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Resumen

El árbol de sufijos es una de las estructuras más importantes que se han creado para el
manejo de cadenas de caracteres. Esta estructura tiene muchas aplicaciones en variadas áreas de
la investigación, destacándose en la bioinformática. Una implementación clásica de esta estructura
ocupa un espacio de memoria muy grande, lo cual hace dif́ıcil su uso para problemas de gran
tamaño. En este trabajo se presentará una nueva representación comprimida para los árboles de
sufijos, la cual ofrece muchas variantes, haciéndola una interesante alternativa con respecto a las
implementaciones ya existentes.

En la práctica, además de la presentada en este trabajo, existen dos implementaciones dispo-
nibles para un árbol de sufijos comprimido. Ambas implementaciones ofrecen espacio y tiempos
completamente diferentes. La primera fue propuesta por Sadakane e implementada por Välimäki
et al. Esta estructura soporta la mayoŕıa de las operaciones de navegación en tiempo constante,
tomando unas pocas decenas de microsegundos por operación, pero en la práctica requiere entre
25 a 35 bits por śımbolo. La segunda implementación fue propuesta e implementada por Russo
et al. Las operaciones de navegación se resuelven en el orden de los milisegundos por operación,
ocupando muy poco espacio en memoria, alrededor de 4 a 6 bits por śımbolo. Esto hace que
sea atractiva cuando la secuencia es grande en comparación con la memoria principal disponible,
pero la implementación es mucho más lenta que la de Välimäki et al. De hecho los tiempos de
navegación de Russo et al. son cercanos al tiempo de acceso que toma almacenar datos en disco.

En este trabajo inicialmente se implementa una propuesta teórica reciente de Fischer et al.,
demostrando que de su trabajo se obtienen muchas estructuras interesantes que ofrecen tiempos
competitivos y requerimientos de memoria accesibles en la práctica. Luego se exploran diferentes
variantes y nuevas ideas para todas las estructuras que componen al árbol de sufijos comprimido
propuesto por ellos. Una de estas variantes resultó ser superior a la implementación de Sadakane
tanto en espacio como en tiempo, utilizando alrededor de 13 a 16 bits por śımbolo y tomando
unos pocos microsegundos en resolver cada operación. Otra de estas variantes ocupa entre 8 y
12 bits por śımbolo y toma unos pocos cientos de microsegundos por operación, siendo todav́ıa
varias veces más rápida que la implementación de Russo.

En esta tesis también se implementan y comparan las técnicas actuales más importantes, que
usan 2n+ o(n) bits y toman tiempo constante por operación, para representar árboles generales
en forma sucinta. Cabe notar que en la literatura no existe un estudio exhaustivo que compare
la eficiencia práctica de estas técnicas. Estas se pueden clasificar en tres grandes tendencias: las
basadas en BP (balanced parentheses), las basadas en DFUDS (depth-first unary degree sequence)
y las basadas en LOUDS (level-ordered unary degree sequence).

Los experimentos realizados permiten concluir que una técnica reciente para representar
árboles generales, basada en los llamados range min-max trees, se destaca como una excelente
combinación de espacio, tiempo y funcionalidad, mientras que las otras (en particular LOUDS)
siguen siendo interesantes para algunos casos especiales. Este estudio aporta nuevas ideas que
fueron aplicadas en la implementación del árbol de sufijos comprimido presentado en esta tesis,
con lo cual se obtuvieron implementaciones competitivas e incluso mejores que las ya existentes.
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También quisiera agradecer a esos amigos que me han aguantado casi toda mi vida, Bernardita,
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JÉRÉMY BARBAY
RODRIGO PAREDES

NIEVES BRISABOA
(University of A Coruña, Spain)

This work has been supported by the Millennium Institute for Cell Dynamics and
Biotechnology (ICDB), Grant ICM P05-001-F, Mideplan, Chile, and by Fondecyt
Project 1-080019, Conicyt, Chile.

SANTIAGO - CHILE
SEPTEMBER 2010



Abstract

The suffix tree is a powerful data structure capable of solving many problems in stringology,
with many applications in computational biology. Classical implementations require much space,
which renders them useless for large problems. In this work, we explore practical implementations
of compressed suffix trees, introducing several variants that offer an interesting alternative to the
existing proposals.

In practice, besides the ones presented in this work, there are two other compressed suffix tree
implementations available, both offering a completely different space-time trade-off. The first one
was proposed by Sadakane and implemented by Välimäki et al. This structure supports most
of the tree navigation operations in constant time. It achieves a few tens of microseconds per
operation, but in practice it requires about 25–35 bits per symbol. The second was proposed and
implemented by Russo et al. The navigation operations are supported in order of milliseconds
per operation and achieve very little space, around 4–6 bits per symbol. This makes it attractive
when the sequence is large compared to the amount of main memory available, but it is much
slower than Välimäki et al.’s implementation of Sadakane’s structure. Indeed the navigational
times in Russo et al.’s structure are close to the access time when storing the data on disk.

We present practical implementations of a recent theoretical proposal by Fischer et al., showing
that they yield many interesting structures that offer both practical times and affordable spaces.
We first implement verbatim Fischer et al.’s proposal, then we try different variants and new
ideas for all the structures that compose the compressed suffix tree presented by them. One of
these variants turn out to be superior to Sadakane’s compressed suffix tree implementation in
both space and time, using around 13 to 16 bits per symbol and requiring a few microseconds per
operation. Another alternative works within 8–12 bits per symbol and requires a few hundreds of
microseconds per operation, being still several times faster than Russo’s implementation.

In this thesis we also implement and compare the major current techniques for representing
general trees in succinct form using 2n + o(n) bits and implementing the navigation operations
in constant time. There was no exhaustive study in the literature comparing the practical per-
formance of such techniques. These can be classified into three broad trends: those based on BP
(balanced parentheses in preorder), those based on DFUDS (depth-first unary degree sequence),
and those based on LOUDS (level-ordered unary degree sequence).

We experiment over various types of real-life trees and of traversals, and conclude that a recent
technique for representing general trees based on so-called range min-max trees stands out as an
excellent practical combination of space occupancy, time performance, and functionality; whereas
others (particularly LOUDS) are still interesting in some limited-functionality niches. This study
yields new ideas that were applied in other areas of our compressed suffix tree implementation,
and that finally made it competitive or even better than the existing ones.
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Chapter 1

Introduction

The suffix tree [Wei73, McC76] is arguably the most important data structure for string analy-
sis. It has been said to have a myriad of virtues [Apo85] and there are even books dedicated to its
applications in areas like bioinformatics [Gus97]. A suffix tree is a data structure that represents
all the suffixes of a given string in a way that allows answering many string problems.

The classic application for suffix trees is exact string matching. Given a text T of length n
and a string P of length m ≤ n, a suffix tree structure can find an occurrence of P in T (or
determine that P is not contained in T ) in time O(m). In the same time it can give the number
of occurrences of the pattern P in the text, and it takes O(m+ k) time to give all the occurrence
positions in the text, where k is the number of occurrences of the pattern.

Many other complex sequence analysis problems are solved through sophisticated traversals
over the suffix tree, and thus a fully-functional suffix tree implementation supports a variety of
navigation operations. These involve not only the classical tree navigation operations (parent,
child) but also specific and sophisticated ones such as suffix links and lowest common ancestors.

One serious problem of suffix trees is that they take much space. A naive implementation can
easily require 20 bytes per character of T , and a very optimized one reaches 10 bytes [Kur99]. A
way to reduce this space to about 4 bytes per character is to use a simplified structure called a
suffix array [MM93], but this does not contain sufficient information to carry out all the complex
tasks suffix trees are used for. Enhanced suffix arrays [AKO04] extend suffix arrays so as to recover
the full suffix tree functionality, raising the space to about 6 bytes per character in practice. Some
other heuristic space-saving methods [MRR01] achieve about the same space.

To have an idea of how bad is this space, consider that, on DNA, each character could be
encoded with 2 bits, whereas the alternatives we have considered require 32 to 160 bits per
character. Using suffix trees on secondary memory makes them orders of magnitude slower as
most traversals are non-local. This situation is also a heresy in terms of Information Theory:
whereas the information contained in a sequence of n symbols over an alphabet of size σ is

1



Chapter 1 Introduction

n log2 σ bits in the worst case, all the alternatives above require Θ(n log n) bits.

Recent research on compressed suffix trees (CSTs) has made much progress in terms of reaching
space requirements that approach not only the worst-case space of the sequence, but even its
information content. All these can be thought of as a compressed suffix array (CSA) plus some
extra information that encodes the tree topology and longest common prefix (LCP) information.

One of the first such proposals was by Sadakane [Sad07a]. It requires 6n bits on top of his
CSA [Sad03], which in turn requires nH0 +O(n log log σ) bits, where H0 is the zero-order entropy
of the sequence. This structure supports most of the tree navigation operations in constant
time (except, notably, going down to a child, which is an important operation). It has recently
been implemented by Välimäki et al. [VGDM07]. They achieve a few tens of microseconds per
operation, but in practice the structure requires about 25–35 bits per symbol (close to a suffix
array), and thus its applicability is limited.

The second proposal was by Russo et al. [RNO08b]. It requires only o(n) bits on top of a CSA.
By using an FM-index [FMMN07] as the CSA, one achieves nHk + o(n log σ) bits of space, where
Hk is the k-th order empirical entropy of the sequence, for sufficiently low k ≤ α logσ n, for any
constant 0 < α < 1. The navigation operations are supported in polylogarithmic time (at best
Θ(log n log log n) in their paper). This structure was implemented by Russo and shown to achieve
very little space, around 4–6 bits per symbol, which makes it attractive when the sequence is large
compared to the available main memory. On the other hand, the structure is much slower than
Sadakane’s. Some navigation operations take the order of milliseconds, which starts to approach
disk operation times.

Both existing implementations are unsatisfactory in either time or space (though certainly
excel on the other aspect), and become very far extremes of a trade-off: either one has sufficient
main memory to spend 30 bits per character, or one has to spend milliseconds per navigation
operation.

In this thesis we present a third implementation, which offers a relevant space/time trade
off between these two extremes. One variant shows to be superior to the implementation of
Sadakane’s CST in both space and time: it uses 13–16 bits per symbol (i.e., half the space) and
requires a few microseconds (i.e., several times faster) per operation. A second alternative works
within 8–12 bits per symbol and requires a few hundreds of microseconds per operation, that is,
smaller than our first variant and still several times faster than Russo’s implementation.

Our implementation is based on a third theoretical proposal, by Fischer et al. [FMN09], which
achieves nHk(2 max(1, log2(1/Hk)) + 1/ε + O(1)) + o(n log σ) bits (for the same k as above and
any constant ε > 0) and navigation times of the form O(logε n). Fischer et al.’s compressed suffix
tree is built over a representation of the LCP array and expresses all its operations using range
minimum queries (RMQ) and a novel primitive called next/previous smaller value (NSV/PSV) on
the LCP array. This work [FMN09] contains several theoretical structures and solutions, whose
efficient implementation was far from trivial, and required significant algorithm engineering that
completely changed the original proposal in some cases. We studied both the original and our

2



1.1 Outline and Contributions of the Thesis Chapter 1 Introduction

proposed variants, and came up with the two trade-offs mentioned above.

1.1 Outline and Contributions of the Thesis

Chapter 2 : We describe all basic concepts relevant to the practical study of the compressed
suffix tree representations presented in this work.

Chapter 3 : We present an exhaustive comparison of the best techniques, which use 2n+ o(n)
bits, to represent general trees of n nodes. This chapter was published in the Workshop on
Algorithm Engineering and Experiments (ALENEX) [ACNS10].

Chapter 4 : We explain the practical related work on compressed suffix tree representations.

Chapter 5 : We explore different alternatives to represent the LCP array, and compare them
experimentally in terms of space and time.

Chapter 6 : We introduce a new idea, inspired in Sadakane and Navarro’s succinct tree
representation [SN10], to compute operations NSV/PSV and RMQ over the LCP array. This idea
differs markedly from the original theoretical proposal presented by Fisher et al., and proved to
be far superior in practice.

Chapter 7 : We present a new practical compressed suffix tree representation which offers very
relevant space/time trade-offs. This new structure is the result of combining the best structures of
Chapters 5 and 6 plus a compressed representation for the suffix array. This work was published
in the 9th International Symposium on Experimental Algorithms (SEA) [CN10].

Chapter 8 : We give our conclusions and further lines of research that could be explored based
on the results obtained in this work.

3



Chapter 2

Basic Concepts

In this section we introduce some basic concepts that will be useful for the good understanding
of the next chapters. We will call the string S a sequence of characters. The alphabet is usually
called Σ and its size |Σ| = σ, and it is assumed to be totally ordered. The length (number of
characters) of S is denoted |S|. Let n = |S|, then the characters of S are indexed from 1 to n, so
that the i-th character of S is Si or S[i]. A substring of S is written Si,j = SiSi+1...Sj . A prefix
of S is a substring of the form S1,j , and a suffix is a substring of the form Si,n. For what remains
of this work all logarithms are in base 2 unless stated otherwise, and we assume 0 log 0 = 0.

2.1 Empirical Entropy

A common measure of the compressibility of a sequence is the empirical entropy. For a text
T of length n with an alphabet Σ of size σ, the zero-order empirical entropy, H0, is the average
number of bits needed to represent a symbol of T if each symbol receives always the same code.
Mathematically this is defined as follows:

H0(T ) =
∑
c∈Σ

nc
n

log
n

nc

where nc is the number of occurrences of the symbol c in T .

If we can encode each symbol depending on the context in which it appears, we can achieve
better compression ratios. For example, if we consider the context th in English, it is likely to
find an a, e, i, o or u following th, but it is very unlikely to find a k. The definition of empirical
entropy can be extended to consider contexts as follows [Man01]:

Hk(T ) =
∑
s∈Σk

|T s|
n
H0(T s)
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where T s is the sequence of symbols preceded by the context s in T . This is called the “k-Context
Empirical Entropy” . It can be proved that 0 ≤ Hk(T ) ≤ Hk−1(T ) ≤ ... ≤ H0(T ) ≤ log σ.

2.2 Succinct Data Structures

A succinct data structure is a compressed representation of a structure that uses an amount
of space close to the information theoretic lower bound, together with efficient algorithms for
simulating its operations.

As an example, consider a binary tree of n nodes. It is possible to represent the tree succinctly
using about 2n bits and support operations over any node like finding its parent or its left or right
child in constant time, without the need to decompress the structure. This is succinct because
the number of different binary trees with n nodes is

(
2n
n

)
/(n + 1). For large n, this is about 4n;

thus we need at least about log(4n) = 2n bits to encode it.

An important example of succinct data structures are the compressed indexes, which take
advantage of the regularities of the text to operate in space proportional to that of the compressed
text. An even more powerful concept is that of a self-index, which is a compressed index that, in
addition to providing search functionality, contains enough information to efficiently reproduce
any text substring. A self-index can therefore replace the text.

In this thesis, as in most wok on succinct data structures, we will assume that the computation
model is the word RAM with word length Θ(log n) in which arithmetic and logical operations on
Θ(log n)-bit integers and Θ(log n)-bit memory accesses can be done in constant time.

2.3 Rank and Select on Sequences

One of the most basic structure used in the compressed data structures presented in this
thesis is the sequence of symbols supporting rank and select. Given a sequence S of symbols
ranka(S, i) counts the number of occurrences of character a until position i and selecta(S, i)
finds the position of the i-th occurrence of a in the sequence. These structures also support the
operation access(S, i) that returns the symbol at position i in the sequence. The most basic case
is when the sequence is binary.

2.3.1 Binary Sequences

Let B[1, n] be a 0, 1 string (bitmap) of length n and assume there are m ones in the sequence.
Note that rankb(B, selectb(B, i)) = i and selectb(B, rankb(B, i)) ≤ i, where b ∈ {0, 1}. Figure 2.1
shows an example of rank and select queries.

There exist many succinct data structures that answer rank, select, and access for the binary
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0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 B :
1     2     3     4      5     6      7     8     9    10    11   12   13   14   15    16   17    18   19   20   21   22  

access(B,14) = 0select (B,3) = 6
1

rank (B,10) = 5
1

Figure 2.1: Example of rank, select, and access.

case. The first solution capable of answering these queries in constant time using n + o(n) bits
[Mun96, Cla98], used n bits for B itself and o(n) additional bits for the data structures answering
rank and select queries. This solution was implemented and studied in practice by González et
al. [GGMN05]. Their data structure supports rank in O(1) and select in O(log n) time, while
requiring 5% extra space over the sequence. The idea is to store rank values, in 32 bits, every
s = 20 · 32 = 640 bits, and then scan byte-wise these 640 bits = 80 bytes using a precomputed
table. For select they binary search the sampled values and finish with a sequential scan as well.
We use this implementation under the name ggmn.

The space used was improved by Raman et al. [RRR02] to nH0(B) + o(n) bits, keeping the
same times for answering all the queries. For this compressed bitmap we use a recent implemen-
tation [CN08], available at Google Code (libcds), which requires 27% extra space on top of the
entropy of the bitmap, and implements rank in constant time and select in O(log n) time. We use
this implementation under the name rrr.

Several other practical alternatives achieving good results have been proposed by Okanohara
and Sadakane [OS07]. For this thesis we will use two of these alternatives: sdarray, that re-
quires m log n

m + 2m + o(n) bits and solves select in time O(log4m/ log n) and rank in time
O(log n

m + log4m
logn ), and darray, that requires about the same space as ggmn and answers select in

O(log4m/ log n) and rank in constant time. Table 2.1 summarizes the time and space complexities
achieved by these solutions.

Structure Size Rank Select
ggmn n+ o(n) O(1) O(logn)
rrr nH0(B) + o(n) O(1) O(logn)

sdarray m log n
m

+ 2m+ o(n) O(log n
m

+ log4m
logn

) O( log4m
logn

)

darray n+ o(n) O(1) O( log4m
logn

)

Table 2.1: Space in bits and query time achieved by the data structures.

The reason to consider using Okanahara and Sadakane’s version is that in practice, while the
rank queries are slower, their implementations have a better performance for answering select
queries than the other structures presented. As we will see in the next chapters, some of the
studied structures make heavy use of the select query, where darray and sdarray become a better
option.
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2.3.2 Arbitrary Sequences

Rank, select and access operations can be extended to arbitrary sequences S drawn from an
alphabet Σ of size σ. There exist several solutions for this case, but we will only explain one, the
wavelet tree.

A wavelet tree [GGV03, NM07] is a perfectly balanced tree that stores a bitmap of length
n in the root; every position in the bitmap is either 0 or 1 depending on the value of the most
significant bit of the symbol in that position in the sequence. In general, wavelet trees are
described as dividing alphabet segments into halves. A symbol with a 0 goes to the left subtree
and a symbol with a 1 goes to the right subtree. This decomposition continues recursively with
the next highest bit, and so on. The tree has σ leaves and requires ndlog σe bits, n bits per level.
Every bitmap in the tree must be capable of answering access, rank and select queries.

Figure 2.2: The wavelet tree of the sequence “alabar a la alabarda”. The white space is written as an underscore
for clarity, and it is lexicographically smaller than the characters “a”-“z”.

The access query for position i can be solved by following the path described by position i.
At the root, if the bitmap at position i has a 0/1, we descend to the left/right child, switching to
the bitmap position rank0/1(i) in the left/right subtree. This continues recursively until reaching
the last level.

The rank query for a symbol s up to a position i can be answered in a similar way as access,
the difference being that instead of considering the bit at position i we consider the bit value of
the symbol s. Therefore if the bit value of s is 0/1 we descend to the left/right child, switching to
the bitmap position rank0/1(i) in the left/right subtree. This continues recursively until reaching
the leaves and the bitmap position in the last level corresponds to the answer to rank of symbol
s in the sequence.

