
Statistical and Repetition-based
Compressed Data Structures

Autor: Alberto Ordóñez Pereira
Tesis doctoral UDC / 2014

Directores:
Gonzalo Navarro Badino
Nieves Rodríguez Brisaboa

Departamento de Computación

PhD thesis supervised by
Tesis doctoral dirigida por

Gonzalo Navarro Badino
Departamento de Ciencias de la Computación
Universidad de Chile
Blanco Encalada 2120 Santiago (Chile)
Tel: +56 2 6892736
Fax: +56 2 6895531
gnavarro@dcc.uchile.cl

Nieves Rodríguez Brisaboa
Departamento de Computación
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1243
Fax: +34 981 167160
brisaboa@udc.es

Gonzalo Navarro Badino y Nieves Rodríguez Brisaboa, como directores,
acreditamos que esta tesis cumple los requisitos para optar al título de doctor
internacional y autorizamos su depósito y defensa por parte de Alberto Ordóñez
Pereira cuya firma también se incluye.

iii

iv

Á miña familia.

v

vi

Acknowledgements

The first acknowledgment words are, undoubtedly, for my thesis directors: Nieves
and Gonzalo. Nieves was always there willing to help whenever it was necessary and
I cannot be more thankful for that. Thanks also for making everything easier along
this period. With people like you, everything becomes very easy. Gonzalo is a big
reference for me. Both his capacity and patience amaze me. But not only that. His
quality as a person, his hospitality, his advices, and his highly caloric barbecues, are
only some of the reasons because I will always be grateful.

I also want to acknowledge the effort of all the committee members and external
reviewers for having taking their time and for their highly valuable advices. Thanks
to Philip Bille, Simon Gog, Susana Ladra, Veli Mäkinen and Giovanni Manzini.

Thanks also to all the Database Laboratory members, especially to the person
who started it all. Thanks to Luis for offering me the opportunity of joining this
group and for being there whenever I needed it. Thanks also to Susana, Edu, Óscar,
Jose, Fari, Diego, and to many others who have always been there whenever I needed
help or advice.

A special mention is deserved by all people, now friends, that I have met along
my research visits. There is nothing better than traveling along the world and find
people that make you feel like if you were at home. Roberto Know, Francisco Claude,
Travis Gagie, Simon Puglisi, Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and
probably to many others that I am not mentioning here, thanks for your hospitality
and friendship.

I cannot forget my old friends, those who have always been there and that,
probably, will remain there forever. This would not be possible without those
moments of disconnection and laughter we have lived together. A piece of this thesis
also belongs to you.

My family has been fundamental. It all started with you, and I am not only
speaking in strictly biological terms. You knew exactly how to guide me in life.
You did not show me the path, but you did something much more interesting. You
taught me how to find it. You have always been an example for me, and I cannot
be prouder of you. My father and mother, Manuel and Elsa, my brother Javier,
my grandparents María, Alberto, Sara, and Plácido; my second parents Eliseo and

vii

viii

Felisa, my pseudo-sister Rosamna, and to all the rest, thanks.
Finally, I have to pay tribute to Loida, my fellow and wife. Undoubtedly, this

thesis would not be possible without you. Your generosity, your comprehension, your
patience, and your willingness to help at any time, have been the pillars that have
held me. I hope to live enough years to give you back everything you gave me. Do
not ever change (well, you can get your driving license, but the rest let it as it is ;-).

Agradecimientos

Las primeras palabras de agradecimiento van dirigidas a mis dos directores: Nieves y
Gonzalo. Nieves siempre ha estado ahí para lo que he necesitado, y no puedo estarle
más agradecido por todas las facilidades que me ha dado durante este período. Con
personas así, todo se vuelve más sencillo. Gonzalo es todo un referente para mí.
Tanto su capacidad como su paciencia no dejan de sorprenderme. Pero no solo eso.
Su calidad como persona, su hospitalidad, su honestidad, sus consejos, y sobre todo
sus asados altos en calorías hacen que no pueda ser de otra manera.

También quiero agradecer el esfuerzo a todos los miembros del tribunal y revisores
externos por su tiempo y consejos de gran valor. Gracias a Philip Bille, Simon Gog,
Susana Ladra, Veli Mäkinen y Giovanni Manzini.

También debo darles las gracias a todos los miembros del Laboratorio de Bases
de Datos. Especialmente a la persona que lo empezó todo. Luís fue el primero en
fijarse en mí y el que siempre estuvo ahí para lo que hiciese falta. Gracias también
a Susana, Edu, Óscar, Jose, Fari, Diego, y muchos otros que han estado siempre
dispuestos a ayudar, y no debo menos que reconocérselo.

También merecen especial mención aquellas personas, ahora amigos, que conocí
durante mis estancias en el extranjero y conferencias. No hay nada mejor que
recorrer el mundo y conocer a gente que te hace sentir como si estuvieras en casa.
Roberto Konow, Francisco Claude, Travis Gagie, Simon Puglisi, Veli Mäkinen,
Djamal Belazzougui, Fabio Cunial y probablemente muchos otros que seguramente
me estoy dejando en el tintero. Gracias por vuestra hospitalidad y amistad.

No puede uno olvidarse de los amigos de siempre, esos que siempre han estado
ahí y que, seguramente, seguirán estando sin esperar nada a cambio. Todo habría
sido muy diferente sin esos momentos de desconexión y risas que vivimos juntos. Un
pedazo de esta tesis (pequeño que tampoco quiero que se crezcan) también es suya.
Ya invitaréis a algo.

Fundamental ha sido mi familia. Con ella empezó todo, y no estoy hablando
en términos estrictamente biológicos, aunque también. Siempre me han sabido
guiar. No me enseñaron el camino sino que hicieron algo mucho más importante,
me enseñaron a encontrarlo. Su ejemplo ha sido fundamental y no puedo estar más
orgulloso de ellos. Mi padre y mi madre, Manuel y Elsa, mi hermano Javier, mis

ix

x

abuelos María, Alberto, Sara y Plácido, mis segundos padres Eliseo y Felisa, mi
pseudo-hermana Rosamna, y a todos los demás, gracias de corazón.

Y por último, aunque no menos importante sino que todo lo contrario, debo
rendir homenaje a Loida, mi compañera de camino y esposa. No tengo la menor duda
de que esta tesis no habría sido posible sin ella. Su generosidad, su comprensión, su
paciencia y su disposición a ayudarme tanto cuando las cosas iban bien como mal,
han sido los pilares que han aguantado de mí. Espero que me lleguen los años que
me quedan para devolverte todo lo que me has dado. No cambies nunca (bueno,
sácate el carnet de conducir, pero lo demás déjalo estar ;-).

Agradecementos

As primeiras liñas van, como non, dirixidas ós meus diretores de tese: Nieves e
Gonzalo. Nieves sempre estivo ahí para o que precisei e non lle podo estar máis
agradecido por elo, así como por todas as facilidades que me dou durante este
periodo. Con persoas así, todo se volve moito máis sinxelo. Gonzalo é todo un
referente para min. Tanto a sÃža capacidade coma a sÃža paciencia nunca deixarán
de sorpenderme. Pero no só iso. A súa calidade como persoa, hospitalidade, os seus
consellos e sobre todo os seus asados con alto aporte calórico fan que non poida ser
doutra maneira.

Tamén lle quero mostrar o meu agradecemento ós membros do tribunal e revisores
externos polo seu tempo e consellos de gran valor. Gracias Philip Bille, Simon Gog,
Susna Ladra, Veli Mäkinen e Giovanni Manzini.

Gracias tamén a todos os membro do Laboratorio de Bases de Datos. E en
especial á persoa que o empezou todo. Luís foi o primeiro en fixarse en min e sempre
estivo ahí para o que fixese falta. Pero non só él, Susana, Edu, Óscar, Jose, Fari,
Diego e moitos outros que sempre sacaron tempo de onde non o tiñan para botarme
unha man, e non podeo menos que recoñecerllelo.

Tamén mercen especial atención aquelas persoas, agora amigos, que coñecín
durante as miñas estancias no estranxeiro. Non hai nada mellor que recorrer o
mundo e coñecer a xente que te fai sentir coma se estiveses na casa. Roberto Konow,
Francisco Claude, Travis Gagie, Simon Puglisi, Veli Mäkinen, Djamal Belazzougui,
Fabio Cunial e probablemente moitos outros que me estou deixando no tinteiro,
gracias pola vosa hospitalidade e amizade.

Non podo tampouco olvidarme dos amigos de sempre, eses que sempre estiveron
ahí e que seguramente sigan estando sin esperar nada a cambio. Nada sería posible
sen eses meomentos de desconexión e risas que sen eles non sería posible. Un cacho
desta tese tamén é vosa (pero pequeno que tampouco quero que vos veñades arriba).
Xa invitaredes a algo.

Fundamental foi a miña familia. Con ela empezou todo, e non estou falando en
térmos estrictamente biolóxicos, que tamén. Sempre me souperon guiar. Non me
enseñaron o camiño senon que fixeron algo moito máis importante, enseñáronme a
atopalo. O seu examplo foi fundamental e non podo estar máis orgullosos deles do

xi

que o estou. Ós meus pais, Manuel e Elsa, ó meu irmán Javier, ós meus avós María,
Alberto, Sara e Plácido, ós meus segundos pais Eliseo e Felisa, á miña pseudo-irmá
Rosamna, e a todos os demáis, gracias de corazón.

E por último pero non menos importante, senon que todo o contrario, debo
rendirlle homenaxe a Loida, a miña compañeira de camiño e muller. Non teño
a menor dúbida de que esta tese non sería posible sin ela. A súa xenerosidade,
comprensión, paciencia e a súa disposición a axudarme tanto nos bos coma nos
malos momentos, foron os pilares que me sostiveron durante estes anos. Espero que
me cheguen os anos para poder devolverche todo o que me diches. Non cambies
nunca (buneo, sácate o carnet de conducir, pero o demáis deixao estar ;-).

xii

Abstract

In this thesis we present several practical compressed data structures that address
open problems related to statistically-compressible and highly repetitive databases.

In a the first part, we focus on statistical-based compressed data structures,
targeting the problem of managing large alphabets. This problem arises when
typical sequence-based compression is used as a basis for compressed data structures
representing more general structures like grids and graphs. Concretely, (a) we
provide space-efficient solutions to represent prefix-free codes when the alphabet
is large; (b) we also present a new wavelet-tree based data structure to solve rank
and select queries that obtains zero-order compression and outperforms previous
wavelet tree implementations on large alphabets.

In the second part of this thesis, we focus on highly repetitive datasets. We
present (c) a very space efficient grammar-based compressed data structure to solve
rank and select on these scenarios; (d) the first LZ77-space bounded compressed
data structure that solves rank and select queries in O(1) time and is in practice
almost as fast as statistically-compressed structures; and (e) the first practical
version of grammar-compressed tree topologies, obtaining unprecedented results in
the representation of repetitive trees.

Additionally, we apply our new solutions to several problems of interest: point
grids, inverted indexes, self-indexes, XPath systems, and compressed suffix trees of
highly repetitive inputs, displaying various space-time tradeoffs of interest.

xiii

xiv

Resumen

En esta tesis presentamos varias estructuras de datos comprimidas de naturaleza
práctica, centradas en problemas abiertos relacionados con bases de datos
estadísticamente compresibles y bases de datos cuyo contenido es altamente
repetitivo.

En la primera parte, nos centramos en las estructuras de datos comprimidas para
bases de datos estadísticamente compresibles, más concretamente, en problemas
relativos al manejo de alfabetos grandes. Este tipo de problemas aparecen
cuando usamos técnicas clásicas de compresión estadística en estructuras de datos
comprimidas para secuencias, y éstas a su vez se aplican a problemas tales como
la representación de grillas de puntos o grafos. Concretamente, (a) presentamos
soluciones muy eficientes en términos de espacio para representar códigos libres de
prefijo cuando el alfabeto el grande; (b) y también presentamos una nueva estructura
de datos comprimida basada en wavelet trees para resolver consultas rank y select
que obtiene compresión de orden cero y mejora las implementaciones previas de
wavelet trees en alfabetos grandes.

En la segunda parte de esta tesis, nos centramos en las bases de datos altamente
repetitivas. Presentamos (c) una estructura de datos comprimida basada en
gramáticas para resolver consultas rank y select en este tipo de contextos y
que usa muy poco espacio; (d) la primera estructura de datos comprimida que
obtiene espacio proporcional al de un compresor LZ77 y resuelve consultas rank y
select en tiempo O(1), siendo en la práctica casi tan rápido como las estructuras de
datos basadas en compresión estadística; (e) la primera estructura de datos práctica
que utiliza gramáticas para comprimir topologías de árboles, obteniendo resultados
sin precedentes para la representación de árboles repetitivos.

Adicionalmente, mostramos varias aplicaciones en las que las estructuras de datos
que proponemos a lo largo de la tesis resultan de utilidad. Desde representaciones
de grillas de puntos, índices invertidos, auto-índices, sistemas XPath, hasta árboles
de sufijos comprimidos para colecciones altamente repetitivas, mostrando diferentes
resultados de interés tanto en términos de tiempo como de espacio.

xv

xvi

Resumo

Nesta tese presentamos varias estruturas de datos comprimidas de natureza práctica,
centradas en problemas abertos no ámbito das bases de datos estatisticamente
compresibles e das bases de datos altamente repetitivas.

Na primeira parte da tese, centrámonos nas estruturas de datos comprimidas para
as bases de datos estatisticamente compresibles. Máis concretamente en problemas
relativos ó manexo de alfabetos grandes. Este tipo de problemas aparecen cando
usamos técnicas de compresión estatística en estruturas de datos comprimidas para
secuencias, e esta á sua vez se utilizan para aplicacións tales como a representación de
grellas de puntos ou para a representación de grafos. Concretamente, (a) presentamos
solucións que son moi eficientes en termos espaciais para representar códigos libres
de prefixo cando o alfabeto é grande; e (b) tamén presentamos unha nova estructura
de datos comprimida baseada en wavelet trees para resolver consultas rank e select
que obtén compresión de orde cero e mellora as implementacións previas de wavelet
trees para alfabetos grandes.

Na segunda parte da tese, centrámosnos nas bases de datos con contido altamente
repetitivo. Presentamos (c) unha estrutura de datos comprimida baseada en
gramáticas que usa moi pouco espazo e resolve eficientemente consultas rank e
select en este tipo de contextos repetitivos; (d) a primeira estrutura de datos
comprimida que obtén espazo proporcional ó que obtén un compresor LZ77 e resolve
consultas rank e select en tempo O(1), sendo na práctica tan rápido coma as
estruturas de datos baseadas en compresión estatística; (e) a primeira estrutura de
datos práctica que utiliza gramáticas para comprimir topoloxías de árbores, obtendo
uns resultados sin precedentes para a representación de árbores repetitivos.

Adicionalmente, mostramos varias aplicacións nas que as estruturas de datos
que propoñemos ó longo da tese resultan de utilidade: representacións de grellas
de puntos, índices invertidos, auto-índices, sistemas XPath e árbores de sufixos
comprimidos para colecións altamente repetitivas, mostrando diferentes resultados
de interese, tanto en termos de espazo coma de tempo.

xvii

xviii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Structure of the Thesis . 6

I Statistical Encodings 9

2 Previous Concepts on Statistical Encodings 11
2.1 Model of Computation . 11
2.2 Information Theory, Entropy, and Encodings 11
2.3 Empirical Entropy . 13
2.4 Entropy Bounded Encodings . 14

2.4.1 Shannon-Fano Encoding . 14
2.4.2 Huffman Encoding . 15

2.4.2.1 Canonical Huffman 16
2.5 Encoding Schemes for Integers . 17

2.5.1 Encodings for Small Integers 19
2.5.2 Encodings for Large Integers 20

2.6 Rank, Select, and Access on Bitmaps 20
2.7 Rank, Select and Access on Sequences 23

2.7.1 Wavelet Trees . 23
2.7.2 Huffman-Shaped Wavelet Trees 25
2.7.3 GMR Representation . 26
2.7.4 Alphabet Partitioning . 28

2.8 Directly Addressable Codes . 29
2.9 Static Succinct Tree Representations 30
2.10 Text . 32

xix

xx Contents

3 Efficient Representation of Prefix Codes 33
3.1 Related Work . 35
3.2 Representing Optimal Codes . 37
3.3 Additive Approximation . 39
3.4 Multiplicative Approximation . 40
3.5 Experimental Results . 44

3.5.1 Implementations . 44
3.5.1.1 Classical Huffman codes 45
3.5.1.2 Hu-Tucker codes . 45

3.5.2 Experimental Setup . 46
3.5.3 Representing Optimal Codes 47
3.5.4 Length-Limited Codes . 49
3.5.5 Approximations . 51

3.6 Discussion . 53

4 The Compressed Wavelet Matrix 57
4.1 Related Work . 59

4.1.1 Pointerless Wavelet Trees . 59
4.1.1.1 The Strict Variant 59
4.1.1.2 The Extended Variant 61

4.1.2 The Wavelet Matrix . 62
4.1.2.1 The Strict Variant 63
4.1.2.2 The Extended Variant 64
4.1.2.3 Construction . 65

4.1.3 Pointerless Huffman Shaped Wavelet Trees 65
4.2 The Compressed Wavelet Matrix . 67
4.3 Experimental Results . 72

4.3.1 Datasets . 72
4.3.2 Measurements . 73
4.3.3 Results on Sequences . 73

4.3.3.1 Space . 74
4.3.3.2 Time . 75
4.3.3.3 Bottom Line . 76

4.4 Discussion . 77

II Repetition-based Data Structures 81

5 Previous Concepts on Repetitive Scenarios 83
5.1 Why Repetition-based Data Structures? 83
5.2 Kolmogorov Complexity . 84
5.3 Lempel-Ziv Parsings . 84

5.3.1 LZ77 . 85

Contents xxi

5.3.2 LZ78 . 85
5.3.3 LZ-End . 86

5.4 Grammar Compression . 86
5.5 Rank, Select, and Access on Repetitive Scenarios 87

5.5.1 Rank, Select, and Access on Repetitive Bitmaps 88
5.5.2 Rank, Select, and Access on Repetitive Sequences 90

5.6 Repetitive Datasets . 90

6 Grammar Compressed Sequences 93
6.1 Efficient rsa for Sequences on Small Alphabets 94
6.2 Efficient rsa for Sequences on Large Alphabets 95

6.2.1 AP with GCC in Practice . 96
6.3 Experimental Results . 96

6.3.1 Setup and Datasets . 96
6.3.2 Parameterizing the Data Structures 96
6.3.3 Performance on Small Alphabets 98
6.3.4 Performance on Large Alphabets 101

6.4 Discussion . 103

7 Block Trees for Sequences 105
7.1 Block Graphs . 106
7.2 Block Trees . 107

7.2.1 Block Trees Structure . 107
7.2.1.1 Analysis . 108

7.2.2 Construction . 110
7.2.3 Queries on a Block Tree . 111

7.2.3.1 Access and Extract 112
7.2.3.2 Rank . 112
7.2.3.3 Select . 114

7.3 Block Trees for Sequences for Large Alphabets 114
7.4 Block Trees in Practice . 115
7.5 Experimental Results . 116

7.5.1 Performance on Bitmaps . 116
7.5.2 Performance on Sequences With Small Alphabets 117

7.6 Discussion . 121

8 Grammar Compressed Trees 127
8.1 Related Work . 129
8.2 Grammar Compressed Tree . 132

8.2.1 GCT Structure . 132
8.2.1.1 Storing the Rules R 132
8.2.1.2 Storing Information on the Rules 134
8.2.1.3 Storing the Array C 135

xxii Contents

8.2.2 Basic Operations . 135
8.2.3 Operations fwd and bwd . 137
8.2.4 Operation RMQ . 139
8.2.5 Mapping with Leaves . 140

8.3 Experimental Results . 141
8.3.1 Environmental Set-up and Datasets 141
8.3.2 Parameterizing the Data Structures 142
8.3.3 Space Performance . 142
8.3.4 Time Performance . 142

8.4 Discussion . 144

III Applications 151

9 Representation of Point Grids 153
9.1 Representing Grids with Wavelet Trees 154
9.2 Experimental Results . 156
9.3 Discussion . 158

10 Inverted Indexes 161
10.1 Inverted Indexes with rsa Data Structures 162
10.2 Experimental Results . 162
10.3 Discussion . 165

11 Self-Indexes on Highly Repetitive Sequences 167
11.1 Statistically-bounded Self-Indexes . 168

11.1.1 Compressed Suffix Arrays . 168
11.1.1.1 Compressing Ψ . 169
11.1.1.2 Compressing the Suffix Array 169
11.1.1.3 Compressing the Inverse of the Suffix Array 172

11.1.2 FM-Indexes . 172
11.2 Self-Indexes on Highly Repetitive Scenarios 173
11.3 Grammar and Block-Tree FM-Indexes 174
11.4 Experimental Results . 174
11.5 Discussion . 175

12 XPath on Repetitive XML 181
12.1 SXSI on Highly Repetitive Scenarios 182
12.2 Experimental Results . 183
12.3 Discussion . 184

Contents xxiii

13 GCST: Grammar Compressed Suffix Tree 185
13.1 Current Compressed Suffix Trees . 187
13.2 Grammar Compressed Suffix Tree . 189
13.3 Experimental Results . 189

13.3.1 Space Usage . 189
13.3.2 Space-Time Performance of Operations 190
13.3.3 Discussion . 206

13.4 Discussion . 213

IV Thesis Summary 215

14 Conclusions and Future Work 217
14.1 Conclusions . 217
14.2 Future work . 218

Appendices 221

A Publications and Other Research Results 223

B Resumen del Trabajo Realizado 225
B.1 Estructura de la Tesis y Contribuciones 228
B.2 Trabajo Futuro . 232

Bibliography 234

xxiv Contents

List of Figures

2.1 Relation between classes of encodings. 13
2.2 Example of a Huffman tree. 16
2.3 Example of two Huffman trees with the same average code length

L = 2. 18
2.4 Example of a Huffman tree and an equivalent canonical Huffman tree 18
2.5 Example of a standard wavelet tree (WT) over a sequence. 24
2.6 Example of a Multi-ary wavelet tree (MWT) over a sequence 26
2.7 Example of a wavelet tree (WT) versus its Huffman-shaped version (WTH) 27
2.8 Alphabet Partitioning example. 28
2.9 Example of a DAC . 30
2.10 Example of several ordinal succinct tree representations 31

3.1 An arbitrary canonical prefix code and the result of sorting the source
symbols at each level . 37

3.2 An example of Milidiú and Laber’s algorithm 41
3.3 An example of the multiplicative approximation 42
3.4 Code representation size versus compression and decompression time

for table based representations and ours proposal 48
3.5 Comparison of the length-restricted approaches measured as their

additive redundancy . 50
3.6 Relation between the size of the model and the average code length . 52
3.7 Space/time performance of the approximate and exact approaches on

compression and decompression . 55

4.1 Examples of a wavelet tree and its pointerless version 60
4.2 Example of a pointerless wavelet tree and a wavelet matrix 64
4.3 An example of a pointer-based canonical Huffman wavelet tree (WTH)

versus its pointerless representation 68
4.4 Example of a sequence of canonical codes along wavelet matrix levels,

showing that the leaves do not span a contiguous area. 69
4.5 Example of a Huffman Tree and a compressed wavelet matrix 71

xxv

xxvi List of Figures

4.6 Running time per access query over the four datasets. 78
4.7 Running time per rank query over the four datasets. 79
4.8 Running time per select query over the four datasets. 80

5.1 Example of an LZ77, LZ78, and LZ-End parsings 85
5.2 Data structures resulted of executing the RePair algorithm on a

sequence . 88
5.3 Expansion tree of a grammar rule . 89

6.1 Comparison of rank and select performance of GCC.N and GCC.C. . . 99
6.2 Space-time tradeoffs for rank and select queries over small alphabets100
6.3 Space-time tradeoffs for rank and select queries over moderate and

large alphabets . 102

7.1 Example of a Block Graph . 107
7.2 Example of a Block Tree . 109
7.3 Example of rank mappings in a Block Tree 113
7.4 Space-time tradeoffs for access queries on bitmaps 118
7.5 Space-time tradeoffs for rank queries on bitmaps 119
7.6 Space-time tradeoffs for select queries on bitmaps 120
7.7 Space-time tradeoffs for access queries over small alphabets 122
7.8 Space-time tradeoffs for rank queries over small alphabets 123
7.9 Space-time tradeoffs for select queries over small alphabets 124

8.1 A DAG representation of a tree T 128
8.2 TreeRepair applied to tree T . 129
8.3 Example of an ordinal tree and its balanced parentheses representation131
8.4 Compressed dictionary representation for grammars 133
8.5 Tree structure built on top of the C array 136
8.6 General scheme of the algorithm for fwd(p, d) operation 138
8.7 Space breakdown of the GCT . 143
8.8 Space-time tradeoffs for operation fChild. 145
8.9 Space-time tradeoffs for operation tDepth. 146
8.10 Space-time tradeoffs for operation nSibling. 147
8.11 Space-time tradeoffs for operation parent. 148
8.12 Space-time tradeoffs for operation tAncestor. 149
8.13 Space-time tradeoffs for operation LCA. 150

9.1 Example of a grid of 12× 12 with only a marked square per row and
column. 154

9.2 Running time per count query over the three datasets. 159
9.3 Running time of report query over the three datasets. 160

List of Figures xxvii

10.1 Space-time tradeoffs for inverted index operations 164

11.1 Suffix tree example with all the components necessary for CSAs and
FM-Indexes. 171

11.2 Space-time tradeoffs for operation count with m = 2. 176
11.3 Space-time tradeoffs for operation count with m = 4. 177
11.4 Space-time tradeoffs for operation count with m = 8. 178
11.5 Space-time tradeoffs for operation count with m = 16. 179

13.1 Space breakdown of the GCST . 191
13.2 Space-time tradeoffs for operation fChild. 196
13.3 Space-time tradeoffs for operation tDepth. 197
13.4 Space-time tradeoffs for operation nSibling. 198
13.5 Space-time tradeoffs for operation parent. 199
13.6 Space-time tradeoffs for operation tAncestor. 200
13.7 Space-time tradeoffs for operation LCA. 201
13.8 Space-time tradeoffs for operation sLink. 203
13.9 Space-time tradeoffs for operation sDepth. 204
13.10Space-time tradeoffs for operation LAQs. 205
13.11Space-time tradeoffs for operation letter. 207
13.12Space-time tradeoffs for operation child. 208
13.13Space-time tradeoffs for finding the maximal substrings 211
13.14Approximate space figures for the different CSTs 212
13.15Construction times for the different indexes 213

xxviii List of Figures

List of Tables

2.1 Examples of variable length encodings 20
2.2 List of operations in ordinal trees. 32

3.1 Main statistics of the texts used to evaluate prefix code representations 46
3.2 Rough minimum size of various model representations for prefix-free

codes . 47

5.1 Statistics of the repetitive datasets 92

12.1 Results of the XPath system for highly repetitive XML 184

13.1 Typical suffix tree operations . 188
13.2 Operation time ranges for the GCST and orders of magnitude of

difference with alternative CSTs . 209

xxix

xxx List of Tables

List of Algorithms

1 Building a D-ary Huffman Tree . 17
2 Obtaining codes from a Huffman Tree 19
3 Standard Wavelet Tree Algorithms 25
4 Alphabet Partition Algorithms . 29
5 Pointerless Wavelet Tree Algorithms (Strict Variant) 61
6 Pointerless Wavelet Tree Algorithms (Extended Variant) 63
7 Wavelet Matrix Algorithms (Strict Variant) 65
8 Wavelet Matrix Algorithms (Extended Variant) 66
9 Range Search Algorithms on a Wavelet Tree 155
10 Range Search Algorithms on Pointerless Wavelet Trees 156
11 Range Search Algorithms on the Wavelet Matrix 157
12 Reporting the positions of a term in a document with a rsa inverted

index . 162
13 Reporting the list of documents that contains two terms in a rsa

inverted index . 163
14 Searching for a pattern in a suffix array using the Ψ function 170
15 Extracting a suffix given the suffix array position 170
16 Counting the occurrences of a pattern in an FM-Index 173

xxxi

xxxii List of Algorithms

Chapter 1

Introduction

1.1 Motivation

The amount of stored data has increased exponentially over the past few decades,
and it seems this tendency will last. Databases are being flooded with tons of data,
coming from many different sources and with very different properties. For example,
text databases resulting from Web crawling processes or document digitalization
have grown faster than the capacity of many organizations to store them. The
challenge is exacerbated by applications like versioning control systems or software
repositories, in which we want to access the history or versions of a document. This
implies having to store all versions of a document, with the tremendous space impact
it may induce. We have also DNA databases, in which we store genomes of many
individuals of the same species. This is a challenge since DNA databases have grown
at the same pace as the costs of sequencing have decreased, that is, faster than the
improvements in hardware capabilities. Storing and querying the structure of social
networks or Web graphs is also a big challenge due to the number of nodes and
connections involved. Geographic Information Systems (GIS) are other examples of
applications in which the volume of data generated is massive.

However, not always the increase in the amount of data is the problem, since the
other side of the coin is the storage capacity. With the widespread adoption of small
and mobile devices (smartphones, tables, or network sensors), it is also common to
work with reduced processing and storage capacity. These devices should be able to
manage as much information as possible but in an space-constrained environment,
without the possibility to resort to secondary storage. In addition, transferring data
in compressed form saves their network bandwidth and battery life.

Fortunately, most data involved on these applications and scenarios is not of
random nature. Instead, it can be usually modeled according to some statistical
model, or at least it has some properties that make it predictable. And predictable,

1

2 Chapter 1. Introduction

in Information Theory, means compressible. Since the publication of Shannon’s
thesis, a number of compressed representations for a wide variety of data sources
have been designed. Finding compressed representations which use as little space as
possible to represent data is a first order need, not only for the obvious economical
reasons related to saving disk space. Data compression is also fundamental to speed
up data transmission through networks, which speeds up computations in cluster-
based environments, or to save energy in mobile devices by minimizing the size of
messages sent through wireless networks. However, the handicap of these compressed
representations is that they only offer compression. If we want to carry out a search
inside the compressed data, we have to decompress, and then to carry out the search
in the bare data. This means that, in case we need complex functionalities, some of
the benefits of compressed representations may vanish.

In order to deal with this problem, the advent of compressed data structures
(CDS) was a relief. A compressed data structure is a data structure that not only
cares about space but also about functionality. The space performance is still the
lighthouse, but they also provide some operations that are directly performed on
the compressed data. This means, for instance, not having to decompress a whole
compressed document to carry out a search in it, or to access a random portion of the
document. Instead, compressed data structures provide search capabilities within
the compressed space. Note this is actually a tremendous step forward since, (a)
we have the same benefits of classical compressed representations, (b) we save time
if we avoid decompressing the whole data to just access to a portion, (c) we speed
up searches since we do not need to search the whole bare data, (d) we speed up
computations since we can operate directly on the compressed data, which means the
chances of fitting the whole structure in RAM memory or even into cache increase,
and hence the processing time shortens, and (e) we save energy.

However, compressed data structures are much younger than classical compressed
representations, which means we actually have more open problems than solutions.
We need more space and time efficient compressed data structures to solve indexed
pattern matching, to deal with computational biology problems, to solve document
retrieval problems, to improve search engines, to represent hierarchical information,
to improve searches on XML, to improve communication networks, to improve
the performance in cluster-based environments, to provide search capabilities
in constrained-memory environments like mobile devices or sensors, to improve
geographic information systems, and a long etcetera.

In this thesis we face some of these problems having in mind the nature of
data we are processing, distinguishing between statistically-compressible and highly
repetitive datasets.

Statistical compressors take advantage of the distribution of symbols they are
compressing to assign shorter codes to more frequent symbols. It is a very robust
research area, since it has been active for many decades, and we know many lower
bounds that tell us how far can we go. However, and despite of its maturity, there still

1.1. Motivation 3

exist many problems not yet solved or not even considered. Statistical compression
was initially thought for sequences which came from an infinite source of information
and in which the number of different symbols (the alphabet) was finite. And not only
finite, but in many cases considered small. However, with the advent of compressed
data structures, the sources of information turned out to be finite (a document,
for instance), and the alphabet could not be considered always small, becoming
a problem in many cases due to its size. For instance, if we consider a text as a
sequence of words and not of letters, then the alphabet size increases dramatically.
If we model an n× n grid of points as a sequence of coordinates, then the alphabet
size may become as large as the sequence. Adjacency lists in information retrieval
systems or Web graphs usually display the same problem. In all these scenarios, just
representing the alphabet and its statistical model is a serious problem, and how to
deal with that has not been considered yet. The first part of this thesis focuses on
proposing new compressed data structures that deal with statistically compressible
datasets in which the alphabet is very large.

On the other hand, a highly repetitive dataset is that in which we have many
copies or near-copies of the same document. This happens, for instance, in software
repositories or versioning systems, in which we expect many versions of the same
document, but with only slight modifications between successive versions. DNA
databases are another example, since we have to store many genomes of individuals
of the same species, being known that two individuals of the same species share a
large portion of their genetic material, which results in highly repetitive databases.
The problem is that statistical compressors do not perform well on highly repetitive
datasets since they are not able of capturing repetitiveness. Many compressed
representations targeted at highly-repetitive datasets have been proposed, but the
number of compressed data structures is much more limited, and not many lower
bounds are known. An obvious explanation is that highly-repetitive datasets have
only been possible due to the exponential increase in storage capacity we experienced
along the last decade. That is, it is a very young research area, and then the number
of proposals is very limited. Actually, most compressed data structures for highly
repetitive datasets are either not practical or, those which are practical, are rather
space and time inefficient compared to the data entropy. This prevents compressed
data structures from being used in practice, resulting in that most systems are
still using classical compressed representations when they have to deal with highly
repetitive databases. This is a big limitation since, for instance, by using compressed
representations, version control systems can just store the differences and retrieve any
version, but performing searches on the versioned collections by using compressed
data structures would be much more interesting, but at the same time, much more
challenging. The second part of this thesis is devoted to the proposal of efficient and
practical compressed data structures for highly repetitive databases. This, apart
from all benefits already described, may open the door to new functionalities and
applications not achievable with classical compressed representations.

4 Chapter 1. Introduction

1.2 Contributions
In this section we describe the specific contributions presented along the thesis. All of
them relate to new practical compressed data structures for statistically-compressible
and highly repetitive databases. Beyond the interest the solutions may have by
themselves, since they address open research problems, we also provide a set of
practical applications in which our proposals are of interest. These applications are
real world problems which we evaluate and for which we quantify the magnitude of
the impact of our succinct data structures. In short terms, our contributions may
be summarized as follows:

1. The first contribution of this thesis addresses the problem of space-efficient
representation of optimal and suboptimal prefix-free codes. We present several
implementations of previous ideas to experimentally show they were not only
interesting from a theoretical perspective, but they could also be practical
after undergoing a proper algorithm engineering process. The main idea
behind this contribution is based on a previous work [BNO12] in which we
explored the use of alphabetic codes to represent large models compactly.
Later, we showed [NO13] that a permutation-based representation of the
original Huffman codes was more efficient. Then, we extended this work with a
previous publication by Gagie et al. [GNN10] that addressed the representation
of sub-optimal prefix-free codes. The result work appeared in the IEEE
Transactions on Information Theory journal [GNNO15]. My contribution was
the implementation, engineering, and evaluation of the optimal and suboptimal
schemes.

2. Our second contribution is the compressed wavelet matrix, an alternative
sequence representation for large alphabets that retains all the properties of
compressed wavelet trees but is significantly faster in practice. This contribution
relies on a previous work [CN12] in which the uncompressed wavelet matrix
was proposed. However, it turns out that we cannot apply the encodings we
use to obtain zero-order compression on wavelet trees to wavelet matrices due
to the reordering of bits induced by the latter. Thus, we derive an alternative
code assignment scheme based on the Kraft inequality that is also optimal and
compatible with wavelet matrices. By doing so, in theory we obtain zero-order
compression, and in practice we obtain a data structure that on large alphabets
is space-time dominant over the other implementations of wavelet trees over
large alphabets.

My contribution was a new optimal encoding scheme for compressed
wavelet matrices, the proof of its correctness, its implementation, and the
experimental evaluation. This work was published in the Information Systems
journal [CNO15].

1.2. Contributions 5

3. Our third contribution is a data structure to represent highly repetitive
sequences. Recent applications need to represent this kind of sequences but
classical statistical compression has proven to be ineffective in terms of space,
since it is not able of capturing repetitiveness. We therefore introduce two
grammar-based representations for highly repetitive sequences. The first, which
we dubbed GCC, from Grammar Compression with Counters, is tailored for
sequences with small alphabets and matches optimal space bounds available
in the state of the art while performing very well in practice. The second is
combination of the GCC with alphabet-partition-like techniques that excels in
practice when the alphabet size of the sequence is large.
I have been the main contributor in this development, including its conception,
implementation, engineering, and the experimental evaluation. This work was
published in Proc. of the 21th International Symposium on String Processing
and Information Retrieval (SPIRE) [NO14b] and its journal version was
submitted to the Information Systems journal [ONB15].

4. Our fourth contribution is the first LZ77-bounded sequence representa-
tion that solves access, rank, and select in O

(
logr n lgσ

z lgn

)
time using

O
(
σzr lgn logr n lgσ

z lgn

)
bits of space, z being the number of phrases in an

LZ77-parsing of an input string S[1, n] over an alphabet Σ = [1, σ]. We
can also obtain O(1) time for access, rank, and select using O(σznε) space
(ε < 1). We dubbed our solution BT, from Block Tree, and beyond its theoretical
properties, we show it also excels in practice when applied on sequences with
small alphabets.
I contributed to both theoretical and practical aspects of the data structure,
focusing mostly on turning the theoretical proposal into a practical and
competitive data structure. This includes the whole process of implementation,
engineering, and experimental evaluation. This work was published in Proc.
of the 2015 Data Compression Conference (DCC) [BGG+15].

5. Our fifth contribution relates with trees and highly repetitive scenarios. It
turns out that in this context, and depending on the application, many tree
isomorphisms may show up in the tree topology. These isomorphisms may
be well exploited by grammar compression techniques, but no practical fully-
functional solutions exploit them appropriately. Our contribution, which we
dub GCT, from Grammar Compressed Tree, is the first implementation of a
fully-functional grammar compressed tree topology. We present the algorithms
to carry out the most common operations, as well as a fully experimental
evaluation in which we show its practical performance.
A similar idea was independently presented by Bille et al. [BLR+11] in sketchy
form, and recently presented with full details [BLR+15]. While they aim

6 Chapter 1. Introduction

at obtaining good theoretical properties, our focus has been the practical
performance.
I have been the main contributor in this development, including its conception,
implementation, engineering, and experimental evaluation. This work
was initially published in Proc. of the 13th International Symposium on
Experimental Algorithms (SEA 2014) [NO14a]. Then it was selected among
the best papers of the conference to be invited to a special issue of ACM
Journal of Experimental Algorithmics, where it was finally accepted for
publication [NO15].

6. Finally, we explored several applications of the data structures presented
along the thesis that may be of interest by themselves. All of them are real
world problems for which our proposals may have an impact. Concretely, our
contributions in this aspect are:

(a) New algorithms to support orthogonal range queries on the wavelet matrix.
We propose and evaluate these algorithms by comparing them with their
wavelet tree version, showing we match their space but outperform them
in query time.

(b) An experimental evaluation of inverted indexes when they are simulated
using rank and select succinct data structures. Classical inverted
indexes typically outperform our proposal, although the potential
functionality we can offer is richer than that of classical approaches.

(c) New FM-Indexes for highly repetitive sequences that use our succinct data
structures to represent sequences. We compare our proposals with the
state of the art, showing that we generally obtain the most space-efficient
implementation, but being slower than some current implementations.

(d) An XPath query system tailored to highly repetitive inputs, which is
basically a re-engineering of a well known system for regular inputs. We
build a prototype and we show some preliminary experimental results
that suggest that using our compressed data structures we can build very
space efficient XPath systems for highly repetitive datasets.

(e) The Grammar Compressed Suffix Tree (GCST), one of the most space and
time efficient suffix trees for highly repetitive datasets. We provide a
fully experimental evaluation comparing it with the most space efficient
compressed suffix trees from the state of the art, showing that we obtain
competitive space and time performance.

1.3 Structure of the Thesis
This thesis is organized in four parts: the first for statistically-based representations;
the second for highly repetitive or repetition-based structures; the third for

1.3. Structure of the Thesis 7

applications of the data structures presented along the thesis; and the fourth
for summarizing. Concretely,

Part I starts with Chapter 2, in which we describe basic data structures and
algorithms we intensively use along the thesis. Chapter 3 presents our
first contribution and shows how to efficiently represent optimal and sub-
optimal prefix-free codes, providing also a full experimental evaluation of
these proposals. Chapter 4 presents our second contribution, the compressed
wavelet matrix, for which we provide an experimental evaluation comparing
this proposal with the best state of the art competitors.

Part II starts with a Chapter 5, dedicated to previous concepts of interest on
highly repetitive scenarios. Chapter 6 presents our third contribution, which
are several data structures to support rank, select, and access on grammar
compressed sequences. This chapter also includes an experimental evaluation
that compares our proposals with the state of the art. Chapter 7, describes
our fourth contribution, the first LZ77-bounded sequence representation. We
provide the algorithms to construct the data structure and to support queries,
as well as a theoretical analysis. We also provide an implementation of our
proposals, which we compare with the best state of the art competitors.
Chapter 8 presents our fifth contribution, explaining how to grammar
compress tree topologies, describing the algorithms to support the expected
functionalities, and providing an experimental evaluation of our proposal.

Part III contains several applications in which we can apply the data structures
presented along the thesis. Concretely, Chapter 9 presents new orthogonal
range query algorithms implemented on a wavelet matrix with an experimental
evaluation of these algorithms. Chapter 10 shows how to use repetition-based
and statistically-compressed sequence representations to simulate inverted
indexes. Although the algorithms are not new, we use this chapter to show the
space-time performance of our proposals when compared with real inverted
index implementations. Chapter 11 shows how to build the most space-efficient
self-index for highly repetitive sequences. We use our proposals to solve
rank and select queries on highly repetitive collections and we provide an
experimental comparison. Chapter 12 shows how to adapt an XPath system
to support queries on highly repetitive scenarios using a fraction of the space
of the original proposal. We also provide an experimental evaluation. Finally,
Chapter 13, presents a new compressed suffix tree for highly repetitive inputs.
We experimentally evaluate it, showing it is a worth-considering solution for
highly repetitive inputs.

Part IV contains Chapter 14, which presents our conclusions about the contribu-
tions proposed in this thesis, addressing also future research lines derived from
this work.

8 Chapter 1. Introduction

Appendix A enumerates the publications and other research results derived from
this thesis.

Appendix B presents a summary of the thesis in Spanish.

Part I

Statistical Encodings

9

Chapter 2

Previous Concepts on
Statistical Encodings

2.1 Model of Computation
We assume the word-RAM model of computation. This model supposes we have
available a constant number of registers we can use to operate and to address the
RAM memory. The registers are of w = Θ(lgn) bits1, usually meaning that we can
address at least n bits of RAM. The RAM memory is split into contiguous words
of length w bits. Each operation in a register, from arithmetic (+,-,*,/) to binary
operations, as well as for memory accesses (reads and writes) can be carried out in
Θ(1) time.

2.2 Information Theory, Entropy, and Encodings
Information Theory is a branch of Computer Science that deals with the
quantification of information and how to use that measure to efficiently transmit
messages through a communication channel. Shannon’s work [SW49] settled the
basis of the field, providing many useful concepts that are still used today.

Suppose we are given a source of information that emits symbols x ∈ X with
probability p(x) (or px). This can be mathematically modeled as a discrete random
variable X that takes values in X with probability mass function p(x) = Pr{X = x},
x ∈ X , and X being a countable set. Shannon [SW49] defined the concept of entropy
(Shannon-entropy) as a function H(X) or just H that measures the uncertainty
about X. This function should satisfy the following properties:

1We use lg x to denote log2 x.

11

12 Chapter 2. Previous Concepts on Statistical Encodings

1. “H should be continuous in the p(x)”.

