that it is possible to �nd redundancy depending
on the context where symbols appear in the input sequence. We refer as context of an input
symbol x the �xed-length sequence of input symbols that precedes x. When the context
has a length of zero we refer to zero-order empirical entropy which is de�ned as H0(S) =∑

c∈
∑ nc

n
log n

nc
, where nc is the number of occurrences of c in sequence S with an alphabet
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Σ. However, if we consider the context being of a length greater than zero, such as k, for
some sequences it is possible to obtain greater compression. In this case, we speak of k-order
entropy and it is de�ned as Hk(S) =

∑
c∈

∑k
Sc

n
H0(S

c), where Sc is the sequence of symbols
preceded by the context c in S. It can be proved that Hk(S) ≤ Hk−1(S) ≤ ... ≤ H0(S).

1.2 Encodings

Data Compression uses di�erent kinds of redundancy in the input sequence to encode it into
a sequence that uses fewer bits. Some methods focus on �nding regularities that are repeated
in the input sequence. Then, new symbols are used to represent repeated patterns in the
sequence. These methods are called �dictionary-based� such as Re-Pair [82].

Many compression techniques include variable-length encodings such as Hu�man [71],
which generates pre�x-free codes, that is, the bit string representing a symbol is never a
pre�x of the string representing another symbol. The way that Hu�man encoding works is
that is based on the frequency of symbols in the input sequence, encoding those that occur
more frequently with fewer bits. The compressed representation using these encodings needs
both the sequence represented by the new encoding plus a vocabulary of the symbols to
retrieve the original sequence. One disadvantage of variable-length encoding is that they do
not allow direct access to a speci�c code.

There are other variable-length encodings that are more suitable for applications encoding
numbers where the smaller values are more frequent. In such cases it is better to encode
shorter symbols with shorter codes. Some of these encoding methods are Unary codes,
Gamma codes, Delta codes, Rice codes, and Golomb codes. We brie�y describe these
codes, not because we use them directly, but because they are part of some of the o�-the-shelf
compression schemes we use.

• Unary Codes: The unary encoding represents an integer x by 1x−10, where the 0
allows recognizing the end of a code. For instance, if x = 4, its unary encoding is 1110.
In general, this encoding is used within other encodings.

• Gamma (γ) Codes: The γ encoding represents an integer x by representing the
binary length of x in unary and concatenating its binary representation without the
most signi�cant bit. For instance, if x = 4, its γ code is 11000. The representation of
an integer x uses 2 log x+ 1 bits.

• Delta (δ) Codes: The δ encoding is an extension of the γ encoding for larger integers.
It is basically the same as the γ encoding, but they represent the binary length of an
integer x using γ-codes instead of unary codes.

• Rice Codes: Rice codes are parameterized codes that receive two values, the integer
x and a parameter b. Then x is represented as q = bx−1

2b
c in unary concatenated with

r = x− q2b − 1 in binary using b bits, for a total of bx−1
2b

+ bc bits.
• Golomb Codes: Golomb codes are basically the same as Rice codes, except that Rice
codes de�ne the tunable parameter as a power of 2 (i.e., 2b), while Golomb codes are
more general, avoiding the limitation for the tunable parameter to be a power of 2.
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The consequence is that Rice codes produce simpler codes, but possibly suboptimal.

1.3 Graph Compression

This section describes related work on graph compression. They are either part of our com-
pressed representation proposal or we use them to compare our compressed representations.
In particular, we focus on massive graphs such as Web and social graphs.

Let us consider a graph G = (V,E), where V is the set of vertices and E is the set of
edges. For directed graphs an out-neighbor (or succesor) of a vertex u ∈ V is any vertex
v ∈ V , such that there is an edge from vertex u to vertex v. Similarly, an in-neighbor (or
predecessor) of u ∈ V is any vertex v ∈ V , such there is an edge from vertex v to u. In
the context of Web graphs, vertices represent web pages and directed edges represent the
hyperlinks. Social networks, on the other hand, can be represented by directed or undirected
graphs depending on what relationship is modeled in the graph. For instance, when modeling
the friendship relationship of Facebook, vertices are users and edges are represented by the
friendship relation. In this case, the graph is undirected. On the other hand, the Twitter
graph might be modeled by a directed graph where vertices are users and the relation of one
user following another is an edge.

Compressing Web graphs has been an active research area for some time. Some of the Web
graph properties most exploited for compression include Power law distribution, Similarity of
adjacency lists, and Locality. All works measure Web compression using the bpe metric, which
refers to the number of bits required per edge. The bpe corresponds to the total number of
bits used to represent the graph divided by the total number of edges.

• Heavy-tail distribution. In/out-neighbors distributions are heavy tail [87], as opposed
to some original works claiming power-law distributions [26]. This still can be exploited
to obtain reduced-space representations.

• Locality. This property refers to the idea that most of the hyperlinks from a site point
within the same site, including the directory hierarchy in the site. Then, it is possible
to use node ordering, such URL, that makes most out-neighbors be close to each other.
This helps to use simple encodings, like gap encoding, for reducing the amount of bits
needed to represent adjacency lists.

• Similarity of adjacency lists. This property is related to the fact that many pages share
a high fraction of hyperlinks with others. Then, it is possible to compress them by
referring to a similar list and encoding the edits.

The �rst work that exploits locality and similarity is the Connectivity server [14]. It is
important to note that the focus on the Connectivity server was not compression, but in fact
it was to provide linkage information for all indexed pages in a search engine.

Suel and Yuan [110] built a tool for Web graph compression distinguishing global links
(pages on di�erent hosts) from local ones (pages on the same host) and combining di�erent
coding techniques, such as Hu�man and Golomb codes. Adler et al. [3] achieved compression
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by using similarity of adjacency lists. Their work is based on a Web graph model proposed
by Kumar [79], based on the following idea �A new page adds links by picking an existing
page, and copying some links from that page to itself �. Adler et al. exploit the idea by coding
an adjacency list by referring to an already coded adjacency list of another node that points
to many of the same pages. They used this property with Hu�man coding to achieve com-
pression of global links. The LINK database by Randall et al. [100] proposed lexicographic
ordering of URLs as a way to exploit locality and similarity of (nearby) adjacency lists for
compressing Web graphs. They achieve a bpe around 6.

Raghavan and García Molina [98] achieve about 5 bpe and de�ne a compact structure
based on dense supernodes and superedges. Such supernodes consist of a set of connected
nodes in the Web graph. They also introduce the idea of reference encoding, which is also
used later by Boldi and Vigna [19], where they represent an adjacency list based on the
similarity found with a prototype adjacency list.

This section describes in a more detailed way some Web and social graph compression
schemes because, either we use them as part of our compressed representation, or we use it
to compare our results. We only consider those which are the state-of-the-art in compression.

1.3.1 The Webgraph Framework (Boldi and Vigna)

Boldi and Vigna [19] proposed the WebGraph framework. This approach exploits power-law
distribution of gaps between adjacent successors, similarity, and locality of adjacency lists
using URL node ordering. Then, using such ordering, many edges will probably have small
di�erences, |x−y|, where (x, y) is an edge. This feature helps to de�ne an encoding based on
gaps. Besides, URLs that are close in lexicographic order are likely to have similar adjacency
lists (as they probably belong to the same sites). Therefore, they encode adjacency lists
using references to previous adjacency lists, based on their similarity. Let r be an integer
(reference), if r > 0, the list x is described as a di�erence from the list of x − r. If r = 0
the list is not compressed by using a reference. A bit string is used to tell which successors
must or must not be copied. A �1� in the bit string means that the node is present en the
reference list. These bit strings are called copy lists. Copy lists are encoded by copy blocks,
where the �rst block is �0� if the copy list starts with a 0. The block is represented by the
length of �1�s or �0�s in the copy list decremented by 1 except the �rst block, and the last
block is omitted. Another list is used for representing the remaining nodes in the list. The
value of r is limited by a window size w. A large w provides better compression, but higher
memory usage and more running time for compressing/decompressing.

Finally, Boldi and Vigna also exploit the fact that remaining nodes are often consecutive,
so instead of directly using gap encoding they isolate subsequences and represent them with
intervals (considering an interval threshold, which is at least a minimum number of integers in
the interval, Lmin). Each interval is represented by the left extreme and the length (number
of integers it contains). Left extremes are compressed using di�erences between each left
extreme and previous right extreme minus 2. The rest of the remaining nodes are compressed
using di�erences. Table 1.1 shows an example of using copy lists, Table 1.2 using copy blocks
and Table 1.3 includes an interval reference for remaining nodes.
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Node Outdegree Ref. (r) Copy list Extra nodes
... ... ... ... ...
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
... ... ... ... ...

Table 1.1: Representation of plain copy lists.

Node Outdegree Ref. (r) # blocks Copy block Extra nodes
... ... ... ... ... ...
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 7 0,0,2,1,1,0,0 22, 316, 317, 3041
17 0
18 5 3 1 4 50
... ... ... ... ... ...

Table 1.2: Representation of copy blocks and extra nodes.

The main parameters of this compression technique are w, Lmin, and m, where w is the
window size, Lmin is the minimum interval length for representing intervals, and m is the
maximum reference count. The window size means that the list li can only be expressed as a
near-copy of li−w to li−1, whereas the reference count of list li is r(li) = 0 if it is not expressed
as a near-copy of another list, or r(li) = r(lj) + 1 if li is encoded as a near-copy of list lj.
Increasing w and m improves compression ratio, but also increases access time.

In a later work, Boldi et al. [18] explored existing and novel node ordering methods, such
as URL, lexicographic, Gray ordering, etc. Boldi et al. [16], more recently, designed node
orderings based on clustering methods, and achieved improvements on compressing Web
graphs and social networks with a clustering algorithm called Layered Label Propagation
(LLP). They apply the algorithm Absolute Pott Model (APM) [102], which is a variant of
a label propagation algorithm, to avoid having large clusters that tend to capture a large
number of nodes. They proposed the LLP algorithm which also considers how to label nodes
belonging to the same and di�erent clusters.

1.3.2 BFS Ordering (Apostolico and Drovandi)

A di�erent and very competitive compression technique was proposed by Apostolico and
Drovandi [9]. Their approach uses Breath-First Traversal (BFS) node ordering to improve
compression. Although this is the default node ordering used, it is possible to apply the
compression scheme using the node ordering given by the input graph (option -s).

Node Outdegree Ref. (r) # blocks Copy list # intervals Left extremes Length Residuals
... ... ... ... ... ... ... ... ...
15 11 0 2 0,2 3,0 5,189,111,718
16 10 1 7 0,0,2,1,1,0,0 1 600 9 12, 3018
17 0
18 5 3 1 4 0 50
... ... ... ... ... ... ... ... ...

Table 1.3: Representation of copy blocks, intervals and residuals.
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Node Outdegree Adjacency lists
... ... ...
i 8 13, 15, 16, 17, 20, 21, 23, 24
i + 1 9 13, 15, 16, 17, 19, 20, 25, 31, 32
i + 2 0
i + 3 2 15, 16
... ... ...

Table 1.4: Adjacency lists. It is assumed that vi is the �rst node of the chunk.

Node Outdegree Adjacency lists
... ... ...
i 8 φ13 φ1 φ0 φ0 φ2 φ0 φ1 φ0
i + 1 9 β0 β0 β0 χ0 α0 β2 φ5 φ0
i + 2 0
i + 3 2 β2 α0
... ... ...

Table 1.5: Encoding of adjacency list.

They propose a scheme that uses consecutive integer numbers for indexing each node in
the traversal tree and build a traversal list containing the out-degree of each of the nodes of
the tree. Then, they compress the graph using the traversal list plus all the edges not present
in the BFS tree using the indices de�ned by the BFS traversal.

They encode the adjacency lists of nodes in increasing order by chunks of length l. Pa-
rameter l (called the level) provides a trade-o� between compression performance and time
to retrieve the adjacency list of a node. Each encoding consists of the integer gap between
adjacent elements and a type indicator (φ, β, α, χ) based on the following cases:

1. Aji−1 ≤ Aji < Aji : the code is the string φ · (A
j
i − A

j−1
i − 1)

2. Aj−1i < Aji ≤ Aji : the code is the string β · (A
j
i − A

j
i−1)

3. Aj−1i < Aji < Aji−1: distinguishing two subcases:

(a) if Aji − A
j−1
i − 1 ≤ Aji−1 − A

j
i − 1 then the code is the string α · (Aji − A

j−1
i − 1)

(b) otherwise the code is the string χ · (Aji−1 − A
j
i − 1)

The types α and φ encode the gap of the consecutive elements in the adjacency list (Aj−1i )
whereas the types β and χ encode the gaps given with an adjacency element in the same
position of the adjacency list of the previous node (Aji−1). Table 1.4 shows an example with
adjacency lists and Table 1.5 shows its encoding using these types of special characters.

Using BFS node ordering enables to encode two nodes connected by a link with close
index values, which helps improve compression ratio. In fact, Chierichetti et al. [33] showed
that �nding an optimal node index assignment that minimizes

∑
(vi,vj)∈E log |i − j| is NP-

hard. In addition, since Web graphs usually share a high fraction of neighbors, the adjacency
lists consist of consecutive integer lists. These features allows them to use di�erent types of
encodings to exploit distinct types of redundancies (shown in Table 1.6). The redundancies
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Outdegree Adjacency lists
... ...
9 β7 φ1 φ1 φ1 φ0 φ1 φ1 φ1 φ1
9 β0 β1 β0 β0 β0 β0 β0 β0 β2
10 β0 β1 β0 β0 β0 β0 β0 β0 β1 φ903
10 β0 β1 β0 β0 β0 β0 β0 β0 β223 φ900
10 β0 β1 β0 β0 β0 β0 β0 β0 β1 α0
10 β0 β1 β0 β0 β0 β0 β0 β0 β1 β0
10 β0 β1 β0 β0 β0 β0 β0 β0 β1 β0
10 β0 β1 β0 β0 β0 β0 β0 β0 β1 β0
... ...

Table 1.6: Exploiting redundancies in adjacency lists.

include intervals of constant node degrees, identical elements in a sequence of at least Lmin
(as the block of φ 1's in the Table 1.6), and identical rows. They exploit these redundancies
using run-length encoding for representing identical adjacency lists, or adjacency lists with
a common sequence of identical elements; and gap-encoding for intervals of constant node
degrees. They add additional encodings for identifying these types of redundancies, adding
two special characters, Σ, and ΣF , where ΣF identi�es the type of redundancy. Depending
on the redundancy the encoding is expressed as �type ΣΣF gap l�, or �type ΣΣF gap l w h�,
where type is any of the special characters α, β, χ, or φ, ΣF is a integer value to identify the
redundancy, gap is the integer gap, l is the number of identical elements on the same line, w
and h are the width and height of the identical columns and rows.

Finally, they use Hu�man codes to encode α,β,χ, and ΣF and propose a new encoding,
π-code, for representing gaps, Σ (an integer that does not appear in a gap), and other integers.

1.3.3 Re-Pair (Claude and Navarro)

Another approach, proposed by Claude and Navarro [42], provides Web compression by
applying Re-Pair [82], a grammar-based compression scheme. The algorithm is based on
�nding the most frequent pairs of symbols in a sequence. Then, they replace such pairs by a
new symbol which is added to a dictionary with the pair that represents, as a new rule. The
algorithm iterates until no more replacements are convenient. Since exact Re-Pair requires too
much memory over large sequences, Claude and Navarro provide an approximate algorithm.
The approximate algorithm consists of applying Re-Pair using limited memory in addition to
the sequence T (G), where T (G) is the concatenation of all adjacency lists of a Web graph. In
addition, since the algorithm uses sequential access patterns, it is well adapted to secondary
memory. Each adjacency list of vertex vi in T (G) is de�ned as T (vi) = −vivi1vi2 ...vir , where
vi is the vertex id and vi1vi2 ...vir are the out-neighbors of vertex vi. The id of the vertex is
never considered in any possible candidate pair for replacement, and it is only included in
T (G) as a mark for separating adjacency lists.

The compression achieved by Claude and Navarro [42] provides relevant space/time trade-
o�s compared with WebGraph [19]. They provide faster navigation using the same space, but
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Figure 1.1: Biclique example

WebGraph can use less space if slower navigation is allowed. However, later improvements
of WebGraph, which are based on using other node orderings, such as Gray-ordering [18],
and clustering ordering based in LLP [16] improve compression without a�ecting navigation
speeds, then overcoming Re-Pair [42].

Another representation based on Re-Pair is able to solve out/in-neighbors [41]. This
scheme was obtained by combining the Re-Pair-based representation [42] with compact se-
quence representations [40] of the resulting adjacency lists.

1.3.4 Virtual Node Mining (Buehrer and Chellapilla)

Buehrer and Chellapilla [29] exploited the existence of many groups consisting of sets of pages
that share the same out-neighbors, which de�nes complete bipartite graphs (bicliques). A
complete bipartite graph is de�ned as G(S ∪C,E), such that for any two vertices, s ∈ S and
c ∈ C, (s, c) is an edge in G. In other words, a biclique is a graph consisting of two sets (S
and C), where all vertices in set S are connected to all vertices in set C. Their approach is
based on reducing the number of edges by de�ning virtual nodes that are arti�cially added
in the graph to connect the two sets in a biclique. The goal of the approach is to reduce the
number of edges represented in the whole graph, since each of the bicliques can reduce the
number of edges from |S ×C| to |S +C|. In order to discover bicliques they use a clustering
and a frequent itemset mining algorithms. They apply this process iteratively on the graph
until the edge reduction gain is no longer signi�cant. Then, they apply delta codes on the
edge reduced graph. This compression scheme allowed Buehrer and Chellapilla to achieve
sizes between 1.5 and 3 bpe on Web graphs. However, they did not report navigation times.
An example of a biclique and its representation using a virtual node is seen in Figure 1.1.

This compression scheme is relevant not only for compressing Web graphs, but also in the
context of community discovery. Moreover, the algorithm proposed does not depend on the
node ordering used, it is scalable and allows for incremental updates. Anh and Mo�at [8]
also exploit similarity and locality of adjacency lists, but they divide the lists into groups
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of h consecutive lists. A model for a group is built as a union of the group lists. They
reduced lists by replacing consecutive sequences in all h lists by a new symbol. The process
can be made recursive by applying it to the n/h representative lists. They �nally applied
codes such as ς-codes [20] over all lists. This approach is somehow similar to that of Buehrer
and Chellapilla [29], but Anh and Mo�at [8] do not specify how they actually detect similar
consecutive lists.

1.3.5 Grabowski and Bieniecki

Grabowski and Bieniecki [66] recently provide a very compact and fast technique for Web
graphs. Their algorithms are based on blocks consisting of multiple adjacency lists in a
similar way to the scheme of Anh and Mo�at [8], reducing edge redundancy. Their approach
consists of having blocks of h adjacency lists. Each block is converted into two streams: the
�rst stream stores a long list of all integers on the h input lists, without duplicates, and
the second stream stores �ags that allow reconstructing the original lists. The long list is
compacted using di�erential encoding, zero-terminated and encoded using a byte code. They
use a byte code with 1, 2 and b bytes per codeword. The byte coder consists of using 2 bits
in the �rst codeword byte, which tell the length of the current codeword.

The �ag stream describes to which input lists a given integer on the output list belongs;
where the number of bits per item on the output list is h, which is de�ned to be a multiple of
8. The length of the �ag stream is de�ned by the length of the long list. The �ag stream can
be left raw (with no encoding, which they called LM-bitmap) or it can be encoded using gaps
between the successive 1s in the �ag sequence, which are written on individual bytes (LM-
di�). Finally, the two streams are concatenated and compressed with the De�ate algorithm.
The De�ate algorithm consists of a series of blocks, each preceded by 3-bit header. The �rst
bit indicates if it is the last block in the stream (1) or not (0). The other 2 bits identify
a literal section (00), a static Hu�man compressed block, using a pre-agreed Hu�man tree
(01), a compressed block with the Hu�man table supplied (10) and not used (11).

The compression parameter of the approach is the block size, h. Using a larger h exploits
a wider range of similar lists, but the �ag stream gets sparser and the De�ate algorithm
does not behave well on that kind of data. In addition, decoding larger blocks takes longer.
Overall they achieve bpes between 1 and 2.

1.3.6 K2-tree (Brisaboa, Ladra and Navarro)

Most of the Web graph compression schemes (as the ones described above) support out-
neighbor queries, that is, the list of nodes pointed from a given node, just as an adjacency
list. Being able to solve in-neighbor queries (i.e., the list of nodes pointing to a given node) is
interesting for many applications from random sampling of graphs to various types of mining
and structure discovery activities, as mentioned in the Introduction. It is also interesting in
order to represent undirected graphs without having to store each edge twice.
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Figure 1.2: K2tree representation

Brisaboa et al. [22] exploited the sparseness and clustering of the adjacency matrix to
reduce space while providing out/in-neighbor navigation in a natural symmetric form, using
a structure called k2tree. They have recently improved their results by applying BFS node
ordering on the graph before building the k2tree [23] This achieves the best known space/time
tradeo�s supporting out/in-neighbor access for Web graphs. The k2tree scheme represents the
adjacency matrix by a k2-ary tree of height h = dlogk ne (where n is the number of vertices).
It divides the adjacency matrix into k2 submatrices of size n2/k2. Completely empty subzones
are represented just with a 0-bit, whereas nonempty subzones are marked with a 1-bit and
recursively subdivided. The leaf nodes contain the actual bits of the adjacency matrix, in
compressed form. Supporting out- and in-neighbor queries in k2tree is symmetric, as it
involves �nding the points in a row or column of the matrix.

Figure 1.2 shows an example of k2tree with k = 2. As observed, each node contains a
bit 1 in the internal nodes and a 0 in a leaf node, with the exception on the last level of
the tree, where all nodes are leaves that represent a 0 or a 1 in the adjacency matrix of the
graph. Level 0 of the tree represents the root, who has k2 children at level 1. As a child each
node in level 1 has a 1 or a 0. All internal nodes with a 1 have k2 children, and nodes with
a 0 represent leaves and then have no children. The tree keeps growing up to the last level,
where the tree represents individual cells in the adjacency matrix.

Once the k2tree structure is determined, the compression is achieved by representing the
tree structure compactly, by using two bit arrays: A bitmap T for the tree structure and a
bitmap L for representing leaves at the last level, which represent actual cells in the adjacency
matrix. The authors use an additional bitmap that helps them compute queries faster. In
the end, the �nal representation of a Web graph based on its adjacency matrix consists of
the concatenation of the two bit arrays, T : L, and the extra structure to support rank
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operations over T e�ciently.

K2trees provide Web graph compression between 1 and 3 bpe and support in/out-neighbor
queries. Navigation times are slower than those provided by compression techniques that
support only out-neighbor navigation like the lastest WebGraph [16] and the proposal by
Apostolico and Drovandi [9].

Recently, Claude and Ladra [39] improved the compression performance on Web graphs
by combining the k2tree with the Re-Pair-based representation [42]. They called the ap-
proach k2-Partitioned. The structure exploits the similarity of adjacency lists by splitting
the graph into subgraphs formed by groups of intra-domains, which happen to occur around
the adjacency matrix diagonal. Extra-domain links are captured by all the edges where some
subgraphs point to others. The scheme provides good compression because k2tree compresses
the subgraphs (which are dense) very well and the extra-domain part of the graph is much
sparser. The access speed is also high since the height of the trees are smaller than when
applying k2tree on the complete graph.

1.4 Compressing Social Networks

Some recent works on compressing social networks [33, 85] have unveiled compression op-
portunities as well, although to a lesser degree than on Web graphs. The approach by
Chierichetti et al. [33] is based on the Webgraph framework [19], using shingling ordering
(based on Jaccard coe�cient) [26, 62] and exploiting link reciprocity. Shingles were intro-
duced by Broder et al. [24] and have been used to estimate the similarity of Web pages
using a technique based on overlapping windows of terms. The shingling technique has been
applied to generate a number of constant-size �ngerprints for two subsets A and B from a set
S of a universe U of elements, such that the similarity of A and B can be computed easily
by comparing �ngerprints of A and B. In the context of graphs, the idea is to obtain a �n-
gerprint of the out-neighbors of a node and ordering the nodes according to this �ngerprint.
Broder et al. [24] show that the probability that the shingles of A and B are identical is
the same as the Jaccard coe�cient J(A,B) = |A ∩ B|/A ∪ B|, which captures the notion of
similarity of sets A and B. They called a shingle the smallest element in A according to a
random permutation.

In addition, they show that, instead of using random permutations, it is enough to use min-
wise independent hash families. Shingles have been used in graph algorithms for detecting
similar out-neighbors, using a set of hash functions. The idea is that if nodes share out-
neighbors then with high probability they will have the same shingle and hence be close to
each other in a shingle-based ordering. Even though they achieve interesting compression
for social networks, their approach requires decompressing the graph in order to retrieve the
out-neighbors.

Chierichetti et al. [33] state that there is no obvious node ordering for compressing social
networks. They showed that using �Shingles ordering� provides some compression. Boldi
et al. [17] studied the e�ect of useful permutation strategies to compress social networks,
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where they proposed two node orderings based on the Gray ordering that provide better
compression results. One node orderings is loose host-by-host Gray ordering, which is based
on keeping URLs from the same host adjacent, and order them using Gray ordering. The
other one is strict host-by-host Gray ordering and it is is like the loose ordering, but Gray
ordering is applied considering only local links, i.e., links to URLs of the same host. Later,
Boldi et al. [16] showed that using LLP node ordering on Web and social graphs improve
further compression e�ciency. However, these schemes achieve compression results that are
not nearly as good as on Web graphs.

