
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

GRADUAL RETRIEVAL, RANKED ENUMERATION, AND LAZY EVALUATION OF
GRAPH DATABASE JOINS

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERA CIVIL EN COMPUTACIÓN

ASUNCIÓN CAROLINA GÓMEZ COLOMER

PROFESOR GUÍA:
GONZALO NAVARRO BADINO

MIEMBROS DE LA COMISIÓN:
DIEGO ARROYUELO

AIDAN HOGAN
CRISTÓBAL NAVARRO

Este trabajo ha sido parcialmente financiado por Instituto Milenio Fundamentos de los
Datos y Proyecto FONDECYT 1-230755

SANTIAGO DE CHILE
2025

Resumen

En bases de datos de grafos, el join es de las operaciones más costosas y, al mismo tiempo,
más frecuentes. Los sistemas tradicionales usan algoritmos de join de a pares, lo cual se ha
demostrado que es subóptimo.

Nuevos enfoques consisten en hacer el join de múltiples tablas a la vez, lo cual puede reducir
el tiempo y espacio, y ha permitido diseñar algoritmos worst-case optimal, es decir, óptimos
en el peor caso.

El uso de estructuras de datos compactas ha permitido ir más allá: no solo crear algoritmos
worst-case optimal, sino también reducir considerablemente el espacio requerido, sin afectar
la eficiencia en las operaciones. Arroyuelo et al. (2018) diseñaron un nuevo algoritmo de join
basado en el uso de qdags, una versión compacta de los árboles quadtree. En su algoritmo
buscan optimizar el tiempo de cómputo total del join así como el espacio en memoria.

Si bien este algoritmo es competitivo e incluso más eficiente que otros algoritmos usados en
los actuales sistemas de bases de datos de grafos para calcular todo el join, en muchos casos
nos basta con encontrar unos pocos resultados.

El objetivo de esta tesis es diseñar e implementar estrategias para disminuir el tiempo de
obtención de algunas tuplas del join. La primera parte de este trabajo, “Gradual retrieval”,
busca entregar resultados lo antes posible. La segunda parte, “Ranked enumeration” busca
obtener aquellos resultados más importantes ordenados de acuerdo a un peso o prioridad.
La tercera parte, “Lazy qdags”, tiene como objetivo implementar la versión perezosa de los
qdags, la cual permite evaluar toda el álgebra relacional (no solo el join) sobre bases de datos
y además, puede disminuir el tiempo de cómputo de los primeros resultados en algunos casos.

El código del proyecto se encuentra público en www.github.com/asugomez/qdags.

i

https://github.com/asugomez/qdags

Abstract

In graph databases the join is one of the most expensive and, at the same time, most frequent
operations. Traditional systems use pairwise join algorithms, which are suboptimal.

New approaches build on multi-way join algorithms, that is, joining multiple tables at once,
which can reduce time and space. These approaches have enabled the design of worst-case
optimal algorithms.

The use of compact data structures has allowed the research to go further, not only creating
worst-case optimal algorithms but also reducing the required space considerably without
affecting the efficiency of the operations. Arroyuelo et al. (2018) designed a new join
algorithm using qdags, a compact version of quadtrees. Their algorithm seeks to optimize
the total computation time of the join and the memory space.

Although this algorithm is proficient in computing the full join and is more efficient than
other algorithms used in current graph database systems, applications often only need to find
a few results.

This thesis aims to design and implement a new strategy to reduce the time needed to obtain
some results of the join. The first part of this work, “Gradual retrieval”, aims to output
results as soon as possible. The second part, “Ranked enumeration”, aims to obtain the
most important results according to weight or priority. The third part, “Lazy qdags”, aims
to implement the lazy version of the qdags, which allows the evaluatiion of the full relational
algebra (not just the join) on databases and can also reduce the computation time of the
first results in some cases.

The project code is available at github.com/asugomez/qdags.

ii

https://github.com/asugomez/qdags

Agradecimientos

No hubiese sido mi paso por la universidad tan grato sin todas las amistades que pude hacer.
Agradezco a mis amigos que hice de mechona, a quienes conocí en Proyecto Reinserción,
a mis amigos de computación, y a mis compañeras de fútbol. Con cada uno de ellos viví
experiencias que espero recordar siempre. No puedo dejar de nombrar a mis amigos y amigas
del colegio, quienes, a pesar del tiempo, fueron un apoyo constante durante todos estos años.

Agradezco al Instituto Milenio Fundamento de los Datos por darme un ambiente de trabajo
tan cálido y humano. Allí no solo pude participar de workshops y clubs de lecturas, también
encontré un espacio acogedor para hacer investigación con un enfoque social.

Gracias a Gonzalo, quien me motivó a participar en charlas y seminarios incluso antes de
ingresar al magíster. Su pasión por lo que hace es contagiante, y sin duda fue una de las
mayores motivaciones para realizar este trabajo y continuar en la investigación.

Por último, a mi familia: gracias por estar siempre presente, apoyándome en cada proyecto
que decido hacer. A mis padres, por darme no solo una gran educación, sino también infinitas
oportunidades y todo su cariño. A mi hermano, por ser una fuente de distracción y alegría.
Y a mi hermana, quien además de mi editora y consejera en el mundo académico, siempre
está ahí para escucharme y acompañarme.

iii

Table of Content

1 Introduction 1

2 Preliminaries 4

2.1 Morton code . 4

2.2 K2-tree . 5

2.3 Parentheses . 8

2.3.1 Range Maximum Query . 9

2.4 Graph patterns . 10

2.5 Worst Case Optimal Joins . 11

2.6 Compressed quadtrees . 12

2.7 Graph Patterns and experimental results . 16

3 Gradual retrieval and ranked enumeration 18

3.1 Motivation . 18

3.2 LOUDS and DFUDS . 19

3.3 Computing the join . 21

3.4 Gradual retrieval . 23

3.5 Ranked enumeration . 27

3.6 Experimental results . 31

4 Lazy qdags 51

4.1 Motivation . 51

iv

4.2 Definition . 52

4.3 Boolean algebra . 55

4.4 Full relational algebra . 60

4.5 Experimental results . 70

5 Discussion 76

6 Conclusions 84

Bibliography 91

Annex A Comparison of both approaches of the estimators
for gradual retrieval 92

Annex B Comparison of both approaches of the estimators
for ranked enumeration retrieval 93

v

Chapter 1

Introduction

Over the years, the need to store information has dramatically increased, but external
memory has become slower in comparison with the CPU. In many fields, like Machine
Learning, we have to deal with massive amounts of data originating from biology, internet
routing, multimedia storage, etc. For this reason, it has become interesting to use less space
to store data and still be able to perform operations on it in compact form.

Compact data structures [41] significantly reduce space and support fast operations. The
main objective in a compact data structure is to use space close to the data entropy while
retaining, if possible, the classic time complexity in the operations.

In this thesis, we are interested in representing large graph databases in a compact form.
Graph databases represent binary relations as directed labeled edges and capture relationships
and interactions between entities, allowing us to navigate and query complex, interconnected
data efficiently. This type of database is used in many applications, such as social networks,
transportation networks, semantic web, and knowledge bases. It gives a more intuitive
representation of the data and is very useful when the topology of the data is as significant
as its content [2, 3, 10].

Graph databases tend to feature multi-joins among many relations [4]. The core of the queries
is Basic Graph Patterns (BGP), which translate into multiple joins [52]. Therefore, many
works [4, 6, 28, 43, 54] focus on optimizing the join operation, which is usually the most
expensive one. Recent works have shown that the classic approach to solving multi-joins
via pairwise joins is suboptimal [43]. New multi-join algorithms that are worst-case optimal
(wco), like LeapFrog Trie Join (LTJ) [51] or Tetris [36], are a promising advance, but they
need a heavy index data structure that has to be stored on disk [6], requiring much space.

Arroyuelo et al. [6] proposed the first worst-case optimal multi-join algorithm focused on
both time and space. It uses a version of compressed quadtrees called qdags, based on
kd-trees [13, 15], that supports join, union, intersection, and negation in wco time. Qdags
could also be extended to all relational algebra operations, yet not guaranteeing worst-case
optimal time.

The k2-tree [15] is a data structure commonly used to represent grids and web graphs or to

1

store geographic information, among others, where k2 refers to the arity of the tree. While the
classic version needs O(1) pointers per node, the compact representation [41, Chapter 10]
uses only O(k2) bits per internal node and supports the basic navigation operations in
constant time. With a kd-tree, an extension of k2-trees, we can represent a relation R of d
attributes as a d-dimensional grid, where each tuple is represented as a point. With qdags,
we can reduce the space and computational time of a full join query J = R1 ▷◁ R2 ▷◁ ... ▷◁ Rn

with d attributes in total. We first (virtually) extend each of the relations into qdags of a
higher dimension d and then intersect them all to get the join result. The main goal is to
achieve worst case optimal time and low space complexity for computing the full join.

Most research in this area focuses on maximizing the throughput or, equivalently, minimizing
the query completion time. In many database systems, however, the full join can be significant-
ly large, and the user may only be interested in some of the results. Thus, we can be more
concerned about the time it takes to show the first k results or find the best or most interesting
results. This problem is close to ranked retrieval [50], where we must obtain the most relevant
results first. Here, the goal is to return the top k results as soon as possible.

The first part of this thesis focuses on this area, using qdags to compute (i) partial
results in less time and (ii) the top k results given a priority. We resort to prioritized
retrieval techniques known in similarity search [28]. In this way, we study and implement a
version of the qdags that we expect to return partial results in less time and a version that
allows the output of ranked results.

For this first part, we study and compare two data structures to represent trees in a compact
form and efficiently perform the join algorithm: the Level-Order Unary Degree Sequence
(LOUDS) and the Depth-First Unary Degree Sequence (DFUDS), which let us navigate the
tree in BFS and DFS order, respectively. We also study two types of techniques for each
data structure: optimal order, which maintains a priority queue with all the nodes of the
output that can be visited next, and prioritized backtracking, where we still backtrack to
generate the output tree. We show that we can still achieve worst-case optimality to generate
all the results with each algorithm. A summary of the implemented algorithms is presented
in Figure 1.1.

Another way to report results soon is to use lazy evaluation. For some operations in a qdag,
we do not need to evaluate all the nodes of the data structure. For example, for computing
the AND between an empty quadtree and another quadtree, we do not need to compute the
second one to return the result (an empty quadtree). Then, we are interested in studying
a lazy version of the qdags, called lqags, that represents the output quadtree as a formula
using a syntax tree and which computes only the needed nodes. In this part, we will not
use a compact form to represent the formula; instead, we use pointers to represent it and to
represent the output (a traditional quadtree).

Lqdags also permit extending qdags to all relational algebra operations. We implement and
evaluate this data structure in the second part of this thesis. While lqdags could worsen
throughput, as discussed in Chapter 4, they improve the time to obtain the first results and
extend qdags to the more general relational algebra. Still, it is possible to achieve worst-case
optimality for the join operation, but it is not guaranteed for all relational algebra [6].

2

Gradual retrieval

Ranked enumeration

Ba
ck

tra
ck

in
g

Op
tim

al
Or

de
r

LOUDS
DFUDS

R. Back.
LOUDS

R. Opt.
LOUDS

R. Opt.

LOUDS

G. Back.
LOUDS

G. Back.
LOUDS

G. Opt.
LOUDS

G. Opt.

LOUDS

G. Opt.
LOUDS

R. Opt.

DFUDS

G. Back.
DFUDS

G. Opt.
DFUDS

G. Opt.

DFUDS

Figure 1.1: Summary of all the implemented algorithms for gradual retrieval and ranked
enumeration.

The main goal of this thesis is to study and develop new versions of a compact data structure
(qdags) that extends the basic multi-way join algorithm towards gradual retrieval and ranked
enumeration, as well as to the full relational algebra. In general, we extend the use of qdags
and show that it is possible to obtain partial and ranked results traversing fewer nodes than
the original algorithm. We also show that it is possible to extend qdags to evaluate all the
relational algebra.

Organization of the thesis. In Chapter 2, we will define the basic concepts and data structures
used in this work, such as the qdags, LOUDS, DFUDS, and worst-case optimality. We will
explain the algorithms to obtain partial and ranked results and the different techniques
used to achieve them in Chapter 3. In Chapter 4, we will show how lazy qdags work,
their implementation, and how to obtain full relational algebra formulas. We will discuss
and compare the results of each algorithm in Chapter 5, to finally conclude in Chapter 6.
The experiments and results are shown at the end of each chapter. The code with all the
implementations will remain in a public GitHub repository (www.github.com/asugomez/qdags).

3

https://github.com/asugomez/qdags

Chapter 2

Preliminaries

We introduce some data structures and concepts to better understand the problem and
algorithms of this thesis.

2.1 Morton code

The Morton or Z-ordering [38] is a method to traverse the quadrants of a grid in a specific
order: bottom-left, and bottom-right, top-left, top-right. This method is useful for binary
encoding the path from the root to a node in a quadtree, where the first child corresponds
to 00, the second to 01, and so on. The Morton code is a bit-string that represents the
coordinates of a node in a quadtree, created by interleaving the bits of the node’s y and x
coordinates [18].

Figure 2.1 illustrates how to obtain the coordinates of a node using the Morton code.

X

Y

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

000110001111

11

01

01

Figure 2.1: An illustration of the coordinates of a leaf using Morton code. Concatenating the
Morton code of each node of the path from the root to the red leaf, we can build the bit-string

‘010111’. This concatenation encodes the coordinates of (x, y). For y, we have to look for the odd
positions of the aforementioned bit-string; for x, we must look for the even positions. Therefore,

y = 001 and x = 111, that is (x, y) = (7, 1).

4

2.2 K2-tree

A bitvector is an array of bits B[1, n] that supports the operations access(B,i) (the i-th
bit of B), rankv(B,i) (the number of occurrences of bit v in B[1, i]) and selectv(B,i) (the
position of the i-th v in B). This data structure is the core of many compact data structures,
such as the k2-tree.

A succint representation encodes B in n + o(n) bits, while supporting the operations in
constant time [16, 34, 39] [41, Chapter 4]. We can achieve lower space for very sparse
bitvectors [44] using m log n

m
+ O(m) bits (with m the number of 1s and m ≪ n) and

supporting select in constant time and access and rank in O(min(logm, log n
m
)) time.

Therefore, the space is proportional to m, the number of 1s, and not to the bitvector size.

A k2-tree [15] is a compact quadtree representation (in the case k = 2). It saves the data
of a binary matrix Ml×l by dividing it recursively into k2 quadrants of the same area. The
nonempty quadrants are recursively subdivided. If the matrix side is not a power of k, the
matrix is completed with 0s. The height of a k2-tree is h = ⌈logk l⌉.

The k2-tree is represented as a compact cardinal tree [15]. We compare two data structures
to represent trees in a compact form: the Level-Order Unary Degree Sequence (LOUDS)
and the Depth-First Unary Degree Sequence (DFUDS). LOUDS [34] represents each level of
the cardinal tree using only a bitvector: we traverse the tree level by level, and each node
is represented by its children using k2 bits, where a 0 indicates an empty quadrant and a
1 means that points exist in that quadrant. These bits are then concatenated for all nodes
across all levels, creating a compact representation.

Example 1 (LOUDS). In a quadtree (k = 2), a leaf will be represented with four zeros 0000,
a node with four children will be 1111, a node with only its first child will be 1000, and so
on. A zero child means that there are no points within this quadrant. Thus, the empty areas
will be captured in one node with only a 0, and the last level of the tree, that is full of leaves,
is represented with the number of leaves times 0000. We can see an example of a matrix in
Figure 2.2, represented by the quadtree in Figure 2.3. The LOUDS representation of this
tree is shown in Figure 2.4. We can notice that the last level of the tree is represented with
only 0s.

A LOUDS representation for cardinal trees with n nodes will use k2n+o(n) bits and support
rank and select in constant time [41, Chapter 8]. With these two essential operations,
this representation supports in constant time the operations of Table 2.1. We can traverse
the tree using the basic operations in bitvectors: access, rank, and select. For example,
to find the t-th child of the node v, we use the algorithm in Figure 1.

A particularity of the k2-tree representation is that, because we already know the height of
the tree (h = ⌈logk l⌉), we do not need to store the leaves at the last level (only 0s) because we
already know there are only leaves at this depth. The k2-tree representation using LOUDS
(see Figure 2.3) is the same as in Figure 2.4, but without the last level of 0s. Therefore, we
only need k2n+ o(n) bits, n being the number of internal nodes.

5

X

Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2.2: Example of a 16× 16 matrix, with 14 points. The gray area is where the matrix points
are located. In red, the point (11,8).

1

1

0001

001

0010

1

1000

01

1

1

0010

001

1001

01

01

0100

1

0101

0

1

1

1111

001

0100

1

1

001

0001

0

000

Figure 2.3: Quadtree of the matrix of Figure 2.2. We traverse the quadrants in Morton order. In
red, the path to the point (11,8).

B = 1101
0001 1101 1000
0100 1001 0110 0110 1001 1100
1000 0010 1111 1010 0010 1001 0100 0001 0100
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Figure 2.4: LOUDS representation of the cardinal tree of Figure 2.3. In red, the description of
the nodes that represents the path toward the point (11,8). Notice that in the example we separate
the bits for each level in LOUDS, but in the actual representation, all levels are concatenated into

a single bitvector.

Using the compressed representation of very sparse bitvectors mentioned before, it is possible
to reach the worst-case entropy of k2-trees [41, Chapter 10]. The entropy is a lower bound of
the number of bits needed to represent an element. From information theory, we know that
we need at least log2 |U | bits to distinguish one element from another in a universe U . This
is called the wort-case entropy of U , Hwc.

When analyzing the worst-case entropy of k2-trees with n nodes, their number is equivalent
to the number of ways to place n points within an l× l matrix, which can be represented by

6

Algorithm 1 Computing an ordinal tree operation using LOUDS.
Require: Ordinal tree T (seen as LOUDS bitvector B), node v (a position in B), and indexes

i and t.
1: procedure child(T, v, t)
2: return select0(B, rank1(B, v − 1 + t)) +1

Operation Meaning
children(v) number of children of the node v
parent(v) parent of the node v

firstChild(v) the first child of the node v
lastChild(v) the last child of the node v

tChild(v) the t-th child of the node v
nextSibling(v) the next sibling of v

previousSibling(v) the previous sibling of v
leafNum(v) the number of leaves in the subtree of node v

leafRange(v) the positions of the first and last leaf of the subtree of node v

Table 2.1: Summary of some of the operations supported in LOUDS.

the binomial coefficient [41, Chapter 9] :

|T k2

n | =
(
l2

n

)
Thus, the worst-case entropy is:

Hwc(T
k2

n) = log2

(
l2

n

)
= n log2

l2

n
+O(n).

If we use the plain form to represent the k2-tree, we need:

n

(
k2

k2 − 1
+ k2

(
1 + logk2

l2

n

))
bits. And using very sparse bitvectors [41, Chapter 4], we need:

O
(
n log

l2

n
+ n log k

)
bits, where n log k is redundant regarding the worst-case entropy. The DFUDS [12] is a more
complex data structure, which is defined in the following subsection.

7

2.3 Parentheses

A balanced sequence of parentheses [40] is represented as a bitvector B[1, n] where 1 represents
an open parenthesis '(' and 0 a closed parenthesis ')'. There are n/2 matching pairs
of parentheses, so each '(' can be associated with a ')' and vice versa. This structure
supports operations such as close(B, i), which returns the position of the matching closing
parenthesis of B[i] ='(' ; open(B, i), which returns the position of the opening parenthesis
corresponding to B[i] =')' ; and enclose(B, i), that returns the rightmost position k < i
such that [k,close(B, k)] contains i. We can use this data structure to represent a tree: we
visit the tree in depth-first search order, and the first time we visit a node, we put a '(' , and
once we leave the subtree, we put a ')' [41, Chapter 8].

DFUDS [12] is another way to represent a k2-tree using only k2 + 2 + o(1) bits per node.
The structure is based on parentheses (so it supports its operations) and consists of two
bitvectors, B[1, 2n + 2] and S[1, k2n], with n the number of nodes. We traverse the tree in
preorder and save in B the description of each node: 1c0, where c is the number of children.
The second bitvector S contains k2 bits per node. It stores information about whether each
child of the node exists or not, similarly to the representation used in LOUDS, but in preorder
[41, Chapter 8]. We support rank, select, and all the parentheses operations in bitvector
B. Figure 2.5 shows an example of this data structure.

B = 110 1110 10 10 10 0
1110 110 10 0

11110 0000
110 110 00

10 0
110 110 00

10 0
10 110 10 0

10 0

S = 1101 0001 0100 1000 0000
1101 1001 0010 0000

1111 0000 0000 0000 0000
0110 1010 0000 0000

0010 0000
1001 1001 0000 0000

0100 0000
1000 1100 0001 0000

0100 0000

Figure 2.5: DFUDS representation of the cardinal tree of Figure 2.3. In red, the description of
the nodes that represents the path toward the point (11,8). Note that in bitvector B (parentheses)

we add 110 at the beginning to handle some border cases [41, Chapter 8].

8

We are interested in this data structure because we can count the leaves descending from a
node in constant time [41, Chapter 8], as we will see in Section 3.2.

S = 1101 0001 0100 1000
1101 1001 0010

1111
0110 1010

0010
1001 1001

0100
1000 1100 0001

0100

Figure 2.6: New version of bitvector S from the DFUDS representation of the cardinal tree of
Figure 2.3.