The select query does a similar process as rank, but upwards. To select the i-th occurrence
of character c, we start at the leaf where c is represented and do select of the i-th b, where b is
the bit of c corresponding to this level. Using the position obtained by the binary select query we
move to the parent, querying for this new position and the new bit value corresponding to this
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level, and so on. At the root, the position is the final result.

The cost of the operations is O(log σ) assuming constant time for rank, select, and access
over the bitmaps. With some care the wavelet tree can be represented in n log σ + o(n log σ) bits
[NM07]. A practical variant to achieve n(H0(S) + 1)(1 + o(1)) bits of space is to give the wavelet
tree the same shape than the Huffman tree of S [GGV03].

2.4 Tries or Digital Trees

A digital tree or trie [Fre60, Knu73] is a data structure that stores a set of strings. It can
support the search for a string in the set in time proportional to the length of the string sought,
independently of the set size.

Definition 2.1. A labeled tree is a tree in which each edge is associated with a label from a given
alphabet Σ.

Definition 2.2. A trie for a set G of distinct strings S1, S2, . . . , SN is a labeled tree where each
node v represents a distinct prefix π(v) in the set, called its path-label. The root node represents
the empty prefix, π(root) = ε. If node v is a child of node u and character c labels the tree edge
from u to v, then π(v) = π(u).c.

We assume that all strings are terminated by “$”. Under this assumption, no string Si is a
prefix of another, and thus the trie has exactly N leaves, each corresponding to a distinct string.

l

a

la

$

$a

b a r

$

d

$a

Figure 2.3: A trie for the set {“alabar”, “a”, “la”, “alabarda”}. In general the arity of trie nodes may be as
large as the alphabet size.

A trie for G = {S1, S2, . . . , SN} is easily built in time O(|S1|+ |S2|+ . . .+ |SN |) by successive
insertions. Any string S′ can be searched for in the trie in time O(|S′|) by following from the trie
root the path labeled with the characters of S′. Two outcomes are possible: (i) at some point i
there is no edge labeled S′[i] to follow, which means that S′ is not in the set S′, (ii) we reach a
leaf corresponding to S′ (assume that S′ is also terminated with character “$”).
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Actually, the above complexities assume that the alphabet size σ is a constant. For general σ,
we must multiply the above complexities by O(log σ), which accounts for the overhead of searching
the correct character to follow inside each node. This can be made O(1) by using at each node a
direct addressing table of size σ, but in this case the size must be multiplied by O(σ) to allocate
the tables at each node. Alternatively, perfect hashing of the children of each node permits O(1)
search time and O(1) space factor, yet the construction cost is multiplied by O(σ2).

2.5 Suffix Trees

Let us now consider how tries can be used for text indexing. Given text T1,n (terminated with
T [n] = $), T defines n suffixes T1,n, T2,n, . . . , Tn,n.

Definition 2.3. The suffix trie of a text T is a trie data structure built over all the suffixes of T .

The suffix trie of T makes up an index for fast string matching. Given a pattern P1,m (not
terminated with “$”), every occurrence of P in T is a substring of T , that is, the prefix of a suffix
of T . Entering the suffix trie with the characters of P leads us to a node that corresponds to all
the suffixes of T prefixed by P (or, if we do not arrive at any trie node, then P does not occur
in T ). This permits counting the number of occurrences (occ) of P in T in O(m) time, by simply
recording the number of leaves that descend from each suffix tree node. It also permits finding all
the occ occurrences of P in T in O(m+occ) time by traversing the whole subtree (some additional
pointers threading the leaves and connecting each internal node to its first leaf are necessary to
ensure this complexity).

As described, the suffix trie usually has Θ(n2) nodes. In practice, the trie is pruned at a node
as soon as there is only a unary path from the node to a leaf. Instead, a pointer to the text
position where the corresponding suffix starts is stored. On average, the pruned suffix trie has
only O(n) nodes [SF96]. Yet it might have Θ(n2) nodes in the worst case. Fortunately, there
exist equally powerful structures that guarantee linear space and construction time in the worst
case, called suffix trees [Wei73, McC76]. Figure 2.4 gives an example of a suffix tree.

Definition 2.4. The suffix tree of a text T is a suffix trie where each unary path is converted
into a single edge. Those edges are labeled by strings obtained by concatenating the characters of
the replaced path. The leaves of the suffix tree indicate the text position where the corresponding
suffixes start.

Since there are n leaves and no unary nodes, it is easy to see that suffix trees require O(n)
words of space (the strings at the edges are represented with pointers to the text). Moreover,
they can be built in O(n) time [McC76, Ukk95].

The search for P in the suffix tree of T is similar to a trie search. Now we may use more
than one character of P to traverse an edge, but all edges leaving from a node have different first
characters. The search can finish in three possible ways: (i) at some point there is no edge leaving
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Figure 2.4: The suffix tree of the text “alabar a la alabarda$”. The white space is written as an underscore for
clarity, and it is lexicographically smaller than the characters “a”–“z”.

from the current node that matches the characters that follow in P , which means that P does
not occur in T ; (ii) we read all the characters of P and end up at a tree node (or in the middle
of an edge), in which case all the answers are in the subtree of the reached node (or edge); or
(iii) we reach a leaf of the suffix tree without having read the whole P , in which case there is at
most one occurrence of P in T , which must be checked by going to the suffix pointed to by the
leaf and comparing the rest of P with the rest of the suffix. In any case the process takes O(m)
time (assuming the usage of perfect hashing to find the children in constant time) and suffices for
counting queries.

Suffix trees permit O(m + occ) locating time without the need of further pointers to thread
the leaves, since the subtree with occ leaves has O(occ) nodes. The real problem of suffix trees is
their high space consumption, which is Θ(n log n) bits and at the very least 10 times the text size
in practice [Kur99].

Several navigation operations over the nodes and leaves of the suffix tree are of interest.
Table 2.2 lists the most common ones. As an example of how useful can be these operations,
we can mention that SLink is necessary to use the suffix tree as an automaton recognizing all
the substrings of the text, which can be used to compute the longest common substring of two
strings, matching statistics, etc. [Gus97]. Another example is the lowest common ancestor (LCA)
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Operation Description
Root() the root of the suffix tree.
Locate(v) the suffix position i if v is the leaf of suffix Ti,n, otherwise NULL.
Ancestor(v, w) true if v is an ancestor of w.
SDepth(v)/TDepth(v) the string-depth/tree-depth of v.
Count(v) the number of leaves in the subtree rooted at v.
Parent(v) the parent node of v.
FChild(v) the alphabetically first child of v.
NSibling(v) the alphabetically next sibling of v.
Letter(v, i) the i-th letter of v’s path-label, π(v)[i].
SLink(v) the suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σ.
SLinki(v) the iterated suffix-link of v; i.e., the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σi.
LCA(v, w) the lowest common ancestor of v and w.
Child(v, a) the node w s.th. the first letter on edge (v, w) is a ∈ Σ.
LAQS(v, d)/LAQT (v, d) the highest ancestor of v with string-depth/tree-depth ≥ d.

Table 2.2: Operations over the nodes and leaves of the suffix tree.

operation, which is necessary to compute the longest common extension of two suffixes in constant
time, useful in approximate string matching problems [LV88].

2.6 Suffix Arrays (SA)

A suffix array [MM93] is a permutation of all the suffixes of T so that the suffixes are lexico-
graphically sorted. Figure 2.5 gives an example of a suffix array (disregard for now LCP and Ψ
arrays).

Definition 2.5. The suffix array of a text T1,n is an array A[1, n] containing a permutation of
the interval [1, n], such that TA[i],n < TA[i+1],n for all 1 ≤ i < n, where “<” between strings is the
lexicographical order.

Figure 2.5: The suffix array (A), longest common prefix array (LCP), and Ψ array of the text “alabar a la
alabarda$”.

Note that if the children of each node of the suffix tree are ordered lexicographically by their
string label, then the suffix array can be obtained by collecting the leaves of the suffix tree in

11



2.6 Suffix Arrays (SA) Chapter 2 Basic Concepts

left-to-right order. However, it is much more practical to build it directly [KSB06, PST07]. In
principle, any comparison-based sorting algorithm can be used, as it is a matter of sorting the n
suffixes of the text, but this could be costly especially if there are long repeated substrings within
the text. In 2003, it was shown that the suffix array can be constructed in O(n) worst-case time
[KA03, KS03, KSPP03].

To search for a pattern P [1,m] in T one can search for the interval A[sp, ep] of the suffixes
starting with the pattern. This can be done via two binary searches on A. The first binary search
determines the starting position sp for the suffixes lexicographically larger than or equal to P .
The second binary search determines the ending position ep for suffixes that start with P . Then
the answer is the interval A[sp, ep], that is, each A[i], sp ≤ i ≤ ep, is the starting position of
an occurrence of P in T . The binary searches take time O(m log n) and the occ = ep − sp + 1
occurrences are reported in time O(occ).

There are several compressed suffix arrays [NM07, FGNV09], which offer essentially the fol-
lowing functionality: (1) Given a pattern P [1,m], find the interval A[sp, ep] of the suffixes starting
with P ; (2) obtain A[i] given i; (3) obtain A−1[j] given j. An important function that most of
the compressed suffix arrays implement efficiently is Ψ(i) and its inverse LF (i). These functions,
to be defined in the sequel, let us move virtually in the text, from the suffix i that points to text
position j = A[i], to the one pointing to j + 1 = A[Ψ(i)] (see Figure 2.5) or j − 1 = A[LF [i]].

In this thesis we consider Sadakane’s Compressed Suffix Array (CSA) [Sad03] and the FM-
Index [FM00]. It is important to mention that both compressed suffix arrays presented in this
thesis are self-indexes (recall Section 2.2).

2.6.1 Sadakane’s Compressed Suffix Array (CSA)

Sadakane’s CSA [Sad03] represents the suffix array and the text using the function Ψ.

Definition 2.6. Let A[1, n] be the suffix array of a text T . Then Ψ(i) is defined as the position
i′ in the suffix array where A[i′] = (A[i] mod n) + 1, which is A[i′] = A[i] + 1 except for the case
A[i] = n, where it holds A[i′] = 1.

It is not hard to see that Ψ is monotonically increasing in the areas where the suffixes start with
the same symbol [GV05]. To see that Ψ(i) < Ψ(i+1) whenever T [A[i]] = T [A[i+1]], assume that
TA[i],n = c.X and TA[i+1],n = c.Y , so c.X < c.Y and then X < Y . Thus TA[i]+1,n = TA[Ψ(i)],n = X
and TA[i+1]+1,n = TA[Ψ(i+1)],n = Y . So TA[Ψ(i)],n < TA[Ψ(i+1)],n, and thus Ψ(i) < Ψ(i + 1). In
addition, there are long parts where Ψ(i+1) = Ψ(i)+1 [MN05]. These properties permit a compact
representation of Ψ and its fast access. Essentially, we differentially encode Ψ(i)−Ψ(i− 1), run-
length encode the long runs of 1’s occurring over those differences, and for the rest use an encoding
favoring small numbers [Sad03]. Absolute samples are stored at regular intervals to permit the
efficient decoding of any Ψ(i). The sampling rate gives a space/time trade-off for accessing and
storing Ψ.

12



2.6 Suffix Arrays (SA) Chapter 2 Basic Concepts

To obtain A[i] the basic idea is to store a sample of values of the suffix array. Sadakane
samples A at regular intervals of length SR in the text, explicitly storing A[k] iff A[k] = i ·SR for
i ∈ {1, ..., n/SR}. These sampled positions k are marked in a bitmap. Thus, if after applying the
Ψ function g times we get a sampled value A[k], then the value of the original position is A[k]−g.
The sampling rate of A is a crucial parameter that trades space, requiring (n log n)/SR bits for
storing the samples, and taking time O(SR) to compute A[i].

To extract an arbitrary suffix TA[i],n Sadakane stores a bitmap D1,n, so that D[i] = 1 iff i = 1
or T [A[i]] 6= T [A[i − 1]], and a string charT , of size at most σ, where the distinct characters
of T are concatenated in alphabetical order. Then if we want the first character of some suffix
j = A[i], we just need to compute c = T [j] = charT [rank1(D, i)], which can be done in constant
time using only n + o(n) bits for D (Section 2.3) and σ log σ bits for charT . To extract the
next letter of the suffix TA[i],n, we use the identity T [A[i] + 1] = T [A[Ψ(i)]], thus we simply have
to move to i′ = Ψ(i) and carry out the same process again to obtain T [A[i′]], and so on. By
using this we can find the interval A[sp, ep] of the suffixes starting with a given pattern P [1,m].
Since each step of the binary searches requires a lexicographical comparison between P and some
substring TA[i],A[i]+m−1, it takes O(m log n) worst-case time. Figure 2.6 shows the pseudocode for
the comparison.

Algorithm CSA-compare(P,m, i,Ψ, D, charT )
1. l← 1;
2. do
3. c← charT [rank1(D, i)];
4. if Pl < c then return “<”;
5. if Pl > c then return “>”;
6. i← Ψ(i);
7. l← l + 1;
8. while l ≤ m;
9. return “=”;

Figure 2.6: Comparing P against TA[i],n using Ψ, D, and charT .

Finally, in order to discard the text, we need to be able to extract any substring Ta,b. For the
same sampled text positions i · SR sampled above, we store A−1[i · SR] in text position order.
Thus, we find the latest sampled position i · SR preceding a, i = b a

SRc, and know that i · SR
is pointed from j = A−1[i · SR], which is sampled. From that j we use the mechanism we have
described to extract a string using charT and Ψ, to find out the substring Ti·SR,b which covers
the one of interest to us. This is not the way Sadakane’s theoretical description handles this, but
the way he implemented it in practice. Using this, a substring Ta,b of length m can be extracted
in O(m+ log1+ε n) time, where 0 < ε ≤ 1 is an arbitrary constant which depends on the sample
size chosen when the index is built. Note that using the same sampling, we also can compute
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A−1[i] in time O(log1+ε n).

This compressed suffix array [Sad00, Sad03] requires nH0(T ) + O(n log log σ) bits of space
in its practical implementation. Mäkinen and Navarro later improved the space analysis to
nHk(T ) + O(n log log σ), for k ≤ α logσ n and constant 0 < α < 1 [MN07a]. The time for
counting the number of occurrences of some pattern P of size m is O(m log n), the time for locat-
ing is O(log1+ε n) per occurrence, and the time to display l symbols of the text is O(l+ log1+ε n),
where 0 < ε ≤ 1 is an arbitrary constant which depends on the sampling step SR = logε n. Note
that Ψ is computed in time O(1) (actually this depends on the rate of absolute values sampled
in Ψ). In theory they can achieve better complexities, but this has not been implemented as it
requires much more space.

2.6.2 The FM-Index

The FM-Index is based on the Burrows-Wheeler transform (BWT) [BW94]. We first explain
the transformation, how to recover the text from the transformation, and how to search for a
pattern inside the transformed text. Then we describe FM-Index and how it represents the BWT.

The Burrows-Wheeler Transform (BWT)

For a text T of length n, imagine a matrix MT of dimensions n×n whose rows are the rotations
(cyclic shifts) of T in incremental order. If we sort in lexicographic order the rows of this matrix,
then the BWT (T bwt) is the last column of that matrix. This is equivalent to collecting the
character preceding every suffix of the suffix array A of T , hence the BWT can be identified with
A. Figure 2.7 shows an example of how the BWT is computed for the text “alabar a la alabarda”.
Assuming that the last symbol of T is lexicographically smaller than all the others, and that it is
unique, it is possible to reverse the transformation: T [n− 1] is located at T bwt[1], since the first
element in the sorted matrix starts with T [n]. To continue we need a definition.

Definition 2.7. The LF-mapping is defined as LF (i) = C[c] + rankc(T bwt, i), where c = T bwt[i]
and C[c] is the number of occurrences of symbols lexicographically smaller than c in T .

LF stands for Last-to-First column mapping since the character T bwt[i], in the last column
of MT , is located in the first column of MT at position LF (i). Thus, LF allows us to navigate
T backwards, T [n − 2] = T bwt[LF (1)], and for any position k, T [n − k] = T bwt[LF k−1(1)]. Note
that LF is the inverse function of Ψ, because LF (i) corresponds to the position in A of the suffix
pointing to T [A[i]− 1].

Given the relation between T bwt and A, it is natural to ask whether one can use T bwt for
searching. This is indeed the case, and the method is called backward search. Figure 2.8 shows
the algorithm for counting the occurrences of a pattern P using the BWT .
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Figure 2.7: The BWT of the text “alabar a la alabarda”. The white space is written as an underscore for clarity.

Algorithm FM -count(P,m)
1. i← m;
2. sp← 1;
3. ep← n;
4. while sp ≤ ep and i ≥ 1 do
5. c← Pi;
6. sp← C[c] + rankc(T bwt, sp− 1) + 1;
7. ep← C[c] + rankc(T bwt, ep);
8. i← i− 1;
9. if ep < sp then
10. return 0;
11. else
12. return ep− sp+ 1;

Figure 2.8: Counting on FM-Indexes.

Since the suffix array is not explicitly stored, we must use a regular text sampling to retrieve
the positions covered by the range resulting from the counting. To obtain A[i] the basic idea is
to store a sample of values of the suffix array, much as explained in Section 2.6.1. Then we can
traverse the text backwards by jumping across the BWT using the LF function, thus if after
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applying the LF function k times we get a sampled value A[j], then the value for the original
position is A[j] + k. The sampling rate of A is again a crucial parameter that trades space for
query time. A sampling similar to that in Section 2.6.1 allows one to compute A−1 and to extract
any substring Ta,b.

There are several variants of the FM-Index [FMMN07, MN05, NM07, FGNV09]. For this thesis
we use Ferragina et al.’s [FMMN07] version that uses nHk(T ) + o(n log σ) bits for k ≤ α logσ n
and constant 0 < α < 1. In practice the time for counting the number of occurrences of a pattern
P of size m is O(m log σ), locating takes O(log1+ε n) time per occurrence, and reporting a text
substring of length l takes O(l log σ+ log1+ε n) time, where ε > 0 is an arbitrary constant related
to the sampling rate. Note that A[i] and A−1[i] are computed in time O(log1+ε n), and LF in
time O(log σ).

2.7 Longest Common Prefix (LCP)

Let lcp(S1, S2) be the length of the longest common prefix between the sequences S1 and S2.
The longest common prefix (LCP ) array of a text T is the array LCP [1, n] such that LCP [1] = 0
and LCP [i] = lcp(TSA[i−1],n, TSA[i],n) for i > 1. Seen in another way, the LCP [i] is the length
of the string labeling the path from the root to the lowest common ancestor node of suffix tree
leaves i and i− 1. The array requires n log n bits of space, and can be constructed in O(n) time
[KLA+01, KMP09]. In Chapter 5 we will discuss different ways to represent the LCP array in
compact form. Figure 2.5 shows an example of the LCP array.
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Chapter 3

Succinct Tree Representations

A general tree of n nodes can be represented in pointer form, requiring O(n log n) bits, whereas
the succinct representations we studied require just 2n+o(n) bits and carry out many sophisticated
operations in constant time. Yet, there is no exhaustive study in the literature comparing the
practical magnitudes of the o(n)-space and the O(1)-time terms.