Maserrat and Pei [85] achieve compression by de�ning an Eulerian data structure using
multi-position linearization of directed graphs. This scheme is based on decomposing the
graph into small dense subgraphs and supports out/in-neighbor queries in sublinear time.
Masserrat and Pei work on the idea that social networks are locally dense and globally
sparse. For doing that, they propose a linearization scheme that allows them to represent the
graph by using a sequence. Basically, they de�ne an MPk linearization of a graph G(V,E),
with n = |V | and m = |E|. An MPk linearization consists of a sequence S (where each
element consists of a vertex identi�er and a pointer) that satis�es the following property: For
any edge (u, v) ∈ E, there exists a subsequence W of length k in S, such that u and v appear
in W . In this sequence vertex identi�ers can appear more than once.

They show that, if they use 2K bits per each element in the sequence S, it is possible to
represent the graph G. The 2k bits are used to mark which ones of the 2k neighbors (from
a position in S) correspond to an edge. Pointers are used to �nd the next appearance of the
vertex identi�er in the sequence. They show that �nding the minimum MPk linearization
is NP-hard and then provide a heuristic for computing an MPk linearization. Figure 1.3
shows an example with a linearization MP1, where Figure 1.3-(a) shows the traditional
representation, Figure 1.3-(b) shows MP1 linearization, Figure 1.3-(c) shows the compressed
representation by Maserrat and Pei [85], with MP1, where each node is represented with 2
bits and a pointer to the next position where a node appears in the line.

The heuristic can be summarized as follows: First, add a random vertex to the sequence.
Then, �nd the vertex that has more edges to the last k vertexes in the sequence, add it to the
sequence and remove the edges. Repeat the process until there is no edge left in the graph.

Later, Claude and Ladra [39] proposed a new indexing MPk for linearization that allows
them to improve the access time for in/out-neighbors. Their basic idea is to use the same
representation used by Maserrat and Pei, but they replace pointers to the next occurrences
by an index for sequences supporting rank, select and access operations. They de�ne two
sequences N and S. Each element in sequence N has 2k bits representing if the current
vertex index (index in the sequence) has an edge to the 2k neighbors. Sequence S contains
the vertex identi�ers in the linearization, which is used instead of having pointers to �nd
the next appearance of a vertex identi�er. Figure 1.3-(d) shows the sequences N and S.
Retrieving out/in-neighbors requires the operations rank/select/access over these sequences.
For instance, to be able to recover all occurrences of a vertex identi�er in the sequence they
compute rankS(v, |S|) and then for each occurrence j they obtain the position in S of the
vertex identi�er by computing selectS(v, j).
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Figure 1.3: An example of MP1 (k=1).
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1.5 Compact Data Structures: Sequences

This section describes compact data structures based on sequences. In this case, we distin-
guish binary sequences from symbol sequences. The �rst ones are also known as bitmaps,
since they only contain symbols that are �0�s and �1�s, while the others can store arbitrary
symbols from an alphabet Σ of size σ. The basic operations, sometimes called queries, over
sequences are Rank, Select, and Access. RankS(a, i) counts the number of occurrences of
symbol a up to the position i in the sequence S. SelectS(a, i) �nds the position of the i-th
occurrence of a in the sequence S. Finally, AccessS(i) returns the symbol at position i in the
sequence S. This problem has been addressed in theory and practice, and there exist several
implementations.

1.5.1 Binary Sequences

Consider a binary sequence or bitmap B[1, n] with m ones. Several schemes have been pro-
posed to e�ciently compute rank and select operations on bitmaps. Jacobson [72] developed
succinct data structures using rank and select operations. He proposed an implementation
to compute rank in O(1) time and use it to implement binary trees. However, computing
select takes O(log log n) time, since the scheme is based on binary search lookups.

The idea for computing rank in constant time consists of building a structure based
on a two-level directory. The �rst level divides the binary sequence into superblocks of
size s = (log n)2/2 bits and de�nes an array S[1, n/s], where S[i] stores the number of 1s
observed up to the beginning of the superblock. Therefore, S contains n

(logn)2/2
superblocks,

where each S[i] requires log n bits, therefore S requires 2n/ log n bits, which is o(n). The
second level divides the binary sequence on blocks of size b = (log n)/2 and de�nes an
array R[1, n/b], where R[i] stores the rank values up to the beginning of each corresponding
superblock, that is R[j] = rank(B, jb) − S[j/ log n]. Since the values in R are relative to a
corresponding superblock, the maximum value that can be stored in R is O(log n)2, therefore
they only require 2 log log n bits. Overall, the total space required by R is n

(logn)/2
2 log log n =

4n log logn
logn

= o(n).

In addition, the structure builds a table (T ) for all possible sequences of (log n)/2 bits.
This table has 2

logn
2 rows and (log n)/2 columns, and each cell (r, c) contains the number of

1s observed in the binary representation of row id r up to the c-th bit. The maximum value
that can be stored in the table can be encoded in log log n− 1 bits. Then the table requires
a space of 2

logn
2

logn
2

(log log n− 1) ≤ 1
2

√
n log n log log n = o(n) bits. The �nal result consists

of solving rank(B, i) = S[j] + R[k] + T [r, c], for corresponding superblock j, block k, row r,
and column c. The overall space is n+ o(n), computing rank in O(1) time.

Later, Clark [37] and Munro [38] improved these results computing rank and select oper-
ations in O(1) time using n+ o(n) bits, where n bits are used for storing the bitmap of size
n and o(n) bits are used for the data structures needed to compute rank and select oper-
ations. The main idea for improving select time operation consists of dividing the bitmap
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into superblocks with equal amount of ones (s = log2 n), therefore the length of superblocks
are variable as opposed to superblocks of equal sizes. Superblocks can be dense or sparse; it
is said that a superblock is sparse if its length in B is at least s log n log log n, otherwise is
dense. If a superblock is sparse, all the answers are stored with an overhead of O( n

log logn
).

The whole process for computing select is more complex than rank, but the idea is to identify
dense and sparse superblocks, storing all answers for sparse superblocks and apply a second
level of indirection on dense superblocks using blocks. In the second level, dense and sparse
blocks are identi�ed, and dense blocks also use tables as the ones described above for ranks.

The solutions proposed by Clark and Munro [37, 38] were improved by Pagh [95], and
Raman et al. [99] achieving nH0(B) + o(n) bits, and keeping query time constant, by rep-
resenting compressed binary sequences. Pagh [95] proposed using compressed blocks of the
same size, representing the number of 1s in each block and the number that identi�es each
block. Raman et al. [99] provide the same solution for rank than Pagh [95], but they achieve
select in constant time by using perfect hashing.

Therefore, each block is represented as a tuple (ci, oi), where ci represents the class of the
block and oi represents the o�set of the block in a list of all possible blocks in class ci. If the
block size is b then the number of bits required to represent ci is given by dlog(b+1)e and each
oi is represented by using dlog

(
b
ci

)
e bits. The ci are of �xed length and require O(n log logn/ logn

logn
)

bits of space, while the oi are of variable length. The implementation uses three tables E, R
and S. Table E stores all possible combinations of b bits sorted by class and all answers for
rank at every position of each combination. Table R stores the concatenation of all the ci,
using dlog(b+ 1)e bits per �eld, and table S stores the concatenation of all oi using dlog

(
b
ci

)
e

bits per �eld. It can be shown that the total space for S is nH0(B)+O(n/ log n) bits. Overall,
the structure requires nH0(B)+o(n) bits. Additional data structures used for answering rank
and select do not increase the o(n) component. Patrascu [97] also requires nH0(B) + o(n)
bits and answers rank and select operations in constant time. This approach works well
when the binary sequence has many or a few 1s, and the o(n) term can be O(n/ logc n) bits
for any desired constant c.

Okanohara and Sadakane proposed an alternative scheme that gets rid of the o(n) extra
bits and achieves close results for sparse bitmaps (small m). They present four rank/select
directories: esp, rerank, vcode, and sdarray. Each of them is based on di�erent ideas and
has di�erent trade-o�s in terms of speed and space. In particular, most of them are very good
for select operations, but ranks are slower. The best alternative is the sdarray directory. In
this work, we have used practical implementations developed by González and Navarro [64]
following the ideas of Jacobson and Munro [37, 38], and the implementation for compressed
bitmaps developed by Claude and Navarro [40], based on the proposal of Raman et al. [99].

1.5.2 Arbitrary Sequences

As mentioned earlier, arbitrary sequences store symbols from an alphabet Σ of size σ, where
σ > 2. This section describes the implementations we use in this work.

20



  

∑ = {_e g i r s t}
t r e s _ t r i s t e s _ t i g r e s

1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1

e _ i e _ i g e

0 0 1 0 0 1 1 0
∑ = {_e g i}

t r s t r s t s t r s

1 0 0 1 0 0 1 0 1 0 0
∑ = {r s t}

e _ e _ e

1 0 1 0 1
∑ = {_e} i i g

1 1 0
∑ = {i g}

r s r s s r s

0 1 0 1 1 0 1
t t t t∑ = {r s}

_ _ e e e g i i r r r s s s s

_e g i r s t

_e g i r s t

_ e i g r s

Figure 1.4: A wavelet tree example.

Wavelet Trees

A wavelet tree [67] consists of a binary tree, where the alphabet is recursively subdivided.
The root and internal nodes store bitmaps. At each node of the tree, the bitmaps represent
the symbols in the sequence S that belong to the corresponding subalphabet. If the symbol
of the sequence belongs to the �rst half of the subalphabet, it is represented with a �0� in
the bitmap and handled at the left child of the node. Otherwise it is represented with a �1�
and handled at the right child.

Given a sequence S of length n = |S|, where S[i] ∈ Σ, and σ = |Σ|, the construction of
the wavelet tree consists of the following steps: The root of the tree consists of a bitmap B,
where B[i] = 0 if S[i] ∈ [0, σ

2
] and B[i] = 1, if S[i] ∈ [σ

2
+ 1, σ]. The next level of the tree is

built based on the symbols associated to the node by parent bitmap B. In this case, if some
B[i] = 0, the left child bitmap is created, and the alphabet corresponding to such symbols
are again divided by two, de�ning a bit �0� for the �rst half and a �1� for the second half.
Similarly, the right child in the tree considers the symbols in S[i] for which the bitmap at the
root stores a �1�, creating the corresponding bitmap associated to the right child. The same
process continues dividing the alphabet in half at each node in the tree. Finally, the leaf
nodes represent individual symbols. The complete representation consists of all the bitmaps
of the tree, with the exception of the leaf nodes, which are not represented. Note that the
tree requires the pointers to left and right children, which provide the navigation of the tree.
The complete sequence can be recovered by only accessing the bitmaps. Figure 1.4 shows an
example, including text for clarity although it is not really represented in the structure.

As mentioned earlier, the three basic query operations over sequences are rank, select and
access. The wavelet tree enables these operations by traversing the tree. Access and rank
queries involves performing a top-bottom traversal of the tree and performing ranks on the
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bitmaps. Select, on the other hand is done by a bottom-up traversal over the tree performing
selects on the bitmaps.

An access operation, S[i] = AccessS(i), is done as follows. First, see if B[i] at the root is
zero, if so, go to the left child and compute a new position j with j = rankB(0, i) (computing
the number of occurrences of a 0 in B up to position i). In the case B[i] is a �1�, go to the
right child and compute a new position j with j = rankB(1, i) (computing the number of
occurrences of a 1 in B up to position i). Using the new position j keep following down the
tree up to the leaf, where it is possible to know the symbol in S[i]. The time is bound to
log σ evaluations of bitmap ranks.

A rank operation, rankS(a, i), computes the number of occurrences of symbol a in S[1, i].
First, by examining the alphabet, decide if symbol a belongs to the �rst half of the alphabet,
a ∈ [0, σ

2
], or the second, a ∈ [σ

2
+ 1, σ]. If it is in the �rst, go to the left child and compute

the new position j as j = rankB(0, i). Otherwise, go to the right child and compute the new
position j as j = rankB(1, i). Repeat the process going down on the tree up to the leaf,
where the answer of the query is j. In this case, the time is also bound to log σ evaluations
of bitmap ranks.

Finally, a select operation, selectS(a, i), computes the position of the ith-occurrence of
symbol a in S. We start at the leaf node that represents symbol a, which is found by the
position of a in the alphabet. Determine whether the leaf is a left or a right child, if it is a left
child, compute a new position j doing a select on the parent bitmap with j = selectB(0, i).
If is a right child, compute a new position j with j = selectB(1, i). Keep going up in the
tree up to the root bitmap, based on applying select on the parent for 0 or for 1 depending
on whether the node is a left or a right child of its parent. In this case, the time is bound to
log σ evaluations of bitmap selects.

Overall, the Wavelet tree supports rank/select/access queries in O(log σ) time. The space
is bounded depending on the bitmap representation. When using plain bitmaps [64] the
space is bounded to n log σ + o(n) log σ bits. However, when using compressed bitmaps [99]
the space is bounded to nH0(n) + o(n) log σ bits. As our alphabets are large, in this work,
we use the version without pointers [40], which saves an extra space of the form O(σ log n).

The wavelet tree without pointers is an alternative representation of wavelet trees that
eliminates the pointers of the tree [40]. The representation stores log σ bitmaps of length n,
where bitmaps at the same level are concatenated. The �rst bitmap corresponds to the root
of the tree, the second bitmap corresponds to the concatenation of the left and right bitmaps,
and so on. This representation requires calculating the interval [s, e] corresponding to the
bitmap of a node, and the interval [s′, e′] upon a child or parent operation. They show how
to compute the children intervals using rank operations on the parent interval. The extra
space is reduced from O(σ log n) to O(log σ log n) bits.

Golynski, Munro and Rao Sequences

Another representation for general sequences was proposed by Golynski, Munro and Rao
[63]. Such representation uses n log σ + no(log σ) bits and can solve access and rank queries
in O(log log σ) time, and select in O(1); or select in O(log log σ), rank in O(log log σ log log σ)
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and access in O(1) time. The representation of the sequence is done using a matrix T of size
σ × n, where rows are indexed by σ, and columns by positions in the sequence. Each cell in
the matrix (i, j), indicates whether symbol i occurs in position j in the sequence. Using one
bitmap A (given by rows) to represent the whole matrix T , requires |A| = σn bits, allowing
to answer rank and select operations at the block level. Since the space required by A is too
high, instead of representing bitmap A, A is divided into blocks of size σ de�ning a bitmap
B = 1k101k201k3 ...0, where ki is the number of 1s in each block. Using bitmap B instead
of A, the space is reduced to 2n + o(n) bits. In order to allow rank, select, and access
operations in a block, the authors use an additional structure called a chunk. Each chunk
stores σ symbols of the text using a sequence and a bitmap. The sequence is a permutation
π obtained by sorting alphabetically the sequence represented by the chunk and uses a data
structure that allows constant-time computation of π−1 [92]. Bitmap X stores the number
of times a symbol i of the alphabet appears in the chunk using a representation similar to
bitmap B, then X = 1l101l201l3 ...0, where li corresponds to the number of times symbol i
appears in the chunk. Overall, the total space is given by 4n+ n log σ + no(log σ) bits.
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Chapter 2

Discovering Graph Patterns

There is a wide variety of real systems that are modeled by graphs, such as communication,
Web, social, and biological networks. Graph analysis has become crucial to understand the
features of these systems. Finding groups, clusters or communities in large graphs has been
a topic of study for di�erent applications, for instance, in the context of web search, online
retailers, or protein-protein interactions in a biological network. Clustering web clients to
identify groups with similar interest and geographically close to each other may improve the
performance of web services, where mirror servers may serve similar groups [78]. Online
retailers might want to identify customers with similar interests to improve recommender
systems [101]. Identifying communities is also interesting for classifying the members of
groups, for example some members might have a central position in the clusters, that is, share
a large number of edges with the other members. These might mean that those members are
important for the stability of the group.

In this chapter we describe scalable techniques for discovering graph patterns in Web and
social graphs that are of interest for data mining and analysis, as well as for representing
graphs compactly. All graphs we consider are modeled with unlabeled edges. The graph
patterns presented here are based on dense subgraphs such as cliques, complete bipartite
graphs (bicliques) and some combinations of both. These graph patterns are the basis for
the compressed representations we present in Chapter 3.

Our discovery algorithm uses clustering and mining for identifying patterns. We show
that our clustering approach is much more scalable than MCL [55, 114] (a state-of-the-art
clustering algorithm) even when comparing the sequential algorithm against the parallel
version of MCL. We evaluate the quality and running time of the algorithm using synthetic
and real graphs.

2.1 Problem De�nition

We represent a Web graph as a directed graph G = (V,E) where V is a set of vertices (pages)
and E ⊆ V × V is a set of edges (hyperlinks). For an edge e = (u, v), we call u the source
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and v the center of e. In social networks, nodes are individuals (or other types of agents)
and edges represent some relationship between the two nodes. These graphs can be directed
or undirected. In case they are undirected, we make them directed by representing both
reciprocal directed edges. Thus from now on we consider only directed graphs.

We follow the idea of �dense communities� in the Web of Kumar et al. [80] and Dourisboure
et al. [56], where a community is de�ned as a group of pages related by a common interest.
Such Web communities are characterized by dense directed bipartite subgraphs. In fact,
Kumar et al. [80] summarize that a �random large enough and dense bipartite subgraph of
the Web almost surely has a core (a complete bipartite subgraph)�, which they aim to detect.
Left sets of dense subgraphs are called Fans and right sets are called Centers. In this work,
we call the sets Sources (S) and Centers (C) respectively, which are the same names given
by Buehrer and Chellapilla [29]. One important di�erence of our work from previous work
[80, 56] is that we do not remove edges before applying the discovery algorithm. Such works
remove all nepotistic links, that is, links between two pages that belong to the same domain,
while we work based on Web pages and hyperlinks among pages. Furthermore, using domains
does not make sense in terms of social networks.

For technical reasons that will be clear next, we will add all the edges (u, u) to our directed
graphs. We indicate in a small bitmap of |V | bits which nodes u actually had a self-loop, so
that later we can remove from the edges output by our structures only the spurious self-loops.

We also note that the discovery algorithms are applied over Web graphs with natural
node ordering [16], which is basically URL ordering, because they provide better results than
using other node orderings. We retain the name natural node ordering used in the Web site
(http://law.di.unimi.it/webdata) [15].

We will �nd patterns of the following kind.

De�nition 2.1.1 A dense subgraph H(S,C) of G = (V,E) is a graph G′(S ∪ C, S × C),
where S,C ⊆ V .

Note that De�nition 2.1.1 includes cliques (S = C) and bicliques (S ∩ C = ∅), but also
more general subgraphs. Our goal is to represent the |S| · |C| edges of a dense subgraph using
O(|S|+ |C|) space. In Chapter 3 we explore di�erent techniques that exploit this de�nition,
considering bicliques and more general dense subgraphs.

2.2 Related Work

In the context of the Web, Donato et al. [54] show that several web mining techniques used
to discover the structure and evolution of the Web graph, such as weakly and strongly con-
nected components, depth-�rst search and breath-�rst search, are based on classical graph
algorithms. In a later work Donato et al. [53] present an experimental study of the statis-
tical and topological properties of the Web graph. Other proposals use graph algorithms to
detect spam farms [104, 62]. Saito et al. [104] present a method for spam detection based
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on classical graph algorithms such as identi�cation of weakly and strongly connected com-
ponents, maximal clique enumeration and minimum cuts. On the other hand, Gibson et
al. [62] propose large dense subgraph extraction as a primitive for spam detection. Their
algorithm used e�cient heuristics based on the idea of shingles [25] (mostly used to estimate
similarity among web pages) together with frequency itemset mining approximation. There
are other techniques, based on graph algorithms, aiming to extract small subgraphs or small
communities for mining purposes [80, 59, 96]. Fortunato et al. [60] provides a comparison
among several community detection algorithms.

There is no consensus about the de�nition of a community, being there various possible
de�nitions [5]. However, as described by Fortunato et al. [60], �nding communities is some-
how similar to clustering, in the sense that the members of a community are groups of vertices
which probably share common properties like groups of vertices with high concentration of
edges, but low concentration between di�erent groups. These groups of vertices can be called
communities or clusters.

In the context of Web graphs, communities are group of pages having topical similarities.
Detecting communities in these graphs may help to identify the arti�cial clusters created by
link farms in order to deceive ranking algorithms such as PageRank [21], with the goal of
discouraging spam practices. Detecting communities on directed graphs is more challenging
than on undirected graphs, since the adjacency matrix is asymmetric and then it is not possi-
ble to avoid representing all edges. Another challenge with community detection algorithms
is that in many networks vertices may belong to more than one group and then it is likely
that communities are overlapped. For instance, in social networks, an individual belongs to
di�erent circles at the same time.

Biological applications that use clustering or community detection include Protein-Protein
interaction (PPI), as the interactions between proteins are fundamental for each process in a
cell [36]. Communities correspond to functional groups, that is, to proteins having the same
or similar functions. For instance, in PPI (protein-protein interaction) networks, the vertices
represent proteins and edges represent interactions between proteins. Most communities are
associated with cancer and metastasis, which indirectly shows how important it is to detect
similar groups in PPI networks. One of the most used clustering algorithms in bioinformatic
applications is MCL [55] (later mathematically analyzed [114]). MCL is an unsupervised
algorithm based on simulation of stochastic �ow in graphs. The algorithm consists of alter-
nation of matrix expansion and matrix in�ation, where expansion means taking the power
of a matrix using the usual matrix product, and in�ation is a particular way of rescaling the
entries of a stochastic matrix such that it remains stochastic. MCL has been mostly applied
in bioinformatic applications [27], but also in social network analysis [86]. MCL deals with
both labeled and unlabeled graphs, while the clustering we use deals only with unlabeled
graphs.
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2.3 Discovering Dense Subgraphs

In this section we describe how we discover dense subgraphs. Even �nding a clique of a certain
size is NP-complete, and the existing algorithms require time exponential on that size (e.g.,
Algorithm 457 of Bron and Kerbosch [28]). Thus, we need to resort to fast heuristics for our
huge graphs of interest. Besides, we want to capture other types of dense subgraphs, not just
cliques. We �rst use a scalable clustering algorithm [29], which uses the idea of �shingles�
[62]. Once the clustering has identi�ed nodes whose adjacency lists are su�ciently similar,
we run a heavier frequent itemset mining algorithm [29] inside each cluster. This mining
algorithm is the one that �nds sets of nodes S that point to all the elements of another set of
nodes C (they can also point to other nodes). This algorithm was designed to �nd bicliques:
a node u cannot be in S and C unless (u, u) is an edge. As those edges are rare in Web graphs
and social networks, this algorithm misses the opportunity to detect dense subgraphs and is
restricted to �nd bicliques. To make the algorithm sensitive to dense subgraphs, we insert
all the edges {(u, u), u ∈ V } in E, as anticipated. This is su�cient to make the frequent
itemset mining algorithm �nd the more general dense subgraphs. The spurious edges added
are removed at query time, as explained.

The clustering algorithm represents each adjacency list with P �ngerprints (hash values),
generating a matrix of �ngerprints of |V | rows and P columns. Then it traverses the matrix
column-wise. At stage i the matrix rows are sorted lexicographically by their �rst i column
values, and the algorithm groups the rows with the same �ngerprints in columns 1 to i.
When the number of rows in a group falls below a small number, it is converted into a cluster
formed by the nodes corresponding to the rows. Groups that remain after the last column is
processed are also converted into clusters.

On each cluster we apply the frequent itemset mining algorithm, which discovers dense
subgraphs in the cluster. This algorithm �rst computes frequencies of the nodes mentioned
in the adjacency lists, and sorts the list by decreasing frequency of the nodes. Then the
nodes are sorted lexicographically according to their lists. Now each list is inserted into a
pre�x tree, discarding nodes of frequency 1. This pre�x tree has a structure similar to the
tree obtained by the hierarchical termset clustering de�ned by Morik et al. [90]. Each node
p in the pre�x tree has a label (consisting of the node id), and it represents the sequence l(p)
of labels from the root to the node. Such node p stores also the range of graph nodes whose
list start with l(p).

Note that a tree node p at depth c = |l(p)| representing a range of s graph nodes identi�es
a dense subgraph H(S,C), where S are the graph nodes in the range stored at the tree node,
and C are the graph nodes listed in l(p). Thus |S| = s and |C| = c. We can thus point out
all the tree nodes p where s ·c is over a size threshold, and choose them from largest to lowest
saving (which must be recalculated each time we choose the largest).

The main algorithm is given in Figure 2.1.

Figure 2.2(a) shows a dense subgraph pattern with the traditional representation and (b)
shows the way we represent them using the discovery algorithm described.
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Input: G: input graph; P : number of �ngerprints, Iters: number of iterations,
scs: dense subgraph size (|S| ∗ |C|), threshold: threshold for clustering.
Output: dscoll: Collection of dense subgraphs
ds← ∅
dscoll← ∅
for i← 1 to Iters do
MatrixM ← computeF ingerprints(G,P )
ClustersC ← getClusters(M,G, threshold)
for c ∈ C do
ds← mine(G, c, scs)
dscoll.add(bc)

end for
end for

Figure 2.1: Main dense subgraph discovery algorithm

5

6

1

2

1

2

3

7

1

2

5 7

6
8

3 8

3

(a) Classical Representation (b) Bipartite Representation

Figure 2.2: Dense subgraph representation

The whole algorithm can be summarized in the following steps. Figure 2.3 shows an
example.

Step 1 Clustering-1 (build hashed matrix representing G). We traverse the graph speci�ed as
a set of adjacency lists, adding edges (u, u). Then, we compute a hash value H asso-
ciated with each edge of the adjacency list P times, and choose the P smallest hashes
associated with each adjacency list. Therefore, for each adjacency list, we obtain P
hash values. This step requires O(P |E|) time.

Step 2 Clustering-2 (build clusters). We build clusters consisting of groups of similar hashes,
by sorting the hash matrix by columns, and select adjacency lists associated with
clusters based on hashes. This requires O(P |V | log |V |) time.