Contribution: new version of DFUDS As we can see in Figure 2.5, to properly map
from B to S, we have to store in S the description of each leaf (0000). We can save space
by omitting the description of those leaves. To compute the node in the bitvector S that
corresponds to B [i], we now use rank10(i), which counts the occurrences of 10 in B [1, i]
(i.e, counts the internal nodes up to i). Then, S will use k2n bits, with n the number of
internal nodes, just like the k2-tree representation using LOUDS. In Figure 2.6 we can see
the new version of S. In Algorithm 2 we show how to compute the t-th child of a node v
using this new DFUDS representation.

Algorithm 2 Computing the child DFUDS operation on ordinal trees.
Require: Ordinal tree T (seen as DFUDS bitvector B), node v (a position in B), and index

t.
1: procedure child(T, v, t)
2: return close(B, succ0(B, v) − t) +1

2.3.1 Range Maximum Query

The Range Maximum Query (rMq) problem is defined as follows: given an array P of n
totally ordered elements, build a data structure on P that efficiently returns the position of
the highest value within any given range [i, j] of P , where 1 ≤ i ≤ j ≤ n [21] [22].

Let P store the importance of the leaves of a cardinal tree, and assume we represent the tree
with DFUDS. In DFUDS, given a node, we can determine the range in P corresponding to
its descendant leaves, and the rMq on P allows us to find the position of the most important
descendant leaf in constant time [41, Chapter 8].

9

2.4 Graph patterns

In graph databases, we encode the relations as triples (s, p, o), where s (subject) and o (object)
are nodes connected through the edge labeled p (predicate). A basic graph pattern (BGP)
is an expression that consists of a set of triple patterns: two nodes linked by an edge label,
where nodes or labels can be identified as variables. The goal is to determine if there is an
assignment of values to variables such that the BGP matches in the graph database. Each
triple pattern is matched to an edge, but since triple patterns share variables, solving a BGP
is equivalent to solving a conjunctive query composed of multiple triple patterns, each triple
pattern standing for an atomic query [1, 9, 52].

Figure 2.7 is an example of a graph database inspired by Arroyuelo et al. [4]. We can see an
example of a BGP in Figure 2.8.

Tu Youyou

Barbara Mcclintock

Nobel

Marie Curie Irène Joliot-Curie

Hélène Langevin-Joliot

adv

adv

nom

win

nom
winnomwinnom

win

Figure 2.7: Graph of Nobel winners, nominees and advisors.

x y Nobeladv nom

(a)

x y
Irène Joliot-Curie Marie Curie

Hélène Langevin-Joliot Irène Joliot-Curie

(b)

Figure 2.8: In (a) a basic graph pattern (BGP) {(Nobel, nom, y), (y, adv, x)}. In (b) the results of
the evaluation of the BGP over the graph of Figure 2.7. This evaluation returns all the people who

were Nobel nominees and their students.

A hypergraph H = (V ;E) is a generalization of graphs, where V is a set of vertices and
E is a set of hyperedges. A hyperedge can connect more than two vertices, unlike edges
in standard graphs. If there is a path P from vertex u to vertex w, denoted as, P{u,w} =
(u = v1, e1, v2, ..., et, vt+1 = w), where {vi, vi+1} ⊆ ei ∀i, we say that P connects u and w. If
u = w, the path forms a hypercycle [14]. In databases, a join query can be represented as a

10

hypergraph, where each attribute corresponds to a vertex and the relationship corresponds
to an edge.

Example 2 (Hypergraph). The join query R(A,B) ⋊⋉ S(B,C,D) ⋊⋉ T (A,D) can be visualized
as the hypergraph depicted in Figure 2.9.

A query is cyclic if its hypergraph, defined by the attributes and relations of the query,
contains at least one hypercycle. Otherwise, the query is acyclic [24]. In Figure 2.9, we can
see an example of a cyclic hypergraph of a join query.

A B

C

D

Figure 2.9: Hypergraph of query R(A,B) ⋊⋉ S(B,C,D) ⋊⋉ T (A,D).

2.5 Worst Case Optimal Joins

The join operation is the basis of many queries, especially on graph databases, because
graph queries tend to feature many joins [4]. Joins form the core of basic graph pattern
queries, as we saw before. Therefore, improving time and space in join operations directly
impacts many database queries.

Traditional database engines perform the join using a pairwise join algorithm [43], whose
cost will depend on the plan to compute which pairs we join first. For example, we can
perform the join between the relations R(A,B), S(B,C), T (C,A) as (R ▷◁ S) ▷◁ T , or
R ▷◁ (S ▷◁ T), or also (R ▷◁ T) ▷◁ S, because of its commutative property. Following a
pairwise strategy to perform the join is, indeed, suboptimal [43]: if the size of S, R, T is
N , our query done by a pairwise join algorithm could take Ω(N2) time, while its maximum
possible output size is O(N3/2). Still, database management systems like Postgres use these
sub-optimal algorithms to perform the join.

A recent approach to perform a join is a multi-way join algorithm, meaning to join several
tables simultaneously. This could reduce intermediate results and, therefore, time and
space. Worst-case optimal multi-way join algorithms have demonstrated high performance

11

on complex queries [35]. In particular, they can solve the given join (R ▷◁ S ▷◁ T) in the
O(N3/2) optimal time.

We are interested in this type of algorithm due to its performance, especially on cyclic queries.
If the query is acyclic, Yanakakis’ algorithm introduces semi-joins to eliminate unnecessary
tuples, and it produces the output in time linear in the size of the input and the output
[54]. However, we need other algorithms for cyclic queries such as Leapfrog Trie Join [51] or
Tetris [36].

A worst-case optimal algorithm (wco) means that the algorithm is optimal in the worst
case: there exists an instance of the problem, with the same input size, that generates a
result whose size is proportional to the time the algorithm takes. In other words, “(...) the
algorithm’s runtime is bounded by the worst-case cardinality of the query result.” [32]. We
can prove an algorithm is wco if it satisfies the AGM bound [8], which takes into account
the structure (graph) and the size of tables. That is, it considers both types of information
[43], and defines a bound according to these variables. The worst-case optimality concept
was proposed for cyclic queries because we cannot design an instance optimal algorithm, i.e.,
we cannot compute its join in O(IN + OUT) time, where IN is the input size, and OUT
corresponds to the output size [33]. Worst-case optimal joins are a promising advance, but
they can require a lot of space [36, 51].

2.6 Compressed quadtrees

Some multi-way join algorithms, such as LeapFrog Trie Join [51], or Tetris [36], are indeed
worst-case optimal, but they need a heavy index data structure to perform the join. Arroyuelo
et al. [6] proposed the first wco multi-way join algorithm using a compact data structure
instead of the heavy index data structures used by the other algorithms of the time. It was
the first algorithm that focused on time and space.

A tuple of the relation R(A) with d attributes A1, A2, ..., Ad over domain [1...l] can be
represented as a point in a d-dimensional grid of size ld. We use a d-dimensional k2-tree
called a kd-tree to represent this grid of ld cells, where each child represents a subgrid of size
(l/k)d. Moreover, we use k = 2, so each node will be described with 2d bits. From now on,
we refer to this data structure as a quadtree.

To perform a join between multiple relations, we must do two operations: extend and and.
The first one “(...) lifts the quadtree representation of a grid to a higher-dimensional grid” [6],
and the second one computes the intersection of the qdags. The wco join algorithm is based
on this extended version of a quadtree (kd-tree), called qdag. In this representation, the kd-
tree is stored in a compact form using LOUDS. The quadtree is extended to a qdag by lifting
its dimensionality from d′ to a higher dimension d to represent a relation of d attributes,
incorporating all the attributes needed for the join. This extension involves creating new
values for nodes corresponding to the additional d − d′ dimensions to maintain consistency
across the joined relations. We can see an illustration of this in Figure 2.10.
Example 3. Let R′(A,B), S ′(B,C), and T ′(A,C) be relations, and let R(A,B,C), S(B,C,A),
and T (A,C,B) be the qdags obtained by extending the relations R′, S ′, and T ′ to the

12

A

B

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

A

B

C

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

01234567

Figure 2.10: Extend operation of R′(A,B) to R(A,B,C). We can see the grid of a relation
R′(A,B) and a 3-dimensional grid, which results from extending the relation R′(A,B) to the

attribute C. These grids are represented by a kd-tree as shown in Figure 2.14.

attribute C, A and B, respectively. To perform a join between these relations, we first
extend the relations as shown in Figures 2.10 and 2.11. Then, we intersect the qdags R, S,
and T using the and operation, as shown in Figure 2.12. The result of the join is a quadtree
represented in Figure 2.13.

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

C

B

A

B

C

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

01234567

A

C

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

A

B

C

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

01234567

Figure 2.11: Extending relations S′(B,C) and T ′(A,C) to S(B,C,A) and T (A,C,B).

A

B

C

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

01234567

Figure 2.12: Intersection of relations R(A,B,C), S(B,C,A) and T (A,C,B).

Definition 1 (extend). Consider R(A′), a relation defined over the attributes A′, and let
QR = (Q′,M ′) be a qdag that represents R(A′). Operation extend(QR,A) generates a
qdag Q∗

R that represents the relation R(A′)×All(A\A′), where A′ ⊆ A and All(A\A′) is a
relation with the attributes A\A′ storing all the possible elements. It is supported in O(2d)
time, and its output takes O(2d) words of space.

Although the qdag has a higher dimension than the quadtree, many nodes share subtrees.
Instead of representing the higher-dimensional quadtree explicitely, qdags use a mapping

13

A

B

C

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

01234567

Figure 2.13: Final output of R′(A,B) ▷◁ S′(B,C) ▷◁ T ′(A,C), that is, the points remaining in the
intersection.

Algorithm 3 extend (Q,A)
Require: A qdag Q = (Q′,M ′) representing a relation R(A′), and a set A such that A′ ⊆ A.
Ensure: A qdag Q = (Q′,M) whose materialization represents the relation R(A′)×All(A \A′).

1: create array M [0, 2d − 1]
2: d← |A| , d′ ← |A′|
3: for i← 0, ..., 2d − 1 do
4: md ← the d-bits binary representation of i
5: md′ ← the projection of md to the positions in which the attributes of A′ appear in A
6: i′ ← the value in [0, 2d

′ − 1] corresponding to md′

7: M [i]←M ′[i′]

8: return (Q′,M)

function M : [0, 2d − 1] −→ [0, 2d
′ − 1] to map the nodes from the extended quadtree to the

original one.

Formally, a d-dimensional qdag Q is a pair (Q′, M), where Q′ is a d′-dimensional quadtree
(with d′ ≤ d) and M is a mapping function. The i-th child of a node in Q corresponds to
the M [i]-th child of the corresponding node in Q′. Thus, the qdag simulates a d-dimensional
quadtree, and requires only 2d

′
n+ o(n) bits, where n is the number of internal nodes of the

quadtree. In Figure 2.14, we can see an example of a quadtree and its extension to a qdag.

0001

00

1000

0

00

1111

0

0
00

00

00010001

00

10001000

0

00000

11111111

0

0

M ′ = [0, 1, 2, 3] M = [0, 1, 2, 3, 0, 1, 2, 3]

Figure 2.14: Qdag of R(A,B,C). On the left, we can see a quadtree of a relation R′(A,B), and
on the right, the virtual qdag. The grey nodes represent 1s, and the white nodes represent 0s. We
order the nodes using the Morton [38] partitioning. We can also see many nodes sharing subtrees
on the second tree, so we only need to store the first quadtree and a mapping function to simulate
the second k2-tree. The mapping function is shown at the bottom of the k2-tree, and the nodes in

blue are not materialized.

Algorithms 4 and 5 let us navigate through the qdag and simulate the implicit representation
of the d-dimensional quadtree Q. The value operation returns 0 if the subquadrant that is

14

represented by this root is empty; 1 if the grid is a full single cell, and 1/2 otherwise (when it is
an internal node). Operation child accesses the i-th child of the node through the mapping
function.

Algorithm 4 value (Q)
Require: A qdag Q = (Q′,M) with grid

side l.
Ensure: The integer 1 if the grid is a

single point, 0 if the grid is empty,
and 1

2
otherwise.

1: if l = 1 then return the integer Q′

2: if Q′ is a leaf then return 0
3: return 1

2

Algorithm 5 child (Q, i)
Require: A qdag Q = (Q′,M) on a grid of

dimension d and side l, and a child number
0 ≤ i < 2d. Assumes Q′ is not a leaf or an
integer.

Ensure: A qdag Qi = (Q′′,M) corresponding
to the i-th child of Q

1: return (Q[M(i)],M)

In Algorithm 3, we show how to build the qdag for each relation. To efficiently implement
line 5, we build a table that depends on the number of attributes |A| = d and tells us which
child of the d′-dimensional quadtree to access to navigate through the qdag. This table
requires O(22d) space and computes md′ in constant time. In Figure 2.10 we can see the
representation of the kd-trees of Figure 2.14 in a d′- and d-dimensional grid.

Once we extend all the relations to have the same attributes, we perform the and operation,
which computes the intersection of the qdags. To compute the and of all qdags, we backtrack
on the qdags recursively until we find an empty quadrant in one of them or a leaf. The result
is another compressed quadtree, and the points within the structure result from the join [6].
The pseudo-code is shown in Algorithm 6.
Definition 2 (and). Let Q∗

1, ...,Q
∗
n be qdags representing the relations R1(A1), ..., Rn(An).

The operation and(Q∗
1, ...,Q

∗
n) computes the intersection of the qdags, that is, a quadtree

that represents the relation ∩ni=1Ri(Ai).

Algorithm 6 and(Q1, ...,Qn)

Require: n qdags Q1, ...,Qn representing relations
R1(A), ..., Rn(A).

Ensure: A quadtree representing the relation
∩ni=1Ri(A).

1: m← min{value(Q1),...,value(Qn)}
2: if l = 1 then return the integer m

3: if m = 0 then return a leaf
4: for i← 0, ..., 2d − 1 do
5: Ci ← and(child(Q1, i),..., child(Qn, i))
6: if max{value(C1),...,value(C2d−1) } = 0 then

return a leaf
7: return a quadtree with children C0, ..., C2d−1

Algorithm 7 multiJoin (R1, ..., Rn)

Require: Relations R1, ..., Rn, stored as
quadtrees Q1, ..., Qn; each relation Ri is
over attributes Ai and A =

∪
Ai.

Ensure: A quadtree representing the
output J = R1 ▷◁ ... ▷◁ Rn.

1: for i← 0, ..., n do
2: Let Qi be the qdag (Qi, Id(Ai))
3: Q∗

i ← extend(Qi,A)
4: return and(Q∗

1, ...,Q
∗
n)

To analyze the cost of the and operation, let n be the number of qdags we want to intersect,
and h the height of the materializations of Q1, ...,Qn.

15

Definition 3 (Materialization of a qdag). Let Q = (Q′, M) be a d-dimensional qdag, where
Q′ is a d′-dimensional quadtree. The materialization Q∗ of Q is the explicit representation
of the d-dimensional quadtree that Q simulates.

In Algorithm 6, the cost of and is bounded by the number of child operations we need to
call. As a result, the cost is O(2d · (||Q1||+ ...+ ||Qn||)) = O(2dn · |Q+|), where ||Qi|| is the
number of internal nodes in the materialization of Qi ; and Q+ is the non-pruned version of
Q (the resulting quadtree of Algorithm 6 if we remove the pruning step of line 6). This can
be bounded by O(m · 2dn · h), where m is the maximum number of internal nodes at any
level of the final quadtree.

Worst-case optimality As we can see, the cost of the join (see Algorithm 7) is dominated
by the cost of the and operation. Let J = R1 ▷◁ ... ▷◁ Rn be a full join query and use 2ρ

∗(J,D)

to define the AGM bound of the join J over the database D with d different attributes over
the domain [0, l − 1]. Let us define N as the total number of tuples in the database and S
as the total number of tuple components. The output of the query can be computed in

O(2ρ∗(J,D) · 2dn logmin(l, S)) = Õ(2ρ
∗(J,D))

time, because m = O(2ρ∗(J,D)), and using only S log l+2N log l+o(S log l)+O(n log d) bits.1

Furthermore, the concept of qdags can be extended to handle not only joins and intersections
but also unions and negations in worst-case optimal time. We can achieve this with a lazy
version of qdags, which generalizes the principle of processing the arguments only as needed
to construct the output. While this approach allows for performing all relational algebra
operations, it does not guarantee worst-case optimal times. We will discuss this in more
detail in Chapter 4.

2.7 Graph Patterns and experimental results

For each of our algorithms, we are going to study a set of 17 query patterns (see Figure
2.15) from the Wikidata Graph Pattern Benchmark, proposed by Hogan et al. [32]. This
is the same set that the original algorithm used to experiment on its performance [6]. This
benchmark provides different query patterns to test acyclic and cyclic queries of different
widths and shapes.

We will make 50 iterations for each query pattern, and for each iteration, we will use the
same set of predicates used in [6] from the WikiData, presented as a binary relation. We will
test all our algorithms with the same set of queries and predicates. We will also focus on
tests that produced more than 1000 results. Finally, we will compare the results in terms of
time and space.

1For the full proof, see the original paper [6].

16

(a) P2. (b) P3. (c) P4. (d) T2. (e) Ti2.

(f) Ti3. (g) J3. (h) T3. (i) T4. (j) Ti4. (k) J4.

(l) Tr1. (m) Tr2. (n) S1. (o) S2 (p) S3. (q) S4.

Figure 2.15: Query patterns for the Wikidata Graph Pattern.

17

Chapter 3

Gradual retrieval and ranked
enumeration

3.1 Motivation

In the previous chapter, we saw we have to compute the intersection between all qdags to
perform a join. Then, we can output the join result once we finally compute all the leaves.
This method works efficiently when we need all the results or a significant part of them.
However, in some cases, we will be more interested in some of the results. In many cases,
such as in user interfaces, finding some results quickly or gradually retrieving them is more
important. Additionally, when we want specific results —such as when applying an operator
to limit the number of results, like ‘LIMIT’ in SQL, or when sorting results by a particular
property— we are more interested in finding the most relevant results first [50].

If we use the previous algorithm for gradual retrieval, we will need to stop the computation
once we have found the first k results. This approach is not optimal, so we will study
new algorithms to perform it more efficiently. For ranked enumeration, using the previous
algorithm, we would need to compute all the results first and then order them according to
the property of interest, adding a complexity of Ω(N), where N is the size of the output.
Computing the full join merely to retrieve a subset of the results is wasteful. Therefore,
we are interested in exploring better methods for obtaining some results as fast as possible
(gradual retrieval) and prioritizing the most important results (ranked enumeration) using
qdags.

This section aims to modify the original multi-way join algorithm to traverse the k2-trees in
a specific order to compute either some results faster or the important results first. On the
one hand, for gradual retrieval, our goal is to perform the join operation to obtain partial
results quickly, optimizing the time to retrieve the initial results. If we are interested in the
first k results, we aim to output any result as fast as possible.

On the other hand, the main objective for ranked enumeration is to return the top-k most
important results for k given at query time. This means we want to output the most relevant
results first, followed by the less relevant ones.

18

As with the original join, we aim to extend each relation (see Algorithm 3), and then modify
the and operation (see Algorithm 6) to perform it in a particular order. This variation must
allow either quickly returning partial results or considering the node’s priority to output
ranked results while still ensuring worst-case optimality in traversing all the results. Unlike
the original algorithm, we do not construct the quadtree but directly report the coordinates
using their Morton code [38].

First, we implement two cardinal tree representations: LOUDS and DFUDS. We compare the
time and space complexity of both implementations. For the LOUDS tree, we use the sdsl-
lite library [23]. We also use this library to implement the base data structure, parentheses
(see Section 2.3), and its operations to build the DFUDS tree.

Second, we implement two different algorithms to perform the join. The first algorithm uses
a priority queue of non-fixed size to maintain an optimal order of the tuples of nodes that
can be visited next. The second algorithm uses an array (for gradual retrieval) or a fixed-size
priority queue (for ranked enumeration) and employs backtracking to store only the top k
results seen so far. Once we have the top k results, we report the points.

We use the same dataset in which the original join algorithm was tested (see Section 2.7)
and employ the same queries to evaluate the performance of the new algorithms.

3.2 LOUDS and DFUDS

As we saw in Chapter 2, the main difference between LOUDS and DFUDS for kd-trees is that
in the first one, we only have to store one bitvector with the node’s description. In contrast,
in the second one, we have to store two bitvectors: one with the number of children and the
other with the node’s description. Another difference is that in LOUDS, we traverse the tree
in BFS, while in DFUDS, we store it in DFS. In both representations, we can access a node’s
child, parent, or sibling in constant time.

As we will see in Sections 3.4 and 3.5, we need to compute the number of leaves for gradual
retrieval or a range of leaves for ranked enumeration in qdags. To compute the number of
leaves of a node, using LOUDS, we descend recursively by the first node with a child until
we find a leaf, and we do the same for the last node. Then, we count the 1s within this range
to obtain the number of leaves of the subtree. For this, we have to perform a rank on each
level, which gives a total complexity of O(1) · log l = O(log l), where l is the side of the grid.