As part of our research we implemented and compared the major current techniques for
representing general trees in succinct form. This study was done while we were searching for the
best way to represent our compressed suffix tree. Although in the end we do not use any tree
implementation, the study is of great interest and constitutes an added value to the thesis. Most
important is the fact that this research lead us to find new ideas that were applied in other parts
of this thesis (see Section 6.2). The work of this chapter was done in cooperation with Diego
Arroyuelo and Kunihiko Sadakane, and was published in Proc. ALENEX 2010 [ACNS10].

The techniques that we studied can be classified into three broad trends: those based on BP
(balanced parentheses in preorder), those based on DFUDS (depth-first unary degree sequence),
and those based on LOUDS (level-ordered unary degree sequence). BP and DFUDS require a
balanced parentheses representation that supports the core operations findopen, findclose, and
enclose, for which we implement and compare three major algorithmic proposals. All the tree
representations also require core operations rank and select on bitmaps, which are already well
studied in the literature. We showed how to predict the time and space performance of most
variants via combining these core operations, and also studied some tree operations for which
specialized implementations exist. This is especially relevant for a recent proposal [SN10] which,
although belonging to the class BP, deviates from the main techniques in some cases in order to
achieve constant time for the widest range of operations. We experimented over various types
of real-life trees and traversals, concluding that the latter technique stands out as an excellent
practical combination of space occupancy, time performance, and functionality, whereas others,
particularly LOUDS, are still interesting in some limited-functionality niches.
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3.1 Trees and their Representation

Trees are, on one hand, the paradigmatic data structure in Computer Science, probably rivalled
in popularity only by arrays and linked lists; and on the other hand, one of the most striking
examples of the success of succinct data structures. A classical representation of a general tree of
n nodes requires O(nw) bits of space, where w ≥ log n is the bit length of a machine pointer. The
associated constant is at least 2, and typically only operations such as moving to the first child
and to the next sibling, or to the i-th child, are supported. By further increasing the constant,
some other simple operations are easily supported, such as moving to the parent, knowing the
subtree size, or the depth. Much research was needed (and further increase of the constant)
to support sophisticated operations such as level-ancestor [BFC04] and lowest common ancestor
[BFC00] queries. While the constant-time complexities achieved for the sophisticated queries are
remarkable, the Ω(n log n)-bit space complexity is not justified in terms of Information Theory:
there are only Cn ∼ 4n/n3/2 different general trees of n nodes, and thus logCn = 2n − Θ(log n)
bits are sufficient to distinguish any one of them. This huge space gap has motivated a large
body of research [Jac89, MR01, MRR01, MR04, GRR04, BDM+05, GRRR06, DRR06, HMR07,
GGG+07, Sad07a, JSS07, LY08, FM08, SN10] achieving 2n + o(n) bits of space and constant
time for an impressive set of operations. Table 3.1 lists those we consider in this work. There are
several others, yet most are solved analogously to those in this set. Note that we consider labeled
trees, in which case n log σ additional bits are needed to represent the labels. There has been
some work over labeled trees [GRR04, BDM+05, FLMM05, BGMR07, BHMR07] where different
approaches to represent labeled trees, supporting many operations over the labels, are explored.
For this thesis we will only consider operations labeled child and child label which are those with
clear applications to suffix trees.

The existing proposals differ in their functionality, ranging from those that support basically
child/parent navigation [Jac89, DRR06] to those supporting a full range of operations [BDM+05,
JSS07, FM08, SN10]; in the nature of the o(n) space overhead, ranging from O(n/(log log n)2)
[LY08] to O(n/polylog(n)) [SN10]; and in some rare cases on their capability to take less space
when the tree is compressible in some sense [JSS07]. In theoretical terms, the problem can be
considered basically solved, at least in the static scenario.

In practice, however, the situation is much less satisfactory. Implementations of the theoretical
proposals are scarce and far from trivial, even for those striving for simplicity [GRRR06, DRR06,
SN10]. Verbatim implementations of the theoretical proposals are usually disastrous, as already
noted in previous work [Nav09], and much empirical experience must be combined with the
theoretical ideas in order to obtain theoretically and practically sound solutions. There are few
practical comparisons among techniques, none of which is sufficiently exhaustive to give a broad
idea of their performance. In practice, the O(1)-time and the o(n)-space terms in the asymptotic
analyses do not give much clues about how the structures actually perform.

In this study, we carefully implement the theoretical proposals we consider most promising in
practice, and compare them for various real-life trees and typical tree traversals. Tree represen-
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parentheses operation description
findclose(i)/findopen(i) position of parenthesis matching P [i]
enclose(i) position of tightest opening parenthesis enclosing node i
rank((i)/rank)(i) number of opening/closing parentheses in P [1, i]
select((i)/select)(i) position of i-th open/close parenthesis

tree operation description
pre rank(x) preorder rank of node x
pre select(x) the node with preorder x
isleaf(x) whether node x is a leaf
ancestor(x, y) whether x is an ancestor of y
depth(x) depth of node x
parent(x) parent of node x
first child(x) first child of node x
next sibling(x) next sibling of node x
subtree size(x) number of nodes in the subtree of node x
degree(x) number of children of node x
child(x, i) i-th child of node x
child rank(x) number of siblings to the left of node x
level ancestor(x, d) ancestor y of x such that depth(y) = depth(x)− d
lca(x, y) the lowest common ancestor of two nodes x, y
labeled tree operation description
labeled child(x, s) child of node x labeled by symbol s
child label(x) label of edge between node x and its parent

Table 3.1: Operations on parentheses and trees considered in this study.

tations can be broadly classified into the following tracks:

BP: The balanced parentheses representation of a tree, first advocated as a succinct data structure
by Jacobson [Jac89], and later achieving constant times [MR01], is built from a depth-first
preorder traversal of the tree, writing an opening parenthesis when arriving to a node for
the first time, and a closing parenthesis when going up (after traversing the subtree of the
node). In this way, we get a sequence of 2n balanced parentheses. Each node is represented
by a matching pair of parentheses ′(′ and ′)′, and we identify the node with its opening
parenthesis. The subtree of x contains those nodes (parentheses) enclosed between its
representing opening and closing parentheses. The core operations (see Table 3.1) on this
sequence are sufficient to implement most of the functionality.

DFUDS: Depth-first unary degree sequence [BDM+05]. It is built by the same traversal, except
that, upon arriving at each node, we append i opening and one closing parentheses, being
i the number of children of the node. The node is represented by the position where its
i parentheses start. The resulting sequence turns out to be balanced (if one prepends an
extra opening parenthesis at the beginning) and the same core operations on parentheses
are used to support the same functionality of BP in a different way (except for depth, which
requires extra structures [JSS07]) plus others, most notably child, in constant time.

LOUDS: Level-ordered unary degree sequence [Jac89, BDM+05]. Nodes are processed and rep-
resented as in DFUDS, but they are traversed level-wise, instead of in depth-first order. It
turns out that just the operators rank and select on symbols ′(′ and ′)′ (noted respectively
rank(, rank), select(, and select)) are sufficient to support a few key operations such as
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parent and child in constant time, yet most other operations are not supported as effi-
ciently (they can still be supported in O(n) time).

FF: The recent so-called fully-functional succinct tree representation [SN10] is based on a BP
representation. It includes a novel data structure to handle the core operations, called a
range min-max tree. With little extra data, this same structure is able to solve in con-
stant time many other sophisticated operations that are not usually handled by other BP
representations, such as child, lca, and level ancestor.

Specifically the implementations were done by K. Sadakane (FF), D. Arroyuelo (DFUDS),
G. Navarro (a hash-based representation for BP), and the author of this thesis (LOUDS and a
recursive pioneer-based representation of BP). We omit an extra track based on tree covering
[GRR04, HMR07, FM08], of which we do not know of any practical implementations (we thank
Arash Farzan and Meng He for confirming this).

We first study different alternatives to represent a sequence of balanced parentheses while sup-
porting the core operations. These include a hash-based heuristic implementation developed for a
compressed text index [Nav09], Geary et al.’s recursive pioneer-based representation [GRRR06],
and the range min-max trees [SN10]. We exhaustively compare these operations over real-life
trees coming from (a) LZ78 parsings of text collections, (b) suffix trees of text collections, and (c)
the tag structure of XML collections. We emulate typical root-to-leaf (and vice versa) traversals
coming from exact search, LZ78 decompression, and other very common navigation operations,
as well as traversals where in addition every other child of the current node is visited with a given
probability. These are meant to emulate traversals typical of backtracking, range or proximity
searches, and XPath queries.

We briefly survey the way BP, DFUDS, and LOUDS build on these core operations, and show
how to predict the performance of most operations in terms of the core ones. We also study some
tree operations individually, when the prediction from the performance of core operations is less
direct. Overall, our work provides implementations of the most promising techniques to represent
succinct trees, the first exhaustive empirical comparison among them, and recommendations on
which structures to use depending on the case. It turns out that the recent FF proposal [SN10]
stands out as an excellent combination of wide functionality, little space usage, and good time
performance. Other approaches are still relevant for certain niches. In particular, we show that
LOUDS, which had received comparatively little attention, is an extremely simple and efficient
alternative when only the simpler operations are needed. LOUDS excels when descending to an
arbitrary ordinal or labeled child. For this latter operation, the DFUDS variant also shows to be
a reasonable compromise if a wide functionality must be retained.
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3.2 Balanced Parentheses

Let P [1, 2n] be a sequence of n pairs of balanced parentheses (represented with bits 0,1). We
describe the three major representations we will consider, which support the core parenthesis oper-
ations described in Table 3.1. Let us define the key function excess(i) = rank((i)−rank)(i). Then
it holds that findclose(i) is the smallest j > i such that excess(j) = excess(i− 1) (findopen(i)
is analogous). Also, enclose(i) is the greatest j < i such that excess(j) = excess(i)− 1.

3.2.1 Hash-Based Heuristic (HB)

Instead of storing all the possible answers to findclose (which would require O(n log n) bits
of space), this representation [Nav09] divides the parentheses into three groups. Let b = log n and
s = b log n. Let close parentheses be those whose matching parentheses are at distance at most b;
near, between b+ 1 and s; and far, farther than s positions away. Only the answers for near and
far parentheses are explicitly stored, in hash tables. The table for far parentheses uses O(log n)
bits per value stored, while that for near parentheses uses just log s bits (because the distance
from the argument is stored, rather than the absolute answer).

To compute findclose(i), we first scan the next b positions, looking for the first parenthesis
with the same excess(i − 1). If the answer is not found in this way, the hash table for near
parentheses is queried. Since the search key is not stored in this table, we consider all colliding
answers: if more than one candidate answer is found with the correct excess, the closest one is
the correct answer (because the sequence is balanced [Nav09]). Finally, if the answer is still not
found, the hash table for far parentheses is queried. A similar approach is used for operations
findopen and enclose, requiring their own hash tables.

The search for close parentheses is implemented as a scan by chunks of k bits. Hence, for every
different k-bit stream, we precompute its excess and, for every j = 1, . . . , k, the first position of
the k-bit stream where the excess becomes −j, if any. To solve findclose(i), we check whether
the excess −1 is reached in the first chunk after position i. If so, the position where this happens
is findclose(i). Otherwise, we consider the second chunk, looking for excess −1− e1, where e1 is
the total excess of the first chunk, and so on. If the b bits are exhausted without a solution, then
the answer is not close. Scanning for findopen(i) and enclose(i) is analogous.

The parenthesis operations are thus supported in O(b/k) time, plus two searches on hash
tables, which are O(1) on average. If we set k = logn

c , for constant c > 1, the average time is O(c).
The precomputed table for close parentheses requires 2k(2k + 1) log k = O(n1/c log n log logn) =
o(n) bits. Furthermore, we need log s = O(log log n) bits per near parenthesis and O(log n) per
far parenthesis. However, there are no theoretical bounds on these types of parentheses (e.g., on
a tree formed by n nodes with one child, almost all of them are far).

21



3.2 Balanced Parentheses Chapter 3 Succinct Tree Representations

Implementation notes. We choose k = 8 so as to handle bytes, hence the table requires
just a few kilobytes and admits good caching. The hash tables are implemented by a closed
hashing scheme, with load factor 1.8 for enclose and 1.6 for findclose and findopen, which gave
us the best space/time trade-off (recall that we do not store the keys in the hash table for near
parentheses, so we pay a noticeable cost per collision, and the cost is proportional to that of an
unsuccessful search). For operation excess, we use González et al.’s lightweight rank/select data
structure [GGMN05] (ggmn of Section 2.3).

3.2.2 Recursive Pioneer-Based Representation (RP)

The representation by Geary et al. [GRRR06] divides P into blocks of size b = logn
2 . A

parenthesis at position i is said to be close if its matching pair belongs to the same block,
otherwise the pair is called far. Computing findclose for a close parenthesis is done by using
precomputed tables, as in Section 3.2.1, requiring o(n) bits of space. An opening far parenthesis
at position i is said to be a pioneer if the previous opening far parenthesis has its matching closing
parenthesis in a block different to that of the closing parenthesis for i. Both parentheses forming
the matching pair are called pioneers. The total number of pioneers is O(n/b) [Jac89, GRRR06].
Thanks to the pioneer properties, findclose(i) is reduced to (a) finding the previous pioneer i′ ≤ i
(which could be i itself), (b) find j′ = findclose(i′), (c) scan the block of j′ backwards until finding
j = findclose(i) using the excess property (again by means of precomputed tables).

To solve findclose for pioneers, we form a reduced sequence with the pioneers, and apply the
solution recursively once more. The second time the reduced sequence is of length O(n/b2) and
thus we can store all the answers in O(n log(n)/b) = o(n) bits.

The remaining piece is a bitmap B[1, 2n] marking the pioneers. With rank1 and select1 on
this sequence we find the previous pioneer, map it to the reduced sequence, and map the answer
to findclose back to the original sequence. As B has O(n/b) 1s, it can be represented using
O(n log b/b) = o(n) bits of space [RRR02].

The solution to enclose(i) is similar. After checking within the same block of i, we look for
the first pioneer c following i. If it is a closing parenthesis, then p = findopen(c), otherwise p is
the pioneer most tightly enclosing c (i.e., its parent in the sequence of pioneers). Now let q be the
first pioneer following p. If q is in the same block as p, then our answer is the first far parenthesis
to the left of q; else the answer is the rightmost far parenthesis in the block of p. Both require
just within-block scans. See the original article [GRRR06] for more details.

Implementation notes. For compressed bitmaps [RRR02] we use a recent implementation
[CN08] (rrr structure in Section 2.3). Because the second-level bitmap B is significantly smaller
and not too compressible, we represent it in uncompressed form. All uncompressed bitmaps are
implemented as those in Section 3.2.1.
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3.2.3 Range Min-Max-Tree Based Representation (RMM)

The basic tool of this technique [SN10] is the range min-max tree. This is built over the
(virtual) array of excess(i) values. The sequence P is cut into blocks of b = w

2 parentheses (recall
that w ≥ log n is the machine word length), and we store the minimum and maximum (local)
excess within each block. We then group k blocks into a superblock, and store the minimum
and maximum excess per superblock. We then group k superblocks, and so on until building up
a complete k-ary hierarchy. The total space is O(n log(b)/b) = o(n) bits. The range min-max
tree yields the support of the following kernel operations. For conciseness, let us overload the
operation excess(i) by excess(i, j) = excess(j)− excess(i− 1).

• fwd search(i, d): gives the minimum j > i such that excess(i, j) = d

• bwd search(i, d): gives the maximum j < i such that excess(j, i) = d

With the kernel operations, we easily implement the basic parentheses operations, and also
some sophisticated tree operations:

findclose(x) ≡ fwd search(x, 0)
findopen(x) ≡ bwd search(x, 0)
enclose(x) ≡ bwd search(x, 2)

level ancestor(x, d) ≡ bwd search(x, d+ 1)

To solve fwd search(i, d) we first scan the block of i in constant time using precomputed
tables as before. If unsuccessful, we climb up the range min-max tree until we find a min/max
excess range that, translated into absolute, contains excess(i− 1) + d: At each node, we scan the
values to the right of the ancestor of i. Once the proper range min-max tree node is found, we go
down finding the first child that contains the desired excess, until reaching the leaf block, which
is scanned to find the exact j value. The process is analogous for bwd search.

If n = polylog(w) and k = Θ(w/ logw), then there are O(1) levels and the scanning per node
can be done in constant time using universal tables of size o(2w). A constant-time solution for
large trees using 2n+O(n/polylog(n)) bits is significantly more complex [SN10], so we use range
min-max trees for all cases. As a result, the complexity becomes O(log n) for all operations, yet
the structure is extremely efficient anyway.

Implementation notes. For each block i, we store its local minimum m[i] and maximum
M [i] excess values. Thus −b ≤ m[i] ≤ 1 and −1 ≤ M [i] ≤ b holds and they can be stored
in dlog(b + 2)e bits. Therefore the maximum value of b is 254 or 216 − 2 if we use one byte or
two bytes, respectively, to store each value. For example, with b = 512 the space overhead is
2× 16 · (2n)/b = 6.25%.
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Operation BP DFUDS LOUDS
pre rank(x) rank((x) rank)(x− 1) + 1
pre select(p) select((p) select)(p− 1) + 1
isleaf(x) P [x+ 1] =′)′ P [x] =′)′ P [x] =′)′

ancestor(x, y) x ≤ y ≤ findclose(x) x ≤ y ≤ findclose(enclose(x))
depth(x) excess(x)
parent(x) enclose(x) prev)(findopen(x− 1)) + 1 prev)(select((rank)(x− 1))) + 1
first child(x) x+ 1 child(x, 1) child(x, 1)
next sibling(x) findclose(x) + 1 findclose(findopen(x−1)−1)+1 select)(select((rank)(x−1))+1)+1)
subtree size(x) (findclose(x)−x+1)/2 (findclose(enclose(x))−x)/2+1
degree(x) next)(x)− x next)(x)− x
child(x, i) findclose(next)(x)− i) + 1 select)(rank((x) + i− 1) + 1
child rank(x) next)(y)−y; y=findopen(x− 1) y−prev)(y); y=select((rank)(x−1))

Table 3.2: Constant-time reduction of tree operations in BP and DFUDS to operations on balanced parentheses.

A superblock consists of k blocks, and we build a range min-max tree on superblocks, yet
thereafter we use a branching factor 2, forming a complete binary tree. Storing 32-bit numbers
and using, say, k = 32 and b = 512, the space is 2× 2 · 32 · (2n)/(bk) ≈ 0.78% overhead.

Just as for the other solutions, the sequence P is scanned by bytes when looking for some
target excess value. Local excesses are converted into global by adding excess at the beginning
of blocks/superblocks. Since excess(i) = rank((i) − rank)(i) = 2 · rank((i) − i, all we need is a
particularly efficient rank( at the beginning of superblocks. Thus we adapt a rank/select scheme
similar to the one used for the other representations [OS07], so that the rank structures use blocks
aligned with b and the scheme requires little space. We store 4-byte global sums of big blocks of
size 216, 2-byte local sums of blocks of size b, and 1-byte sums of blocks of 255 bits. For b = 512
this is 32 · (2n)/216 + 16 · (2n)/b+ 8 · (2n)/255 ≈ 6.31% overhead.

3.3 Succinct Tree Representations

3.3.1 Preorder Balanced Parentheses (BP)

Table 3.2 shows the way many operations in BP representation are expressed in terms of basic
parenthesis operations (we assume that the operations can be applied, otherwise an additional
constant-time check is necessary). Operation child(x, i) can be computed in O(i) time by apply-
ing first child and then, repeatedly, next sibling. Operations degree(x) and child rank(x) are
solved similarly. Similarly, we implement level ancestor(x, d) in O(d) time by successive parent
operations. There are constant-time theoretical solutions for these operations [MR04, LY08], but
they have not been implemented.