Step 3 Mining-1 (reorder cluster edges). We compute edge frequencies on each cluster, sort-
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Figure 2.3: Example of the dense subgraph discovery process.

ing them from largest to smallest (discarding edges with frequency of 1), and reorder
them based on that order. This step takes O(|E| log |E|) time.

Step 4 Mining-2 (discover dense subgraphs and replacing). We compute a pre�x tree for each
cluster, with tree nodes labeled with the node id of edges. Dense subgraphs (G′(S ∪
C, S×C)) with higher edge saving (|S| · |C|) are identi�ed in the tree. The overall step
takes O(|E| log |E|) time.

Therefore the overall algorithm time complexity, taking P as a constant, is bounded by
O(|E| log |E|).

In Chapter 3, the dense subgraphs found H(S,C) will be replaced by a new virtual node
whose in-neighbors are S and whose out-neighbors are C. As the result is still a graph, the
dense subgraph discovery process can be repeated on the resulting graph, since the discovery
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Table 2.1: Main statistics of the Web graphs and social networks we used in our experiments.

Dataset |V | |E|
eu-2005 862,664 19,235,140
indochina-2004 7,414,866 194,109,311
uk-2002 18,520,486 298,113,762
arabic-2005 22,744,080 639,999,458
sk-2005 50,636,154 1,949,412,601
enron 69,244 276,143
dblp-2011 986,324 6,707,236
LiveJournal-SNAP 4,847,571 68,993,773
LiveJournal-2008 5,363,260 79,023,142
enwiki-2013 4,206,785 101,355,853

algorithm is a heuristic and it is able to �nd dense subgraphs in a number of iterations.
Chapter 3 also describes another representation where subgraphs of the form H(S,C) will
be extracted from the original graph and represented using compact data structures.

2.4 Evaluation of the Discovery Algorithm

We evaluate our discovery algorithm using synthetic and real Web graph snapshots. We
use generators GTgraph and RMAT for synthetic graphs1 [10, 32] (as explained later in this
section). We also use real Web graph snapshots available from the WebGraph project2. In
all the experiments we describe in this chapter, we use a Linux PC with 16 processors Intel
Xeon at 2.4 GHz, with 72 GB of RAM, and 12 MB of cache. We used g++ compiler with
full optimization.

First, we evaluate the sensitivity of the number of hashes (parameter P ) used in the �rst
step of our clustering. For doing so, we use a real Web graph (eu-2005, see Table 2.1). We
measure the impact of P in various metrics that predict compression e�ectiveness. Table 2.2
shows the number of discovered cliques (# Cliques), total number of edges in those cliques
(|Cliques|), number of bicliques (# Bicliques), total number of edges in cliques and bicliques
(Edges), total number of nodes participating in cliques and bicliques (Nodes), and the ratio
between both (Ratio, which gives the reduction factor using our technique that represents
edges implicitly, described in Section 4.1).

All these metrics show that using P = 2 is slightly better than using other values. When
increasing P , the algorithm discovers more and smaller cliques and bicliques, but the overall
compression in terms of representing more edges with fewer vertices is better with P = 2.

Second, we evaluate our subgraph discovery algorithm. For doing so, we use the GTgraph
suite of synthetic graph simulators. From this suite, we use the SSCA#2 generator to create

1Available at www.cse.psu.edu/~madduri/software/GTgraph
2http://law.dsi.unimi.it [15]

30



Table 2.2: Compression metrics using di�erent P values with eu-2005

P # Cliques |Cliques| # Bicliques Edges Nodes Edges
Nodes

2 33,482 248,964 58,467 17,208,908 2,357,455 7.30
4 34,237 246,022 60,226 17,199,357 2,426,753 7.08
8 34,863 245,848 60,934 17,205,357 2,524,240 6.81

Table 2.3: Synthetic clique graphs with di�erent number of nodes (Nodes), edges (Edges),
maximum clique size (MC), and total number of vertices participating in cliques (R). Column
d gives the average number of edges per node, and the last column is the average clique size

Name Nodes Edges d MC R avg size

PL 999,993 9,994,044 9.99 0 0 -
V16 65,536 610,500 9.31 15 6,548 9.50
V16 65,536 1,276,810 19.48 30 3,785 17.09
V16 65,536 2,161,482 32.98 50 2,398 27.21
V16 65,536 4,329,790 66.06 100 1,263 51.83
V17 131,072 1,214,986 9.26 15 13,130 9.48
V17 131,072 2,542,586 19.39 30 7,589 17.05
V17 131,072 4,309,368 32.87 50 4,790 27.23
V17 131,072 8,739,056 66.67 100 2,495 52.95
V20 1,048,576 9,730,142 9.76 15 104,861 9.50
V20 1,048,576 20,293,364 19.60 30 60,822 17.02
V20 1,048,576 34,344,134 32.90 50 38,544 27.07
V20 1,048,576 69,324,658 66.18 100 20,102 52.10

random-sized clique graphs [10, 32]. We use the parameterMaxCliqueSize to set the maximum
size of cliques (MC), set the Scale parameter to 16, 17 or 20, so as to de�ne 216, 217 or 220

vertices on the graph, and set the parameter ProbIntercliqueEdges = 0.0 (probability of
edges among cliques), which tells the generator to create a clique graph, that is, a graph
consisting of isolated cliques. Therefore, with this generator we can precisely control the
actual cliques present in the graph, and their corresponding sizes. We call those real cliques.

We also use the generator R-MAT of the suite to create a power-law graph without any
cliques. The properties of the synthetic clique graphs and the power-law graph used are
described in Table 2.3. The �rst graph, PL, is the power-law graph, whereas the others are
clique graphs (V16,V17,V20). Finally, we de�ne new graphs (PL-V16, PL-V17, and PL-
V20), which are the result of merging graphs PL with V16, PL with V17, and PL with V20.
The merging process is done by computing the union of the edge sets belonging to the PL
graph and one of the clique graphs. That is, both PL and Vxx share the same set of nodes
(called 1 to |V |) and we take the union of the edges in both graphs. We apply our dense
graph discovery algorithm on those merged graphs, whose features are displayed in Table 2.4.
Figure 2.4 (left) shows the out-degree histogram for PL, V17 (with MC = 100) and PL-V17
graphs. We evaluate the ability of our discovery algorithm to extract all the real cliques from
these graphs.
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Table 2.4: Synthetic merged power-law and clique graphs.

Name Nodes Edges MC d

PL-V16 999,993 10,604,408 15 10.60
PL-V16 999,993 11,270,660 30 11.27
PL-V16 999,993 12,155,249 50 12.15
PL-V16 999,993 14,323,320 100 14.32
PL-V17 999,993 11,208,968 15 11.20
PL-V17 999,993 12,536,277 30 12.53
PL-V17 999,993 14,303,175 50 14.30
PL-V17 999,993 18,732,584 100 18.73
PL-V20 1,048,576 19,724,071 15 18.81
PL-V20 1,048,576 30,287,168 30 28.88
PL-V20 1,048,576 44,337,825 50 42.28
PL-V20 1,048,576 79,317,960 100 75.64

For evaluation purposes we compare our clustering against MCL clustering,3 by changing
the �rst steps (�nding clusters) in our discovery algorithm.

To measure how similar the discovered and the real clique sets are, we compute the
Average Relative Error (ARE), which is the average of the absolute di�erence between true
and discovered cliques:

ARE =
1

|R|
∑
i∈R

|ri − r̂i|
ri

, (2.1)

where ri and r̂i are the real and discovered clique sizes, and |R| is the number of real cliques.
We consider a real clique to be �discovered� if we �nd more than half of its vertices.

We also evaluate the discovery algorithm based on precision and recall:

precision =

∑
i∈R |RCE ∩DCE|∑

i∈R |DCE|
, (2.2)

recall =

∑
i∈R |RCE ∩DCE|∑

i∈R |RCE|
, (2.3)

where RCE is the node set of a real clique and DCE is the node set of the corresponding
discovered clique.

In addition, we compare the number of discovered cliques (|A|) with respect to real cliques:

recallNumCliques =
|A|
|R|

. (2.4)

3Available at http://micans.org/mcl/
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Table 2.5: Time required per retrieved clique of di�erent sizes. avg refers to the clique average
size, tms refers to the average time in milliseconds to discover all cliques (|A|) using our dense
subgraph algorithm. |A|M denotes all cliques discovered with MCL with corresponding avgM
clique average size, and tmsM and ptmsM denote the sequential and parallel execution time
for MCL.

Name MC |A| avg tms |A|M avgM tmsM ptmsM

PL-V16 15 6,501 9.00 236.1 5,810 7.96 4,359.2 1,938.5
PL-V16 30 3,766 16.53 336.4 3,596 15.18 7,877.3 3,129.1
PL-V16 50 2,389 26.58 305.1 2,331 25.40 11,190.4 5,089.2
PL-V16 100 1,261 51.08 590.0 1,242 50.80 19,839.7 9,363.1
PL-V17 15 13,071 9.00 120.5 12,032 8.30 2,048.4 977.9
PL-V17 30 7,565 16.53 129.8 7,321 15.83 3,226.3 1,612.3
PL-V17 50 4,776 26.70 203.1 4,706 26.21 4,886.3 2,394.1
PL-V17 100 2,492 51.85 318.2 2,481 51.89 10,153.5 4,446.1
PL-V20 15 104,771 9.06 103.1 103,437 9.31 580.2 103.6
PL-V20 30 60,773 16.56 150.3 60,614 16.97 614.6 152.4
PL-V20 50 38,524 26.62 155.4 38,473 27.09 639.7 248.2
PL-V20 100 20,095 51.62 178.6 20,097 52.11 1,371.1 505.7

In order to compare the clustering algorithms, we �rst measure execution times. We
execute the version of the discovery algorithm that uses MCL only with one iteration with
I = 2.0 (default setting for In�ation parameter). We also execute our clustering, where we
use 40 to 100 iterations in order to reach similar clustering quality (yet our iterations are
much faster than that of MCL). Table 2.5 shows the number of discovered cliques (|A|),
average sizes (avg), and the average time in milliseconds (tms) to discover all the cliques
when using our dense subgraph algorithm. We also add the corresponding values obtained
using MCL clustering (|A|M, avgM). The MCL execution time (tmsM) considers sequential
time, whereas ptmsM considers parallel execution time with 16 threads. We report here our
sequential execution times. Still, already our sequential algorithm is an order of magnitude
faster than sequential MCL. Our approach works better than MCL for graphs that have fewer
cliques, as in PL-V16 and PL-V17. In such cases, even our sequential time with multiple
iterations is much faster than one iteration of the the parallel MCL with 16 threads. For
graphs that contain more cliques and small MC values, the time of our sequential algorithm
is comparable to parallel MCL using 16 threads, yet, as the cliques grow, MCL does not scale
well and even its parallel version becomes slower than ours.

Figure 2.4 (right) shows that ARE (Eq. (2.1)) values are very low in our strategy (less than
0.06, i.e., 6%) and the error grows slightly when the number of cliques increases in graphs.
However, changing our clustering algorithm to MCL, the average relative error increases
when the graph contains smaller or fewer cliques hidden in the graph. On the other hand,
in all cases we have a precision of 1.0, which means that we only recover existing cliques.
Figure 2.5 (left) shows recall (Eq. (2.3)), and again we observe that our discovery algorithm
behaves very well (more than 0.93, i.e., 93%) for di�erent number and size of cliques hidden
in the graphs. In contrast, MCL is very sensitive to the number and size of cliques, being less
e�ective for fewer or smaller cliques. We see a similar behavior in Figure 2.5 (right), where
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Figure 2.4: Outdegree histograms (left) and Average Relative Error (right) in synthetic graphs

we measure recallNumCliques (Eq. (2.4)).

To summarize, with our discovery strategy we discover 98%�99% of the cliques (Figure 2.5
(right)), and �nd their correct vertices with average relative errors between 1% and 6%
(Figure 2.4 (right)). The performance is better for larger cliques. One possible reason is that
the clustering algorithm we use tends to �nd greater similarity on those adjacency lists that
have more vertices in common.

We also evaluate the impact in scalability and compression (described in Section 4.1)
using MCL over a real undirected social graph (dblp-2011, see Table 2.1). We execute MCL
with di�erent values for the in�ation parameter (I). Table 2.6 shows the compression (bpe)
and sequential execution time (tms) and parallel execution with 16 threads (ptms). It also
shows that our clustering approach outperforms MCL, achieving less space than its slowest
construction within the time of its fastest construction.

Table 2.6: Compression (bpe) and time using MCL with di�erent in�ation I values for
dblp-2011

Metric In�ation (I) Ours
1.2 1.4 2.0 3.0 4.0

bpe 8.76 9.43 10.17 10.44 10.51 8.41
tms 116,093 36,258 11,643 5,736 5,671 5,449
ptms 17,313 5,509 2,072 1,526 1,710
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discovered in synthetic graphs

Table 2.7: Compression (bpe) and time using MCL with di�erent in�ation values I for
eu-2005

Metric In�ation (I) Ours
1.2 1.4 2.0 3.0 4.0

bpe 3.46 3.13 3.18 3.21 3.25 2.67
tms - - - - - 2,874
ptms 65,359 62,297 59,535 59,285 89,066 -

To con�rm the scalability problems of MCL, we also execute it over a larger graph, namely
eu-2005 (which is the smallest Web graph we use, see Table 2.1). We use di�erent I values,
from I = 1.2 to I = 4.0 (using I = 6.0 takes more than 2 days). We use parallel MCL with 16
threads; sequential MCL was disregarded since the parallel execution is already several orders
of magnitude slower than our sequential algorithm. Table 2.7 shows the results, where we
also give the achieved compression in bpe using our compact data structures (Section 4.4.2).
This con�rms that the clustering we use in our discovery algorithm is much more scalable
than MCL.

The MCL scalability issue has been reported in several works [86, 88, 83, 68]. In fact,
Mishra [88] reports that MCL performs poorly on sparse graphs. Additionally, the time
complexity of our algorithm is O(E logE), while a straightforward implementation of MCL
is O(V 3) time, as mentioned in the MCL web site FAQ section4. Another issue with MCL is
that it does not guarantee good e�ectiveness on directed graphs5.

4http://micans.org/mcl/man/mclfaq.html#howfast
5http://micans.org/mcl/man/mclfaq.html#goodinput
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2.5 Conclusions

This chapter describes a heuristic-based algorithm for discovering dense subgraphs that in-
clude cliques, bicliques and some combinations of both. Since, �nding a clique of a given size
is NP-complete, we adapt an idea that �nds bicliques using shingles [29]. By inserting the
edges (v, v) for each node v, the algorithm �nds more general dense subgraphs that include
cliques and bicliques. We compare this new algorithm with MCL, a state-of-the-art clustering
algorithm. Our results con�rm, in the scenario of Web graphs, previous �ndings about lack
of scalability of MCL.

The algorithm is based in four steps. The �rst step consists of transforming each adjacency
list of the graph into P hash values using the idea of �shingles�. The second step consists of
building clusters formed by groups of similar hashes. The third step consists of taking the
adjacency lists of each cluster and sorting them by edge frequency. The last phase consists
of building a pre�x tree for each cluster with tree nodes labeled with the node id of edges.
Dense subgraphs with higher edge saving (|S| · |C|) are identi�ed in the tree.

In terms of the evaluation of the algorithm, we �rst determine the best P in the clustering
algorithm. Then, we compare the clustering algorithm against MCL using synthetic and real
datasets in terms of quality of the solution and execution time. We measure quality, based
on precision, recall, and average relative error. Using synthetic graphs, we found that the
quality of our solution provides a very low average relative error (less than 0.06, i.e., 6%) and
the error grows slightly when the number of cliques increases in graphs. However, changing
the clustering algorithm to MCL, the average relative error increases when the graph contains
smaller or fewer cliques hidden in the graph. In terms of recall, we observe that our discovery
algorithm behaves very well (more than 0.93, i.e., 93%) for di�erent number and size of cliques
hidden in the graphs. In contrast, MCL is very sensitive to the number and size of cliques,
being less e�ective for fewer or smaller cliques. In terms of execution time, we found that
our strategy is much more e�cient than using MCL since the sequential algorithm is much
faster (about 20 times faster) than the parallel version (with 16 threads) of MCL.

36



Chapter 3

Web Graph Compression by Factoring

Edges

This chapter presents compression approaches for Web graphs based on factoring edges. We
evaluate di�erent strategies for reducing the number of edges of the input graph and then
apply compression techniques that have been successful for compressing Web graphs. Such
techniques exploit other properties such as similarity and locality of adjacency lists, BFS and
Layered Label Propagation (LLP) node orderings, and sparseness of the graph represented
by an adjacency matrix. Our schemes provide compressed representations for retrieving out-
neighbors, that is, the outlinks of a node; out/in-neighbors, that is both outlinks (nodes to
which a node points) and inlinks (nodes that point to a given node).

3.1 Composing Methods

In this section we evaluate the impact of combining edge-reduction with other methods. We
proceed in two stages: an edge-reduction stage yields a new graph, containing fewer edges
and more nodes (including virtual nodes); and a compression stage that applies existing
compression techniques on the edge-reduced graph.

We �rst study the impact of reducing edges on Web graphs using Re-Pair [42] and
VNM [29] (only for factoring edges), and combine them to improve the edge reduction.
We refer to VNM as the version that captures only bicliques (i.e., where S∩C = ∅) and adds
virtual nodes to connect sets S and C. Our study shows that reducing edges with VNM and
then applying the compression scheme of Apostolico and Drovandi [9] provides competitive
compression for out-neighbor queries. We also show that using the edge-reduced graph and
then using k2tree provides good compression ratios for out-in/neighbor navigation over Web
graphs. We show that applying this scheme over social networks does not work well.

The second approach considers Dense Subgraph Mining with virtual nodes (DSM) with
set overlaps (i.e., where S ∩ C 6= ∅), instead of just bicliques for factoring edges. We show
that using DSM with virtual nodes (in a similar way as done in the previous scheme), and
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then applying the compression scheme of Apostolico and Drovandi [9] provides the best
compression for out-neighbor navigation support. We also apply Layered Label Propagation
node ordering (LLP) proposed by Boldi et al. [16] over the edge-reduced graph before
applying their compression technique. We found that this ordering is also attractive in
terms of compression and random access time performance. On the other hand, using the
same edge-reduced graph with BFS node ordering, and then k2tree [23] provides the best
compression for out/in-neighbor support for Web graphs.

3.2 Bicliques with Virtual Nodes (VNM)

First, we study the edge-reduction stage using three alternatives. The �rst is VNM, which we
implemented as described in its article [29], using C++ and STL, just for �nding bicliques.
However, we did not implement their compression of the resulting graph. In this section,
we use the bpe (bits per edge) reported by the authors for comparison (V NMb). In our
implementation, we have three parameters: ES speci�es the minimum size |S|·|C| to consider
for edge factoring, T is the numbers of iterations we carry out, and P is the number of hashes
used in the clustering stage of the discovery algorithm (which is described in detail in Chapter
2).

Second, we implemented Re-Pair as just an edge-reducing method (i.e., rule r → ab is
seen as the creation of a virtual node r with edges to a and b), which we call RPo. Third, we
consider VNMRP, which applies VNM and then RPo.

For the compression stage we also considered three alternatives when using VNM
with bicliques. First, we used the full Re-Pair compression scheme obtained from
its authors [42] (RPc). Second, we used WebGraph (BV), version 3.4.0 taken from
http://webgraph.dsi.unimi.it. Third, we used AD version 0.2.1, without dependencies1.

3.2.1 Performance E�ectiveness

We used datasets of Web graphs and social networks of Table 2.1. We executed our experi-
ments on a Linux PC with 8 processors Intel Xeon at 2.4GHz, with 32 GB of RAM and 12
MB of cache, using sequential algorithms.

The �rst experiment evaluates the edge-reduction ratio de�ned as the total number of
edges of the original graph divided by the edges remaining after edge-reduction (including
from/to virtual nodes). Figure 3.1 shows the edge-reduction ratio achieved by VNM, RPo,
and by VNMRP for di�erent numbers of iterations. The results suggest that combining both
techniques provides better compression rates than applying either of them individually.

Figure 3.2 shows the node degree distribution using a size-rank plot (to each abscissa x we
associate the sum of the frequencies of all data points with abscissa greater than or equal to

1Available at http://www.dia.uniroma3.it/~drovandi/software.php
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Figure 3.1: Compression rate based on number of edges using VNM for factoring edges only.

x) for the indochina-2004 original graph and after applying VNM, RPo, and VNMRP. Very
similar �gures are obtained for the other graphs. We observe that reducing edges produces
very clean power law distributions in the node degrees, regardless of the edge-reduction
method used. However, this new shape does not seem to have, in general, an impact on the
compression achieved with AD, beyond the mere reduction in the data size.

The second experiment measures the compression in terms of bpe (bits per edge) aiming at
compression with random access. In this experiment, we combine edge-reduction using VNM
with compression using BV and AD. We tuned VNM using parameter ES. VNM∗ (ES = 4)
allows the discovery of any virtual node pattern that reduces edges, thus minimizing the edges
as much as possible in the edge-reducing stage. VNM∗ does not achieve the lowest possible
bpe values when combined with BV, but these are achieved with ES = 30 on eu-2005,
and ES = 100 on the other Web graphs (those are used in the row labeled VNM). The
best compression is achieved with loose host-by-host Gray ordering of BV with w = 7 and
m = −1 (for maximum compression). This suggests that there are su�cient regularities that
BV can exploit after removing redundant edges, even if there are more nodes in the graph.
On the other hand, using VNM∗ with AD achieves the best compression.

Table 3.1 shows the compression results to support direct access. Bpe values using BV
schemes include o�set spaces for supporting random access. We include bare compression
methods (VNMb, RPc, BV, and AD) and our best performing combinations. To enable direct
access we use BV with w = 7 and m = 3, and AD with l = 4 and 8. Since both BV and AD
exploit locality and similarity, the results suggest that the BFS ordering used in AD works
better than the LLP ordering used in BV in terms of compression. We denote VNM+BV to
the case when we apply BV over the edge-reduced graph without reordering with LLP the
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Figure 3.2: Node degree distribution using size-rank plot of indochina-2004.

reduced graph, and VNM+BVLLP to when we apply LLP ordering over the edge-reduced
graph before applying the compression technique. We achieve the best compression results
using VNM∗+AD8.

3.2.2 Bidirectional Navigation

We additionally consider combining edge-reduction methods with techniques that support
out/in-neighbor queries. We evaluate the following variants:

T1: Re-Pair GMR [41] on the original graph.
T2: k2treeNAT [22] on the original graph with URL-based ordering (denominated Natural
by Boldi et al. [16]).
T3: VNM on the original graph and then k2tree over the reduced graph, VNM-ESx-
Ty+k2tree, where x represents the size of bicliques to capture and y the number of iterations.

The space/time requirements of these techniques on Web graphs are displayed in Fig-
ure 3.3. The combination of VNM and k2tree (T3) achieves the best space e�ciency on Web
graphs when supporting bidirectional neighbors. However, this comes at a signi�cant price
in access time. The combination, on the other hand, does not work well on social networks.
Table 3.2 shows that, while the edge reduction on Web graphs is between 5 and 8.25, the
reduction on social network graphs is not attractive, being less than two, which suggests that
this scheme does not work well on social networks.
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Table 3.1: Compression in bpe when allowing random access, for various methods. VNMb

are the bpe values reported by Buehrer and Chellapilla [29]. Best compression values are
shown in bold.

Name eu-2005 indochina-2004 uk-2002 arabic-2005
VNMb 2.90 - 1.95 1.81
RPc 4.98 2.62 4.28 3.22

VNM∗+RPc 3.57 2.30 3.65 2.78
BVLLPm3w7 4.20 1.78 2.81 2.17

VNM+BVm3w7 2.87 1.51 2.42 1.87
VNM+BVLLPm3w7 2.71 1.32 2.22 1.59

ADl8 3.64 1.49 2.64 2.07
RPo+ADl8 3.15 1.71 2.67 2.01

VNMRP+ADl8 2.28 1.17 1.92 1.50
VNM∗+ADl4 2.39 1.24 2.05 1.57
VNM∗+ADl8 2.26 1.12 1.87 1.47
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Figure 3.3: Space/time e�ciency with out/in-neighbor queries with T1,T2, and T3 on Web
graphs.

3.3 Dense Subgraphs with Virtual Nodes (DSM)

In this section we describe the second scheme, where instead of using bicliques with virtual
nodes, we use dense subgraphs (with S ∩ C 6= ∅) with virtual nodes. Depending on the
representation of the �nal graph we obtain various structures supporting out-neighbor and
out/in-neighbor navigation. We show that using DSM improves the results obtained with
VNM for Web graphs, described in previous section.

In a �rst phase we apply the discovery of dense subgraphs explained in Chapter 2. Then
we apply the idea of virtual nodes [29] (VNM) over the original graph, to factor out the
edges of the dense subgraphs found. In this case, we add self-loops nodes to adjacency lists
to include cliques in the discovery not just bicliques (as explained in Chapter 2).

As the result is still a graph, we iterate on the process. On each iteration we discover
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Table 3.2: Edge reduction given by |E|/|E2|, where E2 is the number of edges on the edge
reduced graph (after applying VNM over the original graph in 10 iterations).

Dataset |E|/|E2|
eu-2005 5.26
uk-2002 5.58

indochina-2004 9.21
arabic-2005 8.25
sk-2005 8.24
enron 1.32

dblp-2011 1.25
LiveJournal-SNAP 1.24
LiveJournal-2008 1.27

enwiki-2013 1.18

dense subgraphs in the current graph, and replace their edges using virtual nodes. We refer
to this approach as DSM (Dense Subgraph Mining).

The outcome of this phase is a graph equivalent to the original one, in the sense that we
must expand paths that go through virtual nodes to �nd all the direct neighbors of a node.
The new graph has far fewer edges and a small amount of virtual nodes in addition to the
original graph nodes. On a second phase, we apply di�erent state-of-the-art compression
techniques and node orderings over this graph to achieve compression and fast out- and
out/in-neighbor queries. Likewise, using VNM, this scheme also used the parameters ES, T ,
and P .