Therefore, it takes O(log l) time to compute the leaves number in LOUDS, while it takes
O(1) for DFUDS. The pseudo-code is shown in Algorithm 8. We do the same to retrieve the
range of leaves, but instead of returning the number of leaves, we return the positions of the
first and last child: we must modify line 10 of Algorithm 8 to return rank(level,fLeaf) and
rank(level,lLeaf).

Although, in theory, we expect DFUDS to perform better, LOUDS could also be highly
efficient because it only requires storing one bitvector. This becomes particularly advantageous
when managing large amounts of data, where accessing different data structures decreases

19

locality of reference.

Operation LOUDS DFUDS
Children O(1) O(1)
Parent O(1) O(1)
FirstChild O(1) O(1)
LastChild O(1) O(1)
TChild O(1) O(1)
NextSibling O(1) O(1)
PreviousSibling O(1) O(1)
leafNum O(log l) O(1)
leafRange O(log l) O(1)

Table 3.1: Time complexities for various operations in LOUDS and DFUDS.

Using DFUDS to represent the k2-tree allows us to compute the number of leaves of a node
in constant time using the operations close and rank00

1, yet at the expense of requiring
more space to save this data structure (see Section 2.3). We can retrieve in constant time
the number of leaves up to a specific position i of the bitvector B (rank00(B, i)). Then, we
can compute the difference between the next sibling and the node to determine the number
of leaves in O(1) time. The pseudo-code is shown in Algorithm 9. To compute the range of
leaves, we have to return the positions of a node’s first and last leaf. Similarly, we return the
positions computed to calculate the number of leaves. In Algorithm 9, we have to modify
line 4 to return leafNode and leafSibling.

Algorithm 8 leafNum (Q, level, i) for LOUDS
Require: a qdag Q, the level of the node, and the node i. Assumes the node exists and it is not

an empty quadrant.
Ensure: the number of leaves in the quadrant that represents the node i.

1: if node i is a leaf then return the bit corresponding the node.
2: level← level + 1
3: fLeaf ← firstChild(i)
4: lLeaf ← lastChild(i)
5: while fLeaf is not a leaf do
6: level← level + 1
7: fLeaf ← firstChild(fLeaf)
8: lLeaf ← lastChild(lLeaf)
9: nChildren ← rank(l,lLeaf) − rank(l,fLeaf −1)

10: return nChildren

1rank00(B,i) is the number of occurrences of 00 in B[1, i]

20

Algorithm 9 leafNum (Q, i) for DFUDS
Require: a qdag Q and the node i.
Ensure: the number of leaves in the quadrant that represents the node i.

1: nSibling ← nextSibling(i)
2: leafSibling ← rank00(B,nSibling)
3: leafNode ← rank00(B, i)
4: return leafSibling − leafNode

3.3 Computing the join

To understand the different strategies for computing the join, we first need to define the
concept of tuple of qdags.

Definition 4 (Tuple of qdags or nodes). A tuple of qdags or a tuple of nodes refers to a set
of nodes, one from each qdag, all of the same level, representing a potential combination of
sub-quadrants across the different relations. For example, selecting the root node from each
qdag forms a valid tuple.

Definition 5 (Result of the join). We call a result of the join a tuple of nodes at the last
level, that is, a tuple of leaves. We can transform this tuple into coordinates (a point) using
the Morton code (see Section 2.1).

Whether we are interested in gradual retrieval or ranked enumeration, we need a strategy to
compute the join in a particular order. We follow existing work on proximity search [28].

• Optimal order: We maintain a max priority queue with all the tuples of nodes of the
output that can be visited next, sorted by their upper-bound estimations. At each
step, we obtain the next node from the queue. If it is a leaf, we report it; otherwise,
we insert its children in the queue.

• Prioritized backtracking: We still backtrack to generate the output tree, but their
predictors give the order in which the nodes’ children are visited. For gradual retrieval,
we store the first k results in an array, and in ranked enumeration we use a min priority
queue for top-k results seen so far.

A priority queue is a data structure that stores N objects, each associated with a specific
weight, using O(N) space. It supports insertions and extractions in O(logN) time and finds
the maximum or minimum element in constant time. In the optimal order strategy, we use a
priority queue to manage the tuples of qdags we need to visit. For the backtracking approach,
we implement a priority queue – when performing ranked enumeration– to store the results
(see Definition 5). The weight used in the priority queue differs between gradual retrieval
and ranked enumeration. The priority of a node and a tuple of qdags are defined as follows:

Definition 6 (Gradual retrieval: priority of a node). The priority of a node is defined either
by:

21

• The number of leaves descending from the node.

• The density of the node: the number of leaves descending from the node divided by
the size of its subgrid.

Definition 7 (Ranked enumeration: priority of a node). Each point of a relation R has a
weight or priority stored in an array P = [p1,p2, ...,pn]. The priority of a node in a qdag
representing the relation R is defined as the highest priority among the points within the
quadrant represented by that node.

Definition 8 (Gradual retrieval: priority of a tuple of qdags). The weight of a tuple of qdags
is defined by the minimum weight of the nodes of that tuple: w = min{piQ1

,piQ2
...,piQn

}.

Definition 9 (Ranked results: priority of a tuple of qdags). The weight of the tuple of n
qdags Q1, ...,Qn is defined by:

1. The maximum weight of the tuple of nodes: w = max{piQ1
,piQ2

...,piQn
}.

2. The sum of their weights: w =
∑n

k=1 piQk
.

3. Another monotone function of the weights.

For this thesis, we study the first two alternatives.

In optimal order, we first insert a tuple containing the root of all qdags into a priority
queue. We then retrieve the tuple with the highest weight, which initially will be just the
tuple of the roots. Next, we insert the tuples of its children into the queue, along with their
corresponding weights or priorities. When we reach a leaf node, we can return the tuple of
nodes as a result. This is a valid output—in gradual retrieval and ranked enumeration—
because we traverse the intersection of the qdags in accordance with the upper bounds on
the priorities of the tuples.

An advantage of this strategy is that it visits the minimal set of nodes needed to achieve the
best results and identifies the output nodes directly in decreasing order of relevance. If a node
does not behave as expected, such as having a lower priority than anticipated, the strategy
skips traversing its children and instead explores its siblings or other nodes with higher
priority. Moreover, when computing ranked results and reaching a leaf node, we recognize
it has the highest priority and can output it immediately 2. A notable disadvantage of this
strategy is that it requires additional space to store the entire queue, resulting in increased
operational costs when managing it.

Using the prioritized backtracking strategy for gradual retrieval is trivial. We use an
array to store the results computed and once we have computed k results, we can return
them. For ranked enumeration, we still have to check the priorities of the other tuples of
qdags to ensure that we have computed the most important nodes. For that, we need to use
a priority queue of a fixed size to store the top k results seen so far. When we arrive at a

2In gradual retrieval, we are only concerned in output the results as fast as possible, so all the results are
valid.

22

tuple and the queue is complete, we check if the weight is higher than the lowest weight in
the priority queue. If this is the case, we start navigating its children. Otherwise, we prune
that branch, so we do not access a node with less priority than our k nodes computed so far.
Therefore, we abandon a branch if a node’s upper bound in the backtracking is no higher
than the value of the current k-th result.

If we arrive at a leaf, we insert the tuple in the priority queue if its weight is higher than the
stored tuple with lowest weight and remove that one. Once we have traversed all the qdags,
we can return the tuples of the priority queue. Unlike in optimal order, the first k points in
the queue do not necessarily mean the top k results, so we can not output them directly.

Although the second strategy uses less space than the first one, it could waste some time
when we enter a promising subtree for the backtracking, and its leaves do not produce as
many results (in gradual retrieval), or there were no nodes with high priorities as we thought
(for ranked results).

We implement these two strategies described above for gradual and ranked enumeration.
However, we pursue different techniques to compute the weight of a tuple to process the join
in a particular order, as we saw at the begining of the section.

3.4 Gradual retrieval

When we want to obtain only a few results from a join operation, such as in user interfaces
like Wikidata, gradual retrieval is beneficial. An interface is more user-friendly when results
are retrieved gradually, with the initial results being returned as quickly as possible and
subsequent results following with minimal delay. Instead of waiting for the entire join
operation to complete, we can display the first results to the user promptly. This approach is
also advantageous when working with large datasets, as we can stop the join operation once
we have obtained a sufficient number of results.

The goal is to optimize the time required to obtain the first results. We will use an upper-
bound estimator to prioritize descending through the child nodes that are estimated to yield
the most results. This involves descending through the tuple of nodes representing the fullest
quadrants of points, where the number of leaves is higher. To implement this strategy, we
study two approaches

1. Estimate intersection with the minimum: we compute the number of leaves in the
subtree of each child of the current node in each participant qdag. We value the
children by the minimum over all the qdags. We traverse the children sorted from
highest to lowest value.

2. Assume uniform distribution: this time, the value of a node is its density, given by
its number of leaves and the size of its subgrid. We then compute the product of the
densities of the children across all the qdags and process the denser nodes first.

Example 4 (Estimate intersection with the minimum). For example, for the first strategy,
in Figure 3.1, we will select the root and process its children in the following order:

23

1. The tuple of the second child with priority min(16, 13) = 13.

2. The tuple of the fourth child with priority min(8, 16) = 8.

3. The tuple of the first child with priority min(6, 12) = 6.

4. The tuple of the third child with priority min(23, 5) = 5.

Then, we will process the children of the tuple of the second child and insert them into the
priority queue.

R

823166 ▷◁

S

1651312

≤ 8

2

≤ 5

4

≤ 13

1

≤ 6

3

Figure 3.1: Order in partial results (number of leaves). Join between R and S. We compute the
intersection of the i-th child of relation R and the i-th child of relation S. The first child of the
qdag of the relation R has six leaves (points), and the first child of the qdag of S has 12 leaves.

Thus, the minimum of the tuple of the first children is min(6, 12) = 6. The tuple of qdags that has
the maximum of the minima is the tuple formed by the second children, that is min(16, 13) = 13.

This means that joining this quadrant will produce up to 13 results. We expect that the other
quadrants produce fewer results so that the join will start with the tuple of the second children.

Example 5 (Assume uniform distribution). For example, for the second strategy, in Figure
3.2, we will select the root and process its children in the following order:

1. The tuple of the fourth child with priority (0.16× 0.13) = 0.0208.

2. The tuple of the third child with priority (0.08× 0.16) = 0.0128.

3. The tuple of the first child with priority (0.23× 0.05) = 0.0115.

4. The tuple of the second child with priority (0.06× 0.12) = 0.0072.

Then, we will process the children of the tuple of the forth child and insert them into the
priority queue.

For the optimal order approach, we maintain a priority queue of the tuples of nodes to
visit and a counter to track the results. We retrieve each tuple from the priority queue and
explore its children if it is an internal node, or compute the intersection if it is a tuple of
leaves. When we output a result, we update the counter. We stop the operation if we traverse
all the internal nodes of the qdags or reach the maximum number of results. The pseudo-
code for gradual retrieval using an optimal order strategy and the DFUDS representation
is presented in Algorithms 10 and 11. In line 2 of Algorithm 11, Id(A) corresponds to the
identity mapping that is M :

[
0, 2|A| − 1

]
→

[
0, 2|A| − 1

]
.

24

T

0.160.080.060.23 ▷◁

U

0.130.160.120.05

0.0208

1

0.0128

2

0.0072

4

0.0115

3

Figure 3.2: Order in partial results (density). Join between T and U . We can see in red the order
used to compute the join: the tuple of the last children is the one most likely to output more results.

Algorithm 10 andGradualOptOrder(Q1, ...,Qn,q, k) using DFUDS representation
Require: n qdags Q1, ...,Qn representing relations R1(A), ..., Rn(A), a max priority queue q with

the tuples of nodes to visit in the future and k the maximum number of results we want to
output.

Ensure: Up to k results representing points of the grid of the relation ∩ni=1Ri(A).
1: c← 0
2: q.push({root(Q1),...,root(Qn)}, 0)
3: while q is not empty and c < k do
4: tuple ← q.pop()
5: m← min{value(tuple.Q1),...,value(tuple.Qn)}
6: if m = 1 then
7: output the tuple
8: c++
9: else if m = 1/2 then

10: for i← 0, ..., 2d − 1 do
11: for j ← 1, ..., n do
12: tuplei[j] = child(Qj , i)

13: w ← min{leafNum(Q1,child(Q1, i)), ..., leafNum(Qn,child(Qn, i))}
14: q.push(tuplei, w)

Using the LOUDS representation for the k2-tree, we must modify line 14 according to
Algorithm 8. Additionally, we must keep track of the level we are traversing. If we assume
uniform distribution, we must divide each leaf number by the grid size. As said before in the
motivation of the chapter, we only have to modify the and algorithm (see Algorithm 6) to
achieve gradual retrieval in the join operation.

Algorithm 11 multiJoinGradualOptOrder (R1, ..., Rn, k)

Require: Relations R1, ..., Rn, stored as quadtrees Q1, ..., Qn; each relation Ri is over attributes
Ai and A =

∪
Ai. k is the maximum number of points we want to output.

Ensure: At most k results representing points of the grid of the output J = R1 ▷◁ ... ▷◁ Rn.
1: for i← 0, ..., n do
2: Let Qi be the qdag (Qi, Id(Ai))
3: Q∗

i ← extend(Qi,A)
4: q← priQueue()
5: return andGradualOptOrder(Q∗

1, ...,Q
∗
n,q, k)

The cost of computing andGradualOptOrder(Q1, ...,Qn,q, k) is bounded by the cost of

25

retrieving the maximum tuple from the priority queue and the number of calls to leafNum.
The cost of line 4 does not depend on the data structure: it will be O(log |Q+|) for both
LOUDS and DFUDS. The cost of line 14 is O(n) using DFUDS, due to its constant-time
operation leafNum, and for LOUDS is O(n log l).

The cost analysis of the join is bounded by |Q+|, the number of internal nodes that need to
be visited to construct the resulting quadtree. In the worst case, we may need to examine
each branch and node of Q+ to compute the intersection. However, we expect the algorithm
to perform better, providing results faster for a small k.

At worst, the cost of the whole operation using DFUDS is:

O(|Q+| · (log |Q+|+ 2dn)).

The worst cost with LOUDS is higher because of its cost to compute the number of leaves:

O(|Q+| · (log |Q+|+ 2dn+ log l)).

Comparing both algorithms, we added an extra time cost of O(log l) using LOUDS instead of
DFUDS. The trade-off is, of course, the memory needed to store the DFUDS representation,
which is 2|Qi| extra bits for each qdag to store the input.

The backtracking method for gradual retrieval is straightforward: the first k results computed
are output. Each result is stored in an array as the coordinates of the point in the grid
representing the relation ∩ni=1Ri(A). We explore branches in order from the most to the least
promising and traverse their children to find results as quickly as possible. The pseudocode
for this method is provided in Algorithms 12 and 13. However, ranked enumeration presents
additional complexity, which is discussed in the following subsection.

Algorithm 12 andGradualBacktracking(Q1, ...,Qn, res, k) using DFUDS
representation
Require: n qdags Q1, ...,Qn representing relations R1(A), ..., Rn(A); an array res of size k with

the results seen so far.
Ensure: Up to k results representing the points of the grid of the relation ∩ni=1Ri(A).

1: m← min{value(Q1),...,value(Qn)}
2: if m = 0 then return
3: if m = 1 then
4: add Morton code of the leaf to res
5: return
6: orderToTraverse ← priQueue()
7: for i← 0, ..., 2d − 1 do
8: for j ← 1, ..., n do
9: tuplei[j] = rootQj

10: w ← min{leafNum(Q1,child(Q1, i)), ..., leafNum(Qn,child(Qn, i))}
11: orderToTraverse.push(tuplei, w)
12: while orderToTraverse is not empty and res.size < k do
13: thisTuple ← orderToTraverse.pop()
14: andGradualBacktracking(thisTuple.tuple[1],...,thisTuple.tuple[n],res, k)

26

The cost of line 11 of Algorithm 12 (andGradualBacktracking) is the same as line 14
in Algorithm 10 (andGradualOptOrder) for LOUDS and DFUDS. On each call to
andGradualBacktracking, we need to compute n times value, O(2d · n) times child,
and O(2d · n) times leafNum. However, the cost of this last operation is charged to the
child nodes as it is only computed if the child exists. Otherwise, the cost would be increased
by an additional O(2dn · log l) when using LOUDS. Then, the cost of the whole algorithm
using DFUDS is:

O(|Q+| · 2dn),

and using LOUDS is:
O(|Q+| · (2dn+ log l))

An overview of the costs is provided in Table 3.2 later.

Algorithm 13 multiJoinGradualBacktracking (R1, ..., Rn, k)

Require: Relations R1, ..., Rn, stored as quadtrees Q1, ..., Qn; each relation Ri is over attributes
Ai and A =

∪
Ai.

Ensure: Points of the grid representing the output J = R1 ▷◁ ... ▷◁ Rn.
1: for i← 0, ..., n do
2: Let Qi be the qdag (Qi, Id(Ai))
3: Q∗

i ← extend(Qi,A)
4: res← []
5: return andGradualBacktracking(Q∗

1, ...,Q
∗
n, res, k)

3.5 Ranked enumeration

Ranked enumeration queries aim to return the highest-ranked results one-at-a-time as quickly
as possible, reducing the time to generate the first result and minimizing the delay between
subsequent results. While this is similar to the top-k query evaluation problem [11], where k is
specified in advance, and the goal is to retrieve the top-k results (not necessarily in order), our
solutions maintain an ordered data structure. This structure keeps potential results sorted
by a ranking function, allowing the system to output results one by one in ascending order
of rank. This process evaluates tuples based on a predefined ranking criterion [20, 48, 50].

Enumerating query results in ranked order is crucial for many database management systems,
as it reflects common real-world use cases. Many database languages support ranked enum-
erations–often through constructs such as ORDER BY and LIMIT clauses, typically through
constructs such as ‘ORDER BY‘ and ‘LIMIT‘ clauses, which enable users to prioritize and
limit result sets. Ranked retrieval is widely beneficial across domains such as web search and
information retrieval [11] and has also been studied in the context of lexicographic orderings
[20]. We can also extend this approach to multidimensional data, finding applications in
areas like multimedia indexing and molecular biology [30].

Typically, database engines implement ranked enumeration by first computing the full join
and then selecting the results, resulting in a time complexity of Ω(OUT), where OUT is the
total number of results (the output size). However, when only the top-k results are needed,

27

we can reduce these costs by focusing on retrieving just those top k results. This approach
is especially beneficial as it avoids computing unnecessary intermediate results [20, 49].

In this section, we explore the problem of ranked enumeration in the context of qdags.
Our goal is to compute tuples with higher priority, focusing not only on improving the
time to obtain the first results but also on returning the top-ranked results in order. This
enhancement addresses a limitation of the original algorithm, which computes all results
without considering any priority or weight, as discussed in Chapter 2 [6]. We follow the
approach described in the literature [19, 20, 49], defining a ranking function that assigns a
weight to each tuple. This ranking function introduces a total order ⪰ on the tuples in the
relation and it is defined in Definition 9.

Each quadtree stores an array P [1, p], where p is the number of points, and each element
in P represents the weight or priority of a leaf. We precompute a Range Maximum Query
(rMq) (see Section 2.3.1) on this array to compute the index of the range of priorities with
the highest priority, and therefore know the maximum priority in a qdag subtree. We can
still perform this operation after extending the quadtree, thanks to the mapping function.
An example of this process is illustrated in Figure 3.3.

To compute the query results in order, we start by identifying the tuple with the highest
priority. This involves evaluating the weight of a tuple by examining the maximum weight
among its descendant leaves from each child, and then evaluating this across all qdags in the
join. We refer to this algorithm as maxPri, which is quite similar to Algorithms 8 and 9.
However, instead of returning the number of leaves, maxPri returns the maximum priority
between the left-most and right-most children of a node. Consequently, the cost of maxPri
using LOUDS is O(log ||Q||), while using DFUDS is O(1) (see Section 3.2).

30

020

11

0001
11

6
0020

1
20

5
000

30

0030

1
30

4
1
3

3
1
1

2
1
12

1
0

0

25

025

018

1
1

10
1
4

9
1
2

8
1
18

7
025

1
25

6
1
11

5
1
8

4
1
15

3

5

005

01
3

2
01

5

1
0

0

PR = [12, 1, 3,30, 20, 11] PS = [5, 3, 15, 8, 11,25, 18, 2, 4, 1]

Figure 3.3: Order in ranked results. We can see the priorities next to the node as a result of the
range maximum query for each range. For example, first, we will compute the rMq of the roots,
and we will have 4 and 6 as the positions of P with the highest weights, which are 30 and 25,

respectively. We repeat the process for the children of these roots, and if we proceed by the first
measure of Definition 9, we will first access the second child because the first tree has the highest
priority leaf (30) on the second child. If we proceed by the second measure of Definition 9, we
will first go down by the third child because the addition of the third nodes is 20 + 25 = 45, which

is bigger than the addition of the priorities of the second nodes (35).