A complex operation that has a practical solution is lca(x, y) = enclose(rmq(x, y) + 1)
[Sad07a]. Operation rmq(x, y) gives the minimum excess in P [x, y], and is implemented in
constant time using O(n(log log n)2/ log n) = o(n) bits of space on top of the excess array
[BFC00, Sad07a] (we simulate this excess array with operation excess).
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Implementation notes. The most practical implementation we know of for rmq [FH07] re-
quires 62.5% extra space on top of P [1, 2n], and this would put the representation out of com-
petition in terms of space requirement. A theoretical, not implemented, alternative solution to
lca(x, y) is given by operation double-enclose [MR01]. Therefore, we chose to take parent on the
less deep node until it becomes an ancestor of the deeper one, then this is the lca.

Labeled trees. The labels are stored in preorder in a sequence L[1, n], so that child label(x)
= L[pre rank(x)] and labeled child(x, s) is solved by a linear scan, just like child(x, i).

3.3.2 Depth-First Unary Degree Sequence (DFUDS)

Table 3.2 also shows how to translate many operations in DFUDS representation to those
on balanced parentheses. For conciseness we note prev)(x) ≡ select)(rank)(x)) and next)(x) ≡
select)(rank)(x) + 1). If x is within a sequence of opening parentheses, these operations find the
preceding and following closing parenthesis, respectively.

There is a theoretical proposal for implementing depth and level ancestor in constant time
[JSS07], but this has not been implemented as far as we know. Again, lca(x, y) = parent(rmq(x,
y− 1) + 1) can be efficiently implemented in DFUDS [JSS07], where rmq works over the excesses
of the DFUDS parentheses sequence. (The formula needs an easy fix if ancestor(x, y).)

Implementation notes. For the same practical reasons related to rmq and the non-imple-
mented theoretical proposals, we implement lca, level ancestor, and depth by brute force. For
lca this means that we have to trace the full path from both nodes towards the root using parent,
and then find the lowest common node.

We solve prev) and next) by directly scanning P computer-word-wise, which is preferable to
the verbatim solution unless the tree has extremely large arities.

Labeled trees. The labels are written in a separate sequence L[1, n] by traversing the tree in
preorder and writing, at each node, the symbols by which its children descend. In a labeled tree
one can assume the children are ordered by their symbol. Thus to carry out labeled child(x, s) we
binary search L[rank((x), rank((x) + degree(x)− 1] and finish with a child(x, i) operation. Also
child label(x) = L[rank((parent(x)) + child rank(x)− 1]. By sorting the children labels of each
parent in reverse order we save some prev)/next) operations. There is a constant-time theoretical
proposal for labeled child [BDM+05], not implemented as far as we know.
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3.3.3 Level-Ordered Unary Degree Sequence (LOUDS)

The final column of Table 3.2 shows how some operations can be solved under the LOUDS
representation. We assume that, just as for DFUDS, a tree node corresponds to the first position
of P where we write its arity in unary. The formulas differ slightly from the original version
[Jac89], but not significantly in terms of performance. Again, first child and next sibling can
be expressed in terms of the others.

Other operations are not immediately supported. We discuss, however, some practical alter-
natives. To begin, rank)/select) provide a usually sufficient alternative to pre rank/pre select,
as they map the tree nodes to consecutive numbers in [1, n]. In most cases the preorder primitives
are used not because preorder is particularly relevant, but just for the sake of storing satellite
information associated to the node identifiers in [1, n]. For this purpose, level-wise numbering is
as good as preorder.

Although ancestor(x, y) is not supported, there is a property of LOUDS that simplifies a
brute-force implementation: if y is deeper than x, then y > x. This property is easy to prove.
LOUDS represents the tree in level order, so if y > x, then y is in a deeper level than, or in the
same level of, x. If y is in the same level than x, then y′ = parent(y) < x, so x cannot be an
ancestor of y. Otherwise after computing y′ = parentk(y), for k > 1, y′ will be equal to x, in
which case x is an ancestor of y, or y′ < x, which would mean that y′ is in the same level than x
or it is in a higher level, so x cannot be an ancestor of y. Thus to compute ancestor(x, y), while
y > x, we take y ← parent(y). At the end, either x = y (in which case the answer is yes) or y < x
(in which case the answer is no).

This same property permits a lightweight brute-force implementation of lca(x, y): If y > x do
y ← parent(y); else if x > y do x← parent(x). Continue until x = y, which is the answer. Note
that in the worst case we will continue until x = y = root. This works because if y > x then y is
not an ancestor of x, hence lca(x, y) = lca(x, parent(y)), and symmetrically for x.

Another operation that LOUDS lacks is subtree size(x). Since the nodes belonging to the
subtree of x are contiguous at each level, this can be implemented by carrying an interval [y, z]
along the levels and counting the number of nodes at each level (with rank)(z)−rank)(y−1)+1).
Initially [y, z]← [x, x]. For each next level we update y ← child(y, 1) and z ← child(z, degree(z)),
until z < y.

The other operations, level ancestor and depth, are implemented by brute force using parent
without any special improvements.

Implementation notes. We use González et al.’s rank/select solution [GGMN05] (ggmn of
Section 2.3). Several special cases are avoided by prepending ′()′ at the beginning of P . In a
previous practical study on LOUDS [DRR06] they choose differently the bit that represents a tree
node. We found that they require more operations than us and than Jacobson [Jac89] (except
that they get next sibling almost for free) and their space overhead is too high (50%-100%).
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Labeled trees. These are solved just as for DFUDS (reversing the order of children is not
necessary).

3.3.4 A Fully-Functional Representation (FF)

The operations in Table 3.2 are solved as for BP, since the parentheses are set in BP order.
Furthermore, we have shown how to implement operation level ancestor using the same primitives
fwd search and bwd search, as well as several others not considered here [SN10].

The range min-max tree also solves easily operation rmq(x, y), and thus lca(x, y): The area
P [x, y] is covered by O(k logk(n/b)) (super)blocks, which can be scanned in constant time for the
minimum excess value. By storing also the number of minima, we can in a similar way compute
degree(x) (which is the number of excess minima in P [x+1, findclose(x)−1]), child(x, i) (which
is the i-th excess minimum in P [x+1, findclose(x)−1]), and child rank(x) (which is the number
of excess minima in P [parent(x), x− 1]).

Implementation notes. The number of minima in each (super)block is stored as described
for m[i] and M [i], thus using other ≈ 3.52% overhead. Other small-space structures can be added
to support further operations [SN10].

Labeled trees. We use L[1, n] as for BP. Yet, both binary (using child(x, i)) and sequential
search are possible with the RMM. We test both.

3.4 Experimental Comparison

We performed our experiments on trees coming from (a) LZ78 parsings of text collections, (b)
suffix trees of text collections, and (c) the tag structure of XML collections. For cases (a) and
(b) we used 200 MB and 50 MB (respectively) prefixes of the the DNA, protein and XML texts
from the Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl). The resulting trees have
16,373,737, 30,080,186, and 11,775,736 nodes respectively for case (a), whereas for (b) they have
75,095,011, 72,396,959 and 70,723,755 nodes. For case (c), we used an XMark [SWK+02] docu-
ment of about 558 MB, a Medline document (ftp://ftp.cogsi.ed.ac.uk/pub/disp/OHSXML.
tar.gz) of about 380 MB, and the XML text form Pizza&Chili, of 200 MB. The resulting tree
structures have 14, 238, 042, 3, 966, 917, and 9, 560, 024 nodes, respectively.

We tested the performance of the tree operations by emulating random root-to-leaf traversals
of trees (root itself excluded), where in addition every other child of the current node in the path is
visited with a given probability p. We retain the order in which such nodes are visited, so p = 0.0
corresponds to a pure random root-to-leaf traversal, 0 < p < 1 simulates range- or approximate-
search traversals, and p = 1 simulates a full traversal of the tree. The general behavior is quite
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similar within each class of trees (a), (b) and (c), so for LZ78 we only show the case of DNA text
(and later, once, proteins), while for suffix trees we only show the case of proteins, and for XML
the XMark document. Table 3.3 gives some of their characteristics.

LZ78 LZ78 S. tree XML
DNA Protein Protein XMark

Size 16, 373, 737 30, 080, 186 72, 396, 959 14, 238, 042
Height 64 126 173 14
Avg. leaf 14.21 7.79 11.15 7.76
depth
Max.arity 16 25 26 127,500
Avg.arity 2.01 2.63 2.90 2.11

Table 3.3: Basic characteristics of the trees tested.

In general, as p grows, a higher proportion of small and nearby subtrees are visited. This
translates into more close matching parentheses and more cache hits in BP and DFUDS. As
closer parentheses are found faster in both schemes, such structures become faster as p grows.
LOUDS, instead, is generally insensitive to the subtree sizes, as it proceeds levelwise (indeed, it
is slightly slower on deeper levels, as the parent/children are farther away).

The computer used features an Intel(R) Core(TM)2 Duo processor at 3.16 GHz, with 8 GB
of main memory and 6 MB of cache, running version 2.6.24-24 of Linux kernel.

We first measure the times of the core operations, which allow predicting the performance of
many operations in Table 3.2. Some specific tree operations are studied later.

3.4.1 Core Operations

Figure 3.1 shows the space/time trade-offs achieved for the core parenthesis and bitmap oper-
ations, for the cases p = 0.0 and p = 0.2. The times are averaged over at least 20,000 nodes (for
p = 0.0), and up to 20 million for larger p values. We show the times for findclose and enclose.
For the RP representation we use block sizes b = 32, 64, 128, 256, 512. For HB we use block sizes
b = 128, 256, 512, 1024, 2048. For the RMM representation we set b = 512 and k = 8, 16, 32, 64, 128
(other values of b did not yield better results). These combinations yield the observed space/time
trade-offs.

Modifier “DFUDS” means that the parentheses sequence used is that of DFUDS rather than
BP. RP-DFUDS was very close to RP, which is clearly the worst performer as we comment soon,
so we omitted it to lighten the plots. On XMark, BP-DFUDS needs more than 9 bits per node
and thus it does not appear in the XML plots. We also omitted RMM-DFUDS from all these
plots as it was indistinguishable from RMM.

We also show the time for rank and select, which offers its own space/time trade-off (with the
same space one solves both) and prev)/next), which is drawn as a line because it uses brute force
and hence does not need any extra space. Operations prev)/next) were tested over the nodes
traversed in the DFUDS sequence (which is equivalent to having chosen LOUDS), as these are
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Figure 3.1: Space/time for the core operations on parenthesis structures, for p = 0.0 (left) and p = 0.2 (right).
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the representations where such operations are applied.

The times for findopen are similar to those for findclose on BP. On DFUDS, instead, they
are asymmetric: findclose(x) is usually faster as it returns a typically closer node. Yet, the
operations findopen(x − 1) of Table 3.2 have a cost very similar to enclose(x) (which usually
returns findopen(x− 1)− 1).

Clearly RMM (and RMM-DFUDS) is in general the best performer, both in space and time.
HB is generally able of approaching its time, yet the space required by HB varies widely depending
on the tree shape. On DNA, where the arity is low, HB can improve upon RMM in space, while
being competitive in time (at least for findclose). In proteins, where the arity is larger, many
parentheses become far (especially for enclose) and the space of HB cannot anymore reach that
of RMM. The effect is dramatic on XMark, where the arity is much higher and HB is unable of
operating with less than 100% space overhead over the 2n bits. In the DFUDS variants of HB the
parentheses tend to be farther than on BP, thus HB-DFUDS requires more space than HB(-BP).
In XMark, HB-DFUDS has a space overhead of more than 450%.

This shows that the lack of space guarantees of HB is indeed a problem in practice, and
emphasizes the importance of offering such guarantees in fundamental data structures, where one
can hardly predict the type of instances that will be faced.

The time performance of RP is clearly the worst. RP is affected by the operations on the
compressed bitmap, which in practice pose a significant time overhead, as well as space redundancy
over the entropy. This is illustrated, in particular, by the fact that, on findclose for p > 0, where
many small subtrees are handled, RP in many cases worsens in time when using more space. The
reason is that, when the answer is not too far away, it is better to find it sequentially through
sparser blocks than to use the heavy machinery of the compressed bitmaps.

Finally, note that the extra space for rank/select is the only one required by LOUDS, and that
it works well within just 2% of extra space. This means that, within the small set of operations
it supports, LOUDS is competitive in time and better in space than RMM. Note in particular
that select may worsen when using more space. This is because the binary search is done over a
denser (and larger) set of samples, whose impact on the locality is not recovered by scanning a
shorter segment of the bitmap (as this scan is cache-friendly).

Figure 3.2 shows the extreme case of p = 1.0, which simulates a full tree traversal. Here most
of the extra structures are useless, as the majority of the operations are carried out on very small
trees, where they are easily solved by brute force. In this case LOUDS representation (that is,
rank/select) is not that fast compared to the others, as this kind of locality does not show up in
its levelwise traversal.
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Figure 3.2: Space/time for the core operations on parenthesis structures, for p = 1.0.

3.4.2 Tree Operations

We tested several operations, a few to show that their times can be predicted with those
of the core operations, and most because they are harder to predict: parent(x), child(x, i),
labeled child(x, s), level ancestor(x, d), and lca(x, y). We choose one representative tree for each
operation, as the conclusions are roughly the same for the others. Except for lca(x, y), we chose
one reasonable space/time point per structure. These choices are given in Table 3.4 (recall that
FF-* corresponds to RMM).

Figure 3.3 gives the times for operation parent(x) on the suffix tree for proteins. We use the
same sampling method (i.e., via tree traversals) of the core operations, with varying p. As in
these, we average the times over at least 20,000 nodes. FF-BP outperforms the other alternatives
except for p = 0.0, where LOUDS is faster. For higher p (where more smaller subtrees are chosen)
LOUDS does not benefit from locality, as explained. The difference between HB-DFUDS and
HB-BP is small, and can be attributed to the extra prev) operation. The difference between
FF-DFUDS and FF-BP is larger.
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Repres. Params. LZ78 LZ78 S. tree XML
DNA Protein Protein XMark

FF-BP and b = 512, 2.37 2.37 2.38 2.37
FF-DFUDS k = 32
HB-BP b = 512 2.58 2.75 3.22 3.97
HB-DFUDS b = 512 3.35 4.17 4.84 9.52
RP-BP b = 64 3.45 3.33 3.36 3.29
LOUDS s = 640 2.10 2.10 2.10 2.10

Table 3.4: Default space usage for the representations in Section 3.4.2.
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Figure 3.3: Performance for operation parent(x) as a function of p.

Figure 3.4 shows the times for operation child(x, i) on the suffix tree of proteins, for 1 ≤ i ≤ 5.
We choose nodes from the same traversal done for p = 0.0 on the core operations, keeping all
nodes with degree at least 5. This gives us a sampling of 14,000 nodes to average over. This time
we have also included the times over a pointer-based uncompressed tree, which will be discussed
in Section 3.4.4. That time is essentially that of a single memory access, and is close to the time
of first child(x) = child(x, 1) on BP representations. For larger i, as HB-BP and RP-BP operate
by brute force, they are essentially O(i), though with different constants (related to their time to
carry out findclose). LOUDS is clearly O(1) for this operation, and faster than all the others
except for the trivial case i = 1 (which, on the other hand, is the dominant case on various common
traversals). HB-DFUDS is also O(1) in theory (as it always needs one findclose operation), yet it
is faster for smaller i values because the answer is closer in those cases. The time of FF-DFUDS is
in practice logarithmic on the distance of the answer, as it climbs the range-min-max tree. FF-BP
uses its own algorithm for child, and its time is also logarithmic on the distance of the answer
(and thus very similar to FF-DFUDS). This explains the slow growth of these alternatives. All
the three also get closer to LOUDS for larger p (this plot is for p = 0.0, as explained), finally
surpassing it around p = 0.6.

Figure 3.5 illustrates the performance for operation labeled child(x, s) on the LZ78 parsing

32



3.4 Experimental Comparison Chapter 3 Succinct Tree Representations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  2  3  4  5

T
im

e 
pe

r 
op

er
at

io
n 

(m
ic

ro
se

co
nd

s)

parameter i

Suffix tree, protein, Child(i)

FF-BP
HB-BP
RP-BP

FF-DFUDS
HB-DFUDS

LOUDS
Uncompressed Tree

Figure 3.4: Performance for operation child(x, i) as a function of i.

of proteins. We use exactly the same method of sampling nodes of child(x, i), and also plot the
times as a function of i, so this time the argument s is the one resulting in descending to the i-th
child. This is an operation where LOUDS excels, DFUDS does well, and FF-BP falls far behind.
The binary search of LOUDS and DFUDS is done directly over a range in L, which makes them
very fast, much faster than the linear searches of BP alternatives (still DFUDS and LOUDS need
to finish with one child(x, i) operation after finding i). The time differences among LOUDS and
DFUDS alternatives are lower than for child(x, i) because all must carry out the same binary
search. On the other hand, the linear times of the BP alternatives are slightly costlier than for
child(x, i) because, although they probe the same nodes, they must carry out one further rank
operation per node to find the letter in L. They are only faster in the lucky case of s labeling the
first child. Finally, FF-BP is surprisingly slow. Although it carries out a binary search, this search
is not local and requires various child(x, i) operations, which renders it slower than some linear
searches in practice. Indeed, it is much better to linearly scan for the i-th child using findclose,
as illustrated by FF-Seq-BP, which is the fastest among the O(i) methods.

Figure 3.6 compares the performance for operation level ancestor(x, d) on the LZ78 tree of
DNA, for 1 ≤ d ≤ 5. We choose all the nodes from the sampling of core operations corresponding
to p = 0.0, and keep the nodes with depth at least 5. This leaves us 2,000 nodes to average over.
Here all the techniques except FF-BP use brute force (note FF-DFUDS cannot benefit from the
FF-BP algorithm, as excesses do not correspond to depths in DFUDS). The times, consequently,
are basically linear, except for FF-BP, whose algorithm based on operation bwd search is logarith-
mic in the distance to the answer. This dominates all the other costs and shows its practicality.
Note the times are about 50% faster than the corresponding to parent(x) on the suffix tree of
proteins, as these nodes have fewer children and hence their parents are closer.

Finally, Figure 3.7 shows operation lca(x, y) on XMark, for different memory usage of the
structures. This time we simply chose 100,000 pairs of tree nodes at random. This operation is
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Figure 3.6: Performance for operation level ancestor(x, d) as a function of d.

implemented by brute force on all representations except FF-BP and FF-DFUDS, which provide
a native solution to lca. It can be seen that FF and LOUDS (with its lightweight brute-force
algorithm) sharply dominate the space/time trade-off. FF-DFUDS is slightly slower than FF-BP
because it needs an extra check that invokes an ancestor query. Using the rmq-based solution for
the other alternatives would achieve competitive times (0.9 microseconds according to a simple
experiment we carried out), yet it would require including the extra constant-time rmq structure
[FH07], which adds 6.12n bits to the already large HB and RP representations.
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Figure 3.7: Performance for operation lca(x, y) as a function of the space usage.

3.4.3 Asymptotics

Our experiments have considered fixed trees. While all the operations are in theory constant-
time, in practice the implementation of select is O(log n), as well as our FF operations (while
the theoretical article [SN10] achieves constant time, our FF implementation builds solely on
the RMM, which seems much more practical but requires time logarithmic on the tree size).
Furthermore, cache effects can significantly affect the performance. Thus, one may wonder how
the tree size n affects the results given.

Figure 3.8 shows the times for operations findclose and enclose as a function of the tree size
n. For this sake, we created random binary trees of increasing size, from 50 to 350 million nodes,
and tried the BP alternatives on them. We maintained the space usage parameters of Table 3.4,
obtaining 2.37–2.38 bits per node for RMM, 2.62–2.99 for HB, and 3.68–3.74 for RP. The nodes
to operate are collected over 100,000 random root-to-leaf traversals (akin to p = 0.0 above).