2. “If all the p(x) are equal, p(x) = 1
|X | , then H should be a monotonic increasing

function on |X |”.

3. “If a choice be broken down into two successive choices, the original X should
be the weighted sum of the individual values of H”.

Shannon [SW49] also proved the only function with these properties is:

H(X) = −
∑
x∈X

p(x) lg p(x)

with 0 lg 0 = 0.
An encoding C for a random variable X is a function that maps symbols in X to

D∗ (C : X → D∗). An element C(x) ∈ D∗is the code of x according to the encoding
C. A fixed-length encoding is that in which every assigned code has the same length:
|C(x)| = |C(y)|,∀x ∈ X (|C(x)| is the length in bits of code C(x)). On the other
hand, a variable-length encoding removes that restriction, permitting codes with
different lengths.

In both cases, we need C to be injective (x 6= y ⇒ C(x) 6= C(y)), otherwise
we cannot decode a symbol univocally. This kind of encodings are also known as
nonsingular. However, this property suffices to decode a single symbol unambiguously,
but not a concatenation of encoded symbols.

An extension C∗ of an encoding C is a mapping from a sequence of symbols
to its sequence of codes: C∗(x1, x2, . . . , xn) = C(x1)C(x2) . . . C(xn). We say that
an encoding C is univocally decodable if C∗(x1, x2, . . . , xn) is nonsingular. Roughly
speaking, an univocally decodable encoding means that from C∗(x1, x2, . . . , xn) we
can obtain back the original message x1, . . . , xn. However, we may have to read
the whole C∗(x1, x2, . . . , xn) stream to obtain the code associated with x1. In other
words, it may be hard to tell where the code associated with a symbol finishes.

We say an encoding is instantaneous, prefix-free, or just a prefix encoding if we
can determine x as soon as we have read the last bit of C(x). This necessarily means
there is no code C(x) that is a prefix of another code C(x′). Note also that if C is
prefix-free, then C∗(x1, x2, . . . , xn) is univocally decodable. It is worth mentioning
that for all univocally decodable code we can always find a prefix-pree code with the
same average code length but being easier to decode. This is why prefix-free codes
are preferred over just univocally decodable codes. Figure 2.1 depicts the relation
between these classes of encodings.

The aim of many transmission algorithms is to find an encoding C such that (a)
the average code length is minimized, and (b) C is prefix-free. The first requirement
(a) means that if we are paying a price for each transmitted bit, we assign codes
to symbols in order to minimize the cost of transmission. Being X the source of
information, the function to minimize is:

2.3. Empirical Entropy 13

all codes

nonsingular

univocally-
decodable

prefix-free

Figure 2.1: Relation between classes of encodings.

L(X,C) =
∑
x∈X

p(x) · |C(x)|

L(X,C) is known as the average code length for X according to the encoding C,
satisfying that L(X,C) ≥ H(X).2 Actually, H(X) is a lower bound on the average
code length for any univocally decodable code. Additionally, to achieve the second
requirement (b), the encoding C must also be prefix-free. Any prefix-free code must
satisfy the Kraft-McMillan inequality:∑

x∈X
2−|C(x)| ≤ 1.

Another important aspect about encodings is how to efficiently store and access
them. The encoding model is a data structure that stores an encoding in such a way
that (a) given a symbol x, we can obtain its code C(x), and (b) given a code C(x),
we obtain back x. The size of the model, as well as the time necessary to access it,
may be as important as other properties of the encoding.

2.3 Empirical Entropy
If the source of information is not an infinite source but just a message S[1, n] drawn
over Σ = [1, σ], then p(x) can be redefined as the probability of occurrence of x in
S. Then, the Shannon-entropy is redefined as the zero-order empirical entropy:

2We omit the arguments of L if they can be inferred unambiguously from the context.

14 Chapter 2. Previous Concepts on Statistical Encodings

H0(S) =
∑
x∈Σ

p(x) lg 1
p(x)

H0 is also a function that measures the uncertainty about S when considering
only the probability of occurrence of each symbol. Note that in the worst-case
p(x) = p(y)∀x, y ∈ Σ, and H0(S) = lg σ, which is reached when using fixed length
encoding of blg(σ)c+ 1 bits.

Although obtaining H0 bits per symbol may be low enough in many cases, there
exist applications in which we can go further. Higher-Order models measure the
information or uncertainty about a symbol by considering which symbols precede it
in the sequence. This is a reasonable approach, for instance, when modeling natural
language sequences, where symbols group together to form words, being some words
more frequent than others, and hence, the chance of predicting the next symbol of a
word given the k preceding symbols is also higher. This intuitive idea is known as
k-order empirical entropy of an input sequence S and is mathematically defined as:

Hk(S) =
∑

C=s1...sk

|SC |
n
H0(SC)

where SC is a string formed by collecting k symbols that follows each occurrence of
the context C = s1 . . . sk in S.

2.4 Entropy Bounded Encodings
Given a random variable X taking values in Σ = [1, σ], in this section we will show
how to obtain prefix-free encodings space-bounded by the Shannon or empirical
entropy of X. The algorithms we present here assign a code with an integral
number of bits to each symbol (we cannot assign fractions of bits unless we use
more sophisticated approaches like Arithmetic encodings [Sal07]). We focus in two
algorithms: Shannon-Fano and Huffman.

2.4.1 Shannon-Fano Encoding
A Shannon-Fano encoding (SF) uses the entropy definition H(X) =

∑
σ p(x) lg 1

p(x)
to obtain the code for each symbol in Σ. It turns out that the optimal code length
for x is exactly lg(1/p(x)) [SW49]. Then, using code lengths dlg(1/p(x))e yields an
average code length which uses at most 1 bit over the entropy H(X):

L(X,SF) =
∑
x∈X

p(x)
⌈

lg 1
p(x)

⌉
<
∑
x∈X

p(x)(lg 1
p(x) + 1) = H(X) + 1.

2.4. Entropy Bounded Encodings 15

Note that this way of assigning code lengths to symbols satisfies the Kraft-
McMillan inequality, which ensures that a prefix-free encoding with that properties
exists: ∑

x∈X
2−|C(x)| =

∑
x∈X

2−
⌈

lg 1
p(x)

⌉
≤
∑
x∈X

2− lg 1
p(x) =

∑
x∈X

p(x) = 1.

Note also that if the source of information is a sequence and not an infinite source,
H becomes H0. This implies that the minimum probability of occurrence of a symbol
x is p(x) ≥ 1/n, and then the maximum length of a code is

⌈
lg 1

p(x)

⌉
= O(lgn).

Even though a Shannon-Fano encoding obtains an average code length which
is less than 1 bit over the entropy H(X), it may be actually far from the entropy
(concretely up to 2 bits [Hor77]). For instance, suppose we are given a random
variable X = {a, b} with mass probability function P (X = a) = 0.999999 and P (x =
b) = 1− P (x = a). Then, |C(a)| =

⌈
lg 1

P (x=a)

⌉
= 1 and |C(b)| =

⌈
lg 1

P (x=b)

⌉
= 20,

while the optimal code length for b is clearly 1 bit. This is an intrinsic problem of
Shannon-Fano encodings, which was later overcomed by David Huffman[Huf52].

2.4.2 Huffman Encoding
The Huffman algorithm [Huf52] obtains a prefix-free encoding H for X such that
L(X,H) =

∑
x∈Σ p(x)|C(x)| is minimal among all prefix-free codes. Besides, this

encoding satisfies H(X) ≤ L(X,H) < H(X) + 1, which, in the worst case, is one bit
less over H(X) than Shannon-Fano encodings.

Huffman’s algorithm [Huf52] builds what is known as the Huffman tree to assign
optimal codes to symbols. It is a |D|-ary tree in which every node (but possibly the
root) has |D| children. Each leaf node corresponds to a symbol and has associated
its probability of occurrence. Each internal node of the tree has associated the sum
of probabilities of all the leaves it covers. By construction, the Huffman algorithm
ensures that if a leaf is less deep than another in the tree, then the probability of
occurrence of the former is higher or equal than the second. Every child pointer of
each node is labeled with a different symbol in [0, |D| − 1].

Once built, the Huffman tree permits to obtain the code associated with each
symbol by traversing the tree from the root to the leaf that contains the symbol,
annotating the child label we follow at each node. The code length associated with
a symbol is given by the tree depth of the leaf representing the symbol. Figure 2.2
shows an example of binary Huffman tree for a given set of symbols and probabilities
of occurrence.

Although there exist many algorithms to build a Huffman tree efficiently [MK95],
Algorithm 1 shows probably one of the simplest implementations. It builds a D-ary
Huffman tree from a given P 〈p1, . . . , pσ〉 using O(σ) additional space. It runs in
O(σ) time if P is sorted (in increasing order by px to make Algorithm 1 correct),

16 Chapter 2. Previous Concepts on Statistical Encodings

a e

0.1b

0.3 c

e

1.0

0.6

p(a) = 0.05 p(d) = 0.05

p(b) = 0.2

p(c) = 0.3

0

0

0

0

1

1

1

1

p(e) = 0.4

Figure 2.2: Example of a Huffman tree.

otherwise in O(σ lg σ) since we need to sort P . The algorithm proceeds as follows.
Being Q1 and Q2 two initially empty queues, it first creates the tree leaves and
inserts them into queue Q1 in the same order they are in P . Then, it extracts
from Q1 a total of 2 ≤ r′ ≤ D nodes such that (σ − r′)/(D − 1) is an integer
number [Huf52], merges these nodes, and inserts the resulting node in the initially
empty queue Q2. This step is to ensure the next loop can always carry out merges
of |D| nodes. After this step, each iteration of the while loop merges those |D| nodes
with lower probability px from Q1 and Q2, inserting the resulting node (returned
by function MergeNodes) into Q2. This process is repeated until |Q1|+ |Q2| = 1,
ending with Q2 containing the root of the Huffman tree.

2.4.2.1 Canonical Huffman

The average code length L of a Huffman encoding is determined by the depth of
each symbol in the Huffman tree. We could actually permute symbols which are
at the same depth still obtaining the same value for L, as Figure 2.3 shows. This
means that once code lengths are known, codes can be assigned to symbols in several
ways. Among all of them, canonical Huffman [SK64, Sal07] is of special interest
due to its many advantages[SK64, Sal07]. Basically, a canonical Huffman encoding
ensures that codes with the same length are consecutive numbers, as we can see in
Figure 2.4.

The algorithm to compute a D-ary canonical Huffman code [SK64] starts from
the code length assignments produced by the standard Huffman algorithm (for the
same arity), and produces a particular Huffman tree with the same code lengths.

2.5. Encoding Schemes for Integers 17

Algorithm 1 Given the probability of occurrence of each symbol (P 〈p1, p2, . . . , pσ〉))
in increasing order and σ ≥ 2, it returns a D-ary Huffman tree [Huf52] associated
with that distribution. Q1 and Q2 are two queues which can Push and Pop in O(1)
time. Function PopMin(Q1, Q2) Pops the element with minimum probability px
among Q1 and Q2.
Huffman(P 〈p1, p2, . . . , pσ〉)
Q1, Q2 ← ∅
for x ∈ [1, σ] do
nx.child[i] = null, ∀i ∈ [1, |D|]
nx.px ← P [x]
nx.id← x
Q1.Push(nx)

end for
Let 2 ≤ r′ ≤ D s.t. (σ−r′)/(D−1) be an integer
nnew ←MergeNodes(Q1, Q2, r

′)
Q2.Push(nnew)
while |Q1|+ |Q2| > 1 do
nnew ←MergeNodes(Q1, Q2, |D|)
Q2.Push(nnew)

end while
return Q2.Pop()

MergeNodes(Q1, Q2, r)
nnew.px ← 0
for i ∈ [1, r] do
v ← PopMin(Q1, Q2)
nnew.px ← nnew.px +
v.px
nnew.child[i] = v

end for
nnew.child[i] = null, ∀i ∈
[r + 1, |D|]
return nnew

First, it computes `min and `max, the minimum and maximum code lengths, and
array nCodes[`min, `max], where nCodes[`] is the number of codes of length `. Then,
the algorithm assigns the codes as follows:

1. first[`min] = 0`min (i.e., `min 0s) is the first code of length `min.

2. All the codes of a given length ` are consecutive numbers, from first[`] to
last[`] = first[`] + nCodes[`]− 1.

3. The first code of the next length `′ > ` that has nCodes[`′] > 0 is |D|`′−` +
(last[`] + 1).

Note that rule 2 ensures that all codes of a given level are consecutive numbers
starting at first[`]. Note also last[`] is the last code associated with a symbol of
length `. Rule 3 guarantees that the set of produced codes is prefix-free.

2.5 Encoding Schemes for Integers
Given a sequence X[1, n] of integers, there exist a plenty of techniques that deal
with how to compactly represent X while we access each element of X efficiently.

18 Chapter 2. Previous Concepts on Statistical Encodings

a e

0.1b

0.3 c

e

1.0

0.6

p(a) = 0.05 p(d) = 0.05

p(b) = 0.2

p(c) = 0.3

0

0

0

0

1

1

1

1

p(e) = 0.4

a e

0.1b

0.3 c

e

1.0

0.6

p(a) = 0.05 p(d) = 0.05

p(b) = 0.2

p(c) = 0.3

0

0

0

0

1

1

1

1

p(e) = 0.4

Figure 2.3: Example of two Huffman trees with the same average code
length L = 2.

a d

0.1b

0.3c

e

1.0

0.6

p(a)=0.05 p(d)=0.05

p(b)=0.2

p(c)=0.3

0

0

0

0

1

1

1

1

p(e)=0.4

a e

0.1b

0.3 c

e

1.0

0.6

p(a) = 0.05 p(d) = 0.05

p(b) = 0.2

p(c) = 0.3

0

0

0

0

1

1

1

1

p(e) = 0.4

(a) Huffman tree (a) Canonical Huffman tree

Figure 2.4: Example of a Huffman tree (a) and an equivalent canonical
Huffman tree (b).

2.5. Encoding Schemes for Integers 19

Algorithm 2 Given a Huffman Tree T resulting from Algorithm 1, it reports triplets
of (symbol,code,code-length). It initially calls ReportCodesHuffman(T, 0, 0).
ReportCodesHuffman(t, code, len)
if isLeaf(t) then

output(t.id, code, len)
else
for i ∈ [1, |D|] and t.child[i] 6= null do
ReportCodesHuffman(t.child[i], code ∗ |D|+ i, len+ 1)

end for
end if

Using a Huffman encoding for X may reduce the space from n words to
O(nH0(X)) bits but it requires to store and use the Huffman model, which implies
space and time overheads. On the other hand, we may focus in other properties of X
rather than the entropy to obtain an space efficient representation. For instance, if
X contains only small numbers, we can use an instantaneous encoding of blgMc+ 1
bits for each number (M = maxX[i](X)), avoiding the use of any model.

In this section we address several instantaneous encodings, some of them
particularly focused on representing small numbers like Unary-Codes, Gamma-Codes,
and Delta-Codes. We also target an integer representation, dubbed VByte[WZ99],
that allows us to space-efficiently represent sequences of larger integers.

2.5.1 Encodings for Small Integers
Some of the most representative techniques for small integers are unary-codes, γ-
codes, and δ-codes. Table 2.1 shows how these techniques, which are explained next,
encode the numbers in the interval [1, 10].

Unary-codes are a kind of variable length encoding that represents an integer x
as a binary sequence unary(x) = 0x−11, that is, a 0 repeated x − 1 times
followed by a 1. Note |unary(x)| = x and that this encoding does not permit
to represent the 0 value. Besides, it is only adequate when x is very small.

Gamma-codes (γ-codes) is only adequate for small numbers. Given an integer
x, its γ-code corresponds to the concatenation of the number of bits of x
using unary codes and the number x without its most significant bit. That
is, γ(x) = unary(|x|)x〈|x| − 1, 1〉, where x〈|x| − 1, 1〉 are the |x| − 1 least
significant bits of x.

Delta-codes (δ-codes) become of interest when an integer x cannot be represented
efficiently by a γ-encoding because it is too large. It is defined as follows:
δ(x) = γ(|x|)x〈|x| − 1, 1〉. That is, we replace the unary-encoding used by
γ-codes to tell the length of the integer by a γ-encoding.

20 Chapter 2. Previous Concepts on Statistical Encodings

Symbol Unary-code γ-code δ-code
1 0 0 0
2 10 100 1000
3 110 101 1001
4 1110 11000 10100
5 11110 11001 10101
6 111110 11010 10110
7 1111110 11011 10111
8 11111110 1110000 11000000
9 111111110 1110001 11000001
10 1111111110 1110010 11000010

Table 2.1: Examples of variable length encodings for integers in the range
[1, 10].

2.5.2 Encodings for Large Integers
Although δ-codes become more efficient as the magnitude of the number grows,
there exist some techniques that are specifically designed for large integers. These
techniques, that are completely unacceptable for small integers, have some properties,
like space efficiency and fast decoding, that make them more suitable for this new
scenario. A particularly useful technique is known as VByte-codes [WZ99].

A Variable Byte [WZ99] is a byte-aligned integer representation addressed for
larger numbers. The aim of this encoding is not only to be space efficient but also
to obtain fast decoding by obtaining a byte-aligned variable length solution. The
key point is to split each element of X into an integer number of byte-length chunks.

Thus, given an integer x, a VByte-encoding divides x into chunks of 7 bits. Each
chunk is stored in a byte setting the most significant bit to 0 or 1 depending on
whether the chunk is the least significant or not (respectively). Thus, V Byte(x) =
b1b2 . . . bk, where k = d|x|/7e, and each bi = x〈i ∗ 7, (i− 1) ∗ 7 + 1〉, padding with 0
to the left if necessary, and setting bi〈8〉 = 1 iff i = k.

Note finally that the extension of a VByte encoding is V Byte∗(X) =
V Byte(x1)V Byte(x2) . . . V Byte(xn).

2.6 Rank, Select, and Access on Bitmaps
A bitmap or bitsequence is a sequence B[1, n] where B[i] ∈ {0, 1}, 1 ≤ i ≤ n,
which supports the following operations:

• access(B, i) returns B[i] for 1 ≤ i ≤ n.

2.6. Rank, Select, and Access on Bitmaps 21

• rankv(B, i) reports the number of occurrences of v ∈ {0, 1} in B[1, i], with
1 ≤ i ≤ n, rankv(B, 0) = 0, and rankv(B, i) = rankv(B,n) if i > n.

• selectv(B, i) reports the position of the ith occurrence of v = {0, 1} in B[1, n],
being 1 ≤ i ≤ rankv(B, i) and selectv(B, 0) = 0.

We typically denote solutions that support these three operations as rsa data
structures (from rank, select, and access).

The number of applications in which the use of bitmaps is involved is as
heterogeneous as countless. From full-text indexes to succinct tree representations,
the nature of applications is so variable that different representations with different
space-time tradeoffs become necessary. A subset of these solutions are intensively
used along this thesis and explained next.

The first proposal that addressed the problem of computing rsa queries on
bitmaps was due to Jacobson[Jac89] and was initially developed as a tool to space-
efficiently represent trees and graphs. Given a binary sequence B[1, n], he proposed
to add a sublinear space term on top of B to support rank queries in O(1) time,
becoming the total space for the whole structure n+o(n) bits. This data structure on
top of B basically consists of a two-level directory built as follows. We define a super-
block size s = lg2 n/2 and we store an array Rb[i] = rank1(B, i ∗ s), 1 ≤ i ≤ n/s.
This adds a total of (n/s) lgn = O(n/ lgn) = o(n) bits of overhead and permits to
solve rank queries in O(s) time. To obtain O(1) rank, we need to add another level
of sampling. We divide each super-block into blocks of length b = s/ lgn = lgn/2
and we store a vector Rb[i] = rank1(B, b ∗ i)− rank1(B, di/se s), 1 ≤ i ≤ n/b. The
space for Rb adds to (n/b) lg(s + 1) = O(n lg lgn/ lgn) = o(n) bits. With this
two-level data structure we can solve rank in O(b) time since we can compute in
O(1) the rank answer for each block beginning but we still need to spend O(b) time
to scan the block itself. To overcome this problem we use a lookup-table that stores
the rank answers for all possible chunks of length b. This lookup-table adds up
O(2bb lg b) = O(

√
n lgn lg lgn) = o(n) bits. Therefore, the total space of this bitmap

representation is n bits (the binary sequence itself) plus the space to store Rs, Rb,
and the lookup-table, adding up for a total of n+ o(n) bits.

Later, Clark and Munro [Cla96, Mun96] augmented this proposal to also support
select queries in O(1) using an additional overhead of O(n/ lg lgn) = o(n) bits of
space. Along the thesis, we refer to plain bitmap representations as CM.

All these data structures for bitmaps seen so far have in common that they use
additional data structures on top of B to solve rsa queries efficiently. That is, all of
them are orthogonal to the compressibility properties of B. Pagh [Pag01] and later
Raman et al.[RRR07] were the first to explore this line and the first to statistically
compress a binary sequence still solving rsa queries efficiently.

Concretely, the proposal Raman et al. [RRR07] suggests to conceptually divide
the binary sequence into blocks of size b bits. Each block Bi covers from positions
(i−1)b+1 to ib. A block belongs to class ci if it contains exactly ci 1s. As each block

22 Chapter 2. Previous Concepts on Statistical Encodings

has length at most b, we have at most b different classes. However, as classes contain
different numbers of 1s, each class ci has at most

(
b
ci

)
different reshuffles of its bits.

Each block Bi is identified as a pair (ci, oi), where ci identifies its class while 0 ≤
oi ≤

(
b
ci

)
identifies each of the

(
b
ci

)
reshuffles of that class. We then store a sequence

C[1, dn/be] to store the array of classes each block belongs to. As each cell requires
dlg(b+ 1)e bits, it adds up for a total of dn/be dlg(b+ 1)e = (n/b) lg b+O(n/b) bits.
Additionally, we need a vector O to store each oi component. Knowing that each oi
requires

⌈
lg
(
b
ci

)⌉
bits, the total space for the sequence O becomes:

dn/be∑
i=1

⌈
lg
(
b

ci

)⌉
<

dn/be∑
i=1

lg
(
b

ci

)
+ dn/be =

lg
dn/be∏
i=1

(
b

ci

)
+ dn/be ≤ lg

(
b

m

)
+ dn/be ≤ nH0(B) + dn/be

where m =
dn/be∑
i=1

ci [Pag01].

Additionally, we need to add several sublinear data structures to solve rsa queries
in O(1) time, obtaining a final space bound of nH0(B) + o(n) bits and O(1) time
for each operation [RRR07]. This data structure is called RRR along this thesis.

As we showed along this section, in theory we can solve rank and select queries
in O(1) time using o(n) extra bits. However, the space overhead for select is
O(n/ lg lgn), larger than that of rank, which is O(n lg lgn/ lgn). Golynski [Gol07]
also obtained O(1) select time using O(n lg lgn/ lgn) bits, but the constant is
too large to be practical. Therefore, and despite of existing solutions that obtain
O(1) time and o(n) space in theory, in practice we typically use non-constant time
variants for select. The result is that, commonly, select operations are slower
than rank. Therefore, and in order to close this gap, several practical improvements
were proposed along the past few years [NP12, GP14].

We also know due to Pǎtraşcu and Viola [PV10] that, if we want O(1) query
time, then the sublinear space overhead cannot be less than O(n/polylog(n)) bits.
The problem is that even this space overhead may be too much in some cases. For
instance, if B[1, n] is a very sparse bitmap, that is, if the number of 1s (m) ism << n,
then H0(B) is very small compared with o(n), which starts to dominate. Then, for
very sparse bitmaps, there exist a proposal due to Okanohara and Sadakane [OS07]
that achieves H0(B) + O(m) bits and solves rank in O(lg(n/m)) and select in
O(1) time. Alternatively, one can encode the differences between 1s or 0s positions
with δ-codes (see Section 2.5) and add a sub-linear space overhead on top to solve
rsa queries efficiently [KN13]. This last technique is called DELTA along this thesis.

2.7. Rank, Select and Access on Sequences 23

2.7 Rank, Select and Access on Sequences
A sequence data structure S[1, n] is a generalization of the bitmap concept in which
each S[i] ∈ Σ = [1, σ], 1 ≤ i ≤ n. We also extend the meaning of the three basic
operations a bitmap should support as follows:

• access(S, i) returns S[i] for 1 ≤ i ≤ n.

• rankv(S, i) reports the number of occurrences of v ∈ Σ in S[1, i], with 1 ≤ i ≤ n,
rankv(B, 0) = 0, and rankv(B, i) = rankv(B,n) if i > n.

• selectv(S, i) reports the position of the ith occurrence of v ∈ Σ in S[1, n],
being 1 ≤ i ≤ rankv(S, i) and selectv(S, 0) = 0.

Additionally, some sequence representations support extract(S, i, j) operation,
which returns S[i, j], 1 ≤ i ≤ j ≤ n more efficiently than with j − i + 1 calls to
access.

A naive implementation of a sequence consist of using a bitmap Bi[1, n] for each
symbol i ∈ Σ, setting Bi[j] = 1 iff S[j] = i. rankv(S, i) will become rank1(Bv, i)
while selectv(S, i) = select1(Bv, i). Therefore, the total time to solve rank and
select queries on S becomes that of solving the same operations on each Bi. The
total space becomes nσ(1 + o(1)) bits in case of using uncompressed bitmaps or
nH0(S) + O(n) if the bitmaps are compressed with Okanohara and Sadakane’s
technique [OS07]. However, access operation is not well supported since it implies
to check all bitmaps in the wost case. Hence, the worst-case performance for this
operation O(σtaccess), being taccess the time to support access on Bi bitmaps. We
dub this solution as MATRIX.

Although this solution may be of interest in some scenarios where the space
is not a limitation and access is uncritical, most of them require a more efficient
solution both in terms space and time for the three operations.

In the literature there exist a plenty of sequence representations with different
space/time tradeoffs. Some of them are explained next.

2.7.1 Wavelet Trees
A wavelet tree (WT) [GGV03] for sequence S[1, n] over alphabet [1..σ] is a complete
balanced binary tree, where each node handles a range of symbols. The root handles
[1..σ] and each leaf handles one symbol. Each node v handling the range [αv, ωv]
represents the subsequence Sv[1, nv] of S formed by the symbols in [αv, ωv], but
it does not explicitly store Sv. Rather, internal nodes v store a bitmap Bv[1, nv],
so that Bv[i] = 0 if Sv[i] ≤ αv + 2dlg(ωv−αv)e−1 and Bv[i] = 1 otherwise. That is,
we partition the alphabet interval [αv, ωv] into two roughly equal parts: a “left”
one, [αv, αv + 2dlg(ωv−αv)e−1) and a “right” one, [αv + 2dlg(ωv−αv)e−1, ωv]. These are

24 Chapter 2. Previous Concepts on Statistical Encodings

5 8 7 6 4 3 2 1 3 2 5 2 8
1 1 1 1 0 0 0 0 0 0 1 0 1

4 3 2 1 3 2 2
1 1 0 0 1 0 0

5 8 7 6 5 8
0 1 1 0 0 1

5 6 5
0 1 0

8 7 8
1 0 1

2 1 2 2
1 0 1 1

4 3 3
1 0 0

1 2 2 2 3 3 4 5 5 6 7 8 8

Figure 2.5: Example of a standard wavelet tree (WT) over a sequence.

handled by the left and right children of v. No bitmaps are stored for the leaves.
Figure 2.5 gives an example.

The tree has height dlg σe, and it has exactly σ leaves and σ − 1 internal nodes.
If we regard it level by level, we can see that it holds, in the Bv bitmaps, up to n
bits per level (all the leaves in each level appear to the right of internal nodes). Thus
it stores at most ndlg σe bits. Storing the tree pointers, and pointers to the bitmaps,
requires O(σ lgn) further bits, if we use the minimum of lgn bits for the pointers.

To access S[i], we start from the root node ν, setting iν = i. If Bν [iν] = 0,
this means that S[i] = Sν [iν] ≤ 2dlgσe−1 and that the symbol is represented in the
subsequence Sνl of the left child νl of the root. Otherwise, Sν [iν] > 2dlgσe−1 and it
is represented in the subsequence Sνr of the right child νr of the root. In the first
case, the position of Sν [iν] in Sνl is iνl = rank0(Bν , iν), whereas in the second, the
position in Sνr is iνr = rank1(Bν , iν). We continue recursively, extracting Sv[iv]
from node v = νl or v = νr, until we arrive at a leaf representing the alphabet
interval [a, a], where we can finally report S[i] = a.

Therefore, the maximum cost of operation access is that of dlg σe binary rank
operations on bitmaps Bv.

The process to compute ranka(S, i) is similar. The difference is that we do
not descend according to whether Bv[i] equals 0 or 1, but rather according to the
bits of a ∈ [1, σ]: the highest bit of a tells us whether to go left or right, and the
lower bits are used in the next levels. When moving to a child u of v, we compute
iu = rank0/1(Bv, iv) to be the number of times the current bit of a appears in
Bv[1, iv]. When we arrive at the leaf u handling the range [a, a], the answer to
ranka(S, i) is iu.

Finally, to compute selecta(S, j) we must proceed upwards. We start at the
leaf u that handles the alphabet range [a, a]. So we want to track the position of
Su[ju], ju = j, towards the root. If u is the left child of its parent v, then the

2.7. Rank, Select and Access on Sequences 25

Algorithm 3 Standard wavelet tree algorithms: On the wavelet tree of sequence
S rooted at ν, acc(ν, i) returns S[i]; rnk(ν, a, i) returns ranka(S, i); and sel(ν, a, j)
returns selecta(S, j). The left/right children of v are called vl/vr.
acc(v, i)
if ωv−αv = 0 then
return αv

end if
if Bv[i] = 0 then
i← rank0(Bv, i)
return acc(vl, i)

else
i← rank1(Bv, i)
return acc(vr, i)

end if

rnk(v, a, i)
if ωv − αv = 0 then
return i

end if
if a ≤ 2dlg(ωv−αv)e−1 then
i← rank0(Bv, i)
return rnk(vl, a, i)

else
i← rank1(Bv, i)
return rnk(vr, a, i)

end if

sel(v, a, j)
if ωv − αv = 0 then
return j

end if
if a ≤ 2dlg(ωv−αv)e−1 then
j ← sel(vl, a, j)
return select0(Bv, j)

else
j ← sel(vr, a, j)
return select1(Bv, j)

end if

corresponding position at the parent is Sv[jv], where jv = select0(Bv, ju). Else,
the corresponding position is jv = select1(Bv, ju). When we finally arrive at the
root ν, the answer to the query is jν .

Thus the maximum cost of query ranka(S, i) is dlg σe binary rank operations
(just like access(S, i)), and the maximum cost of query selecta(S, i) is dlg σe binary
select operations. Algorithm 3 gives the pseudocode (the recursive form is cleaner,
but recursion can be easily removed).

Although when talking about wavelet trees we will focus on the binary case,
it is worth mentioning that we can generalize the concept of WT to the multi-ary
case: Instead of recursively dividing the vocabulary into two halves, we can split
it into r disjoint sets. This is known as Multi-ary WT or MWT. Now the internal MWT
nodes store sequences drawn over alphabet [1, r] instead of bitmaps, and the height
is reduced to dlogr σe. An example is shown in Figure 2.6 and the rsa algorithms
can be easily modified to consider this new scenario.

2.7.2 Huffman-Shaped Wavelet Trees
Given the frequencies of the σ symbols in S[1, n] and as explained in Section 2.4.2, the
Huffman algorithm [Huf52] produces an optimal variable-length prefix-free encoding.
If symbol a ∈ [1, σ] appears na times in S, then the Huffman algorithm will assign it
a codeword of length `a so that the sum L =

∑
a na`a is minimized. The output size

of Huffman compression can be bounded by
∑
a na`a < n(H0(S) + 1) bits, which is

off the optimum by less than 1 bit per symbol.
Building a balanced wavelet tree is equivalent to using a fixed length encoding.

Instead, by giving the wavelet tree the shape of the Huffman tree, the total number
of bits stored is exactly the output size of the Huffman compressor [GGV03, Nav12]:
The leaf of a is at depth `a, and each of the na occurrences induces one bit in the

26 Chapter 2. Previous Concepts on Statistical Encodings

5 8 7 6 4 3 2 1 3 2 5 2 8
1 2 2 1 1 0 0 0 0 0 1 0 2

3 2 1 3 2 2
2 1 0 2 1 1

5 6 4 5
1 2 0 1

8 7 8
1 0 1

1 2 2 2 3 3 6 8 8 7 4 5 5

Figure 2.6: Multi-ary wavelet tree (MWT) with r = 3 corresponding to the
running example.

bitmap of each of the `a ancestors of the leaf. The size of this tree, plus rank/select
overheads, is thus upper bounded by n(H0(S) + 1) + o(n(H0(S) + 1)) +O(σ lgn)
bits. Figure 2.7 (bottom) depicts a Huffman-shaped wavelet tree (WTH).

The wavelet tree operations are performed verbatim on Huffman-shaped wavelet
trees. Moreover, they become faster on average: If i ∈ [1, n] is chosen at random
for access(S, i), or a is chosen with probability na/n in operations ranka(S, i) and
selecta(S, j) (which is the typical case in most applications), then the average
time is O(H0(S) + 1). By rebalancing deep leaves, the space and average time are
maintained and the worst-case time of the operations is limited to O(lg σ) [BN13].

Zero-order compression can also be achieved on the balanced wavelet tree, by
using a compressed representation of the bitmaps [RRR07]. The time remains
the same and the space decreases to nH0(S) + o(n lg σ) bits [GGV03]. Combining
the compressed bitmap representation with Huffman shape, we obtain nH0(S) +
o(n(H0(S) + 1)) +O(σ lgn) bits. This combination works well in practice [CN08],
although the compressed bitmap representation is in practice slower than the plain
one.

2.7.3 GMR Representation
Another solution that supports rsa queries on sequences is due to Golynski et
al.[GMR06] (GMR). They present a data structure that takes n lg σ + o(lg σ)n bits
and answers select in O(1) time, and rank and access in O(lg lg σ) time. Although
it does not compress the input, it is very fast both in theory and practice, being of
interest in many applications. We do not need to explain their internal workings to
present the results of this thesis.

2.7. Rank, Select and Access on Sequences 27

5 8 7 6 4 3 2 1 3 2 5 2 8
1 1 1 1 0 0 0 0 0 0 1 0 1

4 3 2 1 3 2 2
1 1 0 0 1 0 0

5 8 7 6 5 8
0 1 1 0 0 1

5 6 5
0 1 0

8 7 8
1 0 1

2 1 2 2
1 0 1 1

4 3 3
1 0 0

1 2 2 2 3 3 4 5 5 6 7 8 8

5 8 7 6 4 3 2 1 3 2 5 2 8
1 1 1 1 0 0 0 0 0 0 1 0 1

8 2 2 2 8
0 1 1 1 0

5 7 6 4 3 1 3 5
1 0 0 0 1 0 1 1

7 6 4 1
1 1 0 0

5 3 3 5
1 0 0 1

4 1
1 0

7 6
0 1

1

2 2 2

3 3

4

5 5

67

8 8

Figure 2.7: On the top, the same wavelet tree (WT) of Figure 2.5. On the
bottom, its Huffman-shaped version (WTH).

28 Chapter 2. Previous Concepts on Statistical Encodings

5 8 7 6 4 3 2 1 3 2 5 2 8

2 3 4 3 3 2 1 3 2 1 2 1 3

S2: 2 1 1 2
S3: 4 3 2 1 4

S4: 1

S1:

K :

S : symbol

fre
quency

M: 3 1 2 3 2 3 4 3
 1 2 3 4 5 6 7 8

Table symb./freq.

 2 3

 3 2
 5 2

 1 1
 4 1

 6 1
 8 2

 7 1

1 2 3 4 5 6 7 8 9 10 11 12 13

C1

C2

C3

C4

Figure 2.8: Alphabet Partitioning example.

2.7.4 Alphabet Partitioning
An alternative solution for rsa queries over large alphabets is Alphabet Partitioning
(AP) [BCG+14], which obtains nH0(S) + o(n(H0(S) + 1)) bits and supports rsa
operations in O(lg lg σ) time. The main idea is to partition Σ into several
subalphabets Σj , and S into the corresponding subsequences Sj , each defined
over Σj (see Figure 2.8). The practical variant sorts the σ symbols by decreasing
frequency and then splits that sequence into disjoint subsets, or subalphabets, of
increasingly exponential size, so that Σj contains the 2j−1th to the (2j − 1)th most
frequent symbols. The information on the partitioning is kept in a sequence M ,
where M [i] = j iff i ∈ Σj . A new string K[1, n] indicates the subalphabet each
symbol of S belongs to: K[i] = M [S[i]]. Analogously to wavelet trees, the sequences
Sj are defined as Sj [i] = S[selectj(K, i)]. Note that the number of subalphabets is
at most blg σc+ 1, and this is the alphabet size of M and K. Therefore, a binary
WT representation of M and K solves rsa operations in time O(lg lg σ). Further, the
symbols in each Σj are of roughly the same frequency, thus a fast compact (but not
compressed) representation of Sj (GMR) (Section 2.7.3) yields O(lg lg σ) time and
does not ruin the statistical compression of S.

Algorithm 4 shows how the rsa operations on S translate into rsa operations
on M , K, and on some subsequence Sj , thus obtaining O(lg lg σ) times. In practice,
the sequences Sj with the smallest alphabets are better integrated directly into the
WT of K.

There are other representations that improve upon this solution in theory, but
are unlikely to do better in practice. For example, it is possible to retain similar
time complexities while reducing the space to nHk(S) + o(n lg σ) bits, for any

2.8. Directly Addressable Codes 29

Algorithm 4 Alphabet Partition algorithms for access, rank, and select
access(s, i)
j ← K[i]
v ← Sj [rankj(K, i)]
return selectj(M, v)

ranka(S, i)
j ←M [a]
v ← rankj(M,a)
r ← rankj(K, i)
return rankv(Sj , r)

selecta(S, i)
j ←M [a]
v ← rankj(M,a)
s← selectv(Sj , i)
return selectj(K, s)

k = o(logσ n) [BHMR11, GOR10]. It is also possible, within zero-order entropy
space, to solve access and select in O(1) and any ω(1) time, or vice versa, and
rank in time O(lg lgσ

w), on a RAM machine with word size w, which matches lower
bounds [BN15].

2.8 Directly Addressable Codes
A Directly Addressable Code [BLN13] (DAC) is a variable-length encoding for
integers of any magnitude, like VByte (see Section 2.5.2), but supporting direct
access operations (access) efficiently.

Suppose we are given a sequence X = x1 . . . xn of integers and a chunk length
b. We divide each xi = X[i] into db(lg(xi)c+ 1)/be chunks. At the most significant
position of each chunk we will append a 0 if that chunk is the most significant, or a
1 otherwise. Therefore, xi becomes

b1,ia1,ib2,ia2,i . . . bj,iaj,i

where b1,i is the bit prepended to the chunk a1,i = xi〈i ∗ b, i ∗ (b− 1) + 1〉, and
j = db(lg(xi)c+ 1)/be. Note that this is just a generalization of a VByte encoding
if we set b = 7. However, the extension of a DAC encoding is completely different
from that of VByte. Instead of concatenating the encoding of xi+1 after that of xi,
it builds a multi-layer data structure. At each layer 1 ≤ l ≤ db(lg(xi)c+ 1)/be, it
concatenates all the lth chunks of all the numbers (that have one), doing the same
with the bits prepended to each chunk. For instance, for level l = 1 we obtain a
binary sequence B1 and a sequence A1 such that:

B1 = b1,1b1,2 . . . b1,n

A1 = a1,1a1,2 . . . a1,n

The next layer is built by concatenating the second chunk of each number (if
there exists), repeating the process until j = d(blg(xi)c+ 1)/be. Figure 2.9 shows
an example of a DAC encoding for an integer sequence X. In order to efficiently
retrieve any xi, we must process each binary sequence Bi to support rank and
access queries in O(1) time.

30 Chapter 2. Previous Concepts on Statistical Encodings

A1: 00 01 01 01 01 10 01 11
B1: 1 0 1 1 0 0 1 1

A2: 01 10 00 01 10
B2: 0 0 1 0 0

A3: 01
B3: 0

X: 4 1 9 17 1 2 5 11

Figure 2.9: Example of a DAC for a sequence X = 4, 1, 9, 17, 1, 2, 5, 11 and
b = 2.

Given a DAC encoding, access to X[i] is carried out as follows. We start by
setting i1 = i, and reading A1[i1] = a1,i1 . We set res = A1[i1] and if B1[i1] = 0
we are done because this chunk is the last of xi. If B1[i1] = 1, it means that xi
continues in the next layer. To compute the position of the next chunk in the next
layer we set i2 = rank1(B1, i). In the second layer we concatenate A2[i2] with the
current result: res = A2[i2]A1[i1] and then check B2[i2], repeating the process until
we get a Bk[ik] = 0. As rank and access on each Bi are carried out in O(1) time,
and reading a chunk of length b takes O(1) time, the total time to extract an element
from X when represented with a DAC is worst-case O(lg(M)/b), beingM the largest
number in X.

A further optimization of DACs consists of permitting different chunk lengths for
each layer. The authors presented a dynamic programming algorithm that computes
the optimal chunk length, as well as the optimal number of layers, to obtain the
most compact DAC for any given input X [BLN13].

2.9 Static Succinct Tree Representations
Trees are one of the most fundamental data structures in Computer Science. We
may distinguish basically two types: ordinal and cardinal trees. An ordinal tree is a
tree in which any node may have any number of children. For instance, an XML file
is actually an ordinal tree.

On the other hand, in a cardinal tree both the number and the order of children
is important. For instance, in a Binary Search Tree each node has at most two
children that cannot be swapped. Even though both ordinal and cardinal trees have
a wide number of applications, we will focus only on ordinal trees.

Given an ordinal tree Tn with n nodes, if we use machine pointers of length

2.9. Static Succinct Tree Representations 31

1

2 5

3 4 6 7 8

BP: ((() ()) (() () ()))

3 4 6 7 8

2 5

1

DFUDS: 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0

1 2 3 4 5 6 7 8

LOUDS: 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0

1 2 5 3 4 6 7 8

Figure 2.10: Ordinal succinct tree representations.

Θ(lgn) bits, then we need O(n lgn) bits to store the tree topology. However, it
is known that the number of different ordinal trees with n nodes is given by the
(n− 1)th Catalan number, which is Cn−1 = 1

n

(2n−1
n−1

)
. Thus, the minimum number

of bits to represent any ordinal tree with n nodes is blg(Cn−1)c+ 1 = 2n−Θ(lgn)
bits. That is, instead of lgn bits, just 2 per node suffice to store the tree topology.

The most well known techniques that achieve this bound are BP
(Balanced Parentheses)[Jac89, MR01, NS14], DFUDS (Depth-First Unary
Degree Sequence)[BDM+05, JSS12], and LOUDS (Level Order Unary Degree
Sequence)[Jac89, DRR06]. Figure 2.10 shows an example of the different
representations.

BP [Jac89, MR01, NS14] represents the tree topology as a sequence of parentheses.
It is built by traversing the tree in preorder, writing an opening parenthesis when
we first arrive at a node, and a closing one when we leave its subtree. Thus a tree of
n nodes is represented with 2n parentheses.

DFUDS [BDM+05, JSS12] represents the tree topology as a sequence of bits. It
is built by traversing the tree in depth-first order, annotating in unary the number
of children of each node (for technical reasons, we add a 1 at the beginning of the
sequence). Therefore, the number of 1s is equal to the number of nodes, which is
also equal to the number of 0s. Thus, the total number of bits is 2n.

LOUDS [Jac89, DRR06] represents the tree topology also as a sequence of bits.
We traverse the tree in level-order annotating the number of children of each node we
visit in unary (recall Section 2.5). Thus, the number of 1 in the resulting sequence
is equal to n− 1 since we have n nodes. The number of 0s is equal to the number
of processed nodes, which is n. Thus, the final binary sequence contains a total of
2n− 1 bits.