We use a priority queue for both strategies. For the optimal order strategy, we use it to
manage the tuples we will visit next. When we reach a tuple of leaves, we output the result,
which ensures that the results are output in decreasing order of priority. The pseudocode
for this approach using DFUDS is presented in Algorithm 14. This algorithm is essentially

28

the same as Algorithm 10, but in line 14, instead of computing the number of leaves, we
compute the maximum priority of the tuple. If we follow the second measure of Definition
9 to compute the weight of a tuple, we need to modify line 14 to sum the priorities of the
tuple rather than finding the maximum. The cost of andRankedOptOrder using DFUDS
remains comparable to Algorithm 10, with an additional cost of O(2dn) per call due to the
rMq. Therefore, the final cost of andRankedOptOrder using DFUDS is:

O(|Q+| · (log |Q+|+ 2dn)),

and using LOUDS it is:
O(|Q+| · (log |Q+|+ 2dn+ log l))

Algorithm 14 andRankedOptOrder(Q1, ...,Qn,P1, ...,Pn,q, res, k)

Require: n qdags Q1, ...,Qn representing relations R1(A), ..., Rn(A); n vectors P1, ...,Pn with a
priority for each point of its qdag; a max priority queue q with the tuples of nodes to visit in
the future; an array res to store the results and the maximum number k of results we want to
output.

Ensure: Up to top k points of the grid representing the relation ∩ni=1Ri(A) ranked according to a
priority.

1: c← 0
2: q.push({root(Q1),...,root(Qn)}, 0)
3: while q is not empty and c < k do
4: tuple ← q.pop()
5: m← min{value(tuple.Q1),...,value(tuple.Qn)}
6: if m = 1 then
7: output the tuple of qdags (Q1,...,Qn)
8: c++
9: else if m = 1/2 then

10: for i← 0, ..., 2d − 1 do
11: for j ← 1, ..., n do
12: tuplei[j] = child(Qj , i)

13: w ← max{maxPri(tuplei[1]),...,maxPri(tuplei[n])}
14: q.push(tuplei, w)

Algorithm 15 multiJoinRankedOptOrder (R1, ..., Rn,P1, ...,Pn, k)

Require: Relations R1, ..., Rn, stored as quadtrees Q1, ..., Qn; each relation Ri is over attributes Ai

and A =
∪
Ai; n vectors P1, ...,Pn with a priority for each point of its qdag; and the maximum

number k of results .
Ensure: Top-k points of the grid representing the output J = R1 ▷◁ ... ▷◁ Rn.

1: for i← 0, ..., n do
2: Let Qi be the qdag (Qi, Id(Ai))
3: Q∗

i ← extend(Qi,A)
4: q← priQueue()
5: res← []
6: return andRankedOptOrder(Q∗

1, ...,Q
∗
n,P1, ...,Pn,q, res, k)

29

For the backtracking approach, we use a priority queue to efficiently store the results and
output them in increasing order. We modify Algorithms 14 and 15 to maintain a priority
queue of the results. The pseudocode for this approach is provided in Algorithms 16 and 17.
In line 3, we compute the maximum priority of a leaf (l = 1), as we are at the last level of
the qdag, instead of computing the priority of a child, as done in line 16. In line 14, we map
the corresponding i-th child of each qdag. From lines 18 to 24, we ensure that we do not
explore a branch unless its priority is higher than the top priority in the queue. As shown in
the previous algorithms, we only explore a promising branch if the upper bound of the tuple
exceeds the priority of the k-th result. The priority queue stores the final results, and once
all branches have been checked, the computation can be terminated.

Algorithm 16 andRankedBacktracking(Q1, ...,Qn,P1, ...,Pn,q, k)

Require: n qdags Q1, ...,Qn representing relations R1(A), ..., Rn(A); n vectors P1, ...,Pn with a
priority for each point of its qdag; and a min priority queue q of size k with the top k results
seen so far.

Ensure: Up to top-k points of the grid representing the relation ∩ni=1Ri(A) ranked according to a
priority.

1: m← min{value(Q1),...,value(Qn)}
2: if m = 0 then return
3: if m = 1 then
4: w ← max{maxPri(Q1),...,maxPri(Qn)}
5: if q is full then
6: if q.top.w < w then
7: q.pop()
8: q.push({Q1,...,Qn}, w)
9: else

10: q.push({Q1,...,Qn}, w)
11: orderToTraverse ← priQueue()
12: for i← 0, ..., 2d − 1 do
13: for j ← 1, ..., n do
14: tuplei[j] = child(Qj , i)

15: w ← max{maxPri(tuplei[1]),...,maxPri(tuplei[n])}
16: orderToTraverse.push(tuplei, w)
17: while orderToTraverse is not empty do
18: thisTuple ← orderToTraverse.pop()
19: if q is not full or q.top.w < thisTuple.w then
20: andRankedBacktracking(thisTuple.tuple[1],...,thisTuple.tuple[n],P1, ...,Pn,q, k)

The cost of performing push in the priority queue of results is O(log k). Therefore, the cost
of andRankedBacktracking using DFUDS is:

O((2dn+ log k) · |Q+|)

Using LOUDS, the cost is:

O((2dn+ log l + log k) · |Q+|)

30

Algorithm 17 multiJoinRankedBacktracking (R1, ..., Rn,P1, ...,Pn, k)

Require: Relations R1, ..., Rn, stored as quadtrees Q1, ..., Qn; each relation Ri is over attributes
Ai and A =

∪
Ai; n vectors P1, ...,Pn with a priority for each point of its qdag.

Ensure: Top-k points of the grid representing the output J = R1 ▷◁ ... ▷◁ Rn.
1: for i← 0, ..., n do
2: Let Qi be the qdag (Qi, Id(Ai))
3: Q∗

i ← extend(Qi,A)
4: q← priQueue()
5: return andRankedBacktracking(Q∗

1, ...,Q
∗
n,P1, ...,Pn,q, k)

and Gradual retrieval
Optimal order

LOUDS O(|Q+| · (log |Q+|+ 2dn+ log l))
DFUDS O(|Q+| · (log |Q+|+ 2dn))

Backtracking
LOUDS O(|Q+| · (2dn+ log l))
DFUDS O(|Q+| · 2dn)

and Ranked enumeration
Optimal order

LOUDS O(|Q+| · (log |Q+|+ 2dn+ log l))
DFUDS O(|Q+| · (log |Q+|+ 2dn))

Backtracking
LOUDS O(|Q+| · (log k + 2dn+ log l))
DFUDS O(|Q+| · (log k + 2dn))

Original AND LOUDS O(|Q+| · 2dn)
Table 3.2: Time complexities for the and operation.

Worst-case optimality As we showed, the multi-join algorithms are dominated by the
and operation (for the original algorithm, gradual retrieval, and also for ranked enumeration).
In the original algorithm the and operation costs O(2dn|Q+|) = Õ(|Q+|), which is worst-
case optimal. As we can see in Table 3.2, all versions of the and operation are also Õ(|Q+|).
Thus, we can conclude that our algorithms are worst-case optimal for the full join query. We
expect to traverse much fewer nodes of Q+ for a smaller k.

3.6 Experimental results

We implemented all our algorithms in C++17, utilizing the O3 optimization flag. In our
first experiment, we conducted 50 different tests for each algorithm across various pattern
queries (see Figure 2.15). The second experiment focused only on tests that produced
more than 1000 results. In Table 3.3, we present the mean number of results produced
for each pattern. All tests were performed using a single thread on an Intel Xeon E5-2609
computer equipped with 128GB of DDR3 1066 ECC RAM and three SATA3 hard drives (2

31

x 1TB and 1 x 2TB).

Some curves may exhibit irregular behavior; for instance, the execution time for certain
patterns might be higher at k = 10 and lower at k = 100. This variability can be attributed
to fluctuations in the shared server environment, which introduces some degree of noise into
the measurements.

j3 j4 p2 p3 p4 s1 s2 s3 s4 t2 t3 t4 ti2 ti3 ti4 tr1 tr2
1131.18 292.78 28118.1 303.52 269.06 10.6 8.12 128.42 4.5 787.88 29.6 1860.83 5383.34 203545 2.24872e+06 11.62 14.9

Table 3.3: Average number of results per pattern.

We evaluated one approach for the upper-bound estimator for gradual retrieval (as detailed
in Section 3.4) and another for ranked enumeration (as defined in Definition 9). For the
gradual retrieval algorithms, we employed estimation intersection with the minimum, as it
presented better results in terms of time (see Figure A.1 in Annex A). While for ranked
enumeration, we used the maximum priority approach. Figure B.1 in Annex B illustrates the
comparison between these two approaches. We compared our algorithms to the sequential
version of the original algorithm, rather than the parallel version.

To compare the new algorithms with the original one, we will stop the latter after computing
k results and build the corresponding compressed quadtree. We have adapted the original
algorithm for this purpose. For the ranked results, we have created a priority file that assigns
a random priority to each tuple in the dataset, ensuring that the same priority file is used
consistently across all the ranked enumeration algorithms3.

First scenario: all patterns

Gradual retrieval

In Figures 3.4 and 3.5, we present the execution time and the number of tuples visited by
the gradual retrieval algorithms compared to the original algorithm used for retrieving up
to k results, where k = {1, 10, 100, 1000}. The original algorithm shows a nearly constant
execution time across different values of k in comparison with the gradual retrieval algorithms,
making it the optimal choice regarding time efficiency. In contrast, the gradual retrieval
algorithms exhibit a significant increase in execution time as k increases. For certain patterns,
this increase is more evident between k = 1 and k = 10 (such as for J3, P3, P4, S1, S2, S3,
S4, Ti4, Tr1 and Tr2). For other patterns, the increase is more pronounced between k = 100
and k = 1000 (as seen with J4, T3, Ti2 and Ti3).

3We also tested an alternative priority method, which was calculated as a permutation of the number of
leaves, using the following exponential function:

exp

(
1

n
x

)
,

where n represents the number of leaves and x corresponds to the value of the permutation. However, this
biased scenario did not yield better results.

32

The LOUDS-Backtracking algorithm is ranked as the second fastest across nearly all tested
patterns. It is followed by the DFUDS-Backtracking algorithm, and then by the LOUDS-
Optimal Order and DFUDS-Optimal Order algorithms. In some cases, such as with the
patterns T4, Ti3 and Ti4, the DFUDS-Backtracking algorithm is slightly faster than the
LOUDS-Backtracking algorithm. Although there is no significant difference between the
LOUDS and DFUDS data structures, we can observe a slight distinction between the two
strategies employed: backtracking and optimal order.

In Figure 3.5, we plot the number of tuples visited to retrieve the first k results using gradual
retrieval. As expected, the algorithms of the same approach traverse the same number of
tuples: LOUDS-Backtracking and DFUDS-Backtracking, as well as LOUDS-Optimal Order
and DFUDS-Optimal Order.

Generally, there is no significant difference between the backtracking algorithms and the
original algorithms, as both visit almost the same number of tuples. The patterns where the
optimal order algorithms visit fewer tuples than the backtracking algorithms are J4, S3 and
T4. As in the previous figure, we see a notable increase in the number of tuples visited from
k = 1 to k = 10 in the patterns J3, P3, P4, S1, S2, S3, S4, Ti4, Tr1 and Tr2, and between
k = 100 and k = 1000 for the patterns J4, T3, Ti2 and Ti3.

In Table 3.4, we present the average number of tuples visited to retrieve k results for each
algorithm across all patterns. As expected, algorithms that employ the same strategy visit
the same number of tuples. All of the novel algorithms outperform the original algorithm
in terms of the average number of tuples visited for k = 1 and k = 1000. Among the
novel algorithms, the most efficient strategy for retrieving k = 1 and k = 1000 results is the
backtracking approach, while the optimal order strategy yields fewer tuples on average for
k = 10 and k = 100.

k Original G. Louds Back G. Louds Opt G. Dfuds Back G. Dfuds Opt
1 5,451,446.50 5,156,158.10 5,315,398.40 5,156,158.10 5,315,398.40

10 10,972,050.60 12,244,376.30 11,825,519.70 12,244,376.30 11,825,519.70
100 14,740,835.10 15,069,112.90 14,772,250.20 15,069,112.90 14,772,250.20

1000 17,312,450.30 17,032,378.80 17,078,868.50 17,032,378.80 17,078,868.50
Table 3.4: Mean of the number of tuples visited to retrieve k results for each algorithm (gradual

retrieval).

In Table 3.5, we present the percentage of tuples visited by the novel algorithms compared to
the number of tuples visited by the original algorithm. All the gradual retrieval algorithms
traverse nearly the same number of nodes as the original algorithm (approximately 98%). In
fact, for values of k = {10, 100}, the novel algorithms visit more nodes than the original.

Ranked enumeration

In Figure 3.6, we display the execution times of ranked enumeration algorithms alongside
the original algorithm for retrieving the top k results. The original algorithm must compute

33

0

2

4

6

Ti
m

e
(s

)

J3

0

20

40

J4

0.00

0.05

0.10

0.15
P2

0.0

0.2

0.4

0.6

Ti
m

e
(s

)

P3

0

10

20
P4

Algorithms
Original
Grad. LOUDS Backtrack.
Grad. LOUDS Op. Order
Grad. DFUDS Backtrack.
Grad. DFUDS Op. Order

0.00

0.05

Ti
m

e
(s

)

S1

0

2

4

S2

0

2

4
S3

0.0

0.5

1.0

Ti
m

e
(s

)

S4

0.00

0.02

0.04

T2

0.0

0.5

1.0
T3

0

25

50

75

Ti
m

e
(s

)

T4

0.0

0.1

0.2
Ti2

0

10

20
Ti3

1 10 100 1000
k results (log scale)

0

100

200

Ti
m

e
(s

)

Ti4

1 10 100 1000
k results (log scale)

0.000

0.005

0.010

0.015
Tr1

1 10 100 1000
k results (log scale)

0.00

0.02

0.04

0.06

Tr2

Time to retrieve the first k results
(Gradual retrieval)

Figure 3.4: Query times (in seconds) to retrieve the first k results using the gradual retrieval
algorithms.

34

3

4

5

Tu
pl

es
 v

isi
te

d

1e6 J3

2

3

1e7 J4

50000

100000

150000
P2

200000

400000

Tu
pl

es
 v

isi
te

d

P3

0.5

1.0

1e7 P4
Algorithms

Original
Grad. LOUDS Backtrack.
Grad. LOUDS Op. Order
Grad. DFUDS Backtrack.
Grad. DFUDS Op. Order

20000

40000

Tu
pl

es
 v

isi
te

d

S1

1

2

1e6 S2

1.0

1.5

2.0
1e6 S3

200000

400000

600000

Tu
pl

es
 v

isi
te

d

S4

0

25000

50000

T2

250000

500000

750000
T3

2

4

Tu
pl

es
 v

isi
te

d

1e7 T4

0

100000

200000
Ti2

0.5

1.0

1.5
1e7 Ti3

1 10 100 1000
k results (log scale)

0.5

1.0

1.5

Tu
pl

es
 v

isi
te

d

1e8 Ti4

1 10 100 1000
k results (log scale)

5000

10000

Tr1

1 10 100 1000
k results (log scale)

20000

40000
Tr2

Number of tuples visited to retrieve the first k results
(Gradual retrieval)

Figure 3.5: Number of tuples visited to retrieve the first k results using the gradual retrieval
algorithms.

35

k G. Louds Back G. Louds Opt G. Dfuds Back G. Dfuds Opt
1 94.58% 97.50% 94.58% 97.50%

10 111.60% 107.78% 111.60% 107.78%
100 102.23% 100.21% 102.23% 100.21%

1000 98.38% 98.65% 98.38% 98.65%
Table 3.5: Percentage of tuples visited by gradual retrieval algorithms relative to the original

algorithm.

all the results to obtain the top k entries, while the ranked enumeration algorithms retrieve
only the top k results. This comparison highlights the performance difference, particularly
in retrieving the top-1 result. Overall, the original algorithm maintains a faster execution
time, except when retrieving the top-1 result in the pattern Ti2.

Among the ranked enumeration algorithms, the DFUDS-Backtracking and LOUDS-Backtrack-
ing methods are generally the most efficient, however, the differences among the four algorithms
are minimal.

For patterns P2, T2, T3, Ti2, and Ti3, the execution times of the ranked enumeration
algorithms continue to increase as k grows. In contrast, for the other patterns, the increase
is less pronounced, and the execution time tends to stabilize after k = 100.

In Figure 3.7, we illustrate the number of tuples visited to retrieve the top k results for the
ranked enumeration algorithms. The original algorithm needs to traverse significantly more
tuples than the new algorithms. Across all patterns, the novel algorithms visit an equal or
smaller number of tuples than the original algorithm for all values of k. This difference is
particularly noticeable when retrieving the top-1 result. A clearer distinction is evident in
patterns P2, T2, T3, Ti2, Ti3, and Ti4. As in the previous figure, the number of tuples
visited tends to increase between k = 1 and k = 100 and then stabilizes.

Among the new algorithms, the differences in the number of tuples visited are not significant,
except in patterns J4, S3 and S4, where the optimal order strategy outperforms.

In Table 3.6, we present the mean of the nodes visited to retrieve the top k results between
all the patterns for each algorithm. As expected, the most efficient strategy in terms of mean
nodes visited is the optimal order, followed by the backtracking approach, and finally the
original algorithm.

k Original R. Louds Back R. Louds Opt R. Dfuds Back R. Dfuds Opt
1 23,128,759.10 11,048,285.60 8,773,763.40 11,048,285.60 8,773,763.40

10 23,128,759.10 16,389,733.10 15,259,889.80 16,389,733.10 15,259,889.80
100 23,128,759.10 18,379,702.90 17,514,963.60 18,379,702.90 17,514,963.60

1000 23,128,759.10 19,103,629.90 18,890,963.40 19,103,629.90 18,890,963.40
Table 3.6: Mean of the number of tuples visited to retrieve the top k results for each algorithm

(ranked enumeration).

36

5

10

Ti
m

e
(s

)

J3

0

50

100

J4

0.1

0.2
P2

0.5

1.0

Ti
m

e
(s

)

P3

0

20

P4 Algorithms
Original
R. LOUDS Backtrack.
R. LOUDS Op. Order
R. DFUDS Backtrack.
R. DFUDS Op. Order

0.0

0.1

Ti
m

e
(s

)

S1

0

5

S2

0.0

2.5

5.0

S3

0

1

2

Ti
m

e
(s

)

S4

0.025

0.050

0.075
T2

0.5
1.0
1.5

T3

0

50

100

Ti
m

e
(s

)

T4

0.1

0.2
Ti2

10

20

30
Ti3

1 10 100 1000
k results (log scale)

200

400

Ti
m

e
(s

)

Ti4

1 10 100 1000
k results (log scale)

0.01

0.02

0.03
Tr1

1 10 100 1000
k results (log scale)

0.00

0.05

0.10
Tr2

Time to retrieve the top k results
(Ranked enumeration)

Figure 3.6: Query times (in seconds) to retrieve the top k results using the ranked enumeration
algorithms.

37

5

6

Tu
pl

es
 v

isi
te

d

1e6 J3

2

3

1e7 J4

200000

400000
P2

300000

400000

500000

Tu
pl

es
 v

isi
te

d

P3

0.5

1.0

1e7 P4 Algorithms
Original
R. LOUDS Backtrack.
R. LOUDS Op. Order
R. DFUDS Backtrack.
R. DFUDS Op. Order

30000

40000

50000

Tu
pl

es
 v

isi
te

d

S1

2.0

2.5

1e6 S2

1

2
1e6 S3

650000

700000

Tu
pl

es
 v

isi
te

d

S4

25000
50000
75000

T2

250000

500000

750000
T3

2

4

Tu
pl

es
 v

isi
te

d

1e7 T4

0

200000

400000

Ti2

1

2
1e7 Ti3

10 1000
k results (log scale)

1

2

Tu
pl

es
 v

isi
te

d

1e8 Ti4

10 1000
k results (log scale)

5000

10000

Tr1

10 1000
k results (log scale)

30000

40000
Tr2

Number of tuples visited to retrieve the top k results
(Ranked enumeration)

Figure 3.7: Number of tuples visited to retrieve the top k results using the ranked enumeration
algorithms.

38

In Table 3.7, we show the percentage between the number of tuples visited for the novel
algorithms divided by the number of tuples visited by the original algorithm. We can see
that all the novel algorithms traverse fewer tuples than the original. The most significant
difference is observed when k = 1, where the optimal order algorithms visit only about 37%
of the tuples compared to the original algorithm.

k R. Louds Back R. Louds Opt R. Dfuds Back R. Dfuds Opt
1 47.77% 37.93% 47.77% 37.93%

10 70.86% 65.98% 70.86% 65.98%
100 79.47% 75.73% 79.47% 75.73%

1000 82.60% 81.68% 82.60% 81.68%
Table 3.7: Percentage of tuples visited by ranked enumeration algorithms relative to the original

algorithm.

Second scenario: join produces many results

While the first experiment allowed us to compare our new algorithms with the original one
using the same tests presented in [6], we considered it valuable to evaluate our algorithms
in a scenario where the join operation produces many results. There were not many queries
that produce more than 1000 results. Then, we could only test these patterns: J3, J4, P2,
P3, P4, S3, T2, T3, T4, Ti2, Ti3, Ti4, and for each pattern the number of queries were just
a few (∼4.5 queries per pattern).

Gradual retrieval

In Figures 3.8 and 3.9, we show the time and the number of tuples visited to retrieve the
first k results using the original and the gradual retrieval algorithms. In Figure 3.8, it is
evident that the original algorithm outperforms the gradual retrieval algorithms in terms of
time across all values of k. The backtracking algorithms show similar behavior across various
patterns, particularly for patterns J3, P2, S3, T2, T3, T4, and Ti2 when k < 100.