As it can be seen, apart from some oscillations, there is no clear increase in the time as we
handle larger trees. This is due in part to the fact that many operations (most clearly those of
RMM) depend not on the total tree size, but on the distance between the query and the answer
node, and this average distance varies very mildly on n even for the traversal with p = 0.0.

This result confirms the scalability of the solutions and the stability of our results on larger
trees. Note in passing that findclose(x) is slower than enclose(x) on binary trees, as half the
times the answer of the latter is simply x− 1.
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Figure 3.8: Performance as a function of the tree size, for random binary trees.

3.4.4 Non-Succinct Tree Representations

A natural question is how the times we have shown (usually below the microsecond per oper-
ation, for the best performing structures) compare to a plain pointer-based tree representation.
For this sake, we set up such a tree, where each node has a pointer to an array of its children.
This allows one to implement child(x, i) using just one memory access. This takes around 18–31
nanoseconds in our machine and is illustrated in Figure 3.4.

This means that an uncompressed tree, in the cases where it can actually fit in main memory,
is about 12–20 times faster than LOUDS, our best compressed representation for this operation. If
we consider all the operations, and take FF-BP as the alternative (as it gives the widest support),
we have that in most cases the time of FF-BP is within half a microsecond (30 times slower than
the single memory access needed by the uncompressed representation) and for some complex
operations, up to 2 microseconds (120 times slower).

Still, it is important to illustrate in numeric terms what it means to be succinct or plain,
especially when we need more functionality than moving to a child. A plain representation on a
32-bit machine spends 32 bits per node (that is, 13 times more than FF-BP and 15 more than
LOUDS), if we arrange the tree in levelwise order on an array, and the cell of each node points
to the cell of its first child. This arrangement supports efficiently the most basic navigation:
child, degree, isleaf , first child, and next sibling. However, each other operation we wish to
support efficiently requires another integer: parent, depth, subtree size, pre rank, etc. Thus,
just supporting these four operations we would require 160 bits per node. The more functionality
we wish to support, the less likely is that the pointer-based tree will fit in main memory, in
applications managing massive trees. In contrast, the powerful FF-BP representation supports
all those operations within the same space (less than 2.4 bits per node).
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The more sophisticated operations, like lca and level ancestor, deserve a special mention.
They can be solved within O(n)-word space and O(1) time, but they require several (not just 1)
further integers per node. Worse than that, they require several memory accesses. For example,
the classical lca algorithm [BFC00] requires 7 extra integers (224 bits) per node and 12 non-local
memory accesses. Thus its expected time is around 0.2–0.4 microseconds, whereas FF-BP solves
lca within the microsecond (just up to 5 times slower) and the same 2.4 bits per node.

On the other hand, there are intermediate tree representations [Jac89, BBK04, GHSV06]
which, although do not guarantee 2n+ o(n) bits of space usage (only O(n) bits in general), offer
a relevant trade-off in practice. Translated into a general tree representation, they usually boil
down to a scheme as follows: Arrange the nodes of the tree on an array T [1, n] by performing
a preorder traversal. The cell of each node stores where is its next sibling. Unlike our previous
uncompressed scheme, akin to a LOUDS layout, this resembles more BP: we immediately have
first child(i) = i + 1 and next sibling(i) = T [i] (yet, as before, we lack most of the other
operations unless we spend the space of storing the answers explicitly). By storing the pointers
in relative form and using a variable-length encoding, compression is possible since most of the
subtrees are small. The value of the relative pointer from node x to its next sibling will be just
subtree size(x).

To measure the practical performance of this idea, we computed
∑

x∈T dlog(subtree size(x) +
1)e on our trees, which gives a lower bound to the size that can be achieved by this technique. It
is shown in the first line of Table 3.5. It is a lower bound because (i) storing the exact number
of bits required to encode the number is impossible (a representation like, say, γ-encoding, is
necessary); and (ii) since a variable-length code is used, the pointers must point to bit offsets,
not to cell numbers of T .

Repres. LZ78 LZ78 S. tree XML
DNA Protein Protein XMark

gaps 1.62 1.46 1.36 1.59
γ-code 2.24 1.92 1.72 2.18
real γ 3.43 2.72 2.44 2.90

Table 3.5: Space usage for the larger representations with minimum functionality. Only the last column is a real
encoding scheme.

The second row of Table 3.5 addresses problem (i) using γ-codes, which gave us good results.
It shows the value

∑
x∈T |γ(subtree size(x))| =

∑
x∈T (2dlog(subtree size(x) + 1)e − 1). The last

line of the table addresses problem (ii), only now reaching a real solution to the problem. It
γ-encodes not the subtree size of x, but the length of the representation of the subtree of x (which
recursively uses γ-codes, a leaf using |γ(1)| = 1 bit). One adds this value to the pointer to x and
reaches the bit-offset of its next sibling.

As it can be seen, these representations are space-efficient in practice, competing with our
2.4n-bit representations, and possibly being very fast for operations first child, next sibling,
and isleaf , that is, for a full tree traversal. Yet, as we have seen in Figure 3.2, one can do pretty
well with the plain 2n parentheses for such traversal. Still, assuming that next sibling will be
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significantly faster by decoding a γ-code, the representation offers a rather limited repertoire of
operations. By somehow mixing fixed- and varying-length representations one could include child
and degree, at some price in space. Yet, as before, each further operation to support requires
storing extra data that is already included in our 2.4n-bit representations (and many are also
included in our 2.1n-bit LOUDS format).

This shows that the key advantage in the modern succinct tree representation space is not
their 2.x-bit space usage, as this is not that difficult to achieve, but rather the wide functionality
that these succinct representations support within this space.
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Chapter 4

Compressed Suffix Trees

A compressed suffix tree (CST) is obtained by enriching the compressed suffix array with
some extra data. In order to get a suffix tree from a suffix array, one needs at least two extra
pieces of information: (1) the tree topology; (2) the longest common prefix (LCP) information
(see Section 2.7). Indeed, the suffix tree topology can be implicit if we identify each suffix tree
node with the suffix array interval containing the leaves that descend from it. This range uniquely
identifies the node because there are no unary nodes in a suffix tree.

4.1 Sadakane’s Compressed Suffix Tree

Sadakane’s compressed suffix tree [Sad07a] was the first representation that used linear size,
that is O(n log σ) bits, and supported all the navigation operations over the tree efficiently. It
builds on top of the compressed representation for the suffix array [Sad03], described in Sec-
tion 2.6.1. In addition his structure needs a representation for the topology of the tree and the
LCP data. For the topology he uses a balanced parentheses encoding of a tree, that we will call P
(similar to that presented in Section 3.2.1). Since there are at most 2n− 1 nodes in a suffix tree
for a text of length n, i.e., exactly n leaves and at most n− 1 internal nodes, the suffix tree of the
text can be encoded in at most 4n+ o(n) bits, where o(n) is the extra space used for supporting
rank, select, access (see Section 2.3) and the tree operations over the sequence (see Chapter 3).
The LCP was compressed into a bitmap H if 2n bits, by noticing that, if sorted by text order
rather than suffix array order, the LCP numbers decrease by at most 1. For further details see
Section 5.1.

Figure 4.1 shows an example of the basic components of Sadakane’s suffix tree (for simplicity
we show A and LCP in plain form).

Another structure that Sadakane’s implementation needs for solving operations like LCA and
SLink, is one for answering range minimum queries over the array P ′, where P ′[i] = rank((P, i)−
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Figure 4.1: Sadakane’s compressed suffix tree of the text “alabar a la alabarda$”.

rank)(P, i). Note that P ′ is not stored, as each element of it is computed in constant time using
operation rank over the balanced parentheses sequence P when necessary.

Definition 4.1. For indices l and r, between 1 and n, of an array G, the range minimum query
RMQG(l, r) returns the index of the smallest element in the subarray G[l..r]. If there is a tie we
choose the leftmost one.

Sadakane divides the whole array P ′ into blocks of size log3 n, and defines an array
L′[0, n/ log3 n] such that L′[i] stores the minimum value in the i-th block. To compute
RMQP ′(x, y) he defines the next algorithm:

• calculate the minimum of P ′[x..e] and its index, where e is the last element in the same
block as x.

• calculate the minimum of P ′[s..y] and its index, where s is the first element in the same
block as y.
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• calculate the minimum of L′[(x′ + 1)..(y′ − 1)] and its index, where x′ + 1 is the index of
the block that follows the block of x and y′ − 1 is the index of the block that precedes the
block of y.

For the third step Sadakane constructs a two-dimensional table M , where M [i, k] (i = 0, 1, . . . ,
n/ log3 n, k = 0, 1, . . . , blog nc) stores the index of the minimum value in L′[i, i+2k−1]. Then the
index of the minimum value between L′[x′+1] and L′[y′−1] can be computed in constant time by
min{M [x′+1, k],M [y′−2k, k]} where k = blog(y′−x′−2)c. To compute the minimum in a block
Sadakane divides the block into subblocks of size logn

2 . For each j-th block (j = 0, 1, . . . , n/ log3 n)
he creates a table Mj [i, k], where i = 0, 1, . . . , 2 log2 n − 1 and k = 0, 1, . . . , log(2 log2 n). These
tables occupy o(n) bits in total. So the first and second steps can be computed in constant time
using these tables. Therefore, using the precomputed tables and the two-dimensional table M
Sadakane is able to compute RMQP ′ in constant time using o(n) extra space [Sad07a].

Following we explain how Sadakane implements the operations defined in Table 2.2 for navi-
gating the suffix tree:

• Root: The root node is the first open parenthesis in the sequence, therefore we return the
position 1.

• Locate(v): If v + 1 =′)′ (i.e., v is a leaf) return the value of the position w of the suffix
array, where w = rank()(P, v). Otherwise return −1. To compute rank() Välimäki et al.
[VGDM07] added a bitmap brLeaf where the “()”s of P are marked, so rank()(P, i) =
rank1(brLeaf, i).

• Ancestor(v, w): If v ≤ w ≤ findclose(P, v) then return true. Otherwise return false.

• SDepth(v): If v = 1 return 0. If v is a leaf return n− Locate(v). Otherwise the answer is
LCP [i+ 1], where i = inorder(v) = rank()(P, findclose(P, v+ 1)) is the inorder position of
the node v.

• TDepth(v): The number of opening minus closing parentheses in the sequence P until v,
i.e., rank((P, v)− rank)(P, v) = 2rank((P, v)− v.

• Count(v): Return rank()(P, findclose(P, v))− rank()(P, v).

• Parent(v): Return w = enclose(v) unless v is the root. In that case return −1.

• FChild(v): If P (v + 1) =′)′ then node v is a leaf and has no children. Otherwise return
v + 1.

• NSibling(v): Let w = findclose(P, v) + 1. If P (w) =′)′ then node v has no next sibling.
Otherwise return w.
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• SLink(v): First we compute the leftmost and rightmost leaves of the subtree rooted at
node v, x = rank()(P, v − 1) + 1, and y = rank()(P, findclose(P, v)). Then we move to the
leaves that represent the positions next to x and y, i.e., x′ and y′ such that TA[x′] = TA[x]+1

and TA[y′] = TA[y]+1. This can be done using Ψ and select(): return LCA(select()(P,Ψ(x)),
select()(P,Ψ(y))). Note that select()(P, i) = select1(brLeaf, i), where brLeaf was defined
in operation Locate.

• SLinki(v): Return the value resulting of applying i times SLink recursively same as above
but instead of Ψ(z) use Ψi(z) = A−1[((A[z] + i) mod n) + 1]. In practice he computes Ψi

iteratively using Ψ, as this is faster up to relatively large values of i.

• LCA(v, w): If one of the nodes is ancestor of the other then the answer will be that node.
This is easily verified using Ancestor. Otherwise return Parent(RMQP ′(v, w) + 1). The
range minimum query returns the index m of the minimum element in P ′[v..w]. Then
P [m] =′)′ and P [m+ 1] = ′(′ always hold. Therefore P [m+ 1] is the open parenthesis of a
child of LCA(v, w), and that is why we compute Parent at the end.

• Child(v, a): We iteratively get all the children of the node v. In each step we recover
the first character of the edge-label between v and a child w and compare with a until
we find the desired child. Note that the edge-label between w and v is represented by
T [A[i] + d1, A[i] + d2 − 1], where i = inorder(w), d1 = LCP [inorder(v)], and d2 = LCP [i].

Sadakane’s compressed suffix tree supports most of the tree navigation operations in constant
time, except for SDepth, which takes O(log1+ε n) time in practice (i.e., computing A[i]), and Child,
which takes O(σ log1+ε n) time.

4.2 Russo et al.’s Compressed Suffix Tree

Russo et al. [RNO08b] recently proposed a new suffix tree representation, called FCST (Fully-
Compressed Suffix Tree), requiring nHk + o(n log σ) bits of space for any k ≤ α logσ n, where
0 < α < 1 is any constant. This representation gets rid of the balanced parentheses that describe
the topology, by instead identifying suffix tree nodes v with their corresponding suffix array
intervals, v = [vl, vr]. The main idea is to sample some suffix tree nodes and use the compressed
suffix array as a tool to find nearby sampled nodes. So this representation is built on top of a
compressed suffix array, the most adequate one for this task being the alphabet-friendly FM-index
(Section 2.6.2). Their structure is slower, in general, by an O(log n(log σ+ log log n)) factor than
Sadakane’s compressed suffix tree. On the other hand the space required is very low and it was
the first to break the Θ(n)-bits space barrier.

As we mentioned a few sampled nodes are stored. They use a sampling factor δ, so that
the total sample is of size O(n logn

δ ). The sampled tree can be represented using o(n) bits, if
δ = ω(log n). They assume that δ = dlog n log logne.
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Definition 4.2. A δ-sampled tree S of a suffix tree τ with t nodes is formed by choosing s =
O(t/δ) nodes of τ so that for each node v of τ there is an integer i < δ such that node SLinki(v)
is sampled.

This means that if we start at a node v and apply SLink recursively, we will find a sampled
node in at most δ steps. Note that this means that the root of the suffix tree must be part of the
sampled nodes.

In order to make an effective use of the sampled tree, Russo et al. use a way to map any node
v to its lowest sampled ancestor, LSA(v). Another important operation is the lowest common
sampled ancestor LCSA(v, w) = LSA(LCA(v, w)). These operations are used to map from suffix
tree nodes to sampled nodes as well as the reverse. They support both operations in constant
time using O((n/δ) log δ) bits of space. Moreover for all sampled nodes v they store the values
SDepth(v) and TDepth(v). They also support operation ParentS(v), that gives the node w that
is the parent of v if we only consider the sampled nodes.

Summarizing, the FCST can support all the navigational operations and the extra space
fits within o(n) extra bits, which is negligible compared to the o(n log σ) of the CSA. The time
complexities for most operations are logarithmic at best. The central tools for computing these
operations are a particular sampling of suffix tree nodes, its connection with the suffix link and
the lowest common ancestor (LCA) query, and the interplay with the compressed suffix array.

To explain how Russo et al. implement the navigation operations we will need first to extend
the function LF given in Section 2.6.2.

Definition 4.3. LF (X, v), where X is a string and v a position in the suffix array, gives the
lexicographical rank of the suffix X.TSA[v],n among all the suffixes, whether it exists or not. This
definition is easy to extend to suffix tree nodes v: LF (X, v) = LF (X, [vl, vr]) = [LF (X, vl),
LF (X, vr)].

Now we can explain how they implemented all the navigation operations. The order in which
we present the operations is given by the dependencies between them.

• Root/Count/Ancestor: ForRoot() return the interval [1, n], Count(v) is simply vr−vl+1,
Ancestor(w, v) is true iff wl ≤ vl ≤ vr ≤ wr.

• Locate(v): If v is a leaf (vr = vl), then return the suffix array value at position vl. Otherwise
return NULL.

• SDepth(v): If v is a sampled node the answer is already stored. Otherwise return
max0≤i≤δ{i+SDepth(LCSA(Ψi(vl),Ψi(vr)))}. The FM-Index can compute Ψ as the inverse
of LF.

• LCA(v, w): If one of v or w is ancestor of the other, return this ancestor node.
Otherwise note that computing LCA(v, w) is equivalent to computing LCA(min{vl, wl},
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max{vr, wr}). With this we move the operation to the leaves where if v′ is a leaf then
SLink(v′) = Ψ(v′). Using this and LF we can compute LCA(v, w) by returning the in-
terval LF (v[0, i − 1], LCSA(Ψi(min{vl, wl}),Ψi(max{vr, wr}))), where i is the value that
maximizes SDepth(v).

• Parent(v): Returns either LCA(vl−1, vl) or LCA(vr, vr+1) whichever is lowest. Note that
Parent(v) must contain [vl − 1, vr] or [vl, vr + 1]. If one of these nodes is undefined, either
because vl = 1 or vr = n, then the parent is the other node. If both nodes are undefined
then node v is the root, which has no parent.

• SLink(v): Return LCA(Ψ(vl),Ψ(vr)).

• SLinki(v): Return LCA(Ψi(vl),Ψi(vr)).

• TDepth(v): To compute TDepth we need to add more nodes to the sampled tree so as to
guarantee that, for any suffix tree node v, Parentj(v) is sampled for some 0 ≤ j < δ. Given
this TDepth(v) returns TDepth(LSA(v))+j, where TDepth(LSA(v)) is already stored and
j < δ is obtained by iterating the operation Parent from v until reaching LSA(v). Note
that for the next two operations we will also need the extended sampling.

• LAQT (v, d): If v is not a sampled node, we first go up in the tree using Parent, if we reach
a node w where TDepth(w) ≥ d > TDepth(Parent(w)) we found our answer. Otherwise
we continue until reaching a sampled node, v′, then we binary search ParentiS(v′) to find
the sampled node w′ with TDepth(w′) ≥ d > TDepth(ParentS(w′)). Finally from w′ using
Parent by brute force we find our answer.

• LAQS(v, d): We start by binary searching for the value i such that v′ = ParentiS(
SLinkδ−1(v)) satisfies SDepth(v′) ≥ d − (δ − 1) > SDepth(ParentS(v′)). Now we scan
all the sampled nodes vi,j = ParentjS(LSA(LF (v[i..δ.1], v′))) with SDepth(vi,j) ≥ d− i and
i, j < δ. This means that we start at node v′, follow LF , and reduce every node found to a
sampled node using ParentS until the SDepth of the node drops below d − i. Our aim is
to find the vi,j that minimizes SDepth(vi,j)− (d− i) ≥ 0, and then apply the LF mapping
to it.

• FChild(v): If v is a leaf, return NULL. Otherwise return LAQS(vl, SDepth(v) + 1).

• NSibling(v): If v is the root return NULL. Otherwise return LAQS(vr + 1, SDepth(
Parent(v)) + 1).

• Child(v, a): The generalized branching for two nodes, v1 and v2, consists in determining the
node with path label v1.v2 if it exists. A simple solution is to binary search the interval of
v1 for the subinterval of w’s such that Ψm(w) ∈ v2, where m = SDepth(v1). Using the same
idea we are able to compute Child(v, a), using v as v1 and v2 as the subinterval of the suffix
array where the suffixes start with a. Note that this interval is given by LF (a,Root()).
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• Letter(v, i): If i = 1 then return charT [rank1(D, vl)] where D is a bitmap marking the
first suffix in the suffix array starting with each different letter and charT is an array of
size σ where the letters that appear in T1,n are listed in alphabetical order. If i > 1, return
Letter(Ψi−1(vl), 1). It is important to remark that structures charT and D are already
present, in one form or another, in the compressed suffix arrays (see, e.g., Section 2.6.1).