The different formats allow us to solve different subsets of the desired tree
operations (see Table 2.2), although the most functionally-richer solution is the

32 Chapter 2. Previous Concepts on Statistical Encodings

Name Explanation
root() The root of the tree.
fChild(v) First child of node v.
lChild(v) Last child of node v.
child(v, i) ith child of v (if exists).
children(v) Number of children of node v.
nSibling(v) Next sibling of node v (if exists).
pSibling(v) Previous sibling of node v (if exists).
parent(v) Parent of node v 6=root().
isLeaf(v) Whether v is a leaf.
depth(v) Node depth of v.
height(v) Height of a node v (distance from the root()).
subtree(v) Number of nodes in the subtree of v.
isAncestor(u,v) Whether u is an ancestor of v.
levelAncestor(v,i) The ancestor at distance i from v (if exists).
lca(u,v) Lowest Common Ancestor of u and v.
noderank(v) A unique identifier in [1, n] of node v.
nodeselect(id) The node v with noderank(v)=id.

Table 2.2: List of operations in ordinal trees.

version of BP from Navarro and Sadakane [NS14], usually known as FF and described
in Section 8.1. However, LOUDS is much easier to implement and suffices in many
applications.

2.10 Text
Let T [1, n] be a text (or the concatenation of the texts in a collection) over alphabet
Σ = [1, σ]. The character at position i of T is denoted T [i], whereas T [i, j] denotes
T [i]T [i+ 1] . . . T [j], a substring of T . |T [i, j]| = j − i+ 1 is the length of the string
T [i, j]. A suffix of T is a substring of the form T [i, n] and a prefix of T is of the
form T [1, i]. In many cases, and for convenience, we suppose T [n] = $, where $ is a
symbol lexicographically smaller than any other in T .

A self-index [FM05, GV06, NM07, Sad03] is a data structure that represents
T and solves operations count(p), which returns the number of occurrences of a
pattern p in T ; locate(p), which reports the positions of the occurrences of p in T ;
and extract(i, j), which retrieves T [i, j], without actually accessing T .

Chapter 3

Efficient Representation of
Prefix Codes

Statistical compression is a well-established branch of Information Theory. Given a
text T of length n, over an alphabet of σ symbols Σ = {a1, . . . , aσ} with relative
frequencies P = 〈p1, . . . , pσ〉 in T (where

∑σ
i=1 pi = 1), the empirical entropy of the

text (already defined in Section 2.3) is H0(S) = H0(P) = H(P) =
∑σ
i=1 pi lg(1/pi).

As it is known, Huffman encoding guarantees that the encoded text uses less than
n(H(P) + 1) bits. Arithmetic codes achieve less space, nH(P) + 2 bits, however they
are not prefix-free, which complicates and slows down both encoding and decoding.

In terms of the redundancy of the code L(P)−H(P), where L(P) is the average
code length defined in Section 2.2, Huffman codes are optimal and the topic can be
considered closed. How to store the prefix code itself or the model, however, is much
less studied. It is not hard to store it using O(σ lg σ) bits, and this is sufficient when
σ is much smaller than n. There are several scenarios, however, where the storage of
the code itself is problematic. One example is word-based compression, which is a
standard to compress natural language text [BSTW86, Mof89]. Word-based Huffman
compression not only performs very competitively, offering compression ratios around
25%, but also benefits direct access [WMB99], text searching [MNZB00], and indexing
[BFLN12]. In this case the alphabet size σ is the number of distinct words in the
text, which can reach many millions. Other scenarios where large alphabets arise
are the compression of East Asian languages and general numeric sequences. Yet
another case arises when the text is short, for example when it is cut into several
pieces that are statistically compressed independently, for example for compression
boosting [FGMS05, KP11] or for interactive communications or adaptive compression
[BFNP07]. The more effectively the codes are stored, the finer-grained can the text
be cut.

During encoding and decoding, the code must be maintained in main memory to

33

34 Chapter 3. Efficient Representation of Prefix Codes

achieve reasonable efficiency, whereas the plain or the compressed text can be easily
read or written in streaming mode. Therefore, the size of the code, and not that
of the text, is what poses the main memory requirements for efficient compression
and decompression. This is particularly stringent on mobile devices, for example,
where the supply of main memory is comparatively short. With the modern trend
of embedding small devices and sensors in all kinds of objects (e.g., the “Internet of
Things”1), those low-memory scenarios may become common.

In this chapter we present various relevant results of theoretical and practical
nature about how to store a code space-efficiently, while also considering the time
efficiency of compression and decompression. The specific contributions of this
chapter are the following.

1. In Section 3.2 we show that it is possible to store an optimal prefix code
within O(σ lg `max) bits, where `max = O(min(σ, lgn)) is the maximum length
of a code (Theorem 1). Then we refine the space to O(σ lg lg(n/σ)) bits
(Corollary 1). Within this space, encoding and decoding are carried out in
constant time on a RAM machine with word size w = Ω(lgn). The result
is obtained by using canonical Huffman codes [SK64], fast predecessor data
structures [FW93, PT08] to find code lengths, and multiary wavelet trees
[GGV03, FMMN07, BN15] to represent the mapping between codewords and
symbols.

2. In Section 3.3 we show that, for any 0 < ε < 1/2, it takes O(σ lg lg(1/ε))
bits to store a prefix code with average codeword length at most L(P) + ε.
Encoding and decoding can be carried out in constant time on a RAM machine
with word size w = Ω(lgn). Thus, if we can tolerate a small constant additive
increase in the average codeword length, we can store a prefix code using only
O(σ) bits. We obtain this result by building on the above scheme, where we
use length-limited optimal prefix codes [ML01] with a carefully chosen `max
value.

3. In Section 3.4 we show that, for any constant c > 1, it takes O
(
σ1/c lg σ

)
bits

to store a prefix code with average codeword length at most cL(P). Encoding
and decoding can be carried out in constant time on a RAM machine with
word size w = Ω(lg σ). Thus, if we can tolerate a small constant multiplicative
increase, we can store a prefix code in o(σ) bits. To achieve this result, we
only store the codes that are shorter than about `max/c, and use a simple code
of length `max + 1 for the others. Then all but the shortest codewords need to
be explicitly represented.

4. In Section 3.5 we engineer and implement all the schemes above and compare
them with careful implementations of state-of-the-art optimal and suboptimal

1http://en.wikipedia.org/wiki/Internet_of_Things

3.1. Related Work 35

codes. Our model representations are shown to use 6–8 times less space than
classical ones, at the price of being several times slower for compression (2.5–8
times) and decompression (12–24 times). The additive approximations reduce
these spaces up to a half and the times by 20%–30%, at the expense of a
small increase (5%) in the redundancy. The multiplicative approximations
can obtain models of the same size of the additive ones, yet increasing the
redundancy to around 10%. In exchange, they are about as fast as the classical
compression methods. If we allow them increase the redundancy to 15%–
20%, the multiplicative approximations obtain model sizes that are orders of
magnitude smaller than classical representations.

5. As a byproduct, Section 3.5 also compares varios heuristic, approximation, and
exact algorithms to generate length-restricted prefix codes. The experiments
show that the optimal algorithm is practical to implement and runs fast, while
obtaining significantly better average code lengths than the heuristics and the
approximations. A very simple-to-program approximation reaches the same
optimal average code length in our experiments, yet it runs significantly slower.

3.1 Related Work
A simple pointer-based implementation of a Huffman tree takes O(σ lg σ) bits, and
it is not difficult to show this is an optimal upper bound for storing a prefix code
with minimum average codeword length. For example, suppose we are given a
permutation π over σ symbols. Let P be the probability distribution that assigns
probability pπ(i) = 1/2i for 1 ≤ i < σ, and probability pπ(σ) = 1/2σ−1. Since P is
dyadic, every optimal prefix code assigns codewords of length `π(i) = i, for 1 ≤ i < σ,
and `π(σ) = σ − 1. Therefore, given any optimal prefix code and a bit indicating
whether π(σ − 1) < π(σ), we can reconstruct π. Since there are σ! choices for π, in
the worst case it takes Ω(lg σ!) = Ω(σ lg σ) bits to store an optimal prefix code.

Considering the argument above, it is natural to ask whether the same lower
bound holds for probability distributions that are not so skewed, and the answer
is no. A prefix code is canonical [SK64, MT97] if a shorter codeword is always
lexicographically smaller than a longer codeword. Given any prefix code, we can
always generate a canonical code with the same code lengths (recall Section 2.4.2.1).
Moreover, we can reassign the codewords such that, if a symbol is lexicographically
the jth with a codeword of length `, then it is assigned the jth consecutive codeword
of length `. It is clear that it is sufficient to store the codeword length of each
symbol to be able to reconstruct such a code, and thus the code can be represented
in O(σ lg `max) bits.

There are more interesting upper bounds than `max ≤ σ. Katona and
Nemetz [KN76] (see also Buro [Bur93]) showed that, if a symbol has relative frequency
p, then any Huffman code assigns it a codeword of length at most blogφ(1/p)c, where

36 Chapter 3. Efficient Representation of Prefix Codes

φ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio, and thus `max is at most blogφ(1/pmin)c,
where pmin is the smallest relative frequency in P . Note also that, since pmin ≥ 1/n,
it must hold `max ≤ logφ n, therefore the canonical code can be stored in O(σ lg lgn)
bits.

Alternatively, one can enforce a value for `max (which must be at least dlg σe)
and pay a price in terms of average codeword length. The same bound above [KN76]
hints at a way to achieve any desired `max value: artificially increase the frequency
of the least frequent symbols until the new pmin value is over φ−`max , and then
an optimal prefix code built on the new frequencies will hold the given maximum
code length. Another simple technique (see, e.g., [BN09], where it was used for
Hu-Tucker codes) is to start with an optimal prefix code, and then spot all the
highest nodes in the code tree with depth `max − d and more than 2d leaves, for any
d. Then the subtrees of the parents of those nodes are made perfectly balanced. A
more sophisticated technique, by Milidiú and Laber [ML01], yields a performance
guarantee. It first builds a Huffman tree T1, then removes all the subtrees rooted at
depth greater than `max, builds a complete binary tree T2 of height h whose leaves
are those removed from T1, finds the node v ∈ T1 at depth `max − h − 1 whose
subtree T3’s leaves correspond to the symbols with minimum total probability, and
finally replaces v by a new node whose subtrees are T2 and T3. They show that the
resulting average code length is at most L(P) + 1/φ`max−dlg(σ+dlgσe−`max)e−1.

All these approximations require O(σ) time plus the time to build the Huffman
tree. A technique to obtain the optimal length-restricted prefix code, by Larmore
and Hirshberg [LH90], performs in O(σ `max) time by reducing the construction to
a binary version of the coin-collector’s problem.

The above is an example of how an additive increase in the average codeword
length may yield less space to represent the code itself. Another well-known additive
approximation follows from Gilbert and Moore’s proof [GM59] that we can build
an alphabetic prefix code with average codeword length less than H(P) + 2, and
indeed no more than L(P) + 1 [Nak91, She92]. In an alphabetic prefix code, the
lexicographic order of the codewords is the same as that of the source symbols, so
we need to store only the code tree and not the assignment of codewords to symbols.
Any code tree, of σ − 1 internal nodes, can be encoded in 4σ + o(σ) bits so that it
can be navigated in constant time per operation [DRS12], and thus encoding and
decoding of any symbol takes time proportional to its codeword length.

Multiplicative approximations have the potential of yielding codes that can be
represented within o(σ) bits. Adler and Maggs [AM01] showed it generally takes
more than (9/40)σ1/(20c) lg σ bits to store a prefix code with average codeword length
at most cH(P). Gagie [Gag06a, Gag06b, Gag08] showed that, for any constant
c ≥ 1, it takes O

(
σ1/c lg σ

)
bits to store a prefix code with average codeword length

at most cH(P) + 2. He also showed his upper bound is nearly optimal because, for
any positive constant ε, we cannot always store a prefix code with average codeword
length at most cH(P) + o(lg σ) in O

(
σ1/c−ε) bits. Note that our result does not

3.2. Representing Optimal Codes 37

7 2

6 8

4 1 5 3

0

0

0 0

0 0

1

0
1

1

1 1

1 1

1101 01 1111 1100 1110 100 00 101Codes

7 2 6 8 4 1 5 3Symb

sR

00 100 1100first

Canonical Huffman Tree representation

Canonical Huffman Tree

(a)

2 7

6 8

1 3 4 5

0

0

0 0

0 0

1

0
1

1

1 1

1 1

2 7 6 8 1 3 4 5

00 100 1100firstsR

Canonical Huffman Tree with symbols sorted at each level

Symb

4 2 4 4 4 3 2 3L

(b)

Figure 3.1: An arbitrary canonical prefix code (a) and the result of sorting
the source symbols at each level (b).

have the additive term “+2” in addition to the multiplicative term, which is very
relevant on low-entropy texts.

3.2 Representing Optimal Codes
In Section 2.4.2 we have shown how to build a Huffman tree and how to extract
the canonical Huffman codes from that tree (Figure 3.1(a) illustrates a canonical
Huffman code). Suppose now we have an array Codes in which we had stored at
position i the code ci of source symbol ai, using `max = O(lgn) bits for each. For
encoding in constant time, we can simply use an array like Codes. For decoding,
the source symbols are written in an array Symb, in left-to-right order of the leaves.
This array requires σ lg σ bits. The access to this array is done via two smaller
arrays, which have one entry per level: sR[`] points to the first position of level ` in
Symb, whereas first[`] stores the first code in level `. The space for these two arrays
is O

(
`2max

)
bits.

Then, if we have to decode the first symbol encoded in a bitstream, we first
have to determine its length `. In our example, if the bitstream starts with 0, then
` = 2; if it starts with 10, then ` = 3, and otherwise ` = 4. Once the level `
is found, we read the next ` bits of the stream in ci, and decode the symbol as
ai = Symb[sR[`] + ci − first[`]].

The problem of finding the appropriate entry in first can be recast into a
predecessor search problem [GN09, KN09]. We extend all the values first[`] by

38 Chapter 3. Efficient Representation of Prefix Codes

appending `max − ` bits at the end. In our example, the values become 0000 = 0,
1000 = 8, and 1100 = 12. Now, we find the length ` of the next symbol by reading
the first `max bits from the stream, interpreting it as a binary number, and finding
its predecessor value in the set. Since we have only `max = O(lgn) numbers in the
set, and each has `max = O(lgn) bits, the predecessor search can be carried out in
constant time using fusion trees [FW93] (see also Patrascu and Thorup [PT08]),
within O

(
`2max

)
bits of space.

Although the resulting structure allows constant-time encoding and decoding,
its space usage is still O(σ `max) bits. In order to reduce it to O(σ lg `max), we will
use a multiary wavelet tree data structure (see also Section 2.7.1). In particular, we
use the version that does not need universal tables [BN15, Thm. 7]. This structure
represents a sequence L[1, σ] over alphabet [1, `max] using σ lg `max + o(σ lg `max)
bits, and carries out the operations in time O(lg `max/ lgw). In our case, where
`max = O(w), the space is σ lg `max + o(σ) bits and the time is O(1). The operations
supported by wavelet trees are also described in Section 2.7.

Assume that the symbols of the canonical Huffman tree are in increasing order
within each depth, as in Figure 3.1(b).2 Now, the key property is that Codes[i] =
first[`] + rank`(L, i)− 1, where ` = L[i], which finds the code ci = Codes[i] of ai in
constant time. The inverse property is useful for decoding code ci of length `: the
symbol is ai = Symb[sR[`] + ci − first[`]] = select`(L, ci − first[`] + 1). Therefore,
arrays Codes, Symb, and sR are not required; we can encode and decode in constant
time using just the wavelet tree of L and first, plus its predecessor structure. This
completes the result.

Theorem 1. Let P be the frequency distribution over σ symbols for a text of length
n, so that an optimal prefix code has maximum codeword length `max. Then, under
the RAM model with computer word size w = Ω(`max), we can store an optimal
prefix code using σ lg `max + o(σ) +O

(
`2max

)
bits, note that `max ≤ logφ n. Within

this space, encoding and decoding any symbol takes O(1) time.

Therefore, under mild assumptions, we can store an optimal code in O(σ lg lgn)
bits, with constant-time encoding and decoding operations. In the next section we
refine this result further. On the other hand, note that Theorem 1 is also valid for
nonoptimal prefix codes, as long as they are canonical and their `max is O(w).

We must warn the practice-oriented reader that Theorem 1 (as well as those to
come) must be understood as a theoretical result. As we will explain in Section 3.5,
other structures with worse theoretical guarantees perform better in practice than
those chosen to obtain the best theoretical results. Our engineered implementation
of Theorem 1 reaches O(lg lgn), and even O(lgn), decoding time. It does, indeed,
use much less space than previous model representations, but it is also much slower.

2In fact, most previous descriptions of canonical Huffman codes assume this increasing order,
but we want to emphasize that this is essential for our construction.

3.3. Additive Approximation 39

3.3 Additive Approximation
In this section we exchange a small additive penalty over the optimal prefix code for
an even more space-efficient representation of the code, while retaining constant-time
encoding and decoding.

It follows from Milidiú and Laber’s bound [ML01] that, for any ε with 0 <
ε < 1/2, there is always a prefix code with maximum codeword length `max =
dlg σe+ dlogφ(1/ε)e+ 1 and average codeword length within an additive

1
φ`max−dlg(σ+dlgσe−`max)e−1 ≤

1
φ`max−dlgσe−1 ≤

1
φlogφ(1/ε) = ε

of the minimum L(P). The techniques described in Section 3.2 give a way to
store such a code in σ lg `max +O

(
σ + `2max

)
bits, with constant-time encoding and

decoding. In order to reduce the space, we note that our wavelet tree representation
[BN15, Thm. 7] in fact uses σH0(L) + o(σ) bits when `max = O(w). Here H0(L)
denotes the empirical zero-order entropy of L. Then we obtain the following result.

Theorem 2. Let L(P) be the optimal average codeword length for a distribution P
over σ symbols. Then, for any 0 < ε < 1/2, under the RAM model with computer
word size w = Ω(lg σ), we can store a prefix code over P with average codeword
length at most L(P) + ε, using σ lg lg(1/ε) + O(σ) bits, such that encoding and
decoding any symbol takes O(1) time.

Proof. Our structure uses σH0(L) + o(σ) +O
(
`2max

)
bits, which is σH0(L) + o(σ)

because `max = O(lg σ). To complete the proof it is sufficient to show that H0(S) ≤
lg lg(1/ε) +O(1).

To see this, consider L as two interleaved subsequences, L1 and L2, of length σ1
and σ2, with L1 containing those lengths ≤ dlg σe and L2 containing those greater.
Thus σH0(L) ≤ σ1H0(L1) + σ2H0(L2) + σ (from an obvious encoding of L using
L1, L2, and a bitmap).

Let us call occ(`, L1) the number of occurrences of symbol ` in L1. Since
there are at most 2` codewords of length `, assume we complete L1 with spurious
symbols so that it has exactly 2` occurrences of symbol `. This completion cannot
decrease σ1H0(L1) =

∑dlgσe
`=1 occ(`, L1) lg σ1

occ(`,L1) , as increasing some occ(`, L1) to
occ(`, L1) + 1 produces a difference of f(σ1) − f(occ(`, L1)) ≥ 0, where f(x) =
(x + 1) lg(x + 1) − x lg x is increasing. Hence we can assume L1 contains exactly
2` occurrences of symbol 1 ≤ ` ≤ dlg σe; straightforward calculation then shows
σ1H0(L1) = O(σ1).

40 Chapter 3. Efficient Representation of Prefix Codes

On the other hand, L2 contains at most `max−dlg σe distinct values, so H0(L2) ≤
lg(`max−dlg σe), unless `max = dlg σe, in which case L2 is empty and σ2H0(L2) = 0.
Thus σ2H0(L2) ≤ σ2 lg(dlogφ(1/ε)e+ 1) = σ2 lg lg(1/ε) +O(σ2). Combining both
bounds, we get H0(L) ≤ lg lg(1/ε) +O(1) and the theorem holds.

In other words, under mild assumptions, we can store a code using O(σ lg lg(1/ε))
bits at the price of increasing the average codeword length by ε, and in addition
have constant-time encoding and decoding. For constant ε, this means that the code
uses just O(σ) bits at the price of an arbitrarily small constant additive penalty over
the shortest possible prefix code. Figure 3.2 shows an example. Note that the same
reasoning of this proof, applied over the encoding of Theorem 1, yields a refined
upper bound.

Corollary 1. Let P be the frequency distribution of σ symbols for a text of length
n. Then, under the RAM model with computer word size w = Ω(lgn), we can store
an optimal prefix code for P using σ lg lg(n/σ) +O

(
σ + lg2 n

)
bits, while encoding

and decoding any symbol in O(1) time.

Proof. Proceed as in the proof of Theorem 2, using that `max ≤ logφ n and putting
inside L1 the lengths up to dlogφ σe. Then σ1H(L1) = O(σ1) and σ2H(L2) ≤
lg lg(n/σ) +O(σ2).

3.4 Multiplicative Approximation
In this section we obtain a multiplicative rather than an additive approximation to
the optimal prefix code, in order to achieve a sublinear-sized representation of the
code. We will divide the alphabet into frequent and infrequent symbols, and store
information about only the frequent ones.

Given a constant c > 1, we use Milidiú and Laber’s algorithm [ML01] to build
a prefix code with maximum codeword length `max = dlg σe + d1/(c − 1)e + 1
(our final codes will have length up to `max + 1). We call a symbol’s codeword
short if it has length at most `max/c + 2, and long otherwise. Notice there are
S ≤ 2`max/c+2 = O

(
σ1/c) symbols with short codewords. Also, although applying

Milidiú and Laber’s algorithm may cause some exceptions, symbols with short
codewords are usually more frequent than symbols with long ones. We will hereafter
call frequent/infrequent symbols those encoded with short/long codewords.

Note that, if we build a canonical code, all the short codewords will precede the
long ones. We first describe how to handle the frequent symbols. A perfect hash
data structure [FKS84] hash will map the frequent symbols in [1, σ] to the interval
[1, S] in constant time. The reverse mapping is done via a plain array ihash[1, S]
that stores the original symbol that corresponds to each mapped symbol. We use
this mapping also to reorder the frequent symbols so that the corresponding prefix

3.4. Multiplicative Approximation 41

8 10

112 59 13

715 4

14

3 2

6 11

(a)

8 107 115 4

14

3 26 11

9 13 12 5

(b)

10 157 81 4

14

6 112 3

5 9 12 13

(c)

Figure 3.2: An example of Milidiú and Laber’s algorithm [ML01]. In (a),
a canonical Huffman tree. We set lmax = 5 and remove all the symbols
below that level (marked with the dotted line), which yields three empty
nodes (marked as black circles in the top tree). In (b), those black circles are
replaced by the deepest symbols below level lmax: 1, 8, and 10. The other
symbols below `max, 9, 13, 12 and 5, form a balanced binary tree that is hung
from a new node created as the left child of the root (in black in the middle
tree). The former left child of the root becomes the left child of this new
node. Finally, in (c), we transform the middle tree into its cannonical form,
but sorting those symbols belonging to the same level in increasing order.

in array Symb (recall Section 3.2) reads 1, 2, . . . , S. Thanks to this, we can encode
and decode any frequent symbol using just first, sR, predecessor structures on both
of them, and the tables hash and ihash. To encode a frequent symbol ai, we find it
in hash, obtain the mapped symbol a′ ∈ [1, S], find the predecessor sR[`] of a′ and
then the code is the `-bit integer ci = first[`] + a′ − sR[`]. To decode a short code
ci, we first find its corresponding length ` using the predecessor structure on first,
then obtain its mapped code a′ = sR[`] + ci − first[`], and finally the original symbol
is i = ihash[a′]. Structures hash and ihash require O

(
σ1/c lg σ

)
bits, whereas sR and

first, together with their predecessor structures, require less, O
(
lg2 σ

)
bits.

The long codewords will be replaced by new codewords, all of length `max + 1.
Let clong be the first long codeword and let ` be its length. Then we form the

42 Chapter 3. Efficient Representation of Prefix Codes

137 916 4

6 11

5 1 8 10

3 2

15 14

12

(a)

6 11

1 5 8 10

12

2 3 4 7 9 13 14 15 16

1

1

0

0

0

0

0

(b)
8

12

10

1

5

11

1

2

3

4
5

6

7

8

9

10

11

12

0 6 010

1010

1011

1000

1001

011

00

hash

12 6 11 1 5 8 10iHash

00 010 1000

sR

first

(c)

Figure 3.3: An example of the multiplicative approximation, with σ = 16
and c = 3. The tree shown in (a) is the result of applying the algorithm of
Milidiú and Laber to a given set of codes. Now, we set `max = 6 according to
our formula, and declare short those codewords of lengths up to b`max/cc+2 =
4. Short codewords (above the dashed line on top) are stored unaltered but
with all symbols at each level sorted in increasing order (b). Long codewords
(below the dashed line) are extended up to length `max + 1 = 7 and reassigned
a code according to their values in the contiguous slots of length 7 (those
in gray in the middle). Thus, given a long codeword x, its code is directly
obtained as c′long + x− 1, where c′long = 11000002 is the first code of length
`max+1. In (c), a representation of the hash and inverse hash to code/decode
short codewords. We set the hash size to m = 13 and h(x) = (5x+ 7) mod m.
We store the code associated with each cell.

3.4. Multiplicative Approximation 43

new codeword c′long by appending `max + 1− ` zeros at the end of clong. The new
codewords will be the (`max+1)-bit integers c′long, c

′
long + 1, . . . , c′long + σ − 1. An

infrequent symbol ai will be mapped to code c′long + i− 1 (frequent symbols ai will
leave unused symbols c′long + i− 1). Figure 3.3 shows an example.

Since c > 1, we have σ1/c < σ/2 for sufficiently large σ, so we can assume without
loss of generality that there are fewer than σ/2 short codewords,3 and thus there
are at least σ/2 long codewords. Since every long codeword is replaced by at least
two new codewords, the total number of new codewords is at least σ. Thus there
are sufficient slots to assign codewords c′long to c′long + σ − 1.

To encode an infrequent symbol ai, we first fail to find it in table hash. Then, we
assign it the (`max+1)-bits long codeword c′long + i− 1. To decode a long codeword,
we first read `max + 1 bits into ci. If ci ≥ c′long, then the codeword is long, and
corresponds to the source symbol aci−c′long+1. Note that we use no space to store
the infrequent symbols. This leads to proving our result.

Theorem 3. Let L(P) be the optimal average codeword length for a distribution P
over σ symbols. Then, for any constant c > 1, under the RAM model with computer
word size w = Ω(lg σ), we can store a prefix code over P with average codeword
length at most cL(P), using O

(
σ1/c lg σ

)
bits, such that encoding and decoding any

symbol takes O(1) time.

Proof. Only the claimed average codeword length remains to be proved. By analysis
of the algorithm by Milidiú and Laber [ML01] we can see that the codeword length
of a symbol in their length-restricted code exceeds the codeword length of the same
symbol in an optimal code by at most 1, and only when the codeword length in the
optimal code is at least `max − dlg σe − 1 = d1/(c− 1)e. Hence, the codeword length
of a frequent symbol exceeds the codeword length of the same symbol in an optimal
code by a factor of at most d1/(c−1)e+1

d1/(c−1)e ≤ c. Every infrequent symbol is encoded
with a codeword of length `max + 1. Since the codeword length of an infrequent
symbol in the length-restricted code is more than `max/c+2, its length in an optimal
code is more than `max/c+ 1. Hence, the codeword length of an infrequent symbol
in our code is at most `max+1

`max/c+1 < c times greater than the codeword length of the
same symbol in an optimal code. Hence, the average codeword length for our code
is less than c times the optimal one.

Again, under mild assumptions, this means that we can store a code with average
length within c times the optimum, in O

(
σ1/c lg σ

)
bits and allowing constant-time

encoding and decoding.

3If this is not the case, then σ = O(1), so we can use any optimal encoding: there will be no
redundancy over L(P) and the asymptotic space formula for storing the code will still be valid.

44 Chapter 3. Efficient Representation of Prefix Codes

3.5 Experimental Results
We engineer and implement the optimal and approximate code representations
described above, obtaining complexities that are close to the theoretical ones. We
compare these with the best known alternatives to represent prefix codes we are
aware of. Our comparisons will measure the size of the code representation, the
encoding and decoding time and, in the case of the approximations, the redundancy
on top of H(P).

3.5.1 Implementations
Our constant-time results build on two data structures. One is the multiary wavelet
tree (MWT) (see Section 2.7.1). A practical study [Bow10] shows that multiary wavelet
trees can be faster than binary ones, but require significantly more space (even with
the better variants they design). To prioritize space, we will use binary wavelet trees,
which perform the operations in time O(lg `max) = O(lg lgn).

The second constant-time data structure is the fusion tree [FW93], of which
there are no practical implementations as far as we know. Even implementable
loglogarithmic predecessor search data structures, like van Emde Boas trees
[vEBKZ77], are worse than binary search for small universes like our range
[1, `max] = [1,O(lgn)]. With a simple binary search on first we obtain a total
encoding and decoding time of O(lg lgn), which is sufficiently good for practical
purposes. Even more, preliminary experiments showed that sequential search on first
is about as good as binary search in our test collections (this is also the case with
classical representations [LM06]). Although sequential search costs O(lgn) time, the
higher success of instruction prefetching makes it much faster than binary search.
Thus, our experimental results use sequential search.

To achieve space close to σH0(L) in the wavelet tree, we use a Huffman-
shaped wavelet tree (WTH) (recall Section 2.7.2). The bitmaps of the wavelet tree
are represented in plain form and using a space overhead of 37.5% to support
rank/select operations [Nav09]. The total space of the wavelet tree is thus close
to 1.375 · nH0(L) bits in practice. Besides, we enhance these bitmaps with a small
additional index to speed up select operations ([NP12] or see Section 2.6), which
increases the constant 1.375 to at least 1.4, or more if we want more speed. A previous
implementation [NO13] recasts this wavelet tree into a compressed permutation
representation [BN13] of vector Symb, which leads to a similar implementation.

For the additive approximation of Section 3.3, we use the same implementation
as for the exact version, after modifying the code tree as described in that section.
The lower number of levels will automatically make sequence L more compressible
and the wavelet tree faster.

For the multiplicative approximation of Section 3.4, we implement table hash
with double hashing. The hash function is of the form h(x, i) = (h1(x) + (i− 1) ·
h2(x)) modm for the ith trial, where h1(x) = x modm, h2(x) = 1+(x mod (m−1)),

3.5. Experimental Results 45

wherem is a prime number. Predecessor searches over sR and first are done via binary
search since, as discussed above, theoretically better predecessor data structures are
not advantageous on this small domain.

3.5.1.1 Classical Huffman codes

As a baseline to compare with our encoding, we use the representation of Figure 3.1(a),
using n `max bits for Codes, n lgn bits for Symb, `2max bits for first, and `max lgn
bits for sR. For compression, the obvious constant-time solution using Codes is
the fastest one. We also implemented the fastest decompression strategies we are
aware of, which are more sophisticated. The naive approach, dubbed TABLE in
our experiments, consists of iteratively probing the next ` bits from the compressed
sequence, where ` is the next available tree depth. If the relative numeric code
resulting from reading ` bits exceeds the number of nodes at this level, we probe the
next level, and so on until finding the right length [SK64].

Much research has focused on impoving upon this naive approach [MT97,
MLMD03, CKP85, Sie88, Has95, LM06]. For instance, one could use an additional
table that takes a prefix of b bits of the compressed sequence and tells which is the
minimum code length compatible with that prefix. This speeds up decompression by
reducing the number of iterations needed to find a valid code. This technique was
proposed by Moffat and Turpin [MT97] and we call it TABLES in our experiments.
Alternatively, one could use a table that stores, for all the b-bit prefixes, the symbols
that can be directly decoded from them (if any) and how many bits those symbols
use. Note this technique can be combined with TABLES : if no symbol can be
decoded, we use TABLES . In our experiments, we call TABLEE the combination of
these two techniques.

Note that, when measuring compression/decompression times, we will only
consider the space needed for compression/decompression (whereas our structure is
a single one for both operations).

3.5.1.2 Hu-Tucker codes

As a representative of a suboptimal code that requires little storage space [BNO12],
we also implement alphabetic codes, using the Hu-Tucker algorithm [HT71, Knu73].
This algorithm takes O(σ lg σ) time and yields the optimal alphabetic code, which
guarantees an average code length below H(P) + 2. As the code is alphabetic, no
permutation of symbols needs to be stored; the ith leaf of the code tree corresponds
to the ith source symbol. On the other hand, the tree shape is arbitrary. We
implement the code tree using succinct tree representations (recall Section 2.9),
more precisely the Balanced Parentheses implementation of Sadakane and Navarro
known as FF (see Section 8.1 for more details about FF), which efficiently supports
the required navigation operations. This representation requires 2.37 bits per tree
node, that is, 4.74σ bits for our tree (which has σ leaves and σ − 1 internal nodes).

46 Chapter 3. Efficient Representation of Prefix Codes

Collection Length Alphabet Entropy Depth Level entr.
(n) (σ) (H(P)) (`max) (H0(L))

EsWiki 200,000,000 1,634,145 11.12 28 2.24
EsInv 300,000,000 1,005,702 5.88 28 2.60
Indo 120,000,000 3,715,187 16.29 27 2.51

Table 3.1: Main statistics of the texts used.

FF represents general trees, so we convert the binary code tree into a general tree
using the well-known mapping [MR01]: we identify the left child of the code tree
with the first child in the general tree, and the right child of the code tree with
the next sibling in the general tree. The general tree has an extra root node whose
children are the nodes in the rightmost path of the code tree.

With this representation, compression of symbol c is carried out by starting from
the root and descending towards the cth leaf. We use the number of leaves on the
left subtree to decide whether to go left or right. The left/right decisions made
in the path correspond to the code. In the general tree, we compute the number
of nodes k in the subtree of the first child, and then the number of leaves in the
code tree is k/2. For decompression, we start from the root and descend left or
right depending on the bits of the code. Each time we go right, we accumulate the
number of leaves on the left, so that when we arrive at a leaf the decoded symbol is
the final accumulated value plus 1.

3.5.2 Experimental Setup
We used an isolated AMD Phenom(tm) II X4 955 running at 800MHz with 8GB
of RAM memory and a ST3250318AS SATA hard disk. The operating system is
GNU/Linux, Ubuntu 10.04, with kernel 3.2.0-31-generic. All our implementations
use a single thread and are coded in C++. The compiler is gcc version 4.6.3, with
-O9 optimization. Time results refer to cpu user time. The stream to be compressed
and decompressed is read from and written to disk, using the buffering mechanism
of the operating system.

We use three datasets4 in our experiments. EsWiki is a sequence of word
identifiers obtained by stemming the Spanish Wikipedia with the Snowball algorithm.
Compressing natural language using word-based models is a strong trend in text
databases [Mof89]. EsInv is the concatenation of differentially encoded inverted
lists of a random sample of the Spanish Wikipedia. These have large alphabet sizes
but also many repetitions, so they are highly compressible. Finally, Indo is the
concatenation of the adjacency lists of Web graph Indochina-2004 available at

4Made available in http://lbd.udc.es/research/ECRPC

3.5. Experimental Results 47

Collection Naive Engineered Canonical Ours Compressed
(σw) (σ `max) (σ lg σ) (σH0(L)) [TM00]

EsWiki 6.23 MB 5.45 MB 4.02 MB 0.44 MB 0.45 MB
EsInv 3.83 MB 3.35 MB 2.39 MB 0.31 MB 0.33 MB
Indo 14.17 MB 11.96 MB 9.67 MB 1.11 MB 1.18 MB

Table 3.2: Rough minimum size of various model representations.

http://law.di.unimi.it/datasets.php. Compressing adjacency lists to zero-
order entropy is a simple and useful tool for graphs with power-law degree
distributions, although it is usually combined with other techniques [CN10a]. We
use a prefix of each of the sequences to speed up experiments.

Table 3.1 gives various statistics on the collections. Apart from n and σ, we
give the empirical entropy of the sequence (H(P), in bits per symbol or bps), the
maximum length of a Huffman code (`max), and the zero-order entropy of the
sequence of levels (H0(L), in bps). It can be seen that H0(L) is significantly smaller
than lg `max, thus our compressed representation of L can indeed be up to an order
of magnitude smaller than the worst-case upper bound of σ lg `max bits.

Before we compare the exact sizes of different representations, which depend on
the extra data structures used to speed up encoding and decoding, Table 3.2 gives the
size of the basic data that must be stored in each case. The first column shows σw,
the size of a naive model representation using computer words of w = 32 bits. The
second shows σ `max, which corresponds to a more engineered representation where
we use only the number of bits required to describe a codeword. In these two, more
structures are needed for decoding but we ignore them. The third column gives σ lg σ,
which is the main space cost of a canonical Huffman tree representation: basically
the permutation of symbols (different ones for encoding and decoding). The fourth
column shows σH0(L), which is a lower bound on the size of our model representation
(the exact value will depend on the desired encoding/decoding speed). These raw
numbers explain why our technique will be much more effective to represent the
model than the typical data structures, and that we can expect up to 7–9-fold space
reductions (these will decrease to 6–8-fold on the actual structures). Indeed, this
entropy space is close to that of a sophisticated model representation [TM00] that
can be used only for transmitting the model in compressed form; this is shown in
the last column.

3.5.3 Representing Optimal Codes
Figure 3.4 compares compression and decompression times, as a function of the
space used by the code representations, of our new data structure (COMPR) versus

48 Chapter 3. Efficient Representation of Prefix Codes

the table based representations described in Section 3.5.1 (TABLE, TABLES , and
TABLEE). We used sampling periods of {16, 32, 64, 128} for the auxiliary data
structures added to the wavelet tree bitmaps to speed up select operations [NP12],
and parameter b = 14 for table based approaches (this gave us the best time
performance).

 10

 100

 1000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Space (bits/alphabet symbol)

Collection EsWiki
Compression

 10

 100

 1000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Space (bits/alphabet symbol)

Collection EsWiki
Decompression

COMPR
TABLE

TABLES
TABLEE

 10

 100

 1000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Space (bits/alphabet symbol)

Collection EsInv
Compression

 10

 100

 1000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Space (bits/alphabet symbol)

Collection EsInv
Decompression

 10

 100

 1000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Space (bits/alphabet symbol)

Collection Indo
Compression

 10

 100

 1000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Space (bits/alphabet symbol)

Collection Indo
Decompression

Figure 3.4: Code representation size versus compression (left) and
decompression (right) time for table based representations (TABLE, TABLES ,
and TABLEE) and ours (COMPR). Time (in logscale) is measured in
nanoseconds per symbol.

It can be seen that our compressed representations takes just around 12% of
the space of the table implementation for compression (an 8-fold reduction), while
being 2.5–8 times slower. Note that compression is performed by carrying out rank

3.5. Experimental Results 49

operations on the wavelet tree bitmaps. Therefore, we do not consider the space
overhead incurred to speed up select operations, and we only plot a single point
for technique COMPR at compression charts. Also, we only show the simple (and
most compact) TABLE variant, as the improvements of the others apply only to
decompression.

For decompression, our solution (COMPR) takes 17% to 45% of the space of the
TABLE∗ variants (thus reaching almost a 6-fold space reduction), but it is also 12–24
times slower. This is because our solution uses operation select for decompression,
and this is slower than rank even with the structures for speeding it up.

Overall, our compact representation is able to compress at a rate around 2.5–5
MB/sec and decompress at 1 MB/sec, while using much less space than a classical
Huffman implementation (which compresses/decompresses at around 14–25 MB/sec).

Finally, note that we only need a single data structure to both compress and
decompress, while the naive approach uses different tables for each operation. In
the cases where both functionalities are simultaneously necessary (as in compressed
sequence representations [Nav14]), our structure uses as little as 7% of the space
needed by a classical representation.

3.5.4 Length-Limited Codes
In the theoretical description, we refer to an optimal technique for limiting the
length of the code trees to a given value `max ≥ dlg σe [LH90], as well as several
heuristics and approximations:

• Milidiú: the approximate technique proposed by Milidiú and Laber [ML01]
that nevertheless guarantees the upper bound we have used in the paper. It
takes O(σ) time.

• Increase: inspired in the bounds of Katona and Nemetz [KN76], we start
with f = 2 and set to f the frequency of each symbol whose frequency is
< f . Then we build the Huffman tree, and if its height is ≤ `max, we are
done. Otherwise, we increase f by 1 and repeat the process. Since the
Huffman construction algorithm is linear-time once the symbols are sorted
by frequency and the process does not need to reorder them, this method
takes O

(
σ lg(σφ−`max)

)
= O(σ lg σ) time if we use exponential search to find

the correct f value. A close predecessor of this method appears in Chapter
9 of Managing Gigabytes [WMB99]. They use a multiplicative instead of an
additive approximation, so as to find an appropriate f faster. Thus they may
find a value of f that is larger than the optimal.

• Increase-A: analogous to Increase, but instead adds f to the frequency of
each symbol.

• Balance: the technique (e.g., see [BN09]), that balances the parents of the
maximal subtrees that, even if balanced, exceed the maximum allowed height.

50 Chapter 3. Efficient Representation of Prefix Codes

It also takes O(σ) time. In the case of a canonical Huffman tree, this is even
simpler, since only one node along the rightmost path of the tree needs to be
balanced.

• Optimal: the package-merge algorithm of Larmore and Hirshberg [LH90]. Its
time complexity is O(σ `max).

 0.01

 0.1

 1

 10

21 22 23 24 25 26 27 28 29 30 31

L(
P
)-

H
(P

)

lmax

Collection EsWiki

 0.01

 0.1

 1

 10

 22 23 24 25 26 27 28 29 30

L(
P
)-

H
(P

)

lmax

Collection EsInv

 0.01

 0.1

 1

 10

 22 23 24 25 26 27 28 29 30

L(
P
)-

H
(P

)

lmax

Collection Indo

Milidiú
Balance
Increase

Increase-A

Optimal
Hu-Tucker
Huffman

Figure 3.5: Comparison of the length-restricted approaches measured as
their additive redundancy (in logscale) over the zero-order empirical entropy,
H(P), for each value of `max. We also include Hu-Tucker and Huffman as
reference points.

Figure 3.5 compares the techniques for all the meaningful `max values, showing
the additive redundancy they produce over H(P). It can be seen that the average
code lengths obtained by Milidiú, although they have theoretical guarantees, are
not so good in practice. They are comparable with those of Balance, a simpler
and still linear-time heuristic, which however does not provide any guarantee and
sometimes can only return a completely balanced tree. On the other hand, technique
Increase performs better than or equal to Increase-A, and actually matches the
average code length of Optimal systematically in the three collections.

Techniques Milidiú, Balance, and Optimal are all equally fast in practice,
taking about 2 seconds to find their length-restricted code in our collections. The
time for Increase and Increase-A depends on the value of `max. For large values
of `max, they also take around 2 seconds, but this raises up to 20 seconds when

3.5. Experimental Results 51

`max is closer to dlg σe (and thus the value f to add is larger, up to 100–300 in our
sequences).

In practice, technique Increase can be recommended for its extreme simplicity
to implement and very good approximation results. If the construction time is
an issue, then Optimal should be used. It performs fast in practice and it is not
so hard to implement5. For the following experiments, we will use the results of
Optimal/Increase.

As a final note, observe that by restricting the code length to, say, `max = 22
on EsWiki and EsInv and `max = 23 on Indo, the additive redundancy obtained is
below ε = 0.6, and the redundancy is below 5% of H(P).

3.5.5 Approximations
Now we evaluate the additive and multiplicative approximations, in terms of average
code length L, compression and decompression performance. We compare them with
two optimal model representations, OPT-T and OPT-C, which correspond to TABLE
and COMPR of Section 3.5.3. The additive approximations (Section 3.3) included,
ADD+T and ADD+C, are obtained by restricting the maximum code lengths to
`max and storing the resulting codes using TABLE or COMPR, respectively. We
show one point per `max = 22 . . . 27 on EsWiki and EsInv, and `max = 22 . . . 26
on Indo. For the multiplicative approximation (Section 3.4), we test the variants
MULT-`max, which limit `max to 25 and 26, and use c values 1.5, 1.75, 2, and 3. For
all the solutions that use a wavelet tree, we have fixed a select sampling rate to 32.