As observed in the first scenario, the backtracking approach is generally faster than the
optimal order approach, and LOUDS generally outperforms DFUDS. For most patterns, the
performance curve remains relatively flat for k < 100, after which it begins to rise. An
exception is pattern P4, where the curve increases sharply between k = 1 and k = 10 before
stabilizing.

As shown in Figure 3.9, the original algorithm and the backtracking algorithms visit fewer
tuples compared to the optimal order algorithms for all patterns when k < 10. For the
patterns J3, P2, S3, T2, T3, Ti2 and Ti3, the backtracking algorithms outperform the
original one. Generally, the optimal order algorithms tend to visit a higher number of tuples
across most patterns. However, for k = 1000 in the patterns J4 and T2, the new algorithms
achieve the best performance in terms of the number of tuples visited.

39

In general, we can observe a slight increase in the number of tuples visited as k rises and
when retrieving more than 100 results, the number of tuples visited rises significantly.

In Figures 3.10 and 3.11 we plot the execution time and the number of tuples visited,
normalized by the time and the number of tuples visited by the original algorithm, respectively.
It is clear that many queries take up to ten times longer to retrieve the first result using the
gradual retrieval algorithms compared to the original algorithm, as illustrated in Figure 3.10.
Furthermore, Figure 3.11 shows that many queries either visit fewer nodes or visit up to
twice as many nodes as those in the original algorithm.

Table 3.8 presents the average number of tuples visited to retrieve k results for each algorithm
across all patterns tested in this scenario. Overall, the backtracking strategy remains the most
effective in minimizing the number of tuples visited.

k Original G. Louds Back G. Louds Opt G. Dfuds Back G. Dfuds Opt
1 8,667,373.30 347,080.30 2,111,081.70 347,080.30 2,111,081.70

10 9,896,986.40 2,209,735.60 3,311,982.80 2,209,735.60 3,311,982.80
100 19,238,265.40 3,908,781.20 3,904,030.30 3,908,781.20 3,904,030.30

1000 100,547,947.90 7,212,520.10 7,951,830.90 7,212,520.10 7,951,830.90
Table 3.8: Mean of the number of tuples visited to retrieve k results for each algorithm of a join

that produces numerous outputs (gradual retrieval).

In Table 3.9, we show the percentage of tuples visited by the gradual retrieval algorithms
relative to the original algorithm. When k =1, the backtracking strategy allows us to traverse
only a 4% of the tuples visited by the original algorithm. For k = 1000, the percentage of
tuples visited is further reduced to approximately 7%. This indicates that, in this scenario,
we traverse significantly fewer tuples compared to the original algorithm, as shown in Table
3.5.

k G. Louds Back G. Louds Opt G. Dfuds Back G. Dfuds Opt
1 4.00% 24.36% 4.00% 24.36%

10 22.33% 33.46% 22.33% 33.46%
100 20.32% 20.29% 20.32% 20.29%

1000 7.17% 7.91% 7.17% 7.91%
Table 3.9: Percentage of tuples visited by gradual retrieval algorithms relative to the original

algorithm of a join that produces many results.

Ranked enumeration

In Figures 3.12 and 3.13, we observe the execution time and the number of tuples visited by
both the ranked enumeration algorithms and the original algorithm. The original algorithm
retrieves all results to compute the top k results, which means its execution time and the
number of tuples visited remain constant, regardless of the value of k.

40

0

2

4

6

Ti
m

e
(s

)

J3

0.0

0.5

1.0

1.5

J4

0.0

0.1

0.2

0.3
P2

0.0

0.2

0.4

0.6

Ti
m

e
(s

)

P3

0

10

20

30

P4

0.000

0.005

0.010

0.015

0.020

0.025
S3

0.000

0.025

0.050

0.075

0.100

Ti
m

e
(s

)

T2

0

10

20

T3

1 10 100 1000
0

10

20

30

T4

1 10 100 1000
k results (log scale)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

Ti2

1 10 100 1000
k results (log scale)

0

10

20

30

40

50
Ti3

Algorithms
Original
Grad. LOUDS Backtrack.
Grad. LOUDS Op. Order
Grad. DFUDS Backtrack.
Grad. DFUDS Op. Order

Time to retrieve the first k results
(Gradual retrieval)

Figure 3.8: Query times (in seconds) to retrieve the first k results using the gradual retrieval
algorithms.

41

0

1

2

3

Tu
pl

es
 v

isi
te

d

1e6 J3

0.0

0.2

0.4

0.6

0.8

1.0
1e6 J4

0

50000

100000

150000

200000

250000
P2

100000

200000

300000

400000

Tu
pl

es
 v

isi
te

d

P3

0.0

0.5

1.0

1.5

2.0

1e7 P4

0

5000

10000

15000

S3

0

50000

100000

150000

Tu
pl

es
 v

isi
te

d

T2

0.0

0.5

1.0

1.5

2.0

1e7 T3

1 10 100 1000
0

2

4

6

1e6 T4

1 10 100 1000
k results (log scale)

0

200000

400000

600000

Tu
pl

es
 v

isi
te

d

Ti2

1 10 100 1000
k results (log scale)

1

2

3

4
1e7 Ti3

Algorithms
Original
Grad. LOUDS Backtrack.
Grad. LOUDS Op. Order
Grad. DFUDS Backtrack.
Grad. DFUDS Op. Order

Number of tuples visited to retrieve the first k results
 (Gradual retrieval)

Figure 3.9: Number of tuples visited to retrieve the first k results using the gradual retrieval
algorithms.

42

25
00

50
00

75
00

10
00

0
12

50
0

15
00

0
17

50
0

20
00

0
Nu

m
be

r o
f r

es
ul

ts
01020304050 Normalized execution time

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

to
 r

et
ri

ev
e

th
e

fir
st

-1
 r

es
ul

t
Gr

ad
ua

l L
OU

DS
 B

ac
kt

ra
ck

in
g

Gr
ad

ua
l L

OU
DS

 O
pt

im
al

 O
rd

er
Gr

ad
ua

l D
FU

DS
 B

ac
kt

ra
ck

in
g

Gr
ad

ua
l D

FU
DS

 O
pt

im
al

 O
rd

er

Fi
gu

re
3.

10
:

Q
ue

ry
tim

es
to

re
tr

ie
ve

th
e

fir
st

re
su

lt
(k

=
1
)

us
in

g
th

e
gr

ad
ua

lr
et

rie
va

la
lg

or
ith

m
s

no
rm

al
iz

ed
by

th
e

or
ig

in
al

al
go

rit
hm

.

43

25
00

50
00

75
00

10
00

0
12

50
0

15
00

0
17

50
0

20
00

0
Nu

m
be

r o
f r

es
ul

ts
012345678 Normalized number of tuples visited

N
or

m
al

iz
ed

 n
um

be
r

of
 t

up
le

s
vi

si
te

d
to

 r
et

ri
ev

e
th

e
fir

st
-1

 r
es

ul
t

Gr
ad

ua
l L

OU
DS

 B
ac

kt
ra

ck
in

g
Gr

ad
ua

l L
OU

DS
 O

pt
im

al
 O

rd
er

Gr
ad

ua
l D

FU
DS

 B
ac

kt
ra

ck
in

g
Gr

ad
ua

l D
FU

DS
 O

pt
im

al
 O

rd
er

Fi
gu

re
3.

11
:

N
um

be
r

of
tu

pl
es

vi
sit

ed
to

re
tr

ie
ve

th
e

fir
st

re
su

lt
(k

=
1
)

us
in

g
th

e
gr

ad
ua

lr
et

rie
va

la
lg

or
ith

m
s

no
rm

al
iz

ed
by

th
e

or
ig

in
al

al
go

rit
hm

.

44

Despite this, Figure 3.12 indicates that the original algorithm outperforms the ranked enumeration
algorithms across almost all patterns. In the patterns P2, S3, T2, T3 and Ti2, the ranked
enumeration algorithms perform similarly to the original algorithm or even better for k = 1.

For patterns J4 and P4, the performance curves of the ranked enumeration algorithms remain
primarily flat. In contrast, the other patterns show an increase in execution time as k rises,
with a particularly notable increase occurring between k = 1 and k = 100.

Among the novel algorithms, the DFUDS-Backtracking algorithm generally performs better,
followed by the LOUDS-Backtracking algorithm. The algorithms that use the optimal order
strategy show similar performance characteristics to one another.

Figure 3.13 shows that the original algorithm requires traversing significantly more tuples to
retrieve the top k results. Additionally, it is clear that as k increases, the number of tuples
visited by the new algorithms also rises. Overall, all ranked enumeration algorithms perform
similarly in terms of number of tuples visited.

In Figures 3.14 and 3.15, we plot the execution time and the number of tuples visited to
retrieve the top-1 result normalized by the time and number of tuples visited of the original
algorithm when retrieving all the results. The data shows that a significant number of
queries require less time to obtain the top result compared to the original algorithm, and
many queries visit fewer tuples as well.

In Table 3.10, we present the average number of tuples visited to retrieve k results for each
algorithm across the different patterns. The original algorithm requires the highest number
of node visited compared to the other algorithms, demonstrating a significant difference
between the original and the novel approaches. Among the ranked enumeration algorithms,
the optimal order algorithms consistently visit fewer tuples for all values of k, as anticipated.

In Table 3.11, we show the percentage of tuples visited by the ranked enumeration algorithms
relative to the original algorithm. For k = 1, , the optimal order algorithms only visit about
1% of the tuples that the original algorithm processes. To retrieve the top-1000 results,
we only need to visit approximately 4% of the tuples required by the original algorithm.
Additionally, this scenario demonstrates a significant reduction in the number of tuples visited
compared to what is shown in Table 3.7 for the first scenario.

45

k Original R. L. Back R. L. Opt. Order R. D. Back R. D. Opt. Order
1 205,487,271.30 4,156,613.20 2,508,591.20 4,156,613.20 2,508,591.20

10 205,487,271.80 5,988,946.30 3,202,413.80 5,988,946.30 3,202,413.80
100 205,487,276.80 9,958,415.20 5,276,732.00 9,958,415.20 5,276,732.00

1000 205,487,326.80 13,327,577.40 8,984,728.50 13,327,577.40 8,984,728.50
Table 3.10: Mean of the number of tuples visited to retrieve k results for each algorithm of a join

that produces numerous outputs.

k R. Louds Back R. Louds Opt R. Dfuds Back R. Dfuds Opt
1 2.02% 1.22% 2.02% 1.22%

10 2.91% 1.56% 2.91% 1.56%
100 4.85% 2.57% 4.85% 2.57%

1000 6.49% 4.37% 6.49% 4.37%
Table 3.11: Percentage of tuples visited by ranked enumeration algorithms relative to the original

algorithm of a join that produces many results.

46

5

10

15

Ti
m

e
(s

)

J3

0

2

4

6
J4

0.1

0.2

0.3

0.4
P2

0.5

1.0

1.5

Ti
m

e
(s

)

P3

0

20

40

60

80
P4

0.01

0.02

0.03

0.04

S3

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

T2

0

20

40

60
T3

1 10 100 1000
0

50

100

150

200
T4

1 10 100 1000
k results (log scale)

0.00

0.25

0.50

0.75

1.00

Ti
m

e
(s

)

Ti2

1 10 100 1000
k results (log scale)

50

100

Ti3

Algorithms
Original
R. LOUDS Backtrack.
R. LOUDS Op. Order
R. DFUDS Backtrack.
R. DFUDS Op. Order

Time to retrieve the top k results
 (Ranked enumeration)

Figure 3.12: Query times (in seconds) to retrieve the first k results using the ranked enumeration
algorithms.

47

0.25

0.50

0.75

1.00

Tu
pl

es
 v

isi
te

d

1e7 J3

1.6

1.8

2.0

1e6 J4

0.00

0.25

0.50

0.75

1.00

1e6 P2

200000

400000

600000

800000

Tu
pl

es
 v

isi
te

d

P3

1.8

1.9

2.0

2.1

2.2
1e7 P4

0

20000

40000

S3

0

100000

200000

300000

Tu
pl

es
 v

isi
te

d

T2

0.0

0.5

1.0

1.5

2.0

1e7 T3

1 10 100 1000
0

2

4

1e7 T4

1 10 100 1000
k results (log scale)

0

1

2

3

Tu
pl

es
 v

isi
te

d

1e6 Ti2

1 10 100 1000
k results (log scale)

0.5

1.0

1e8 Ti3

Algorithms
Original
R. LOUDS Backtrack.
R. LOUDS Op. Order
R. DFUDS Backtrack.
R. DFUDS Op. Order

Number of tuples visited to retrieve the top k results
 (Ranked enumeration)

Figure 3.13: Number of tuples visited to retrieve the first k results using the ranked enumeration
algorithms.

48

25
00

50
00

75
00

10
00

0
12

50
0

15
00

0
17

50
0

20
00

0
Nu

m
be

r o
f r

es
ul

ts
0.

00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Normalized execution time
N

or
m

al
iz

ed
 e

xe
cu

ti
on

 t
im

e
to

 r
et

ri
ev

e
th

e
to

p-
1

re
su

lt
Ra

nk
ed

 L
ou

ds
 B

ac
kt

ra
ck

in
g

Ra
nk

ed
 L

ou
ds

 O
pt

im
al

 O
rd

er
Ra

nk
ed

 D
FU

DS
 B

ac
kt

ra
ck

in
g

Ra
nk

ed
 D

FU
DS

 O
pt

im
al

 O
rd

er

Fi
gu

re
3.

14
:

Q
ue

ry
tim

es
to

re
tr

ie
ve

th
e

to
p
1

re
su

lt
us

in
g

th
e

ra
nk

ed
en

um
er

at
io

n
al

go
rit

hm
s

no
rm

al
iz

ed
by

th
e

or
ig

in
al

al
go

rit
hm

.

49

25
00

50
00

75
00

10
00

0
12

50
0

15
00

0
17

50
0

20
00

0
Nu

m
be

r o
f r

es
ul

ts
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized number of tuples visited
N

or
m

al
iz

ed
 n

um
be

r
of

 t
up

le
s

vi
si

te
d

to
 r

et
ri

ev
e

th
e

to
p-

1
re

su
lt

Ra
nk

ed
 L

ou
ds

 B
ac

kt
ra

ck
in

g
Ra

nk
ed

 L
ou

ds
 O

pt
im

al
 O

rd
er

Ra
nk

ed
 D

FU
DS

 B
ac

kt
ra

ck
in

g
Ra

nk
ed

 D
FU

DS
 O

pt
im

al
 O

rd
er

Fi
gu

re
3.

15
:

N
um

be
r

of
tu

pl
es

vi
sit

ed
to

re
tr

ie
ve

th
e

to
p
1

re
su

lt
us

in
g

th
e

ra
nk

ed
en

um
er

at
io

n
al

go
rit

hm
s

no
rm

al
iz

ed
by

th
e

or
ig

in
al

al
go

rit
hm

50

Chapter 4

Lazy qdags

4.1 Motivation

In the same context of gradually retrieving a subset of the join results rather than all or
a significant part, it is often desirable to process the join only for a few tuples or those of
specific interest. In such cases, performing the join requires computing a limited number of
qdag tuples, eliminating the need to process the entire qdag. For instance, if a quadrant
of a quadtree is empty, any and operation involving that quadrant will yield an empty
result, making further computation unnecessary. In this scenario, it is helpful to adopt a
lazy evaluation strategy to efficiently handle such operations without generating redundant
children of the qdag.

This approach also allows for more flexible query evaluation compared to traditional qdags.
It supports the combination of various relational operations, such as intersection, union, and
complement, which enables the evaluation of Boolean formulas and extends its applicability
to more complex and generalized queries in relational algebra.

In this context, we aim to implement a lazy version of qdags [6], which embodies this idea
by maintaining the syntax tree of a query, where the leaves are quadtrees and the internal
nodes are operators (functors). The laziness stems from how we evaluate a formula. Instead of
eagerly solving the formula and evaluating the entire dataset or performing all the operations
upfront, we compute only the necessary portions of the data and evaluate the formula
as needed. This approach allows us to progressively obtain results, which is particularly
advantageous when we do not need to compute all the results. Additionally, evaluating only
what is needed helps us to obtain optimality on those more complex formulas.

While we still guarantee worst-case optimality for evaluating Boolean formulas, we can no
longer ensure the same for the relational algebra. As we will see, lazy qdags can improve
space and time complexity for certain operations, though in some cases, the time cost may
increase due to the need to traverse the syntax tree. Nonetheless, this approach enables
faster retrieval of the first results in a more general context.

This chapter outlines the implementation of the syntax tree and evaluates its performance

51

across Boolean algebra, including join queries, and relational algebra operations.

4.2 Definition

Let us begin by defining what is a Boolean formula and the syntax tree used to construct a
lazy qdag.

Definition 10 (Boolean formula). A Boolean formula F is composed by join (AND and
EXTEND), union (OR), and complement (NOT) operations over relations.

Definition 11 (Lazy qdags). A lazy qdag [6] (lqdag) L is a recursive data structure defined
as a pair (f, o) consisting of a functor and a list of operands, which follows the following
rules:

1. L = (QTREE, QR), where QR is a quadtree that represents the relation R, represents
the relation R.

2. L = (NOT, QR), where QR is a quadtree that represents the relation R, represents the
complement R of R.

3. L = (AND, L1, L2), where L1 and L2 are lqdags, represents the intersection of the
relations represented by L1 and L2.

4. L = (OR, L1, L2), where L1 and L2 are lqdags, represents the union of the relations
represented by L1 and L2.

5. L = (EXTEND, L1, A), where L1 is an lqdag, represents the relation of L1 with its
attributes extended to A.

6. L = (LQDAG, L1), where L1 is an lqdag, represents the same lqdag L1.

The leaves of a formula are lazy qdags with functors QTREE, NOT, and LQDAG, where their
operand is a quadtree or another lqdag. By using lazy qdags as leaves (not considered
in the original design [6]), we can construct more complex formulas and avoid redundant
computations of previously evaluated formulas. Internal nodes are lazy qdags with functors
like AND, OR, and EXTEND. This structure can be visualized as a syntax tree, where each node
represents a functor and edges connect its operands.

For example, a join between the relations R, S, and T , where A = {A ∪ B ∪ C} :

R(A,B) ▷◁ S(B,C) ▷◁ T (A,C)

will have the following formula LR⋊⋉S⋊⋉T , illustrated in Figure 4.1.

AND(
AND(
(EXTEND(QTREE, QR),A),
(EXTEND(QTREE, QS),A)),

(EXTEND(QTREE, QT),A))

(4.1)

52

AND

AND EXTEND
{A,B,C}

EXTEND
{A,B,C}

EXTEND
{A,B,C}

QTREE

QT

QTREE

QR

QTREE

QS

Figure 4.1: Example of the lazy qdag LR⋊⋉S⋊⋉T .

As another example, the next formula represents the difference between L1 and L2 and is
illustrated in Figure 4.2.

(DIFF,L1,L2) = AND(L1, NOT(L2)) (4.2)

We can see the use of the NOT functor together with a lazy qdag L instead of a quadtree.
We always push down the NOT functor until its operand is a quadtree (QTREE) or another
lqdag (LQDAG). This transformation allows us to maintain the benefits of lazy evaluation while
simplifying the logical structure of the query.

AND

L1 NOT
L2

Figure 4.2: Example of the syntax tree of the formula in Equation 4.2.

Traversing a lazy qdag results in materializing its output as a traditional quadtree. Lazy
qdags implicitly represent the outcome of a Boolean formula, using qdags only for the leaves
of the syntax tree. To materialize a lazy qdag, we follow the recursive rules outlined earlier,
utilizing traditional quadtrees with pointers to represent the output.
Definition 12 (Materialization of a lazy qdag). The Materialization of L = (f, o), a lazy
qdag, is a traditional quadtree representation (using pointers) that encodes the outcome of
traversing and evaluating the syntax tree of L.

For example, the materialization of the formula described in Equation 4.1, where the quadtrees
QR, QS and QT are the ones shown in Figures 2.10 and 2.11, is the quadtree shown in Figure
4.3.

53

0000

0000

00010001

000

0

000000

11000011

0

0

Figure 4.3: Full materialization of the lazy qdag described in Equation 4.1 on the quadtrees
shown in Figures 2.10 and 2.11.

In traditional quadtrees, a leaf is either at the last level, representing a single cell with a value
of zero or one, or at a higher level, representing an empty quadrant with a zero value. In the
lazy version, we introduce a new concept: a full leaf, which represents a quadrant filled with
ones (see Figure 4.4). This allows leaves to exist at higher levels of the tree, representing fully
populated sub-grids. This generalization of the leaf concept enables the worst-case optimal
evaluation of Boolean formulas including the NOT operator.

Definition 13 (Full leaf). A full leaf is a leaf in a quadtree that represents a quadrant
completely filled with ones.

A

B

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

(a) A grid representing the relation R(A,B).
0001

00

1000

0

0010

1

(b) Quadtree representation of the relation
R(A,B) with full leaves.

Figure 4.4

As we introduced a new concept of leaf, we need to redefine the value of a quadtree as follows:

• Return zero if the grid is empty.

• Return one if the grid is completely filled with ones (full leaf).

• Return 1⁄2 if the grid is partially filled with ones.

The updated definition of the value of a quadtree is shown in Algorithm 18.