4.3 Fischer et al.’s Compressed Suffix Tree

Fischer et al. [FMN09] prove that Sadakane’s bitmap H, which represents the LCP array (see
Section 5.1), is compressible as it has at most 2R ≤ 2(nHk + σk) runs of 0s or 1s, for any k.
For further explanations see Section 5.2. Another improvement over Sadakane’s CST is to get rid
of the tree topology and replace it with suffix array intervals. Fischer et al. show that all the
navigation can be simulated by means of three operations: (1) RMQ(i, j) gives the position of
the minimum in LCP [i, j]; (2) PSV (i) finds the last value smaller than LCP [i] in LCP [1, i− 1];
and (3) NSV (i) finds the first value smaller than LCP [i] in LCP [i+ 1, n]. All these could easily
be solved in constant time using O(n) extra bits of space on top of the LCP representation,
but Fischer et al. give sublogarithmic-time algorithms to solve them with only o(n) extra bits.
Finally, the compressed suffix tree uses in total nHk(2 log( 1

Hk
) + 1

ε + O(1)) + o(n) bits, for any
k ≤ α logσ n, where 0 < α < 1 is any constant.

In Section 6.1 we explain how they propose to solve RMQ, NSV and PSV over the LCP array
and in Section 6.2 we give a novel idea to solve these operations.

As will be shown below all the operations listed in Table 2.2 for navigating the tree can be
simulated using RMQ, NSV and PSV. Note that a node v is always associated with an interval
in the suffix array, [vl, vr]. Given that Fischer et al.’s suffix tree nodes are based in suffix array
intervals, many operations are implemented in the same way as in Russo et al.’s version. We will
only describe the operations that are solved in a different way.

• SDepth(v): Return LCP [k], where k = RMQ(vl + 1, vr).

• Parent(v): If v is the root, return NULL. Otherwise, since the suffix tree is compact, we
must have that the string-depth of Parent(v) is either LCP [vl] or LCP [vr + 1], whichever
is greater [RNO08b]. So, we set k to vl if LCP [vl] > LCP [vr + 1], else k is set to vr + 1.
The parent interval of v is then [PSV (k), NSV (k)− 1].

• FChild(v): If v is a leaf, return NULL. Otherwise, the first child of v is given by
[vl, RMQ(vl+1, vr)−1], assuming that RMQs always returns the leftmost minimum in the
case of ties.

• NSibling(v): First move to the parent of v by w = Parent(v). If vr = wr, return NULL,
since v does not have a next sibling. If vr + 1 = wr, v’s next sibling is a leaf, so return
[wr, wr]. Otherwise, return [vr + 1, RMQ(vr + 2, wr)− 1].
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• SLink(v): If v is the root, return NULL. Otherwise, first follow the suffix links of the
leaves vl and vr, x = Ψ(vl) and y = Ψ(vr). Then locate k = RMQ(x + 1, y). The final
result is then given by [PSV (k), NSV (k)− 1].

• SLinki(v): Same as above with x = Ψi(vl) and y = Ψi(vr). If the first Letter of x and y
are different, then the answer is Root. Otherwise we go on with k as before.

• LCA(v, w): If one of v or w is ancestor of the other, return this ancestor node. Otherwise,
without loss of generality, assume vr < wl. Compute k = RMQ(vr + 1, wl), and the final
answer is [PSV (k), NSV (k)− 1].

• Child(v, a): If v is a leaf, return NULL. Otherwise, the minima in LCP [vl + 1, vr] de-
fine v’s child intervals, so we need to find the position p ∈ [vl + 1, vr] where LCP [p] =
mini∈[vl+1,vr]LCP [i], and T [A[p] +LCP [p]] = Letter([p, p], LCP [p] + 1) = a. Then the final
result is given by [p,RMQ(p+ 1, vr)− 1], or NULL if there is no such position p. To find
this p, they binary search the interval using RMQ.

• TDepth(v): They present a way to support TDepth(v) using other nHk(2 log 1
Hk

+O(1))+
o(n) bits of space. The idea is similar to Sadakane’s representation of LCP (see Section 5.1):
the key insight is that the tree depth can decrease by at most 1 if we move from suffix Ti,n
to Ti+1,n (i.e., when following Ψ). Define TDE[1, n] such that TDE[i] holds the tree-depth
of the LCA of leaves A[i] and A[i− 1] (similar to the definition of LCP). Then the sequence
k+TDE[Ψk(A−1[i])], for 0 ≤ k < n, is nondecreasing and in the range [1, n], and can hence
be stored using 2n+o(n) bits. Further, the repetitions appear in the same way as in H (see
Section 5.1) , so the resulting sequence can be compressed to nHk(2 log 1

Hk
+O(1))+o(n) bits

using the same mechamism as for LCP presented in Section 5.2. Then TDepth(i) = TDE[k],
where k = RMQTDE(vl + 1, vr).

• LAQS(v, d): Let u = [ul, ur] = LAQS(v, d) denote the (yet unknown) result. Because u is
an ancestor of v, we must have ul ≤ vl and vr ≤ ur. We further know that LCP [i] ≥ d for
all ul < i ≤ ur. Thus, ul is the largest position in [1, vl] with LCP [ul] < d. So the search for
ul can be conducted in a binary manner by means of RMQS : Letting k = RMQ(bvl/2c, vl),
we check if LCP [k] ≥ d. If so, ul cannot be in [bvl/2c, vl], so we continue searching in
[1, bvl/2c − 1]. If not, we know that ul must be in [bvl/2c, vl], so we continue searching in
there. The search for ur is handled symmetrically.

• LAQT (v, d): The same idea as for LAQS can be applied here, using the array TDE instead
of LCP, and RMQ on TDE.

The challenge faced in this thesis was to implement this CST. This can be divided into (1)
how to represent LCP efficiently in practice, and (2) how to compute efficiently RMQ, PSV, and
NSV over this LCP representation. In addition we made several improvements to the original
algorithms. In the next chapters we focus on each subproblem separately and then compare the
resulting CST with the existing ones.
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Chapter 5

Representing the Array LCP

As explained the suffix array can be enhanced with the LCP array, which contains the lengths
of the longest common prefixes of adjacent elements in the suffix array. The union of the LCP
array with the suffix array is equivalent to the suffix tree. Conceptually the LCP array defines
the “shape” of the suffix tree and thus allows any traversal to be simulated using the suffix array.

The study of the LCP array representations is very important for this thesis because it is one
of the most important structures for our final compressed suffix tree. We carried out an exhaustive
search of different alternatives, where we found all kinds of time/space trade-offs.

In the following sections we will explain the different alternatives that were considered to
represent the LCP array. In the last section of the chapter we will compare the performance of
the solutions. From this comparison we will be able to say which LCP representations are most
suitable for our work.

5.1 Sadakane’s LCP (Sad)

Sadakane [Sad07a] describes a clever encoding of the LCP array that uses 2n + o(n) bits.
The encoding is based on the following lemma, which states that LCP values, when listed in text
position order, can decrease at most by 1.

Lemma 5.1. [Sad07a] The values j + LCP [A−1[j]] are nondecreasing.

Proof: By calling i = A−1[j], this is exactly the same as proving that LCP [Ψ[i]] ≥ LCP [i]−1. Let
p = A[i], q = A[i+ 1] and l = LCP [i]. If LCP [i] = 0 the inequality holds because LCP [Ψ[i]] ≥ 0.
If T [p] = T [q], consider suffixes Tp+1,n and Tq+1,n. From the definition of Ψ, A[Ψ[i]] = p + 1
and A[Ψ[i + 1]] = q + 1. The suffix Tq+1,n is lexicographically larger than the suffix Tp+1,n from
the definition of lexicographic order. That is, Ψ[i] < Ψ[i + 1]. Therefore an integer i′ such that
Ψ[i] + 1 = i′ ≤ Ψ[i + 1] exists. The suffix TA[i′],n has a prefix of length l − 1 that matches with
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both prefixes of Tp+1,n and Tq+1,n because of the definition of lexicographic order. Therefore
LCP [Ψ[i]] ≥ LCP [i]− 1.

So sequence S = s1, ..., sn−1 = 1 +LCP [A−1[1]], 2 +LCP [A−1[2]], ..., n− 1 +LCP [A−1[n− 1]]
is nondecreasing.

To encode the nondecreasing list S, it is enough to encode each difference between consecutive
values of the sequence in unary, i.e., 0diff (i)1, where diff (i) = si − si−1, 0d denotes repetition of
0-bit d-times, and we assume that s0 = 0. This encoding, call it H, takes at most 2n bits, because
it has n 1′s and at most n 0′s, given that

∑n−1
i=0 diff (i) ≤ n. We have the connection diff (k) =

select1(H, k) − select1(H, k − 1) − 1. Bitvector H can be preprocessed to answer select1(H, k)
queries in constant time using o(|H|) bits of extra space [Mun96, Cla98] (see Section 2.3).

Computing LCP [i] can now be done as follows: compute k = A[i], and then LCP [i] =
select1(H, k + 1)− 2k − 1. Figure 5.1 shows an example of how H is computed and used, where
LCP ′ is the LCP array in text order, that is, LCP ′[i] = LCP [A−1[i]].

Figure 5.1: Example of how H is computed and used.

In this thesis we encode H in plain form, using the rank/select implementation of González
[GGMN05], which takes 0.1n bits over the 2n used by H itself and answers select in O(log n)
time via binary search. This encoding will be called Sad-Gon. We also encode H using the dense
array implementation of Okanohara and Sadakane [OS07]. This requires about the same space as
the previous one and answers select very fast in practice. This encoding will be called Sad-OS.
Section 2.3 covers these implementations of select.
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5.2 Fischer et al.’s LCP (FMN)

Fischer et al. [FMN09] suggested a more space-efficient encoding of H, obtaining nHk(2 log 1
Hk

+O(1))+o(n) bits, for small enough k. The result follows from the observation (Lemma 5.3) that
the number of 1-bit runs in H is bounded by the number of runs in Ψ.

Definition 5.2. [MN05] A run in Ψ is a maximal sequence of consecutive i values where Ψ(i)−
Ψ(i− 1) = 1 and T [A[i− 1]] = T [A[i]], including one preceding i where this does not hold.

Note that an area in Ψ where the differences are not 1 corresponds to several length-1 runs.
Let us define R ≤ n as the overall number of runs in Ψ.

Lemma 5.3. [FMN09] The bitmap H has at most R runs of 1′s (where even isolated 1′s count
as a run).

Proof: Let us call position i a stopper if i = 1 or Ψ(i) − Ψ(i − 1) 6= 1 or T [A[i − 1]] 6= T [A[i]].
Hence Ψ has exactly R stoppers by the definition of runs in Ψ. Now say that a chain in Ψ is a
maximal sequence i,Ψ(i),Ψ(Ψ(i)), ... such that each Ψj(i) is not a stopper except the last one.
As Ψ is a permutation with just one cycle, it follows that in the path of Ψj(A−1[1]), 0 ≤ j < n,
we will find the R stoppers, and hence there are also R chains in Ψ.

We now show that each chain in Ψ induces a run of 1′s of the same length in H. Let
i,Ψ(i), ...,Ψl(i) be a chain. Hence Ψj(i) − Ψj(i − 1) = 1 for 0 ≤ j < l. Let x = A[i − 1] and
y = A[i]. Then A[Ψj(i−1)] = x+j and A[Ψj(i)] = y+j. Also, LCP [i] = |lcp(TA[i−1],n, TA[i],n)| =
|lcp(Tx,n, Ty,n)|. Note that T [x+LCP [i]] 6= T [y+LCP [i]], and hence A−1[y+LCP [i]] = ΨLCP [i](i)
is a stopper, thus l ≤ LCP [i]. Moreover, LCP [Ψj(i)] = |lcp(Tx+j,n, Ty+j,n)| = LCP [i]− j ≥ 0 for
0 ≤ j < l. Now consider sy+j = y+j+LCP [A−1[y+j]] = y+j+LCP [Ψj(i)] = y+j+LCP [i]−j =
y + LCP [i], all equal for 0 ≤ j < l. This produces l − 1 diff values equal to 0, that is, a run of l
1-bits in H. By traversing all the chains in the cycle of Ψ we sweep S left to right, producing at
most R runs of 1′s.

Lemma 5.4. [MN05] R ≤ nHk + σk, for any k.

Fisher et al. represent H in run-length encoded form, coding each maximal run of both 0 and
1 bits. Based on Lemma 5.4 they prove that the array H is compressible as it has at most R runs
of 0’s and 1’s. The idea is to encode the 1-run lengths o1, o2, . . . and the 0-run lengths z1, z2, . . .
separately. Given this encoding it is easy to compute select1(H, j) by finding the largest r such
that

∑r
i=1 oi < j and then answering select1(H, j) = j+

∑r
i=1 zi. This so-called searchable partial

sum problem is easy to solve. Store a bitmap O[1, n] setting the bits at positions
∑r

i=1 oi, so
that max{r,

∑r
i=1 oi < j} = rank1(O, j − 1). Likewise, bitmap Z[1, n] representing the z′is solves∑r

i=1 zi = select1(Z, r). Since both O and Z have at most R 1′s, O plus Z can be represented
using 2R log n

R +O(R+ n log logn
logn ) = nHk(2 log 1

Hk
+O(1)) +O(n log logn

logn ) bits, for any k ≤ α logσ n
and any constant 0 < α < 1 [RRR02].
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In this thesis this encoding for LCP will be called FMN-RRR and use Claude and Navarro’s
implementation of Ramman et al.’s rank/select representation [CN08] (recall rrr from Section 2.3).
We also encode O and Z using the sparse array implementation of Okanohara and Sadakane for
rank/select [OS07] (recall sdarray from Section 2.3). This encoding will be called FMN-OS.

5.3 Puglisi and Turpin’s LCP (PT)

This encoding is inspired in an LCP construction algorithm by Puglisi and Turpin [PT08].
Their strategy for saving space is to compute the lcp values for a sample of suffixes and then use
those values to generate the rest. The particular sample that they use is defined by a difference
cover with density selected such that the overall space requirements fit into the available memory.

Definition 5.5. [KSB06] A difference cover D modulo v is a set of integers in the range 0 . . . v−1
with the property that for all i ∈ 0 . . . v − 1 there exist j, k ∈ D such that i ≡ k − j(mod v).

A difference cover must have size ≥
√
v, and small ones (with size ≤

√
1.5v + 6) can be

generated relatively easily with a method described by Colburn and Ling [CL00] .

For any integers i, j, let the function δ(i, j) over a difference cover D modulo v be an integer
k ∈ 0..v − 1 such that (i+ k) mod v and (j + k) mod v are both in D [BK03]. To compute δ(i, j)
they build a table d such that, for all h ∈ [0, v), both d[h] and (d[h] + h) mod v are in D, and
implement δ as δ(i, j) = (d[(j − i) mod v]− i) mod v. Then i+ δ(i, j) = d[(j − i) mod v] ∈ D and
j + δ(i, j) = d[(j − i) mod v] + (j − 1) ∈ D(mod v).

Their algorithm to create the LCP array comprises the following steps:

• Choose v ≥ 2, a difference cover D modulo v with |D| = Θ(
√
v), and compute the function

δ.

• Fill an array S[0, n|D|/v − 1] with the suffixes whose starting position modulo v is in D.
This can be easily done if we first preprocess D and build a small table D′[0..v−1], such that
D′[i], if i ∈ D, is the number of elements smaller than i in D, otherwise D′[i] = −1. After
filling the array S we build a data structure over S that can compute the lcp of an arbitrary
pair of sample suffixes in constant time. The first part of this structure is a mapping S′

that gives us the position in S of a given sampled suffix in constant time. Figure 5.2 shows
how to fill arrays S and S′ using the suffix array, D and D′. Finally using D′, S′ and S we
compute an array L[i] = lcp(S[i − 1], S[i]), where i ∈ [0, n|D|/v − 1]. Figure 5.3 shows the
pseudocode to compute the values of L.

• Scan the suffix array A left-to-right and compute all the LCP values. To compute LCP [i]
compare the first v symbols of A[i] and A[i− 1]. If we find a mismatch at A[i] + j then we
know that the lcp is j − 1 and we are done. If they are equal after v symbols then compute
the lcp using the fact that suffixes A[i] + δ(A[i − 1], A[i]) and A[i − 1] + δ(A[i − 1], A[i])

50



5.3 Puglisi and Turpin’s LCP (PT) Chapter 5 Representing the Array LCP

Algorithm Fill-Arrays(A,D,D′)
1. j ← 0;
2. for i← 0 to n do
3. if D′[A[i] mod v] 6= −1 then
4. S[j]← A[i];
5. S′[|D|bS[j]/vc+D′[S[j] mod v]]← j;
6. j ← j + 1;

Figure 5.2: Computing arrays S and S′.

Algorithm Compute-L(S, S′, D′)
1. for s← 0 to |D| − 1 do
2. k ← s;
3. l← 0;
4. while k < m do
5. s0 ← S[S′[k]− 1];
6. s1 ← S[S′[k]];
7. while T [s0 + l] = T [s1 + l] do
8. l← l + 1;
9. L[S′[k]]← l;
10. l← max(0, l − v);
11. k ← k + |D|;

Figure 5.3: Computing L, using S, S′, and D′.

are in the sample and their lcp can be computed in constant time using the data structure
alluded to in the previous step.

Note that the original implementation is for creating the LCP array keeping the text T avail-
able. In the encoding presented here we store the particular sampling of LCP values, and compute
the other values of the array using the sampled ones. So given a parameter v, the sampling re-
quires O(n/

√
v + v) integers plus the text, and computes any LCP [i] by comparing at most the

text symbols T [j, j+v] and T [j′, j′+v]. As we do not have the text, we must obtain these symbols
using Ψ and the CSA up to 2v times, so the time to access a value will depend on the time of
operation Ψ and the time used by the CSA to obtain a symbol of the text.
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5.4 Kärkkäinen et al.’s LCP (PhiSpare)

In the same spirit of the previous technique, this is inspired by a construction from Kärkkäinen
et al. [KMP09]. For a given parameter q, they store in text order an array LCP ′q with the LCP
values for all text positions q · k. Now assume A[i] = q · k + b, with 0 ≤ b < k. If b = 0, then
LCP [i] = LCP ′q[k]. Otherwise, we first calculate h = q · k + LCP ′q[k] − A[i]. If h > 0, then the
substring TA[i],A[i]+h is repeated at least once in the text, so it holds that LCP [i] ≥ h and we only
need to compare TA[i−1]+h,n and TA[i]+h,n. Note that this comparison is done by brute force, but
cannot cost more than (q−h)+LCP ′q[k+1], because otherwise the substring Tq(k+1)+LCP ′

q [k+1]+z,
being z > 0, would be repeated at least once in the text, and therefore LCP ′q[k + 1] should be
greater, and that is not possible. If h ≤ 0 we just calculate LCP [i] by brute force. Figure 5.4
shows the different cases.

Figure 5.4: Scheme of PhiSpare-LCP.

So LCP [i] is computed by comparing at most q+LCP ′q[k+1]−LCP ′q[k] symbols of the suffixes
TA[i−1],n and TA[i],n, and the space used is n/q integers. If A[i] = q ·k then computing it takes O(1)
time, else it takes at most q+LCP ′q[k+ 1]−LCP ′q[k]. Let c(i) denote the number of comparisons

needed for computing LCP [i]. Kärkkäinen et al. prove that 1
n

∑
i=1 n·c(i) ≤ (q−1)+ q2

n [KMP09],
then the computation of LCP [i] requires O(q) time on average. Just as in Section 5.3, when we
use LCP the text will not be available, so we must obtain the symbols of each position of the text
using Ψ and the CSA.