As explained, we input the graph in natural ordering to the DSM algorithm. If we retain
this order on the output and give virtual nodes identi�ers larger than those of the original
nodes, we can easily distinguish which nodes are virtual and which are original. If, we instead,
use a di�erent ordering on the output, such as BFS, we need an additional bitmap to mark
which nodes are virtual.

3.3.1 Dense Subgraph Mining E�ectiveness

In the experiments of this section we use Web graph snapshots available from the WebGraph
project [15], described in Table 2.1. Table 3.3 gives the main statistics of the Web graphs
used. We de�ne G1(V 1, E1) as the original Web graph and G2(V 2, E2) as the result of
removing the (u, u) edges from G1 (as explained, we will store a bitmap marking which of
those edges were originally present). Algorithm DSM will operate on G2 (where it will start
by adding (u, u) for every node). We call G3(V 3, E3) the outcome of the DSM algorithm,
where V 3 = V 1 ∪ VN , VN are the virtual nodes added, and E3 are the resulting edges in
G3. We always use P = 2 for DSM.

In order to compare the use of bicliques (VNM) with dense subgraphs (DSM) we show some
statistics using virtual nodes and using dense subgraphs. Table 3.4 shows the main features
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Table 3.3: Main statistics of the Web graphs we used in our experiments, where V 1 and E1
are the number of nodes and edges of the original graph, E2 is the number of edges of the
graph discarding self-loops, d1 = |E1|

|V 1| and d2 = |E2|
|V 1| .

Dataset |V 1| |E1| d1 |E2| d2
eu-2005 862,664 19,235,140 22.30 18,733,713 21.72
indochina-2004 7,414,866 194,109,311 26.18 191,606,827 25.84
uk-2002 18,520,486 298,113,762 16.10 292,243,663 15.78
arabic-2005 22,744,080 639,999,458 28.14 631,153,669 27.75
sk-2005 50,636,154 1,949,412,601 38.50 1,930,292,948 38.12

Table 3.4: Statistics using bicliques (VNM) versus dense subgraphs (DSM) with virtual nodes
for 10 iterations, where V 3 and E3 are the number of nodes and edges in the edge-reduced
graph, d3= |E3|

|V 3| and |V N | is the number of virtual nodes in the edge reduced graph.

Dataset Subgraph |V 3| |E3| d3 |E2|/|E3| |VN |

eu-2005
Biclique 1,040,453 3,560,528 3.42 5.26 177,789
Dense 1,042,260 3,516,473 3.37 5.32 179,596

indochina-2004
Biclique 8,302,612 21,885,657 2.63 8.75 887,745
Dense 8,281,465 20,784,639 2.50 9.21 866,599

uk-2002
Biclique 20,543,057 52,298,694 2.54 5.58 2,022,571
Dense 20,663,762 51,247,927 2.48 5.70 2,143,276

arabic-2005
Biclique 26,242,000 76,447,369 2.91 8.25 3,497,920
Dense 26,193,220 74,071,714 2.82 8.52 3,449,140

sk-2005
Biclique 57,457,788 237,222,117 4.12 8.14 6,821,637
Dense 57,609,639 234,141,918 4.06 8.24 6,973,485
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of G3, using ES = 10 and carrying out 10 iterations. The table also shows the number of
virtual nodes (|VN |), the resulting average arity (d3), and the size gain estimation based on
the edge reduction, given by |E2|/|E3|. The edge reduction is signi�cant, from 5X to 9X,
whereas the increase in nodes is moderate, 7%�20%. As observed in Table 3.4, using DSM
improves edge-reduction ratio (|E2|/|E3|) compared with VNM, using a similar number of
virtual nodes (|V N |). Table 3.4 only shows results on Web graphs since the edge reduction
ratio on social networks is always less than 2.

3.3.2 Performance Evaluation with Out-neighbor Support

In this section we evaluate the space and time performance when supporting out-neighbor
queries, by applying DSM and then state-of-the-art compression on the resulting graph. For
the second phase we use BVLLP (version 3.4.0 fromWebGraph, which uses LLP ordering [16])
and AD (version 0.2.1 of their software, giving it the input in natural order [9]). We compare
our results with the best alternatives, including BV [16], AD [9], and GB [66]. Combining
DSM with GB was slightly worse than GB standalone, so we omit that combination. We
also omit the other representations [42] that are less competitive as we showed in section 3.2.

Table 3.5 shows the compression achieved with the combinations. We add the best result
from the previous section which used VNM (see Table 3.1) instead of DSM. The parameters
for each of the techniques are tuned to provide the best performance. We refer to BVLLP
as applying BV using LLP node ordering with parameters m = 100 and w = 7, where m
is the maximum reference chain and w is the window size (those parameter values improve
compression, but increase access times a little, as observed in Figure 3.4 (left)); ADl as using
AD with parameter l; and GBh as using GB with parameter h. For our representations we
add a bitmap of length |V | marking which nodes have a self-loop (as our technique otherwise
loses this information). We use RRR for compressing the self-loop bitmap. We compute bits
per edge (bpe) as the total amount of bits of the compressed graph plus the self-loop bitmap,
divided by E1.

We refer to DSM-ESx-Ty as using ES = x and iterating DSM for T = y times. We
tuned our combinations using DSM with BVm3w7 (DSM-ESx-Ty+BV), BVLLPm3w7 (DSM-
ESx-Ty+BVLLP, reordering nodes with LLP after edge factorization), and DSM with AD8

(DSM-ESx-Ty+AD8). Using DSM with BV (without reordering nodes), we found that the
best ES values were 30 for eu-2005 and 100 for indochina-2004, uk-2002 and arabic-2005;
while the best T value was 10. On the other hand, the best ES value when combining DSM
with AD were 10 for eu-2005 and arabic-2005; and 15 for indochina-2004 and uk-2002. Those
are the x values that correspond to ESx in the table.

Table 3.5 shows GB outperforms BV and AD by a wide margin. Among our representa-
tions, the one using T = 10 combined with AD8 gives the best results, improving the previous
result when we used VNM with AD. Overall, in most datasets, the best compression ratio
for accessing out-neighbors is achieved by GB128, but our technique is very close for datasets
uk-2002 and arabic-2005, and we slightly outperform it for indochina-2004. Only for the
smallest graph, eu-2005, is GB128 better by far. Nevertheless, as observed in Figure 3.4
(right), over transposed graphs our technique achieves better compression and access time
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Table 3.5: Compression performance in bpe, with support for out-neighbor queries. The best
performing one per graph is in bold and the second best in italics.

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005 sk-2005
BVLLPm100w7 3.74 1.47 2.37 1.78 1.92

ADl100 2.92 1.10 1.93 1.66 1.86
GBh128 1.70 1.07 1.71 1.29 1.43

VNM∗+ADl8 2.26 1.12 1.87 1.47 1.58
DSM-ESx-T10+BVm100w7 2.92 1.35 2.43 1.89 1.82

DSM-ESx-T10+BVLLPm100w7 2.60 1.22 2.06 1.48 1.65
DSM-ESx-T10+ADl8 2.19 1.04 1.81 1.39 1.58

than GBh, and the sum favors our techniques when supporting in- and out-neighbors (i.e.,
when storing both the direct and reverse graphs).

Table 3.6 displays the space and time performance for out-neighbor (Direct), in-neighbor
(Reverse) and in/out-neighbor (Direct/Reverse) queries. We show the results for di�erent
techniques for the Web graph eu-2005 using the best compression parameters for each tech-
nique. Tables 3.7, 3.8, 3.9, 3.10 show the performance for indochina-2004, uk-2002,
arabic-2005 and sk-2005 respectively.

Figure 3.4 (left) shows the space/time tradeo�s achieved using BV, AD, and GB (using
parameter value h = 8, 32, 64, 128), compared to using DSM before applying BV or AD.
When combining DSM with BV we used the optimum ES values mentioned above, and used
BV with parameters w = 7, and m = 3, 100, and 1000. When combining with AD we also
use the optimum ES value and test di�erent values of l for AD in the second phase. We
did not use a greater T because the edge reduction obtained did not compensate the extra
virtual nodes added. We compute the time per edge by measuring the total time, t, needed
to extract the out-neighbors of all vertices in G1 in a random order, and then dividing t by
the total number of recovered edges (i.e., |E1|).

We observe that both BV and AD improve when combined with DSM. In particular, the
combination of DSM with AD dominates BV, AD, and DSM plus BV. It achieves almost
the same space/time performance as GB, which dominates all the others, and surpasses it in
graph indochina-2004. Only in the smallest graph, eu-2005, does GB clearly dominate our
combination.

Figure 3.4 (right) shows the same results on the transposed graphs. Note that the DSM
preprocessing is the same for the original and the transposed graphs, so we preprocess the
graph once and then represent the reduced original and transposed graphs. On the transposed
graphs, we observe that the alternative that combines DSM with BV actually performs worse
than plain BV on large graphs. GB does not perform as well as on the original graphs, but on
eu-2005 it is the best alternative. AD behaves very well on uk-2002, but our best combination
outperforms it over the other datasets. In fact, our best combination is one of the two best
alternatives in all datasets.
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Table 3.6: Compression performance in bpe and random access time in microseconds for
neighbor queries, for eu-2005. The best performing alternatives considering space and access
time are in bold. We only include the best alternative for Direct/Reverse queries of DSM +
BV which is DSM + BVLLP.

Technique Direct Reverse Direct/Reverse
bpe time (us) bpe time (us) bpe time (us)

BVLLPm3w7 4.20 0.124 3.30 0.087 7.50 0.105
BVLLPm50w7 3.77 0.737 3.15 0.193 6.92 0.465
BVLLPm100w7 3.74 1.368 3.15 0.227 6.89 0.796

ADl4 4.40 0.124 3.69 0.096 8.09 0.110
ADl8 3.64 0.184 3.31 0.148 6.95 0.166
ADl25 3.10 0.439 3.03 0.371 6.13 0.405
ADl100 2.92 1.493 2.89 1.337 5.81 1.414
GBh16 3.02 0.301 2.61 0.461 5.63 0.382
GBh32 2.34 0.496 2.16 0.684 4.50 0.592
GBh64 1.93 0.841 1.90 1.093 3.83 0.968
GBh128 1.70 1.448 1.77 1.795 3.47 1.162

DSM-ES30-T10+BVm3w7 3.07 0.196 2.86 0.115 - -
DSM-ES30-T10+BVm50w7 2.93 0.387 2.77 0.175 - -
DSM-ES30-T10+BVm100w7 2.92 0.478 2.77 0.198 - -

DSM-ES30-T10+BVLLPm3w7 2.69 0.233 2.54 0.155 5.23 0.193
DSM-ES30-T10+BVLLPm50w7 2.61 0.376 2.49 0.201 5.10 0.288
DSM-ES30-T10+BVLLPm100w7 2.60 0.443 2.48 0.219 5.08 0.331

DSM-ES10-T10+ADl4 2.31 0.647 2.30 0.451 4.61 0.549
DSM-ES10-T10+ADl8 2.19 1.105 2.16 0.769 4.35 0.936
DSM-ES10-T10+ADl25 2.10 2.709 2.12 1.966 4.22 2.339
DSM-ES10-T10+ADl100 2.06 9.725 2.09 6.725 4.15 8.233

k2part - - - - 4.01 0.900
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Table 3.7: Compression performance in bpe and random access time in microseconds for
neighbor queries, for indochina-2004. The best performing alternatives considering space
and access time are in bold. We only include the best alternative for Direct/Reverse queries
of DSM + BV which is DSM + BVLLP.

Technique Direct Reverse Direct/Reverse
bpe time (us) bpe time (us) bpe time (us)

BVLLPm3w7 1.78 0.098 1.38 0.077 3.16 0.087
BVLLPm50w7 1.49 0.543 1.28 0.225 2.77 0.384
BVLLPm100w7 1.47 1.013 1.28 0.299 2.75 0.658

ADl4 2.13 0.080 1.27 0.056 3.40 0.068
ADl8 1.49 0.107 1.11 0.082 2.60 0.094
ADl25 1.23 0.245 1.00 0.195 2.23 0.220
ADl100 1.10 0.821 0.95 0.680 2.05 0.751
GBh16 1.62 0.218 1.45 0.353 3.07 0.286
GBh32 1.36 0.510 1.24 0.509 2.60 0.510
GBh64 1.18 0.807 1.12 0.810 2.30 0.809
GBh128 1.07 1.312 1.04 1.345 2.11 1.329

DSM-ES100-T10+BVm3w7 1.48 0.124 1.35 0.078 - -
DSM-ES100-T10+BVm50w7 1.35 0.236 1.27 0.128 - -
DSM-ES100-T10+BVm100w7 1.35 0.317 1.26 0.134 - -

DSM-ES100-T10+BVLLPm3w7 1.31 0.150 1.25 0.107 2.56 0.128
DSM-ES100-T10+BVLLPm50w7 1.22 0.272 1.18 0.157 2.40 0.214
DSM-ES100-T10+BVLLPm100w7 1.22 0.341 1.18 0.171 2.40 0.256

DSM-ES15-T10+ADl4 1.16 0.303 1.04 0.232 2.20 0.277
DSM-ES15-T10+ADl8 1.04 0.475 0.93 0.378 1.97 0.440
DSM-ES15-T10+ADl25 0.96 1.101 0.86 0.870 1.82 1.013
DSM-ES15-T10+ADl100 0.92 3.685 0.83 2.901 1.75 3.296

k2part - - - - 2.09 0.307
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Table 3.8: Compression performance in bpe and random access time in microseconds for
neighbor queries, for uk-2002. The best performing alternatives considering space and access
time are in bold. We only include the best alternative for Direct/Reverse queries of DSM +
BV which is DSM + BVLLP.

Technique Direct Reverse Direct/Reverse
bpe time (us) bpe time (us) bpe time (us)

BVLLPm3w7 2.81 0.131 2.21 0.110 5.02 0.121
BVLLPm50w7 2.40 0.623 2.07 0.233 4.47 0.429
BVLLPm100w7 2.37 1.120 2.06 0.276 4.43 0.699

ADl4 3.37 0.120 2.20 0.085 5.57 0.102
ADl8 2.64 0.175 1.96 0.125 4.60 0.150
ADl25 2.11 0.369 1.79 0.303 3.90 0.336
ADl100 1.93 1.250 1.73 1.036 3.66 1.142
GBh16 2.86 0.278 2.48 0.505 5.34 0.392
GBh32 2.27 0.450 2.10 0.724 4.37 0.589
GBh64 1.92 0.793 1.88 1.107 3.80 0.951
GBh128 1.71 1.405 1.77 1.798 3.48 1.603

DSM-ES100-T10+BVm3w7 2.68 0.183 2.45 0.116 - -
DSM-ES100-T10+BVm50w7 2.44 0.396 2.32 0.183 - -
DSM-ES100-T10+BVm100w7 2.43 0.517 2.32 0.238 - -

DSM-ES100-T10+BVLLPm3w7 2.21 0.228 2.10 0.157 4.31 0.192
DSM-ES100-T10+BVLLPm50w7 2.07 0.372 1.99 0.223 4.06 0.298
DSM-ES100-T10+BVLLPm100w7 2.06 0.443 1.99 0.262 4.05 0.352

DSM-ES15-T10+ADl4 2.00 0.446 1.89 0.327 3.89 0.386
DSM-ES15-T10+ADl8 1.81 0.713 1.73 0.522 3.54 0.618
DSM-ES15-T10+ADl25 1.67 1.551 1.60 1.224 3.27 1.387
DSM-ES15-T10+ADl100 1.61 4.760 1.55 4.021 3.16 4.390

k2part - - - - 3.40 0.542
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Table 3.9: Compression performance in bpe and random access time in microseconds for
neighbor queries, for arabic-2005. The best performing alternatives considering space and
access time are in bold. We only include the best alternative for Direct/Reverse queries of
DSM + BV which is DSM + BVLLP.

Technique Direct Reverse Direct/Reverse
bpe time (us) bpe time (us) bpe time (us)

BVLLPm3w7 2.17 0.102 1.55 0.078 3.72 0.091
BVLLPm50w7 1.78 0.615 1.45 0.222 3.23 0.419
BVLLPm100w7 1.76 1.667 1.44 0.268 3.20 0.721

ADl4 2.86 0.096 1.80 0.063 4.66 0.079
ADl8 2.07 0.123 1.64 0.100 3.71 0.111
ADl25 1.82 0.318 1.53 0.243 3.35 0.280
ADl100 1.66 1.008 1.51 0.844 3.17 0.924
GBh16 2.38 0.232 1.90 0.354 4.28 0.293
GBh32 1.83 0.400 1.60 0.544 3.43 0.472
GBh64 1.49 0.813 1.42 0.892 2.91 0.853
GBh128 1.29 1.356 1.31 1.534 2.60 1.446

DSM-ES100-T10+BVm3w7 2.06 0.152 1.77 0.082 - -
DSM-ES100-T10+BVm50w7 1.90 0.310 1.70 0.123 - -
DSM-ES100-T10+BVm100w7 1.89 0.423 1.70 0.139 - -

DSM-ES100-T10+BVLLPm3w7 1.58 0.192 1.43 0.118 3.01 0.155
DSM-ES100-T10+BVLLPm50w7 1.49 0.328 1.37 0.152 2.86 0.240
DSM-ES100-T10+BVLLPm100w7 1.48 0.368 1.37 0.160 2.85 0.264

DSM-ES10-T10+ADl4 1.50 0.469 1.35 0.312 2.85 0.391
DSM-ES10-T10+ADl8 1.39 0.781 1.26 0.561 2.65 0.672
DSM-ES10-T10+ADl25 1.31 1.822 1.20 1.399 2.51 1.609
DSM-ES10-T10+ADl100 1.28 5.904 1.17 5.136 2.45 5.519

k2part - - - - 2.90 0.562
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Table 3.10: Compression performance in bpe and random access time in microseconds for
neighbor queries, for sk-2005. The best performing alternatives considering space and access
time are in bold. We only include the best alternative for Direct/Reverse queries of DSM +
BV which is DSM + BVLLP. Performance for Reverse and Direct/Reverse queries using AD
and k2part do not appear because the corresponding software crashed.

Technique Direct Reverse Direct/Reverse
bpe time (us) bpe time (us) bpe time (us)

BVLLPm3w7 2.39 0.097 1.63 0.069 4.02 0.083
BVLLPm50w7 1.95 0.618 1.53 0.150 3.48 0.383
BVLLPm100w7 1.92 1.141 1.53 0.229 3.45 0.692

ADl4 2.91 0.084 x x x x
ADl8 2.39 0.130 x x x x
ADl25 1.99 0.294 x x x x
ADl100 1.86 1.050 x x x x
GBh16 2.14 0.223 1.72 0.442 3.86 0.333
GBh32 1.82 0.475 1.54 0.579 3.36 0.528
GBh64 1.59 0.712 1.43 0.905 3.02 0.805
GBh128 1.43 1.242 1.36 1.465 2.79 1.355

DSM-ES100-T10+BVm3w7 1.94 0.161 1.60 0.083 - -
DSM-ES100-T10+BVm50w7 1.83 0.280 1.53 0.106 - -
DSM-ES100-T10+BVm100w7 1.82 0.327 1.53 0.123 - -

DSM-ES100-T10+BVLLPm3w7 1.74 0.210 1.51 0.115 3.25 0.163
DSM-ES100-T10+BVLLPm50w7 1.66 0.365 1.47 0.147 3.13 0.256
DSM-ES100-T10+BVLLPm100w7 1.65 0.387 1.47 0.152 3.12 0.269

DSM-ES15-T10+ADl4 1.66 0.536 1.47 0.312 3.13 0.425
DSM-ES15-T10+ADl8 1.58 0.813 1.40 0.496 2.98 0.653
DSM-ES15-T10+ADl25 1.52 2.056 1.34 1.311 2.86 1.691
DSM-ES15-T10+ADl100 1.49 6.967 1.32 4.636 2.81 5.844

k2part - - - - x x
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Figure 3.4: Space/time e�ciency with out-neighbor queries for random access.
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Figure 3.5: Space/time e�ciency with out/in-neighbor queries using BV (WebGraph version
3.4.0), BVLLP (BV with LLP node ordering), AD, GB with direct and transposed graphs.

Figure 3.5 shows the space required to store the original plus the transposed graphs,
combined with the time for out-neighbor queries (which is very similar to that for in-neighbor
queries; these are run on the transposed graph). It can be seen that our new combinations
of DSM plus AD dominate most of the space/time tradeo�, except on eu-2005. However,
a data structure speci�c for out/in-neighbor queries (k2part [39]) o�ers comparable (and in
some graphs much better) time performance, but we outperform it in space, considerably on
some graphs.

Next we will consider a truly bidirectional representation for the reduced graph, obtaining
much less space with higher query time.
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Table 3.11: Compression performance when combining with k2tree. VNM-ESx-Ty + k2tree
and DSM-ESx-Ty+k2tree refer to applying VNM or DSM and then k2tree over the edge re-
duced graph without reordering the nodes of such graph, whereas DSM-ESx-Ty + k2treeBFS
refers to applying DSM and then reordering the nodes of the edge reduced graph using BFS
before applying k2tree. Best compression results are in bold.

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005 sk-2005

k2treeNAT 3.45 1.35 2.77 2.47 2.82
k2treeBFS 3.22 1.23 2.04 1.67 1.91

VNM-ES10-T5 + k2tree 2.76 1.38 2.45 1.78 1.80
VNM-ES10-T10 + k2tree 2.71 1.34 2.35 1.70 1.75
DSM-ES10-T5 + k2tree 2.76 1.36 2.40 1.76 1.80
DSM-ES10-T10 + k2tree 2.71 1.34 2.40 1.76 1.78
DSM-ES15-T5 + k2tree 2.65 1.27 2.28 1.67 1.77
DSM-ES15-T10 + k2tree 2.59 1.27 2.27 1.66 1.76
DSM-ES100-T5 + k2tree 2.56 1.16 2.13 1.52 1.60
DSM-ES100-T10 + k2tree 2.48 1.14 2.08 1.47 1.58
DSM-ES10-T5 + k2treeBFS 2.21 0.90 1.56 1.12 1.35
DSM-ES10-T10 + k2treeBFS 2.11 0.87 1.53 1.08 1.30
DSM-ES15-T5 + k2treeBFS 2.11 0.87 1.54 1.14 1.32
DSM-ES15-T10 + k2treeBFS 2.21 0.89 1.57 1.08 1.29
DSM-ES100-T5 + k2treeBFS 2.54 0.95 1.67 1.21 1.39
DSM-ES100-T10 + k2treeBFS 2.45 0.93 1.64 1.18 1.37

3.3.3 Performance Evaluation with Out/In-neighbor Support

In this section we combine the output of DSM and virtual nodes with a compression tech-
nique that supports out/in-neighbor queries: the k2tree [23]. We use the best current im-
plementation [23]. We apply dense subgraph discovery with parameters ES = 10, 15, 100
and T = 5, 10. In all cases process DSM is run over the graph in natural order. We de-
note k2treeBFS the variant that switches to BFS order on G3 when applying the k2tree
representation, and k2tree the variant that retains natural (URL-based) order.

Table 3.11 shows the compression achieved. We observe that the compression ratio is
markedly better when using BFS ordering. In particular the setting ES = 10, T = 10
and k2treeBFS is always the best. The space is also much better than that achieved by
representing the original plus transposed graphs in Section 3.3.2. We do not show results for
social networks because this scheme does not work well on them. The next chapter describes
a successful approach for social networks that uses bicliques and dense subgraphs represented
with compact data structures.

Figure 3.6 shows the space/time tradeo� when solving out-neighbor queries (in-neighbor
times are very similar). We include k2treeNAT [22], k2treeBFS [23], k2part [39], and disre-
gard other structures that have been superseded by the last k2tree improvements [41]. We
also include in the plots one choice DSM-ESx-Ty+AD from Section 3.3.2, which represents
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the direct and transposed graphs using DSM and T = 10 combined with AD using various
values of l. Finally, we also include the alternative DSM-ESx-Ty+BVLLP from Section 3.3.2,
for accessing direct and reverse access because this option provides the best access times and
compression is only slightly worse than the alternative with AD for the largest graphs.

All those structures are clearly superseded in space by our new combinations of DSM
and k2treeBFS or k2tree. Again, the combination with BFS gives much better results,
and using di�erent ES values yields various space/time tradeo�s. On the other hand, these
smaller representations reaching 0.9�1.6 bpe on the larger graphs are also signi�cantly slower,
requiring 5�20 µsec per retrieved neighbor.

3.4 Conclusions

This chapter presents two schemes for compressing Web graphs and supporting out-neighbor
and out/in-neighbor navigation. Both schemes are based on factoring edges of the original
graph using virtual nodes and applying other compression techniques over the reduced graph.
The �rst scheme uses bicliques (S∩C = ∅) and the second uses dense subgraphs (S∩C 6= ∅).
We show that both schemes provide competitive state-of-the-art compression e�ciency for
out-neighbor navigation when using BVLLP [16], and AD [9] over the reduced graph. We
also show that using dense subgraphs is slightly better than using bicliques. We observe that
applying BVLLP over the graph after factoring edges, that is, applying LLP node ordering
over the edge reduced graph and then the compression technique, improves compression and
provides very competitive random access time. On the other hand, applying AD [9] over the
reduced graph provides the best compression performance, but random access time is higher
than other alternatives.

In the context of out/in-neighbor navigation, we show that applying BFS node ordering
and k2tree [22] (DSM-ESx-Ty-k2treeBFS) over the reduced graph (using dense subgraphs)
provides the best compression e�ciency, although about twice as slow as the second best
compression approach (k2treeBFS).