Algorithm 18 Value on quadtrees for lqdags
Require: A quadtree (Q,M) with grid side l.
Ensure: Value 0 or 1 if the grid represented by Q is totally empty or full, respectively, otherwise

1⁄2.
1: if Q is a leaf then return the integer 0 or 1 associated with Q

2: return 1⁄2

54

4.3 Boolean algebra

To evaluate a lazy qdag, we apply a recursive approach based on the rules of its syntax tree.
We determine whether the value of the lqdag is zero (indicating an empty quadrant), one
(meaning a full quadrant), or ♢ (implying that further computation is necessary and we need
to compute the value of its children). The detailed procedure for determining the value of
a lazy qdag is presented in Algorithm 19. This approach ensures that we do not evaluate
the entire formula unless necessary. For instance, if evaluating an OR operation and the left
branch already yields 1, there is no need to evaluate the right branch, as the result is already
determined to be 1.

Algorithm 19 value (L)
Require: An lqdag L.
Ensure: Value of the root of L.

1: if L = (QTREE, Q) then return value(Q)
2: if L = (NOT, Q) then return 1 − value(Q)
3: if L = (AND,L1,L2) then
4: if value(L1 = 0) or value(L2 = 0) then return 0
5: if value(L1 = 1) then return value(L2)
6: if value(L2 = 1) then return value(L1)
7: return ⋄
8: if L = (OR,L1,L2) then
9: if value(L1 = 1) or value(L2 = 1) then return 1

10: if value(L1 = 0) then return value(L2)
11: if value(L2 = 0) then return value(L1)
12: return ⋄
13: if L = (EXTEND,L1,A) then
14: return value(L1)
15: if L = (LQDAG,L1) then return value(L1)

Evaluating an lqdag LF , which represents the formula F , results in the materialization of
LF . The process for computing the materialization of a lazy qdag is described in Algorithm
20, and the running time of this algorithm is O(|Q+

F |).

Algorithm 20 Materialize (LF)
Require: An lqdag LF whose materialization represents a formula F over relations with d

attributes.
Ensure: The materialization QF of LF .

1: if value(LF) ∈ {0, 1} then return a leaf with value value(LF)
2: for i← 0, ..., 2d − 1 do
3: Ci ←Materialize(child(L, i))
4: if max{value(C0), ...,value(C2d−1)} = 0 then return a leaf with value 0
5: if min{value(C0), ...,value(C2d−1)} = 1 then return a leaf with value 1
6: return a quadtree with value 1⁄2 and children C0, ..., C2d−1

55

To obtain the value of a node in the materialization of an lqdag, we navigate the syntax tree
without fully evaluating the formula. For example, to retrieve the first quadrant of the result
from a join query, we would navigate directly to the first child of the lqdag representing that
join rather than evaluating the entire result immediately. To browse lazy qdags efficiently,
we define the child function, which returns the i-th child of a lazy qdag. The original child
function [6] is detailed in Algorithm 21. It is important to note that when we call the child
function, we also evaluate part of the formula, as it involves a call to the value function.

Algorithm 21 child (L, i)
Require: An lqdag L(A) and an integer 0 ≤ i < 2|A|.
Ensure: An lqdag for the i-th child of L.

1: if L = (QTREE, Q) then return (QTREE,child(Q, i))
2: if L = (NOT, Q) then return (NOT,child(Q, i))
3: if L = (AND,L1,L2) then
4: if value(L1) = 1 then return child(L2, i)
5: if value(L2) = 1 then return child(L1, i)
6: return (AND,child(L1, i),child(L2, i))
7: if L = (OR,L1,L2) then
8: if value(L1) = 0 then return child (L2, i)
9: if value(L2) = 0 then return child(L1, i)

10: return (OR,child(L1, i),child(L2, i))
11: if L = (EXTEND,L1(A′),A) then
12: d← |A|, d′ ← |A′|
13: md ← the d-bits binary representation of i
14: md′ ← the projection of md to the positions in which the attributes of A′ appear in A
15: i′ ← the value in [0, 2d

′ − 1] corresponding to md′

16: return (EXTEND,child(L1, i′),A)
17: if L = (LQDAG,L1) then return child(L1, i)

For example, the materialization of the lqdag from Equation 4.1 after consulting all the
children of the root is represented in Figure 4.5. We can see that the second and fourth
children are represented by ⋄ nodes, as they need further computation (we will need to
evaluate its children if we want to have more information about these nodes).

00001/201/20

Figure 4.5: Materialization (not completed) of the lazy qdag described in Equation 4.1 after
consulting the children of the root.

The main problem of Algorithm 21 is that it recreates the entire formula for each child, leading
to unnecessary duplication of work and resource wastage. We can see in Algorithm 21 that
the output is an entirely new lazy qdag, where we may recreate the exact internal nodes
of the syntax tree and only modify the leaves: the pointer to the child of the quadtrees.
Additionally, retrieving information about a quadtree, such as the number of attributes,

56

requires traversing the entire syntax tree to reach a leaf. This process is inefficient, as it
necessitates evaluating parts of the formula to obtain this type of information that might be
needed later.

To illustrate, assume we want to obtain the output of the second quadrant of the join between
the relations R, S, and T (represented as the quadtrees shown in Figures 2.10 and 2.11),
that is, child(LR⋊⋉S⋊⋉T , 1)

1. In that case, we need to descend through the syntax tree to
obtain the second child of the materialization of LR⋊⋉S⋊⋉T , that is, the second quadrant of the
quadtree representing the formula in Equation 4.1. The formula in Equation 4.3 represents
the call to the child function.

child(LR⋊⋉S⋊⋉T , 1) =

child(
AND(

AND(
EXTEND(QTREE(QR),A),
EXTEND(QTREE(QS),A)),

EXTEND(QTREE(QT),A)),
1)

(4.3)

With this version of child, we will recreate and return the formula for the child. The process
to generate the output for this example is as follows:

child(LR⋊⋉S⋊⋉T , 1)

= AND(child(LR⋊⋉S , 1),

child(LEXTENDT
, 1))

= AND(AND(child(LEXTENDR
, 1),

child(LEXTENDS
, 1)),

EXTEND(child(LT , 1),A))
= AND(AND(EXTEND(child(LR, 1),A),

EXTEND(child(LS , 0),A)),

(QTREE, EXTEND(1010 ,A)))

= AND(AND((QTREE, EXTEND(0010 ,A)),

(QTREE, EXTEND(0001/2 ,A))),

(QTREE, EXTEND(1010 ,A)))

1The index starts with 0

57

It is important to note that the quadtrees illustrated in the example are pointers to a subtree
of the quadtree. In the end, CHILD will return an entirely new lazy qdag, and it will rewrite
the entire syntax tree, not only the leaves that are the ones that were modified.

Figure 4.6 illustrates the process of obtaining the first and the second child. We can observe
that evaluating the entire formula is not necessary for the first child; specifically, evaluating
EXTEND(QTREE(QS),A) and EXTEND(QTREE(QT),A) is unnecessary because the intersection
of EXTEND(QTREE(QR),A) and EXTEND(QTREE(QS),A) already results in an empty quadrant.
The blue and red nodes in the figure highlight the parts of the formula that need to be
evaluated to retrieve the second child. Additional values are included in the figure solely for
illustration purposes and are not required for the computation of the second child.

In Figure 4.7, we present the materialization of the lazy qdag after evaluating the formula
for all the children of the root node.

New version of lqdags. We modified the definition of lazy qdags to improve efficiency by
avoiding copying the formula for each child node. Instead of recreating the entire syntax tree
for every child, we separate the information of the original lqdag into four parts. This allows
us to store only the necessary changes on the leaves (a quadtree or another lazy qdag) while
maintaining a pointer to the parent node’s formula.

The new data structure consists of four fields:

1. The first part consists of the formula of the lqdag, i.e., the syntax tree as defined in
Definition 4.2, without storing the quadtrees or lqdags as leaves.

2. The second part is an array that stores the leaves of the syntax tree (quadtrees or
lqdags).

3. The third part is an array indicating the positions in the quadtrees; if a leaf is an lqdag,
this part remains empty.

4. The fourth part holds the current materialization of the lqdag. It includes the value
of that node, its position in the materialized quadtree (level and coordinates), and an
array of pointer to lqdags representing its children. If a child is not yet materialized,
the pointer is null; otherwise, it points to another lqdag with the same formula and
array of quadtrees or lqdags.

The first and second fields remain constant for all children of a node and recursively throughout
its descendants, while the third and fourth fields vary for each child. This design allows us to
access crucial information more efficiently, such as the number of attributes, grid size, and
the number of children, without the need to traverse the entire formula to reach the quadtree
or lqdag leaves.

In Figure 4.8, we show the new version of the lqdag for Equation 4.3 (second child of LR⋊⋉S⋊⋉T).
The coordinates in position and materialization fields represent the starting position of the
quadrant. When we reach the final level of the qdags, these coordinates indicate the exact
point corresponding to the result of evaluating that part of the formula.

58

AND

AND
EXTEND
{A,B,C}

EXTEND
{A,B,C}

EXTEND
{A,B,C}

QTREE

QT

QTREE

QR

QTREE

QS

1⁄2

11
0
10

1⁄2

01
0
00

MR = [0, 1, 2, 3, 0, 1, 2, 3]

0
11

1⁄2

10
0
01

1⁄2

00

MS = [0, 0, 1, 1, 2, 2, 3, 3]

0
11

1⁄2

10
1⁄2

01
0
00

MT = [0, 1, 0, 1, 2, 3, 2, 3]

QF

111110101100011010

⋄
001

0
000

1/2

0

1/2 1/2

⋄
0

⋄

Figure 4.6: Join R ▷◁ S ▷◁ T . At the top, we illustrate the traversal of the syntax tree of the join
R ▷◁ S ▷◁ T to get the first and the second child. We show the mapping function of each qdag at
the leaves of the syntax tree. At the bottom, we show the materialization of the lazy qdag after

computing the second child. Note that we did not need to evaluate the extension of the relation T .

This approach enables efficient navigation through the syntax tree without duplicating and
storing the original formula. Additionally, each lazy qdag includes supplementary information,
such as the number of attributes, grid size, and the number of children. This extra information
facilitates the retrieval of relevant details and further enhances navigation.

59

QF

0
111

0
110

0
101

0
100

1⁄2

011

0
010

1⁄2

001

0
000

Figure 4.7: Result of materializing all the children of the root of the join R ▷◁ S ▷◁ T .

Lqdag as a leaf To extend our functionalities even more, we can use lqdags as leaves
instead of qdags. This way, we can compute more complicated formulas and share intermediate
results. For example, if we want to compute the union of LR⋊⋉S⋊⋉T and a qdag QU , that
represents the relation U(A,B,C), we can use an lqdag and a qdag as leaves. We illustrate
this lqdag in Figure 4.9.

Worst-case optimality In Section 2.6, we showed that the full join query J = R1 ▷◁ ... ▷◁
Rn over a database D is computed in time O(2ρ∗(J,D) · 2dn logmin(l, S)) = Õ(2ρ

∗(J,D)). Let
us define F , a JUC query 2, on the relations {R1, ..., Rn} over a database D of the domain
[0, l − 1], S =

∑
i |Ai|, and F(D)∗ the maximum size of the output of F over instances D′

with relations R′
1, ..., R

′
n of respective sizes |R′

i| = O(|Ri|). We can evaluate this formula in
O(F(D)∗ · 2d|F | logmin(l, S)) = Õ(F(D)∗), which indicates that the algorithm is worst-case
optimal in terms of data complexity [6].

4.4 Full relational algebra

As we saw in the previous section, we can construct more complex formulas by combining
simpler ones using the syntax tree. We will now extend lqdags to handle the full relational
algebra, including selection and θ-join operations, as well as projection and its derivatives.
It is important to note that, unlike Boolean formulas, we can no longer guarantee worst-case
optimality for these extensions.

Definition 14 (Relational algebra formula). A Relational algebra formula F is composed
by selection, projection and the Cartesian product operations over relations.

Selection and θ-join

We use selection to retrieve a subset of tuples that satisfy certain condition(s). The predicate
is a logical expression on the attributes of F and acts as a filter for the results.

Definition 15 (Selection). The selection operation (or restriction) is defined as a function
σθ(F) that takes a subexpression F and a predicate θ, where F is a formula over the relation

2A formula composed by Join, Union and Complement operations, that is, the Boolean algebra.

60

Lqdag

Formula

Qdags/
Lqdags

Position

Materialization

AND

AND
EXTEND
{A,B,C}

EXTEND
{A,B,C}

EXTEND
{A,B,C}

QTREE0 QTREE1

QTREE2

0
1
2

QR

QS

QT

0
1
2

{ level = 1,
current node = 1,

coordinates = (4, 0)}
{ level = 1,

current node = 0,
coordinates = (0, 0)}

{ level = 1,
current node = 1,

coordinates = (4, 0)}

{ node value = ⋄,
level = 1,

coordinates = (4, 0, 0),
lqdag_children[8]}

Figure 4.8: New version of lqdags. We show the lqdag of the second child of LR⋊⋉S⋊⋉T . Formula is
the syntax tree of the lqdag, Qdags is an array with the leaves of the syntax tree, Position is an

array with the position in the quadtrees, and Materialization is the current materialization of the
lqdag.

R(A). The predicate can involve any binary comparison operation such as =, ̸=, <,>,≤, and
≥, applied to attributes of the relation R or values within that domain [46].

In lqdags, the selection function operates on an lqdag LF whose materialization is QF ,
returning another lqdag LF ′ whose materialization is QF ′ , where |QF ′ | ≤ |QF |. The selection
operation can be defined as follows:

61

Lqdag

Formula

Qdags/
Lqdags

Position

Materialization

OR

LQDAG0 QTREE1

0
1

LR⋊⋉S⋊⋉T

QU

0
1

{ }

{ level = 0,
current node = 0,

coordinates = (0, 0)}

{ node value = ⋄,
level = 0,

coordinates = (0, 0, 0),
lqdag_children[8]}

Figure 4.9: Union between LR⋊⋉S⋊⋉T and QU . We show the lqdag of the union between a qdag and
another lqdag.

(SELECT,LF (A), θ) = (AND,LF (A), pred(θ,A)) (4.4)

where pred(θ,A) represents a virtual lqdag (never materialized) that has the same attributes
A and includes only those cells that satisfy the predicate θ. The and operation is then used
to combine the two lqdags, filtering the results according to the specified predicate.

The predicate is a logical expression using the operators =, ̸=, <,>,≤, and ≥, as defined.
These operators can be applied either over a pair of attributes (e.g., A < B) or over a pair
consisting of an attribute and a constant within that attribute’s domain (e.g., B ≥ 5).

The predicate represents a virtual lqdag that can be defined as (QTREE, Qθ). Instead of
building the quadtree, we simulate the navigation through the lazy qdag (QTREE, Qθ) and
compute the value directly. Figures 4.10 and 4.11 show two examples of predicates and their
corresponding quadtree representations (if we materialize them). In Algorithm 22, we show
how to do this [6].

62

A

B

(a) Grid with the values
of A and B.

1101

10

1101

10

1101

10

1101

10

1101

10

1101

10

1101

10

1101

(b) Qθ representing the predicate A < B.

Figure 4.10: An illustration of the quadtree for the predicate A < B.

A

B

(a) Grid with the values
of A and B.

11

11

11001100

11

11001100

00

11

11001100

11

11001100

00

(b) Qθ representing the predicate B ≥ 5.

Figure 4.11: An illustration of the quadtree for the predicate B ≥ 5.

Algorithm 22 Value of Qθ

Require: A predicate θ and a grid of side l.
Ensure: Value 1 or 0 if the quadtree satisfies or not the predicate for every cell (or for any cell) of

the grid. Otherwise 1⁄2.
1: if θ does not hold for any cell in the grid then return the integer 0
2: if θ holds for every cell in the grid then return the integer 1
3: return 1⁄2

We define the predicate as the following object:

predicate = {att1,

att2,

constant,
operator}

(4.5)

The process of computing the value of a predicate operates in O(|θ|) time because each
logical expression that compares attributes and constants using the defined operators can
be evaluated in constant time for entire subgrids, as we can see in Algorithm 23. This
algorithm takes the predicate θ, the coordinates (coord) of the starting point where the
subquadrant begins, the size of the quadrant (quadrant_side) being evaluated, and the
number of attributes (nAtt).

63

For example, if nAtt = 2, quadrant_side= 4, and coord = (0, 4), the algorithm evaluates
the subgrid that goes from (0, 4) to (3, 7). Although not all operators are explicitly listed, they
follow a similar logic, and the algorithm has been implemented for all the binary operators
mentioned earlier.

Additionally, we can perform a θ-join, which involves selecting tuples from the Cartesian
product (cross join) of two relations that could or could not share attributes to combine
data from different relations. The Cartesian product concatenates the tuples from relation
R1 with the tuples from relation R2. Then, the θ-join is a binary operation that selects the
tuples from this new relation resulting from the Cartesian product between R1 and R2 and
satisfies the predicate θ. This operation is defined as follows:

(THETAJOIN,L1,L2, θ) = (SELECT(JOIN,L1,L2), θ) (4.6)
where:

(JOIN,L1(A1),L2(A2)) = (AND, (EXTEND,L1,A1 ∪ A2), (EXTEND,L2,A1 ∪ A2)) (4.7)

Worst-case optimality The AGM bound for a formula LF = (AND, (QTREE, R), (QTREE, Qθ))
is F (D)∗ = min(|R|, |Qθ|). A general selection formula is defined as LF = (SELECT,L, θ). We
saw that Algorithm 22 operates in time O(|θ|). If we include this cost as part of |F |, then the
output of the selection formula can be computed in time O(|Q+

F | · 2d|F |). As a result, since
|Q+

F | is bounded by F (D)∗, we can achieve worst-case optimal performance when the predicate
can be pushed down to the leaves of the syntax tree, i.e., when the predicate selects tuples
from a single relation. However, we can no longer guarantee worst-case optimality when the
predicates combine two or more tables [6].

Similarly, evaluating a θ-join formula using lqdags is not worst-case optimal due to the join
predicates involving attributes from different relations.

Projection and derivatives

We use the projection operation to retrieve only a subset of attributes from a relation. This
function takes a relation and a list of attributes as input and produces a new relation that
includes only the specified attributes. The resulting relation contains a subset of the original
tuples, ensuring each tuple appears only once by eliminating duplicates.
Definition 16 (Projection). In relational algebra, a projection is a function πA′ : R(A) →
R(A′), whereA′ ⊆ A and takes a relation and a list of attributes, and outputs another relation
with the specified attributes. A tuple will be included in the projection if there is an extension
of that tuple in the original relation. For example, R(A,B,C) = {(0, 1, 1), (2, 5, 4), (0, 1, 3)},
A′ = {A,B} , πA′(R) = {(0, 1), (2, 5)} [46].

Let F be a formula and its lazy qdag LF (A). The lazy qdag of the projection is defined as
follows:

64

Algorithm 23 Evaluation of θ

Require: A predicate θ, the coordinates coord of the quadrant that represents that node, the size
of the quadrant represented by the node quadrant_side, and the number of attributes nAtt.

Ensure: Value 1 or 0 if the quadtree satisfies or not the predicate for every cell (or for any cell) of
the grid. Otherwise 1⁄2.

1: for i in nAtt do
2: min_att[i] = coord[i]
3: max_att[i] = coord[i] + quadrant_side −1
4: if θ is applied over a pair of attributes then
5: min_att_1 = min_att[θ.att_1]
6: max_att_1 = max_att[θ.att_1]
7: min_att_2 = min_att[θ.att_2]
8: max_att_2 = max_att[θ.att_2]
9: switch θ.operator do

10: case EQUAL
11: if quadrant_side == 1 then return (min_att_1 == min_att_2)
12: else if min_att_1 == min_att_2 then return 1/2
13: else
14: return 0
15: //... other operators
16: case GREATER
17: if quadrant_side == 1 then return (min_att_1 > min_att_2)
18: else if min_att_1 > max_att_2 then return 1
19: else if max_att_1 > min_att_2 then return 1/2
20: else
21: return 0
22: else //θ is applied over an attribute and a constant
23: switch θ.operator do
24: case EQUAL
25: if quadrant_side == 1 then return (min_att_1 == θ.constant)
26: else
27: if min_att_1 ≤ θ.constant and max_att_1 ≥ θ.constant then return 1/2
28: else
29: return 0

30: //... other operators
31: case GREATER
32: if quadrant_side == 1 then return (min_att_1 > θ.constant)
33: else if min_att_1 > θ.constant then return 1
34: else if max_att_1 ≥ θ.constant then return 1/2
35: else
36: return 0

65

L = (PROJECT,LF (A),A′) (4.8)

where |A| = d, |A′| = d′,A′ ⊆ A.

To begin, we define how to compute the value of the projection formula. Algorithm 24
describes this process. This algorithm operates in O(1) time because the value of the
projection formula is directly derived from the value of the formula LF .

Algorithm 24 Value of L = (PROJECT,LF (A),A′)

Require: A formula LF of the relation R(A) and a list of attributes A′.
Ensure: Value 0 or 1 if the value of the original formula LF is 0 or 1. Otherwise ⋄.

1: if value(LF) is 0 or 1 then return value(LF)
2: return ⋄

To compute the materialization of the quadtree QL, we need to determine the children of the
nodes. This involves performing an OR operation between the children that share the same
values for the attributes in A′. In Figure 4.12, we illustrate how to divide the qdag, and in
Example 6, we demonstrate how to project L onto attributes A or B.