Figure 3.6 shows the results in terms of bps for storing the model versus the
resulting redundancy of the code, measured as L(P)/H(P).

The additive approximations have a mild impact when implemented in classical
form. However, the compact representation, ADD+C, reaches half the space of our
exact compact representation, OPT-C. This is obtained at the price of a modest
redundancy, below 5% in all cases, if one uses reasonable values for `max.

With the larger c values, the multiplicative approach is extremely efficient for
storing the model, reaching reductions up to 2 and 3 orders of magnitude with respect
to the classic representations. However, this comes at the price of a redundancy that
can reach 50%. The redundancy may go beyond dlg σe/H(P), at which point it is
better to use a plain code of dlg σe bits. Instead, with value c = 1.75, the model size
is still 20 times smaller than a classical representation, and 2–3 times smaller than
the most compact representation of additive approximations, with a redundancy
only slightly over 10%.

Figure 3.7 compares these representations in terms of compression and
decompression performance. The numbers near each point show the redundancy
(as a percentage over the entropy) of the model representing that point. We use

5There are even some public implementations, for example
https://gist.github.com/imaya/3985581

52 Chapter 3. Efficient Representation of Prefix Codes

1
1.1

1.5

3

.001 .01 .1 1

L(
P
)/

H
(P

)

 1 2 3 4 5

Model size (bps)

Collection EsWiki

5 10 15 20 25 30 35

1
1.1

1.5

3

.001 .01 .1 1

L(
P
)/

H
(P

)

 1 2 3 4 5

Model size (bps)

Collection EsInv

5 10 15 20 25 30 35

1
1.1

1.5

3

.001 .01 .1 1

L(
P
)/

H
(P

)

 1 2 3 4 5

Model size (bps)

Collection indo

5 10 15 20 25 30 35

OPT-T
OPT-C

ADD+C
ADD+T

MULT-26
MULT-25

Figure 3.6: Relation between the size of the model and the average code
length. The x-axes are in logscale for values smaller than 1 and in two linear
scales for 1–5 and 5–35. The horizontal line shows the limit dlgne/H(P),
where no compression is obtained compared with a fixed-length code.

ADD+C with values `max = 22 on EsWiki and EsInv and `max = 23 on Indo. For
ADD+T, the decompression times are the same for all the tested `max values. In
this figure we set the select samplings of the wavelet trees to (32, 64, 128). We also
include in the comparison the variant MULT-26 with c = 1.75 and 1.5.

It can be seen that the multiplicative approach is very fast, comparable to the
table-based approaches ADD+T and OPT-T: 10%–50% slower at compression and
at most 20% slower at decompression. Within this speed, if we use c = 1.75, the
representation is 6–11 times smaller than the classical one for compression and 5–9
times for decompression, at the price of about 10% of redundancy. If we choose
c = 1.5, the redundancy increases to about 20% but the model becomes an order of
magnitude smaller.

The compressed additive approach (ADD+C) achieves a smaller model than
the multiplicative one with c = 1.75 (it is 14 times smaller than the classical
representation for compression and 11 times for decompression). This is achieved with
significantly less redundancy than the multiplicative model, just 3%–5%. However,
although ADD+C is about 20%–30% faster than the exact code OPT-C, it is still
significantly slower than the table-based representations (2–5.5 times slower for
compression and 9–17 for decompression).

Finally, we can see that our compact implementation of Hu-Tucker codes

3.6. Discussion 53

achieves competitive space, but it is an order of magnitude slower than our additive
approximations, which can always use simultaneously less space and time. With
respect to the redundancy, Figure 3.5 shows that Hu-Tucker codes are equivalent to
our additive approximations with `max = 23 on EsWiki, `max = 22 on EsInv, and
`max = 24 on Indo. This shows that the use of alphabetic codes as a suboptimal
code to reduce the model representation size is inferior, in all aspects, to our additive
approximations. Figure 3.7 shows that Hu-Tucker is also inferior, in the three
aspects, to our compact optimal codes, OPT-C. We remark that alphabetic codes
are interesting by themselves for other reasons, in contexts where preserving the
order of the source symbols is important.

3.6 Discussion
We have explored the problem of providing compact representations of Huffman
models. The model size is relevant in several applications, particularly because it
must reside in main memory for efficient compression and decompression.

We have proposed new representations achieving constant compression and
decompression time per symbol while using O(σ lg lg(n/σ)) bits per symbol, where
σ is the alphabet size and n the sequence length. This is in contrast to the (at least)
O(σ lg σ) bits used by previous representations. In our practical implementation,
the time complexities are O(lg lgn) and even O(lgn), but we do achieve 8-fold space
reductions for compression and up to 6-fold for decompression. This comes, however,
at the price of increased compression and decompression time (2.5–8 times slower at
compression and 12–24 at decompression), compared to current representations. In
low-memory scenarios, the space reduction can make the difference between fitting
the model in main memory or not, and thus the increased times are the price to pay.

We also showed that, by tolerating a small additive overhead of ε on the
average code length, the model can be stored in O(σ lg lg(1/ε)) bits, while
maintaining constant compression and decompression time. In practice, these
additive approximations can halve our compressed model size (becoming 11–14 times
smaller than a classical representation), while incurring a very small increase (5%)
in the average code length. They are also faster, but still 2–5.5 times slower for
compression and 5–9 for decompression.

Finally, we showed that a multiplicative penalty in the average code length allows
storing the model in o(σ) bits. In practice, the reduction in model size is sharp, while
the compression and decompression times are only 10%–50% and 0%–20% slower,
respectively, than classical implementations. Redundancies are higher, however.
With 10% of redundancy, the model size is close to that of the additive approach,
and with 20% the size decreases by another order of magnitude.

Some challenges for future work are:
• Adapt these representations to dynamic scenarios, where the model undergoes

changes as compression/decompression progresses. While our compact

54 Chapter 3. Efficient Representation of Prefix Codes

representations can be adapted to support updates, the main problem is
how to efficiently maintain a dynamic canonical Huffman code. We are not
aware of such a technique.

• Find more efficient representations of alphabetic codes. Our baseline achieves
reasonably good space, but the navigation on the compact tree representations
slows it down considerably. It is possible that faster representations supporting
left/right child and subtree size can be found.

• Find constant-time encoding and decoding methods that are fast and compact
in practice. Multiary wavelet trees [Bow10] are faster than binary wavelet trees,
but generally use much more space. Giving them the shape of a (multiary)
Huffman tree and using plain representations for the sequences in the nodes
could reduce the space gap with our binary Huffman-shaped wavelet trees used
to represent L. As for the fusion trees, looking for a practical implementation
of trees with arity wε, which outperforms a plain binary search, is interesting
not only for this problem, but in general for predecessor searches on small
universes.

3.6. Discussion 55

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Model size (bps)

Collection EsWiki
Compression

0.3

0.3

5 0.5

1

2

13 7

2

 10

 100

 1000

 10000

 0 5 10 15 20 25

η
s/

sy
m

b
o
l

Model size (bps)

Collection EsWiki
Decompression

0.3

0.3
5

0.513 7

2

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Model size (bps)

Collection EsInv
Compression

0.3

0.3

3

0.5

1

1.5
17 12

3

 10

 100

 1000

 10000

 0 5 10 15 20 25

η
s/

sy
m

b
o
l

Model size (bps)

Collection EsInv
Decompression

0.3

0.3

3

0.5

17 12

3

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

η
s/

sy
m

b
o
l

Model size (bps)

Collection Indo
Compression

0.1

0.1
3 0.5

1

3
15 8

1

 10

 100

 1000

 10000

 0 5 10 15 20 25

η
s/

sy
m

b
o
l

Model size (bps)

Collection Indo
Decompression

0.1

0.13

0.5

15 8

1

OPT-T
OPT-C

ADD+C+22
ADD+C+23

ADD+T+23,24,25

MULT-26
Hu-Tucker

Figure 3.7: Space/time performance of the approximate and exact
approaches on compression (left) and decompression (right). Times are
in nanoseconds per symbol and in logscale. The numbers around the points
are their redundancy as a percentage of the entropy.

56 Chapter 3. Efficient Representation of Prefix Codes

Chapter 4

The Compressed Wavelet
Matrix

In many applications related to text indexing and succinct data structures, it is
necessary to represent a sequence S[1, n] over an integer alphabet [1, σ] so as to
support rank, select, and access queries (recall Section 2.7).

Some examples where this problem arises are indexes for supporting indexed
pattern matching on strings [GGV03, GV06, FM05, FMMN07, NM07], indexes for
solving computational biology problems on sequences [SOG10, BGOS11], simulation
of inverted indexes over natural language text collections [BFLN12, AGO10],
representation of labeled trees and XML structures [BDM+05, BAHM12, FLMM09,
ACM+15, BHMR11], representation of binary relations and graphs [BGMR07,
CN10a, BCN10, BHMR11], solving document retrieval problems [VM07, GNP12],
and many more.

An elegant data structure to solve this problem is the wavelet tree (see
Section 2.7.1). In its most basic form, this is a balanced tree of O(σ) nodes storing
bitmaps. It requires n lg σ + o(n lg σ) +O(σ lgn) bits to represent S and solves the
three queries in time O(lg σ). The wavelet tree supports not only the three queries we
have mentioned, but more general range search operations that find applications in
representing geometric grids [Cha88, BHMM09, BLNS10, BCN10, NNR13] and text
indexes based on them [Nav04, FM05, MN07b, CHSV08, CN10b, KN13, NN12],
complex queries on numeric sequences [GPT09, KN13, GKNP13, FOP14], and
many others. Various recent surveys [NM07, FGM09, GVX11, Mak12, Nav12] are
dedicated, partially or totally, to the number of applications of this versatile data
structure.

In various applications, the alphabet size σ is significant compared to the length n
of the sequence. Some examples are sequences of words (seen as integer tokens) when
simulating inverted indexes, sequences of XML tags, and sequences of document

57

58 Chapter 4. The Compressed Wavelet Matrix

numbers in document retrieval. When using wavelet trees to represent grids, the
sequence length n becomes the width of the grid and the alphabet size becomes the
height of the grid, and both are equal in most cases. Finally, the problem arises
when a sequence is indexed as many short sequences, each of which is relatively
short compared to the alphabet [KP11].

A large value of σ affects the space usage of wavelet trees. A pointerless wavelet
tree [MN07b] concatenates all the bitmaps levelwise and removes the O(σ lgn) bits
from the space. It retains the time complexity of pointer-based wavelet trees, albeit it
is slower in practice. This representation can be made to use nH0(S) + o(n lg σ) bits,
where H0(S) ≤ lg σ is the per-symbol zero-order entropy of S, by using compressed
bitmaps [RRR07, GGV03]. This makes the wavelet tree traversal even slower in
practice, however.

The wavelet matrix [CN12] is an alternative representation of the balanced
pointerless wavelet tree that reorders the nodes in each level, in a way that retains all
the wavelet tree functionality while the traversals needed to carry out the operations
are simplified and sped up. The wavelet matrix then retains all the capabilities
of wavelet trees, is resistant to large alphabets, and its speed gets close to that of
pointer-based wavelet trees. It can also obtain zero-order compression by compressing
the bitmaps (which slows it down).

A pointer-based wavelet tree, instead, can achieve zero-order compression by
replacing the balanced tree by the Huffman tree [Huf52] (see Section 2.7.2). Then,
even without compressing the bitmaps, the storage space becomes n(H0(S) + 1) +
o(n(H0(S) + 1)) +O(σ lgn) bits. Adding bitmap compression removes the n bits
of the Huffman redundancy. In addition, this technique is faster than the basic
one, as the average access time is O(H0(S)). By using canonical Huffman codes
(see Section 2.4.2.1), a pointerless Huffman-shaped wavelet tree is also possible
[ZPYL08]. This removes the O(σ lgn) bits of the pointers, whereas those of the
Huffman model can be reduced to σ lg σ +O(σ), and even O(σ lg lgn), in the case
of a canonical code (see Chapter 3). Therefore the total space can be written as
nH0(S) + o(n(H0(S) + 1)) +O(σ lg lgn) bits.

Other than wavelet trees, Golynski et al. (see Section 2.7.3) proposed a sequence
representation for large alphabets, which uses n lg σ+ o(n lg σ) bits (no compression)
and offers much faster time complexities to support the three operations, O(lg lg σ).
Later, Barbay et al. (see Section 2.7.4) built on this idea to obtain zero-order
compression, nH0(S) + o(n(H0(S) + 1)) bits, while retaining the times. This so-
called “alphabet-partitioned” representation does not, however, offer the richer
functionality of wavelet trees. Moreover, as shown in their experiments [BCG+14],
its sublinear space terms are higher in practice than those of a zero-order compressed
wavelet tree (yet their better complexity does show up in practice). There are recent
theoretical developments slightly improving those complexities [BN15], but their
sublinear space terms would be even higher in practice.

In this chapter we present the compressed wavelet matrix, which is a combination

4.1. Related Work 59

of wavelet matrices and Huffman-shaped wavelet trees, so as to obtain Huffman-
shaped wavelet matrices. These yield simultaneously zero-order compression and
fast operations. It turns out, however, that the canonical Huffman codes cannot be
directly combined with the node numbering induced by the wavelet matrix, so we
derive an alternative code assignment scheme that is also optimal and compatible
with the wavelet matrix.

We implement these variants and test them over various real-life sequences,
showing that a few versions of the wavelet matrix dominate all the wavelet tree
variants across the space/time tradeoff map, on diverse sequences over large
alphabets.

This chapter is organized as follows: Section 4.1 describes the previous work;
Section 4.2 presents the compressed wavelet matrix; Section 4.3 provides a complete
experimental evaluation; and Section 4.4 gives our conclusions.

4.1 Related Work
Given a sequence S[1, n] over Σ = [1, σ], in this section we introduce several data
structures aimed at solving rank, select, and access queries for sequences with
large alphabets.

4.1.1 Pointerless Wavelet Trees
Having in mind the wavelet tree data structure (WT) presented in Section 2.7.1, it
is important to notice that if all the internal nodes at each level of the wavelet
tree are all to the left, it is possible to concatenate all the bitmaps at each level
and still retain the same functionality [MN07b]. The result is a data structure
named pointerless wavelet tree (WTNP) in which, instead of a bitmap per node v,
there will be a single bitmap per level `, B̃`[1, n]. Figure 4.1 (bottom) illustrates
this arrangement. The main problem is how to keep track of the range B̃`[sv, ev]
corresponding to a node v of depth `.

4.1.1.1 The Strict Variant

The strict variant [MN07b] stores no data apart from the dlg σe pointers to the level
bitmaps. Keeping track of the node ranges is not hard if we start at the root (as in
access and rank). Initially, we know that [sν , eν] = [1, n], that is, the whole bitmap
B̃0 is equal to the bitmap of the root, Bν . Now, imagine that we have navigated
towards a node v at depth `, and know [sv, ev]. The two children of v share the same
interval [sv, ev] at B̃`+1. The split point is m = rank0(B̃`, ev)− rank0(B̃`, sv − 1),
the number of 0s in B̃`[sv, ev]. Then, if we descend to the left child vl, we will
have [svl , evl] = [sv, sv +m − 1]. If we descend to the right child vr, we will have
[svr , evr] = [sv +m, ev].

60 Chapter 4. The Compressed Wavelet Matrix

5 8 7 6 4 3 2 1 3 2 5 2 8
1 1 1 1 0 0 0 0 0 0 1 0 1

4 3 2 1 3 2 2
1 1 0 0 1 0 0

5 8 7 6 5 8
0 1 1 0 0 1

5 6 5
0 1 0

8 7 8
1 0 1

2 1 2 2
1 0 1 1

4 3 3
1 0 0

1 2 2 2 3 3 4 5 5 6 7 8 8

5 8 7 6 4 3 2 1 3 2 5 2 8
1 1 1 1 0 0 0 0 0 0 1 0 1

2 1 2 2 4 3 3 5 6 5 8 7 8
1 0 1 1 1 0 0 0 1 0 1 0 1

1 2 2 2 3 3 4 5 5 6 7 8 8

4 3 2 1 3 2 2 5 8 7 6 5 8
1 1 0 0 1 0 0 0 1 1 0 0 1

Figure 4.1: On the top, the standard wavelet tree (WT) over a sequence.
The subsequences Sv are not stored. The bitmaps Bv, are stored, as well
as the tree topology. On the bottom, its pointerless version (WTNP). The
divisions into nodes are not stored but computed on the fly.

4.1. Related Work 61

Algorithm 5 Pointerless wavelet tree algorithms (strict variant): On the wavelet
tree of sequence S, acc(0, i, 0, n) returns S[i]; rnk(0, a, i, 0, n) returns ranka(S, i);
and sel(0, a, j, 0, n) returns selecta(S, j). For simplicity we have omitted the
computation of [αv, ωv].
acc(`, i, p, e)
if ωv − αv = 0 then
return αv

end if
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
if B̃`[i] = 0 then
z ← rank0(B̃`, p+ i)
return
acc(`+1,
z−l, p, p+r−l)

else
z ← rank1(B̃`, p+ i)
return
acc(`+1,
z−(p−l), p+r−l, e)

end if

rnk(`, a, i, p, e)
if ωv − αv = 0 then
return i

end if
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
if a ≤ 2dlg(ωv−αv)e−1 then
z ← rank0(B̃`, p+ i)
return
rnk(`+1, a,
z−l, p, p+r−l)

else
z ← rank1(B̃`, p+ i)
return
rnk(`+1, a,
z−(p−l), p+r−l, e)

end if

sel(`, a, j, p, e)
if ωv − αv = 0 then
return j

end if
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
if a ≤ 2dlg(ωv−αv)e−1 then
j←sel(`+1, a, j, p, p+r−l)
return

select0(B̃`, l + j)−p
else
j←sel(`+1, a, j, p+r−l, e)
return

select1(B̃`(p−l)+j)−p
end if

Things are a little bit harder for select, because we must proceed upwards. In
the strict variant, the way to carry out selecta(S, j) is to first descend to the leaf
corresponding to symbol a, and then track the leaf position j up to the root as we
return from the recursion.

Algorithm 5 gives the pseudocode (we use p = s−1 instead of s = sv). Note that,
compared to the standard version, the strict variant requires two extra binary rank
operations per original binary rank, on the top-down traversals (i.e., for queries
access and rank). For query select, the strict variant requires two extra binary
rank operations per original binary select. Thus the times may up to triple for
these traversals.1

4.1.1.2 The Extended Variant

The extended variant [CN08], instead, stores an array C[1, σ] of pointers to the σ
starting positions of the symbols in the (virtual) array of the leaves, or said another
way, C[a] is the number of occurrences of symbols smaller than a in S. Note this
array requires O(σ lgn) bits (or at best O(σ lg(n/σ)) + o(n) if represented as the

1In practice the effect is not so large because of cache effects when sv is close to ev . In addition,
binary select is more expensive than rank in practice, thus the impact on query select is lower.

62 Chapter 4. The Compressed Wavelet Matrix

RRR compressed bitmap from Section 2.6), but the constant is much lower than on a
pointer-based tree (which stores the left child, the right child, the parent, the value
nv, the pointer to bitmap Bv, pointers to the leaves, etc.). We also need to indicate
the level in which each leaf is found.

With the help of array C, the number of operations becomes closer to the
standard version, since C lets us compute the ranges: The range of any node v
is simply [sv, ev] = [C[αv] + 1, C[ωv]]. In the algorithms for queries access and
rank, where we descend from the root, the values αv and ωv are easily maintained.
Thus we do not need to compute r in Algorithm 5, as it is used only to compute
e = ev = C[ωv]. Thus we require only one extra binary rank operation per level.

This is slightly more complicated when solving query selecta(S, j). We start
at offset j in the interval [C[αu] + 1, C[ωu]] for (αu, ωu) = (a, a+ 1) and track this
position upwards: If the leaf u is a left child of its parent v (i.e., if αu is even), then
the parent’s range (in the deepest bitmap B̃`) is (αv, ωv) = (αu, ωu + 1). Instead, if
the leaf is a right child of its parent, then the parent’s range is (αv, ωv) = (αu−1, ωu).
We use binary select on the range [C[αv] + 1, C[ωv]] to map the position j to the
parent’s range. Now we proceed similarly at the parent w of v. If (αv−1) mod 2 = 0,
then v is the left child of w, otherwise it is the right child. In the first case, the range
of w in bitmap B̃`−1 is (αw, ωw) = (αv, ωv+2), otherwise it is (αw, ωw) = (αv−2, ωv).
We continue until the root, where j is the answer. In this case we need only one
extra binary rank operation per level. Algorithm 6 details the algorithms.

4.1.2 The Wavelet Matrix
The idea of the wavelet matrix is to break the assumption that the children of a node
v, at interval B̃`[sv, ev], must be aligned to it and occupy the interval B̃`+1[sv, ev]
(as wavelet trees do). Freeing the structure from this assumption allows us to design
a much simpler mapping mechanism from one level to the next: all the zeros of the
level go left, and all the ones go right. For each level, we will store a single integer
z` that tells the number of 0s in level `. This requires just O(lgn lg σ) bits, which is
insignificant, and allows us to implement the pointerless mechanisms in a simpler
and faster way.

More precisely, if B̃`[i] = 0, then the corresponding position at level `+ 1 will be
rank0(B̃`, i). If B̃`[i] = 1, the position at level `+ 1 will be z` + rank1(B̃`, i). Note
that we can map the position without knowledge of the boundaries of the node the
position belongs. Still, every node v at level ` occupies a contiguous range in B̃`, as
proved next.

Proposition 1. All the bits in any bitmap B̃′` of the pointerless wavelet tree that
correspond to a wavelet tree node v are also contiguous in the bitmap B̃` of the the
wavelet matrix.

Proof. This is obviously true for the root v = ν, as it corresponds to the whole
B̃′0 = B̃0. Now, assuming it is true for a node v, with interval B̃`[sv, ev], all the

4.1. Related Work 63

Algorithm 6 Pointerless wavelet tree algorithms (extended variant): On the wavelet
tree of sequence S, acc(0, i) returns S[i]; rnk(0, a, i) returns ranka(S, i); and sel(a, j)
returns selecta(S, j). For simplicity we have omitted the computation of [αv, ωv),
except on sel(a, j), where for simplicity we assume C[a] refers to level ` = dlg σe.

acc(`, i)
if ωv − αv = 0 then
return αv

end if
l← rank0(B̃`, C[αv])
z ← rank0(B̃`, C[αv]+i)
if B̃`[i] = 0 then
return

acc(`+1, z−l)
else
return

acc(`+1, i−(z−l))
end if

rnk(`, a, i)
if ωv − αv = 0 then
return i

end if
l← rank0(B̃`, C[αv])
z ← rank0(B̃`, C[αv] + i)
if a ≤ 2dlg(ωv−αv)e−1 then
return

rnk(`+1, a, z−l)
else
return

rnk(`+1, a, i−(z−l))
end if

sel(a, j)
`← dlg σe
d← dlg σe − `+ 1
while ` ≥ 0 do
if (a−1) mod 2d = 0 then
l← rank0(B̃`, C[αv])
j ← select0(B̃`, l+j)

else
αv ← αv − 2d−1

l← rank1(B̃`, C[αv])
j ← select1(B̃`, l+j)

end if
j ← j − C[αv]
`← `− 1, d← d+ 1

end while
return j

positions with B̃`[i] = 0 for sv ≤ i ≤ ev will be mapped to consecutive positions
B̃`+1[rank0(B̃`, i)], and similarly with positions B̃`[i] = 1.

Figure 4.2 illustrates the wavelet matrix, where it can be seen that the blocks of
the wavelet tree are maintained, albeit in different order. We now describe how to
carry out the operations under the strict and the extended variants.

4.1.2.1 The Strict Variant

To carry out access(S, i), we first set i0 to i. Then, if B̃0[i0] = 0, we set i1 to
rank0(B̃0, i0). Else we set i1 to z0 + rank1(B̃0, i0). Now we descend to level 1, and
continue until reaching a leaf. The sequence of bits B̃`[i`] read along the way form
the value S[i] (or, said another way, we maintain the interval [αv, ωv] and upon
reaching the leaf it holds S[i] = αv). Note that we have carried out only one binary
rank operation per level, just as the standard wavelet tree.

Consider now the computation of ranka(S, i). This time we need to keep track
of the position i, and also of the position preceding the range, initially p0 = 0. At
each node v of depth `, if a ≤ 2dlg(ωv−αv)e−1, then we go “left” by mapping p`+1
to rank0(B̃`, p`) and i`+1 to rank0(B̃`, i`). Otherwise, we go “right” by mapping
p`+1 to z` + rank1(B̃`, p`) and i`+1 to z` + rank1(B̃`, i`). When we arrive at the

64 Chapter 4. The Compressed Wavelet Matrix

5 8 7 6 4 3 2 1 3 2 5 2 8
1 1 1 1 0 0 0 0 0 0 1 0 1

2 1 2 2 4 3 3 5 6 5 8 7 8
1 0 1 1 1 0 0 0 1 0 1 0 1

1 2 2 2 3 3 4 5 5 6 7 8 8

4 3 2 1 3 2 2 5 8 7 6 5 8
1 1 0 0 1 0 0 0 1 1 0 0 1

5 8 7 6 4 3 2 1 3 2 5 2 8
1 1 1 1 0 0 0 0 0 0 1 0 1

4 3 2 1 3 2 2 5 8 7 6 5 7
1 1 0 0 1 0 0 0 1 1 0 0 1

2 1 2 2 5 6 5 4 3 3 8 7 7
1 0 1 1 0 1 0 1 0 0 1 0 1

1 5 5 3 3 7 2 2 2 6 4 8 8

Figure 4.2: On the left, the pointerless wavelet tree (WTNP) of Figure 2.7.1.
On the right, the wavelet matrix (WM) over the same sequence. One vertical
line per level represents the position stored in the z` values.

leaf level, the answer is i` − p`. Note that we have needed one extra binary rank
operation per original rank operation of the standard wavelet tree, instead of the
two extra operations required by the (strict) pointerless variant.

Finally, consider operation selecta(S, j). We first descend towards the leaf of a
just as done for ranka(S, i), keeping track only of p`. When we arrive at the last
level, p` precedes the range corresponding to the leaf of a, and thus we wish to track
upwards position j` = p` + j. The upward tracking of a position B̃`[j`] is simple:
If we went left from level ` − 1, then this position was mapped from a 0 in B̃`−1,
and therefore it came from j`−1 = B̃`−1[select0(B̃`, j`)]. Otherwise, position j`
was mapped from a 1, and thus it came from j`−1 = B̃`−1[select1(B̃`, j` − z`)].
When we arrive at the root bitmap, j0 is the answer. Note that we have needed one
extra binary rank per original binary select required by the standard wavelet tree.
We remind that in practice rank is much less demanding, so this overhead is low.
Algorithm 7 gives the pseudocode.

4.1.2.2 The Extended Variant

We can speed up rank and select operations if the array C that points to the
starting positions of each symbol in its bitmap is available. First, we note that for
ranka(S, i) we do not need anymore to keep track of p`, since all we need at the end
is to return i` −C[a]. Thus the cost becomes similar to that of the standard wavelet
tree, which was not achieved with the extended variant of the pointerless wavelet
tree.

4.1. Related Work 65

Algorithm 7 Wavelet matrix algorithms (strict variant): On the wavelet matrix of
sequence S, acc(0, i) returns S[i]; rnk(0, a, i, 0) returns ranka(S, i); and sel(0, a, j, 0)
returns selecta(S, j). For simplicity we have omitted the computation of [αv, ωv).
acc(`, i)
if ωv − αv = 0 then
return αv

end if
if B̃`[i] = 0 then
i← rank0(B̃`, i)

else
i← z`+rank1(B̃`, i)

end if
return acc(`+1, i)

rnk(`, a, i, p)
if ωv − αv = 0 then
return i− p

end if
if a ≤ 2dlg(ωv−αv)e−1 then
p← rank0(B̃`, p)
i← rank0(B̃`, i)

else
p← z` + rank1(B̃`, p)
i← z` + rank1(B̃`, i)

end if
return rnk(`+1, a, i, p)

sel(`, a, j, p)
if ωv − αv = 0 then
return p+ j

end if
if a ≤ 2dlg(ωv−αv)e−1 then
p← rank0(B̃`, p)
j ← sel(`+1, a, j, p)
return select0(B̃`, j)

else
p← z` + rank1(B̃`, p)
j ← sel(`+1, a, j, p)
return select1(B̃`, j−z`)

end if

For selecta(S, j) we can avoid the first downward traversal, as in the pointerless
wavelet tree, and use the same technique to determine whether we came from the
left or from the right in the parent bitmap. Once again, the cost becomes the same
as in a standard wavelet tree, with no extra rank operations required. Algorithm 8
gives the detailed algorithm.

4.1.2.3 Construction

Construction of the wavelet matrix is simple. At the first level we keep in bitmap
B̃0 the highest bits of the symbols in S, and then stably sort S by those highest
bits. Now we keep in bitmap B̃1 the next-to-highest bits, and stably sort S by
those next-to-highest bits. We continue until considering the lowest bit. This takes
O(n lg σ) time.

Indeed, we can build the wavelet matrix almost in place, by removing the highest
bits after using them and packing the symbols of S. This frees n bits, where we
can store the bitmap B̃0 we have just generated, and keep doing the same for
the next levels. We generate the o(n lg σ)-space indexes at the end. Thus the
construction space is ndlg σe + max(n, o(n lg σ)) bits. Other more sophisticated
techniques [CNS11, Tis11] may use even less space.

4.1.3 Pointerless Huffman Shaped Wavelet Trees
Here we revisit the technique [ZPYL08] to use canonical Huffman codes [SK64] to
represent Huffman-shaped wavelet trees without pointers, this way removing the

66 Chapter 4. The Compressed Wavelet Matrix

Algorithm 8 Wavelet matrix algorithms (extended variant): On the wavelet matrix
of sequence S, acc(0, i) returns S[i]; rnk(0, a, i) returns ranka(S, i); and sel(a, j)
returns selecta(S, j). For simplicity we have omitted the computation of [αv, ωv),
and in sel(a, j) we assume C[a] refers to level ` = dlg σe.
acc(`, i)
if ωv − αv = 0 then
return αv

end if
if B̃`[i] = 0 then
i← rank0(B̃`, i)

else
i← z`+rank1(B̃`, i)

end if
return acc(`+1, i)

rnk(`, a, i)
if ωv − αv = 0 then
return i− C[a]

end if
if a ≤ 2dlg(ωv−αv)e−1

then
i← rank0(B̃`, i)

else
i← z`+rank1(B̃`, i)

end if
return rnk(`+1, a, i)

sel(a, j)
`← dlg σe
d← dlg σe − `+ 1
j ← C[a] + j
while ` ≥ 0 do
if (a−1) mod 2d = 0 then
j ← select0(B̃`, j)

else
j ← select1(B̃`, j−z`)

end if
`← `− 1, d← d+ 1

end while
return j

main component of the O(σ lgn) extra bits and retaining the advantages of reduced
space and O(H0(S) + 1) average traversal time.

The problem that arises when storing a standard Huffman-shaped wavelet tree in
levelwise form is that a leaf that appears in the middle of a level leaves a “hole” that
ruins the calculations done at the nodes to the right of it to find their position in the
next level. Canonical Huffman codes (explained at Section 2.4.2) choose one of the
many optimal Huffman trees that, among other interesting benefits [SK64, Sal07],
yields a set of codes in which longer codes appear to the left of shorter codes.2
Note that by interpreting the bit 0 as the right child and the bit 1 as the left child
in a canonical Huffman encoding, we have that all the leaves at any level are the
rightmost nodes. As a consequence, all the leaves of a level appear grouped to the
right, and therefore do not alter the navigation calculations for the other nodes. The
levelwise deployment of the tree can be seen as a sequence of “contiguous” bitmaps
of varying length. Figure 4.3 illustrates the standard (WTH) and the levelwise (WTHNP)
deployment of a canonical Huffman code.

The navigation procedures of Algorithm 5 can then be used verbatim, except for
a few alphabet mappings that must be carried out: For access(S, i), we need to
maintain the Huffman tree so that, given the 0/1 labels of the traversed path, we
determine the alphabet symbol corresponding to that leaf of the Huffman tree. For
ranka(S, i), we need to convert the symbol a to its variable-length code, in order
to follow the corresponding path in the wavelet tree. Finally, for selecta(S, i), we
need the same as for rank for the strict variant, or a pointer to the corresponding

2It is usually to the right, but this way is more convenient for us.

4.2. The Compressed Wavelet Matrix 67

leaf area in some bitmap B̃`, for the extended variant.
The mappings are also used to determine when to stop a top-down traversal. The

mapping information amounts to O(σ lgn) bits as well, but it is much less in practice
than what is stored for pointer-based wavelet trees, as explained. Moreover, in the
case of canonical codes, σ lg σ +O(σ) bits are sufficient to represent the mappings.
Note this space can be reduced to O(σ lg lgn) bits using the technique proposed in
Chapter 3.

The maximum number of levels in a Huffman tree is O(lgn), and it can be
made O(lg σ) [BN13] by rebalancing deep leaves without affecting the asymptotic
performance. Thus the pointers to the levels add up to a negligible O(lg2 n) bits.
The rest of the space is as for standard Huffman-shaped wavelet trees: n(H0(S) +
1) + o(n(H0(S) + 1)) bits. Moreover, by using the RRR compressed bitmaps of
Section 2.6, the space is reduced to nH0(S) + o(n(H0(S) + 1)) bits, albeit in practice
the navigation is slowed down.

4.2 The Compressed Wavelet Matrix
Just as on the pointerless wavelet tree, we can achieve zero-order entropy with
the wavelet matrix by replacing the plain representations of bitmaps B̃` by the
RRR compressed ones (see Section 2.6), the space becoming nH0(S) + o(n lg σ)
bits. Compared to obtaining zero-order entropy using Huffman-shaped trees, this
solution has several disadvantages, as explained: (1) the compressed bitmaps are
slower to operate than in a plain representation; (2) the number of operations
on a Huffman-shaped tree is lower on average than on a balanced tree; (3) the
Huffman-shaped wavelet tree is more compact, as it reduces the redundancy from
o(n lg σ) to o(n(H0(S) + 1)) (albeit a small O(σ lgn)-bit space term is added to hold
the Huffman model); (4) the bitmap compression can be additionally combined with
the Huffman shape, obtaining further compression (yet higher time).

The idea is the same as in Section 2.7.2: Arrange the codes so that all the leaves
are grouped to the right of the bitmaps B̃`. However, because of the reordering of
nodes produced by the wavelet matrix, the use of canonical Huffman codes does not
guarantee that the leaves of the same level are contiguous. In the wavelet matrix,
the position of a code c in B̃`+1 depends only on the position of c in B̃` and on the
bit of c in that level, c[`]. Figure 4.4 illustrates an example of a canonical set of
codes where the first 16 shortest codewords take values from 00000 to 01111 and the
remaining 32 from 100000 to 111110. The figure shows the relative positions of the
codes at successive levels of the wavelet matrix for a sequence . . . c8, c12, c32, c48 . . . ,
where c8 = 01000, c12 = 01100, c32 = 100000, and c48 = 110000. As we can see,
codes c8 and c12 finish at level 5 but they are not contiguous since there is a c48
between them.

We require a different mechanism to design an optimal prefix-free code that
guarantees that, under the shuffling rules of the wavelet matrix, all the leaves at any

68 Chapter 4. The Compressed Wavelet Matrix

5 8 7 6 4 3 2 1 3 2 5 2 8
1 0 1 1 1 1 0 1 1 0 1 0 0

8 2 2 2 8
0 1 1 1 0

5 7 6 4 3 1 3 5
0 1 1 1 0 1 0 0

7 6 4 1
1 1 0 0

5 3 3 5
1 0 0 1

7 6
0 1

4 1
1 0

6

8 8

5 5

7

3 3

14

2 2 2

5 8 7 6 4 3 2 1 3 2 5 2 8
1 0 1 1 1 1 0 1 1 0 1 0 0

5 7 6 4 3 1 3 5 8 2 2 2 8
0 1 1 1 0 1 0 0 0 1 1 1 0

7 6 4 1 5 3 3 5
1 1 0 0 1 0 0 1

7 6 4 1
0 1 1 0

2 2 2 8 8

5 5 3 3

6 7 4 1

Figure 4.3: On the top, the pointer-based canonical Huffman wavelet tree
(WTH) for our running example. On the bottom, its pointerless representation
(WTHNP). Note that from now on we interpret the bit 0 as going right and the
bit 1 as going left.

4.2. The Compressed Wavelet Matrix 69

` = 1 . . . , c8, c12, c32, c48 . . .

` = 2 . . . , c8, c12, . . . | . . . , c32, c48 . . .

` = 3 . . . , c32 . . . | . . . , c8, c12, . . . , c48 . . .

` = 4 . . . , c32, . . . , c8, . . . , c48| . . . , c12, . . .

` = 5 . . . , c32, . . . , c8, . . . , c48, . . . , c12 . . . | . . .
` = 6 . . . , c32, c48, . . . | . . .

Figure 4.4: Example of a sequence of canonical codes along wavelet matrix
levels, showing that the leaves do not span a contiguous area. The the vertical
bar “|” marks the points z`.

level form a contiguous area to the right of the bitmap.
We start by studying how the wavelet matrix sorts the codes at each level.

Consider a pair of codes c1[1, `1] and c2[1, `2]. Depending on their bits at a given
level ` of the wavelet matrix, two cases are possible: (a) c1[`] = c2[`] and then the
relative positions of c1 and c2 stay the same at level `+ 1, or (b) c1[`] 6= c2[`] and
then their relative positions in level `+ 1 depend on the relation between c1[`] and
c2[`]. This yields the following proposition:

Proposition 2. In a wavelet matrix, given any pair of codes c1 and c2, c1 appears
before(after) c2 in B̃` if, for some 0 ≤ i < `, it holds c1[`− i, `− 1] = c2[`− i, `− 1]
and c1[`− i− 1] = 0(1) 6= c2[`− i− 1].

Proof. If c1[`− i, `−1] = c2[`− i, `−1], then c1 and c2 transitively keep their relative
positions from level `− i to level `. Instead, c1[`− i− 1] 6= c2[`− i− 1] makes their
ordering in level `− i dependent only on how c1[`− i− 1] and c2[`− i− 1] compare
to each other.

As a second step, assume we want to design a set of fixed-length codes {ca, a ∈
[0, σ)} such that ca < cb iff the area of ca is before that of cb in B̃dlgσe. That is, we
want the codes to be listed in order in the last level. Let inv : {0, 1}N+ × N+ →
{0, 1}N+ be defined as inv(c[1, `], `) = c−1[1, `], where c−1[i] = c[` − i + 1] for all
1 ≤ i ≤ `. That is, inv(c, `) takes number c as a codeword of ` bits and returns the
code obtained by reading c backwards. Then, the following proposition holds:

Proposition 3. Given any two values i, j ∈ [0, σ) where i < j, code inv(i, dlg σe)
is located to the left of code inv(j, dlg σe) in the bitmap B̃dlgσe of a wavelet matrix
that uses such codes.

Proof. Let τi = inv(i, dlg σe) and τj = inv(j, dlg σe). If τi and τj do not share any
common suffix, then their relative positions in B̃dlgσe depend only on their last bit

70 Chapter 4. The Compressed Wavelet Matrix

and the relation is given by that bit. Otherwise, τi and τj share a common suffix of
length dlg σe − δ+ 1 ∈ [1, dlg σe], that is, τi[δ, dlg σe] = τj [δ, dlg σe]. Then, according
to Proposition 2, τi is before τj iff τi[δ] < τj [δ]. In both cases the relation is given
by the last distinct bit of the codes, or the first if they are read backwards. Since
the codes are of the same length, comparing by the first distinct bit is equivalent
to comparing numerically. That is, τi is before τj iff inv(τi, dlg σe) < inv(τj , dlg σe).
In turn, since inv(inv(c, `), `) = c, this is equivalent to i < j.

The proposition gives a way to force a desired order in a set of fixed-length codes:
Given symbols a ∈ [0, σ), we can assign them codes ca = inv(a, dlg σe) to ensure
that the areas become ordered in B̃dlgσe. As a side note, we observe that we could
have retained the symbol order natively in the wavelet matrix if we had chosen to
decompose the symbols from their least to their most significant bit, and not the
other way (in this case the wavelet matrix is actually radix-sorting the values). This
brings problems in the extended variants, however, because the resulting range of
codes has unused entries if σ is not a power of 2. For example, consider alphabet
0, 1, 2, 3, 4 = 000, . . . , 100; after reversing the bits we obtain numbers 0, 1, 2, 4, 6, so
we need to allocate 7 cells for C instead of 5. The size of C can double in the worst
case. We cannot either directly use the idea of reversing the canonical Huffman
codes, because the codes could not be prefix-free anymore. A more sophisticated
scheme, based on Proposition 3, is required.

Assume we have obtained the desired code lengths `a, as well as the array
nCodes from the canonical Huffman construction. We generate the final Huffman
tree in levelwise order. The simplest description is as follows. We start with a set
of valid codes C = {0, 1} and level ` = 1. At each level `, we remove from C the
nCodes[`] codes c with minimum inv(c, `) value. The removed nodes are assigned
to the nCodes[`] symbols that require codes of length `. Now we replace each code
c remaining in C, by two new codes, c : 0 and c : 1, and continue with level `+ 1. It
is clear that this procedure generates a prefix-free set of codes that, when reversed,
satisfy that the codes finishing at a level are smaller than those that continue.

It is not hard to see that the total cost of this algorithm is linear. There are
two kind of codes inserted in C: those that will be chosen for a code and those that
will not. There are exactly σ nodes of the first class, whereas for each node of the
second class we insert other two codes in C. Therefore the total number of codes ever
inserted in C adds up to O(σ). The codes to use at each level ` can be obtained by
linear-time selection over the set of codes just extended (sorting codes by inv(c, `)),
thus adding up to O(σ) time as well.

Figure 4.5 gives an example of the construction.

4.2. The Compressed Wavelet Matrix 71

8

3

6

2

5

71 4

1

1

1

1

1

1

1

0

0

0

0

0

0

0

5 8 7 6 4 3 2 1 3 2 5 2 8
0 1 0 1 0 1 0 1 1 0 0 0 1

8 6 3 1 3 8 5 7 4 2 2 5 2
0 1 1 1 1 0 1 1 1 0 0 1 0

6 3 1 3 5 7 4 5
1 0 1 0 0 1 1 0

8 8 2 2 2

6 1 7 4
0 1 0 1

3 3 5 5

1 4 6 7

Figure 4.5: On the top, the Huffman tree resulting from our code
reassignment algorithm on the running example. On the bottom, the resulting
Huffman-shaped wavelet matrix.

72 Chapter 4. The Compressed Wavelet Matrix

4.3 Experimental Results
Our implementations build over the wavelet tree implementations of Libcds [Cla]
a library implementing several space-efficient data structures. For each wavelet
tree/matrix variant we present two versions, CM [Cla96, Mun96] and RRR [RRR07]
(recall Section 2.6). The variants compared are the following:

• WT: standard pointer-based wavelet tree (Section 2.7.1);

• WTNP: the (extended) pointerless wavelet tree (Section 4.1.1);

• WM: the (extended) wavelet matrix (Section 4.1.2);

• WTH: the Huffman-shaped standard pointer-based wavelet tree (Section 2.7.2);

• WTHNP: the Huffman-shaped extended pointerless wavelet tree (Section 4.1.3);

• WMH: the Huffman-shaped or compressed (extended) wavelet matrix (Sec-
tion 4.2);

• AP: the alphabet-partitioned data structure of Section 2.7.4, which is the best
state-of-the-art alternative to wavelet trees.

These names are composed with the bitmap implementations by appending the
bitmap representation name. For example, we call WT.RRR the standard pointer-based
wavelet tree with all bitmaps represented with Raman’s et al. (see Section 2.6)
compressed bitmaps. AP uses always CM bitmaps, which is the best choice for this
structure.

Note that all the pointerless structures use the array C. The extended versions
generally achieve space very close to the strict ones and perform much faster.