We observe that the main characteristics that made Web graph compression methods
succeed, are much less pronounced in social networks. In particular, we found that our
algorithm for factoring edges based on dense subgraphs do not work well on social networks,
where the compression rate based on the number of edges after of the factoring is much lower
(between 1.18 and 1.32 in enron) than on Web graphs (between 5.26 and 9.21).
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Figure 3.6: Space/time e�ciency with out/in-neighbor queries using k2tree with natural
(k2treeNAT) and BFS (k2treeBFS) node ordering. DSM-ESx-Ty+k2tree and VNM-ESx-
Ty+k2tree refer to applying k2tree over the reduced graph without reordering nodes, whereas
in DSM-ESx-Ty+k2treeBFS and VNM-ESx-Ty+k2treeBFS alternatives nodes of the reduced
graph are reordered with BFS before applying k2tree. DSM-ESx-Ty+AD and DSM-ESx-
Ty+BVLLP are the corresponding alternatives for in/out-neighbor access from Section 3.3.2.
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Chapter 4

Representing Edges Implicitly

This chapter describes two compressed graph schemes representing edges implicitly using
compact data structures based on bitmaps and symbol sequences (described in Chapter 1).
Both structures support out/in-neighbor navigation as well as various mining queries.

We �rst present a compact representation using bicliques (i.e. S ∩ C = ∅). In this case,
our goal is to represent the |S| · |C| edges of a biclique H(S,C) in space proportional to
|S|+ |C|.

We present a second representation that improves previous structures using dense sub-
graphs where the overlapping between sets S and C is allowed (i.e., S ∩ C 6= ∅). Our goal
here is to represent the |S| · |C| edges of a dense subgraph H(S,C) in space proportional to
|S|+ |C| − |S ∩ C|.

These representations will not use virtual nodes, and their output is no longer a graph.
As a result, we cannot iterate on the discovery algorithm in order to �nd dense subgraphs
involving virtual nodes. Instead, the subgraphs are extracted iteratively from the graph,
forming a collection that is represented with bitmaps and sequences. Both structures obtain
better results by extracting bigger subgraphs �rst.

4.1 Extracting Bicliques

We extract bicliques using the algorithms described in Chapter 2, but we do not add self-
loops to each adjacency list as described in that chapter. We use three parameters: P , the
number of hashes in the clustering stage of the discovery, a list of ES values, where ES is the
minimum |S| · |C| size of bicliques found, and threshold. Parameters P and ES are the same
as before, yet now we use a decreasing list of ES values. The discovery algorithm continues
extracting subgraphs of a size ESi until the number of subgraphs drops below the threshold
on a single iteration; then ES is set to the next value in the list for the next iteration. Here
the number of iterations will depend on the number of extracted subgraphs on each iteration
and the threshold value. The goal of having the ES list in decreasing order is to avoid that
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extracting a small biclique precludes the identi�cation of a larger one, which gives a higher
bene�t.

4.2 Representing the Graph Using Bicliques

After we have extracted all the interesting bicliques from G(V,E), we represent G as the set
of bicliques plus a remaining graph. The compact representation is based on the following
de�nitions:

De�nition 4.2.1 Directed (Undirected) Bipartite Partition, DBP (UBP). Let G(V,E) be
directed (undirected). A bipartite partition of G consists of a class H =

⋃
Hr of bipartite

graphs Hr = H(Sr, Cr), and a remaining graph R(VR, ER), so that all Hr and R are edge-
disjoint and G = H ∪ R.

De�nition 4.2.2 Undirected plus Directed Bipartite Partition, UDBP. Let G(V,E) be a
directed graph. We derive from G an undirected graph Gu(Vu, Eu), containing an undirected
edge per pair of reciprocal edges inG. Now consider the UBP ofGu into Hu and Ru(VRu , ERu).
De�ne dup(E) as the set of directed edges formed by a pair of reciprocal edges per undirected
edge in E. Then we call Gd(Vd, E−dup(Eu−ERu)) the remaining directed graph of G. Now
consider the DBP of Gd into Hd and Rd. The UDBP of G is formed by Hu, Hd, and Rd.

De�nition 4.2.3 We de�ne the density of a dense subgraph considering the connections
inside a group [5]. In this context, H(W,E) is de�ned to be γ-dense if |E|

|W |(|W |−1)/2 ≥ γ where
W = S ∪ C

Note that DBP and UBP aim at representing a graph as a set of bicliques, regarded as
directed or undirected. A large biclique H(S,C) will allow us to replace |S| · |C| edges by just
|S|+ |C| edges and a new node. UDBP is more sophisticated, and aims to exploit reciprocity
in directed graphs, that is, reciprocal edges. It �rst looks for reciprocal bicliques, and only
then for directed bicliques. Whether UDBP is better or worse than plain DBP on a directed
graph will depend on its degree of reciprocity.

4.2.1 Compact Representation of H

Let H = {H1, . . . , HN} be the bicliques found in either of the previous de�nitions. We
represent H as two sequences of integers with corresponding bitmaps. Sequence Xs with
bitmap Bs represent the sequence of sources of the communities and sequence Xc with bitmap
Bc represent the respective centers. More precisely, we have Xs = xs(1)xs(2)...xs(r)...xs(N),
where xs(r) = s1...sk represents the set Sr of Hr = (Sr, Cr), si ∈ Sr, si < si+1 for 1 ≤ i < k,
and Bs = 10|S1|−1...10|SN |−11. In a similar way, we have Xc = xc(1)xc(2)...xc(r)...xc(N),
where xc(r) = c1...cm represents the set Cr, cj ∈ Cr, cj < cj+1 for 1 ≤ i < m, and Bc =
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Figure 4.1: Graph and compact representation.

10|C1|−1...10|CN |−11. Figure 4.1 shows an example, where (a) shows the compact representation
of the set of bicliques (H ).

We represent integer sequences and bitmaps with compact data structures that support
rank/select/access operations: we use Wavelet Trees (WTs) [67], using the implementation
without pointers, for sequences and an uncompressed representation [37] for bitmaps, for a
total space of |X|(H0(X) + 1) + o(|X| log σ), where σ is the number of vertices in H. Note
that |X| is the sum of the sizes of the communities in H, which can be much less than the
number of edges in the subgraph it represents.

We answer out/in-neighbor queries with the algorithms de�ned in Figure 4.2. Their com-
plexity is O((|output| + 1) log σ), which is essentially optimal up to a factor of O(log σ).
Figure 4.3 presents the algorithms for getting the centers and sources of a given vertex x.
Figure 4.4 provides the algorithms for knowing if a vertex x participates as a center or a
source, Figure 4.5 gives the algorithm for getting just the number of bicliques where vertex
x participates as a source or center, Figure 4.6 gives the algorithms for listing the members
of community x and the bicliques at a distance = 1, and Figure 4.7 gives the algorithms for
enumerating all biliques with corresponding sizes and their densities.

Table 4.1 gives the time complexities achieved. Most of them are, again, optimal up to
factor O(log σ). The exception is Q7, which can be costlier due to repeated results.
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out-neighbors (u)
occur ← rankXs(u, |Xs|)
for i← 1 to occur do
y ← selectXs(u, i)
p← rankBs(1, y)
s← selectBc(1, p)
e← selectBc(1, p+ 1)− 1
for j ← s to e do
out.add(accessXc(j))

end for
end for

in-neighbors (u)
occur ← rankXc(u, |Xc|)
for i← 1 to occur do
y ← selectXc(u, i)
p← rankBc(1, y)
s← selectBs(1, p)
e← selectBs(1, p+ 1)− 1
for j ← s to e do
in.add(accessXs(j))

end for
end for

Figure 4.2: Algorithms for out/in-neighbors.

Q1: Get the centers of x.
start← selectBc(1, x)
end← selectBc(1, x+ 1)− 1
for i← start to end do
centers.add(accessXc(i))

end for

Q2: Get the sources of x.
start← selectBs(1, x)
end← selectBs(1, x+ 1)− 1
for i← start to end do
sources.add(accessXs(i))

end for

Figure 4.3: Algorithms for getting Centers and Sources of x.

Q3: Get bicliques where u participates as
a source.
occur ← rankXs(u, |Xs|)
for i← 1 to occur do
y ← selectXs(u, i)
p← rankBs(1, y)
comms.add(p)

end for

Q4: Get bicliques where u participates as
a center.
occur ← rankXc(u, |Xc|)
for i← 1 to occur do
y ← selectXc(u, i)
p← rankBc(1, y)
comms.add(p)

end for

Figure 4.4: Algorithms for getting bicliques where x participates as a source or center.

Q5: Get the number of bicliques where u participates as a source and center.
ncs← rankXs(u, |Xs|)
ncc← rankXc(u, |Xc|)

Figure 4.5: Algorithm for getting number of bicliques where x participates.
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Q6: Enumerate the members of x.
ss← selectBs(1, x)
es← selectBs(1, x+ 1)− 1
for i← ss to es do
members.add(accessXs(i))

end for
sc← selectBc(1, x)
ec← selectBc(1, x+ 1)− 1
for i← sc to ec do
members.add(accessXc(i))

end for

Q7: Enumerate the bicliques at distance
1 of x.
centers← Q1(x)
for c in centers do
comms.add(Q3(c))

end for

Figure 4.6: Algorithms for listing the members of x, and the bicliques at distance 1.

Q8: Enumerate all bicliques with their sizes.
nc← rankBs(1, |Bs|)
for i← 1 to nc do
ss← selectBs(1, i+ 1)− selectBs(1, i)
sc← selectBc(1, i+ 1)− selectBc(1, i)
size_list.add(ss+ sc)

end for

Q9: Enumerate all bicliques with their densities.
nc← rankBs(1, |Bs|)
for i = 1 to nc do
sources← selectBs(1, i+ 1)− selectBs(1, i)
centers← selectBc(1, i+ 1)− selectBc(1, i)
edges← sources · centers
nodes← sources+ centers
densities.add( edges

nodes·(nodes−1)/2)
end for

Figure 4.7: Algorithms for enumerating bicliques with sizes and densities.
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out-neighbors (u)
if accessB2(u) = 0 then
x← rankB2(0, u)
start← selectB1(1, x)
end← selectB1(1, x+ 1)− 1
for i← start to end do
out.add(accessA(i))

end for
end if

in-neighbors (u)
occur ← rankA(u, |A|)
for i← 1 to occur do
y ← selectA(u, i)
p← rankB1(1, y)
in.add(selectB2(0, p)

end for

Figure 4.8: Algorithms getting out/in-neighbors of x in R.

Query Time complexity
Q1/Q2 O(|output| · log σ)
Q3/Q4 O((|output|+ 1) log σ)
Q5 O(log σ)
Q6 O(|output| log σ))
Q7 O(|output| log σ) . . . O(|Q1| · |output| log σ)
Q8/Q9 O(|output|)

Table 4.1: Time complexity for community queries.

Compact Representation of R

We de�ne a sequence of integers A and two bitmaps B1 and B2 for representing R(VR, ER).
Sequence A is de�ned as A = a(1)...a(i)...a(N), where |A| = |ER|, a(i) is the i-th nonempty
direct adjacency list of R, and N is the total number of vertices with at least one edge in R.
Bitmap B1 is 10|a(1)|−1...10|a(N)|−1, so |B1| = |ER|. B2 is a bitmap such that B2[i] = 1 i�
vertex i does not have out-neighbors and |B2| = |VR|. Figure 4.1 (b) shows an example. The
space using WTs is |A|(H0(A) + 1) + |σ|+ o(|A| log σ), where σ = |VR|. We answer neighbor
queries on R as described in Figure 4.8.

On directed graphs, in-neighbors and out-neighbors are found in time O((|output| +
1) log σ). On undirected graphs we choose arbitrarily to represent each edge {u, v} as (u, v) or
(v, u). Consequently, �nding the neighbors of a node requires carrying out both algorithms.

To carry out out/in-queries on the whole graph, we must query H and R (for UBP or
DBP partitions) or Hu, Hd and Rd (for UDBP partitions), and merge the results. Biclique
queries are carried out only on H (or Hu and Hd for UDBP, then merging the results). Our
pseudocodes on X and B addressed the directed case. Those for communities representing
undirected graphs are very easy to derive.
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4.2.2 Space/time Evaluation

We evaluate our compact data structures supporting out/in-neighbor and community queries.
We are interested in space/time requirements in terms of the community graph H (or Hu+Hd),
the remaining graph R, and the complete graph G = H ∪ R.

We compare space/time e�ciency using the representations below. We refer as WT-N-b
to representing sequence X with wavelet trees and bitmaps with RG [64], and as WT-N-r
to using wavelet trees for X and bitmaps compressed with RRR [99]. N is the sampling
parameter used for bitmap implementations (if left as a variable, it gives a space/time trade-
o�). We will not give the results for using GMR [63] on H because the space achieved is not
competitive.

T4 WT-N-b (H) + Re-Pair GMR (R)
T5 WT-N-r (H) + Re-Pair GMR (R)
T6 WT-N-b (H) + k2tree (R)
T7 WT-N-r (H) + k2tree (R)
T8 WT-N-b (H) + WT-64-b (R)
T9 WT-N-b (H) + WT-64-r (R)
T10 WT-N-r (H) + WT-64-b (R)
T11 WT-N-r (H) + WT-64-r (R)

We use the de�nitions given on this Section over Web graphs and social networks of
Table 2.1. We use UBP with reciprocal edges to represent the (undirected) dblp-2011 graph,
DBP on Web graphs and Enron, and UDBP for LiveJournal graphs.

Techniques T4�T11 support biclique queries on H and out/in-neighbor queries on H +

R. We measure compression on G by computing bpe = bits(H)+bits(R)
edges(H)+edges(R)

and access time
query_time = query_time(H) + query_time(R).

Table 4.2 shows the compression e�ciency using the best schemes for Web graphs and
Table 4.3 shows the e�ciency in social networks.

We compute bpe(H) = bits(H)
edges(H)

. When using UDBP we show bpe(Hu) and bpe(Hd) sepa-
rately. We observe higher compression on Web graphs than on social networks and better
results using compressed bitmaps (WT-64-r). We also show time e�ciency for neighbor and
di�erent biclique queries in Table 4.4 (for UDBP the times for Hu and Hd must be added
together). As it can be seen, all biclique queries are supported within a few microseconds.

Figure 4.9 shows the space and time on Web graphs and social networks, considering
both partitions H (or Hu + Hd) and R, and out/in-neighbor queries. On Web graphs, we
include the results using k2treeNAT (T2) and VNM + k2tree (T3), recall Figure 3.3. While
in general T2 and T3 dominate the space/time tradeo�, variant T7 (WTs on H and k2tree on
R) is competitive in some cases. Nevertheless, we remind that T4�T11 additionally support
biclique queries.

On social networks, on the other hand, we achieve better results using techniques T4�T11
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Table 4.2: Compression performance for Web graphs in bpe, compared to other techniques.
WT-64-r(H) refers to using sequences represented by Wavelet Trees (without pointers) using
compressed bitmaps (with sampling 64). Best compression results are in bold.

Compression eu-2005 uk-2002 arabic-2005
k2treeNAT 3.45 2.77 2.47
VNM-ES10-T10+k2tree 2.71 2.35 1.70
WT-64-r(H) + k2tree(R) 3.28 3.10 2.30

Table 4.3: Compression performance for social networks in bpe, compared to other tech-
niques. WT-64-r(H) refers to using sequences represented by Wavelet Trees (without point-
ers) using compressed bitmaps (with sampling 64). Best compression results are in bold.

Compression enron dblp-2011 LiveJournal-SNAP
k2treeLLP 10.31 9.83 17.35
MPk 17.02 8.48 13.25
WT-64-r(H)+k2tree(R) 10.15 9.90 16.81
WT-64-r(H) + MPk(R) 15.51 8.45 13.41
WT-64-r(H)+WT-64-r(R) 10.42 12.10 15.20
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Figure 4.9: Space/time e�ciency with out/in-neighbors queries on H+R (using only bicliques)
for representations T2�T11.
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Table 4.4: Times for biclique queries (usecs) on Web graphs and social networks representing
H with compact data structures.

Queries eu-2005 uk-2002 arabic-2005 LiveJournal LiveJournal
Directed Undirected

Out WT-32-b 6.70 8.71 8.62 12.69 10.16
Out WT-32-r 9.66 12.02 12.03 18.22 14.39
In WT-32-b 6.84 8.62 8.68 13.01 13.25
In WT-32-r 9.44 11.51 11.89 18.88 18.93
Q3 WT-32-b 3.15 6.07 5.12 2.56 2.47
Q3 WT-32-r 3.53 6.87 6.05 2.77 2.59
Q4 WT-32-b 1.99 3.69 2.42 2.12 2.25
Q4 WT-32-r 2.39 4.40 3.04 2.59 2.71
Q5 WT-32-b 2.22 4.10 2.78 3.21 3.27
Q5 WT-32-r 2.61 4.86 3.43 3.68 3.80
Q6 WT-32-b 7.17 8.69 10.14 8.81 7.85
Q6 WT-32-r 8.83 11.79 13.18 11.75 10.46
Q7 WT-32-b 119.21 147.88 233.56 74.71 58.24
Q7 WT-32-r 163.02 199.47 303.11 90.70 78.95

than using techniques T1�T3 (we include T2, the best performing technique of Figure 3.3, in
Figure 4.9). Variant T11 provides the least space, whereas variants T9 and T4 provide other
relevant space/time tradeo�s. However, the best space compression performance is not clear
for social networks, since as seen in Table 4.3, it depends on the graph. MPk (we used the
improved implementation of Claude and Ladra [39]) is the best for LiveJournal-SNAP, WT-
64-r(H)+MPk(R) is the best for dblp-2011, and WT-64-r(H)+k2tree(R) for enron. Figure 4.9
also shows the space and time on LiveJournal-SNAP, where MPk and WT-64-r(H)+MPk(R)
provide the best performance.

4.3 Extracting Dense Subgraphs

In this section we extract dense subgraphs using the algorithms described in Section 2 (i.e.
dense subgraphs, which are described by bicliques with set overlaps, S∩C 6= ∅). In this case,
we add self-loops edges (i.e. edges of type (u, u)) on each adjacency list before applying the
discovery algorithm to be able to capture cliques. We use the same parameters as the ones
we use when we extract bicliques (ES, P , and threshold).

4.4 Representing the Graph using Dense Subgraphs

After we have extracted all the interesting dense subgraphs from G(V,E), we represent G as
the set of dense subgraphs plus a remaining graph.
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Figure 4.10: Dense subgraph representation

De�nition 4.4.1 Let G(V,E) be a directed graph, and let H(Sr, Cr) be edge-disjoint dense
subgraphs of G. Then the corresponding dense subgraph representation of G is (H,R), where
H = {H(S1, C1), . . . , H(SN , CN)} and R = G−

⋃
H(Sr, Cr) is the remaining graph.

Figure 4.10(a) shows the adjacency list representation for the graph presented in Fig-
ure 2.4, where we have already added the self-loops. We also show a dense subgraph, and a
remaining subgraph. Figure 4.10(d) shows our compact representation.

Compact Representation of H

Let H = {H1, . . . , HN} be the dense subgraph collection found in the graph, based on Def-
inition 4.4.1. We represent H as a sequence of integers X with a corresponding bitmap B.
Sequence X = X1 : X2 : . . . : XN represents the sequence of dense subgraphs and bitmap
B = B1 : B2 : . . . BN is used to mark separations in each subgraph. We now describe how a
given Xr and Br represent the dense subgraph Hr = H(Sr, Cr).
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Input: Subsets S1 . . . SN and C1 . . . CN
Output: Sequence X and Bitmap B
X ← ε
B ← ε
for i← 0 to N do
L← Si − Ci
M ← Si ∩ Ci
R← Ci − Si
X ← X : L : M : R
B ← B : 10|L|10|M |10|R|

end for
return X,B

Figure 4.11: Algorithm for building sequence X and bitmap B

We de�ne Xr and Br based on the overlapping between the sets S and C. Sequence
Xr will have three components: L, M , and R, written one after the other in this order.
Component L lists the elements of S−C. ComponentM lists the elements of S∩C. Finally,
component R lists the elements of C − S. Bitmap Br = 10|L|10|M |10|R| gives alignment
information to determine the limits of the components. In this way, we avoid repeating
nodes in the intersection, and have su�cient information to determine all the edges of the
dense subgraph. Figure 4.10(d) shows this representation for our example, which has just
one dense subgraph. Algorithm in Figure 4.11 describes how X and B are built.

We compress the graph G = H∪R, using sequence X and bitmap B for H. For R we use
some bidirectional compressed graph representation.

To support our query algorithms, X and B are represented with compact data struc-
tures for sequences that implement rank/select/access operations. We use WTs [67] for
sequence X and compressed bitmap representation RRR [99] for bitmap B. The total space
is |X|H0(X) + o(|X| log σ) + |X|H0(B) bits, where σ ≤ |V | is the number of vertices in
subgraph H. The |X|H0(X) + o(|X| lg σ) owes to the wavelet tree representation, whereas
|X|H0(B)+o(|X|) owes to the bitmap B. Note that |X| is the sum of the number of nodes of
the dense subgraphs in H, which can be much less than the number of edges in the subgraph
it represents.

4.4.1 Neighbor Queries

We answer out/in-neighbor queries as described by algorithms in Figures 4.12 and 4.13.
Their complexity is O((|output|+ 1) log σ), which is away from optimal by a factor O(log σ).
To exemplify the treatment of (u, u) edges, these algorithms always remove them before
delivering the query results (as explained, more complex management is necessary if the
graph actually contains some of those edges). Note this �nds only the edges represented
in component H; those in R must be also extracted, using the out/in-neighbor algorithm
provided by the representation we have chosen for it.
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Input: Sequence X, Bitmap B and vertex u
Output: List of out-neighbors of u
out← ε
occur ← rankX(u, |X|)
for i← 1 to occur do
y ← selectX(u, i)
p← selectB(0, y + 1)
o← p− y { = rankB(1, p) }
m← o mod 3
if m = 1 then
s← selectB(1, o+ 1)− (o+ 1) + 1
e← selectB(1, o+ 3)− (o+ 3)

else if m = 2 then
s← selectB(1, o)− o+ 1
e← selectB(1, o+ 2)− (o+ 2)

else
s← 1
e← 0

end if
for j ← s to e do
d← accessX(j)
if ( d 6= u ) then
out← out : d

end if
end for

end for
return out

Figure 4.12: Algorithm for getting out-neighbors of u

We explain how the out-neighbors algorithm works; the case of in-neighbors is analogous.
Using selectX(u, i) we �nd all the places where node u is mentioned in X. This corresponds
to some Xr, but we do not now where. Then we analyze B to determine whether this
occurrence of u is inside component L, M , or R. In cases L and M , we use B again to
delimit components M and R, and output all the nodes of Xr in those components. If u is
in component R, instead, there is nothing to output in the case of out-neighbor queries.

An interesting advantage of our compressed structure is that it enables the retrieval of the
actual dense subgraphs found on the graph. For instance, we are able to recover cliques and
bicliques in addition to navigating the graph. Algorithm in Figure 4.14 shows how easy it
is to recover all cliques and bicliques stored in the compressed structure. This information
can be useful for mining and analyzing Web and social graphs. The time complexity is
O(|output| · log σ).

Note that we only report, in this simpli�ed algorithm, pure cliques and bicliques. A slight
modi�cation would make the algorithm extract the clique S∩C that is inside dense subgraph
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Input: Sequence X, Bitmap B and vertex u
Output: List of in-neighbors of u
in← ε
occur ← rankX(u, |X|)
for i← 1 to occur do
y ← selectX(u, i)
p← selectB(0, y + 1)
o← p− y { = rankB(1, p) }
m← o mod 3
if m = 2 then
s← selectB(1, o− 1)− (o− 1) + 1
e← selectB(1, o+ 1)− (o+ 1)

else if m = 0 then
s← selectB(1, o− 2)− (o− 2) + 1
e← selectB(1, o)− o

else
s← 1
e← 0

end if
for j ← s to e do
d← accessX(j)
if ( d 6= u ) then
in← in : d

end if
end for

end for
return in

Figure 4.13: Algorithm for getting in-neighbors of u
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Table 4.5: % of edges belonging to bicliques and dense subgraphs (dense) with respect to
the total number of edges. Also the sequence length ratio of representing dense subgraphs
(X) and bicliques (S and C).

Dataset %Edges bicliques %Edges dense |X|/(|S|+ |C|)
eu-2005 91.30 91.86 0.90
indochina 93.29 94.51 0.91
uk-2002 90.80 91.41 0.92
arabic-2005 94.16 94.61 0.85
sk-2005 94.83 95.29 0.92
enron 46.28 48.47 0.95
dblp-2011 49.88 65.51 0.94
LiveJournal-SNAP 53.77 56.37 0.95
LiveJournal2008 54.17 56.51 0.94
enwiki-2013 62.31 64.43 0.95

H(S,C), or the bicliques (S − C,C) or (S,C − S).

Another interesting query could be computing the density of the dense subgraphs stored
in H. Let us use a de�nition given by De�nition 4.2.3. The density of a clique is always 2.
The density of a biclique (S,C) is 2·|S|·|C|

(|S|+|C|)(|S|+|C|−1) . Algorithm of Figure 4.15 computes the
density of all dense subgraphs and reports all dense subgraphs with a density over a given γ.

Some of other possible mining queries are the following:

• Get the number of cliques where node u participates. We just count the number of times
node u is in the M component of X. The algorithm is similar to, say, the Algorithm of
Figure 4.12, yet it just identi�es the component where u is and it increments a counter
whenever this component is M .

• Get the number of bicliques where node u participates. This is basically the same as
the previous query, yet this time we count when node u is in components L or R. If u
is in L it is a source and if it is in R it is a center.

• Get the number of subgraphs. We just compute the number of 1s in B and divide this
number by 3. This is because for every dense subgraph in X there are 3 1s in B, as
shown in Figure 4.10.