A

B

C

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

01234567
Π0 Π1

Π1

Π2

Π2

Π3
Π3

Π3

Π5

Π6 Π7

Π7

Figure 4.12: Illustration of how we divide the qdag into eight quadrants to recursively apply
projection.

Example 6 (Projection to A and B). For example, if value(LF ({A,B})) /∈ {0, 1}, and
L = (PROJECT,LF , {A}), then:

child(L, 0) = (PROJECT, (OR,child(LF , 0),child(LF , 2)), {A})
child(L, 1) = (PROJECT, (OR,child(LF , 1),child(LF , 3)), {A})

For L = (PROJECT,LF , {B}), it would be:

child(L, 0) = (PROJECT, (OR,child(LF , 0),child(LF , 1)), {B})
child(L, 1) = (PROJECT, (OR,child(LF , 2),child(LF , 3)), {B})

We can see an illustration of the projection of L = (PROJECT,LF , {B}) in Figure 4.13. The
full evaluation of this operation is shown in Figure 4.14

66

A

B

(a) Relation R(A,B).

Q2

Q1

(b) Projection on B.

Π(LF{A,B},A′ = {B})

♢

♢
Q2

OR

♢

♢

♢

0

OR
00

1

OR
01

0

♢

0♢

1

OR
10

0

OR
00

0

1

Q1

OR
♢

0

OR
00

1

OR
10

1

(c) L = (PROJECT,LF , {B}). Syntax tree of the
projection with its non-pruned quadtree.The
nodes that are not materialized are shown in

grey, just for illustration.

Figure 4.13: Projection of LF (A,B) onto B.

0110

1

Figure 4.14: Full materialization of projection L = (PROJECT,LF , {B}) from Figure 4.13.

In the original version of lqdags [6], the formula would grow exponentially as we descend
through the syntax tree, as shown in Figure 4.13. We implement the projection operation
based on the new version of lqdags (see Figure 4.8), where the formula remains the same across
all children. However, the materialized children still grow exponentially because evaluating
them involves a recursive OR operation.

Figures 4.15 and 4.16 illustrate this new projection implementation. In the first figure, we
show the lqdag for the result of projecting the relation R(A,B) onto A. In the second figure,
we show the lqdag of the projection of the relation R(A,B,C) onto B.

When we project a relation from |A| to |A′| attributes, we map the original children to their
projections by performing an OR operation. For example, in Figure 4.15, the first child of the
projection of the relation R(A,B) to R(A) is achieved by performing an OR between the first
and third children of the original relation. The second child results from an OR between the
second and fourth children. In Figure 4.16, where we project a relation of three attributes
(R(A,B,C)) to just one attribute (R(B)), the first child is formed by an OR of the first four
children, and the second child by an OR between the last four children. The value of a child
projection is outlined in Algorithm 25. It shows that the calculation involves a multi-OR
operation among certain children of the lqdag.

67

Projection

Formula

Lqdag

Materialization

Π

OR OR

ΠL0 ΠL2 ΠL1 ΠL3

L

{ node value = ⋄,
coordinates = (0),

projection_children[4]
materialization_children[2]}

Figure 4.15: Projection L({A}) = (PROJECT,LF ({A,B}), {A}). We can see in the syntax tree that
we will have four leaves of projections, each corresponding to the projection of the first quadrant,
the third, the second and the fourth, respectively. In the materialization, we will have a node with
its coordinates, a pointer to the projection children if the value of the node is ⋄, and a pointer to

its two children if the value of the node is ⋄.

Algorithm 25 value of Child of L = (PROJECT,LF (A),A′)

Require: A formula LF of the relation R(A) and a list of attributes A′, i representing the i-th
child. Additionally, a list of indexes J identifies the corresponding children to perform the OR
operation to obtain the i-th child.

Ensure: Value 0 if all the children are empty, 1 if one lqdag is a full leaf or ⋄ otherwise.
1: m ← 0
2: for j ← J do
3: val_j ← value(child(LF , j))
4: if val_j = 1 then return 1

5: m ← max(m,val_j)
6: if m = 0 then return 0

7: return ⋄

If the value of a child projection is represented as ⋄, we need further computation. This
means we need to calculate the projections for the involved children. For instance, in the
example illustrated in Figure 4.16, we must compute the projections of the first four children
to proceed with the calculation of the first child’s value. However, if the value is either 0 or
1, we do not need to compute the projections for the children. Algorithm 26 demonstrates

68

Projection

Formula

Lqdag

Materialization

Π

OR OR

OR OR OR OR

ΠL0 ΠL1 ΠL2 ΠL3 ΠL4 ΠL5 ΠL6 ΠL7

L

{ node value = ⋄,
coordinates = (0),

projection_children[8]
materialization_children[2]}

Figure 4.16: Projection L({B}) = (PROJECT,LF ({A,B,C}), {B}). In this case, the syntax tree
will have eight leaves of projections, each corresponding to one of the quadrants of the cube. In the
materialization, we will have a node with its coordinates, a pointer to the projection children if the

value of the node is ⋄, and a pointer to its two children if the value of the node is ⋄.

how to compute the projection leaves of a child when its value is ⋄.

Algorithm 26 child of L = (PROJECT,LF (A),A′)

Require: A formula LF of the relation R(A) and a list of attributes A′, i representing the i-th
child. Additionally, a list of indexes J identifies the corresponding children to perform the OR
operation to obtain the i-th child.

Ensure: An array of projections to compute the i-th child of L.
1: for j ← J do
2: val_j ← value(child(LF , j))
3: if val_j = 0 then
4: projections_i[j] ← null
5: else
6: projections_i[j] ← new projection

Projection also allows us to perform other relational algebra operations such as semijoin,
antijoin, and division. The semijoin operation returns the tuples from the first relation that
have a match in the second relation. The antijoin operation returns the tuples from the first
relation that do not have a match in the second relation. The division operation returns the

69

tuples from the first relation that are not in the second relation, with the attributes from the
first one that are not in the second one. These operations are defined as follows:

(SEMIJOIN,L1(A1),L2(A2)) = (PROJECT, (JOIN,L1,L2),A1)

(ANTIJOIN,L1(A1),L2(A2)) = (PROJECT, (JOIN,L1, (NOT,L2)),A1)

(DIVISION,L1(A1),L2(A2)) = (DIFF,L′
1, (PROJECT, (DIFF, (JOIN, (L′

1,L2),L1),A1 \ A2)))

where L′
1 = (PROJECT,L1,A1 \ A2) and A2 ⊆ A1

Worst-case optimality Projection is not worst-case optimal. In the worst case, we may
need to traverse the entire quadtree to compute the OR operation between different children.
Consequently, the lqdag L of the projection could grow as large as the lqdag of the original
formula LF , even though the upper-bound on the output may be smaller. This is illustrated
in Figure 4.13.

When projecting an lqdag from |A| = d dimensions to a d′-dimensional lqdag, the child
algorithm increases the evaluation by 2d−d′ nodes each time. Therefore, |L| cannot be
considered a constant concerning data complexity.

4.5 Experimental results

As discussed in Section 3.6, we implemented all our algorithms in C++17 using the O3
optimization flag. We conducted the same experiments across all algorithms and data
structures, utilizing the graph pattern outlined in Chapter 2.

In our first experiment we performed 50 different tests for each algorithm across various
pattern queries (see Figure 2.15). The second experiment focused exclusively on tests that
generated more than 1000 results. We did not test the relational algebra, so this additional
experiment will remain as future work. All tests were carried out using a single thread on
an Intel Xeon E5-2609 machine equipped with 128GB of DDR3 1066 ECC RAM and three
SATA3 hard drives (2 x 1TB and 1 x 2TB).

Furthermore, to compare the lazy qdags join algorithm with the original algorithm, we
modified the original join algorithm to build the compressed quadtree once we achieved
k results. As in the previous experiment (see Section 3.6), we tested the sequential version
of the original algorithm. Since the lazy qdags algorithm experienced a significant number
of terminated processes in certain queries, we only included those queries that could be
successfully completed by both algorithms. As a result, in the second experiment we will
observe fewer patterns.

70

First scenario

In Figures 4.17 and 4.18, we plot the execution time and the number of tuples visited to
retrieve k = {1, 10, 100, 1000} results using both the lazy qdags and the original quadtree.
Figure 4.17 shows that the original algorithm outperforms the lazy qdags across all patterns.
Generally, the execution time for lazy qdags increases with k. In contrast, the original
algorithm’s execution time remains more stable as k increases.

In Figure 4.18, we observe that lazy qdags visit the same quantity of tuples than the original
algorithm, as expected. Similar to the previous figure, the number of tuples visited increases
as the value of k rises. For most patterns (J3, J4, P2, P3, S1, S2, S3, S4, T3, T4, Tr1, and
Tr2), this increase is particularly noticeable between k = 1 and k = 10. However, for the
pattern Ti2, a significant increase is observed between k = 100 and k = 1000.

Second scenario: join produces many results

As discussed in Section 3.6, we also evaluated our algorithms when the join generates a large
number of results. In Figure 4.19, we plot the execution time required to retrieve the first
k = {1, 10, 100, 1000} results. Consistent with the previous scenario, the original algorithm
demonstrates superior performance.

Notably, we observe a clear distinction as k begins to increase. When retrieving only a few
results (k < 100), the performance of lqdags is similar to the original algorithm, specially for
the patterns J3, J4, P2, S3, T2, T4, Ti2. But, as k begins to increase, the performance of
lqdags deteriorates leading to a significant gap between the two algorithms.

In Figure 4.20, we observe that both algorithms visit the same number of tuples, as expected.
The number of tuples visited begins to increase as k grows, but the growth becomes more
pronounced for k > 100.

71

0

10

Ti
m

e
(s

)
J3

0

25

50

J4

0.0

0.2

0.4
P2

0

2

4

Ti
m

e
(s

)

P3

0

25

50

P4

Algorithms
Original
Lqdags

0.00

0.25

0.50

Ti
m

e
(s

)

S1

0

5

S2

0

2

S3

0

5

Ti
m

e
(s

)

S4

0.0

0.1

0.2

T2

0

2

T3

0

10

Ti
m

e
(s

)

T4

0.00

0.25

0.50

Ti2

0

10

Ti3

10 1000
k results (log scale)

0

20

Ti
m

e
(s

)

Ti4

10 1000
k results (log scale)

0.000

0.025

0.050
Tr1

10 1000
k results (log scale)

0.0

0.1

0.2
Tr2

Time to retrieve the first k results
 (Lazy qdags)

Figure 4.17: Time (in seconds) for lqdags to retrieve the first k results.
72

0.5

1.0

Nu
m

be
r o

f t
up

le
s 1e6 J3

2

3

1e7 J4

50000

100000
P2

200000

400000

Nu
m

be
r o

f t
up

le
s P3

0.5

1.0

1e7 P4

Algorithms
Original
Lqdags

20000

40000

Nu
m

be
r o

f t
up

le
s S1

400000

600000

S2

100000

200000

S3

200000

400000

600000

Nu
m

be
r o

f t
up

le
s S4

0

25000

50000

T2

200000

400000
T3

200000

400000

600000

Nu
m

be
r o

f t
up

le
s T4

50000
100000
150000

Ti2

0.5

1.0

1.5

1e6 Ti3

10 1000
k results (log scale)

1.0

1.2

Nu
m

be
r o

f t
up

le
s 1e6 Ti4

10 1000
k results (log scale)

5000

10000

Tr1

10 1000
k results (log scale)

20000

40000
Tr2

Number of tuples to retrieve the first k results
 (Lazy qdags)

Figure 4.18: Number of tuples visited in lqdags to retrieve the first k results.
73

0

2

4

6

Ti
m

e
(s

)
J3

0

20

40

60

80
J4

0.00

0.05

0.10

0.15

0.20

0.25

0.30
P2

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

P3

0

50

100

150

200

250
P4

0.00

0.02

0.04

0.06

0.08

0.10

S3

1 10 100 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(s

)

T2

1 10 100 1000
k results (log scale)

0

1

2

3

4

5

T4

1 10 100 1000
k results (log scale)

0.00

0.25

0.50

0.75

1.00

1.25
Ti2

1 10 100 1000
k results (log scale)

0

20

40

60

80

100

Ti
m

e
(s

)

Ti3

Algorithms
Original
Lqdags

Time to retrieve the first k results
 (Lazy qdags)

Figure 4.19: Time to retrieve the first k results using lqdags to retrieve the first k results for a
join that produces many results.

74

0

200000

400000

600000

800000

Tu
pl

es
 v

isi
te

d

J3

0.0

0.2

0.4

0.6

0.8

1.0

1e6 J4

0

20000

40000

60000

80000
P2

50000
75000

100000
125000
150000
175000
200000

Tu
pl

es
 v

isi
te

d

P3

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1e6 P4

0

2000

4000

6000

8000

10000
S3

0

50000

100000

150000

Tu
pl

es
 v

isi
te

d

T2

100 101 102 103

k results (log scale)

0

50000

100000

150000

200000

T4

100 101 102 103

k results (log scale)

0

100000

200000

300000

Ti2

100 101 102 103

k results (log scale)

2

3

4

No
de

s v
isi

te
d

1e6 Ti3

Algorithms
Original
Lqdags

Number of tuples visited to retrieve the first k results
 (Lazy qdags)

Figure 4.20: Number of tuples visited to retrieve the first k results using lqdags to retrieve the
first k results for a join that produces many results.

75

Chapter 5

Discussion

In Sections 3.6 and 4.5, we presented the results of our experiments. We ran the same
experiments for all our algorithms (see Figure 1.1) and data structures, including traditional
qdags (the sequential version) and lqdags. We used the graph patterns described in Chapter 2
to evaluate the join performance. As mentioned, we did not evaluate Boolean algebra, which
remains for future work. In this section, we compare the results of the different approaches
and discuss the trade-offs between them.

Gradual retrieval

In both scenarios, the original algorithm outperformed the gradual retrieval algorithms
regarding time complexity across all patterns for each value of k. This was unexpected,
as we had anticipated that the new algorithms would be faster for the smaller values of k.

The estimators used to predict the most promising nodes to visit were not effective, as the
number of tuples visited by the gradual retrieval algorithms was very similar to that of the
original algorithm, and in some cases, even worse. Therefore, the original algorithm is clearly
the best option for retrieving the first k results, as it is a simpler approach that does not
require additional logic of computing the number of leaves.

In the profiler analysis of the original and the gradual retrieval algorithm (refer to Figures
5.1 and 5.2), we observe that in the original algorithm, the cost of the join operation is
primarily driven by the cost of materializing a node, which accounts for 54% of the total
cost. In contrast, the gradual algorithm shows that this cost is reduced to approximately
6%, with the cost of computing the number of leaves significantly increasing to 75%. This
highlights that the overhead introduced by the logic at each step is considerable.

According to Table 3.2, we expected that algorithms utilizing DFUDS would outperform
those using LOUDS in terms of time, as discussed in Section 3.2. However, LOUDS
generally performed better than DFUDS in both scenarios, although the difference was not
substantial. This may be explained by the fact that DFUDS implementation of the operations
is O(log n), not O(1) as in theory. The balanced parentheses implementation used in DFUDS,

76

Figure 5.1: Profiler of the original algorithm to retrieve k = 1000 results.

Figure 5.2: Profiler of the gradual retrieval algorithm (LOUDS-Backtracking) to retrieve k = 1
result.

as proposed by [47], actually results in logarithmic operations. Additionally, as discussed in
Section 2, using DFUDS requires storing the tree topology, which incurs additional space
usage. Therefore, in this scenario, using LOUDS is the best option in terms of time and
memory complexity.

Figures 5.3 and 5.4 illustrate the profiler results for the gradual retrieval algorithm using
LOUDS and DFUDS, respectively. When using LOUDS, most of the cost arises from the
recursive calls to compute the number of leaves, which essentially involves a rank operation
for each function invocation. While in the case of DFUDS, the primary cost stems from
computing the excess using the parentheses structure, indicating that the cost is associated
with the specifics of the DFUDS implementation.

Regarding the strategies used, we observed that the backtracking strategy outperformed
the optimal order strategy in terms of time, and the difference in performance is quite
significant in both scenarios. In the second scenario, the backtracking algorithms were nearly
as efficient as the original algorithm when k was small. In fact, there was no significant
performance difference for patterns such as J3, P2, S3, T2, T4, and Ti2 when k < 100.

There was no significant difference between the representations (LOUDS and DFUDS);
however, a more notable gap existed between the different approaches (backtracking versus
optimal order). Therefore, the complexity of calculating the number of leaves descending
from a node was not substantial enough to favor one representation over the other. Moreover,
choosing one strategy over the other yields different performance, with a more pronounced
difference than the tree representations.

In terms of the number of tuples visited, we noticed that, in average, the backtracking
strategy visited fewer nodes than the optimal order strategy. The graphs also revealed
that the optimal order strategy visited fewer tuples for some patterns than the backtracking
strategy. That said, we cannot draw any definitive conclusions about which approach is

77

Figure 5.3: Profiler of the gradual retrieval algorithm using LOUDS-Backtracking.

Figure 5.4: Profiler of the gradual retrieval algorithm using DFUDS-Backtracking.

78

superior based solely on the topology of the queries. For instance, in the case of cyclic
queries like S3 and Tr1, one pattern showed that the optimal order strategy visited fewer
nodes. In contrast, the backtracking strategy had fewer nodes visited for another pattern.

We observed a slight increase in the number of tuples visited as k increases, but we expected
a more significant difference. We anticipated that the new algorithms would traverse fewer
tuples than the original algorithm for small values of k since they are designed to focus on
those nodes most likely to yield results. However, this was not the case for the backtracking
strategy when k ≤ 100. In all other cases, we successfully achieved our goal of visiting fewer
nodes compared to the original algorithm.

Analyzing both metrics, we found that visiting more nodes correlates with increased time
for each algorithm. However, visiting fewer nodes does not necessarily guarantee that an
algorithm will be faster. For instance, in pattern J4, the original algorithm visits more nodes
than any other algorithm for k > 1, yet it remains the fastest among them.

Furthermore, the backtracking strategy outperformed the optimal order method in terms
of execution time. The slowness of the optimal order strategy can be mainly attributed to
the costs associated with the size of the priority queue. Additionally, this advantage of the
backtracking strategy could be attributed to its high level of optimization. For instance,
instead of using a priority queue to manage the order of traversing the tuples, we utilize
a vector of pairs consisting of <index, weight> for the tuples and simply sort this vector.
This operation is significantly simpler than maintaining a priority queue and retrieving the
maximum element multiple times.

In conclusion, the overhead introduced by the logic at each step to estimate the nodes most
likely to yield results outweighed the benefit of visiting fewer nodes. This suggests that
further optimization of the logic and estimators is necessary to improve the performance of
the new algorithms.

Ranked enumeration

We observed in both scenarios that the ranked enumeration algorithms are slower than
the original algorithm. We had anticipated that the ranked enumeration algorithms would
outperform the original algorithm because they traverse the qdags using the highest-priority
tuples. In contrast, the original algorithm has to maintain a heap with the top k results seen
so far. Although we did not perform this last operation, the difference between the novel and
original algorithms was significant, with the original algorithm remaining the fastest option
even when accounting for potential overheads.

We did see a few promising results for k = 1 in some patterns of the “first scenario”, particular
for P2, S3, T2, T3, Ti2 and Ti3. In the “second scenario”, we achieved better outcomes and
were able to retrieve the top result faster than the original algorithm in certain patterns,
including P2, T2, T3 and Ti2. However, the difference in performance was not as significant
as we had hoped.

79

Figure 5.5: Profiler of the ranked enumeration algorithm (LOUDS-Backtracking) to retrieve
k = 1 result.

In Figure 5.5, we observe the profiler for one of the ranked enumeration algorithms. The
most costly operation is the one that calculates the priority of the tuples, referred to as
get_range_leaves. In contrast, the most expensive operation in the original algorithm,
materialize_node (as shown in Figure 5.1), represents only 1.9% of the total cost in the
ranked enumeration algorithm. This indicates that the additional operations we introduced
to compute the priorities are significantly more expensive.

Generally, DFUDS was faster than LOUDS, contrasting with the gradual retrieval algorithms.
However, similarly to those algorithms, the performance difference between using LOUDS
and DFUDS was not significant. Additionally, the backtracking approach proved to be
quicker than the optimal order strategy.

The number of tuples visited indicates that our algorithms traverse significantly fewer
tuples than the original algorithm, when k is small. In the “first scenario”, we visit nearly
37% of the tuples that the original algorithm visits, and in the “second scenario”, we visit
almost 1%. This significant difference between the two scenarios suggests that our approach
is effective when the join produces many results.

Despite this improvement in node traversal, the overhead associated with the new algorithms
still makes them slower than the original algorithm. Nevertheless, if we decided not to store
the priorities (to save space), we would need to compute them for each tuple. In this case,
traversing fewer nodes could lead to better overall results.

Gradual retrieval and ranked enumeration

We observed some encouraging results in terms of time complexity for the patterns P2, T2
and Ti2 (for gradual retrieval and ranked enumeration). These three patterns share a similar
morphology (see Figure 2.15); they are the only queries that require a join between two
relations. However, we could not identify any particular reason for this behavior. A more
exhaustive study of the patterns is needed to understand the behavior of the algorithms.
Additionally, we could not identify any correlation between the number of results produced
in the first scenario (see Table 3.3) and the time complexity.