4.3.1 Datasets
In order to evaluate the performance of access, rank and select, we use four
different datasets:3

• ESWiki: Sequence of word identifiers generated by stemming the Spanish
Wikipedia4 with the Snowball algorithm. The sequence has length n =
200,000,000, alphabet size σ = 1,634,145, and zero-order entropy H0 = 11.12.
This sequence can be used to simulate a positional inverted index [CN08,
AGO10, GNP12, BFLN12].

3Left at http://lbd.udc.es/research/ECWTLA
4http://es.wikipedia.org dated 03/02/2010.

4.3. Experimental Results 73

• BWT: The Burrows-Wheeler transform (BWT) [BW94] of ESWiki. The length
and size of the alphabet, as well as the zero-order entropy, match those of
ESWiki. However, BWT has a much lower high-order entropy [Man01]. Many
full-text compressed self-indexes [FM05, FMMN07, NM07] use the BWT of
the text they represent.

• Indochina: The concatenation of all adjacency lists of Web graph Indochina-
2004, available at the WebGraph project.5 The length of the sequence is n =
100,000,000, the alphabet size σ = 2,705,024, and the entropy is H0 = 15.69.
This representation has been used to support forward and backward traversals
on the graph [CN08, CN10a].

• INV: Concatenation of inverted lists for a random sample of 2,961,510
documents from the English Wikipedia.6 This sequence has length n =
338,027,430 and its alphabet size is σ = 2,961,510. From this sequence
we extract the first n = 180,000,000 elements with an alphabet of size
σ = 1,590,398 and an entropy of H0 = 19.01. This sequence has been used to
simulate document inverted indexes [NP10, GNP12].

4.3.2 Measurements

To measure performance we generated 100,000 inputs for each query and averaged
their execution time, running each query 10 times. The access(S, i) queries were
generated by choosing positions i uniformly at random in [1, n]. Queries ranka(S, i)
were generated by choosing i uniformly at random, and then setting a = S[i].
Each selecta(S, j) query was generated by first choosing a position i at random
in [1, n], then setting a = S[i], and finally choosing j at random in [1, ranka(S, n)].
The resulting distribution is the most common in applications, and it obtains the
O(H0(S) + 1) average time performance in the Huffman-shaped variants.

4.3.3 Results on Sequences

Figures 4.6 to 4.8 show the time and space for the different data structures and
configurations for access, rank and select queries. The black vertical bar on
the plots shows the value of H0. The bitmaps are parametrized by setting their
sampling values to 32, 64, and 128. In the case of AP, these bitmap samplings are
combined with permutation samplings 4, 16, and 64, respectively, and all are run
with `min = 10, as in previous work [BCG+14].

5http://law.dsi.unimi.it
6http://en.wikipedia.org

74 Chapter 4. The Compressed Wavelet Matrix

4.3.3.1 Space

We start by discussing the space usage, which we measure in bits per symbol (bps).
First we note that the WM variants use always the same space as the corresponding
WTNP variants (while being faster, as we discuss soon). The space of WTNP.CM and
WM.CM is obviously close to dlg σe bps. The extra space incurred by WT.CM is the
overhead of the wavelet tree pointers, and is roughly proportional to σ/n (times
some implementation-dependent constant). This amounts to nearly 4 bps in ESWiki
and BWT, but 3.5 times more (14 bps) in Indochina, as expected from its larger
alphabet size, and again 4 bps in INV. On the other hand, the space of WTHNP.CM
and WMH.CM is always close to H0 bits per symbol, plus a small extra to store the
Huffman model. The space overhead of WTH.CM on top of those corresponds, again,
to the wavelet tree pointers.

The sampling parameter affects more sharply the RRR variants, as they store
more data per sample. The difference between WTNP.RRR or WM.RRR and WT.RRR
is also proportional to σ/n, but this time the constant is higher because the RRR
implementation needs more constants to be stored per bitmap (i.e., per wavelet
tree node). Thus the penalty is 6 bps on ESWiki and BWT, 21 bps (3.5 times more)
on Indochina, and 7 bps on INV. The same differences can be observed between
WTHNP.RRR or WMH.RRR and WTH.RRR . We return later to the fact that WMH.RRR
takes more space than WTHNP.RRR on Indo and INV.

Finally, how WTNP.RRR/WM.RRR and WTHNP.RRR/WMH.RRR compare to
WTHNP.CM/WM.CM depends strongly on the type of sequence. In general, RRR
compression achieves the zero-order entropy as an upper bound, but it can reach
much less when the sequence has local regularities. On the other hand, RRR
representation poses an additive overhead of 27% of lg σ, which corresponds to the
o(n lg σ) overhead in this implementation [CN08]. When combining Huffman and
bitmap compression, this 27% overhead acts over H0 and not over lg σ, which brings
it down, but on the other hand we must add the overhead of storing the Huffman
model. On ESWiki, which has no special properties, the 27% overhead is around 5.7
bps, showing that RRR compression reaches around 8.3 bps, well below H0. When
combining with Huffman compression, this overhead becomes 14%, that is, nearly 3
bps. Added to the 8.3 bps and to the 1 bps of the Huffman model overhead, we still
get slightly more space than plain Huffman compression, which is the best choice
and reaches only 10% overhead over the zero-order entropy.

The picture changes when we consider BWT. The Burrows-Wheeler transform of
ESWiki boosts its higher-order compressibility [Man01], which is captured by RRR
compression [MN07a], making RRR compression reach the same space of Huffman
compression, despite its 27% space overhead. When combining both compressions,
the result breaks the zero-order entropy barrier by more than 10% and becomes the
best choice in terms of space.

RRR gives another surprising result on Indochina and INV, where bitmap
compression alone is more space-effective than in combination with Huffman

4.3. Experimental Results 75

compression, and breaks the zero-order entropy by a large margin. This cannot
be explained by high-order compressibility, as in this case the combination with
Huffman would not harm. This behavior corresponds to the special nature of these
sequences: the adjacency lists of the graph and the inverted lists are sorted in
increasing order. Long increasing sequences induce long runs of 0s and 1s in the
bitmaps of the wavelet trees and matrices. Those are retained in deeper levels when
our partitioning by the most significant bit is used.7 The Huffman algorithm, instead,
combines the nodes in unpredictable ways and destroys those long runs. Still, our
Huffman algorithm maintains the order between those symbols whose codewords
have the same length, and thus the impact of this reordering is not as high as it
could be. Instead, the Huffman wavelet matrix completely reshuffles the symbols.
As a result, for example, the space of WMH.RRR exceeds that of WTHNP.RRR by around
5 bps on Indo and 6–7 bps on INV.

4.3.3.2 Time

The time results are rather consistent across collections. Let us first consider
operation access. If we start considering the variants that do not use Huffman
compression, we have that WT.RRR is about 10%–25% slower than WT.CM , which
is explained by a more complex implementation [CN08]. Instead, the pointerless
variant, WTNP.CM , is 20%–25% slower (recall that, in their extended variant, these
require twice the number of rank operations, but locality of reference makes them
faster than twice the cost of one rank operation). However, WTNP.RRR is about 40%
slower than WT.RRR as the rank operation is slower and its higher number impacts
more on the total time (but still locality of reference makes the percentage much
less than 100%). The wavelet matrix, instead, carries out the same number of rank
operations than the pointer-based wavelet tree, so this time penalty disappears.
Actually, WM.CM is 8%–14% faster than WT.CM , and WM.RRR is up to 4% faster
than WT.RRR This may be due to less memory usage, which increases locality of
reference. Finally, the use of Huffman compression improves times by about H0/ lg σ,
as expected: times are reduced to about 50%–60% on ESWiki and BWT, to about
65%–85% on Indochina, and there is almost no reduction on INV.

The situation is basically the same for operation rank, as expected from the
algorithms. The times are usually slightly lower because it is not necessary to access
the bitmaps as we descend. The use of the wavelet matrix still gives essentially the
same time (and even slightly faster) than a pointer-based wavelet tree, and the use
of Huffman-shaped trees reduces the times by the same factors as for access, as
expected.

The times of operation select show less difference between the standard and
the pointerless variants, because performing one extra rank operation is less relevant
compared to the original (slower) select operation on the bitmaps. One can see

7This is another advantage over using the least significant bit, which would break the runs
faster.

76 Chapter 4. The Compressed Wavelet Matrix

that WTNP.CM is 30%–40% slower than WT.CM and that WTNP.RRR is 35%–50% slower
than WT.RRR The difference between plain and compressed bitmaps does not vary
much, on the other hand: WT.RRR is 25%–30% slower than WT.CM What is more
surprising is that the wavelet matrix is clearly slower than the pointer-based wavelet
trees: WM.CM is 10%–15% slower than WT.CM and WM.RRR is 20%–30% slower than
WT.RRR The reason is that the implementations of select [GGMN05, CN08] proceed
by binary search on the sampled values, thus their cost has in practice a component
that is logarithmic on the bitmap length. The bitmaps on the wavelet tree nodes
are shorter than n, whereas in the wavelet matrix (and the pointerless wavelet tree)
they are always of length n. Indeed, the wavelet matrix is faster than the pointerless
wavelet tree: WM.CM is 20%–25% faster than WTNP.CM and WM.RRR is 12%–15% faster
than WTNP.RRR Once again, the use of Huffman reduces all the times by about the
same space fraction obtained by zero-order compression.

4.3.3.3 Bottom Line

On ESWiki, where zero-order compression is the dominant space factor, our Huffman-
shaped wavelet matrix, WMH.CM , obtains the best space (only 10% off the zero-order
entropy) and the best time, by a good margin.

On BWT, where higher-order compression is exploited by RRR, the space-time
tradeoff map is dominated by the combination of WMH.RRR (minimum space) and
WMH.CM (minimum time), the two variants of our Huffman-shaped wavelet matrix.
The former breaks the zero-order entropy barrier by about 10%.

On Indochina and INV, where RRR achieves space gains that are only degraded
by Huffman compression, the dominant techniques are variants of the wavelet matrix:
WM.RRR (least space) and WMH.CM (least time). The former takes about 75% of the
zero-order entropy.

Summarizing, the wavelet matrix variants obtain the same space of the pointerless
wavelet trees, but they operate in about 65% of their time, reaching basically the
same performance of the pointer-based variants but much less space. As a result,
they are always the dominant technique. Which variant is the best, WMH.CM , WMH.RRR
or WM.RRR , depends on the nature of the collection.

The comparison with AP is interesting. In collections similar to ESWiki, Barbay
et al. [BCG+14] show that AP generally achieves the best space and time among the
alternatives WTNP.RRR , WTNP.CM , WT.CM , and WT.RRR , thus becoming an excellent
choice in that group. The pointerless Huffman-shaped alternatives, however, clearly
outperform AP in space: pointerless Huffman compression, and in particular Huffman
wavelet matrices, improve upon the old wavelet tree alternatives in both space and
time, using much less space than AP. Still, AP is a faster representation, only slightly
faster in operations access and rank, and definitely faster in operation select.
The other collections also demonstrate that wavelet trees and matrices can exploit
other compressibility features of the sequences apart from H0, whereas AP is blind

4.4. Discussion 77

to those (this is also apparent in their experiments [BCG+14], even using the basic
wavelet tree variants).

Note that, for simplicty and uniformity, we have built our prototypes and
experiments on the implementations of Libcds. Other ones could be tried.
For example, there exists an alternative RRR implementation briefly described in
Section 2.6 [NP12] that, at the price of some (further) increase in time, reduces the
27% space overhead to 10% on a 64-bit architecture. This would multiply the space
of all the RRR alternatives by up to 0.86, making them even more space-attractive
(and making WMH.RRR the most space-efficient choice on ESWiki). On the other
collections, our conclusions above would not change. Moreover, on those collections
the space fraction is likely to be higher than 0.86, as these benefit from locality in
compression. The alternative implementation [NP12] captures zero-order entropy of
63-bit chunks, and thus it is less local than the implementation we used, which takes
15-bit chunks. As another example, one could add more efficient implementations of
bitwise select [OS07, Vig08, NP12], which would make the impact of the better
wavelet matrix organization more clear.

4.4 Discussion
The pointerless wavelet tree [MN06, MN07b], designed to avoid the O(σ lgn) space
overhead of standard wavelet trees [GGV03], was unnecessarily slow in practice. We
have redesigned this data structure so that its time overhead over standard wavelet
trees is significantly lower. The result, dubbed wavelet matrix, enjoys all the good
properties of pointerless wavelet trees but performs significantly faster in practice.
It requires n lg σ + o(n lg σ) bits of space, and can be built in O(n lg σ) time and
almost in-place. We have also adapted pointerless Huffman-shaped wavelet trees to
become Huffman-shaped wavelet matrices. This required a nontrivial redesign of the
variable-length code assignment mechanism. Our experimental results show that
the compressed wavelet matrix dominates the space/time tradeoff map for all the
real-life sequences we considered, also outperforming in most cases other structures
designed for large alphabets [BCG+14].

Dynamic wavelet trees [MN08, HM10, NS14] can immediately be translated into
wavelet matrices. It would be interesting to consider newer, theoretically more
efficient dynamic versions [NN14], and obtain practically efficient implementations
over wavelet matrices.

78 Chapter 4. The Compressed Wavelet Matrix

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 8 10 12 14 16 18 20 22 24 26 28

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

BWT

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 14 16 18 20 22 24 26 28 30

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

INV

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 12 14 16 18 20 22 24 26 28

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

ESWiki

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 15 20 25 30 35 40

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

Indochina

WMH.RRR
WMH.CM
WTH.RRR
WTH.CM

WT.RRR
WT.CM

WTNP.RRR
WTNP.CM

WM.RRR
WM.CM

WTNPH.RRR
WTNPH.CM

AP

Figure 4.6: Running time per access query over the four datasets.

4.4. Discussion 79

 1

 2

 3

 4

 5

 6

 7

 8

 9

 8 10 12 14 16 18 20 22 24 26 28

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

BWT

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 14 16 18 20 22 24 26 28 30

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

INV

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 12 14 16 18 20 22 24 26 28

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

ESWiki

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 15 20 25 30 35 40

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

Indochina

WMH.RRR
WMH.CM
WTH.RRR
WTH.CM

WT.RRR
WT.CM

WTNP.RRR
WTNP.CM

WM.RRR
WM.CM

WTNPH.RRR
WTNPH.CM

AP

Figure 4.7: Running time per rank query over the four datasets.

80 Chapter 4. The Compressed Wavelet Matrix

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 8 10 12 14 16 18 20 22 24 26 28

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

BWT

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 14 16 18 20 22 24 26 28 30

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

INV

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 12 14 16 18 20 22 24 26 28

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

ESWiki

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30 35 40

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

/q
u
e
ry

bps

Indochina

WMH.RRR
WMH.CM
WTH.RRR
WTH.CM

WT.RRR
WT.CM

WTNP.RRR
WTNP.CM

WM.RRR
WM.CM

WTNPH.RRR
WTNPH.CM

AP

Figure 4.8: Running time per select query over the four datasets.

Part II

Repetition-based Data
Structures

81

Chapter 5

Previous Concepts on
Repetitive Scenarios

5.1 Why Repetition-based Data Structures?
Given a sequence S[1, n], we define the concept of repetition as a segment S[i, j] that
appears more than once in S. Although the empirical entropy models are adequate
for a wide number of applications, as shown in the first part of this thesis, it has
proven to be ineffective in highly repetitive scenarios, that is, when dealing with
sequences with many repetitions. This is because if one concatenates a sequence S
with itself, resulting in SS, the statistical properties of SS do not vary with regard
to that of S. In particular, H0(S) = H0(SS) since the probability of occurrence of
each symbol are exactly the same. In case of high order entropy Hk (k = o(logσ n)),
the situation does not improve significantly since, in most cases, repetitions are
much father apart thank k = o(logσ n).

Repetitive sequences arise in many fields, from software or document repositories,
to DNA datasets. For instance, DNA analysis is a trend nowadays, and being able
to space-efficiently represent these kind of sequences at the same time of carrying
out complex queries on them is fundamental. However, most DNA collections have
empirical entropy close to 2 bps, as they typically have only for bases (A, G, C,
T), which make them practically non-statistically compressible1. Fortunately, DNA
collections are formed by the sequenced genomes of many individuals of the same
species, which make these sequences highly repetitive since it is known that for two
human genomes share 99.5% to 99.9% of their sequences [JW04, TK04].2 Statistical
compression does not take proper advantage of repetitiveness [KN13], but other

1See, for example, http://pizzachili.dcc.uchile.cl/texts.html.
2This number may be even higher on individuals of the same geographic area, for example.

There is always controversy about this number and on how it is measured, however.

83

84 Chapter 5. Previous Concepts on Repetitive Scenarios

techniques like grammar or Lempel-Ziv compression do [Nav12].
This part of the thesis presents several data structures that are able to exploit this

new kind of repetitiveness, while solving the same operations than their statistical or
compact counterparts but being orders of magnitude more space-efficiently. Lower
bounds, however, show that they are also bound to be slower than the representations
based on statistical compression.

5.2 Kolmogorov Complexity

Suppose we are given a random variable X with mass probability function P{X =
x} = p(x). Then, and according to Shannon (see Section 2.2), we need dlg 1

p(x)e bits
to describe the event X = x. This can also be seen as the descriptive complexity of
X according to Shannon or as a statistical description of X.

An alternative way of describing an object X (or a random variable X) was
proposed by the Russian mathematician Kolmogorov [Kol65, Kol68]. He went further
by defining the algorithmic descriptive complexity of an object X (also known as
Kolmogorov complexity K(X)) as the length of the smallest computer program that
generates X. This definition is computer independent, which means that no matter
which language we use to create that description, by assuming an additive penalty,
we can rewrite the program with a different language. The main drawback of this
definition of complexity is that it is not computable!

Trying to find effectively computable descriptions that go beyond Shannon’s
definition and get close to that of Kolmogorov, several techniques were proposed.
Typical examples are all kinds of LZ -parsings and grammar-compression techniques,
which are explained next.

5.3 Lempel-Ziv Parsings

Lempel-Ziv parsings, LZ -parsings, or LZ -factorizations are different names for the
same concept. An LZ -parsings is a dictionary-based technique in which an input
sequence or string is parsed into a sequence of phrases, each of them belonging to a
dictionary. Depending on how the parsing is carried out, different variations arise,
although all of them rely on the same principle: Find a previous occurrence of an
string in the sequence (called the source) and replace the new copy of the source by
a backpointer to it.

An important property of any LZ parsing is the transitive depth, which is a
measure of the nesting in the parsing. Concretely, the transitive depth is an upper
bound on how many times we have to follow backpointers in the dictionary to obtain
a symbol.

5.3. Lempel-Ziv Parsings 85

a l a b a r _ a _ l a _ a l a b a r d a $

a l a b a r _ a _ l a _ a l a b a r d a $

a l a b a r _ a _ l a _ a l a b a r d a $

LZ77:

LZ78:

LZ-End:

Figure 5.1: Example of an LZ77, LZ78, and LZ-End parsing for an input
sequence T=alabar_a_la_alabarda$.

Among all possible variants, LZ77 [ZL77], LZ78 3[ZL78], and LZ-End [KN13]
are probably the most interesting.

5.3.1 LZ77
The LZ77 [ZL77] parsing of a sequence S[1, n] over Σ = [1, σ] is a sequence of
phrases Z[1, z] such that S = Z[1]Z[2] . . . Z[z]. The parsing is defined by induction
as follows. Let Z[1] = S[1]. Suppose we have already processed S[1, i− 1] obtaining
Z[1, p− 1]. Then, we have to find the longest prefix S[i, i′ − 1] of S[i, n] that occurs
in S[1, i− 1]. We then set Z[p] = T [i, i′], p = p+ 1, and i = i′ + 1. Figure 5.1 shows
an example of an LZ77 parsing.

For each phrase in the dictionary we need to store a backpointer to its source,
which requires lgn bits, plus the trailing symbol of the current phrase, which needs
lg σ. Thus, the size of the representation of an LZ77 dictionary is |LZ77(S)| =
z(lgn+ lg σ) bits. This solution obtains the best space performance on repetitive
collections, and at the same time it is very efficient at decompression. However, it is
slow for supporting more complex operations. For instance, extract(S, i, j) takes
O((j − i+ 1)h) time, being h the transitive depth of the parsing. No solutions for
rank and select are known on top of an LZ77-compressed sequence.

5.3.2 LZ78
The LZ78 [ZL78] parsing of a sequence S[1, n] is a sequence of phrases Z[1, z] such
that S = Z[1]Z[2] . . . Z[z]. The parsing is defined by induction as follows. Let
Z[1] = S[1]. Suppose we have already processed S[1, i − 1] obtaining Z[1, p − 1].
Then, we have to find the longest prefix S[i, i′ − 1] of S[i, n] that is a phrase Z[q],

3Although LZ78 belongs to the Lempel-Ziv family, it is also considered a grammar compression
technique.

86 Chapter 5. Previous Concepts on Repetitive Scenarios

q < p. We then set Z[p] = T [i, i′], p = p + 1, and i = i′ + 1. Figure 5.1 shows an
example of an LZ78 parsing.

This kind of parsing introduces a serious restriction with regard to LZ77: It can
only add new phrases to the dictionary if the phrase already exists in the dictionary.
This implies we cannot point back to any position in the input sequence but to just
to a restricted set of them. Therefore, the number of phrases of an zLZ78 ≥ zLZ77,
an typically zLZ78 >> zLZ77. We can store pointers back with just O(z lg z) bits,
becoming the total space of an LZ78 parsing O(z(lg z + lg σ)) bits.

5.3.3 LZ-End
The LZ-End [KN13] parsing of a sequence S[1, n] is a sequence of phrases Z[1, z]
such that S = Z[1]Z[2] . . . Z[z]. The parsing is defined by induction as follows. Let
Z[1] = S[1]. Suppose we have already processed S[1, i − 1] obtaining Z[1, p − 1].
Then, we have to find the longest prefix S[i, i′ − 1] of S[i, n] that is also a suffix of
Z[1] . . . Z[q], for some q < p. We then set Z[p] = T [i, i′], p = p+ 1, and i = i′ + 1.
Figure 5.1 shows an example of an LZ-End parsing.

The difference between LZ77 and LZ-End is that the second forces the sources to
end where a previous source does. This is again a restriction that makes zLZ-End ≥
zLZ77, but faster in practice for extract(S, i, j). The space to store an LZ-End
dictionary is z(lg z + lg σ), although the authors proposed a more sophisticated
representation that takes z(lg σ + lgn) + o(n) bits [KN13], and supports more
efficient extraction. Concretely, extract(S, i, j) is carried out in optimal O(j− i+ 1)
time if j matches a source ending, and O((j − i + 1) + h) otherwise, being h the
transitive depth of the parsing. Again, no solution is known that supports rank and
select on top of an LZ-End-compressed sequence.

5.4 Grammar Compression
Grammar-compressing a sequence S means to find a context-free grammar that
generates S and only S. Finding the smallest grammar G(S)∗ that generates a given
sequence S is an NP-complete problem [CLL+05]. Even if it were easy to obtain,
the smallest grammar G(S)∗ is never smaller than an LZ77 factorization of the same
input [Ryt03]. This is because, in an LZ77 parsing, any substring preceding the
current position may act as a source. However, in grammar compression, we can
only create new rules with rules that already belong to the grammar (as in an LZ78).
This is a limitation with regard to LZ77 that results in worse space performance.

Even though grammar compression techniques are inferior to LZ77 encodings,
they are preferable in many scenarios since they are more tractable and permit to
solve more complex operations than LZ77 encodings. There exist in the literature
many algorithms to convert an LZ77 factorization of a sequence into a context-
free grammar. As an example, Rytter [Ryt03] proposed an algorithm to obtain a

5.5. Rank, Select, and Access on Repetitive Scenarios 87

grammar G(S) whose space is an O(lgn)-approximation of an LZ77 parsing of the
same sequence, that is, |G(S)| = O(|LZ77(S)| lgn).

Beyond LZ77-reductions, there exist also several proper grammar compression
algorithms like LZ78 [ZL78], Sequitur [NMWM94], or RePair [LM00] which, despite
of obtaining grammars larger than G∗, they perform very well in practice. In
particular, RePair [LM00] is able to compute a context-free grammar for a sequence
S[1, n] in O(n) time, obtaining competitive space performance both in classical and
repetitive scenarios.

Basically, given a sequence S[1, n] over Σ = [1, σ], RePair [LM00] finds the
most frequent pair of symbols ab in S, adds a rule X → ab to a dictionary R, and
replaces each occurrence of ab in S by X (X is known as a nonterminal symbol of
the grammar). This process is repeated (X can be involved in future pairs) until
the most frequent pair appears only once. The result is a tuple (R,C), where the
dictionary R contains r = |R| rules and C, of length c = |C|, is the final reduction
of S after all the replacements are carried out. Figure 5.2 shows an example of
applying RePair on a binary input S. Note that C is drawn from an alphabet of size
σ + r (σ terminal plus r nonterminal symbols), not only σ. Thus, the total output
size of (R,C) is (2r + c) lg(r + σ) bits.

Given a grammar (R,C) and a rule X → Y Z with X ∈ R and Y,Z ∈ Σ ∪ R,
the expansion tree of X, T (x), is an ordinal tree with root at X and two children:
T (Y) and T (Z). If X is a terminal symbol, then T (X) is defined as a single node
containing the terminal X. Figure 5.3 shows an example of an expansion tree of
a grammar rule. The grammar tree of a grammar (R,C) is an ordinal tree with a
virtual node and |C| children, each containing the expansion tree of C[i], i ∈ [1, |C|].
A previous work of Sakamoto [Sak05] gave efficient algorithms to generate balanced
grammars, that is, whose grammar tree is of height O(lgn) .

A RePair implementation that typically gives good practical performance can be
found at http://www.dcc.uchile.cl/ gnavarro/software/re pair.tgz. It also
includes a variant that in most cases generates a balanced grammar.

5.5 Rank, Select, and Access on Repetitive Sce-
narios

Although there exist plenty of data structures to solve rsa queries while obtaining
zero-order compression, the number of solutions to solve these kind of queries on
highly repetitive scenarios is much more limited. In fact, only Bille et al. [BLR+11]
showed how to represent S using O(g lgn) bits so that access is solved in O(lgn)
time (g is the size of the grammar). This time is essentially optimal [VY13]: any
structure using gO(1) lgn bits requires Ω(lg1−ε n/ lg g) time for access, for any ε > 0.
If S is not very compressible and g = Ω(nα) for some constant α, then the time is
Ω(lgn/ lg lgn) for any structure using O(n polylogn) bits.

88 Chapter 5. Previous Concepts on Repetitive Scenarios

R0 0
R1 1
R2 R1R0

R3 R1R2

R4 R2R0

R5 R3R4

R6 R5R0

R7 R5R5

(R= C = R3 R1 R5 R4 R3 R7 R5 R6 R5 R2 R3 R6 R6) ,

1101 1 10100 100 110 110100110100 110100 1101000 110100 10 110 1101000 1101000

R3 R1 R5 R4 R3 R7 R5 R6 R5 R2 R3 R6 R6C =

S =

S = 110111010010011011010011010011010011010001101001011011010001101000

Figure 5.2: The data structures (R,C) are the result of executing the
RePair algorithm on the input sequence S and σ = 2.

Although this solves the problem for access, we are not aware of any solution
that solves rsa queries beyond that of Navarro et al. [NPV14], which uses O(gσ lgn)
bits and solves queries in O(lg σ lgn) time. This solution is of practical nature and
is basically the state of the art of practical grammar compression techniques for rsa
queries. The authors showed [NPV14] how to support rsa queries on bitmaps, and
then how to combine this solution with others already known to support rsa queries
on larger alphabets. How it works is explained next.

5.5.1 Rank, Select, and Access on Repetitive Bitmaps
Given a repetitive binary sequence B[1, n], Navarro et al. [NPV14] RePair-compress
B with a balanced grammar and enhance the output (R,C) with extra information
to solve rsa queries. For each rule X ∈ R, let exp(X) be the string of terminals X
expands to. Then, they store two numbers per nonterminal X:

• `(X) = |exp(X)|.

• z(X) = rank0(exp(X), `(X)) (the number of 0s in exp(X)).

Note that these values can be recursively computed as `(X) = `(Y) + `(Z), with
`(0) = `(1) = 1; z(X) = z(Y) + z(Z), with z(0) = 1, z(1) = 0; and exp(X) =
exp(Y)exp(Z).

To save space, they store `(·) and z(·) only for a subset of nonterminals, and
compute the others recursively by partially expanding the nonterminal. Given a
parameter δ, they guarantee that, to compute any `(X) or z(X), we have to expand
at most 2δ rules. The sampled rules are marked in a bitmap Bd[1, r] and the sampled
values are stored in two vectors, S` and Sz, of length rank1(Bd, r). To obtain `(X)
we check whether Bd[X] = 1. If so, then `(X) = S`[rank1(Bd, X)]. Otherwise `(X)
is obtained recursively as `(Y) + `(Z). The process for z(X) is analogous.

5.5. Rank, Select, and Access on Repetitive Scenarios 89

R7

R5

R3 R4

R1 R2 R2 R0

R1 R0 R1 R0

1 000 11

R5

R3 R4

R1 R2 R2 R0

R1 R0 R1 R0

1 000 11

Figure 5.3: Expansion tree of the grammar rule R7 of Figure 5.2.

Finally, every sth position of B is sampled, for a parameter s. An array Sn[0, n/s]
stores a tuple (p, o, rnk) at Sn[i], where the expansion of C[p] contains B[i · s], that
is, p = max{j, L(j) ≤ i · s}, where L(j) = 1 +

∑j−1
k=1 `(C[k]); o = i · s− L(p) is the

offset within that symbol; and rnk = rank0(B,L(p)− 1).
Let S[0] = (0, 0, 0). To solve rank0(B, i), let Sn[bi/sc] = (p, o, rnk) and set

l = s · bi/sc − o. Then we move forward from C[p], updating l = l + `(C[p]),
rnk = rnk+z(C[p]), and p = p+1, as long as l+`(C[p]) ≤ i. When l ≤ i < l+`(C[p]),
we have reached the rule C[p] = X → Y Z whose expansion contains B[i]. Then, we
recursively traverse X as follows. If l+`(Y) > i, we recursively traverse Y . Otherwise
we update l = l + `(Y) and rnk = rnk + z(Y), and recursively traverse Z. This is
repeated until l = i and we reach a terminal symbol in the grammar. Finally, we
return rnk. Obviously, we can also compute rank1(B, i) = i− rank0(B, i). Solving
access(B, i) is completely equivalent, but instead of returning rnk we return the
terminal symbol we reach when l = i.

To solve select0(B, j), we binary search Sn to find Sn[i] = (p, o, rnk) and
Sn[i+ 1] = (p′, o′, rnk′) such that rnk < j ≤ rnk′. Then we proceed as for rank0,
but iterating as long as z + z(C[p]) ≤ j, and then traversing by going left (to Y)
when z + z(Y) > j, and going right (to Z) otherwise. The process for select1(B, j)
is analogous (note X contains `(X)− z(X) 1s).

90 Chapter 5. Previous Concepts on Repetitive Scenarios

On a balanced grammar, a rule is traversed in O(lgn) time. The time to iterate
over C between samples is O(s). Therefore, the total time for rsa is O(s+ lgn) and
the total space is O(r lgn+ (n/s) lgn) + c lg(σ + r) bits. The time is multiplied by
δ if we use sampling to avoid storing all the information for all the rules.

The authors name this solution RPB, from RePair compressed Bitmaps.

5.5.2 Rank, Select, and Access on Repetitive Sequences
The structure WTRP [NPV14] (Wavelet Tree with bitmaps compressed with RePair)
is the only existing solution to support rsa on grammar-compressed sequences. The
structure is a pointerless wavelet tree (recall Section 4.1.1) where each bitmap Bl is
compressed with RPB (Section 5.5.1). The rationale is that the repetitiveness of S is
reflected in the bitmaps of the WT.

However, since the wavelet tree WT (Section 2.7.1) construction splits the alphabet
at each level, those repetitions are cut into shorter ones at each new level, and
become blurred after some depth. Therefore, the bitmaps of the first few WT levels are
likely to be compressible with RePair, while the remaining ones are not. The authors
[NPV14] use at each level l the technique to represent Bl that yields the least space,
RPB (see Section 5.5.1), RRR, or CM (see Section 2.6). In case of a highly compressible
sequence, the space can be drastically reduced, but the search performance degrades
by one or more orders of magnitude compared to using CM or RRR: If all the levels
use RPB, the rsa time becomes O(lg σ lgn).

On the other hand, as repetitiveness is destroyed at deeper levels, the total space
is far from that of a plain RePair compression of S. A worst-case analysis, albeit
pessimistic, can be made as follows: Each node stores a subsequence of S, whose
alphabet is mapped onto a binary one (or of size r in an r-ary wavelet tree). We
could then take the same grammar that compresses S for each node, remove all the
terminal symbols not represented in that node, and map the others onto {0, 1} or
[1, r]. This is not the best grammar for that node, but it is correct and at most of the
same size g of the original one. Therefore, each node can be grammar-compressed
to at most O(g lgn) bits, and summed over all the wavelet tree nodes, this yields
O(gσ lgn). Therefore, the size grows at most linearly with σ.

5.6 Repetitive Datasets
In this section we describe several repetitive datasets commonly used in the
experiments of this part of the thesis. Table 5.1 shows statistics of interest about
them and their compressibility: length (n), alphabet size (σ), zero-order entropy
(H0) (see Section 2.3), bits per symbol (bps) obtained by RePair (RP, assuming
(2r+c)dlg(σ+r)e bits) (see Section 5.4), bps obtained by p7zip (LZ, www.7-zip.org),
a Lempel-Ziv compressor (see Section 5.3.1), and r/n is the number of runs of the
Burrows-Wheeler Transform [BW94] of the sequence divided by its length.

5.6. Repetitive Datasets 91

We use various DNA collections from the Repetitive Corpus of Pizza&Chili4.
On one hand, to study precisely the effect of repetitiveness in the performance
of our proposals, we generate four synthetic collections of about 100MB: DNA 1%,
DNA 0.1%, DNA 0.01%, and DNA 0.001%. Each DNA p% text is generated starting
from 1MB of real DNA text, which is copied 100 times, and each copied base is
changed to some other value with probability p/100. This simulates a genome
database with different variability between the genomes. As real genomes, we used
collections para, influenza, and escherichia, also obtained from Pizza&Chili.
From the statistics of Table 5.1, we see that para and influenza are actually very
repetitive, while escherichia is not that much. Collection einstein corresponds
to Wikipedia versions of articles about Albert Einstein in German (also available
at Pizza&Chili) and is the most repetitive dataset we have. Text einstein.words
is the same collection but regarded as a sequence of words, instead of characters.
Sequence fiwiki is a prefix of a Wikipedia repository in Finnish5 tokenized as a
sequence of words instead of characters. Sequence fiwikitags corresponds to the
XML tags extracted from a prefix from the same Finnish Wikipedia repository.
Finally, indochina is a subgraph of the Web graph Indochina2004 available at
the WebGraph project6 containing 2,531,039 nodes and 97,468,933 edges. Each
node has an adjacency list of nodes, which is stored as a sequence of integers.
Each list is separated from the next with a special separator symbol. Finally,
we use several bitmaps (those collections with suffix .st) which correspond to the
Balanced Parentheses representation (see Section 2.9) of the suffix tree topology
(see Chapter 13) of the referred collection.

4http://pizzachili.dcc.uchile.cl/repcorpus
5http://www.cs.helsinki.fi/group/suds/rlcsa
6http://law.dsi.unimi.it

92 Chapter 5. Previous Concepts on Repetitive Scenarios

dataset n σ H0 RP LZ r/n

influenza.st 603 2 1.00 0.226 0.379 0.031
escherichia.st 434 2 1.00 0.711 0.595 0.188
para.st 1,692 2 1.00 0.372 0.400 0.0965
einstein.st 367 2 1.00 0.014 0.031 0.001
DNA.1.st 364 2 1.00 0.660 0.607 0.101
DNA.01.st 390 2 1.00 0.200 0.236 0.030
DNA.001.st 394 2 1.00 0.082 0.090 0.016
DNA.0001.st 395 2 1.00 0.046 0.062 0.012
DNA.1 99 5 2.00 0.819 0.172 0.094
DNA.01 99 5 2.00 0.178 0.042 0.016
DNA.001 99 5 2.00 0.075 0.024 0.007
DNA.0001 99 5 2.00 0.063 0.021 0.006
para 429 5 2.12 0.376 0.191 0.036
influenza 154 15 1.97 0.280 0.132 0.019
escherichia 112 15 2.00 1.048 0.524 0.133
fiwikitags 48 24 3.37 0.110 0.219 0.031
einstein 92 117 5.04 0.019 0.009 0.001
software 210 134 4.69 0.139 0.214 0.009
einstein.words 17 8,046 9.92 0.076 0.003 0.001
fiwiki 86 102,423 11.06 0.235 0.034 0.008
indochina 100 2,576,118 15.39 1.906 0.159 0.076

Table 5.1: Statistics of the repetitive datasets. Length n is measured in
millions (and rounded).

Chapter 6

Grammar Compressed
Sequences

In this chapter we propose two new solutions for rsa queries over grammar
compressed sequences, and compare them with various alternatives on a number of
real-life repetitive sequences. Our contributions are as follows:

1. Our first structure, tailored to sequences over small alphabets, extends and
improves the current representation of bitmaps [NPV14]. On a balanced
grammar of size g, it obtains O(lgn) time for all the rsa operations with
O(gσ lgn) bits of space, using in practice similar space while being much
faster than previous work [NPV14]. We dub this solution GCC (Grammar
Compression with Counters). It can be used, for example, on sequences of
XML tags or DNA.

2. Our second structure combines GCC with alphabet partitioning (see Sec-
tion 2.7.4) and is aimed at sequences with larger alphabets. Alphabet
partitioning splits the sequence S into subsequences over smaller alphabets. If
these alphabets are small enough, we apply GCC on them. On the subsequences
with larger alphabets, we use representations similar to previous work [NPV14].
The resulting time/space guarantees are as in previous work [NPV14], but the
scheme is much faster in practice while using about the same space.

While up to an order of magnitude faster than the alternative grammar-
compressed representation, our solutions are still an order of magnitude slower than
statistically compressed representations, but they are also an order of magnitude
smaller on repetitive sequences.

This chapter is organized as follows: Section 6.1 explains our rsa data structures
for small alphabets; Section 6.2 presents our solution for rsa on large alphabets;

93

94 Chapter 6. Grammar Compressed Sequences

Section 6.3 experimentally evaluates our proposals while Section 6.4 gives conclusions
and future research lines.

6.1 Efficient rsa for Sequences on Small Alphabets
Our first proposal, dubbed GCC (Grammar Compression with Counters) is aimed at
solving rsa queries on grammar-compressed sequences with small alphabets. We
first generalize the existing solution for bitmaps (RPB, Section 5.5.1), to sequences
with σ > 2. We also introduce several enhancements regarding how we store the
additional information to solve rsa queries. We also propose two different sampling
approaches that yield different space-time tradeoffs, both in theory and in practice.

Let (R,C) be the result of a balanced RePair grammar compression of S. We
store S`[X] = `(X) for each grammar rule X ∈ R. In addition, we store an array of
counters Sa[X] for each symbol a ∈ Σ: Sa[X] = ranka(exp(X), `(X)) is the number
of occurrences of a in exp(X).

The input sequence S is also sampled according to the new scenario: each
element (p, o, rnk) of Sn[1, n/s] is now replaced by (p, o, lrnk[1, σ]), where lrnk[a] =
ranka(S,L(p)− 1) for all a ∈ Σ, s being the sampling period.

The extra space incurred by σ can be reduced by using the same δ-sampling of
RPB, which increases the time by a factor δ. In this case we also use the bitmap
Bd[1, r] that marks which rules store counters. We further reduce the space by noting
that many rules are short, and therefore the values in S` and Sa are usually small.
We represent them using direct access codes (DACs, see Section 2.8), which store
variable-length numbers while retaining direct access to them. The o components of
Sn are also represented with DACs for the same reason.

On the other hand, the p and lrnk[1, σ] values are not small but are increasing.
We reduce their space using a two-layer strategy: we sample Sn at regular intervals
of length ss. We store SSn[j] = Sn[j · ss], and then represent the values of
Sn[i] = (p, o, lrnk[1, σ]) in differential form, in array S′n[i] = (p′, o, lrnk′[1, σ]), where
p′ = p−p∗ and lrnk′[a] = lrnk[a]− lrnk∗[a], with SSn[bi/ssc] = (p∗, o∗, lrnk∗[1, σ]).

The total space for the p and lrnk[1, σ] components is O(σ((n/s) lg(s · ss) +
(n/(s · ss)) lgn)) bits, whereas the o components use O((n/s) lgn) bits in the worst
case. For example, if we use ss = lgn and s = lgO(1) n (a larger value would imply
an excessively high query time), the space becomes O(rσ lgn + (n/s)(σ lg lgn +
lgn)) + c lg(σ + r) bits.

A further improvement is aimed to reduce the space on extremely repetitive
sequences. In this scenario, many elements of Sn may contain the same values: if a
rule covers a wide range of S, we store the same Sn values for many samples of S.
Thus, we sample the vector C instead of sampling the whole sequence S. Instead
of (p, o, lrnk[1, σ]) we store a tuple (i, lrnk[1, σ]), where i is the position where the
sampled cell of C starts in S, and lrnk is computed up to i − 1. On the other

6.2. Efficient rsa for Sequences on Large Alphabets 95

hand, the two-layer scheme cannot be applied, because now the samples may cover
arbitrarily long ranges of S.

The total space with this sampling then becomes O(rσ lgn+σ(c/s) lgn)+c lg(σ+
r) = O((r + c)σ lgn) bits. This removes any linear dependency on n from the space
formula. The size of the RePair grammar is g = O(r + c), thus the space can be
written as O(gσ lgn) bits.

The rsa algorithms stay practically the same as for RPB; now we use the symbol
counter of a for ranka and selecta. The resulting data structure solves rsa in time
O(s+ lgn). In case C is sampled instead of S, there is an additional O(lg c) time
to binary search for the right sample. This is still within O(s+ lgn). If we choose
s = O(lgn), then the time is O(lgn). The space is still O(gσ lgn) if we sample C.

When σ is small and the sequence is repetitive, this data structure is very space-
and time-efficient. It outperforms WTRP [NPV14] (Section 5.5.2) in time: WTRP takes
O(lg σ lgn) time and our GCC uses O(lgn). In terms of space, both use O(gσ lgn)
bits and perform similarly in practice. In the next section we develop a variant for
large alphabets that, although cannot guarantee any better than O(gσ lgn) bits,
uses much less in practice.

6.2 Efficient rsa for Sequences on Large Alphabets
Our main idea for large alphabets is to use wavelet trees/matrices or alphabet
partitioning as a mechanism to cut Σ into smaller alphabets, which can then be
handled with GCC. This is in the same line of WTRP, but we find better solutions to
avoid the degradation of repetitiveness due to the partitioning.

The most immediate approach is to generalize WTRP to use a Multi-ary wavelet
tree MWT , since now we can use GCC on small alphabets [1, r] to represent the
sequences Sv stored at the internal nodes of the MWT. Compared to a binary wavelet
tree WT, a MWT takes more advantage of repetitiveness before splitting the alphabet,
and reduces the time complexity from O(lg σ lgn) to O(logr σ lgn). The worst-case
space is still O(gσ lgn) bits. The use of a WM requires only lgr σ grammars, one per
level, but still the guarantee on their total size is the same.

A less obvious way to use GCC is to combine it with Alphabet-Partitioning AP
(Section 2.7.4). Note that the string K is a projection of S, and therefore it retains
all its repetitiveness. Further, it contains a small alphabet, of size lg σ, and therefore
we can use GCC on it. The resulting representation takes at most O(g lg σ lgn) bits.

The other important sequences are the Sj , which have alphabets of size 2j−1.
For the smallest j, this is small enough to use GCC as well. For larger j, however, we
must resort to other representations, like WTRP, GMR, or WT/WM, depending on how
compressible they are.