4.4.2 Dense Subgraph Mining E�ectiveness

We experiment with graphs presented in Table 2.1.

We used our dense subgraph discovery algorithm with parameters ES =
500, 100, 50, 30, 15, 6, discovering larger to smaller dense subgraphs. We used threshold = 10
for eu-2005, enron, dblp-2011, and enwiki-2013 threshold = 100 for indochina-2004, uk-2002,
LiveJournal-2008 and LiveJournal-SNAP and threshold = 500 for arabic-2005.
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Input: Sequence X, bitmap B and vertex u
Output: List of allcliques and allbicliques
allcliques← 〈〉
allbicliques← 〈〉
n← rankB(1, |B|)
cur ← 1, p1← 0
while (cur < n) do
p2← selectB(1, cur + 1)
p3← selectB(1, cur + 2)
p4← selectB(1, cur + 3)
if (p2− p1 = 1 ∧ p4− p3 = 1) then
s← p2− (cur + 1) + 1
e← p3− (cur + 2)
clique← ∅
for (i← s to e) do
clique← clique ∪ {accessX(i)}

end for
allcliques.add(clique)

else if (p3− p2 = 1) then
s← p1− cur + 1
m← p2− (cur + 1)
e← p4− (cur + 3)
biclique.S ← ∅, biclique.C ← ∅
for (i← s to m) do
biclique.S ← biclique.S ∪ {accessX(i)}

end for
for (i← m+ 1 to e) do
biclique.C ← biclique.C ∪ {accessX(i)}

end for
allbicliques.add(biclique)

else
other type of dense subgraph

end if
cur ← cur + 3, p1← p4

end while
return allcliques, allbicliques

Figure 4.14: Algorithm for listing all cliques and bicliques
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Input: Sequence X, bitmap B and density γ
Output: List ls of dense subgraphs with density at least γ
ls← 〈〉
n← rankB(1, |B|)
cur ← 1, p1← 0
while (cur < n) do
p2← selectB(1, cur + 1)
p3← selectB(1, cur + 2)
p4← selectB(1, cur + 3)
V ← p4− p1− 3
E ← (p3− p1− 2) · (p4− p2− 2)
g ← E/(V · (V − 1)/2)
if (g ≥ γ) then
ls.add((cur + 2)/3)

end if
cur ← cur + 3, p1← p4

end while
return ls

Figure 4.15: Algorithm for listing dense subgraphs with density > γ

Table 4.5 also gives some performance �gures on our dense subgraph mining algorithm.
We show the fraction of edges represented in bicliques versus the edges captured in dense
subgraphs. We also show the ratio of the length of the sequence representing dense subgraphs
(X), with respect to the length of the sequences used with bicliques (|S| + |C|). On Web
graphs (where we give the input to the mining algorithm in natural order), 91%�95% of
the edges are captured in dense subgraphs, which would have been only slightly less if we
had captured only bicliques, as in Buehrer and Chellapilla [29]. Finding dense subgraphs,
however, captures the structure of social networks much better than just �nding bicliques,
improving the percentage of edges captured from 46%�55% to 48%�65%. Note also that the
fraction of edges in dense subgraphs is much lower on social networks, which anticipates the
well-known fact that Web graphs are more compressible than social networks. The ratio in
the length of the sequences in Web graphs show that using dense subgraphs allows capturing
a similar number of edges using a shorter sequence than using bicliques. In the case of social
networks the di�erence is not much, but dense subgraphs still capture more edges than using
only bicliques.

Table 4.6 complements this information with the fraction of cliques, bicliques, and other
dense subgraphs, with respect to the total number of dense subgraphs found, as well as their
average size. This shows that pure cliques are not very signi�cant, and that more than half
of the times the algorithm is able to extend a biclique to a more general dense subgraph,
thereby improving the space usage.

The following experiments consider the �nal size of our representation. For the component
H we represent sequence X using WT or GMR, and for bitmap B we use RG or RRR. These
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Table 4.6: Fraction and average size of cliques, bicliques, and the rest of dense graphs found.

Dataset Cliques Bicliques Dense subgraphs
fraction size fraction size fraction size

eu-2005 7.19% 7.44 46.67% 18.67 46.14% 20.73
indochina-2004 6.53% 5.18 34.55% 22.47 58.92% 20.54
uk-2002 3.56% 4.47 42.16% 17.84 54.28% 21.92
arabic-2005 3.76% 4.32 42.09% 23.05 54.15% 22.44
sk-2005 2.40% 4.21 58.07% 23.26 39.52% 24.92
enron 0.07% 3.33 67.20% 13.09 32.73% 20.75
dblp-2011 18.22% 3.95 27.76% 8.37 54.02% 6.91
LiveJournal-SNAP 2.41% 3.47 57.99% 9.64 39.60% 10.53
LiveJournal-2008 2.37% 3.44 59.77% 9.75 37.86% 10.47
enwiki-2013 0.62% 3.30 68.73% 15.12 30.65% 11.14

implementations are obtained from the library libcds1. In particular, we used version 10.0.
For WT we used the variant �without pointers�. For the component R we use either k2tree
[23] or MPk [39], the improvement over the proposal of Maserrat and Pei [85]. Although we
use the most recent version of the k2tree, we use it with natural node ordering to maintain
consistency between the node names in H and R. An alternative would have been to use
BFS ordering for both, that is, reordering before applying the dense subgraph mining, but
this turned out to be less e�ective.

Table 4.7 shows how the compression evolves depending on parameter ES, on graph dblp-
2011. ES values in Tables 4.7 and 4.8 represent the last value we consider in the ES list. For
instance, ES = 100, in Table 4.7, means that we use the sequence of values ES = 500, 100.
As ES decreases, we capture more dense subgraphs, yet they are of lower quality, thus their
space saving decreases. To illustrate this we show the length |X| =

∑
r |Sr|+ |Cr|− |Sr∩Cr|,

the number of bytes used to represent X and B (�|H| in bytes�, using WT for X and RRR
for B), and the total edges represented by H (RE =

∑
r |Sr| · |Cr|). All these indicators

grow as ES decreases. Then we show the size of R in bytes (using representation MPk,
with the best k for R), which decreases with ES. As explained, what also decreases is
RE/|X|, which indicates the average number of edges represented by each node we write
in X. Finally, we write the overall compression performance achieved in bpe, computed as
bpe = (bits(H) + bits(R))/|E|. It turns out that there is an optimum ES value for each
graph, which we use to maximize compression.

Tables 4.8 and 4.9 compare the compression we achieve with the alternatives we have
chosen for Web and social graphs. We show the last ES value used for discovering dense
subgraphs, the ratio RE/|X|, and the compression performance in bpe obtained on Web and
social graphs. We use WT and RRR where the sampling parameter is 64 for compressing
H. For compressing R, we use k2tree for Web graphs and MPk for social networks, which
gave the best results (with enron and enwiki-2013, where using k2tree on R provides better
compression than MPk, as displayed).

1Available at https://github.com/fclaude/libcds
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Table 4.7: Evolution of compression as ES decreases, for the dblp-2011 dataset.

ES
500 100 50 30 15

|X| 6.6K 75.8K 232.6K 456.8K 1.05M
|H| in bytes 47.4K 168.0K 487.9K 950.9K 2.20M
RE 165.8K 636.0K 1.24M 1.92M 3.25M
|R| in bytes 7.05M 6.88M 6.70M 6.50M 6.00M
RE/|X| 25.12 8.38 5.33 4.20 3.09
bpe 8.47 8.41 8.58 8.89 9.79

Table 4.8: Compression performance for Web graphs, compared to other techniques. DSM
refers to DSM-ES10-T10+k2tree. Values in bold represent the best compression in bpe.

G = H ∪ R k2treeBFS DSM
Dataset ES RE/|X| bpe bpe bpe

eu-2005 6 7.29 2.67 3.22 2.11
indochina-2004 6 14.17 1.49 1.23 0.87
uk-2002 6 8.50 2.52 2.04 1.53
arabic-2005 6 11.56 1.85 1.67 1.08
sk-2005 6 11.22 2.12 1.91 1.55

Table 4.9: Compression performance for social networks, compared to other techniques.
BVLLP refers to BV adapted to support out/in-neighbor queries using the LLP node ordering
of the graphs. k2tree refers to applying k2tree on the remainder graph without applying
another node ordering algorithm. k2treeLLP refers to applying k2tree on the graphs using
LLP node ordering. Values in bold represent the best compression in bpe.

G = H ∪ R MPk k2treeLLP BVLLP
Dataset ES RE/|X| bpe bpe bpe bpe

enron (with k2tree) 6 2.06 10.07 17.02 10.31 18.30
enron 6 2.06 15.42 17.02 10.31 18.30
dblp-2011 100 8.38 8.41 8.48 9.83 10.13
LiveJournal-SNAP 500 12.66 13.02 13.25 17.35 17.22
LiveJournal-2008 100 4.88 13.04 13.35 13.63 17.84
enwiki-2013 (with k2tree) 6 1.88 14.25 18.73 14.65 23.30
enwiki-2013 6 1.88 15.98 18.73 14.65 24.74
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We compare the results with standalone k2treeBFS on Web graphs, k2treeLLP on enron
and enwiki-2013, and MPk on the other social networks.

Our technique does not obtain space gains on Web graphs compared to k2treesBFS. More-
over, the variant DSM-ES10-T10+k2treeBFS of Section 3.3.3, also included in the table, is
even better.

On social networks, the gains of our new technique are more modest with respect to
MPk. However, we show next that our structure is faster too. Moreover, there are no other
competing techniques as on Web graphs. Our development of Section 3.3.3 does not work
at all (it reduces less than 1.5% of edges, while increasing nodes when introducing virtual
ones). The next best result is obtained with BV (which is more e�ective than GB and AD
for social networks).

We note that BV is unable to retrieve in-neighbors. To carry out a fair comparison, we
follow BV authors suggestion [16] for supporting out-in/neighbor queries. They suggest to
compute the set Esym of all symmetric edges, that is, those for which both (u, v) and (v, u)
exist. Then they consider the graph Gsym = (V,Esym) and Gd(V,E − Esym), so that storing
Gsym, Gd, and the transpose of Gd enables both types of queries. The space we report in
Table 4.9 for BV considers this arrangement and, as anticipated, it is not competitive.

4.4.3 Space/time Performance

Figure 4.16 shows the space/time tradeo�s achieved on dblp-2011 and LiveJournal-SNAP
graphs considering only the H component. We test di�erent ES parameters. We use WT
and GMR for the structures that represent X and RRR for B. These are indicated in the
plots as WT-r and GMR-r. The sampling parameter for RRR is 16, 32, and 64, which yields
a line for each combination. Along this section we measure out-neighbor query times, as
in-neighbor queries perform almost identically. We observe that using WT provides more
compression than GMR, but it requires more time.

The plots show how using increasing ES improves space and time simultaneously, until
reaching the optimum space. Using a larger ES value also implies fewer iterations on the
dense subgraph extraction algorithm, which dominates construction time.

We now consider our technique on social networks, representing H and R, the latter using
either k2tree or MPk, and compare it considering space and time with the state of the art.
This includes standalone k2trees with BFS and natural order, MPk with the best k and, as a
control value, BV with out/in-neighbor support. Now our time is the sum of the time spent
on H and on R. We represent H using our best alternatives based on DSM-ESx-WT-r and
DSM-ESx-GMR-r.

Figure 4.17 compares the results on social networks. Figure 4.18 shows a closeup of the
best alternatives for dblp-2011 and LiveJournal-Snap datasets. While on enron and enwiki-
2013, k2tree with natural order is the best choice when using little space. On the other
networks our combination of DSM and MPk is the best, slightly superseding standalone

74



 0

 5

 10

 15

 20

 1  2  3  4  5  6  7

T
im

e 
(u

s/
ed

ge
)

space bpe

DBLP-2011

DSM-ES30-WT-r
DSM-ES30-GMR-r

DSM-ES50-WT-r
DSM-ES50-GMR-r
DSM-ES100-WT-r

DSM-ES100-GMR-r
DSM-ES500-WT-r

DSM-ES500-GMR-r

 0

 5

 10

 15

 20

 25

 30

 2  4  6  8  10  12  14

T
im

e 
(u

s/
ed

ge
)

space bpe

LIVEJOURNAL-SNAP

DSM-ES30-WT-r
DSM-ES30-GMR-r

DSM-ES50-WT-r
DSM-ES50-GMR-r
DSM-ES100-WT-r

DSM-ES100-GMR-r
DSM-ES500-WT-r

DSM-ES500-GMR-r

Figure 4.16: Space/time e�ciency with out-neighbor queries on social networks, for various
ES values (only component H is considered for dense subgraphs)

MPk in both space and time. In addition, it is important to note that BVLLP provides the
best random access time (an order of magnitude better), but the compression e�ciency is
not as good as with the other techniques.

Figures 4.19 and 4.20 carry out a similar study on Web graphs. In Figure 4.19 we also
show that, on these graphs DSM improves signi�cantly in space with respect to detecting
only bicliques (�BI�), while the time is similar. This comes from the fact that the length
of the sequence X, which represents H, is shorter than the sequences used for representing
bicliques only (see Table 4.5). Figure 4.20 shows that the structure proposed in this section
is dominated in space and time by that proposed in Section 3.3. Yet, we remind that the
structure we propose in this section is able to answer various mining queries related to the
dense subgraphs found, easily and using no extra space.

4.5 Conclusions

This chapter presents two compression schemes for Web and social networks. Both schemes
are based on extracting subgraphs and then representing them using compact data structures
based on bitmaps and sequences. The �rst scheme extracts bicliques (S ∩ C = ∅) and
represents the graph by the collection of bicliques (H) and the rest of the graph (R). The
collection of bicliques is represented by two symbol sequences Xs and Xc and two bitmaps Bs

and Bc. The second scheme improves on the �rst by extracting dense subgraphs (S∩C 6= ∅),
and extending the previous representation using only a symbol sequence X and a bitmap B.
These representations allow out/in-neighbor queries plus mining queries over the sequences.
The �rst scheme includes queries based on bicliques and the second scheme provides a wider
range of queries including listing cliques. We show that the second scheme provides better
space/time e�ciency than the �rst scheme for Web and social networks. We also show
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Figure 4.17: Space/time tradeo�s for social networks using dense subgraphs.
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Figure 4.18: Space/time tradeo�s for social networks using dense subgraphs in more detail
for dblp-2011 and LiveJournal-SNAP.
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Figure 4.19: Space/time e�ciency with out-neighbor queries on Web graphs, for various
sequence representations (only component H is considered) using dense subgraphs.
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Figure 4.20: Space/time tradeo�s for Web graphs using dense subgraphs.
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that using dense subgraphs with virtual nodes and k2tree with BFS node ordering on Web
graphs provides better space/time tradeo� than the scheme based on sequences and bitmaps.
However, the scheme based on sequences provide a much richer set of queries than the scheme
based on virtual nodes. In the context of social networks, we show that the second scheme
combined with MPk [39] or k2tree [22] improves on MPk and k2tree performance. However,
the compression e�ciency on social networks is still far from the e�ciency achieved on Web
graphs.
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Chapter 5

Streaming and External Memory

Algorithms

Discovering and extracting relevant patterns from graphs are di�cult tasks. These tasks
are becoming increasingly challenging as graphs are growing in size at a great rate. This
scenario requires to process information more e�ciently, including the need of processing
data that cannot �t in main memory. Typical approaches for processing data using limited
main memory include the streaming and external memory models. However, �nding relevant
graph patterns such as cliques and complete bipartite graphs are even more di�cult under
such models.

This chapter describes a semi-streaming and an external memory algorithm for extracting
the dense subgraphs described in Chapter 2. However, in this Chapter we consider only
bipartite cores, which means we do not add self-loops to adjacency lists in advanced. We
describe a semi-streaming algorithm based on the Hierarchical Heavy Hitter problem, which
enables to process the graph using limited memory in a few passes. The external memory
algorithm is based on the External R-way Merge-sort, which is used for �nding clusters and
reordering the graph based on bipartite clusters.

5.1 Related Work

We �rst review the streaming model of computation and some solutions proposed in the
context of massive data including large graphs, and then we do the same with the external
memory model.

5.1.1 Streaming Models

The streaming model is an important model of computation for processing massive datasets
[91, 93]. The main idea of the model is based on regarding the �ow of data as a stream that is
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read sequentially once or a few times, and each time the stream is read only a small amount
of memory can be stored about it. The most restrictive streaming model allows O( polylog
n) space and a single or a few passes over the data. One important feature of a streaming
algorithm is that the algorithm can defer action until a group of stream items arrive; there
is no restriction to process each data item immediately. This model has been successfully
applied in many problems such as computing statistics, norms, histograms, frequent items
(Heavy Hitters), etc. See [93] for a complete review of algorithms and applications.

In the context of graphs, a graph stream is de�ned as a stream of edges E = e1, e2, ..., em
describing a graph G(V,E) on n = |V | vertices. Providing streaming solutions for graph
problems has been more di�cult, and only a few have been successfully proposed, such as
counting triangles [12] using only one pass over the graph. The main di�culty comes from
the constrains of limited memory with the input access patterns of graph algorithms.

To address graph problems in the streaming model, several more relaxed models have been
proposed, such as the semi-streaming model which allows O(n polylog n) space, which means
that we have space to store the vertices and information related to them but not all the edges,
and one or a few sequential read-only passes through the graph [58, 93, 116]. The w-stream
model is similar, but it allows temporary streams to read/write on disk [103, 116]; the stream-
sort model, which also allows intermediate streams that can be sorted in requiring only one
pass [6, 116]; and the stream-with-annotations model, which behaves as a semi-streaming
algorithm, but assumes a helper that can be queried for a small number of annotations [31].

Feigenbaum et al. [58] propose semi-streaming algorithms for �nding approximations to
the unweighted maximum bipartite matching problem (matching with the largest number
of edges) with an approximation ratio 2/3 − ε in O( log 1/ε

ε
) passes using O(n log n) memory,

where 0 < ε < 1/3. The proposed algorithm is based on �rst �nding a bipartition, then
using a matching of the graph, and then �nding a set of simultaneous length-3 augmenting
paths. The maximum bipartite matching algorithm increases the size of the matching by
repeatedly �nding a set of simultaneously length-3 augmenting paths. They also provide a
semi-streaming algorithm for �nding a weighted matching. They use edge weights of edges
in the stream and compare them with the sum of the weights of the edges in the current
matching M . If the incoming weight is greater than twice the sum of weights of M , the new
edge is added to M . With this algorithm, they show that using O(n log n) storage they can
construct a weighted matching that is at least 1/6 of the optimal size.

The idea of the w-stream model is that, while performing a pass over the stream, it is
possible to output a temporary stream. Then, it is possible to have a sequence of streams
S1, S2, ...Sp for p passes, where the input of the i-th pass is Si−1 and the output of the
pass is Si, where Si−1 and Si are streams and the output of the computation is stream Sp.
Demestrescu et al. [52] show that the single-source shortest path problem in directed graphs
can be solved in the w-stream model in O(n log3/2 n)/

√
s) passes. For undirected connectivity

they propose an O(n log n)/s passes algorithm.

The stream-sort model is formalized by Aggarwal et al. [6]. They provide randomized
algorithms for undirected s-t-connectivity. The problem is to detect if there is a path from
vertex s to vertex t, given a graph stream of length n. They show that, using a randomized
algorithm over the stream-sort model, it is possible to detect connectivity using O(log n)
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passes and O(log n) space. The algorithm consists of labeling the vertices of the graph with a
random number (ri) of 3 log n bits. Each vertex is then labeled by the smallest number among
its neighbors and itself. All vertices that receive the same number are merged together. This
process is repeated a logarithmic number of times and in the end the graph has no edges
and each vertex represents a connected component. Then, if vertices s and t are in the same
component, then there is a path between them. The streaming-sort algorithm is used to
determine the lowest value of random numbers among its neighbors and itself. On each pass,
the algorithm writes temporary streams. First, it writes (vi, ri) followed by all edges with
start point vi, replacing vi with ri (on each edge) and writing a temporary stream E ′. Then
a pass over E ′ generates a stream composed by (vi, ri) followed by all edges with endpoints
vi. Using a linear pass over this last stream, it is possible to determine the lowest ri for each
vi, since for each (vi, ri) there is a list of edges sorted by vi and where the start point of each
of those is an ri obtained in E ′. It is then possible to obtain the lowest ri for each vi. This
new vertex mapping is used for the next iteration on the graph.

Aggarwal et al. [4] propose a model for dense pattern mining using summarization of graph
streams. They de�ne dense patterns based on node-a�nity and edge-density of patterns in
a general way. Their approach removes small and large adjacency lists a priori because the
dense pattern mining de�nition does not consider them as relevant. On the other hand,
running time is in the order of thousand processed edges per second. More recently, Sariyüce
et al. [106] propose incremental streaming algorithms for k-core decomposition, where a
k-core is de�ned as a maximal connected subgraph in which every vertex is connected to at
least k nodes in the subgraph. The core decomposition of a graph is the problem of �nding
the set of maximum k-cores of all vertices in the graph. Thus, an algorithm to �nd k-cores
of a graph removes all vertices with degree less than k with their corresponding adjacency
edges. The authors propose streaming algorithms supporting insertion and removal of edges
for dynamic networks. The algorithms require reordering unprocessed vertices in subgraphs.

Another interesting computational model is the sliding window [46]. The sliding window
model is similar to the streaming model in that there is only limited memory available for
processing and ideally, the algorithm should go through the input only once. The di�erence
is that in the sliding window model the algorithm may only consider recent data. There are
two types of algorithms in this approach. One is sequence-based, in which there is a window of
size k moving over the k most recently arrived data. The other is time-based, where windows
of duration t consist of elements whose arrival timestamp is within a time interval t of the
current time. The algorithms under this model must hold two properties: The input stream
is accessed in sequential order and the order of the data elements is not controlled by the
algorithm.

5.1.2 External Memory Model

External memory algorithms de�ne memory layouts that are suitable for graph algorithms,
where the goal is to exploit locality in order to reduce I/O costs, and in particular random
access to disk [115]. This model consists of a single processing unit with an available memory
of size M and a number of parallel disks (D) capable of storing a much larger amount
of data. The model also considers that data can be transfered from disk to memory (read
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operation) and from memory to disk (write operation) through a block size of B items, which
are consecutive on disk.

Two fundamental primitives of the model are scanning and sorting. Scanning is the
operation of streaming N items from disk to main memory with I/O complexity

scan(N) = Θ( N
DB

),

while the sorting operation on N items has complexity

sort(N) = Θ( N
DB

logM/B
N
B

).

The results presented in this chapter consider an external sort algorithm, R-way merge-
sort, which has such I/O complexity [61].

Several algorithms have been proposed to solve graph problems using the external mem-
ory model [115], such as maximal cliques, approximate d-degeneracy ordering [65], traversal
algorithms and graph connectivity [76], computing connected components, and maximal
matchings in undirected graphs [2]. Goodich and Pszona [65] propose an algorithm for ap-
proximating the d-degeneracy ordering to a (2 + ε) d-degeneracy of G in O(sort(dn)) I/Os,
without knowing the value of d in advance. They also provide an external algorithm for
listing maximal cliques based on the Bron-Kerbosch [28] algorithm improved by Tomita [113]
and Eppstein et al. [57]. They build an external version of Eppstein algorithm using the
(2+ε) d-degeneracy ordering that uses d-degeneracy ordering of G and can list all its maximal
cliques in O(3d/3sort(dn)) I/Os.

An interesting available library is STXXL (Standard Template Library for Extra Large
Datasets) [49, 50]. STXXL is an implementation of C++ standard template library STL for
processing large datasets. It supports parallel disks, overlapping disk I/O and computation,
and pipelining. Among other applications, the library has been used for solving text pro-
cessing and graph problems, such as algorithms for su�x array construction [48], BFS graph
traversal [7], minimum spanning tress and connected components [51], etc.

5.2 Heuristics and Algorithms

This section describes streaming and external memory algorithms for discovering and ex-
tracting bipartite cores. The bipartite core pattern is described in De�nition 5.2.1.

De�nition 5.2.1 A Bipartite core H(S,C) of G = (V,E) is a graph G′(S∪C, S×C), where
S,C ⊆ V , and S ∩ C = ∅.

Similar bipartite cores are de�ned by Kumar [80].
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The discovery algorithm consists of 4 steps. The �rst step computes P �ngerprints (hash
values) for each adjacency matrix building a matrix of |V | rows and |P | columns. On the
second step, similar rows group together, where each group identi�es a cluster (represented
by a set of adjacency lists). Finally the mining algorithm identi�es and extracts bipartite
cores from the adjacency lists belonging to the same cluster, where the out-neighbors of
each adjacency list are sorted �rst by frequency. This is an iterative process where on each
iteration a set of bipartite cores are extracted from the graph. Figures 2.1 shows the general
algorithm and Figure 2.3 shows an example with the 4 steps.

The next section describes a streaming algorithm that is used for clustering purposes
within the bipartite core discovery algorithm.

5.2.1 Heavy Hitter and Hierarchical Heavy Hitter Problems

The Heavy Hitter problem is one of the most studied in data streams and has been used
as a subroutine in more advanced data stream computations. The idea is to �nd the most
frequent items in a given sequence. The two main types of algorithms for solving this problem
are based on Counters and based on Sketches. Counter-based algorithms track a subset of
items and monitor counts associated with them, while sketch-based algorithms use linear
projections of the input items to vectors and solve the frequency estimation problem using
those vectors. Therefore, an important di�erence between these two types is that sketch
algorithms do not store items from the input sequence explicitly, whereas counter-based
algorithms do.

The Heavy Hitter (HH) problem formal de�nition [44] is as follows :

De�nition 5.2.2 Given a (multi) set S of size N and a threshold φ, a Heavy Hitter (HH)
is an element whose frequency in S is no smaller than bφNc. Let fe denote the frequency of
each element e in S. Then HH = {e|fe ≥ bφNc}.