80

We did have better results in the “second scenario” compared it with the first one, where
the join operation produces numerous results. But the original algorithm continues to be the
fastest generally.

We observed that our algorithms were also practical in scenarios with few results and where it
was challenging to identify the intersection points between the qdags. We had not anticipated
this scenario as a particularly useful case, as we designed these algorithms to quickly retrieve
the first or top results when the join produces many results.

Another interesting feature of our algorithms is that they directly output the coordinates of
the results. In contrast, the original algorithm produces a quadtree that must be traversed
to locate the results. This can be an advantage when we are only interested in the results.
However, if we want to combine the qdag output with other qdags, we need to build a
quadtree based on the results.

We observed that LOUDS outperforms DFUDS in gradual retrieval algorithms, while the
opposite happened for ranked enumeration algorithms. The functions get_num_leaves and
get_range_leaves are very similar for both LOUDS and DFUDS. In ranked enumeration,
we visit more nodes compared to gradual retrieval (see Tables 3.4 and 3.6). Consequently,
we may access more tuples higher up in the tree, which could lead to increased computation
time for the functions in LOUDS compared to DFUDS. However, the time difference between
LOUDS and DFUDS is not significant, as previously mentioned.

Lazy qdags

Regarding the join in lazy qdags, it is important to note that while this approach requires us
to traverse the syntax tree each time we want to retrieve a child of the formula, it performs
well when only a few results are needed, as we saw in the second scenario for k < 10. However,
retrieving the first results is not as good as the original algorithm.

When we compare execution time and the number of tuples visited, we observe that the
curves for both metrics are similar—indicating that even a slight increase in the number of
tuples visited results in a significant increase in execution time.

The great advantage of lazy qdags is that they allow us to build more complex relations and
compute all forms of relational algebra, which has not been done with the original data
structure (qdags). It is important to mention that when we build the output, we create a
traditional quadtree, not a compact one like the original algorithm.

With lazy qdags, we can create more complex relations and perform additional operations
such as selection and projection. The selection operation allows us to apply filters to the
results, while projection lets us choose which attributes to display. Furthermore, we can
share lazy qdags among different operations, so one evaluation of a lazy qdag can benefit
other evaluations by avoiding redundant calculations.

These capabilities make lazy qdags valuable for building and evaluating complex relations.
Although we could not directly compare them with the other algorithms, they remain a

81

strong option when dealing with more elaborate relations.

All the algorithms

Join - time complexity

When comparing all the algorithms for retrieving the first and the top results, it is still
advisable to use the original algorithm and maintain a heap with the best results seen so far,
in case we want to retrieve the top results.

Among the new algorithms, if our priority is to retrieve the first results as quickly as possible,
we should use the gradual retrieval algorithm along with the LOUDS representation and the
backtracking strategy. To obtain the top results, we should use the ranked enumeration
algorithm using the DFUDS representation and the backtracking strategy.

Lazy qdags are effective for minimal result sets (e.g., when k < 10). However, even in these
scenarios, the gradual retrieval algorithm using the backtracking strategy often performs
better.

Both gradual retrieval and ranked enumeration focus on outputting only the coordinates of
the tuples, avoiding the need to build the entire output set. Therefore, if we need to store
the results for further processing, we should consider using either the original algorithm or
lazy qdags.

Join - space complexity

When considering space complexity, it is important to account for the memory the output
requires. The original algorithm utilizes a compact quadtree for output storage, while the
gradual retrieval algorithms and ranked enumeration algorithms store the output as a list of
coordinates. Consequently, the original algorithm is the most memory-efficient since it uses
qdags and maintains the output as a k2-tree.

Lazy qdags require the storage of the syntax tree, satellite information, and a pointer to the
qdags. When retrieving a child, we construct a traditional quadtree with pointers, which
does not significantly reduce memory usage. Therefore, when space complexity is a priority,
lazy qdags are the least favorable option for performing join operations.

Among the novel algorithms, if we aim to optimize space complexity and achieve faster
results, we should consider using the gradual retrieval algorithm, using LOUDS over DFUDS.
In general, using the backtracking strategy is more memory-efficient than using the optimal
order strategy, as its priority queue is smaller.

To obtain the top results, if we use the ranked enumeration algorithm, we should use the
LOUDS representation and the backtracking strategy. But we should also consider the

82

additional overhead added due to the Range Maximum Query data structure used to compute
priorities.

Relational algebra

As mentioned, only lazy qdags can implement the full relational algebra operations and
construct more complex relations. Therefore, we could not compare them directly with the
other algorithms. Comparing lazy qdags with traditional data systems remains an area for
future work.

83

Chapter 6

Conclusions

Recent studies on compact data structures have advanced the understanding of join algorithms
in graph databases. These structures enhance space efficiency while maintaining time perform-
ance during data operations.

We have extended a join algorithm based on recent compact data structures, specifically a
compact version of the k2-trees known as qdags, developed by Arroyuelo et al. [7]. Our work
involves creating and evaluating an extension of qdags that allows traversing fewer nodes
to return the first results. Additionally, the results can be prioritized based on a specified
weight or priority. We also implemented a lazy version that supports Boolean queries and
full relational algebra, all while ensuring worst-case optimality, on the former. Moreover, we
adapted the original join algorithm to stop after computing the first k results and build the
quadtree output.

Our experiments have shown that the gradual retrieval algorithms using the backtracking
strategy can improve the number of tuples visited to obtain the first results in a join that
produces many results. However, this approach increased space complexity and the time
required to compute the join, while still guaranteeing worst-case optimality.

On the other hand, the ranked enumeration join algorithm effectively retrieved the top
k results by traversing significantly fewer nodes than the baseline method, which obtains all
results before selecting the best ones for small k. This method also maintained worst-case
optimality. Nevertheless, it had disadvantages, including longer overall computation times
and higher memory usage due to the Range Maximum Query data structure.

We also evaluated two methods for computing the number of leaves and a range of leaves
of a node: LOUDS, which achieves a logarithmic time operation, and DFUDS, which
is theoretically constant time. Our experiments demonstrated that LOUDS outperformed
DFUDS in practice during gradual retrieval algorithms. However, in the case of ranked
enumeration, DFUDS had a better performance than LOUDS. The slower performance
of DFUDS in gradual retrieval is mainly due to suboptimal implementations of the data
structure that included some operations with logarithmic time complexity. In future work,
we could explore a faster implementation of DFUDS, which could be more efficient than
LOUDS.

84

These operations introduced some overhead to our gradual retrieval and ranked enumeration
algorithms. Also, when using the optimal order approach, we need to operate over a priority
queue. All these factors contributed to the overall overhead of the new algorithms.

The logic added at each step to compute gradual retrieval and ranked enumeration results
in a non-negligible overhead, leading to longer processing times. However, this comes with
the benefit of traversing fewer nodes. Therefore, to improve our results, we should optimize
the additional logic incorporated in the new algorithms and improve the estimators for the
gradual retrieval algorithms to improve the number of tuples visited. For example, we could
explore a balance between using faster estimators that may be less accurate.

When considering which technique for obtaining partial or ranked results is more effective,
we must weigh up the trade-off between time and memory to determine the best algorithm
to optimize. If conserving space is our primary objective, we should choose the LOUDS
representation for trees over DFUDS and use backtracking with a priority queue of fixed
size k. This approach is more efficient than an optimal order technique, which employs a
non-fixed size priority queue.

On the other hand, if our goal is to optimize time complexity, we should select DFUDS
in conjunction with backtracking. A practical recommendation is to use LOUDS and the
backtracking strategy for gradual retrieval and ranked enumeration, as it offers superior
performance without significantly increasing memory usage. However, if we can develop
faster estimators, the optimal order strategy may yield better overall results.

We implemented lazy qdags and extended their functionality to support all relational
algebra operations. Additionally, we developed an API for operations such as join, difference,
complement, and other queries. While lazy qdags may increase the time required to compute
a complete query, they still perform well for retrieving initial results and enabling the
implementation of full relational algebra.

Although some queries in lazy qdags are not worst-case optimal, studying this data structure
is still worthwhile. Using a syntax tree facilitates the construction of more complex relations
and allows for efficient computation by avoiding unnecessary evaluations, especially when a
quadrant of the formula is already empty. However, if our only concern is to compute the
join, traditional qdags are the best choice regarding time and memory efficiency.

We compared different approaches for computing the join, including traditional joins using
qdags, gradual retrieval, ranked enumeration, and lazy qdags. Our findings indicate that
the original representation is the most efficient in time and space. Nevertheless, ranked
enumeration is still noteworthy for retrieving the top results due to the reduced number of
tuples traversed. Furthermore, lazy qdags are the preferred choice for computing queries
beyond joins. We can also speculate that the performance of these new implementations in
disk usage would be better than the original approach.

In this thesis, we explored various representations of the quadtree, going from the compact
form used in the original algorithm to gradual retrieval and ranked enumeration, as well as
a non-compact data structure representation employed in lazy qdags.

A notable disadvantage of these algorithms and of using qdags, in general, is that they

85

require data to be stored in a specific format. This complicates their implementation in
current systems.

In conclusion, our main contributions include five different algorithms for efficiently compu-
ting partial results and four algorithms for obtaining ranked results. We also implemented
two methods for calculating the number of leaves using LOUDS and DFUDS, including a
new, more compact version of DFUDS. Additionally, we implemented and improved the
design of lazy qdags and developed an API for essential queries such as join, difference, and
complement.

Future work

We did not evaluate relational algebra using lazy qdags or compare it to other database
systems like Postgres. This analysis should be conducted in the future to assess the perform-
ance of lazy qdags when evaluating selection, projection, and other relational algebra formulas.

In this thesis, we did not explore the delay in results, which could be an interesting topic for
future research. We could also compare the results’ distribution, to better understand the
algorithms’ behavior.

Furthermore, we have not designed or implemented an algorithm for constructing qdags
from coordinates, which could be advantageous for gradual retrieval and ranked enumeration
algorithms.

We demonstrated that using qdags allows us to estimate the size of the subgrid or its priority,
which is not as straightforward with other data structures. This approach could also be
extended to additional operations.

Another promising direction is to explore alternative data structures for priority queues,
such as Fibonacci heaps or binomial heaps, to improve the time or space efficiency of our
algorithms. Finally, integrating techniques from lazy qdags into the original algorithm
could be beneficial. For example, introducing the concept of “full leaves” to improve time
complexity.

There are several important topics worth revisiting and studying further. One area of interest
is parallelization. Although the original algorithm addressed this aspect, we did not test it,
and we have yet to incorporate parallelization into our work. Investigating the potential
for parallelizing our algorithms could provide valuable insights. It would be beneficial to
determine whether parallelization is feasible and, if so, how it could enhance the performance
of our algorithms. For example, we could parallelize the and function, although this might
compromise the advantage of visiting fewer nodes.

Another interesting subject is the analysis of clustered datasets and their entropy to see if
we can achieve more compact data representations. Additionally, exploring using very sparse
bitvectors on sparse grids could improve time and space efficiency.

More broadly, further exploration of graph theory and isomorphism could help simplify
complex queries, reduce time complexity, and enable approximate query matches with speci-

86

fied distances or error tolerances. It could also be essential to investigate the characteristics
of the patterns we studied and understand why some patterns exhibit greater complexity
than others.

87

Bibliography

[1] Renzo Angles. The property graph database model. In AMW, 2018.

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. Foundations of modern query languages for graph databases. ACM
Comput. Surv., 50(5), sep 2017.

[3] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput.
Surv., 40(1), feb 2008.

[4] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-
Ledesma, and Adrián Soto. Worst-case optimal graph joins in almost no space. In
Proceedings of the 2021 International Conference on Management of Data, SIGMOD
’21, page 102–114, New York, NY, USA, 2021. Association for Computing Machinery.

[5] Diego Arroyuelo, Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. Optimal
joins using compressed quadtrees. ACM Trans. Database Syst., 37(4), aug 2018.

[6] Diego Arroyuelo, Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. Optimal
joins using compressed quadtrees. ACM Trans. Database Syst., 47(2), may 2022.

[7] Diego Arroyuelo, Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. Optimal
joins using compressed quadtrees. ACM Trans. Database Syst., 47(2), May 2022.

[8] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for
relational joins. SIAM J. Comput., 42(4):1737–1767, jan 2013.

[9] Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying graph patterns. In
Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’11, page 199–210, New York, NY, USA, 2011. Association
for Computing Machinery.

[10] Pablo Barceló Baeza. Querying graph databases. In Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’13,
page 175–188, New York, NY, USA, 2013. Association for Computing Machinery.

[11] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Christian Theobalt, and Gerhard
Weikum. Io-top-k: Index-access optimized top-k query processing. 2006.

88

[12] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292, dec
2005.

[13] Jon Louis Bentley. K-d trees for semidynamic point sets. In Proceedings of the Sixth
Annual Symposium on Computational Geometry, SCG ’90, page 187–197, New York,
NY, USA, 1990. Association for Computing Machinery.

[14] Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering. Cham:
Springer, 1, 2013.

[15] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. Compact representation of
web graphs with extended functionality. Inf. Syst., 39:152–174, jan 2014.

[16] D. R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.

[17] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

[18] Guillermo de Bernardo, Travis Gagie, Susana Ladra, Gonzalo Navarro, and Diego Seco.
Faster compressed quadtrees. J. Comput. Syst. Sci., 131(C):86–104, feb 2023.

[19] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Ranked enumeration of join queries
with projections. Proc. VLDB Endow., 15(5):1024–1037, jan 2022.

[20] Shaleen Deep and Paraschos Koutris. Ranked enumeration of conjunctive query results.
arXiv preprint arXiv:1902.02698, 2019.

[21] Héctor Ferrada and Gonzalo Navarro. Improved range minimum queries. Journal of
Discrete Algorithms, 43:72–80, 2017.

[22] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

[23] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In 13th International Symposium on
Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

[24] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic
conjunctive queries. Journal of the ACM (JACM), 48(3):431–498, 2001.

[25] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed data structures:
Dictionaries and data-aware measures. Theoretical Computer Science, 387(3):313–331,
2007.

[26] Olaf Hartig and Jorge Pérez. Semantics and complexity of graphql. In Proceedings of the
2018 World Wide Web Conference, WWW ’18, page 1155–1164, Republic and Canton of
Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee.

[27] Meng He, J. Ian Munro, and Patrick K. Nicholson. Dynamic range selection in
linear space. In Proceedings of the 22nd International Conference on Algorithms and
Computation, ISAAC’11, page 160–169, Berlin, Heidelberg, 2011. Springer-Verlag.

89

[28] Gísli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for spatial
databases. In Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’98, page 237–248, New York, NY, USA, 1998.
Association for Computing Machinery.

[29] Gísli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for spatial
databases. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings
ACM SIGMOD International Conference on Management of Data, June 2-4, 1998,
Seattle, Washington, USA, pages 237–248. ACM Press, 1998.

[30] Gísli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases. ACM
Trans. Database Syst., 24(2):265–318, 1999.

[31] Gísli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric spaces.
ACM Trans. Database Syst., 28(4):517–580, 2003.

[32] Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. A worst-case optimal
join algorithm for sparql. In The Semantic Web – ISWC 2019: 18th International
Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings,
Part I, page 258–275, Berlin, Heidelberg, 2019. Springer-Verlag.

[33] Xiao Hu and Ke Yi. Instance and output optimal parallel algorithms for acyclic joins.
In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS ’19, page 450–463, New York, NY, USA, 2019. Association for
Computing Machinery.

[34] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 549–554, 1989.

[35] Nikolaos Karalis, Alexander Bigerl, and Axel-Cyrille Ngonga Ngomo. Native execution of
graphql queries over rdf graphs using multi-way joins. In Knowledge Graphs: Semantics,
Machine Learning, and Languages, pages 77–93. IOS Press, 2023.

[36] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via
geometric resolutions: Worst case and beyond. ACM Trans. Database Syst., 41(4), nov
2016.

[37] A. Marian, S. Amer-Yahia, N. Koudas, and Divesh Srivastava. Adaptive processing of
top-k queries in xml. In 21st International Conference on Data Engineering (ICDE’05),
pages 162–173, 2005.

[38] G.M. Morton. A Computer Oriented Geodetic Data Base and a New Technique in File
Sequencing. International Business Machines Company, 1966.

[39] J. I. Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), LNCS 1180, pages 37–42, 1996.

[40] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[41] Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge
University Press, USA, 1st edition, 2016.

90

[42] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join
algorithms. J. ACM, 65(3), mar 2018.

[43] Hung Q Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: New developments
in the theory of join algorithms. SIGMOD Rec., 42(4):5–16, feb 2014.

[44] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary.
In Proc. 9th Workshop on Algorithm Engineering and Experiments (ALENEX), pages
60–70, 2007.

[45] Giulio Ermanno Pibiri and Rossano Venturini. Dynamic elias-fano representation.
In 28th Annual symposium on combinatorial pattern matching (CPM 2017). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2017.

[46] Alain Pirotte. A precise definition of basic relational notions and of the relational algebra.
SIGMOD Rec., 13(1):30–45, sep 1982.

[47] Kunihiko Sadakane and Gonzalo Navarro. Fully-functional succinct trees. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10,
page 134–149, USA, 2010. Society for Industrial and Applied Mathematics.

[48] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and
Xiaofeng Yang. Optimal algorithms for ranked enumeration of answers to full conjunctive
queries. In Proceedings of the VLDB Endowment. International Conference on Very
Large Data Bases, volume 13, page 1582. NIH Public Access, 2020.

[49] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Optimal join
algorithms meet top-k. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, page 2659–2665, New York, NY,
USA, 2020. Association for Computing Machinery.

[50] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Any-k algorithms for
enumerating ranked answers to conjunctive queries. arXiv preprint arXiv:2205.05649,
2022.

[51] Todd L Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algorithm. In
Proc. International Conference on Database Theory, 2014.

[52] W3C. Sparql query language for rdf. https://www.w3.org/2001/sw/DataAccess/
rq23/#BasicGraphPatternMatching, 2024. Accessed: 2024-06-18.

[53] Qichen Wang, Qiyao Luo, and Yilei Wang. Relational algorithms for top-k query
evaluation. Proc. ACM Manag. Data, 2(3), may 2024.

[54] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the
Seventh International Conference on Very Large Data Bases - Volume 7, VLDB ’81,
page 82–94. VLDB Endowment, 1981.

91

https://www.w3.org/2001/sw/DataAccess/rq23/#BasicGraphPatternMatching
https://www.w3.org/2001/sw/DataAccess/rq23/#BasicGraphPatternMatching

Annex A

Comparison of both approaches of the estimators for
gradual retrieval

2

4

Ti
m

e
(s

)

J3

20

40

J4

0.025

0.050

0.075
P2

0.2

0.4

Ti
m

e
(s

)

P3

5

10

15

P4

Algorithms
Intersection with the minimum
Density

0.025

0.050

0.075

Ti
m

e
(s

)

S1

2

4

S2

2

3

S3

0.5

1.0

Ti
m

e
(s

)

S4

0.00

0.02

0.04

T2

0.25
0.50
0.75

T3

25

50

75

Ti
m

e
(s

)

T4

0.00

0.05

0.10

Ti2

5

10

15
Ti3

1 10 100 1000
k results (log scale)

100

200

Ti
m

e
(s

)

Ti4

1 10 100 1000
k results (log scale)

0.005

0.010

0.015
Tr1

1 10 100 1000
k results (log scale)

0.02

0.04

0.06
Tr2

Time to retrieve the first k results
(Gradual retrieval DFUDS Backtracking)

Figure A.1: Query times (in seconds) for the different approaches of gradual retrieval algorithms
to retrieve the first k results.

92

Annex B

Comparison of both approaches of the estimators for
ranked enumeration retrieval

7

8

Ti
m

e
(s

)

J3

50

60

J4

0.10

0.15

0.20
P2

0.7

0.8

Ti
m

e
(s

)

P3

20

25

P4

Algorithms
Sum of the priorities
Maximum of the priorities

0.12

0.14

Ti
m

e
(s

)

S1

6.5

7.0

7.5

S2

4

5

S3

1.9

2.0

2.1

Ti
m

e
(s

)

S4

0.02

0.04

0.06

T2

0.5

1.0

T3

50

75

100

Ti
m

e
(s

)

T4

0.1

0.2

Ti2

10

20

Ti3

1 10 100 1000
k results (log scale)

250

300

Ti
m

e
(s

)

Ti4

1 10 100 1000
k results (log scale)

0.020

0.025

Tr1

1 10 100 1000
k results (log scale)

0.10

0.15

0.20
Tr2

Time to retrieve the top k results using both approaches
(Ranked enumeration DFUDS Backtracking)

Figure B.1: Query times (in seconds) for the different approaches of ranked enumeration
algorithms to retrieve the top k results.

93

	Introduction
	Preliminaries
	Morton code
	K2-tree
	Parentheses
	Range Maximum Query

	Graph patterns
	Worst Case Optimal Joins
	Compressed quadtrees
	Graph Patterns and experimental results

	Gradual retrieval and ranked enumeration
	Motivation
	LOUDS and DFUDS
	Computing the join
	Gradual retrieval
	Ranked enumeration
	Experimental results

	Lazy qdags
	Motivation
	Definition
	Boolean algebra
	Full relational algebra
	Experimental results

	Discussion
	Conclusions
	Bibliography
	Annex Comparison of both approaches of the estimators for gradual retrieval
	Annex Comparison of both approaches of the estimators for ranked enumeration retrieval