An interesting fact of AP is that it groups symbols of approximately the same
frequency. The symbols participating in the most repetitive parts of S have a good
chance of having similar frequencies and thus of belonging to the same subalphabet

96 Chapter 6. Grammar Compressed Sequences

Sj , where their repetitiveness will be preserved. On the other hand, the larger
alphabets, where GCC cannot be applied, are likely to contain less frequent symbols,
whose representation using faster structures like GMR or WT/WM do not miss very
important opportunities to exploit repetitiveness.

Note that, if we do not use WTRP for the larger subalphabets, then the time
performance for rsa queries stays within O(lgn), independently of the alphabet size.
In exchange, we cannot bound the size of the representation in terms of the size of
the grammar that represents S. Instead, if we use WTRP, our worst-case guarantees
are the same as for WTRP itself, but in practice our structure will prove to be much
better, especially in time.

6.2.1 AP with GCC in Practice
We introduce two new parameters for the combination of AP and GCC. The first
parameter, cut, tells that the 2cut most frequent symbols will be directly represented
in K. This parameter must be set carefully to avoid increasing too much the alphabet
of K, since K is represented with GCC.

Our second parameter is cuto, which tells how many of the first Sj classes are to
be represented with GCC. For the remaining sequences Sj we consider two options:
(a) if Sj is not grammar-compressible, we use GMR [GMR06] (Section 2.7.3), which
does not compress but is very fast, or (b) if Sj is still grammar-compressible, we use
WTRP, which is the grammar-based variant that performed best.

6.3 Experimental Results

6.3.1 Setup and Datasets
We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM mem-
ory, running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64.
All our implementations use a single thread and are coded in C++. The
compiler is g++ version 4.7, with -O9 optimization. We implemented our
solutions inside Libcds [Cla] and use Navarro’s implementation of RePair
(www.dcc.uchile.cl/gnavarro/software/repair.tgz).

To experimentally evaluate our proposals, we use all synthetic and real datasets
described in Section 5.6.

6.3.2 Parameterizing the Data Structures
We compare our data structures with several others. The list of structures compared,
along with the parameters used, is listed next. These parameter ranges are chosen
because they have been proved adequate in previous work, or because we have
obtained the best space/time tradeoffs with them.

6.3. Experimental Results 97

• GCC.N is our structure for small alphabets where we sample S at regular
intervals. We set the sampling rate to s = {210, 211, 212, 213, 214}, the rule
sampling to δ = {0, 1, 2, 4}, and the superblock sampling to ss = {5, 8}.

• GCC.C is our structure for small alphabets where we sample C at regular
intervals. We set the sampling rate to s = {26, 27, 28, 29, 210} and the rule
sampling to δ = {0, 1, 2, 4}.

• {WT|WM|WTH|WMH}.{CM|RRR} is a Wavelet Tree (WT) (see Section 2.7.1), a Wavelet
Matrix (WM) (see Section 4.1.2), a Huffman-shaped wavelet tree (WTH) (see
Section 2.7.2), or a Huffman-shaped or Compressed Wavelet Matrix (WMH) (see
Section 4.2) with bitmaps represented either with CM or RRR (see Section 2.6).
For CM we use the implementation [GGMN05] with one level of counters over
the plain bitmap, while RRR corresponds to the implementation [CN08] of RRR.
In both cases, the sampling rate for the counters was set to {32, 64, 128}.

• {WT|WM|WTH|WMH}.RP are the WT, WM, WTH or WMH, with the bitmaps compressed
with RePair. Therefore, WM.RP is equivalent to WTRP (see Section 5.5.2), but
with our improved implementation using a wavelet matrix and GCC for the
bitmaps. As in WTRP, we use several bitmap representations depending on the
compressibility of the bitmap: GCC varying the parameters as described above,
RRR or CM with sampling set to 32. We choose the one using the least space
among these.

• AP is a plain alphabet partitioning technique described in Section 2.7.4. We
used parameter values cut = {23, 24, 25, 26} and cuto = {1, 3, 5}. The sequence
K is represented with WT.RRR with sampling set to 32. The sequences Sj are
represented with GMR using the default configuration provided in the libcds
tutorial1.

• APRep.{WMRP|GMR} is our AP-based variant for large alphabets. We use the same
values cut and cuto as for AP. The sequence K and the first cuto sequences
Sj are represented with GCC. The remaining sequences Sj are represented
either with WM.RP or with GMR (see Section2.7.3), using their already described
configurations.

• MWTH.RP is a Multi-ary Wavelet tree (MWTH) (see Section 2.7.1) using RePair-
compressed sequences in the nodes. As for APRep, we use two different
representations for the node sequences. The first cut = {2, 3, 4} levels are
represented with GCC, and the rest with a WT.RRR with fixed sampling 32. We
tested arities in {4, 8, 16}. We did not try combining with the WM because it
is slower (requires more operations) and the overhead of σ/r nodes is not as
large as for σ nodes of the binary case. Also, the Huffman-shaped variants are
shown to be always superior.

1https://github.com/fclaude/libcds/blob/master/tutorial/tutorial.pdf

98 Chapter 6. Grammar Compressed Sequences

Among all the data points resulting from the combination of all the parameters,
in the experiments we only show those points which are space/time dominant.

Regarding queries, those for access are positions at random in S[1, n]. For
rank, we used a random position p in S[1, n] and the symbol is S[p]. Finally, for
select, we took a random position p in S[1, n], using S[p] and a random rank in
[1, rankS[p](S, n)]. We generated 10, 000 queries of each type, reporting the average
time for each operation.

In Section 6.1 we proposed two sampling approaches for GCC: GCC.N is regular
in S and GCC.C is regular in C. We anticipated that GCC.C should use less space on
more repetitive sequences, but it could be slower. Now we compare both sampling
methods on the repetitive sequences with smaller alphabets described in Section 5.6.
Figure 6.1 shows the results for rank and select (access is equivalent to rank in
our algorithms).

While, as said, GCC.C might use less space than GCC.N when the sequence is
more repetitive, this occurs in practice only slightly on DNA0001, and spaces become
closer as repetitiveness decreases on synthetic datasets (DNA001 to DNA1). Still, the
differences are very slight, and instead GCC.N is much faster than GCC.C for the same
space usage. The same occurs in the real sequences. For the remaining experiments,
we will use only GCC.N.

6.3.3 Performance on Small Alphabets
We compare our GCC.N with WT.RP, WTH.RP, and WM.RP. We also include in the
comparison two statistically compressed representations that are the best for small
and moderate alphabets: WTH.CM and WTH.RRR.

Figure 6.2 shows the results for rank and select on the real collections that
have small and moderate alphabets (again, the results for access are very similar to
those for rank). It can be seen that WTH.RP generally performs better than WT.RP in
space and time, as expected. The variant WM.RP performs slightly better than WT.RP
in space, as it represents only one grammar per level and not per node (the difference
would be higher on larger alphabets). In exchange, WM.RP is slightly slower than WT.RP
because it performs more rank/select operations on the bitmaps represented with
GCC. Finally, WMH.RP uses less space than WM.RP only in some cases, but it generally
outperforms it for the same space. It performs particularly well on escherichia,
the least repetitive of the datasets.

Recall that WM.RP is our improved version of previous work, WTRP [NPV14], and
it is now superseded by GCC.N. The space of WM.RP is in most cases similar to that of
GCC.N, which means that WM.RP is actually close to the worst-case space estimation,
O(gσ lgn). In some cases, GCC is significantly smaller. More importantly, GCC.N is
2–15 times faster than WM.RP, and also 2–7 times faster than WTH.RP, the faster of
the competitors in this family, which also uses more space than GCC.N. GCC.N solves
queries in a few microseconds.

6.3. Experimental Results 99

 0.1

 1

 10

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA0001, rank and select

rank GCC-N
rank GCC-C
select GCC-N
select GCC-C

 0.1

 1

 10

 100

 0 0.05 0.1 0.15 0.2 0.25
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)
bps

DNA001, rank and select

 0.1

 1

 10

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA01, rank and select

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA1, rank and select

 0.1

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, rank and select

 0.1

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, rank and select

 0.1

 1

 10

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwikitags, rank and select

 0.1

 1

 10

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, rank and select

Figure 6.1: Comparison of rank and select performance of GCC.N and
GCC.C.

100 Chapter 6. Grammar Compressed Sequences

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, rank

GCC.N
WT.RP

WTH.RP
WM.RP

WMH.RP
WTH.RRR

WTH.CM

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwikitags, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwikitags, select

 0.1

 1

 10

 100

 0 1 2 3 4 5 6

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, rank

 0.1

 1

 10

 100

 0 1 2 3 4 5 6

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, select

Figure 6.2: Space-time tradeoffs for rank and select queries over small
alphabets (time in logscale).

6.3. Experimental Results 101

On the other hand, the representations that compress statistically, WTH.CM and
WTH.RRR, are about an order of magnitude faster than GCC.N, but also take 5–15
times more space (except on escherichia, which is not repetitive).

6.3.4 Performance on Large Alphabets

Now we use the collections einstein (again), software, einstein.words, fiwiki,
and indochina from Section 5.6, to compare the performance on moderate and
large alphabets. We compare the two versions of our APRep, our MWTH.RP, and all
the statistically compressed or compact schemes for large alphabets: WM/WMH with
CM/RRR and AP (we only exclude WM.CM, which always loses to others). In the first
two collections, whose alphabet size is moderate, we also include GCC.N, to allow
comparing its performance with our variants for large alphabets in these intermediate
cases.

Figure 6.3 shows the results for rank and select queries (once again, access is
omitted for being very similar to the results of rank).

Recall that WM.RP is our improvement over the previous work, WTRP [NPV14].
The Huffman-shaped variant, WMH.RP, outperforms it only slightly in time. Our
multi-ary version, MWTH.RP, is clearly faster, but not smaller as one could expect.
Indeed, it is larger when σ grows, probably due to the use of pointers. What is
most interesting, however, is that all those variants are clearly superseded by our
AP.RP.WMRP, which dominates them all in time (only reached by MWTH.RP while using
much more space) and in space (only reached by WM.RP while using much more time).
Compared with previous work [NPV14], AP.RP.WMRP is then 2–4 times faster than
WTRP, while using the same space or less. AP.RP.WMRP solves queries in a few tens of
microseconds.

Note the particularly bad performance of the Huffman-based versions on
indochina. This is because this collection contains inverted lists, which form
long increasing sequences that become runs in the wavelet tree; the Huffman
rearrangement breaks those runs.

Our second variant, AP.RP.GMR, is not so interesting for repetitive collections.
Although it is 2–5 times faster than AP.RP.WMRP, it uses much more space, not so far
from that used by statistical representations. Those are, as before, about an order
of magnitude faster than AP.RP.WMRP, but also use 3–5 times more space. Also, we
can see that GCC.N is competitive on einstein, which is very repetitive, but not so
much on software. Both of our new AP.RP versions designed for large alphabets
outperform it in space, while they are not slower in time (in some cases they are
even faster).

102 Chapter 6. Grammar Compressed Sequences

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, rank

GCC.N
AP.RP.GMR

AP.RP.WMRP
WM.RP

WMH.RP
MWTH.RP

AP
WM.RRR
WMH.CM

WMH.RRR

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, select

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

software, rank

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

software, select

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein.words, rank

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein.words, select

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwiki, rank

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwiki, select

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

indochina, rank

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

indochina, select

Figure 6.3: Space-time tradeoffs for rank and select queries over moderate
and large alphabets (time in logscale).

6.4. Discussion 103

6.4 Discussion
We have introduced new sequence representations that take advantage of the
repetitiveness of the sequence, by enhancing the output of a grammar compressor
with extra information to support efficient direct access, as well as rank and select
operation on the sequence. The only previous grammar-compressed representation
[NPV14] is 2–15 times slower and uses the same or more space than our new
representations. Our structures answer queries in a few tens of microseconds, which
is about an order of magnitude slower than the times of statistically compressed
representations. However, on repetitive collections, our structures use 2–15 times
less space.

After the publication [NO14b] of the results described in this chapter, Belazzougui
et al. [BPT15] gave more theoretical support to our results. They obtained our same
O(lgn) time for rsa operations with O(gσ lgn) bits on arbitrary grammars of size g
(not only balanced ones). They also show how to obtain O(lgn/ lg lgn) time using
O(gσ lg(n/g) lg1+ε n) bits, for any constant ε > 0. Most importantly, they prove that
it is unlikely that these times for rank and select can be significantly improved,
since long-standing reachability problems on graphs would then be improved as well.
This shows that the time complexity of their (and our) solutions are essentially the
best one can expect.

A practical aspect where our structures could possibly be improved is in the
clustering of the alphabet symbols used when partitioning the alphabet, both in the
simple case of alphabet partitioning and in the hierarchical case of wavelet trees and
matrices. In the first case, we obtained a significant space improvement by sorting
the symbols by frequency, whereas in the second case none of our attempts performed
noticeably better than the original alphabet ordering. While unsuccessful for now,
we believe that some clever clustering scheme that avoids separating symbols that
appear together in repetitive parts of the sequence could considerably improve the
space on large alphabets.

Another future goal is to find ways to improve the time of these grammar
compressed representations. We believe this is possible, even if known lower bounds
suggest that there must be a price of at least an order of magnitude compared with
statistically compressed representations.

Finally, it would be interesting to build rsa data structures on Lempel-Ziv
compressed representations, which is more powerful than grammar compression.
This idea is explored in Chapter 7, where we present the first Lempel-Ziv-based rsa
data structure.

104 Chapter 6. Grammar Compressed Sequences

Chapter 7

Block Trees for Sequences

The motivation to obtain an LZ77-bounded rsa data structure is sharp: Firstly,
there is a plenty of applications in highly repetitive scenarios that demand rsa-
capable solutions (recall Chapter 6). Secondly, being S[1, n] a string and G∗(S) the
smallest context-free grammar for S, we know that |LZ77(S)| ≤ |G∗(S)| [Ryt03].
That is, the smallest grammar is never smaller than an LZ77 factorization of the
same string, which means that obtaining an LZ77-space-bounded rsa data structure
is potentially better than grammar-based ones in terms of space.

However, and as explained in Section 5.3, just supporting access queries on
LZ77-bounded representations is difficult, and not many solutions are currently
known. LZ-End-based data structures (see Section 5.3.3) are able to obtain optimal
access time if queries hit a phrase boundary. If not, query performance becomes
dependent on the transitive depth of the parsing, which is not easily bounded (see
Section 5.3). An alternative to LZ-End are Block Graphs [GGP11, GHP14]. A
Block Graph is an LZ77-bounded data structure that carries out access operations
in O(lgn) time, but uses a factor of O(lgn) space more than LZ77. In any case,
none of these solutions are able to support rank and select queries.

In this chapter we show how to modify a Block Graph [GGP11, GHP14], which
is a DAG (direct acyclic graph), to convert it into a tree data structure that supports
rsa queries efficiently. We dubbed our data structure Block Tree (BT) and it can store
a string S[1..n] over an alphabet of size σ in O

(
zr lgn logr n lgσ

z lgn

)
bits, where z is

the number of phrases in the LZ77 parse of S and r ≤ n is a parameter, such that we
can support extraction of a substring of length m in O

(
logr

(
n lgσ
z lgn

)
·
(
m lgσ
lgn + 1

))
time. Using a σ factor more space, we can support rank in O

(
logr n lgσ

z lgn

)
time and

select in O
(

logr
(
n lgσ
z lgn

)
lg lgn

)
time. The resulting data structure is of practical

nature, so we demonstrate its efficiency with an experimental evaluation carried out
over bitmaps and sequences with small alphabets.

105

106 Chapter 7. Block Trees for Sequences

This chapter is organized as follows: Section 7.1 explains what a block graph
is; Section 7.2 details our proposal, which we dubbed Block Tree, describing how
it is construct, how queries are carried out, and providing a space-time theoretical
performance analysis; Section 7.4 focuses on the implementation details, which
slightly differ from the theoretical conception of the structure; Section 7.5 presents
an experimental evaluation in which we compare our proposal with several state
of the art references, including our new developments of Chapter 6; and finally
Section 7.6 gives our conclusions.

7.1 Block Graphs

A block graph [GGP11, GHP14] for a string S[1, n] is a directed acyclic graph (DAG)
in which each node has a fan-in and -out of at most 2 and 3 respectively. Each node
of the graph covers a substring of S, which is known as the node’s block. The root
of the graph covers the whole S and is at depth d = 0. Suppose n = 2c, c ∈ N+

(otherwise we pad S until n becomes a power of 2) and that we are at depth d
with 0 ≤ d < h. If node v covers the substring S[i, i+ b− 1], with b = 2h−d, then
v’s first child will cover S[i, i + b/2 − 1], the second S[i + b/4, i + 3b/4 − 1], and
finally the third S[i + b/2, i + b − 1]. Besides, if vls and vrs are, respectively, the
immediate left and right siblings of v, then vls

′s rightmost child will also cover
segment S[i, i+ b/2 − 1], while vrs′s leftmost child will cover S[i + b/2, i+ b − 1].
This is why a node may have a fan-in of 2.

We can reduce the size of a block graph by truncating its depth. The sweet point
to do so is reached when storing the graph pointers becomes more expansive than just
storing the bare blocks. We distinguish two sort of nodes in a block graph: internal
and leaves. A node is said to be internal if the string it covers is the first occurrence
of that string in S; otherwise it is a leaf. After this, we should remove leaves’ children
and their descendants and replace them by pointers as follows. Suppose we are at
node v which is at depth d. Suppose also v is a leaf, and that one of its children
is covering substring S[i, j]. Then, we know S[i, j] is not the first occurrence of
that substring in S, otherwise v would not be a leaf. Suppose S[i′, j′] is the first
occurrence of S[i, j] at depth d. Note also that S[i′, j′] is completely contained by
an internal node u at the same depth d (to ensure this is why block graphs permit
blocks to overlap). Then, we replace v’s children pointer to S[i, j] by a backpointer
to node u, storing the offset within u where S[i′, j′] starts. Figure 7.1 shows an
example of a block graph for a Fibonacci word truncated at depth 3. Leaves are
depicted as rectangular nodes and internal nodes are ovals.

Recalling that z is the number phrases of an LZ77-parsing [ZL77] (Section 5.3.1), a
block graph takes O

(
z lg2 n

)
bits and extracts a pattern p[1,m] in O (lgn+m) time.

If we truncate the block graph at depth d, the space becomes O
(
z(lgn− d) + 2d)

)
while extraction time decreases to O (lgn− d+m).

7.2. Block Trees 107

1..21

1..16 9..21

5..121..8 13..209..16 17..21

1..4 3..6 5..8 7..10 9..12 13..16 15..18 17..20

abaa aaba baba

Figure 7.1: A block graph truncated at depth 3 for the first 21 elements of
the Fibonacci word ‘abaababaabaababaababa’.

7.2 Block Trees
In this section we describe our proposal, which we dubbed Block Tree (BT). We
explain how we build it by providing a construction algorithm, how queries are
carried out, as well as providing a space-time analysis of the data structure and
operations.

7.2.1 Block Trees Structure
Suppose we are given a string S[1, n] drawn over an alphabet of size σ. Let 1 < r ≤ n
be the arity of the the block tree (BT). If n < r then our BT is a single node covering
the whole S. Otherwise we start at depth d = 0 by dividing S into r blocks
S1, S2, . . . Sr such that |S1| = · · · = |Sn mod r| = dn/re and |S(n mod r)+1| = · · · =
|Sr| = bn/rc. That is, each node vi covers a substring Si of length at most dn/re
without permitting overlapping between nodes. As in the case of block graphs, the
string covered by a node v is called its block. We also distinguish two kind of nodes:
internal and leaves. A node vi at depth d is marked as internal if there is no node
vj or pair of nodes vj−1vj with 1 < j < i that contains the substring covered by vi.
Otherwise vi is not marked and hence, it is a leaf.

If vi is a leaf, then we need to store the following information:

• a pointer to its left siblings (which must be marked as internal) whose
corresponding blocks contain the leftmost occurrence of Si.

• the offset of that occurrence within those blocks.

Then, at level d + 1 we concatenate all segments Si of level d that have been
marked as internal, dividing again each block Si into r sub-blocks as evenly as

108 Chapter 7. Block Trees for Sequences

possible such that larger sub-blocks precede smaller ones. After that, this process of
finding the first occurrence of each substring is repeated until we obtain a structure
with logr n levels.

Note each level of the block tree contains blocks of size n/rd+1, being the first
level of our block tree at d = 0. We can recursively divide a segment until (a) it
cannot be divided any more, or (b) the cost of storing a block becomes less than
that of storing a pointer, which happens when the blocks have size O (lgn/ lg σ).
Note that option (b) shrinks the number of levels of our block tree to logr n lgσ

lgn .
If we know z (the number of LZ77 phrases of S), then we can further reduce

the height to logr n lgσ
z lgn by dividing S into rz blocks and then recursing as before;

this skips the first logr z rounds of the recursion and levels in the tree, at the cost
of increasing the size by an O (zr) term (which will not change our asymptotic
analysis).

Figure 7.2 shows an example of a block tree with 4 levels for a Fibonacci word.
Note the original string has been split into blocks of length 4 at depth d = 0 and
the arity was set to r = 2. We shadowed those blocks that have been marked as
internal. For the rest we store backpointers (black arrows) telling the position where
a copy of its block previously appeared. Dotted arrows show how we map blocks
from a level to the next.

7.2.1.1 Analysis

As said, the first level of the block tree contains blocks of size n/r, the second
level blocks of size n/r2, and so on, until the last level, which has blocks of size
lgn/ lg σ. Those lowest blocks are stored in plain form1, as their original substring.
By construction, the total number of blocks at any level never exceeds zr, where z
is the number of phrases in the LZ77 -parsing of the string.

At any level i but the last, the ti blocks are encoded using O (ti lgn) bits of
space, for storing pointers of lgn bits each into level i data. At the last level, each
block is simply encoded as plain text, i.e., lgn/ lg σ symbols of size lg σ bits each,
which is lgn bits per block.

Since the upper logr z levels contain a geometrically increasing number of blocks
upper bounded by z, their total encoding size is O (z lgn) bits. Then, each of the
remaining logr n lgσ

z lgn levels will be encoded using O (zr lgn) bits each, for a total of
O
(
zr lgn logr n lgσ

z lgn

)
bits.

The query time of the block tree will be upper bounded by the number of levels.
As mentioned in Section 7.2.1, in order to improve the time without sacrificing our
asymptotic space bound, we will start the construction of the block tree from level
logr z. Then, the number of levels is reduced to logr n lgσ

z lgn and the bound O (zr)

1If rank and select are pursued functionalities, we should prepare this bare string to support
these kind of queries efficiently.

7.2. Block Trees 109

a b a a b a b a a b a a b a b a a b a b a a a a

a b a a b a b a a a a a

a b a a

a b

pad

Figure 7.2: An example of our block tree for the first 21 elements of the
Fibonacci word ‘abaababaabaababaababa’ padded with 3 symbols.

on the number of blocks per level still applies. This analysis is summarized in
Theorem 4.

Theorem 4. Given a string S of length n over an alphabet of size σ and a parameter
r, we can build a block tree with logr n lgσ

z lgn levels, where z is the number of phrases

in the LZ77 parsing of S. The block tree occupies a total of O
(
zr lgn logr n lgσ

z lgn

)
bits of space.

We note that n lgσ
z lgn is actually the compression ratio. An interesting setting for

the arity is r =
(
n lgσ
z lgn

)ε
for some constant ε < 1. This makes the space usage

O
(

(z lgn)1−ε(n lgσ)ε
ε

)
and the number of levels O (1/ε). This space usage is a weighted

geometric average between z lgn (the space usage achievable by the LZ77 parsing)
and the original space n lg σ. The parameter ε allows us to give an arbitrarily large
weight to the space usage at the cost of increasing the number of levels (and thus
query time).

110 Chapter 7. Block Trees for Sequences

7.2.2 Construction
The key point of a block tree construction is to identify the first occurrence of each
block in S. Being b the block size, finding first occurrences of blocks in O

(
bn2) time

is straightforward. However we seek for linear time solutions in order to be practical
in any scenario. To do so, we propose a new algorithm that relies in a technique
previously proposed by Karp and Rabin [KR87] for string pattern matching.

Given a substring S[i, j], we recursively define its Rabin-Karp fingerprint or
simply its RK as:

RK(S[i, j], k) =

S[k] mod q if k = i

(RK(S[i, j], k − 1) · σ + S[k]) mod q otherwise
(7.1)

being q the largest prime smaller than lg(n/σ). We also define the Rabin-Karp
shift or simply the RK-s of S[i, j] as

RK-s(S[i, j]) = ((RK(S[i, j])− S[i] · h) · σ + S[j + 1]) mod q

where h = σj−i mod q and j < n. Computing RK(S[i, j]) takes O (j − i+ 1)
time while an RK-s can be done in O (1).

Our algorithm to build a block tree in RAM memory consist of two phases. In
a first stage, we divide the sequence S[1, n] into blocks S1, . . . , Sr computing the
RK fingerprint for each Si. Then, we store each of them in a hash table along with
the starting position of each block using its RK fingerprint as key. This process is
carried out in linear time and space.

In a second phase, we initially mark the first block S1 as internal. Then we
compute the Rabin-Karp fingerprint of each substring S[i, i+ b] in O (1) time per
substring by carrying out RK shifts starting at S1. For each substring we use its
RK fingerprint to access the hash table an check if there is any other block with the
same key. If so, it means we potentially have two blocks that cover the same string.
We say potentially because two substrings may have the same RK fingerprint even
though they are different (which happens with very low probability though). If there
is no match, then we do nothing. If however, there exists another block S[j, j + b]
with the same fingerprint, we have to deal with several options:

• If the block S[j, j+ b], which is in the hash table, is already marked as internal,
then it means we had found its first occurrence previously and we do nothing.

• If i > j, we do nothing because the current block S[i, i+ b] is to the right of
S[j, j + b], which means S[i, i+ b] cannot be the first occurrence of S[j, j + b].

• If i < j and S[j, j + b] is not marked as internal, we need to compare both
blocks S[i, i+ b] and S[j, j + b] to check if they are actually the same. If so,
it means the first occurrence of S[i, i+ b] in S is S[j, j + b]. We mark those

7.2. Block Trees 111

blocks covered by S[j, j + b] and we set a pointer that tells the first occurrence
of S[i, i+ b] is at position i. If S[i, i+ b] 6= S[j, j + b] we do nothing.

After this, we carry out an RK shift and we continue with the next substring.
At the end of the process, we have marked as internal all those blocks that contain
first occurrences of the substring they cover, and for those not marked (leaves), we
have set up backpointers to those marked blocks that contain their first occurrences.
This second stage of our algorithm takes linear space and worst-case O (bn) time,
on average it does in O (n) time. Therefore, we can build a BT in pseudolinear time
and linear space.

Note also we can run a Monte-Carlo approach of this algorithm in O (n) worst-
case time by just considering that if the two RK fingerprints of two blocks match,
then both blocks cover the same string. This avoids comparing blocks directly,
reducing the construction time by a factor of b although queries may return the
wrong answer with very low probability. This is very interesting, for instance, if we
want to build a block tree in the external memory model, since we avoid random
scans of the input sequence.

7.2.3 Queries on a Block Tree
The simplest query to answer with a block tree is to return a symbol S[i] given i.
To do this, we start at the root and descend to the child whose corresponding block
contains S[i], then to the grandchild whose block contains S[i], etc. If we reach a
leaf v, then either v stores its block explicitly, and so we can return S[i] immediately,
or v stores pointers to its left siblings whose blocks contain the leftmost occurrence
in S of v’s block, and the offset of that occurrence in those blocks. In the latter case,
in O (1) time we can identify a symbol S[i′] in one of those left siblings’ blocks such
that S[i′] = S[i], then start descending from that left sibling to find S[i′]. Returning
S[i] takes a total of O

(
logr n lgσ

z lgn

)
time, proportional to the height of the tree.

For example, to return S[17] with the block tree shown in Figure 7.2 we first
see that the block that contains S[17] is not marked, thus we have to follow a
backpointer to its first occurrence. In this case, its first occurrence is in the first
block but with an offset of 3 inside that block. Thus, we have to descend the block
tree through its first child but with an offset of 3 starting at the beginning of that
block. That finally maps to the second position of the second block at level 2. That
block is marked, so we have to follow the second child pointer with an offset of 1
from the beginning. This maps the the fourth block of level 3, which is not marked.
Thus, we follow the backpointer again, which redirects us to the first block of level 3,
which contains a single element and maps to the first block of the fourth level with
offset 0. This block in the fourth level is marked but is also a leaf, thus we know
it has stored the bare string it covers. We finally access that string with the given
offset, returning S[17] = a.

112 Chapter 7. Block Trees for Sequences

7.2.3.1 Access and Extract

The original paper on block graphs [GGP11] showed how to store S in O (z lg(n/z))
words such that any substring of length m can be extracted in O (lgn+m) time.
In this section we describe a better result, showing how to extract an arbitrary
substring from a block tree with ` levels in O (`(m/ lgσ n+ 1)) time.

In order to achieve the improved bounds, we store the first and the last lgσ n
symbols for every block at every level. This adds lgn bits per block and does not
increase the space asymptotically. We extract a substring S[i . . . i + m − 1] with
m ≤ lgσ n as follows. At the upper level, we check whether S[i . . . i+m− 1] spans
two blocks or is contained in one single block. If it spans two blocks, then we can
extract the part of the string that lies in the first block in constant time, since we
have stored the last lgσ n symbols of the block. The same goes for the part that
lies in the second block, since we have stored the first lgσ n symbols of the block.
If S[i . . . i+m− 1] is fully contained in a block, then we descend to the next level,
either directly if the block exists at the next level, or by following a pointer if the
block was copied. We continue recursively in this way, stopping either at the first
level at which S[i . . . i+m− 1] spans two blocks, or when we reach the last level of
the block tree (where all the blocks are of length lgσ n and their content is stored
explicitly). Overall, the time spent is O (`). To solve extract(i, i + m − 1) when
m > lgσ n, we simply divide it into pieces of length lgσ n (except that the last may
be shorter) and extract each piece separately. From this explanation, Theorem 5
and Corollary 2 follow.

Theorem 5. Given a string S of length n over an alphabet of size σ and a parameter
r, we can build a data structure occupying O

(
zr lgn logr n lgσ

z lgn

)
bits of space that

allows extraction of any substring of S of length m in time

O

(
logr

(
n lg σ
z lgn

)
·
(
m lg σ
lgn + 1

))
.

Setting r = (n lg σ/(z lgn))ε, we obtain the following corollary.

Corollary 2. Given a string S of length n over an alphabet [1..σ] and a constant
ε < 1, we can build a block tree with O (1/ε) levels. The block tree occupies a
total of O

(
(z lgn)1−ε(n lgσ)ε

ε

)
bits of space, where z is the number of phrases in the

LZ77 parsing of S, and allows extraction of any substring of S of length m in time
O
(
d m

lgσ n
e/ε
)
.

7.2.3.2 Rank

To support rank quickly on S, for each symbol a, we store at each node the number
of occurrences of a in the prefix of S preceding the corresponding block. This

7.2. Block Trees 113

B1 B2 Bu

Bu

ranka(Bu , d)

ranka(B1 , g-1)

...

Figure 7.3: To be able to turn a rank query on the unmarked block Bu
into a rank query on one of the consecutive pair of marked blocks B1 and
B2 that contain Bu’s first occurrence in S, we store ranka(B1, g − 1) and
ranka(Bu, d). We already have stored the offset g of the occurrence of Bu in
B1B2 and we can compute from g and |B1| the length d of the prefix of Bu
that is a suffix of B1.

takes O
(
σzr lgn logr n lgσ

z lgn

)
bits of space. This sample of rank values lets us turn

any rank query on S into a rank query on a block in O (1) time. We also store
information that lets us turn any rank query on an unmarked block into a rank
query on a marked block in O (1) time. With our sample, we can also turn a rank
query on a marked block for an internal node, into a rank query on one of its
children, also in O (1) time. We store a rank data structure for leaves, which takes
O (zr lg(σ)/ lgn) = O (zr) words, so we can answer rank queries on those blocks
directly in O (1) time, and can thus answer rank queries on S in O

(
logr n lgσ

z lgn

)
total

time.

The information that lets us change any rank query on an unmarked block Bu
into a rank query on a marked block is, first of all, the pointers to the marked block
B1 or consecutive pair B1 and B2 of marked blocks containing the first occurrence
of Bu, and the offset g of that occurrence in B1B2. Secondly, for each symbol a,
we store the number ranka(B1, g − 1) of occurrences of a in the prefix of B1 before
the occurrences of Bu. Notice we can compute, from the offset g and the length
of B1, the length d of the prefix of Bu that is a suffix of B1. Finally, we store
the number ranka(Bu, d) of occurrences of a in this prefix of B1. If i < d then
ranka(Bu, i) = ranka(B1, g+ i)−ranka(B1, g−1). If i = d then we have the answer
stored. If i > d then ranka(Bu, i) = ranka(Bu, d) + ranka(B2, i− d). See Figure 7.3
for a graphical example.

114 Chapter 7. Block Trees for Sequences

7.2.3.3 Select

To support select quickly on S, we store a predecessor data structure on the rank
samples at the beginnings of the blocks. If we use a trie with branching factor nε/2,
we can use O (znε) words in total for the whole block tree and support predecessor
queries in O (1) time. On the other hand, if we use an O (zr logr n)-space data
structure, then predecessor queries take O (lg lgn) time. This predecessor data
structure lets us turn any select query on S into a select query on a block,
and turn any select query on a marked block for an internal node into a select
query on one of its children. The information we already have stored lets us turn
any select query on an unmarked block into a select query on a marked block:
if j ≤ ranka(Bu, d) then selecta(Bu, j) = select(B1, j + ranka(B1, g − 1)) − g.
If j > ranka(Bu, d) then selecta(Bu, j) = select(B2, j − ranka(Bu, d)) + d. It
follows that answering select queries on S takes an O (logr n)-factor more time
than answering a predecessor query.

Combining the bounds for all the queries, we obtain the following result:

Theorem 6. We can store a string S[1..n] over an alphabet of size σ in

O

(
zr lgn logr

n lg σ
z lgn

)
bits, where z is the number of phrases in the LZ77 parse of S and r ≤ n, such that
we can support extraction of a substring of length m in

O

(
logr

(
n lg σ
z lgn

)
·
(
m lg σ
lgn + 1

))

time. Using a σ factor more space, we can support rank in O
(

logr n lgσ
z lgn

)
time and

select in O
(

logr
(
n lgσ
z lgn

)
lg lgn

)
time. In particular, if we use O (σznε) space, then

rank and select take O (1) time and extraction takes optimal O (m lg(σ)/ lgn+ 1)
time.

7.3 Block Trees for Sequences for Large Alphabets
Note the block tree scales perfectly if we only need to carry out access or extract
operations (Theorem 6). However, if supporting rank and select queries becomes
necessary, a σ factor in the space overhead is induced. This multiplicative penalty
may be affordable in case of collections with very small alphabet like bitmaps,
otherwise, it quickly goes beyond the space of statistical-based approaches.

Thus, in order to support rank and select queries for collections with σ > 2,
we have two options: (a) to use a regular block tree or (b) to use a wavelet tree or

7.4. Block Trees in Practice 115

a wavelet matrix (see Section 2.7.1 and Chapter 4 respectively) data structure in
which bitmaps are compressed with BT.

The first option (a) is of interest in two specific scenarios. It will behave well
if the alphabet size is actually small, as we can expect from theory results. But it
will also perform well if the repetitiveness of the input data is high, since BT will
quickly detect repeated blocks, significantly reducing the size of a sequence from a
level to the next of the BT, and hence the number of rank samples, resulting in a
very compact data structure.

If none of these scenarios hold, then we can use option (b), since wavelet tree or
matrix bitmaps combine well with BT, but repetitiveness is quickly destroyed as we
move downwards in the wavelet tree, as shown in the previous chapter. Note that
destroying repetitiveness is what we try to avoid in Chapter 6 with the introduction
of GCC and its alphabet partitioning version for large alphabets. However, in this case
the alphabet size of the alphabet partitioning internal sequences is larger than what
BT can manage, and as a consequence using a wavelet tree is the only reasonable
option for BT when the alphabet σ increases.

7.4 Block Trees in Practice
On one hand, we have to decide which data structures do we actually use to
implement and store all the information necessary for the block tree, and how we
actually implement all the operations independently of how they are defined in
theory.

Regarding the first aspect, we may decide how do we store pointers to siblings,
what structures do we use to mark the blocks, and how do we store the samplings for
rank. In our case, pointer to siblings were implemented using two data structures.
If a block Sj points back to a pair of blocks SiSi+1 with offset x from the starting
point of Si, we will store (a) the block identifier, which is the super-index i, and
(b) the offset within the beginning of Si+1. Being b the block size and n′ the length
of the sequence at the current level of the block tree, for (a) we use an array of
lg(bn′/bc+ 1) bits per element, while for (b) an array of blg bc+ 1 bits per pointer.

All samples for rank were stored using DACs (Section 2.8). To identify the
marked blocks, we use an uncompressed bitmap like CM (see Section 2.6).

To determine the depth and arity of the block tree, in practice we use three
parameters: The number of levels of the tree (nl), the arity of each node (r), and
the block length we want to obtain a the deepest levels (bll). For instance, the block
tree of Figure 7.2 was obtained by setting the following configuration: nl = 4, r = 2,
and bll = 1.

Regarding the operations, access was implemented without the theoretical
improvement explained in Section 7.2.3.1. Operation rank was implemented as
explained in the corresponding section. However, select was actually implemented

116 Chapter 7. Block Trees for Sequences

by carrying out a binary search on the rank samples to identify the block that
contains the answer. After knowing the block, we use the information stored in it to
guide the search until we reach a leaf, which contains the bare string prepared to
solve select queries efficiently, permitting us to report the proper answer.

7.5 Experimental Results
Along this section, we evaluate the performance of our proposal (BT) when applied
on bitmaps and on sequences with small alphabets (small σ > 2).

We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM memory,
running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64. All our
implementations use a single thread and are coded in C++. The compiler is g++
version 4.7, with -O9 optimization. We implemented our solutions inside Libcds [Cla]

For our block tree (BT) we used several configurations resulting from the
combination of its construction parameters, showing in the charts only those points
which are pareto-optimal (the same is done with the rest of data structures). We
tested block trees with depths nl = {5, 6, 7}, arity r = {2, 4, 8}, and block length
at leaves of bll = {16, 32, 64, 128}. We also introduce a variant which we dubbed
WMH.BT, which is a compressed wavelet matrix (see Chapter 4) in which the bitmaps
are compressed either with BT, RRR, or CM, whichever reported the best space
performance.

In order to support rsa queries on leaves, they were concatenated and stored in
an array in which rank, select, and access were solved by brute force.

In general, we used the same data structures (with the same configuration too)
as in Section 6.3. To measure the performance on bitmaps, we used techniques RRR
and CM (see Section 2.6), but also GCC, all of them with the configurations explained
in Section 6.3.

We used the same datasets and technique to extract queries as in Section 6.3.
We ran 10, 000 queries, each repeated at least 10 times. The space is measured in
bits per symbol (bps) while query time is reported in nanoseconds per query for
bitmaps, and microseconds per query for collections with small alphabets (σ > 2).

7.5.1 Performance on Bitmaps
We firstly evaluate the performance of BT when applied on bitmaps. We use synthetic
datasets to carry out the experimental evaluation in a controlled scenario, and real
datasets to see how it performs on real applications. Figures 7.4, 7.5, and 7.6 show
the results for access, rank, and select respectively.

Focusing on synthetic datasets, we can see in any of these three figures that the
space performance of BT clearly improves as the repetitiveness of the input data
does. For the least repetitive synthetic dataset, DNA.1.st, BT almost obtains the
same space performance than statistical and uncompressed proposals, RRR and CM.

7.5. Experimental Results 117

However, as repetitiveness increases, the space performance of BT improves, as we
can see in the rest of DNA datasets. However, the solution that systematically obtains
the best space performance is GCC. Regarding query times, Figure 7.4 shows that
BT is able to match RRR times for operation access, while for rank and select
(Figures 7.5 and 7.6), BT performs several times slower than RRR and CM. Comparing
BT and GCC on synthetic datasets, the first is systematically faster on the three type
of queries, especially on access, in which BT is almost an order of magnitude faster
than GCC.

Analyzing the results for real datasets, we can see that BT obtains worse space
performance than a plain representation such as CM for escherichia.st, the less
repetitive dataset, and for para.st, practically matching the space performance
of RRR. For influenza.st and einstein.st, BT uses 20%-40% of the space of CM,
and even less when compared with RRR. Comparing BT with GCC, we see that GCC
is space-dominant over BT in practically all the real datasets, almost obtaining the
same space performance for collections influenza.st and einstein.st. Regarding
time performance, as expected, BT is defeated by CM in all operations. If we compare
BT with RRR, the situation is slightly different, since BT is extremely efficient at
access operation, as we can see in Figure 7.4, slightly beating RRR. For the rest
of operations, RRR and CM obtain similar results, both being better than BT by
approximately the same margin. When comparing BT with GCC in terms of time, BT
overcomes GCC by an order magnitude in access, being several times faster in rank
and select operations.

7.5.2 Performance on Sequences With Small Alphabets
As in case of bitmaps, we evaluate the performance of BT in a synthetic and controlled
scenario (DNA datasets) as well as with real datasets. Figures 7.7, 7.8, and 7.9 show
the performance of access, rank, and select operations respectively.

Focusing on synthetic datasets (DNA), Figures 7.7, 7.8, and 7.9 clearly show how
the space performance of BT improves with repetitiveness. For DNA.1, BT obtains
worse space performance than statistical competitors like WTH.CM, and WTH.RRR, but
for those more repetitive datasets, like DNA.001 and DNA.0001, BT obtains the same
performance than grammar-based solutions like GCC. We can also see that WMH.BT
obtains practically the same space performance than GCC in the most repetitive
synthetic datasets, but is less space efficient when the repetitiveness vanishes, as
it is the case of collection DNA.1. Regarding times, we can see in Figure 7.7 that
BT excels in access operation. It is even faster than statistical-based approaches
(WTH.RRR and WTH.CM) but being up to an order of magnitude more compact than
them. Compared to grammar-based approaches, BT is an order of magnitude faster
than GCC. Comparing rank and select query times (Figures 7.8 and 7.9), BT
almost obtains the same space performance than WTH.RRR, being slightly slower than
WTH.CM. When we compare BT with grammar-based approaches, BT is several times
faster than GCC, the best grammar based approach. Regarding WMH.BT, it is not as

118 Chapter 7. Block Trees for Sequences

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA1.st, access

BT
GCC
RRR

CM

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA01.st, access

BT
GCC
RRR

CM

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA001.st, access

BT
GCC
RRR

CM

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA0001.st, access

BT
GCC
RRR

CM

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

influenza.st, access

BT
GCC
RRR

CM

 1

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

para.st, access

BT
GCC
RRR

CM

 1

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

escherichia.st, access

BT
GCC
RRR

CM

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

einstein.st, access

BT
GCC
RRR

CM

GCC BG RRR CM

Figure 7.4: Space-time tradeoffs for access on bitmaps (note logscale in
time).

7.5. Experimental Results 119

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA1.st, rank

BT
GCC
RRR

CM

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2
Ti

m
e

pe
r o

pe
ra

tio
n

(n
an

os
ec

on
ds

)
bps

DNA01.st, rank

BT
GCC
RRR

CM

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA001.st, rank

BT
GCC
RRR

CM

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA0001.st, rank

BT
GCC
RRR

CM

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

influenza.st, rank

BT
GCC
RRR

CM

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

para.st, rank

BT
GCC
RRR

CM

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

escherichia.st, rank

BT
GCC
RRR

CM

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

einstein.st, rank

BT
GCC
RRR

CM

GCC BG RRR CM

Figure 7.5: Space-time tradeoffs for rank on bitmaps (note logscale in time).