The problem of �nding HH in data streams has been studied extensively (a good survey is
[45]) and are based on summary structures that estimate element frequencies. Cormode et al.
[43] provide a comparison of di�erent algorithms that solve the problem. They show that the
Space saving, which is a counter-based algorithm, is the best algorithm in terms of accuracy
and e�ciency. The algorithm consists of keeping k (item, count) pairs stored in a dictionary,
initialized with the �rst k distinct items and their exact counts. Every time an arriving item
is found in the dictionary (T ), its counter is incremented; otherwise the algorithm chooses
the item with the smallest count and replaces the item incrementing its current count. This
approach for replacing items in the set may seem counterintuitive, since the new item may
start with a overestimated counter, but the result is that, if T is large enough, all HH will
appear in the �nal dictionary. This algorithm provides a good frequency estimation with an
error of n/k. The time cost is bounded by the dictionary operation of �nding the item and
of getting the item with the smallest count.
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Figure 5.1: Example of Hierarchical Heavy Hitters.

Another problem related to �nding HH in data streams is �nding Hierarchical Heavy
Hitters (HHH). In the HHH problem the idea is to �nd Heavy Hitters in a hierarchy. The
problem consists of �nding elements in the hierarchy that have a number of descendants no
smaller than a given fraction φ after discounting descendants elements in the hierarchy that
are already HHs. In other words, the idea is to �nd elements in the hierarchy such that
their frequency (HHH count) exceeds φN , where the frequency is the sum of all descendants
elements which have no HHH ancestors. Figure 5.1 shows an example of HHH, for a total
of elements of 100; Heavy Hitters are shown as black nodes. In the example, φ = 0.1 and
N = 100, then φN = 10. Nodes 7 and 10 are Heavy Hitters because their frequencies are
greater that φN . On the other hand, nodes 2 and 3 also conform Heavy Hitters because their
children that are not Heavy Hitters themselves aggregate their frequencies as a group up to
φN .

Formally the Hierarchical Heavy Hitter (HHH) problem is de�ned as follows [44]:

De�nition 5.2.3 Given a (multi)set S of elements from a hierarchical domain D of height
h, let elements(T ) be the union of elements that are descendants of a set of pre�xes T of the
domain hierarchy. Given a threshold φ, HHH is inductively de�ned. HHH0, the hierarchical
Heavy Hitters at level zero, are the Heavy Hitters of S. Given a pre�x p at level i in the
hierarchy, F (p) is de�ned as

∑
f(e) : e ∈ elements(p) ∧ e /∈ elements(

⋃i−1
l=0HHHl). Then

HHHi is the set of hierarchical Heavy Hitters at level i, that is, the set {p|F (p) ≥ bφNc}.
The set HHH is

⋃h
i=0HHHi.

The HHH problem cannot be solved exactly over data streams in general, therefore we
follow the approximation given in previous works [44, 112]. We use the approximation algo-
rithm given by Thaler et al. [112], which presents several advantages over previous algorithms.
Such approximation improves time and space required to process each update and outputs the
HHH with estimated frequencies. The approximation is based on the Space saving algorithm.

We show that the HHH problem can be used in the clustering algorithm. Every node in
the hierarchy is a hash value of the clustering scheme, and heavy hitters represent the pair
of hash values (h1, h2), (using P = 2 in the clustering [70]) with highest count values. In
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  1:  1  2  3
  2:  1  2  3
  3:  1  2  3
  4:  4  5  6  7
  5:  4  5  6  7  20 
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Figure 5.2: Example of the clustering algorithm seen as a Hierarchical Heavy Hitter problem,
using φ = 0.2, with N = 10.

order to �nd clusters, besides counts, the algorithm collects vertex ids associated to hashes
that are Heavy Hitters. The algorithm also uses a global bitmap to insert vertex ids only
once, and limits the number of vertex ids collected with a threshold. This approach avoids
sorting the P × V hash matrix. Instead, it �nds clusters using the Heavy Hitters found with
the HHH approximation given by Thaler et al. [112]. Figure 5.2 shows an example of the
clustering algorithm seen as a HHH problem. Black circles represent Heavy Hitters in the
hierarchy. Bipartite cores are extracted using the algorithm that uses HHH in the clustering
stage, as depicted in Figure 5.3.

5.2.2 Extracting Bipartite Cores using R-Way External Merge-sort

The R-way external merge-sort works in two phases [61]. The �rst is a �run formation� phase,
where N input data are streamed in main memory using memory pieces of size M . Each
piece of size M is sorted, having at the end of the phase N/M sorted runs. The second
phase is the �merge phase�, where groups of R runs are merged together. Runs in the merge
phase are sorted using bu�ers of size B. The merge phase might take more than one pass; in
each pass one bu�er of size B from each run is maintained in main memory and one bu�er
is used for streaming out sorted runs. Sorting R runs is done using a Heap data structure.
Since the memory usage of the sorting algorithm is bound to M and the bu�er size is B,
then R = dM

B
− 1e bu�ers for input and one for output. The overall I/O performance of

the algorithm is O(N/B logM/B N/M), which is a sort(N) primitive in the external memory
model.

The scheme presented uses R-way external merge-sort in two di�erent ways: One for
sorting the matrix of P × V hashes, for the clustering phase and the other for reordering
the input graph by cluster id. During the clustering phase, the algorithm computes hashes
and sorts them by columns using external merge-sort; cluster ids are de�ned based on the
conditions of pairs of hashes (given that P = 2). The vertices ids of each cluster are used for
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1: Streaming Algorithm
2: bc← ∅
3: bcccoll← ∅
4: stream.init(thr, counters)
5: for i← 1 to Iters do
6: for (v, adj) ∈ G do
7: fingers← computeF ingerprints(v, adj, P )
8: stream.update(v, fingers)
9: end for

10: hhhArray ← stream.output()
11: for hhh ∈ hhhArray do
12: cluster ← hhh.vertices
13: bc← mine(cluster)
14: bccoll.add(dss)
15: end for
16: end for

Figure 5.3: Streaming algorithm

1: External memory Algorithm
2: bc← ∅
3: bcccoll← ∅
4: msFinger.init(M,B,K)
5: for i← 1 to Iters do
6: for (v, adj) ∈ G do
7: fingers← computeF ingerprints(v, adj, P )
8: msFinger.add(v, fingers)
9: end for

10: msFinger.extmerge(fsortF ingers)
11: clusters← msFinger.getClusters(fsortF ingers)
12: msPermute← permute(M,B,K, clusters, fGraph)
13: for cluster ∈ fGraph do
14: bc← mine(cluster)
15: bccoll.add(dss)
16: end for
17: end for

Figure 5.4: External memory algorithm based on R-way external merge-sort
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sorting the input graph based on cluster ids. In summary, this external memory algorithm
requires two external sorts, one over the matrix P×V and one for permuting the graph based
on vertex id. Therefore, the algorithm is O(sort(2V )+sort(V +E)), that is, O(sort(V +E))
I/O complexity. This complexity does not consider the mining part of the algorithm.

For the mining phase, the reordered graph is scanned by cluster. For this part of the
extraction algorithm we try two di�erent approaches. The �rst approach uses whatever main
memory requires each cluster, which requires at most O(Vc + Ec) memory, where Vc is the
number of vertices in the cluster and Ec the number of edges. This scheme is labeled extmem
in all �gures. Such external algorithm is shown in Figure 5.4.

The second approach consists of limiting the memory M for processing the reordered
graph, which applies the mining algorithm over the sequential elements read in such memory.
This approach resembles the sliding window model, however, the implemented algorithm does
not consider neither cluster overlap nor approximations and then the results can be improved
with a smarter algorithm.

5.3 Experimental Evaluation

This section describes the results obtained by applying the algorithms presented in Sec-
tion 5.2. All algorithms are implemented in C/C++ using gcc/g++ version 4.4.5 on a Linux
PC with 16 processors Intel Xeon at 2.4 GHz, with 64 GB of RAM and 12 MB of cache. The
source code provided by Thaler at http://people.seas.harvard.edu/∼tsteinke/hhh/ is adapted
for the scheme presented. All the experiments use the Web and social graphs in Table 2.1
(described in Chapter 2), and a minimum size of bipartite core of 6 (|S| × |C| = 6) to avoid
including cores that are too small.

5.3.1 Performance of Merge-sort

In this section we evaluate the e�ciency of using external R-way merge-sort applied to our
bipartite core listing. We use the algorithm for sorting the P × V hash matrix (see the
algorithm described in Figure 2.1 ) and for permuting the input graph based on the clus-
ters identi�ed after sorting the hash matrix. We show the main performance metrics for
di�erent datasets, using B = 8KB, the best R, and varying the amount of memory M . In
all tables, L is the height in the merge-sort tree, counting the �rst run (where the input
graph is partitioned into pieces of size M). Table 5.1 shows the time and memory usage
when computing hashes (CS) and sorting the hash matrix (SH). Sorting the hash matrix is
only one part of the process of clustering; we also need to consider the memory resources
for vertex ids that conform the clusters. Table 5.2 shows the time and memory usage when
computing and sorting the hash matrix plus computing the clusters (CS+SH+CL). The com-
parison between Tables 5.1 and 5.2 shows that we need more memory for actually computing
all the clusters in the graph. Table 5.3 shows the time and maximum memory usage when
computing and sorting the hash matrix, plus clustering, plus permuting the input graph
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Dataset M(KB) R L W CS(s) SH(s) Mem. usage (MB)

eu-2005
16 7 4 3,456 26.01 9.81 12.2
32 15 3 2,304 - 6.43 12.3
128 63 2 1,152 - 3.13 13.1

indochina-2004

16 7 5 35,808 251.10 96.56 12.4
32 15 4 26,832 - 73.91 12.4
64 31 3 17,858 - 50.74 12.9
256 127 2 8,832 - 24.65 14.4

uk-2002

16 7 6 115,520 420.21 311.91 12.6
32 15 4 69,312 - 193.36 12,7
65 31 3 46,208 - 125.65 12.8
512 255 2 23,040 - 62.84 16.2

arabic-2005

16 7 6 142,520 837.20 385.23 12.7
32 15 4 82,032 - 222.52 12.8
65 31 3 56,960 - 154.58 13.1
512 255 2 28,416 - 77.17 16.5

Table 5.1: R-way merge-sort performance for sorting the hash matrix.

based on the clusters found (CS+SH+CL+P). Such step is necessary for actually using the
cluster information for the mining process. Finally, Table 5.4 shows all previous times plus
mining (CS+SH+CL+P+Mine). As observed in Table 5.4, in terms of resource usage, the
best alternative is to set M so that we can obtain L = 2, which is the fastest alternative for
reordering the graph based on clusters. This is because the mining process requires a large
amount of memory when clusters are large. We could limit that amount of memory, and in
fact that is what we do in the sliding window algorithm.

5.3.2 Clustering

The next experiment measures the e�ect on memory and time requirements of the algorithms
(described in Figures 5.3 and 5.4) with respect to the original algorithm (described in Figure
2.1 in Chapter 2, which is the algorithm with no memory restriction) just for clustering
(using only the �rst iteration). Figure 5.5 shows the memory and time ratios compared to
the original algorithm for all datasets. The results show that using HHH is not very e�ective
in terms of speed, since running times are reduced only in 10-15%. On the other hand,
memory ratio is more e�ective using external merge-sort than using HHH, but it is slower.

5.3.3 Clustering and Mining

This section describes the impact of using HHH and external merge-sort for extracting actual
bipartite cores. We evaluate HHH using di�erent numbers of counters (labeled cX, where X
is the number of counters), the external memory algorithm using R-way merge-sort (labeled
extmem), and the original algorithm (labeled mem), which has no memory restrictions. Run-
ning times are measured up to 10 iterations, since no more were necessary. All experiments
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Dataset M(KB) R L CS+SH+CL(s) Mem. usage (MB)

eu-2005
16 7 4 35.82 19.8
32 15 3 32.52 19.8
128 63 2 29.55 19.8

indochina-2004

16 7 5 345.21 63.2
32 15 4 319.86 63.9
64 31 3 303.74 63.2
512 255 2 269.64 64.3

uk-2002

16 7 6 728.27 152.4
32 15 4 612.34 152.4
65 31 3 554.96 152.4
512 255 2 499.71 152.3

arabic-2005

16 7 6 1181.81 167.0
32 15 4 1038.43 167.5
65 31 3 985.22 167.4
512 255 2 938.14 168.4

Table 5.2: R-way merge-sort performance for computing, sorting hash matrix and clustering.

Dataset M(KB) R L CS+SH+CL+P(s) Mem. usage (MB)

eu-2005

16 7 5 84.20 51.9
32 15 4 71.15 51.9
64 31 3 60.11 52.4
256 78 2 46.91 54.9

indochina-2004

16 7 6 902.24 312.8
32 15 5 784.39 312.8
64 31 4 658.39 313.9
128 63 3 573.57 315.8
1024 511 2 467.18 323.9

uk-2002

16 7 7 2,189.12 791.3
32 15 5 1,925.60 791.6
65 31 4 1,321.12 791.3
128 63 3 1,091.78 791.3
1024 1032 2 810.30 798.9

arabic-2005

16 7 7 3,691.30 966.9
32 15 5 2,816.20 965.5
65 31 4 2,566.02 965.8
256 127 3 2,120.17 967.6

2,048 160 2 1,550.80 1,006.8

Table 5.3: R-way merge-sort performance for computing, sorting hash matrix, clustering and
permuting the graph.

90



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

T
im

e 
ra

tio

Memory ratio

EU-2005

c1000
c10000
c79099
extmem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
T

im
e 

ra
tio

Memory ratio

Indochina-2004

c1000
c10000

c100000
c1000000

extmem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T
im

e 
ra

tio

Memory ratio

Uk-2002

c1000
c10000

c100000
c1000000

extmem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T
im

e 
ra

tio

Memory ratio

Arabic-2005

c1000
c10000

c100000
c1000000

extmem

Figure 5.5: Memory and time ratios in a clustering phase using streaming and external
merge-sort for �ngerprint (hashes) sorting by columns.
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Dataset M(KB) R L CS+SH+CL+P+Mine(s) Mem. usage (MB)

eu-2005

16 7 5 148.11 99.0
32 15 4 112.90 107.8
64 31 3 114.42 110.6
256 78 2 99.35 113.4

indochina-2004

16 7 6 2,222.71 1,413.5
32 15 5 2,176.98 1,426.0
64 31 4 1,901.48 1,412.7
128 63 3 1,879.09 1,408.4
1024 511 2 1,484.23 1,114.7

uk-2002

16 7 7 2,772.20 1,531.1
32 15 5 2,169.35 1,533.2
65 31 4 1,728.34 1,529.4
128 63 3 1,569.02 1,528.9
1024 1032 2 1,400.40 1,529.9

arabic-2005

16 7 7 6,122.45 2,849.7
32 15 5 6,085.91 2,850.8
65 31 4 4,300.93 2,850.4
256 127 3 4,827.42 2,839.7

2,048 160 2 3,694.76 2,843.9

Table 5.4: R-way merge-sort performance for computing, sorting hash matrix, clustering,
permuting and mining the graph.

involving the external model are set to use an amount of memory that enables the use of a
value for the parameter R so that the R-way merge-sort does the merge in 1 pass (L = 2).
The performance is presented in terms of running time, number of edges in all bipartite cores,
and bipartite core density rate (represented by RE/X in Section 4.4.2). The total number of
edges is given by the edges represented in all bipartite cores on each iteration. The density
rate is given by edges/nodes =

∑ |S|×|C|
|S|+|C| .

Figure 5.6 shows running times, number of recovered edges, and edges/node ratio for
di�erent Web graphs and social networks. HHH is able to capture more dense bipartite
cores, as seen in edges/nodes �gures on Web graphs, but not on social networks. Since
HHH is an approximation for �nding heavy hitters in a hierarchy, it is not able to recover all
bipartite cores. On the other hand, using external merge-sort allows for actually obtaining
the same precision in terms of total edges and ratio of edges/nodes in found bipartite cores,
using less memory and higher running times.

Second, Figure 5.7 shows the performance ratios in terms of running time, memory usage
and edge ratio with respect to the original algorithm for one and 5 iterations.
More speci�cally,

time_ratio is the ratio between the execution time of the memory reduced algorithms and
the execution time of the original algorithm (the algorithm with no memory restrictions).

edge_ratio is the ratio between the number of edges participating in the extracted bipar-
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Figure 5.6: Running time, number of edges, and bipartite core sizes (edges/nodes) extracting
bipartite cores using streaming and external merge-sort over Web and social graphs.
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tite cores using the memory reduced algorithms and the number of edges achieved using the
original algorithm, and

memory_ratio is the ratio between the amount of memory used by the memory reduced
algorithms and the original algorithms.

The �nal experiment considers applying only the mining algorithm over graphs using URL
ordering used by Boldi and Vigna to compress Web graphs [19] versus the ordering by clusters
based on bipartite cores, that is, graphs are obtained using external merge-sort. The aim is
to see how the mining algorithm behaves when streaming edges given by a previous order
using only a sliding window of edges used in the mining algorithm [46]. The sliding window
model is similar to the streaming model in that there is only limited memory available for
processing and ideally the algorithm should go through the input only once. The di�erence
is that in the sliding window model the algorithm can consider only recent data. Figure
5.8(line charts) shows the results when using a sliding window of 1,000, 2,000, and 5,000
edges on Web graphs (eu-2005, and arabic-2005) and a sliding window of 50, 100, and 1,000
for social networks (dblp, and LiveJournal). It is seen that when using HHH it is possible
to �nd larger bipartite cores than mining a number of edges given in the sliding window.
Figure 5.8 (bar charts) also shows time, edge, and memory ratios achieved at iteration 5 for
this experiment compared with the original algorithm and HHH. We observe that the sliding
window algorithm requires less memory than the other alternatives.

5.4 Conclusions

This chapter presents di�erent schemes to extract bicliques from graphs reducing memory
consumption. The streaming algorithm presented is based on an approximation of the Hier-
archical Heavy Hitter (HHH) problem, which is used to �nd large clusters. This work also
provides a solution that uses R-way external merge-sort to �nd clusters and reorder the input
graph based on such clusters. After the clustering phase, a mining algorithm is applied to
extract bipartite cores. Finally, we present a scheme that simply applies the mining algo-
rithm, using a sliding window of edges, over an input graph stream using URL node ordering
and an input graph stream sorted by clusters. The HHH solution is able to extract larger
bicliques, but requires more memory than the other schemes. The external memory solution
is able to extract bicliques at the same precision of the original algorithm while using less
memory, yet using more time. The solution applying mining over a sorted graph is the best
in terms of memory and time usage, but provides less precision than the external model. A
possible alternative to study in the future is to see whether an improved mining algorithm
using a sliding window of adjacency lists can take advantage of some stream orders.
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Figure 5.7: Memory, time, and edges in bipartite cores ratios extracting bipartite cores using
streaming and external merge-sort for iteration 1 and 5.
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Figure 5.8: Bipartite core sizes (edges/nodes) applying the mining algorithm over input
graphs ordered by URL and ordered by clusters (line charts). Memory, time, and edges
in bipartite cores ratios when extracting bipartite cores by mining edges read from url and
cluster ordered input graphs (bar charts).
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Chapter 6

Discovering Dense Subgraphs in Parallel

In the last decade, various solutions have been proposed to address some of the problems
associated with large graphs. One possible approach is to use distributed systems where
distributed memory is aggregated to process the graph. In particular, many cluster-based
systems have appeared in recent years for di�erent application areas. Pregel [84] is a graph
system that works on BSP model (Bulk Synchronous Parallel Model); Pegasus [74] is a
graph mining library over Hadoop, which is the free implementation of MapReduce [47];
Gbase [73] provides a parallel indexing mechanism for graph mining operations based on
Hadoop/MapReduce. There are also proposals that include counting triangles, which is
useful for computing clustering coe�cient [111]. Pace [94] discusses important di�erences
between BSP and MapReduce and shows that algorithms that require to process local data
in multiple rounds are more e�cient using BSP than MapReduce. We use this �nding for
implementing our parallel algorithms using BSP, which in addition provides a theoretical base
for analyzing computation, communication and synchronization costs in a parallel system.

In this chapter, our goal is to address the problems of dealing with large Web and so-
cial graphs using distributed/parallel systems and compressed structures. In particular, we
propose scalable parallel algorithms for �nding common graph patterns, which we use for
compressed representations that provide access to out/in-neighbors and to enable mining
queries without the need of decompression. The main contributions described in this chapter
are:

• We present a scalable parallel algorithm for reducing the number of edges of the original
Web graphs by �nding dense subgraphs and adding virtual nodes. As described in
chapter 4 we have shown that using this edge-reduced graph with BFS (Breath �rst
traversal) ordering and k2tree [81] we achieve the best space compression on Web
graphs. The parallel algorithm we propose exploits locality and provides good speedup,
load balance, and scalability using BSP over a cluster-based system.

• We present a scalable iterative parallel algorithm for extracting dense subgraphs that
exploits locality of adjacency lists and uses dynamic load balanced for maximizing
processor utilization avoiding idle times. With this approach, we are able to improve
speedup and resource utilization for discovering dense subgraphs on Web and social
networks. We have shown on a previous work [69] that representing these dense sub-
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graphs with compact data structures provides the best space/time tradeo�s for social
networks. This representation also enables mining queries such as retrieving cliques,
complete bipartite subgraphs (bicliques) and other related graph patterns.

6.1 Related Work

In this section, we review related work aiming to manage large graphs. In particular, we
focus on distributed and parallel systems aiming to access large graphs in their original or
compressed form, using di�erent techniques.

Parallel and distributed data management has received a lot of attention in recent years
due to the success of MapReduce, a distributed framework [47], and Hadoop, its open source
counterpart [1]. MapReduce is simple to use, provides high throughput and it is suitable
for simple data. Pregel [84], on the other hand, aims at processing graphs and it uses
vertex-based computation under the BSP model. However, MapReduce and Pregel require
hundreds or thousands of machines in order to process large graphs [109]. Some works, built
on top of MapReduce/Hadoop, target speci�c graph problems such as counting triangles
(used for computing clustering coe�cient) [111], computing max-cover [35], and computing
densest subgraphs [11]. Representative works that build complex systems using MapReduce
include Pegasus [74], Gbase [73], and Trinity [108]. Pegasus, Pregel and Gbase focus on large
graph querying/mining. Pegasus is built on top of Hadoop and Pregel is built using BSP
model, over other Google clusters using underlying infrastructure such as GFS, BigTable, etc.
Trinity also provides vertex-based computation, but the underlying infrastructure is based
on a specially-designed distributed memory storage to provide low latency data access and
high throughput message passing supporting synchronous and asynchronous communication
models.

MapReduce computations on graphs depend heavily on interprocessor bandwidth, as
graph structures are sent over the network iteration after iteration. On the other hand,
Pregel improves upon MapReduce by passing computation results instead of graph struc-
tures among processors. The popularity of MapReduce as a parallel framework has created
the need of studying its relationship to other major parallel computation models such as
BSP and PRAM [94, 75]. Pace [94] discusses the di�erences between MapReduce and BSP
and shows that algorithms that require to process data locally in multiple steps cannot be
e�ciently implemented in MapReduce if the number of supersteps is not constant.

6.2 Using Hadoop

This section describes a distributed approach using the MapReduce framework over the
Hadoop implementation. The MapReduce paradigm enables the execution of distributed
algorithms de�ned mostly as three functions. (1) a local function that takes a single data
item and output a message. (2) an aggregation function to combine pairs of messages and (3)
sometimes a third function for post processing. The local function is applied to input data
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items independently and in parallel, and the aggregation function can be applied to pairs
of messages in any order. Local functions (Mappers) are executed on local data items and
basically map data items to < key, value > pairs combining them to a set of intermediate
< key, value > pairs. Aggregation functions (Reducers) reduce a set of intermediate values
which share a key to a smaller set of values.

Parallel processing occurs when multiple mappers execute over di�erent local data items
and reducers execute over di�erent intermediate data generated by mappers. The sequential
part is necessary because reducers must wait for mappers before executing. To simplify fault
tolerance, in the MapReduce paradigm, Mappers materialize their output to disk before
the Reducers can consume it, therefore the MapReduce paradigm has been mostly used for
computing batch jobs.

This section describes the Map and Reduce functions that discover dense subgraphs using
the distributed framework. Here, we extract dense subgraphs based on the algorithm de-
scribed in Figure 2.3. The presented solution is iterative and consists of chains of functions
with the form map1() - reduce() - map2(). These functions compute the steps described in
Section 2.3. Speci�callymap1() computes the clustering done in Step1, the reduce() function
computes the algorithm de�ned in Step2, and function map2() computes Step3 and Step4.
The reduce() function groups all adjacency lists that share hashes and maps all adjacency
lists associated with each cluster. The map2() function just allows executing the mining
algorithm over clusters in parallel. The algorithms for such functions are described in Fig-
ure 6.2, Figure 6.3, and Figure 6.4. Figure 6.2 uses the computeF ingerprints() function,
which basically computes P �ngerprints (hash values) for each adjacency list. Therefore,
Figure 6.2 emits a set of pairs < key, value > for each adjacency list, where the key is the
set of P hash values and the value is the adjacency list itself. The reduce function groups
together equal keys with corresponding adjacency lists coming from di�erent parallel mapper
executions forming clusters. The output of the reducer is taken by the map2 function so that
for each cluster, it builds a pre�x tree after sorting adjacency lists by edge frequency (and
discards edges of frequency of 1). Each pre�x tree can provide one or more dense subgraphs,
which are extracted from the graph. An example of how this algorithm works is given in
Figure 6.1.