Note that in the extreme case q = n, the LCP ′q array is not used, so all the LCP positions are
calculated using only the CSA and Ψ, and the encoding presented here does not use any space.

5.5 Directly Addressable Codes (DAC)

Brisaboa et al. [BLN09] introduce a symbol reordering technique called directly addressable
variable-length codes (DAC), that implicitly synchronizes variable-length codes, such that it is
possible to directly access the i-th codeword without need of any sampling method. The idea
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builds on Vbyte coding.

Definition 5.6. Vbyte coding [WZ99] splits the blog(pi + 1)c bits needed to represent a value pi
into blocks of b bits and stores each block in a chunk of b + 1 bits. The highest bit is 0 in the
chunk holding the most significant bits of pi, and 1 in the rest of the chunks. For clarity we write
the chunks from most to least significant, just like the binary representation of pi. For example,
if pi = 25 = 110012 and b = 3, then we need two chunks and the representation is 0011 1001.

Brisaboa et al. first encode the pis as a sequence of (b + 1)-bit chunks. Next they separate
the different chunks of each codeword. Assume pi is assigned a codeword Ci that needs r chunks
Ci,r, ..., Ci,2, Ci,1. A first stream, V1, will contain the n1 = n least significant chunks (i.e., right-
most) of every codeword. A second one, V2, will contain the n2 ≤ n1 second chunks of every
codeword (so that there are only n2 codewords using more than one chunk). We proceed similarly
with V3, and so on. Each stream Ck will be separated into two parts. The lowest b bits of the
chunks will be stored contiguously in an array Ak (of b · nk bits), whereas the highest bits will be
concatenated into a bitmap Bk of nk bits. The bits in each Bk identify whether there is a chunk
of that codeword in Vk+1. They set up rank data structures on the Bk bitmaps (Section 2.3).

C : C    C    C    C    C    C    C    C   C    . . .  
1,2      1 ,1      2 ,1      3 ,3      3 ,2      3 ,1      4 ,2      4 ,1      5 ,1  

V
A       A        A        A        A        A

1 B       1          0         1        1        0     
1           1 ,1         2 ,1          3 ,1          4 ,1         5 ,1

1
. . . .     

. . . .     

V
A       A     

3 B       0   
3           3 ,3 

3
. . . .     

. . . .     

V
A       A        A        A     

2 B       0          1         0      
2           1,2         3,2          4,2    

2 . . . .     

. . . .     

Figure 5.5: Example of reorganization of the chunks of each codeword.

Extraction of the i-th value of the sequence is carried out as follows. It starts with i1 = i and
gets its first chunk b1 = B1[i1] : A1[i1]. If B1[i1] = 0 we are done with pi = A1[i1]. Otherwise it
sets i2 = rank1(B1, i1), which sends us to the correct position of the second chunk of pi in B2,
and gets b2 = B2[i2] : A2[i2]. If B2[i2] = 0, we are done with pi = A1[i1] + A2[i2] · 2b. Otherwise
it sets i3 = rank1(B2, i2) and so on.

Most LCP values are small (O(logσ n) on average [Szp96]), and thus one could use few bits
to represent them. Yet, some can be much longer. Then it seems promising to apply the DAC
representation to the LCP array. There are two variants of this structure, both implemented
by Ladra: one with fixed b (DAC), and another using different b values for the first, second,
etc. blocks, and finding the values of b that minimize the total space (DAC-Var). Note that we
represent LCP and not LCP’, thus we do not need to compute A[i].

It is important to mention that these implementations have been improved in this thesis for
supporting sequential accesses to the LCP array. The improvement is that for all the sequential
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accesses we will only need to do one rank operation for each level visited. After this operation we
set a pointer per level that avoids further rank computations.

5.6 Re-Pair LCP (RP)

Re-Pair [LM00] is a grammar-based compression method that factors out repetitions in a
sequence. This method is based on the following heuristic: (1) Find the most repeated pair ab
in the sequence; (2) Replace all its occurrences by a new symbol s; (3) Add a rule s → ab to a
dictionary; (4) Iterate until every pair is unique.

In recent work [GN07] Re-Pair is used to compress the differentially encoded suffix array,
A′[i] = A[i]− A[i− 1]. It is shown that Re-Pair achieves O(R log n

R log n) bits of space, R being
the number of runs in Ψ. This differentially encoded suffix array contains repetitions because
the CSA can be partitioned into R areas that appear elsewhere in A with the values shifted by 1
[MN05] (recall Section 5.2).

The LCP must contain the same repetitions shifted by 1, and therefore the Re-Pair compres-
sion of the differential LCP should perform similarly, as advocated in the theoretical proposal
[FMN09]. To obtain LCP [i] we must store some sampled absolute LCP values and decompress
the nonterminals since the last sample.

5.7 Experimental Comparison

All the experimental results that will be shown here and in the next chapters were per-
formed on 100 MB of the protein, sources, XML and DNA texts from the Pizza&Chili corpus
(http://pizzachili.dcc.uchile.cl). Table 5.1 gives some information about the texts used for the
tests. The computer used features an Intel(R) Core(TM)2 Duo processor at 3.16 GHz, with 8 GB
of main memory and 6 MB of cache, running version 2.6.24-24 Linux kernel.

Name Mean LCP Max LCP Size (bytes) Description
dna.100MB 28.0958 17, 772 104, 857, 600 DNA sequences obtained from Gutenberg Project

xml.100MB 44.4497 1, 084 104, 857, 600 XML obtained from dblp.uni-trier.de

proteins.100MB 220.649 35, 246 104, 857, 600 Protein sequences obtained from the Swissprot database

sources.100MB 625.065 307, 871 104, 857, 600 Source code obtained by concatenating files of the
linux-2.6.11.6 and gcc-4.0.0 distributions

Table 5.1: Data files used for tests, sorted in ascending order of average LCP.

It is important to mention that the PT and PhiSpare encodings are the only ones that will
display a space/time trade-off because their implementations are the only that depend of a pa-
rameter given by the user, v and q respectively. In the first we use v = 4, 6, 8 and for the second
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q = 16, 32, 64, n (when q = n, it means that we calculate each LCP value using only the CSA and
Ψ). We also consider a naive implementation for LCP that uses log(max lcp) bits per value of
the array. For all the LCP representations we will use Sadakane’s compressed suffix array, when
it is necessary. Finally for DAC/DAC-Var we use González’s implementation for the bitmaps
[GGMN05], and for DAC we use b = 4.

To compare all the LCP structures presented we carry out two different tests. The first test
measures the average time taken to access a random position in the LCP array. For that we tested
the different LCP implementations by accessing 100, 000 random positions of the LCP. Figure 5.6
shows the space/times achieved.
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Figure 5.6: Space/time for randomly accessing the LCP array. Note the logscale.

As it can be seen, DAC/DAC-Var and the representations of the bitvector H (see Section 5.1),
Sad and FMN implementations, largely dominate the space-time trade-off map. PhiSpare and PT
can use less space but they become impractically slow. Note that PhiSpare encoding is a bad
option unless the average LCP in the text is high. This is because, to compute LCP [i] in our
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implementation of PhiSpare, if h > 0 (recall Section 5.4) we must move h positions in the text
and obtain the suffix array position with A−1[A[i] + h] and A−1[A[i− 1] + h], and then continue
by brute force. The problem is that if h is too small it will be faster to move the h positions by
brute force, i.e., using Ψh(A[i]), than to do it via A and A−1. So for a text with low average LCP,
it would be desirable to use a higher q so that most LCP values are computed by brute force.
This explains why PhiSpare sometimes worsens in time as it uses more space.

Note that DAC, DAC-Var, RP and the naive implementation are faster than the other struc-
tures because they not need to access the text or compute A[i]. Note also that RP takes 30%-60%
of the original LCP array. The reason why the naive implementation uses less space than RP is
that it uses log(max lcp) bits per entry, while RP creates many new symbols, and thus it yields
a shorter sequence whose symbols need more bits. Still, the naive representation, while slightly
faster than DAC, uses too much space in comparison.

The second test is based in how we use the LCP array to answer queries like NSV, PSV, and
RMQ. This test consists in accessing 100, 000 random position but for each such position we also
access the next 32 positions in a sequential way. The results obtained in this test are important
because most of the times we use LCP we will need to do several sequential accesses.

As it can be seen in Figure 5.7, all the LCP representations run a little faster on sequential
accesses, but only the naive and DAC/DAC-Var implementations show a marked improvement.
For the naive implementations this is because most of the entries will be in cache and, in the
case of DAC/DAC-Var implementation, it is because these representations, as we mentioned in
Section 5.5, were improved in this thesis for doing sequential accesses to the LCP array.

We can also conclude that the idea of compressing Sadakane’s H array (recall Section 5.1)
makes little difference. This is attributable to the 27% overhead over the entropy of the RRR
implementation for FMN-RRR, and similarly FMN-OS spends 2m extra bits [OS07] (recall rrr
and darray structures from Section 2.3).

For the rest of this work we will keep only DAC and DAC-Var, which give the best time
performance within reasonable space, and FMN-RRR and Sad-Gon, which achieve minimum
space and a robust and reasonable performance.
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Figure 5.7: Space/time for random sequential accesses to the LCP array.
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Chapter 6

Computing NSV/PSV/RMQ (NPR)

In this chapter we study the queries next smaller value (NSV), previous smaller value (PSV)
and range minimum query (RMQ).

Definition 6.1. Let S[1, n] be a sequence of elements drawn from a set with a total order �
(where one can also define a ≺ b ⇔ a � b ∧ b � a). We define the queries next smaller value,
previous smaller value, and range minimum query as follows: NSVS(i) = min{j, (i < j ≤
n ∧ S[j] ≺ S[i]) ∨ j = n + 1}, PSVS(i) = max{j, (1 ≤ j < i ∧ S[j] ≺ S[i]) ∨ j = 0}, and
RMQS(i, j) = argmini≤l≤jS[l] (where argmin refers to order �), respectively.

Once a representation for LCP is chosen, one must carry out these operations on top of it (as
they require to access LCP). As we already showed in Section 4.3, we make heavy use of these
queries to solve most of the navigation operations in our new compressed suffix tree.

6.1 Fischer et al.’s NPR

We first implemented verbatim the theoretical proposals of Fischer et al. [FMN09]. For NSV,
the idea is akin to the recursive findclose solution for compressed trees (see Section 3.2.2). The
array is divided into blocks of b values. A position i will be called near if NSV (i) is within the same
block of i. So the first step when solving NSV query will be to scan the values S[i+ 1 . . . b · di/be],
that is, from i + 1 to the end of the block, looking for an S[j] ≺ S[i]. This takes O(b) time and
solves the query for near positions.

Positions that are not near are called far. A far position i will be called a pioneer if NSV (i)
is not in the same block of NSV (j), being j the largest far position preceding i (the first far
position in the array is a pioneer). It follows that, if i is not a pioneer and j is the last pioneer
preceding i, then NSV (i) is in the same block of NSV (j) ≥ NSV (i). Hence, to solve NSV (i),
we find j and then scan (left to right) the block S[dNSV (j)/be] − b + 1 . . . NSV (j) for the first
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position p where S[p] ≺ S[i]. This is done in O(b) time.

The remaining problem is how to find efficiently the pioneer preceding each far position i, and
how to store the answers for pioneers. The form to solve this is to mark all the pioneers in a
bitmap P [1, n]. Using a structure for rank/select (Section 3.2) on P we can find the last pioneer
preceding a far position i, as j = select1(P, rank1(P, i)). So if we store all the NSV answers for
the pioneers in an array N [1, n′], where n′ = O(n/b) [Jac89] and NSV (j) = N [rank1(P, j)] if j
is a pioneer, then the time taken to answer NSV for any position is O(b), but the space used for
storing the pioneer answers is O((n/b) log n).

Instead, they apply the same idea recursively. Instead of storing the answers explicitly in
array N , they form a (virtual) reduced sequence S′ that contains all the pioneer values i and
their answers NSV (i). Sequence S′ is not explicitly stored. Rather, they set up a bitmap R[1, n]
where the selected values of S are marked, so they can retrieve any value S′[i] = S[select1(R, i)].
Because S′ is a subsequence of S, it holds that the answers to NSV in S′ are the same answers
mapped from S. Hence NSV (i), for pioneer i, can be found by the corresponding recursive
query on S′, NSV (i) = select1(R,NSVS′(rank1(R, i))). They use recursion to solve the NSV
problem over the new sequence S′. They continue the process recursively for r levels before
storing the explicit answer in array N [1, nr], where nr = O(n/br). Therefore the data structure
uses O(n log b

b + rn log logn
logn + n logn

br ) bits, where O(n logn
br ) bits are used to store N , and the rest is

the sum of the space used by all the Ri and P i (i = 1, ..., r), and the time taken to answer NSV
is in the worst case O(r · b), taking O(b) time per level. In this thesis we only use two levels of
recursion because, given the size of the texts we used in the experiments, the use of more levels
would mean an increase in the size and the time used by the representation.

The block length b yields a space/time trade-off since, at each level of the recursion, we must
obtain O(b) values from LCP. PSV is symmetric, so another similar structure is needed.

For RMQ we apply an existing implementation [FH07] to the LCP array, remembering that
we do not have direct access to LCP but have to use any of the access methods we have developed
for it in Chapter 5. This accesses at most 5 cells of LCP, yet it requires 3.25n bits. In the actual
theoretical proposal [FMN09] this is reduced to o(n) but many more accesses to LCP would be
necessary; we did not implement that verbatim as it has little chances of being practical.

The final data structure, that we call NPR-FMN, is composed of the structure to answer NSV
queries plus the one for PSV queries plus the structure to calculate RMQ.

6.2 A Novel Practical Solution for NPR

We propose a different solution, inspired by Sadakane and Navarro’s succinct tree represen-
tation (see Section 3.2.3). We divide LCP into blocks of length L, and store the minimum LCP
value of each block i in an array m[i]. The array uses n

L log n bits. Now we form a hierarchy of
blocks. On top of array m, we construct a perfect L-ary tree Tm where the leaves are the elements
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of m and each internal node stores the minimum of the values stored in its children. The total
space needed for Tm is n

L log n(1 +O(1/L)) bits, so if L = ω(log n), the space used is o(n) bits.

To answer NSV (i), we look for the first j > i such that LCP [j] < p = LCP [i], using Tm to
find it in time O(L log(n/L)). We first search sequentially for the answer in the same block of i.
If it is not there, we go up to the parent of the leaf that represents the block and scan the minima
of the right siblings of this leaf. If some of these sibling leaves contain a minimum value smaller
than p, then the answer to NSV (i) is within their block, so we go down to their block and find
sequentially the leftmost position j where LCP [j] < p. If, however, no sibling of the leaf contains
a minimum smaller than p, we continue going up the tree and considering the right siblings of the
parent of the current node. At some node we find a minimum smaller than p and start traversing
down the tree as before, finding at each level the first child of the current node with a minimum
smaller than p. PSV is symmetric. Without the need to use more space we can easily define
NSV ′(i, d)/PSV ′(i, d), a generalization of NSV/PSV, which find the next/previous value smaller
or equal to d, and its implementation follow the same algorithm presented for NSV/PSV. Note
that the heaviest part of the cost in practice is the O(L) accesses to LCP cells at the lowest levels,
since the minima in Tm are explicitly stored. Therefore it is important to have a fast sequential
access to the LCP.

To calculate RMQ(x, y) we use the same Tm and separate the search into three parts: (a) We
calculate sequentially the minimum value in the interval [x, Ld xLe− 1] and its leftmost position in
the interval; (b) we do the same for the interval [Lb yLc, y]; (c) we calculate RMQ(Ld xLe, Lb

y
Lc−1)

using Tm. Finally we compare the results obtained in (a), (b) and (c) and the answer will be
the one holding the minimum value, choosing the leftmost to break ties. The remaining problem
is how we compute (c). This is done by searching for the minimum value between the leaves
that are among the d xLe-th leaf and (b yLc − 1)-th leaf of Tm. Then we go down to the block that
represents the minimum value found, and find sequentially its leftmost position. To compute the
range minimum query between leaves of Tm we recursively separate the search into three parts:
(a’) We find sequentially the minimum value and its position between the d xLe-th leaf and its
right siblings; (b’) we do the same between the (b yLc − 1)-th leaf and its left siblings; (c’) we

calculate the minimum value and its position between the leaves [Ld d
x
L
e

L e, Lb
b y
L
c−1

L c − 1]. Finally
we compare the results obtained in (a’), (b’) and (c’) and the answer will be the one holding the
minimum value, choosing the leftmost to break ties. To compute (c’) we apply recursively the
same idea over the next level of Tm.

For each node in Tm we will also store the local position in the children where the minimum
occurs, so we do not need to scan the child blocks when we want to know which of these is the
leftmost child that contains the minimum value. The extra space incurred is just n

L logL(1 +
O(1/L)) bits. The final data structure, if L = ω(log n), requires o(n) bits and can compute NSV,
PSV and RMQ all using the same auxiliary structure. We call it NPR-CN.
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6.3 Experimental Comparison

We tested the performance of the different NPR implementations by performing 100,000 NSV
and RMQ queries at different random positions in the LCP array. We will show the space/time
achieved for each implementation, using Sad-Gon, FMN-RRR, DAC and DAC-Var LCP encod-
ings, over the texts of Table 5.1. We obtained space/time trade-offs by using different block sizes
L = 8, 16, 32. Note that the times and space used for RMQ on NPR-FMN are not affected by
L. It is important to mention that the spaces shown are those used by the structure (in the case
of CN), or the sum of the structures (in the case of FMN), that support NSV, PSV, and RMQ
without considering the space used by the chosen LCP representation.

Figures 6.1 and 6.2 show the results obtained with NPR-FMN and NPR-CN using Sad-Gon and
FMN-RRR encodings of LCP. Clearly NPR-CN displays the best performance for NSV (therefore
also for PSV), both in space and time. For RMQ, one can see that the best time obtained with
NPR-CN dominates, in time and space, the NPR-FMN curve. Note that using Sad-Gon encoding
of LCP, for most of the texts, the times are slightly better than those using FMN-RRR. The
spaces obtained by NPR-FMN plus Sad-Gon or FMN-RRR encodings of LCP are 9.5n to 13.5n
or 9n to 14n bits, respectively, depending on L and the text, while NPR-CN uses 3.7n to 7.6n or
3.2n to 8.1n bits, respectively, and only depend on L.

Figures 6.3 and 6.4 show the results obtained with NPR-FMN and NPR-CN using DAC and
DAC-Var encodings of LCP. As expected the times obtained using DAC encoding, for most of
the texts, are better than the ones obtained using DAC-Var. Again NPR-CN displays the best
performance for NSV (therefore also for PSV), both in space and time. For RMQ, one can see that
the results obtained with NPR-FMN always dominates, in time, the NPR-CN curve. The problem
is that the extra space used by NPR-FMN in addition to DAC or DAC-Var implementations of
LCP, which is between 13.3n to 20.3n bits using DAC and 12.8n to 18.8n bits using DAC-Var, is
too high to be considered a good alternative. On the other hand, if we use NPR-CN we can afford
to use DAC or DAC-Var maintaining a competitive time to answer RMQ queries while using
reasonable space, between 7.5n to 14.4n with DAC and 7n to 12.9n bits with DAC-Var. Thus
NPR-CN will be our preferred option to be used in our final structure no matter what encoding
of LCP we choose. Another reason to choose NPR-CN is that it can support NSV ′/PSV ′, which
will allow us to solve operation LAQT (see Chapter 7) without adding more memory as opposed
to the technique presented in Section 4.3.