120 Chapter 7. Block Trees for Sequences

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA1.st, select

BT
GCC
RRR

CM

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA01.st, select

BT
GCC
RRR

CM

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA001.st, select

BT
GCC
RRR

CM

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

DNA0001.st, select

BT
GCC
RRR

CM

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

influenza.st, select

BT
GCC
RRR

CM

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

para.st, select

BT
GCC
RRR

CM

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

escherichia.st, select

BT
GCC
RRR

CM

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ti
m

e
pe

r o
pe

ra
tio

n
(n

an
os

ec
on

ds
)

bps

einstein.st, select

BT
GCC
RRR

CM

GCC BG RRR CM

Figure 7.6: Space-time tradeoffs for select on bitmaps (note logscale in
time).

7.6. Discussion 121

good as BT, but it practically obtains the same search performance than GCC for all
operations.

When we analyze the situation for real datasets, BT obtains a space performance
comparable to that of GCC in collections para and einstein, but for influenza, BT
needs up to 3 times more space. For escherichia, which is not repetitive, the space
performance of BT degrades until reaching that of statistical-based approaches like
WTH.CM and WTH.RRR. However, WMH.BT is much more resilient to both the increase
of σ (as it is the case of influenza) and to the decrease of repetitiveness (as it
is the case of escherichia), but at the cost of being much less efficient on query
performance. Again, we can see in Figure 7.7 that BT excels in access performance
when compared with statistical-based approaches. For rank, and select (Figures7.8,
and 7.9), BT is again slightly slower than statistical-based solutions, but several
times faster than grammar-based approaches. Note also WMH.BT obtains similar
search performances on rank and select than GCC.

7.6 Discussion
In this chapter we have presented the Block Tree (BT), the first LZ77-space bounded
rsa data structure. We have provided an analysis of its space and time performance,
as well as an implementation and a detailed experimental evaluation. Our data
structure takes O

(
σzr lgn logr n lgσ

z lgn

)
bits of space, supports rank and select in

O
(

logr n lgσ
z lgn

)
time, and extract in O

(
logr

(
n lgσ
z lgn

)
·
(
m lgσ
lgn + 1

))
time, m being

the length of the extracted snippet. If we use O(σznε) space (ε < 1), we can solve
rank and select in O(1) time and extract in optimal O(m lg(σ)/ lgn+ 1) time.

In practice and in terms of space, BT is typically overcomed by grammar-based
approaches like GCC, although there exist some exceptions. However, when BT uses
the same space as GCC (which is not always possible), BT is from several times to an
order of magnitude faster. Additionally, BT runs in the same order of magnitude than
statistical-based approaches, which is a significant step forward on highly repetitive
scenarios. However, the space performance quickly degrades if we increment the
alphabet size and the repetitiveness does not increase accordingly. For these scenarios,
we have introduced WMH.BT, which is a compressed wavelet matrix with bitmaps
compressed with BT (or RRR or CM, depending on the space performance), which also
obtains competitive results.

Summing up, both in theory and practice, BT-based approaches should be taken
into consideration for highly repetitive sequences. They are faster than their direct
competitors when the input data is very repetitive and the alphabet is not large,
and, which is more important, they almost match query times of statistical-based
approaches while using significantly less space. However, grammar-based options,
like those based on GCC, almost systematically obtains better space performance.

One of the challenges that remain open is to continue improving the query

122 Chapter 7. Block Trees for Sequences

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3 3.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA1, access

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA01, access

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA001, access

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA0001, access

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, access

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, access

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, access

 0.1

 1

 10

 100

 0 1 2 3 4 5 6

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, access

GCC
BT

WT.RP

WTH.RP
WTH.RRR
WTH.CM

WM.RP
WMH.RP
WMH.BT

Figure 7.7: Space-time tradeoffs for access queries over small alphabets
(note logscale in time).

7.6. Discussion 123

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3 3.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA1, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA01, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA001, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA0001, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, rank

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, rank

 0.1

 1

 10

 100

 0 1 2 3 4 5 6

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, rank

GCC
BT

WT.RP

WTH.RP
WTH.RRR
WTH.CM

WM.RP
WMH.RP
WMH.BT

Figure 7.8: Space-time tradeoffs for rank queries over small alphabets (note
logscale in time).

124 Chapter 7. Block Trees for Sequences

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3 3.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA1, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA01, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA001, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

DNA0001, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, select

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, select

 1

 10

 100

 0 1 2 3 4 5 6

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, select

GCC
BT

WT.RP

WTH.RP
WTH.RRR
WTH.CM

WM.RP
WMH.RP
WMH.BT

Figure 7.9: Space-time tradeoffs for select queries over small alphabets
(note logscale in time).

7.6. Discussion 125

performance, which is probably the biggest limitation of highly repetitive sequence
representations. Additionally, we may study new sampling strategies that mitigate
the impact of increasing the alphabet size. Alternatively, we may think of extending
the algorithm to find previous occurrences of strings to more complex scenarios like
graphs.

126 Chapter 7. Block Trees for Sequences

Chapter 8

Grammar Compressed Trees

Trees are a fundamental data structure in Computer Science. As explained in
Section 2.9, a naive pointer based implementation of an ordinal tree Tn needs
O(n lgn) bits just to store the tree topology. However, succinct representations are
able to reduce that space to 2n+ o(n) bits and answer a wide number of operations
in constant time (many of them enumerated in Table 2.2).

This result is of major interest since it has a direct impact on many real
applications. For instance, Sadakane [Sad07b] obtained the first (and fastest to date)
compressed suffix tree representation (refer to Chapter 13 for more information about
suffix trees) by storing the tree topology in compact form (among other structures).
More recently, Arroyuelo et al. [ACM+15] used compact tree topologies in the SXSI
system, which efficiently answers XPath queries on XML collections represented in
compressed form.

Even though the 2n+o(n) bit may seem a sufficiently compact solution, there exist
scenarios in which it may be too much. That is the case, for instance, of suffix trees
for highly repetitive datasets (DNA, versioning systems, etc.) in which the suffix tree
topology shows up tree isomorphisms that may be potentially compressible. These
isomorphisms also appear when we try to index large XML collections or repositories
of documents stored in that format. In both contexts, being able to capture that
tree repetitiveness is fundamental in order to keep the whole representation in main
memory (or even cache), with the known benefits derived.

Grammar compression is a useful tool to deal with that repetitiveness. Although
it is generally used in the context of string compression, we can also use grammars
that generate trees instead of strings [CDG+07]. The simplest tree grammar is
one that replaces repetitions of full trees, so the associated grammar compression
seeks for the minimal DAG (Directed Acyclic Graph) equivalent to the tree (an
example is shown in Figure 8.1). More powerful variants like TreeRePair [LMM13]
allow nonterminals with variables or wild-cards, permitting to plug different subtrees
where the wild-card is. These grammar compression techniques [MB04, LMM13]

127

128 Chapter 8. Grammar Compressed Trees

aim at replacing connected subgraphs of the tree, as Figure 8.2 shows. In general,
supporting even the most basic traversal operations on these compressed trees is
nontrivial, even with the simplest DAG compression.

Alternatively, Bille et al. [BLR+11] sketch an idea that grammar compresses a tree
while retaining all the full power of navigational operations of succinct trees. They
basically propose to grammar-compress the string of parenthesis that describes the
tree topology (recall Section 2.9), attaching the necessary data to the nonterminals
in order to support efficient navigation. They prove that this compression is as
powerful as the simple DAG tree compression, provided some small fixes are applied
to the grammar.

Continuing the line opened by Bille et al. [BLR+11], in this chapter we present
the GCT (Grammar Compressed Tree), which is a practical grammar compressed
tree representation. We rest on the idea of Bille et al. [BLR+11] but using balanced
grammars [Sak05] to obtain their same theoretical bounds. Our proposal is of
practical nature and has been implemented and tested against one of the best
balanced parenthesis representation. In fact, we experimentally show our GCT is the
most compact tree representation we are aware of, being also competitive in terms
of time in some applications.

This chapter is organized as follows: Section 8.1 explains in detail the Balanced
Parentheses Tree representation; Section 8.2 details our proposal; Section 8.3 presents
the experimental evaluation of the GCT; and finally Section 8.4 gives our conclusions.

a

b c

e d d d

g f f

d

f

R1
cR3

c

d d

f f

R1

aTDAG

b

R2

R3

DAG of T

Tree T

TDAG → a (b (R2 , R2) , R3 , R3)

R3 → c (R1 , R1)

R2 → d (g)

R1 → d (f)

g

d

g

R2

Figure 8.1: A DAG representation of a tree T .

8.1. Related Work 129

a

b c

e d d d

g f f

d

y

R1
cR4

c

d d

f f

R2

aTDAG

b

R3

R4

Tree T

g

R1 gR3

TRP → a (b (R3 , R3) , R4 , R4)

R4 → c (R2 , R2)

R3 → R1 [g]

R2 → R1 [f]

R1 (y) → d (y)

R1 fR2

Tree RePair on T

Figure 8.2: TreeRepair[LMM13] applied to tree T .

8.1 Related Work
Among many succinct tree representations (see Section 2.9), we describe the proposal
of Navarro and Sadakane [NS14] (FF)for Balanced Parentheses on which we build
our proposal. We choose this representation because it implements a large number
of tree operations on top of a simple representation. As explained in Section 2.9, to
build a BP we traverse the suffix tree in preorder, writing an opening parenthesis
when we first arrive at a node, and a closing one when we leave its subtree. Thus
a tree of t nodes is represented with 2t parentheses, as a binary sequence P [1, 2t].
Each node is identified with the offset of its opening parenthesis in P , so we can
speak of “node i” to refer to the one represented by P [i] =′ (′.

We define the excess of a position, E(i), as the number of opening minus closing
parentheses in P [1, i]. Note that E(i) is the depth of node i. Many tree navigation
operations can be carried out with two operations related to the excess: fwd(i, d)
is the smallest j > i such that E(j) = E(i) − d, and bwd(i, d) is the largest j < i
such that E(j) = E(i)− d. For example, the parenthesis closing the one that opens
at position i is at fwd(i, 1), so the next sibling of node i is j = fwd(i, 1) + 1 if
P [j] =′ (′, else i is the last child of its parent. Analogously, the previous sibling is
bwd(i−1, 0) + 1 if P [i−1] =′)′, else i is the first child of its parent. A node i is a leaf
if P [i+ 1] =′)′, otherwise its first child is i+ 1. The number of nodes in the subtree
rooted at i is (fwd(i, 1) − i + 1)/2. Node i is an ancestor of j if i ≤ j ≤ fwd(i, 1).
The parent of node i is bwd(i, 2) + 1 and the h-th level ancestor is bwd(i, h+ 1) + 1.
The preorder value of a node, preorder(i), is the number of opening parentheses
in P [1, i]; note that preorder(i) = (E(i) + i)/2. The inverse of preorder is node(j),
which gives the node with preorder j and is solved analogously to fwd, this time

130 Chapter 8. Grammar Compressed Trees

looking for a certain value of i+E(i). A more complex operation is to find the lowest
common ancestor of two nodes, LCA(i, j). Unless one is the ancestor of the other,
computing LCA requires operation RMQ (range minimum query) on the virtual
array of depths: RMQ(i, j) is the position of a minimum in E(i)E(i+ 1) . . . E(j),
and then LCA(i, j) = parent(RMQ(i, j) + 1). Many other operations are available
with the primitives E, fwd, bwd, and RMQ [NS14].

To implement those primitives, the sequence P [1, 2t] is cut into blocks of b lg t
parentheses, for a parameter b (we use base 2 logarithms by default). For each block
k we store m[k], the minimum excess within the block, and e[k], the total excess
within the block. The blocks are the leaves of a perfect binary tree of higher-level
blocks, for which we also store m[k] and e[k]. See Figure 8.3 for an example.

In this representation, operation fwd(i, d) can be solved in O(b + lg t) time as
follows. Let k be the block where position i belongs. First, we scan P from i+ 1
to the end of the block, to see if the desired excess difference is reached within
the block. The block can be scanned by chunks of (lg t)/2 parentheses by using
global precomputed tables of just

√
t entries, which store the total and minimum

excess in every possible chunk. If the answer is not inside the block, let d′ be d plus
the accumulated excess between i+ 1 and the end of the block; then d′ is the new
excess difference sought to the right of block k (recall that we seek for the smallest
j > i such that E(j) = E(i) − d′). Now we move to the parent of block k in the
balanced tree. If k is the left child of its parent and k′ is the right sibling of k, then
if d′ > −m[k′], we know that the desired excess is not reached within block k′, thus
we set d′ ← d′ + e[k′] and continue recursively with the parent node of block k. If,
instead, k is the right child of its parent, we simply continue recursively with its
parent.

This upward traversal continues until we find a right sibling k′ for which d′ ≤
−m[k′], thus the desired excess difference is reached within block k′. Now we start a
downward traversal. We check whether the difference is reached inside the left child
k′′ of k′: if d′ ≤ −m[k′′], then we descend to k′′; otherwise we set d′ ← d′ + e[k′′]
and descend to the right child of k′. When we finally arrive at a leaf block, we
complete the operation fwd(i, d) by scanning its parentheses from the beginning of
the block until we reach excess difference d′.

Operations bwd and RMQ are solved analogously, and computing E(i) is simpler;
see Navarro and Sadakane [NS14] for more details1. By using, for example, b =
Θ(lg t), one obtains O(lg t) time for all the operations and 2t+ o(t) bits to store the
the parentheses plus the balanced tree of m[] and e[] values.2

1They describe a variant where the e[] and m[] values are absolute, not relative to the block;
our description here is more similar to their dynamic variant. Also, they store a few more values to
support other operations not usually required on suffix trees, and thus not considered in this paper.

2The theoretical proposal of Navarro and Sadakane [NS14] obtains constant times, but the
practical implementation of Arroyuelo et al. [ACNS10] reaches logarithmic times.

8.1. Related Work 131

P[1,2t] = (() ((() ()) ()) (() (() ()) (() ()) (() ()) (() ())) (() ()) () (() (() ())) (() ()))

1101110100 1001101101 0011010011 0100110100 0110100101 1011010001 101000

 (e,m)=(2,0) (2,-1) (0,-2) (-2,-2) (0,-1) (0,-1) (-2,-2)

(e,m)=(4,0) (e,m)=(-2,-2) (e,m)=(0,-1) (e,m)=(-2,-2)

(e,m)=(2,0) (e,m)=(-2,-2)

(e,m)=(0,0)

B =

 1212343432 3212323434 3234343234 3432343432 1232321212 3234343212 323210E =

Figure 8.3: On the top, an ordinal tree with its BP representation P [1, 2t].
On the bottom, the data structure for the succinct representation of a
parentheses sequence P [1, 2t]. It is formed by bitvector B[1, 2t], which
represents P with 1-bits for the ’(’s and 0-bits for the ’)’s, and the tree
of block summaries on top of it. We show in gray the values E(i), which are
not represented explicitly.

132 Chapter 8. Grammar Compressed Trees

8.2 Grammar Compressed Tree
In this section we explain our proposal to grammar compress trees, developing
the theoretical idea introduced by Bille et al. [BLR+11] and focusing only on tree
topologies rather than on general trees. The basic idea relies on first obtaining
the balanced-parentheses representation of the tree and then enhance it so that we
can solve all operations a succinct representation does. We start by explaining the
GCT structure, focusing on the algorithmics related with the tree operations on the
compressed representation afterwards.

8.2.1 GCT Structure
Let R[1, r] be the rules (including initial rules generating the terminals ’(’ and
’)’) and C[1, c] the final sequence resulting from applying RePair (see Section 5.4)
compression to the parentheses sequence P [1, 2t]. We use a version of RePair that
yields balanced grammars (i.e., of height O(lg t)) in most cases.3 We describe how
we store R and C.

8.2.1.1 Storing the Rules R

A plain storage of the rules R[1, r] requires 2r lg r bits, as a simple array R[k] = (i, j)
meaning R[k] → R[i]R[j]. Although this plain storage is sufficiently compact for
many applications, as it is the case of grammar compressed sequences (see Section 6),
grammar compressed trees are an exception. Tree operations are more complex than
just rsa queries, which means we typically need more additional data structures
to have a fully-functional data structure. Additionally, when σ = 2, which is the
case of balanced parentheses representations, the parentheses sequences need n bits,
and thus the impact of storing the dictionary may be larger than for sequences with
σ > 2. This space overhead may limit the use of the data structure, which means
we should try to save as much space as possible, but still having reasonable query
performance. Therefore, and in order to mitigate the space impact of storing the
dictionary R, instead of a plain storage of R, we will use the technique described by
Tabei et al. [TTS13], which uses only r lg r +O(r) bits and permits extracting the
right hand of any rule in time O(lg r).

The grammar is now seen as a DAG where the nodes are the nonterminals, and
each rule Rk → RiRj induces two arrows, from Rk to Ri and from Rk to Rj . Now
all the arrows from nodes to their left children, seen backward, form a tree TL,
and those to their right children, seen backward, form a tree TR. We represent TL
and TR, using a succinct tree representation, in O(r) bits (recall Section 8.1). The
identifiers of the nonterminals will be their preorder values in TL: rule Rk will refer
to the node with preorder k in TL.

3From www.dcc.uchile.cl/gnavarro/software. There exist algorithms that ensure balanced
grammars [Sak05], but they are more complicated.

8.2. Grammar Compressed Tree 133

R 1 R 0

R 2

R 3 R 4

R 5

R 6

R 7T
L

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8 R 1 R 0

R 2

R 3 R 4

R 5

R 6

R 7 T
R

R 1 R 0

R 2

R 3 R 4

R 5

R 6

R 7

R

1

1

0

0

−1

0

−1

−1

0

0

0

0

−1

0

−1

−1

1

3

6

12

7

2

3

1

0

1

2

4

2

1

1

0

(

(

(

(

(

(

(

)

(

)

)

)

)

)

)

)

110100

110100110100

1101000

m se l prpl

1

2

3

4

5

6

7

8

10

100

0

1

str

110

2

3

4

5

6 3

5

6

7

8

7

81 1 2

4

Figure 8.4: The grammar R of Figure 5.2 in DAG form (top left), its
representation as two trees TL and TR (with preorders in slanted gray) plus
a permutation mapping preorders (bottom), and the data we store on the
nonterminals (top right, node identifiers correspond to preorders in TL).

In addition, we need to map between a preorder value of a nonterminal in TL
and the preorder value of the same nonterminal in TR, and back. We use a practical
technique by Munro et al. [MRRR03] that represents a permutation π of {1, 2, . . . , r}
using r lg r +O(r) bits. It stores the array π = [π(1), π(2), . . . , π(r)] explicitly (thus
π(i) is computed in constant time), and adds O(r) bits of data that allows computing
any π−1(i) in time O(lg r). Figure 8.4 illustrates this representation.

The main operation carried out on this representation is, given a nonterminal k
such that Rk → RiRj , find i and j. The procedure is as follows:

1. Compute xL ← node(TL, k), the node of TL that represents Rk.

2. Find yL ← parent(TL, xL), the parent of xL, which represents Ri in TL.

3. Compute i← preorder(TL, yL), the identifier of nonterminal Ri.

4. Map kR ← π(k), the preorder of Rk in TR.

5. Compute xR ← node(TR, kR), the node of TR that represents Rk.

134 Chapter 8. Grammar Compressed Trees

6. Find zR ← parent(TR, xR), the parent of xR, which represents Rj in TR.

7. Compute jR ← preorder(TR, zR), the preorder of zR in TR.

8. Map back j ← π−1(jR), the identifier of nonterminal Rk.

In practice, the structure described in Section 8.1 is too powerful for the
few operations we need on TL and TR. We use instead the so-called LOUDS
representation [Jac89] (Section 2.10), which supports operation parent and an
equivalent to operations preorder and its inverse node (that is, it assigns a distinct
number in [1, r] to each node, although it is not its preorder value). The LOUDS
representation is smaller and faster than the one described in Section 8.1, albeit it
supports fewer operations.

8.2.1.2 Storing Information on the Rules

We enrich the grammar R with additional information on the nonterminals, to allow
for fast operations on the represented tree. For each nonterminal Rk, and being
str(Rk) be the sequence of bits expanded by Rk, we store the following arrays (see
Figure 8.4).

1. m[k], the minimum excess of ‘(’s in str(Rk). It holds m[k] ≤ 0 because the
excess of the empty prefix of the string is always 0.

2. e[k], the total excess of str(Rk).

3. s[k] = |str(Rk)|, the length of the string Rk generates.

4. l[k], the number of leaf nodes represented inside str(Rk), that is, the number
of substrings of the form ‘()’ (or ‘10’, in bits) present in str(Rk).

5. pl[k] and pr[k], the leftmost and rightmost parentheses (bits) in str(Rk).

Since e[k] can be positive or negative, we rather store e[k]−m[k] ≥ 0. On the
other hand, m[k] is stored as −m[k] ≥ 0. Since s[k] ≥ 2l[k] −m[k], we represent
s[k]− 2l[k] +m[k] ≥ 0 to induce smaller numbers. Many values in these arrays are
expected to be small (and even smaller after these transformations), so we store them
using a variable-length representation that uses fewer bits for smaller numbers. The
representation we choose, called directly addressable codes (DACs) (see Section 2.8),
allows direct access to any cell value (we use the DAC variant that uses minimum
space). Of course, the arrays pl and pr are stored using one bit per cell.

To further save space, only some nonterminals k will store this information.
Let Rk → RiRj . Then, it holds m[k] = min(m[i], e[i] + m[j]), e[k] = e[i] + e[j],
s[k] = s[i] + s[j], l[k] = l[i] + l[j] + [1 if pr[i] =′ (′ ∧ pl[j] =′)′], pl[k] = pl[i],
and pr[k] = pr[j]. These recurrences allow us computing the desired values for
nonterminals Rk that do not store them. We use a technique [NPV14] that, given

8.2. Grammar Compressed Tree 135

a parameter y, chooses a set of nonterminals that will store the array values,
guaranteeing that we will never recursively expand more than y nonterminals in
order to obtain any such value.

8.2.1.3 Storing the Array C

Sequence C[1, c] is stored as an array of nonterminals, that is, the corresponding
preorder values in TL, using c lg r bits. In addition, the parentheses sequence P will
be sampled every z positions. For the sth sample (s ≥ 0), we store the following
values.

1. Cp[s], the position in C whose expansion contains P [zs+ 1], that is, Cp[s] =
min{w,

∑w
v=1 |str(C[v])| > zs}.

2. Co[s], the distance from zs+ 1 to the beginning of C[Cp[s]], that is, Co[s] =
zs−

∑Cp[s]−1
v=1 |str(C[v])|.

3. Ce[s] =
∑Cp[s]−1
v=1 e[C[v]], the cumulative excess up to the beginning of block

C[Cp[s]].

4. Cl[s], the number of leaves (occurrences of ‘10’) up to the beginning of C[Cp[s]],
that is, Cl[s] = l[C[1]]+

∑Cp[s]−1
v=2 (l[C[v]]+[1 if pr[C[v−1]] =′ (′ ∧ pl[C[v]] =′

)′]) if Cp[s] > 1, and Cl[s] = 0 otherwise.

On top of this array of samples, we form a balanced binary tree, where each
node stores the minimum excess reached within the range of C it covers (the sth
leaf covers the range P [z(s− 1) + 1, zs]). This excess is represented in absolute form,
not relative to the range of blocks. Figure 8.5 illustrates the representation of C.

This sampled data adds O((t lg t)/z) bits to the c lg r bits used to store sequence C.
If we choose z = Θ((t lg t)/c) and y large enough for the marked blocks be O(r/ lg t),
then the space of our grammar representation is (r + c) lg r + O(r + c), which is
asymptotically equal to the space of a plain grammar-compressed representation the
sequence P [1, 2t]. Since the c nonterminals in C expand to 2t characters, we will
be able to scan the cells of C between two samples in O(lg t) time on average4. We
cannot bound the value of y required to have O(r/ lg t) samples, however, but our
experiments will show that reasonable space/time tradeoffs are achieved.

8.2.2 Basic Operations
We start by describing some basic operations on the GCT. The following procedure
computes E(p), the excess in P [1, p], which is needed to compute tDepth(p) = E(p)
and preorder(p) = (p+ E(p))/2.

4This can be made worst-case by regularly sampling C[1, c] instead of P [1, 2t], but this entails a
binary search to find the sample corresponding to a position in P , and turns out to be slower than
the sampling we chose, for the same space usage.

136 Chapter 8. Grammar Compressed Trees

1101 1 10100 100 110 110100110100 110 100 1101000 110100 10 110 1101000 11 01000

R3 R1 R5 R4 R3 R7 R5 R6 R5 R2 R3 R6 R6

(p,o,e,l)=(1,0,0,0) (4,0,2,3) (6,4,2,5) (7,3,2,9) (9,0,1,11) (11,2,1,16) (13,2,1,19)

 m = 1

 m = 1

m = 0

C =

B =

 1212 3 43432 321 232 343432343432 343432 3434321 232321 21 232 3434321 2323210E =

m=1 m=2 m=1 m=1 m=1 m=0m=1

 m = 1 m = 1 m = 0

 m = 0

Figure 8.5: Tree structure built on top of the C array of Figure 5.2, for
a sampling step of z = 10. The positions of B in bold show where is the
minimum excess reached, within each block.

1. We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u]
starts in P after position q ← sz − Co[s], and the excess up to q is e← Ce[s].

2. We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k]
and e← e+ e[k], where we remind that s[k] and e[k] are the total length and
excess, respectively, of str(Rk). We stop at the position C[v] where q would
exceed p if we processed v.

3. Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj
(i and j are found with the method described in Section 8.2.1.1). If q+s[i] ≤ p,
then we add q ← q + s[i] and e← e+ e[i], and continue recursively with Rj ;
otherwise we continue recursively with Ri. When we finally reach a terminal,
we know the excess e up to position q = p. Then we return E(p) = e.

If we store e[] andm[] values for all the nonterminals, then the sequential traversal
in point 2 requires on average O(lg t) time, as discussed at the end of Section 8.2.1.3.
Point 3 takes time O(lg2 t), because the grammar is balanced and thus has height
O(lg t), and each time we expand Rk → RiRj in the downward traversal we take
time O(lg t) to find i and j with the representation of Section 8.2.1.1. Thus the total
time is O(lg2 t). Instead, if we sample the values e[] and m[] with parameter y, then
each computation of those values requires O(y) symbol expansions, each of which
still costs O(lg t) time. This raises the total time to O(y lg2 t).

Another basic operation is to find the value of P [p]. This is necessary for isLeaf
and fChild, and also participates in operations nSibling and pSibling. The recursion

8.2. Grammar Compressed Tree 137

described for operation E(p) ends up at a terminal in point 3, which is P [p + 1].
Therefore, the following variation returns P [p].

1. We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u]
starts in P after position q ← sz − Co[s].

2. We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q+ s[k].
We stop at the position C[v] where q would reach p if we processed v.

3. Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj .
If q + s[i] < p, then we add q ← q + s[i] and continue recursively with Rj ;
otherwise we continue recursively with Ri. When we finally reach a terminal,
it is at position q = p in P , so we return it.

8.2.3 Operations fwd and bwd
These are the two most important operations on the GCT, needed to implement
parent, nSibling, pSibling, ancestor, subtree, and tAncestor. They also participate in
operations LCA, sLink, LAQs, sDepth, LAQs, and child. We describe how to solve
operation fwd(p, d), where p is a position in P . This follows the same spirit of the
description of the operation on a balanced tree, recall Section 8.1. The scheme of
the algorithm, with the corresponding steps, is depicted in Figure 8.6. Operation
bwd(p, d) is analogous.

1. We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u]
starts in P after position q ← sz − Co[s], and the excess up to q is e← Ce[s].

2. We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k]
and e← e+ e[k]. We stop at the position C[v] where q would exceed p if we
processed v.

3. Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj .
If q + s[i] ≤ p, then we add q ← q + s[i] and e ← e + e[i], and continue
recursively with Rj ; otherwise we continue recursively with Ri. When we
finally reach a terminal, we have the excess e up to position p = q. Now we
start looking for a negative difference d of excess to the right of position q.

4. We traverse back (returning from recursion) the path in the grammar followed
in point 3. If we went towards the right child Rj of a rule Rk → RiRj , we just
return. If, instead, we went towards Ri, then we check whether d ≤ −m[j]. If
so, the answer is within Rj , otherwise we add q ← q + s[j] and d← d+ e[j],
and return to the parent in the recursion.

5. If in the previous point we have established that the answer is within a
nonterminal Rj , we traverse the expansion of Rj → RlRm. If d > −m[l], then

138 Chapter 8. Grammar Compressed Trees

terminal

(5) traverse

expansion

looking for

difference d

C

(2) sequential search for p
 in cells

(3) traverse

expansion

looking for

position p

(4) return from

recursion

looking for

difference d

on right siblings

(1) last preceding

sample

.

(6) sequential search for d
 in cells

(7) search the tree for d in samples

terminal

(8=6) sequential search for d
 in cells

Figure 8.6: General scheme of the algorithm for fwd(p, d), assuming d is
found after another sample. Sampled blocks have thick borders. Grayed
blocks are nonterminals that become partially expanded; dashed ones are
skipped after considering their e[] and m[] values. The middle tree is that of
Figure 8.5.

we add q ← q + s[l] and d← d+ e[l], and continue recursively with Rm; else
we continue recursively with Rl. When we reach a leaf, the answer is q.

6. If in point 4 we return from the recursion up to the root symbol C[v] without
yet finding the desired excess difference d, we update e ← e + e[C[v]] and
scan the nonterminals C[v + a] for a = 1, 2, . . ., increasing q ← q + s[C[v + a]],
e ← e + e[C[v + a]], and d ← d + e[C[v + a]], until finding an a such that
d ≤ −m[C[v + a]]. At this point we look for the final answer within the
nonterminal C[v + a] just as in point 5.

7. If we reach the next sampled position, q ≥ sz, without yet finding the answer,
we jump to the bq/zcth leaf of the balanced tree we built on the samples of C
(the leftmost leaf is the 0th), and traverse it upwards until the current node
has a right sibling whose (absolute) minimum value m satisfies e − d ≥ m.
Then we descend from that right sibling. If its left child’s minimum value ml

satisfies e− d ≥ ml, we descend to the left child, otherwise to the right child.

8. We eventually reach the s′th leaf of the tree, thus we know that the desired
answer can be found from position v ← Cp[s′] in C. Note that C[v] starts
after position q ← s′z − Co[s′] in P , and the excess up to q is Ce[s′]. Thus we
recompute d← d+Ce[s′]− e and e← Ce[s′], and continue traversing the cells
C[v + a] sequentially, for a ≥ 0, just as in point 6 (and eventually finishing as
in point 5).

8.2. Grammar Compressed Tree 139

The complexity of this procedure is the same as for the simpler operations. The
only new cost is O(lg t) to traverse the balanced tree, which is not significant.

8.2.4 Operation RMQ
This operation is fundamental for the LCA queries, among others. To solve
RMQ(p, p′) we traverse all the O(lg t) grammar nodes between positions p and
p′ and locate the point where the minimum excess occurs.

1. We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u]
starts in P after position q ← sz − Co[s], and the excess up to q is e← Ce[s].

2. We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q + s[k]
and e← e+ e[k]. We stop at the position C[v] where q would reach p if we
processed v.

3. Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj .
If q + s[i] < p, then we add q ← q + s[i] and e ← e + e[i], and continue
recursively with Rj ; otherwise we continue recursively with Ri. When we
finally reach a terminal, we are at position p and initialize min← e. Now we
update e ← e+ 1 if the terminal is a ’(’ or e ← e− 1 if the terminal is a ’)’.
Finally, we update min← min(min, e) and q ← q + 1.

4. We traverse back (returning from recursion) the path in the grammar followed
in point 3. If we went towards the right child Rj of a rule Rk → RiRj , we just
return. If, instead, we went towards Ri, then we check whether q + s[j] > p′.
If so, position p′ is within Rj , otherwise we update min← min(min, e+m[j]),
q ← q + s[j], and e← e+ e[j], and return to the parent in the recursion.

5. If in the previous point we have established that p′ is within a nonterminal
Rj , we traverse the expansion of Rj → RlRm. If q + s[l] ≤ p′, then we update
min ← min(min, e + m[l]), q ← q + s[l], and e ← e + e[l], and continue
recursively with Rm; else we continue recursively with Rl. When we reach a
leaf, we have q = p′ and the minimum excess is min.

6. If in point 4 we return from the recursion up to the root symbol C[v] without yet
reaching position p′, we scan the nonterminals C[v+a] for a = 1, 2, . . ., updating
min← min(min, e+m[C[v+a]]), q ← q+ s[C[v+a]], and e← e+ e[C[v+a]],
until finding an a such that q + s[C[v + a]] > p′. At this point we complete
the calculation of min within the nonterminal C[v + a] just as in point 5.

7. If we reach the next sampled position, q ≥ sz, without yet reaching position
p′, we jump to the bq/zcth leaf of the balanced tree we built on the samples of
C, and traverse it upwards until the the current node has a right sibling that
covers position p′. Along the upward traversal, for each right sibling (that

140 Chapter 8. Grammar Compressed Trees

does not yet cover p′) with minimum value mr, we set min← min(min,mr).
Once we find a right sibling that covers p′ we descend from it. If its left child
covers p′, we just descend to the left, else we descend to the right and set
min← min(min,ml), where ml is the minimum value stored at the left child.

8. We eventually reach the s′th leaf of the tree, thus we know that p′ can be
found from position v ← Cp[s′] in C. Note that C[v] starts after position
q ← s′z − Co[s′] in P , and the excess up to q is e← Ce[s′]. Thus we continue
traversing the cells C[v + a] sequentially, for a ≥ 0, just as in point 6.

9. We finally have the min value, but not the position where it was reached. If
min was set at a node of the balanced tree, we descend by its left or right
children, whichever matches the minimum value of its parent, until reaching
a leaf s′′. Then we scan k ← C[Cp[s′′], . . .], starting with q ← s′′z − Co[s′′],
e ← Ce[s′′] and m ← 0, updating q ← q + s[k], m ← min(m, e + m[k]) and
e← e+ e[k], until we reach the value e+m = min for some k (before q reaches
the next sampled block).

10. Either because we computed it in point 9, or because min was reached within
a nonterminal Rk starting after position q, we proceed as follows. If Rk →
RiRj , then if m[k] = m[i], we continue recursively with Ri; otherwise we set
q ← q + s[i] and continue recursively with Rj . When we reach a terminal, the
answer is RMQ(p, p′) = q.

8.2.5 Mapping with Leaves
Many applications requires the ability to count the number of leaves up to some
position P [p], and to find the lth leaf in P . The storage of l[k], pl[k] and pr[k] serves
this purpose. We first show how to compute the number of leaves up to position p.

1. We compute s ← b(p − 1)/zc and then position u ← Cp[s] in C. Then C[u]
starts in P after position q ← sz − Co[s], and the number of leaves up to that
position is l← Cl[u]. We set pr ← pr[C[u− 1]] (if u > 0, otherwise pr ←′)′).

2. We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q+ s[k],
l ← l + l[k] + [1 if pr =′ (′ ∧ pl[k] =′)′], and pr ← pr[k]. We stop at the
position C[v] where q would exceed p if we processed v.

3. Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj .
If q+s[i] ≤ p, then we add q ← q+s[i], l← l+ l[i] + [1 if pr =′ (′ ∧ pl[i] =′)′],
and pr ← pr[i], and continue recursively with Rj ; otherwise we continue
recursively with Ri. When we finally reach a terminal, we know the number
of leaves l up to position p. Then we return l.

Finding the lth leaf is the inverse of the above operation.

8.3. Experimental Results 141

1. We binary search Cl to find the largest s such that Cl[s] < l. This points to
position u← Cs[s] in C, which starts after q ← sz − Co[s] in P . The number
of leaves up to position q is l′ ← Cl[s], and we set pr ← pr[C[u− 1]] (if u > 0,
otherwise pr ←′)′).

2. We sequentially traverse the nonterminals k ← C[u . . .], updating q ← q+ s[k],
l′ ← l′ + l[k] + [1 if pr =′ (′ ∧ pl[k] =′)′], and pr ← pr[k]. We stop at the
position C[v] where l′ would reach l if we processed v.

3. Now we navigate the expansion of the nonterminal k = C[v]. Let Rk → RiRj .
If l′ + l[i] + [1 if pr =′ (′ ∧ pl[i] =′)′] < l, then we set l′ to this value, update
q ← q + s[i], set pr ← pr[i], and continue recursively with Rj ; otherwise we
continue recursively with Ri. When we finally reach a terminal, we know the
number of leaves up to position q is l′ < l and that their number reaches
l at position q + 1. Then we return q, the starting position of the opening
parenthesis that starts the lth leaf.

8.3 Experimental Results
8.3.1 Environmental Set-up and Datasets
We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM mem-
ory, running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64.
All our implementations use a single thread and are coded in C++. The
compiler is g++ version 4.7, with -O9 optimization. We implemented our
solutions inside Libcds [Cla] and use Navarro’s implementation of RePair
(www.dcc.uchile.cl/gnavarro/software/repair.tgz).

We used various suffix tree topologies of several repetitive datasets described
in Section 5.6. Concretely, we use collections DNA.1, DNA.01, DNA.001, DNA.0001,
influenza, escherichia, para, and einstein (all DNA datasets except einstein).

We use three different strategies based on previous work [NS14, ACN13] to
extract queries, each defined to correctly measure the performance of a specific type
of queries. These strategies are described as follows:

(a) We randomly pick a leaf and collect and report all those nodes in the path
from that leaf to the root.

(b) We randomly select couples of leaves.

(c) We randomly select leaves with tDepth values larger than 10, and then we
report that leaf and a value in the range [1, tDepth− 1].

Queries for operations fChild, tDepth, nSibling, and parent were extracted
following strategy (a); those for LCA following strategy (b); and those for

142 Chapter 8. Grammar Compressed Trees

tAncestor following strategy (c). For each operation, we averaged each data point
over 10,000 queries.

8.3.2 Parameterizing the Data Structures
We compared our GCT with an implementation of the Balanced Parentheses of
Sadakane [ACNS10] (Sada). We used various combinations of parameters y and z
for the GCT, concretely, y ∈ {20, 21, 22, 24, 28} and z ∈ {28, 210, 212, 214}. In most
cases, this implies leaving y at sampling every nonterminal and using z to reduce
the space. The combination of those parameters would generally yield a cloud of
points in the charts, although we only show those space-time dominant. We used
the balanced version of RePair (see Section 5.4), which consistently gave us better
results.

8.3.3 Space Performance
Figure 8.7 gives a space breakdown of our GCT representation for the 8 collections,
in bpn (bits per node). The breakdown has three parts: (1) the representation of
the rules R of the GCT; (2) the representation of sequence C of the GCT; and (3) the
extra data we store for R and C associated to samples. Obviously, we only obtain
variability for the third part when we vary y and z.

In all collections, the space decreases as repetitiveness increases. The space for
the R and C samplings varies significantly with parameter z, but not so much for
y. This suggests that the rule sampling does not decrease the space significantly,
whereas it does increase the time. Our best space/time combinations generally store
the rule data for all the nonterminals, and use z to obtain space/time tradeoffs.
Note also all charts are upper-limited to 2.5 bpn, which is approximately the space
Sada obtains. On the real data, the situation is the same. Using reasonable values
for z, the space is about 1.5 bpn for escherichia, the least repetitive collection.
However, it decreases to less than 1 bpn on para and less than 0.8 on influenza,
which is much more repetitive. On einstein, the most repetitive collection, this
space is typically below 0.2 bpn.

8.3.4 Time Performance
Figures 8.8 to 8.12 show the time-space performance for operations fChild (requiring
just an access to the parentheses), tDepth (requiring simple parenthesis operations),
nSibling, parent and tAncestor (requiring the more complex fwd and bwd operations
on the parentheses). For tAncestor we test with a random depth between 1 and the
tree node depth.

For Sada operation times go from around one nanosecond (ns) to some
microsecond (µs). The fastest, running in at most 10 ns, are fChild, tDepth, and
parent. Instead, nSibling and tAncestor are slower, requiring 0.5–1 µs.

8.3. Experimental Results 143

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of DNA.1

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of DNA.01

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of DNA.001

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of DNA.0001

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of escherichia

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of para

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of influenza

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of einstein

Figure 8.7: Space breakdown of our GCT representation for the different
collections and combinations of parameters y (rule sampling) and z (sampling
of C).

144 Chapter 8. Grammar Compressed Trees

The GCT solves fChild, tDepth and parent in 5–10 µs, tAncestor in 10–30 µs, and
nSibling 20–50 µs. That is 1–3 orders of magnitude slower than a plain parentheses
representation.

Regarding LCA operation, which is the more complex, Figure 8.13 shows that
the GCT uses 30–100 µs to solve it. The heaviest part of this operation is a RMQ,
for which Sada has explicit structures, thus they solve it fast, in 4–5 µs.

We have left out other less important operations from the experiments: root is
trivial in all implementations; preorder is similar to tDepth; pSibling is similar to
nSibling; isLeaf costs the same as fChild; ancestor is similar to nSibling; subtree is
also similar to nSibling.

8.4 Discussion
We have introduced the grammar compressed tree (GCT), a representation of arbitrary
tree topologies that exploits repetitiveness, that is, identical subtrees, in a way that
full navigation functionality is retained. In fact, any operation that can be solved
on the sequence of parentheses [NS14] can also be solved on the GCT.

We have shown, in particular, that the GCT allows representing explicitly the
topology of compressed suffix trees within very little space on repetitive sequence
collections, using from 1.4 to less than 0.1 bits per node (bpn) both for synthetic
and actual repetitive DNA sequence collections.

Two important challenges remain open:

1. Very large collections must reside on disk before they are compressed to fit
in main memory. The main obstacle to handle them with our techniques is
that the compression itself is not yet engineered to run on secondary memory.
For example, RePair compression performs well only in main memory (but it
can be replaced by other grammar compressors). This is an important future
challenge in order to address massive repetitive text collections.

2. Lempel-Ziv compression, especially the LZ77 variant, is more powerful than
grammar compression, but more difficult to manipulate [Nav12]. An interesting
approach would be to apply block trees (see Chapter 7) instead of RePair to
the tree topology, as long as we are able to perform the navigation operations.

8.4. Discussion 145

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA1, fchild

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpn

DNA01, fchild

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA001, fchild

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA0001, fchild

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

escherichia, fchild

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

para, fchild

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

influenza, fchild

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

einstein, fchild

GCT
Sada

Figure 8.8: Space-time tradeoffs for operation fChild.

146 Chapter 8. Grammar Compressed Trees

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA1, tdepth

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpn

DNA01, tdepth

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA001, tdepth

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA0001, tdepth

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

escherichia, tdepth

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

para, tdepth

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

influenza, tdepth

GCT
Sada

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

einstein, tdepth

GCT
Sada

Figure 8.9: Space-time tradeoffs for operation tDepth.

8.4. Discussion 147

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA1, nsibling

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpn

DNA01, nsibling

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA001, nsibling

GCT
Sada

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA0001, nsibling

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

escherichia, nsibling

GCT
Sada

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

para, nsibling

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

influenza, nsibling

GCT
Sada

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

einstein, nsibling

GCT
Sada

Figure 8.10: Space-time tradeoffs for operation nSibling.

148 Chapter 8. Grammar Compressed Trees

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA1, parent

GCT
Sada

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpn

DNA01, parent

GCT
Sada

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA001, parent

GCT
Sada

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA0001, parent

GCT
Sada

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

escherichia, parent

GCT
Sada

 0.01

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

para, parent

GCT
Sada

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

influenza, parent

GCT
Sada

 0.01

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

einstein, parent

GCT
Sada

Figure 8.11: Space-time tradeoffs for operation parent.

8.4. Discussion 149

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA1, tAncestor

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpn

DNA01, tAncestor

GCT
Sada

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA001, tAncestor

GCT
Sada

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA0001, tAncestor

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

escherichia, tAncestor

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

para, tAncestor

GCT
Sada

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

influenza, tAncestor

GCT
Sada

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

einstein, tAncestor

GCT
Sada

Figure 8.12: Space-time tradeoffs for operation tAncestor.

150 Chapter 8. Grammar Compressed Trees

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA1, LCA

GCT
Sada

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpn

DNA01, LCA

GCT
Sada

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA001, LCA

GCT
Sada

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

DNA0001, LCA

GCT
Sada

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

escherichia, LCA

GCT
Sada

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

para, LCA

GCT
Sada

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

influenza, LCA

GCT
Sada

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpn

einstein, LCA

GCT
Sada

Figure 8.13: Space-time tradeoffs for operation LCA.