6.2.1 Results

We evaluated the algorithms using the eu-2005 dataset (from Table 2.1) on a cluster of 6
nodes, where each node is a CPU Intel(R) Xeon(R) of 2.40 GHz and 4MB cache. We use up
to 15 iterations for extracting dense subgraphs and measure the running time and number
of edges belonging to dense subgraphs with respect to the number of edges of the input
graph (% Edges). We did not use more than 15 iterations since the gain became insigni�cant
after that. Figure 6.5 shows our results with 1, 5, 10 and 15 iterations. Comparing the
running time and recovered edges (% Edges) achieved with the hadoop version against the in-
memory implementation (eu-mem in Figure 6.5), the parallel results show that our distributed
algorithm is not e�ective. There are two main reasons for the poor performance of our
algorithm. First, our in-memory algorithm loads the graph in main memory and then does
the computations in an iterative way, keeping the state from one iteration to the other in
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  1:  1  2  3  7  8
  2:  1  2  3  7  8
  3:  1  2  3  7  8
  5:  1  2  3  5  7  8
  6:  1  2  3  6  7  8
  7:  1  4  7  8
  8:  1  4  7  8
10:  1  10  11  15
15:  1  10  11  15

  (A  B, a(1))
  (A  B, a(2))
  (A  B, a(3))
  (A  B, a(5))
  (A  B, a(6))
  (A  B, a(7))
  (A  B, a(8))
  (B  E, a(10))
  (B  E, a(15))

input map reduce

  (A  B, [a(1),a(2),
            a(3),a(5),
            a(6),a(7),
            a(8)])
  (B  E, [a(10), a(15)])

map

S1=1 2 3 5 6
C1=1 2 3 7 8
S2=7 8
C2=1 7 8 4 

Figure 6.1: Example of the dense subgraph discovery using MapReduce using one iteration.

Input: < a(u), ∅ >
Output: < k, a(u) >
Let a(u) be an adjacency list for vertex u.
key k ← computeF ingerprints(a(u))
emit(k, a(u))

Figure 6.2: map1() function: Compute Hashes (�ngerprints).

memory. Our distributed algorithm is also iterative, however the hadoop approach does not
allow keeping data locally in memory from one iteration to the next. Therefore we need to
write into HDFS (Hadoop Distributed File System) from one iteration to the next, which
increases the running time of our implementation. Second, our hadoop algorithm is only
able to capture clusters with pair of hashes, that is, with the same (h1, h2), and then it does
not detect pairs of hashes with only the �rst hash in common (as it is shown in Figure 5.2).
Then, this prevents our distributed algorithm �nding the same amount of dense subgraphs
when decresing the number of edges. It is clear that MapReduce is a powerful framework for
processing massive data. In our context, it is a clear that our algorithm should be improved
to avoid keeping state locally between iterations in order to improve performance and solution
quality.
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Input: < k, a(u) ⊆ A >
Output: < k,B >
Array B // form a cluster
for ( a(u) ∈ A ) do
B.add(a(u))

end for
emit(k,B)

Figure 6.3: reduce() and map2() functions: Build Clusters based on Hashes.

Input: < k, clusters ⊆ C >
Output: Set of dense subgraphs (denseSubs)
denseSubs← ∅
for (cluster c ∈ C ) do
Adjacencylists r ← SortEdgesByFrequency(c)
Pre�xTree p← BuildPrefixTree(r)
denseSubs← p.mine()

end for

Figure 6.4: Cluster Mining.

6.3 BSP Approach

Our �rst parallel algorithm (Figure 6.6) consists of representing Web graphs reducing edges
by a factor between 5 and 10, adding only a small percentage of virtual nodes (between 10 and
15 %). We apply other compression techniques over this edge-reduced graph for supporting
out/in-neighbor queries. We show that, for Web graphs, we are able to achieve competitive
tradeo� using AD [9] for out-neighbor queries and best space at some time cost using k2tree
[22] with BFS ordering over the edge-reduced graph [70]. However, this approach does
not work well on social networks. Our second parallel algorithm (Figure 6.7) extracts dense
subgraphs, which are the basis for our second compressed structure representation (described
in Section 4.4). The compression scheme represents the collection of dense subgraphs in
compressed form using compact data structures. In this scheme, we apply other compression
techniques over the remainder of the graphs. We show in Section 3.3.3 that we achieve the
best space/time tradeo� using this approach on social networks supporting out/in-neighbor
queries.

6.3.1 BSP Model and its Cost Analysis

The BSP model provides an e�cient parallel distributed memory model where it is possible
to consider several relevant parameters of a real parallel computer system. A BSP computer
is de�ned by P processors, each with its local memory, connected via a point-to-point com-
munication link. BSP algorithms proceed in supersteps, in each of which processors receive
input data, perform asynchronous computation over its data, and communicate output at the
end. Supersteps are synchronized at the end using barriers. An algorithm designed in BSP is
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Figure 6.5: Running time and number of edges belonging to dense subgraphs for di�erent
iterations using Hadoop.

measured by three main features: computation, communication, and synchronization costs.
The cost model is given by W + H × g + L, where W is the maximum cost of computation
on a processor, H is the maximum input/output communicated among processors, g is the
latency cost and L is the synchronization cost.

Description and Cost Analysis of Edge-reducing Algorithm

Figure 6.6 describes our parallel DSM for reducing edges and adding virtual nodes for
compressing Web graphs. During Step 0 each processor processes Gp in parallel locally.
Each iteration �nds all clusters on Gp and on each cluster, the mining algorithm discovers
dense subgraphs of the type H with components (S,C) of size at least ES. For each subgraph
discovered, we create local virtual node ids (localVnodes) and use them to separate sets (S,C)
and replace it on Gp. Since we want to have only one global edge-reduced graph, we need to
have virtual nodes globally de�ned. We cannot de�ne virtual nodes locally because node ids
are distributed in all partitions and using BFS ordering locally would make the same node
have di�erent ids on di�erent processors. Adding local virtual node id mapping information
for each partition would destroy compression. Therefore, we use virtual node ids globally, and
then apply BFS. In Step 0 all processors send a tuple with (lV nodeInit, numberLV nodes)
(which are the �rst local virtual node id and the number of local virtual nodes) to processor
0. In Step 1 processor 0 relabels local virtual nodes to global ids and sends that information
to all processors. Relabeling is done by changing the gV nodeInit based on the number of
virtual nodes found in previous processed processor tuple, that is gV nodeIniti = vninit and
gV nodeIniti+1 =

∑
numberLV nodesi. In Step 2 all processors receive tuples with global
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Input: Gp,ES, T
Output: Reduced RG(|V + V N |, E2) graph
Each processor reads its data partition
{Step 0}
for (i← 0 to T − 1 ) do
clusters = FindClusters()
for (c ∈ clusters) do
Sets(S,C) = FindDenseSubs(c, ES)
localV nodes = DefineSets(S,C)
Replace(Gp, Sets(S,C), localV nodes)
AddV nodes(Gp, Sets(S,C), localV nodes)

end for
end for
sendLocalV nodeMsg()
sync()
{Step 1}
if (proc == 0) then
lvnodes = RecibeMsgs()
gvnodes = ProcV NodeGlobal(lvnodes)
sendGlobalV nodes(gvnodes)

end if
sync()
{Step 2}
gvnodes = RecieveMsgs()
replaceV nodes(Gp, lvnodes, gvnodes)
return RG

Figure 6.6: Parallel edge-reduction algorithm with virtual nodes
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virtual node ids and each processor replaces local virtual node ids for global ones. Therefore,
the total cost is O(T ( |E|

P
log |E|

P
) + Pg + L+ |V + V N |). The cost analysis is as follows:

• Step 0. The cost of computing clustering on Gp and discovering dense subgraphs on
each cluster is O(T |E|

P
log |E|

P
), where |E| is the number of edges in G, P the number

of available processors, and T the number of iterations. The cost of sending one tuple
per processor to processor 0 is O(Pg + L).

• Step 1. The cost of processing global virtual node ids from local ids is O(P ) and
sending local virtual node ids to all processors is O(Pg + L).

• Step 2. Finally each processor replaces local virtual node ids for global virtual node ids
in Gp. Considering all processors the cost is O(|V + V N |). This complexity indicates
that the algorithm does not scale well with respect V , however, since V � E the
scalability is good with respect to the size of the graph (V + E).

DSM for subgraph extraction and dynamic load balance

Figure 6.7 describes our parallel algorithm for extracting dense subgraphs using dy-
namic load balance. This is an iterative algorithm, where each iteration has several steps.
In Step 0 each processor computes in parallel clustering and mining, and extracts dense
subgraphs and periodically sends its workload information to processor 0. Processor work-
load tuple is given by ES and numDSs, where ES is the current size of the dense sub-
graphs that are mined and numDSs is the number of subgraphs at the current itera-
tion. Function period() determines how often processors send their load. In Step 1 pro-
cessor 0 receives local load from all processors, computes a global load tuple containing
(minpid,maxpid,minES,maxES,minDSs,maxDSs), and decides whether load balance is
to be performed and the amount of data to move. If it decides to apply load balance, it sends
a global load balance tuple to all processors. In Step 2 each processor receives the global
balance tuple and heavier processors sends portion of their data to the lighter processors.
Step 0 is computed T times and each processor sends workload tuples to processor 0 Tp
times. During Step 1 processor 0 computes workload tuples and decides whether heavier
processors will send a portion of its Gp data (M) to lighter processors. The decision to apply
load balance depends on the distance between (maxES,minES) and (minDSs,maxDSs)
among processors is over a given threshold, which can happen Td times. The total cost is
O(T ( |E|

P
log |E|

P
) + Tp(Pg + L+ P ) + Td((P +M)g + L)). The cost analysis for one iteration

is as follows:

• Step 0. The cost of computing clustering on Gp and discovering dense subgraphs is
O( |E|

P
log |E|

P
), where |E| is the number of edges in G, and P the number of available

processors. In this step all processors send local workload tuples to processor 0 in time
O(Pg + L) periodically.

• Step 1. Later, processor 0 computes a global load tuple in O(P ) time and sends it to
all processors in time O(Pg + L) if it decides to perform load balance.

• Step 2. Heavier processors send M data to lighter processors and the cost is O(Mg+L),
where M is a portion of Gp data.
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Input: Gp, esArray, T , threshold.
Output: Dense subgraph collection
Each processor reads its data partition
ES = esArray.first()
{Step 0}
for (i← 0 to T ) do
clusters = FindClusters()
for (c ∈ clusters) do
Sets(S,C) = FindDenseSubs(c, ES)
numDSs = |Sets(S,C)|
WriteToDisk(Sets(S,C))

end for
if (i == period()) then
sendLoadMsg()
sync()
{Step 1}
if (proc == 0) then
ProcessLoad()
sendDistInfo() (to all procs)

end if
sync()

end if
{Step 2}
sendData()
if (numDSs < threshold) then
ES = esArray.next

end if
end for

Figure 6.7: Parallel dense subgraph extraction with dynamic load balancing.
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6.4 Experimental Evaluation

We perform di�erent experiments over Web and social graphs described in Table 2.1 (de-
scribed in chapter 2). We use the natural order for input graphs in all our experiments.
We implemented parallel algorithms using C++ and BSP over a cluster with at most 64
processors. Each processor is an Intel 2.66 GHz, with 24 GB of RAM and 8 MB of cache.

We study the performance of our parallel DSM with virtual nodes and parallel DSM
for extracting dense subgraphs using dynamic load balance. We analyze the e�ect of using
di�erent number of processors in terms of compression e�ciency, running times, compression
speed (original bytes/total running time), and speedup. We also study the performance in
terms of the percentage of edges represented in extracted dense subgraphs.

6.4.1 Performance of Parallel DSM for Edge Reduction

We �rst evaluate dividing the input graph into parts. We found that processing partitions
of equal number of edges gives us a more balanced processor work load than using an equal
number of vertices. Therefore, we divide original graphs by balancing the number of edges
contained by complete lists of out-neighbors.

Figure 6.8 shows parallel running times and compression performance (bpe) using di�erent
number of processors for di�erent Web graphs. We include running times for computing
DSM-ESx-T10 (where ES = x for �nding dense subgraphs of at least size x, and T = 10 i.e.
10 iterations); and the running time for achieving the complete compression structure, which
consists of two parts: DSM-ESx-T10 builds a graph with fewer edges and virtual nodes (RG),
and k2treeBFS applies BFS and k2tree over RG. As observed, the running time improves
greatly without a�ecting compression. These results suggest that there is a great amount of
locality of reference in adjacency lists. Therefore, �nding dense subgraphs in parallel locally
does not a�ect compression. Figure 6.8 shows that the cost of applying k2treeBFS, which
is sequential, has more impact on larger graphs. This is seen on the o�set visible on Arabic
(top �gure) and on the compression speed curve for the same dataset.

Figure 6.9-(left) shows the speedup achieved using di�erent number of processors with
DSM with virtual nodes (K2treeBFS not included). We observe that the speedup is higher
for larger Web graphs, which suggests that larger graphs have more memory access penalties
using only one processor. In other words, larger graphs take more advantage of memory
aggregation in the cluster system.

6.4.2 Performance of Parallel DSM for Dense Subgraph Extraction

We study the compression e�ciency for di�erent processors when extracting dense subgraphs.
We measure the e�ect of using dynamic load balancing, speedup, edge extraction and com-
pression e�ciency for Web and social graphs. Figure 6.9-(right) shows that using dynamic
load balance recovers more edges. It is more e�ective in social networks than in Web graphs,
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Figure 6.8: Parallel running time with corresponding compression (top) and compression
speed in KB/secs (bottom).
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having greater gain with more processors. We compared both schemes by computing % edges
recovered without load balance divided by the % of edges recovered with load balance using
the same number of iterations. When using dynamic load balance, the processor sends work
load tuples every 10 iterations and processor 0 decides to move data from heavier to lighter
processors when the di�erence between (minES,maxES,minDSs,maxDSs) is over a given
threshold.

Figure 6.10 shows the speedup and Figure 6.11 the edge ratio achieved by using 8 and 64
processors on the parallel extraction compared with the sequential execution for Web and
social graphs. We use 100 iterations for extracting dense subgraphs on Web graphs and
dblp-2011 and 200 iterations on LiveJournal. We also show the di�erences on the number
of edges extracted using the parallel and sequential algorithms. We measure such di�erence
using the Edge ratio, which we de�ne by the number of edges extracted in parallel divided
by the edges recovered in the sequential execution. We observe that we are able to extract
more than 90% of edges and at the same time achieve good speedups in Web graphs. How-
ever, extracting edges in parallel for social networks is less e�ective, as shown by the Edge
ratio value. Figure 6.12 shows the running time for DSM with dense subgraph extraction,
considering only time for extraction, complete compression time (including MPk), and the
compression achieved for social networks using H and R with MPk [39]. This �gure also
shows that the sequential part of the compression construction slows down the compression
time.

6.5 Conclusions

This chapter presents distributed and parallel parallel algorithms for DSM, a sequential
algorithm for compressing Web and social graphs via discovering dense subgraphs [70]. We
consider a distributed approach using the MapReduce paradigm implemented by Hadoop
and then consider a parallel approach using BSP (using the BSPonMPI library).

We �rst design and evaluate a distributed algorithm based on the MapReduce paradigm.
However, we found that such algorithm is not e�cient, mainly because our algorithm is
iterative and Hadoop does not allow to keep data locally between iterations, and then data
must be written/read to/from the Hadoop Distributed File System (HDFS) at each iteration.
It is clear that MapReduce is a powerful paradigm, but our algorithm does not exploit well its
features. A possible approach for studying in the future is to design a MapReduce algorithm
from scratch instead of starting from a distributed version of our sequential algorithm.

Then, we designed parallel algorithms using the BSP model. This model allows one to
keep data locally in memory between iterations. Our �rst parallel algorithm based on BSP
uses DSM with virtual nodes for reducing the number of edges. This algorithm exploits
locality of reference of adjacency lists in Web graphs. Applying BFS ordering and k2tree
over parallel edge-reduced Web graphs does not degrade compression e�ciency.

Our second algorithm extracts dense subgraphs in parallel using dynamic load balance.
Both algorithms provide good speedup and compression e�ciency. However, since both
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algorithms are used with other sequential compression techniques such as k2tree [81] and
mpk [39], the compression speed is limited by those bottlenecks.
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Chapter 7

Conclusions and Future Work

This thesis aims to manage large graphs such as Web and social graphs, which are modeled
by unlabeled edges. We mainly propose compression schemes that support out-neighbor and
in/out-neighbor navigation. We also show that the algorithms we use for �nding regularities
provide e�cient running times and are friendly in streaming, external memory and distributed
settings.

Our work proposes di�erent compression schemes for Web and social graphs based on
dense substructures in the form of complete bipartite graphs with and without set overlaps.
The proposed schemes use these patterns in two di�erent contexts. First, they are used
for reducing the number of edges of the original graph by adding virtual nodes and then
applying other compression techniques. Second, they are used in a structure formed by a
collection of patterns and the remaining graph, where the collection of patterns are implicitly
represented using sequences and bitmaps and the remaining graph is compressed by applying
other compression techniques. In addition, we have studied the performance of our algorithms
in other settings, such as parallel/distributed, streaming and external memory.

7.1 Main Contributions

We �rst provide an approach that uses dense substructures based on complete bipartite
graphs without set overlap (biclique) and with virtual nodes. This scheme consists of adding
a virtual node to connect the two sets in a biclique. Applying this idea iteratively over the
graph reduces the total number of edges on snapshots of real graphs between 4 and 10 times.
For out-neighbor navigation, we show that using other compression schemes such as BVLLP
[19, 18, 16] and AD [9] over the reduced graph provide better compression e�ciency than
applying the compression scheme over the original graph. We found that applying node
ordering LLP over edge reduced graphs, before applying the compression scheme, improves
compression slowing random access times slightly with respect to applying BVLLP over the
original graph. We also found that applying AD, which includes applying BFS node ordering
by default, improves compression e�ciency compared with applying BVLLP over the edge
reduced graph, but random access times increase. Factoring edges is also e�cient when
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supporting in/out-neighbor navigation applying k2tree [22] over the edge reduced graph.
In both cases, retrieving original in/out-neighbors is slower since virtual nodes must be
recursively replaced with original edges. This scheme provides good compression on Web
graphs, but it does not work well on social networks.

Later, we improve this scheme by using dense subgraphs, which are complete bipartite
graphs that allow set overlaps, where overlaps represent cliques. We show that using this
pattern and BFS node ordering over edge reduced Web graphs and then k2tree provides the
best Web graph compression supporting in/out-neighbors, achieving compression between
0.9 and 1.5 bpe on real Web graph snapshots. This solution also provides better access times
than using URL node ordering, but it is slower than applying k2tree over the original graph
using BFS ordering. Again, this approach does not work well on social networks.

We also provide a second approach for using bicliques and dense subgraphs. First, we
provide a compressed structure that represents the input graph as a collection of bicliques
plus the remaining graph. We represent the collection of bicliques as two symbol sequences
and two bitmaps that support rank/select and access operations. This representation allows
us to de�ne di�erent types of community queries discussed in Chapter 3. Applying this rep-
resentation plus k2tree over the remaining graph provides competitive compression e�ciency
on Web graphs, but the approach with virtual nodes works better. However, in the case of
social networks this approach improves the compression and neighbor access times achieved
by k2tree with natural or LLP ordering (i.e. without using BFS ordering before applying
k2tree).

We improve the representation based on bicliques using dense subgraphs, which are com-
plete bipartite subgraphs with set overlap. In this case, we de�ne only one symbol sequence,
based on three components, and one bitmap for representing the collection of dense sub-
graphs. Again, we represent the remaining graph using k2tree. This representation provides
better compression e�ciency than the one achieved using bicliques on Web graphs. In fact,
it improves the compression between 0.25 and 1 bpe on real Web graphs (as seen in Fig-
ure 4.19 in Chapter 4). In the context of social networks, it is possible to achieve better
space/time e�ciency than the state-of-the-art techniques, when combining this implicit rep-
resentation of dense subgraphs with the remaining graph compressed with MPk [39]. One
important observation is that more than 91% of the edges of Web graphs are represented in
either bicliques or dense subgraphs. However, on social networks, such percentages drop to
about 50-60%. Besides, the size of the subgraphs are smaller in social networks than on Web
graphs. Another observation is that the compression e�ciency of social networks (with bpe
between 8.5 and 13), is still far from the one achieved on Web graphs (with bpe between 0.9
and 2.5). Therefore, it is an open question whether it is possible to improve the compression
of social networks.

We show that �nding bicliques or dense subgraphs is friendly in the context of streaming
and external memory models of computation. It is possible to apply a streaming algorithm
that �nd heavy hitters in a hierarchy for extracting large bicliques. This alternative is not very
e�cient in terms of memory usage and running times, but it is able to �nd large subgraphs.
A possible way to improve this approach is to use algorithms for computing just heavy hitters
in the clustering step and then apply a smarter mining algorithm to deal with possible less
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precise clusters. This scheme should improve resource usage considerably. We also design and
implement an external memory algorithm based on the external R-way merge-sort algorithm
for clustering and sorting by clusters the input graph. This algorithm is more e�cient in
terms of memory, but it is about twice as slow as the original algorithm. We also show
results that compare the application of the sliding-window model over a graph using URL
node ordering and over the graph ordered by clusters. However, we do not apply a mining
algorithm taking into account that clusters might overlap in the same window. Therefore,
improving the mining algorithm probably will improve the quality of the results.

We also show that the algorithms we use for discovering and extracting bicliques and
dense subgraphs are scalable in a parallel/distributed setting. We designed and implemented
parallel algorithms using the BSP model. We provide a parallel algorithm for discovering
dense subgraphs for applying the scheme with virtual nodes. The algorithms exploit locality
and provide good scalability and speedup. We also present a parallel algorithm for extracting
dense subgraphs and apply load balancing for keeping all processors busy.

7.2 Future Research

Our main lines of future research are described below:

• Finding other graph patterns that could be good for compression, taking into account
the edge density, size, and number of patterns in the graph. Some of the patterns
that could be explored include communities with high edge density (number of edges
within the community) and low inter community edge density (number of edges across
clusters). It would be worth seeing whether it is possible to use such patterns more
generally than the dense subgraphs we de�ne. A possible approach for discovering
such patterns include de�ning an objective function that quanti�es the properties of
communities using the function to de�ne an algorithm that allows one to assign nodes
to communities optimizing the objective function. We could extend our discovery
algorithm to consider such patterns or design other algorithms. In addition, once
patterns are found, the next step for achieving compression and navigation is to design
representations that favor subgraphs with high values of the objective function.

• All our results show that Web graphs are much more compressible than social networks.
In this context, just recently, Chierichetti et al. [34] show that the best known web
graph models require Ω(log n) bits per edge on average. Therefore, they do not account
for the compressibility of such graphs. The authors present a model for Web graphs
that has O(1) entropy per edge and at the same time preserves other known properties,
such as power-law distribution and large number of communities. However, they also
show that some models for social networks have large entropy, which suggests that
these graphs are incompressible. They show that the compressibility of Web graphs
comes from the small value of the average of edge length or the average of gaps. The
edge length is the absolute value of the distance between the endpoints of an edge (i.e.
|v − u|, of the edge (u, v)) and a gap is the absolute value between the vertices in an
ordered adjacency list. For instance, if vertex x has an adjacency list with vertexes
z1, ..., zj in this order, the gaps are given by |zi−1 − zi|, where 1 ≤ i ≤ j. In fact,
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other works [9, 70] that use BFS node ordering apply something similar for improving
compression. In both cases BFS node ordering is applied starting at a random node.
Therefore, in this context, a possible line of research is to look for better alternatives
of node ordering that tend to minimize the average of edge length or gaps. We could
start by looking at di�erent ways of applying BFS for de�ning node orderings using
synthetic graphs. For instance, we could apply undirected BFS, start at nodes with
higher degrees, start at nodes participating in largest dense subgraphs, de�ning the
order in the position of nodes in the same level based on the degree of the nodes in
the level, etc. This study might help in �nding patterns that are more relevant for
designing graph models that are more suitable for compressing social networks.

• Finding subgraphs or patterns in graphs has many applications in di�erent areas, such
as social networks, biological data analysis such as Protein-interaction networks (PIN),
recommender systems, transport routing, etc. One interesting future work will focus
on studying algorithms theoretically and experimentally to �nd di�erent patterns in
graphs with the goal of counting, enumerating and listings di�erent kinds of graph
patterns. Some interesting patterns may be dense or sparse. Some dense patterns
include kd-clique, where the shortest path from any vertex to another vertex is no
more than k and paths may go out outside the pattern; k-cores, where every vertex
connects to at least k other vertices in the pattern; k-plex, where each vertex is missing
no more than k − 1 edges to its neighbors; etc. Sparse patterns may include loops,
parallel paths, etc. A related topic is graph searching, where given a pattern Gp and
a graph G we must check whether Gp matches G and identify all matched subgraphs.
Usually Gp is small and G is large.

• Another path of research is to extend the algorithms proposed in this work for detect-
ing dense subgraphs for graphs with labeled edges. In this context, there are many
applications that are or can be modeled by these graphs.

• Another line of future work is considering algorithms that aim not only to build com-
pressed structures in a parallel/distributed setting, but also to solve queries over the
compressed representation. The idea is to propose algorithms that allow incremental
compression so that the compressed structure can grow in an online fashion where
query algorithms must be able to give answers considering dynamic updates over the
compressed representation.

• In chapter 5 we propose an e�cient external memory algorithm for reordering the graph
based on dense subgraphs. We also show that we can apply our mining algorithm over
such graphs using a sliding-window model approach, where we can �x the number of
edges to consider in the mining algorithm. Our preliminary work just applies the mining
algorithm considering that all edges belong to the same cluster. However, this is not
the general case, since clusters have di�erent numbers of edges. Therefore, the quality
of the extracted patterns can be improved by using a smarter mining algorithm that
detects in an online manner whether there is more than one cluster to consider in each
window.
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