61



6.3 Experimental Comparison Chapter 6 Computing NSV/PSV/RMQ (NPR)

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12

T
im

e 
pe

r 
op

er
at

io
n 

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, NSV with Sad-Gon and FMN-RRR LCP

FMN with Sad-Gon
FMN with FMN-RRR

CN with Sad-Gon
CN with FMN-RRR

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12

T
im

e 
pe

r 
op

er
at

io
n 

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, NSV with Sad-Gon and FMN-RRR LCP

FMN with Sad-Gon
FMN with FMN-RRR

CN with Sad-Gon
CN with FMN-RRR

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12

T
im

e 
pe

r 
op

er
at

io
n 

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, NSV with Sad-Gon and FMN-RRR LCP

FMN with Sad-Gon
FMN with FMN-RRR

CN with Sad-Gon
CN with FMN-RRR

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12

T
im

e 
pe

r 
op

er
at

io
n 

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, NSV with Sad-Gon and FMN-RRR LCP

FMN with Sad-Gon
FMN with FMN-RRR

CN with Sad-Gon
CN with FMN-RRR

Figure 6.1: Space/time for the operation NSV using Sad-Gon and FMN-RRR.
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Figure 6.2: Space/time for the operation RMQ using Sad-Gon and FMN-RRR.
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Figure 6.3: Space/time for the operation NSV using DAC and DAC-Var.
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Figure 6.4: Space/time for the operation RMQ using DAC and DAC-Var.
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Chapter 7

Our Compressed Suffix Tree

Our CST implementation applies our NPR-CN algorithms of Chapter 6 on top of some LCP
representation from those chosen in Chapter 5. Using this we solve most of the tree traversal
operations by using the formulas provided in Section 4.3. In some cases, however, we have
deviated from the theoretical algorithms for practical considerations.

NSibling(v): First obtain the parent [wl, wr] of v, then check whether vr = wr (in which case
there is no next sibling), then check whether wr = vr + 1 (in which case the next sibling is
leaf [wr, wr]), and finally answer [vr + 1, z − 1], where z = RMQ(vr + 2, wr). This RMQ is
aimed at finding the end of the next sibling of the next sibling, but can fail if we are near
the end. Instead, in this thesis we replace it by the faster z = NSV ′(vr + 1, LCP [vr + 1])
(see Section 6.2).

SLinki(v): Return the value resulting of applying i times SLink recursively.

Child(v, a): The children are ordered by letter. We extract the children sequentially using
FChild and NSibling, to find the one descending by the correct letter, yet extracting the
Letter of each is expensive (see end of Section 4.2). Thus we first find all the children
sequentially and then binary search the correct letter among them, thus reducing the use of
Letter as much as possible.

TDepth(v): We move to the root using Parent, as there is no alternative practical solution in
the proposal.

LAQS(v, d): Instead of the slow complex formula given in Section 4.3, we use NSV ′ (and PSV ′):
LAQS([vl, vr], d) = [PSV ′(vl + 1, d), NSV ′(vr, d) − 1]. This is a complex operation we are
supporting with extreme simplicity.

LAQT (v, d): There is no practical solution in the original proposal. In this thesis we proceed
as follows to achieve the cost of d Parent operations, plus LAQS operations, all of which

66



7.1 Comparing the CST Implementations Chapter 7 Our Compressed Suffix Tree

are reasonably cheap. Since SDepth(v) ≥ TDepth(v), we first try v′ = LAQS(v, d), which
is an ancestor of our answer; let d′ = TDepth(v′). If d′ = d we are done; else d′ < d and
we try v′′ = LAQS(v, d + (d − d′)). We compute d′′ = TDepth(v′′) (which is measured by
using d′′ − d′ Parent operations until reaching v′) and iterate until finding the right node.
So the total number of Parent operations is d and the LAQS are fewer.

7.1 Comparing the CST Implementations

We compare all the CST implementations: Välimäki et al.’s [VGDM07] implementation of
Sadakane’s compressed suffix tree [Sad07a] (CST-Sadakane); Russo’s implementation of Russo et
al.’s “fully-compressed” suffix tree [RNO08b] (FCST); and our best variants, called Our CST in
the plots. Depending on their LCP representation, the latter are suffixed with Sad-Gon, FMN-
RRR, DAC, and DAC-Var. We do not compare all operations. For example we omit Root and
Ancestor because they are trivial in all implementations; Locate and Count because they depend
only on the underlying compressed suffix array (which is mostly orthogonal, thus Letter is sufficient
to study it); SLinki because it is usually better to do SLink i times. Given that LAQS and LAQT
are not implemented in the practical alternative CSTs, we will only present the performance of
our implementations for these operations.

We typically show space/time trade-offs for all the structures, where the space is measured in
bits per character (recall that these CSTs replace the text, so this is the overall space required).
The times are averaged over a number of queries on random nodes. We use four types of node
samplings, which make sense in different typical suffix tree traversal scenarios: (a) Collecting the
nodes visited over 10,000 traversals from a random leaf to the root (used for Parent, SDepth, and
Child operations); (b) same previous sampling but keeping only nodes of depth at least 5 (for
Letter); (c) collecting the nodes visited over 10,000 traversals from the parent of a random leaf
towards the root via suffix links (used for SLink and TDepth); (d) taking 10,000 random leaf pairs
(for LCA).

We show the results of each operation over all texts presented in Table 5.1. The standard
deviation divided by the average is in the range [0.21,2.56] for CST-Sadakane, [0.97,2.68] for
FCST, [0.65,1.78] for Our CST Sad-Gon, [0.64,2.50] for Our CST FMN-RRR, [0.59,0.75] for Our
CST DAC, and [0.63,0.91] for Our CST DAC-Var. The standard deviation of the estimator is
thus at most 1/100th of that.
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7.2 Experimental Comparison

Figures 7.1 and 7.2 show the performance of the operations Parent and TDepth respectively. As
can be seen in the graphs, Sadakane’s CST is about 5 to 10 times faster than our best results for
Parent. Given that our implementation computes TDepth by brute force, our best times are about
100 to 1000 slower than Sadakane’s results. This big difference in time is because Sadakane’s CST
stores explicitly the tree topology, taking only a fraction of a microsecond to answer queries like
Parent and TDepth.
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Figure 7.1: Space/time trade-off performance for the operation Parent. Note the logscale.
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Figure 7.2: Space/time trade off performance for the operation TDepth. Note the logscale.
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Figures 7.3 to 7.5 show the performance of the operation SLink, LCA, and SDepth. We note
that the FCST is more efficient on operations LCA and SDepth, yet it is still slower than our
slower variant. We remark that our faster solutions, for these operations, outperforms all the
other structures being 10 times faster than Sadakane CST and about 100 to 1000 times faster
than the FCST.
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Figure 7.3: Space/time trade-off performance for the operation SLink. Note the logscale.
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Figure 7.4: Space/time trade-off performance for the operation LCA. Note the logscale.
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Figure 7.5: Space/time trade-off performance for the operation SDepth. Note the logscale.
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Figure 7.6 shows operation Child, where we descend by a random letter from the current node.
Our times are higher than for other operations as expected, yet the same happens to all the imple-
mentations. As we can notice in the graphs all the implementations have a different performance
for each text and is not possible to conclude anything consistent about which implementation is
better. It is important to note that FCST is quite competitive compared to our slow variants.
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Figure 7.6: Space/time trade-off performance for the operation Child. Note the logscale.
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Figure 7.7 shows the operation Letter(i), as a function of i. It depends only on the CSA
structure, and requires either applying i − 1 times Ψ, or applying once A and A−1. The former
choice is preferred for the FCST and the latter in Sadakane’s CST. For our CST, using Ψ iteratively
was better for these i values, as the alternative take around 70 microseconds.
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Figure 7.7: Space/time trade-off performance for the operation Letter. Note the logscale.
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Finally Figure 7.8 shows a basic suffix tree traversal algorithm: the classical one to detect the
longest repetition in a text. This traverses all of the internal nodes using FChild and NSibling
and reports the maximum SDepth. Although Sadakane’s CST takes advantage of locality, our
“large and fast” variants are better using half the space. Our “small and slow” variant, instead,
requires a few hundred microseconds as expected, yet the FCST has a special implementation for
full traversals and it is competitive with our slow variant.

 0.1

 1

 10

 100

 1000

 5  10  15  20  25

T
im

e 
pe

r 
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon 

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30

T
im

e 
pe

r 
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon 

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30

T
im

e 
pe

r 
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon 

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 5  10  15  20  25  30  35

T
im

e 
pe

r 
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon 

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

Figure 7.8: Space/time trade-off performance for a full traversal of the tree. Note the logscale.
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Figures 7.9 and 7.10 show the performance of the operations LAQS(d) and LAQT (d) respec-
tively. The times are presented as a function of parameter d, where we use d = 4, 8, 16, 32, 64.
We query the nodes visited over 10,000 traversals from a random leaf to the root (excluding the
root). As expected the performance of LAQS is similar to that of Parent, and the performance
of LAQT is close to the time it would take to do d times Parent. Note that as we increase the
value of d the times tend to a constant. This is because, as we increase d, a greater number of
queried nodes are themselves the answer to LAQS or LAQT queries.
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Figure 7.9: Space/time trade-off performance for the operation LAQS(d). Note the logscale.
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Figure 7.10: Space/time trade-off performance for the operation LAQT (d). Note the logscale.
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Chapter 8

Epilogue

8.1 Breaking News

This is a very rapidly changing field. Since the core work of this thesis was completed, a
few months ago, new ideas and improvements have continued to emerge. These have not been
covered in the thesis because they are too recent and have no practical implementation yet. Here
we briefly describe some of these novel ideas, which certainly can yield new practical space/time
trade-offs for CSTs.

8.1.1 Wee LCP

In a recent paper [Fis10b] Fischer improves Fischer et al.’s compressed suffix tree [FMN09]
(recall Section 4.3), requiring only (1 + 1

ε )nHk + o(n) bits of space and maintaining the same
time complexity for all the operations. This improvement is achieved by replacing the LCP
representation proposed (see Section 5.2) with a new one.

This new LCP representation is built on top of the bitvector H of Sadakane’s LCP represen-
tation (see Section 5.1). Recall that in Sadakane’s proposal, LCP [i] = select1(H, j + 1)− 2j − 1,
where j = A[i]. Given that select1 is the only operation needed over H, Fischer presents a way
to answer it using less space while maintaining the same time for computing LCP [i].

The scheme is inspired by Clark’s select structure [Cla98]. Fischer divides the range of argu-
ments for select1 into subranges of size k = blog2 nc, and stores in N [i] the answer to select1(H, ik).
This table N [1, dnk e] needs O( n

logn) bits, and divides H into blocks of different sizes, each contain-
ing k 1’s (apart from the last).

A block is called long if it spans more than k2 positions in H, and short otherwise. For the
long blocks, he stores all the answers of select1-queries explicitly in a table P , which requires
O(n/ log n) bits. Then he divides the short blocks into sub-ranges of size λ = blog2 kc, storing in
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N ′[1, dnλe] the answers to select1(H, iλ), for i ∈ {1, dnλe}, but this time only the answer relative to
the beginning of the block where i occurs. Note that table N ′ needs O(n/ log log n) bits. Finally
N ′ divides the blocks into miniblocks, each containing λ 1-bits.

Miniblocks are called long if they span more than s = logδ n bits (where 0 < δ ≤ 1 is an
arbitrary constant), and short otherwise. For long miniblocks, the answers to all select-queries
are stored explicitly in a table P ′, relative to the beginning of the corresponding block, so that
table P ′ requires O(n log3 logn

logδ n
) bits.

To answer LCP [i] we first need to compute select1(H, j), for j = A[i], using the above
structure. Let a = select1(H, bj/λcλ) be the beginning of j’s mini-block in H. Likewise, compute
the beginning of the next mini-block as b = select1(H, bj/λcλ+λ). Now if b−a > s, then the mini-
block where the j-th one occurs is long, and the answer can be looked up using the precomputed
tables N , N ′, P , and P ′. Otherwise, return the value a as an approximation to the actual value of
select1(H, i). Then use the text T to compute LCP [i] in additional O(logδ n) time. To this end,
let j′ = A[i − 1]. The unknown value LCP [i] equals the length of the longest common prefix of
suffixes Tj,n and Tj′,n, so we need to compare these suffixes. However, we do not have to compare
letters from scratch, because we already know that the first m = max(a− 2j − 1, 0) characters of
these suffixes match. So we start the comparison at T [j+m] and T [j′+m], and compare as long
as they match. Because b−a ≤ s, we will reach a mismatch after at most s = O(logδ n) character
comparisons.

This proposal is competitive in theory, but given the results presented in Chapter 5, we
believe that, in practice, the time for computing LCP [i] will be much higher than the obtained
with Sadakane’s or our CST. This is because the improvement presented by Fischer requires to
compute A[i] and A[i− 1], which is slow, and then to access several text symbols using Ψ and the
CSA. In Section 5.7 we have shown that the representations that needed accesses to the text had
the worst time performance.

8.1.2 Range Minimum Queries without LCP Accesses

Recently, Fischer [Fis10a] showed how to preprocess an array L into a scheme of size 2n+o(n)
bits that allows one to answer range minimum queries on L in constant time. This space is
asymptotically optimal in the important setting where access to L is not permitted after the
preprocessing step. As we showed in Section 6.3, one problem of our compressed suffix tree is
that RMQ queries over LCP depend entirely on the LCP access performance, and moreover several
accesses are needed. Therefore, using this novel RMQ proposal seems to be a good idea for our
implementations. Especially, the “small and slow” ones could stay equally small but not that
slow.

The basis for this new succinct structure is the 2d-Min-Heap [Fis10a]. A 2d-Min-Heap of
L (ML) is a labeled and ordered tree with vertices v0, ...vn, where vi is labeled with i for all
0 ≤ i ≤ n. For 1 ≤ i ≤ n, the parent node of vi is vj iff j < i, L[j] < L[i], and L[k] ≥ L[i] for all

79



8.2 Conclusion and Future Work Chapter 8 Epilogue

j < k ≤ i. The order of the children is chosen such that their labels are increasing from left to
right. This 2d-Min-Heap of L has the following properties:

• The node labels correspond to the preorder numbers of ML.

• Let i be a node in ML with children x1, ..., xk. Then L[i] < L[xj ] for all 1 ≤ j ≤ k.

• Again, let i be a node inML with children x1, ..., xk. Then L[xj ] ≤ L[xj−1] for all 1 < j ≤ k.

• For arbitrary nodes i and j, 1 ≤ i < j ≤ n, let l denote the LCA of i and j in ML. Then if
l = i, RMQL(i, j) is given by i, and otherwise, RMQL(i, j) is given by the child of l that
is on the path from l to j.

Note that this last property yields the rightmost minimum in the query range if this is not
unique. However, it can be easily arranged to return the leftmost minimum by adapting the
2d-Min-Heap, if this is desired. To achieve the optimal 2n + o(n) bits, they represent the 2d-
Min-Heap ML using DFUDS (see Section 3.3.2) plus an implementation of a restricted RMQ
over the DFUDS sequence, where consecutives values differ by ±1. For further details of how the
2d-Min-Heap works we encourage the reader to read the original paper [Fis10a].

8.1.3 CST++

Ohlebusch et al. have just presented a new representation for the CST [OFG10]. They use a
succinct data structure of size 3n+o(n) bits that allows them to answer NSV/PSV/RMQ queries
over an array L[1, n] in constant time, without accessing L, plus a representation of the suffix
array and a new approach to compress the LCP array. Based on this preprocessing scheme, they
present a new compressed suffix tree with O(1) time for most navigation operations, just like
Sadakane’s CST (which needs 6n extra bits instead of 3n).

Once implemented, it would be interesting to compare experimentally, in terms of space and
time, their new LCP encoding, NSV/PSV/RMQ succinct data structure, and compressed suffix
tree (CST++), against all the alternative representations presented in this thesis.

8.2 Conclusion and Future Work

We have presented new practical compressed suffix tree (CST) implementations with full
functionality that offer very relevant space/time trade-offs, which are between the two rather
extreme existing variants. This opens the door to a number of practical suffix tree applications,
particularly relevant to bioinformatics.

Our CSTs can operate within 8–12 bits per character (bpc, that is, at most 50% larger than
the plain byte-based representation of the text, and replacing it) while requiring a few hundred
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microseconds for most operations (the “small and slow” variants Sad-Gon and FMN-RRR); or
within 13–16 bpc and carry out most operations within a few microseconds (the “large and fast”
variants DAC/DAC-Var). In contrast, the FCST [RNO08b] requires only 4–6 bits per character
(which is, remarkably, as little as half the space required by the plain text representation), but
takes the order of milliseconds per operation (which is close to disk access times); and Sadakane’s
CST [Sad07a] takes usually a few tens of microseconds per operation but requires 25–35 bits per
character, which is close to uncompressed suffix arrays (not uncompressed suffix trees, though).

We remark that, for many operations, our “fast and large” variant uses half the space of
Sadakane’s CST implementation and it is many times faster. Exceptions are operations Parent
and TDepth, where Sadakane’s CST stores the explicit tree topology, and thus takes a fraction
of a microsecond. On the other hand, our CST carries out operations LAQS in a similar time
as Parent, and LAQT (d) in about d times the time of Parent. These operations are much more
complicated for the alternative compressed suffix trees; in fact they had not been implemented
before.

We have also, in Chapter 3, carried out a rather exhaustive comparison of the best techniques
to represent general trees of n nodes in little space. We focused on the most succinct schemes,
which use 2n+o(n) bits. It turns out that the recent so-called fully-functional (FF) representation
[SN10] offers an excellent combination of space usage, time performance, and functionality. It
implements a large set of simple and sophisticated operations, and in most cases it outperforms
all the other structures in time and space. For example, with less than 20% overhead over the
minimum 2n bits of space, it carries out all the operations within the microsecond (up to 2
microseconds for a few of them). Our study demonstrates that approaching the 2n bits, while
offering basic navigation is not so difficult with simple engineered schemes, whereas the most
striking aspect of the FF representation is the wide functionality it offers within this space.

Finally, it is important to mention that all our implementations have been made public in
Google Code (http://code.google.com/p/libcds/), to foster their use in diverse applications
and their comparison to other practical proposals to come.

This work pointed out interesting lines of research for the future. A obvious topic of future
work is to implement the proposals of Section 8.1 and experimentally study what new practical
space/time trade-offs for CSTs can be achieved.

One thing that we have not considered was the space and time taken by the construction of
the structures. As future work, we plan to experimentally compare the construction process of
our CST with the existing ones, in terms of space and time, and consider the construction within
compressed space, as it has already been done for CSAs [HS03, HSS03, MN08].

Another important topic of future work is to achieve a practical succinct dynamic suffix tree
representation, where nodes can be added to and deleted from the tree. In this aspect only
theoretical proposals exist [CHLS07, RNO08a].

In Gusfield’s book [Gus97] several applications of suffix trees to bioinformatic problems are
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presented. Many of them can be solved using the navigation operations of the CST presented in
this thesis. Yet, there are others where it is necessary to store extra information in the internal
nodes (which changes across the process), or the number of repetitions of some special substrings,
etc. Moreover, for some problems a dynamic CST is needed. Given that the extra information
stored in the nodes can change across the process, it is vital to represent it using dynamic compact
data structures [CHLS07, GN08, MN08]. Currently there is no study about how these problems
can be solved in succinct space, thus it is open for future work to enhance our CST, or to implement
new solutions, to solve these problems with compressed data structures.
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