Part III

Applications

151

Chapter 9

Representation of Point
Grids

Grids are abstract data types that arise in multiple applications, from geographic
information systems (GIS), to computational geometry problems or web graphs, as
well as for internal components of other data structures.

Typically, a grid is a square matrix of n× n cells that contains n points, exactly
one point per row and per column (other arrangements are routinely mapped to this
simplified case). Figure 9.1 shows an example.

Although a wide number operations are usually of interest when talking about
grids, probably the most significant are count and report. Given a sub-rectangle
[x1, x2]× [y1, y2], where 1 ≤ x1 ≤ x2 ≤ n and 1 ≤ y1 ≤ y2 ≤ n, a count query in a
grid tells how many points are contained in the given sub-rectangle, while report
identifies each of them.

The first data structure to represent n× n grids and solve these two operations
was the range tree [Ben79, Lue78, LW80, Ben80]. It takes O(n lg2 n) bits and is able
to carry out count queries in O(lg2 n) time and report in O(lg2 n + occ), where
occ is the number of points reported. Later, Chazelle [Cha88] modified the range
trees to start using bitmaps, replacing some operations in the range trees by rank
queries in the bitmaps. The space was reduced to O(n lgn) bits, count query times
to O(lgn) and report to O((1 + occ) lgn). Note these are exactly the same space
and time bounds we can obtain by representing the grid with a wavelet tree-like
data structure [MN06].

In this chapter we propose an algorithm to carry count and report queries in
a wavelet matrix (see Section 4.1.2) and we compare it with the strict variant of a
pointerlesss wavelet tree (see Section 4.1.1). We then experimentally evaluate both
proposals, showing the wavelet matrix outperforms the wavelet tree both in real and
synthetic datasets for both kinds of queries.

153

154 Chapter 9. Representation of Point Grids

This chapter is organized as follows: Section 9.1 describes the algorithms for
count and report queries on wavelet trees and matrices; Section 9.2 compares them
experimentally; and finally Section 9.3 presents our conclusions.

9.1 Representing Grids with Wavelet Trees
As mentioned at the beginning of Chapter 4, wavelet trees and matrices are not
only useful to support access, rank and select operations on sequences. They
are also frequently used to represent point grids [Cha88, MN06, Nav12], where they
can solve count and report queries efficiently. To do so, they consider a n × n
matrix with only a cell marked per row and column as a sequence S[1, n] over an
alphabet σ = n. For instance, the grid of Figure 9.1 can be seen as a sequence
S[1, n] = 12, 7, 10, 6, 2, 11, 5, 9, 3, 8, 4, 1. Note the alphabet size is σ = n, which
means pointer-based wavelet trees will perform poorly, as the space for the tree
pointers will become dominant. Similarly, zero-order compression is ineffective since
S is a permutation of [1, n], having thus maximal zero-order entropy. For these
reasons, balanced pointerless wavelet tree-like data structures are recommendable,
as Mäkinen and Navarro previously suggested [MN06].

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

Figure 9.1: Example of a grid of 12 × 12 with only a marked square per
row and column.

Algorithm 9 shows the pseudocode for range searches using standard wavelet trees
(see Section 2.7.1). The main problem of pointer based wavelet trees when applied
on grids is that the alphabet size is σ = n. This adds an O(n lg σ) = O(n lgn) space

9.1. Representing Grids with Wavelet Trees 155

Algorithm 9 Range Search Algorithms on a Wavelet Tree: count(v, x1, x2, y1, y2)
returns count(P, x1, x2, y1, y2) on the wavelet tree of sequence P rooted at v; and
report(v, x1, x2, y1, y2) outputs all those y, where a point with coordinate y1 ≤ y ≤
y2 appears in P [x1, x2]. We have assigned a plain encoding to symbols taking values
in [0, σ).
count(v, x1, x2, y1, y2)
if x1 > x2 ∨ [αv, ωv]∩[y1, y2] = ∅ then
return 0

else if [αv, ωv] ⊆ [y1, y2] then
return x2 − x1 + 1

else
xl1 ← rank0(Bv, x1 − 1)
xl2 ← rank0(Bv, x2)
xr1 ← x1 − xl1 + 1
xr2 ← x2 − xl2
return count(vl, xl1, xl2, y1, y2)

+count(vr, xr1, xr2, y1, y2)
end if

report(v, x1, x2, y1, y2)
if x1 > x2 ∨ [αv, ωv]∩[y1, y2] = ∅ then
return

else if ωv − αv = 1 then
output αv

else
xl1 ← rank0(Bv, x1 − 1)− l + 1
xl2 ← rank0(Bv, x2)− l
xr1 ← x1 − xl1 + 1
xr2 ← x2 − xl2
report(vr, xl1, xl2, y1, y2)
report(vl, xr1, xr2, y1, y2)

end if

term just to store the tree pointers, becoming this approach not recommendable in
practice.

Instead, Algorithm 10 shows the pseudocode adapted to pointerless wavelet trees,
which remove that space overhead. The time complexities can be shown to be O(lgn)
for count and O(k lg(n/k)) if report outputs k points. These time bounds are
matched by both Algorithms 9, and 10. However, in practical terms Algorithm 10
requires twice the number of rank operations than Algorithm 9.

Focusing on wavelet matrices, range searches for rectangles [x1, x2] × [y1, y2]
essentially require that we are able to track the points x1 and x2 downwards in
the tree. Thus, the same wavelet matrix mechanism for rank can be used (see
Algorithm 7). Since we are only interested in the value x2 − x1 at the traversed
nodes, we do not need to keep track of p, even in the strict variant (the extended
variant requires too much space in this scenario). As a result, we need the same
number of rank operations as in a pointer-based representation (see Algorithm 9),
and we get rid of the two extra rank operations required by the pointerless wavelet
tree. That is, wavelet matrices get the best of pointer-based and pointerless wavelet
tree-based approaches. Algorithm 11 gives the pseudocode of count and report on
wavelet matrices.

156 Chapter 9. Representation of Point Grids

Algorithm 10 Range search algorithms on pointerless wavelet trees:
count(0, x1, x2, y1, y2, 0, n) returns count(P, x1, x2, y1, y2) on the wavelet tree of
sequence P ; and report(0, x1, x2, y1, y2, 0, n) outputs all those y, where a point with
coordinate y1 ≤ y ≤ y2 appears in P [x1, x2]. For simplicity we have omitted the
computation of [αv, ωv). We have assigned a plain encoding to symbols taking values
in [0, σ).
count(`, x1, x2, y1, y2, p, e)
if x1 > x2 ∨ [αv, ωv]∩[y1, y2] = ∅ then
return 0

else if [αv, ωv] ⊆ [y1, y2] then
return x2 − x1 + 1

else
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
xl1 ← rank0(B̃`, x1 − 1)− l + 1
xl2 ← rank0(B̃`, x2)− l
xr1 ← x1 − xl1 + 1
xr2 ← x2 − xl2
return count(`+1, xl1, xl2, y1, y2, p, p+r−l)

+count(`+1, xr1, xr2, y1, y2, p+r−l, e)
end if

report(v, x1, x2, y1, y2, p, e)
if x1 > x2 ∨ [αv, ωv]∩[y1, y2] = ∅ then
return

else if ωv − αv = 1 then
output αv

else
l← rank0(B̃`, p)
r ← rank0(B̃`, e)
xl1 ← rank0(B̃`, x1 − 1)− l + 1
xl2 ← rank0(B̃`, x2)− l
xr1 ← x1 − xl1 + 1
xr2 ← x2 − xl2
report(`+1, xl1, xl2, y1, y2, p, p+r−l)
report(`+1, xr1, xr2, y1, y2, p+r−l, e)

end if

9.2 Experimental Results
Our implementations build over the wavelet tree implementations of Libcds [Cla],
a library implementing several space-efficient data structures. For each wavelet
tree/matrix variant we present two versions, CM and RRR (recall Section 2.6).

The variants compared are the following:

• WTNP: the (strict) pointerless wavelet tree (Section 4.1.1);

• WM: the (strict) wavelet matrix (Section 4.1.2);

Each data structure is appended with the name of the bitmap implementation it
uses. For example, we call WTNP.RRR the pointerless wavelet tree with all bitmaps
represented with RRR.

Note we cannot use Huffman compression, because the order of the symbols is
not maintained at the leaves. Alphabet Partitioning techniques (see Section 2.7.4)
also shuffles the alphabet, so it cannot be used in this scenario. Extended variants
are not a good option either, because in this case it holds σ = n. Thus we test only
the strict variants of WTNP and WM.

In order to evaluate the range search performance over discrete grids, we use the
following three datasets formed by synthetic and real collections of MBRs (Minimum

9.2. Experimental Results 157

Algorithm 11 Range search algorithms on the wavelet matrix:
count(0, x1, x2, y1, y2) returns count(P, x1, x2, y1, y2) on the wavelet tree of
sequence P ; and report(0, x1, x2, y1, y2) outputs all those y, where a point with
coordinate y1 ≤ y ≤ y2 appears in P [x1, x2]. For simplicity we have omitted the
computation of [αv, ωv). We have assigned a plain encoding to symbols taking
values in [0, σ).
count(`, x1, x2, y1, y2)
if x1 > x2 ∨ [αv, ωv]∩[y1, y2] = ∅ then
return 0

else if [αv, ωv] ⊆ [y1, y2] then
return x2 − x1 + 1

else
xl1 ← rank0(B̃`, x1 − 1) + 1
xl2 ← rank0(B̃`, x2)
xr1 ← x1 − xl1 + 1
xr2 ← x2 − xl2
return count(`+1, xl1, xl2, y1, y2)

+count(`+1, xr1, xr2, y1, y2)
end if

report(v, x1, x2, y1, y2)
if x1 > x2 ∨ [αv, ωv]∩[y1, y2] = ∅ then
return

else if ωv − αv = 1 then
output αv

else
xl1 ← rank0(B̃`, x1 − 1) + 1
xl2 ← rank0(B̃`, x2)
xr1 ← x1 − xl1 + 1
xr2 ← x2 − xl2
report(`+1, xl1, xl2, y1, y2)
report(`+1, xr1, xr2, y1, y2)

end if

Bounding Rectangles of objects). We insert the two opposite corners of each MBR
as points in our dataset.

• Zipf: A synthetic collection of 1,000,000 MBRs with a Zipfian distribution
(world size = 1,000× 1,000, ρ = 1).1

• Gauss: A synthetic collection of contains 1,000,000 MBRs with a Gaussian
distribution (world size = 1,000× 1,000, µ = 500, σ = 200).1

• Tiger: A real collection of 2,249,727 MBRs from California roads, available at
the U.S. Census Bureau.2

To measure the performance on point grids, for synthetic collections we generate
sets of queries covering 0.001%, 0.01%, 0.1%, and 1% of the grid area. The sets
contain 1,000 queries, each with a ratio between both axes varying uniformly at
random between 0.25 and 2.25. For the real data set Tiger, we use as queries the
following four collections (also available for downloading at the Web site of Tiger):
Block (groups of buildings), BG (block groups), SD (elementary, secondary, and
unified school districts), and COUSUB (country subdivisions).

The machine used is an Intel(R) Xeon(R) E5620 running at 2.40GHz with 96GB
of RAM memory. The operating system is GNU/Linux, Ubuntu 10.04, with kernel

1http://lbd.udc.es/research/serangequerying
2http://www.census.gov/geo/www/tiger

158 Chapter 9. Representation of Point Grids

2.6.32-33-server.x86_64. All our implementations use a single thread and are coded
in C++. The compiler is gcc version 4.4.3, with -O9 optimization.

Figures 9.2 and 9.3 show the performance of WTNP and WM for count and report
queries, respectively. It turns out that, in the first level of each wavelet tree, the
number of zeros and ones is highly unbalanced when the grid size is far from the
next power of 2. This makes the entropy of the first bitmap rather low, whereas the
other bitmaps are more balanced. On the other hand, the range search algorithms
spend just a few rank operations on the first bitmap. To take advantage of this
feature, we compress the bitmap of the first level of both data structures, WTNP and
WM, with RRR and with a sampling of 32. The rest of bitmaps are represented using
CM with sampling rates of 32, 64, and 128.

In both figures 9.2 and 9.3 we append to the name of the data structure the name
of the query set. This takes values in {Q0001, Q001, Q01, Q1} in case of synthetic
collections. In case of the real collection Tiger, it takes values in {BLock, BG, SD,
COUSUB}.

The results for the counting queries show that the time worsens as the queries are
less selective. The wavelet matrix is always faster than the pointerless wavelet tree,
while using the same space. The difference in time is proportional to the cost for
each selectivity, but additive with respect to the sampling. For example, it becomes
about 25% faster when using the most space. We note in passing that the space is
basically 21 bps for the synthetic spaces and 23 bps for the Tiger dataset, which is
essentially lg σ = lgn.

In the case of reporting queries, we show the time per reported item, which
decreases as the query is less selective. Once again the wavelet matrix is faster than
the pointerless wavelet tree, albeit this time by a smaller margin: usually below
10%.

9.3 Discussion
In this chapter we have shown how to represent grids of points with the wavelet
matrix. We compared its performance for count and report queries with pointerless
wavelet trees, resulting in improved search performance, systematically matching the
same space. Therefore, we can consider the wavelet matrix a superior approach to
wavelet trees to represent grids of points and to carry out orthogonal range queries.

9.3. Discussion 159

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20.45 20.5 20.55 20.6 20.65 20.7 20.75 20.8 20.85 20.9 20.95

Ti
m

e
 (

m
ic

ro
se

co
n
d

s)
 p

e
r

q
u
e
ry

Bits per point

GAUSS

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 20.45 20.5 20.55 20.6 20.65 20.7 20.75 20.8 20.85 20.9 20.95

Ti
m

e
 (

m
ic

ro
se

co
n
d

s)
 p

e
r

q
u
e
ry

Bits per point

ZIPF

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 22.4 22.5 22.6 22.7 22.8 22.9 23 23.1

Ti
m

e
 (

m
ic

ro
se

co
n
d

s)
 p

e
r

q
u
e
ry

Bits per point

TIGER

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20.45 20.5 20.55 20.6 20.65 20.7 20.75 20.8 20.85 20.9 20.95

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

 p
e
r

q
u
e
ry

Bits per MBR

GAUSS

GAUSS & ZIPF

WM-Q0001
WTNP-Q0001

WM-Q001
WTNP-Q001

WM-Q01
WTNP-Q01

WM-Q1
WTNP-Q1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 22.4 22.5 22.6 22.7 22.8 22.9 23 23.1

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

 p
e
r

q
u
e
ry

Bits per MBR

TIGER

TIGER

WM-Block
WTNP-Block

WM-BG
WTNP-BG

WM-SD
WTNP-SD

WM-COUSUB
WTNP-COUSUB

Figure 9.2: Running time per count query over the three datasets.

160 Chapter 9. Representation of Point Grids

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 20.45 20.5 20.55 20.6 20.65 20.7 20.75 20.8 20.85 20.9 20.95

Ti
m

e
 (

m
ic

ro
se

co
n
d

s)
 p

e
r

re
p

o
rt

e
d

 i
te

m

Bits per point

GAUSS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20.45 20.5 20.55 20.6 20.65 20.7 20.75 20.8 20.85 20.9 20.95

Ti
m

e
 (

m
ic

ro
se

co
n
d

s)
 p

e
r

re
p

o
rt

e
d

 i
te

m

Bits per point

ZIPF

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 22.4 22.5 22.6 22.7 22.8 22.9 23 23.1

Ti
m

e
 (

m
ic

ro
se

co
n
d

s)
 p

e
r

re
p

o
rt

e
d

 i
te

m

Bits per point

TIGER

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20.45 20.5 20.55 20.6 20.65 20.7 20.75 20.8 20.85 20.9 20.95

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

 p
e
r

q
u
e
ry

Bits per MBR

GAUSS

GAUSS & ZIPF

WM-Q0001
WTNP-Q0001

WM-Q001
WTNP-Q001

WM-Q01
WTNP-Q01

WM-Q1
WTNP-Q1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 22.4 22.5 22.6 22.7 22.8 22.9 23 23.1

Ti
m

e
 (

m
ic

ro
se

co
n
d
s)

 p
e
r

q
u
e
ry

Bits per MBR

TIGER

TIGER

WM-Block
WTNP-Block

WM-BG
WTNP-BG

WM-SD
WTNP-SD

WM-COUSUB
WTNP-COUSUB

Figure 9.3: Running time of report query over the three datasets.

Chapter 10

Inverted Indexes

Along the past few decades, Inverted Indexes have been the core data structure to
speed up searches on natural language text collections [BYRN11, WMB99]. They
are behind most search engines and typically provide two kinds of functionalities:
pattern-search and document retrieval. Regarding the first, they permit to search
the documents for text patterns, obtaining the positions of their occurrences quite
efficiently. With regard to document retrieval, they are highly demanded and useful
when using boolean and ranked retrieval models, since they permit to obtain all the
documents where a term appears.

A positional inverted index is a data structure that stores the positions where
each word occurs at each document in increasing order. Instead, a non-positional or
document-oriented inverted index only stores the list of documents where each word
appears. Typical implementations of these indexes differentially encode the lists
of each word, and compress them using some encoding that favors small numbers
[BYRN11, WMB99]. Compression is obtained because longer lists have smaller
gaps. Using proper codes, the size of the positional index can reach the zero-order
entropy of the input text T [NM07], and the non-positional is usually much smaller.
When both indexes are stored, each non-positional entry also points to the first
corresponding positional entry. The text can be stored in some compressed form
so that one can extract arbitrary snippets, for example using an access-capable
sequence representation that reaches zero-order entropy as well (see Section 2.7 and
Chapter 4). In this case, the space of the text plus the indexes is at least 2nH0(T)
bits.

Inverted indexes are used to list the positions of a word in a document,
the documents where a word appears, the documents where two words appear
simultaneously, the positions where a pair of words appear as a phrase, etc. Using
little space in inverted indexes has always been of interest [WMB99], and the recent
trend is to maintain the index in the main memory of the computer (or of a cluster
of computers) [SWYZ02, SC07, CM07, ST07].

161

162 Chapter 10. Inverted Indexes

Algorithm 12 ExtractPosting(t, d) reports the positions of term t within
document d. ExtractDocs(t) reports the documents that contain t.

ExtractPosting(T, t, d)
s← select$(T, d)
e← select$(T, d+ 1)
r ← rankt(T, s) + 1
res← {}
next← selectt(T, r)
while next < e do
res← res : (next− s)
r ← r + 1
next← selectt(T, r)

end while
return res

ExtractDocs(T, t)
j ← 1
nt ← rankt(T, |T |)
res← {}
while j ≤ nt do
p← selectt(T, j)
r ← rank$(T, p)
res← res : r
p← select$(T, r + 1)
j ← rankt(T, r) + 1

end while
return res

10.1 Inverted Indexes with rsa Data Structures
Let us regard a natural language text collection as a set of documents D1, D2, . . . , Dd.
Let us call T [1, n] = $D1$D2$. . . Dd$ the concatenation of the documents, where
each position of T is a word and we use a special separator word $ preceding and
following each document. The alphabet Σ of T is large, as it consists of the distinct
words in the collection.

There has been some research around the idea of just representing the text
collection as a sequence and using rsa operations to simulate the functionalities
of inverted indexes, thus using basically nH0(T) bits [BCG+14, AGO10, BFLN12].
Algorithms 12 and 13 detail some of the most common operations. We dub this
solution RSAII.

In some applications, the text collection is versioned. For instance, if we index
Wikipedia, each article has many versions. The result will be a highly repetitive
dataset where most articles are very similar from one snapshot to the next. Inverted
indexes for versioned collections have been studied for a while [AF92, BEF+06,
HYS09, HZS10, CFMPN11], exploiting the redundancies that repetitions in the
collection induce in the inverted indexes.

In this chapter we present an experimental evaluation in which we use our data
structures for large alphabets and highly repetitive inputs to implement an RSAII
for the text T .

10.2 Experimental Results
In order to carry out the comparison between different inverted index implementa-
tions, we use collection fiwiki (see Section 5.6), which is precisely the concatenation
of versioned documents. We add the separators $ (which does not alter the numbers

10.2. Experimental Results 163

Algorithm 13 ReportDocsWithTerms(T, t1, t2) reports the list of documents
that contain both t1 and t2.

ReportDocsWithTerms(t1, t2)
n1 ← rankt1 (T, |T |)
n2 ← rankt2 (T, |T |)
res← {}
d1 ← Next(T, t1, n1, 1)
d2 ← Next(T, t2, n2, 1)
while d1 6= −1 and d2 6= −1 do

if d1 = d2 then
res← res : d1
d1 ← Next(T, t1, n1, d1 + 1)
d2 ← Next(T, t2, n2, d2 + 1)

else if d1 < d2 then
d1 ← Next(T, t1, n1, d2)

else
d2 ← Next(T, t2, n2, d1)

end if
end while
return res

Next(T, t, nt, d)
p← select$(T, d)
r ← rankt(T, p)
if r = nt then

return −1
end if
next← selectt(T, r + 1)
return rank$(T, next)

in Table 5.1 negligibly), and compare the following solutions:

• RSAII implemented with:

– AP, the Alphabet Partitioning technique described in Section 2.7.4;
– APRep.RP.WMRP, the solution for large alphabets and highly repetitive

sequences described in Chapter 6;
– WMH.RP, a variation of the wavelet tree for highly repetitive inputs described

in Section 5.5 which uses the compressed wavelet matrix of Chapter 4
instead of a pointerless wavelet tree.

– WMH.RRR the compressed wavelet matrix (Chapter 4) with bitmaps
compressed with RRR (see Section 2.6);

• II-VByte, an inverted index with the list gaps encoded using VByte (see
Chapter 2.5.2).

• II-RePair, an inverted index with the list gaps compressed with RePair
[CFMPN11] to exploit the repetitiveness of the collection.

The implementation we use for these indexes [CFMPN11] includes a non-
positional and a positional variant. However, instead of charging the space of
both variants and the additional pointers, we only show the space of the positional
variant for each case, independently of the needs of the operation. That is, we are

164 Chapter 10. Inverted Indexes

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r e
xt

ra
ct

ed
 it

em
 (m

ic
ro

se
co

nd
s)

bps

ExtractPosting (within a document)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r e
xt

ra
ct

ed
 it

em
 (m

ic
ro

se
co

nd
s)

bps

ExtractDocs

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r e
xt

ra
ct

ed
 it

em
 (m

ic
ro

se
co

nd
s)

bps

ReportDocsWithTerms

RSAII-AP
RSAII-APRep.RP.WMRP

RSAII-WMH.RP
RSAII-WMH.RRR

II-RePair
II-VBYTE

Figure 10.1: Space-time tradeoffs for inverted index operations (time in
logscale).

charging to II-VByte and II-RePair less space that the strictly necessary (the
difference is not much anyway).

We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM
memory, running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64.
All our implementations use a single thread and are coded in C++. The
compiler is g++ version 4.7, with -O9 optimization. We implemented our
solutions inside Libcds [Cla] and use Navarro’s implementation of RePair
(www.dcc.uchile.cl/gnavarro/software/repair.tgz).

For the queries we extract documents and term identifiers at random from the
text sequence. We ran 1,000 queries of each type, showing the time required per
output item. Figure 10.1 shows the results.

First of all we highlight that RSAII-APRep.RP.WMRP outperforms
RSAII-APRep.BT.WMBT in terms of space but the second is slightly faster in
ExtractPosting and ExtractDocs. With regard to ReportDocsWithTerms, both
solutions almost match in time, but again RSAII-APRep.RP.WMRP is more compact.

Comparing RSAII-APRep.∗ with the RSAII-WM.RP, the second is outperformed
both in terms of space and time in all the operations. Actually, RSAII-APRep.∗
are almost an order of magnitude faster than RSAII-WM.RP when using the same
space. Compared with statistically compressed RSAIIs, RSAII-AP and RSAII-WM,
our solution is up to 6 times smaller but an order of magnitude slower.

10.3. Discussion 165

With regard to classical implementations of inverted indexes, our RSAII-APRep.∗
are again up to 6 times smaller than II-VByte, which also obtains zero-order
compression. In terms of time, II-VByte clearly outperforms RSAII-APRep.∗
by several orders of magnitude (around 3). Compared with II-RePair, the
RSAII-APRep.∗ are never more than 3 times smaller but they are several orders
of magnitude slower, except for ReportDocsWithTerms, in which RSAII-APRep.∗
obtains better performance.

10.3 Discussion
In general, simulating inverted indexes with rsa data structures seems a good idea
if the space is the critical aspect of the application or if the search performance is
not a limitation. Besides, if we are reaching for richer functionalities, the fact of
simulating the inverted index operations with rsa data structures opens a window
to more complex operations [GNP12]. However, if the search performance is critical,
classical approaches should prevail, as the experiments have shown.

166 Chapter 10. Inverted Indexes

Chapter 11

Self-Indexes on Highly
Repetitive Sequences

Given a sequence T [1, n] with alphabet Σ = [1, σ], in Section 2.10 we described the
concept of self-index as a data structure that permits to represent T and to solve a
wide number of operations without actually accessing T .

Although there exist plenty of compressed data structures for this purpose, the
most well known may be classified into two big families: CSAs (Compressed Suffix
Arrays) [GV06, Sad03] and FM-Indexes (Full-text in Minute space-Indexes) [FM05].
Both support essentially the same functionalities but obtain different search and space
performances, although typically space-bounded by H0(T) or Hk(T), k < logσ n
[MN08]. Note this is a major improvement with regard to suffix arrays, which need
O(n lgn) bits [MM93] to just solve the same operations.

Even though this statistical space-bounds may suffice for most applications,
there exists scenarios in which that performance is no enough. For instance, DNA
analysis is a trend nowadays, and being able to carry out pattern matching queries
on these kind of datasets is a first order need. However, and as we previously
mentioned, DNA shows a highly repetitive structure that statistical compressor
are not able to exploit. This result in unnecessarily large indexes, inducing higher
investments on hardware and poor performance if the data structures do not fit in
main memory. Therefore, in order to obtain better self-indexes on highly repetitive
scenarios, a wide number space efficient solutions were proposed over the last decade
[MNSV10, CN10b, CN12, GGK+12, MNKS13, Nav04, TTS14, KN13].

Probably, one of the most successful solutions are those based on combining run-
length encodings with CSAs and FM-Indexes (RLCSA or RLFM-Indexes) [MNSV10].
They perform very well in practice since they are able to exploit some regularities
that appear in the internal components of CSAs and FM-Indexes when faced to
highly repetitive scenarios.

167

168 Chapter 11. Self-Indexes on Highly Repetitive Sequences

In this chapter we propose a new practical grammar compressed self-index on
highly repetitive scenarios. The idea is to use the sequence representations on highly
repetitive scenarios proposed along this thesis (recall Chapters 6 and 7) to represent
the internal structures of the FM-Index, permitting us to reduce the space with
regard to current implementations at the cost of increasing the time. This results
in a new proposal that may become of interest depending on the scenario and the
space/time requirements of the application. We dubbed our proposal GFMI or BTFMI,
from Grammar compressed and Block-Tree FM-Index respectively.

The chapter is organized as follows: Section 11.1 describes CSAs and FM-
Indexes; Section 11.2 shows several self-indexes adapted to highly repetitive datasets;
Section 11.3 presents our proposals for self-indexes on highly repetitive scenarios;
Section 11.4 provides an experimental evaluation of our techniques; and finally
Section 11.5 gives our conclusions.

11.1 Statistically-bounded Self-Indexes
Let T [1, n] be a text (or the concatenation of the texts in a collection) over alphabet
Σ = [1, σ]. Then, the suffix array [MM93] of T , A[1, n], is a permutation such that
A[i] tells the position in T of the ith lexicographically smallest suffix of T . The inverse
suffix array of T , A−1[1, n], is also a permutation such that A−1[A[i]] = i. These two
arrays are fundamental for CSAs and FM-Indexes in order to be fully-functional.

In the rest of this section, we will explain in detail how these data structures can
be compressed, as well as how CSAs and FM-Indexes use them, along with other
internal data structures, to carry out the expected functionalities.

11.1.1 Compressed Suffix Arrays
A compact representation of a suffix array requires O(n lgn) bits [MM93]. However,
a compressed representation achieves O(n lg σ) bits and, in most cases, close to the
empirical entropy of T [Man01]. Given a pattern of length m, most CSAs achieve
times of the form O(m) to O(m lgn) for operation count(p), O(polylogn) to access
A[i] or A−1[i], and at most O((l− r) lg σ+ polylogn) to extract(T, l, r). Operation
locate can be carried out in O(polylogn) time per reported occurrence.

The main component of a CSA, is the function or permutation Ψ, that is
used, along with other data structures, to simulate A and A−1. Ψ is defined as
Ψ[i] = A−1[A[i] + 1] or Ψ[i] = A−1[1] if A[i] = n. That is, given a position i in the
suffix array A, Ψ[i] tells the position in A where the suffix starting at i continues if
we remove its first symbol. Or in other words, Ψ permits to virtually move forward
in the text without actually accessing the text.

To solve typical operations, additionally to Ψ, A, and A−1, we need to store a
vector C[1, σ + 1] such that C[a] stores the number of symbols lexicographically
smaller than a in T , and C[σ + 1] = n. Additionally, we need an array D[1, σ]

11.1. Statistically-bounded Self-Indexes 169

that contains the symbols in Σ (including the terminator $) sorted in increasing
lexicographical order. Note C can also be represented as a bitmap W [1, n] such that
W [i] = 1 iff i = C[a] + 1 for some a ∈ Σ.

How to efficiently represent Ψ, A, and A−1 is explained next.

11.1.1.1 Compressing Ψ

Regarding Ψ as a permutation, it is known that it has at most σ runs of increasing
values [MN05]. This is reasonable because in the suffix array suffixes are sorted in
lexicographical increasing order, which means that if we take a region of suffixes that
start with the same symbol and we remove it, those suffixes are still sorted. Therefore,
for a region of suffixes starting with the same symbol, Ψ must contain increasing
values, and, as we have exactly σ regions that start with the same symbol, we have
at most σ increasing runs. Having this properties into account, several works related
with Ψ compression have been published [Sad03, GGV03, GV06, FBN+12, BN13].
Some of them consist of sampling Ψ at regular intervals and use different compression
techniques to differentially encode those values of Ψ between samples [Sad03].

Regarding the functionality, Algorithm 14 shows how to find the suffix array
interval associated with a pattern P [1,m] by using Ψ and C. It starts by finding
the suffix array interval [sp, ep] that covers the last pattern symbol P [m]. At the
beginning of the ith iteration of the loop, we have in [sp, ep] the suffix array interval
associated with suffix P [i+ 1,m] (i starts at m− 1). In the loop’s body, we compute
the largest interval of [C[P [i]] + 1, C[P [i] + 1]] that contains values of Ψ that point to
the current interval [sp, ep]. That is, we are searching for the interval that contains
suffixes P [i,m]. The search inside [C[P [i]] + 1, C[P [i] + 1]] can be done in lgn time
since those values are sorted. This loop iterates until we exhaust the pattern, or
until we cannot find those j values described in the Algorithm 14, which means the
suffix P [i,m] does not exist, and hence, that P [1,m] does not occur in the text.

Algorithm 15 shows how to extract the string T [SA[i], SA[i] +m] given i, Ψ, W
(or C), and D. The key point is to report the first symbol of a suffix (T [SA[i]]).
This can be done by accessing the bitmap W , and then using the reported index to
access the vector D. After that, we should virtually move forward in the text to
report T [SA[i] + 1], which can be done by applying Ψ. This process is repeated m
times, or n− SA[i] if |T [SA[i], n]| < m.

11.1.1.2 Compressing the Suffix Array

Instead of storing the whole A[1, n] array, which would require O(n lgn) bits, A
is sampled at regular intervals in the text, and only these samples are stored in a
vector As[1, dn/δe], being δ > 0 the sampling period (typically δ = O(polylogn)).
Concretely, we will store A[i] if A[i] mod δ = 0 or A[i] = n. As A is sampled at
regular intervals of the text and not of the suffix array, we need to keep track of
those marked positions, otherwise we would not know which ones were sampled. To

170 Chapter 11. Self-Indexes on Highly Repetitive Sequences

Algorithm 14 Searching for a pattern P [1,m] in a suffix array using the Ψ function.
SearchInterval(P [1,m],Ψ, C)
sp← C[P [m]] + 1
ep← C[P [m] + 1]
for i = m− 1 downto 1 do

if ∃ j ∈ [C[P [i]] + 1, C[P [i] + 1]] s.t. Ψ[j] ∈ [sp, ep] then
sp, ep← min(j),max(j)

else
return [0, 0]

end if
end for
return [sp, ep]

Algorithm 15 Returns T [SA[i], SA[i] +m] given i, Ψ, W , and D.
ExtractSuffix(Ψ,W,D, i,m)

while m > 0 AND i 6= 1 do
Report D[rank1(W, i)]
i← Ψ[i]
m← m− 1

end while

do so we define a bitmap B[1, n] such that B[i] = 1 iff A[i] mod δ = 0 or A[i] = n.
Sampling A at regular intervals of the suffix array guarantees that after applying Ψ
δ times, we will always find a sampled value of A.

Given As, B, and Ψ, the procedure to obtain A[i] is quite simple. We initially
check if B[i] = 1. If so, A[i] is explicitly stored in As[rank1(B, i)]. Otherwise, we
apply Ψ as many times as necessary until we reach a position j such that B[j] = 1.
In this case we return As[rank1(B, 1)] − d, d being the number of times we have
applied Ψ to obtain a sampled position. Note that d ≤ δ.

As an example, suppose we want to access A[8] in the suffix array depicted in
Figure 11.1, in which we have set δ = 5 and those sampled values of A appear
shadowed. As we can see, A[8] is not sampled, thus, we apply Ψ(8) = 14. A[14] is
not sampled either, so we apply Ψ(14) = 12, which is sampled. A[12] = 5 and we
have applied Ψ d = 2 times, which means that A[12] = 5− 2 = 3.

Having the suffix array available is fundamental to carry out locate operations.
Note that if [i, j], with i ≤ j, is an interval of the suffix array that contains all the
occurrences of a pattern in the text, then A[i, j] contains all the occurrences of that
pattern in the input sequence.

11.1. Statistically-bounded Self-Indexes 171

21 19

9

7 12

4 16 10

2 14

6 18

20

11 8 5 171 133 15

$ _ bar d la r

_ d

_ d

_ d

_ d_ d_ da l

_ l

a l _a

$ _
bar labar r

21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

10 7 11 17 1 3 4 14 15 18 19 20 21 12 13 5 6 8 9 2 16

a r a a d l _ l l $ _ b b a a r _ a a a a

0 0 2 1 0 1 2 l 4 1 6 1 2 0 3 0 0 2 5 0 1

1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0

$ _ a b d l r

A:

ᵰ:

TBWT:

LCP:

W:

D:

T = a l a b a r _ a _ l a _ a l a b a r d a $

 1 2 3 4 5 6 7 8 9 l0 11 12 13 14 15 16 17 18 19 20 21

10 18 8 14 12 20 2 7 4 17 6 3 11 19 9 15 13 21 16 5 1A-1:

Figure 11.1: Suffix tree example with all the components necessary for
CSAs and FM-Indexes.

172 Chapter 11. Self-Indexes on Highly Repetitive Sequences

11.1.1.3 Compressing the Inverse of the Suffix Array

Just as for the suffix array A, storing the vector A−1 is unfeasible in practice if we
care about the space (it would require also O(n lgn) bits). Instead, we sample some
positions of A−1 and then we use the data structures we already have to figure out
the rest. Contrary to A, A−1 is sampled at regular intervals of A−1. This means
that we do not need any additional bitmap to mark those positions.

Supposing we have A−1
s [1, dn/βe] such that A−1

s [i/β+1] = A−1[i] if i mod β = 0,
A−1
s [1] = A−1[1], and being β > 0 the sampling period (typically β = O(polylogn)),

we can access to A−1[i] as follows. If i mod β = 0 then we just report A−1
s [i/β + 1].

Otherwise, we access to A−1
s [bi/βc+ 1] and we apply Ψ (i mod β) times, returning

the last value returned by Ψ.
As an example, suppose we want to access A−1[19] in the suffix array depicted in

Figure 11.1, in which β = 5 and sampled values of A−1 appear shadowed. A−1[19] is
not sampled, thus we have to access the previously sampled position of A−1, which is
at position 15. This means that A−1[19] = Ψ(19−15)(A−1[15]) = Ψ4(9) = 16, where
Ψx(i) = Ψx−1(Ψ(i)), x > 0, and Ψ1(i) = Ψ(i).

The inverse suffix array A−1 helps on extract(T, i, j) queries. Note that A−1[i]
reports the position where the suffix T [i, n] is in the suffix array. This permits us
to check in which region of the suffix array is that suffix, and thus to obtain the
symbol at T [i] by using the vector C and the dictionary of symbols.

11.1.2 FM-Indexes

Modern FM-Indexes [FMMN07] build all their functionality on access and rank
queries on the BWT (Burrows Wheeler Transform) [BW94] of T , TBWT . The TBWT

is a permutation of T such that TBWT [i] = T [SA[i]− 1], being TBWT [1] = T [n] and
1 < i ≤ n. That is, TBWT is formed by sequentially scanning the suffix array A,
annotating the symbol preceding each suffix.

Note the string TBWT is a reordering of the symbols of T , therefore H0(TBWT) =
H0(T). Thus, zero-order-compressed representations of T also obtain zero-order
compression of TBWT . However, some kinds of zero-order compressors, in particular
wavelet trees or matrices with bitmaps compressed with Raman et al. (RRR from
Section 2.6) obtain nHk(T) bits of space for any k < logσ n [MN08] when applied
to TBWT [MN08].

Supposing we are given the vector C[1, σ] (same meaning as for CSAs,
recall Section 11.1.1), the LF function is defined as LF (i) = C[TBWT [i]] +
rankTBWT [i](TBWT , i). LF returns the position in TBWT (or equivalently in the
suffix array) of the suffix TBWT [i]T [A[i], n]. If the core of CSAs is the Ψ function,
which permits to virtually move forward in the text, that of FM-Indexes is the LF
operation, which permits to virtually move backwards. Actually, LF (Ψ(i)) = i,
which means that Ψ is the inverse function of LF .

11.2. Self-Indexes on Highly Repetitive Scenarios 173

Algorithm 16 count operation for a pattern P [1,m] in an FM-Index.
count(P [1,m], TBW T , C[1, σ + 1])
sp← C[P [m]] + 1
ep← C[P [m] + 1] + 1
i← m− 1
while i > 0 do
sp← C[P [i]] + rankP [i](TBW T , sp− 1) + 1
ep← C[P [i]] + rankP [i](TBW T , ep)
if sp < ep then

return 0
end if
i← i− 1

end while
return ep− sp+ 1

As an example, suppose we want to carry out LF (13) in Figure 11.1. Since
TBWT [13] = b, and C[b] = 13, LF (13) = C[b] + rankb(TBWT , 13) = 13 + 2 = 15.

Algorithm 16 shows how to carry out count queries on an FM-Index. As we
can see, the algorithm is linear in the pattern length, and only depends on the
performance of the rank operation in TBWT , which is essentially the time to carry
out LF mappings. Being that time α, the total time for count is O(α×m).

To support locate and extract, FM-Indexes basically follow the same strategy
than CSAs: Sample A and A−1 and use the LF mapping to obtain those values
which have not been sampled. The only particularity is that LF permits to virtually
move backwards in the text, not forward as Ψ does, so we have to slightly adapt the
algorithms.

11.2 Self-Indexes on Highly Repetitive Scenarios
The BWT is typically formed by a few long runs of equal symbols: the number of runs
is at most nHk(T)+σk for any k [MN05], and the number is much lower on repetitive
sequences [MNSV10]. Thus, in a highly repetitive scenario, the runs of TBWT are
much longer than logσ n , and thus typical kth-order statistical compression of
TBWT fails to capture its most important regularities. Something similar happens
with CSAs, in which long sequences of consecutive increasing numbers appear in
Ψ [MNSV10].

Run-Length FM-Indexes (RLFMIs) and CSAs (RLCSAs) [MN05, MNSV10] aim
at capturing these regularities. A Run-Length FM-Index stores in T ′BWT the first
symbol of each run, marking their positions in a bitmap R[1, n] (they also store a
bitmap R′[1, n] with a reordering of the bits in R). CSAs have also been adapted to
exploit runs in a structure called Run-Length CSA [MNSV10] by using δ-codes (see

174 Chapter 11. Self-Indexes on Highly Repetitive Sequences

Section 2.5) to differentially encode the Ψ function (along with a sampling strategy
to avoid decompressing the whole sequence when we access it).

11.3 Grammar and Block-Tree FM-Indexes
An alternative to run-length encodings to exploit the regularities of TBWT consists
of using a sequence representation for TBWT . However, until the presentation of
the Grammar Compressor with Counters (GCC, Chapter 6) and the Block-Tree (BT,
Chapter 7), we were not aware of any practical data structure that was able to: (a)
exploit the repetitions of TBWT , and (b) efficiently solve rank queries on it.

Therefore, what we propose in this chapter is to use our GCC and BT to represent
TBWT . This permits us to obtain a self-index with different space time trade-offs on
highly repetitive inputs. We dubbed our solutions GFMI and BTFMI, from Grammar
compressed and Block-Tree based FM-Index respectively.

11.4 Experimental Results
To experimentally evaluate our proposals, we use datasets para, influenza,
escherichia, fiwikitags, einstein, and software, all of them described in
Section 5.6.

To evaluate if grammar and block-tree compression of TBWT are better at
capturing regularities than Run-Length based approaches, we compare the following
self-index implementations:

• FMI-GCC, using the technique GCC presented in Chapter 6 to represent TBWT .

• FMI-AP.RP.WTRP, using the variant AP.RP.WTRP to represent TBWT .

• FMI-BT, using the BT technique presented in Chapter 7 to represent TBWT .

• FMI-WMH.BT, which is the extension of BT that adapts better to the increase of
the alphabet size presented in Chapter 7 to represent TBWT .

• FMI-WTH.RRR, which uses WTH.RRR (Huffman-shaped wavelet tree with bitmaps
compressed with RRR, recall Sections 2.7.2, and 2.6) to represent TBWT .

• FMI-WT.RRR, which uses WT.RRR (wavelet tree, recall Section 2.7.1, with bitmaps
compressed with RRR)to represent TBWT .

• RLFMI-WTH+DELTA, a Run-Length FM-Index of Section 11.2 where bitmaps
R and R′ are compressed with DELTA (recall Section 2.6), while S′BWT is
represented with WTH.RRR.

• RLCSA, a Run-Length Compressed Suffix Array of Section 11.2, setting the
sampling rate of its function Ψ to {32, 64, 128}.

11.5. Discussion 175

We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM memory,
running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64. All our
implementations use a single thread and are coded in C++. The compiler is g++ version
4.7, with -O9 optimization. We implemented our solutions inside Libcds [Cla].

We evaluate the performance of the operation count in the indexes, for various
pattern lengths, reporting the average time for 10,000 queries consisting of patterns
picked at random from each dataset. Figures 11.2,11.3,11.4, and 11.5 show the
results for pattern lengths of m = 2, 4, 8, 16 respectively.

As it can be seen, FMI-GCC obtains the least space on the smaller alphabets.
The space of RLCSA is close, but still larger than that of FMI-GCC, in collections
fiwikitags and influenza. For para and escherichia the differences are larger,
our structure using 60%–80% of RLCSA space. Interestingly, grammar compression
of TBWT is stronger than RLCSA compression, especially when the sequence is not so
repetitive. In exchange, RLCSA is about an order of magnitude faster. On the other
hand, FMI-BT and FMI-WMH.BT do not seem to be very good options since they are
not in the pareto-optimal set for any dataset.

FMI-GCC also uses half the space, or less, than RLFMI-WTH+DELTA, which also
adapts to repetitiveness but not as well as grammar compression, and performs
badly as soon as repetitiveness starts to decrease. Comparing FMI-GCC with the
best statistical approach, FMI-WTH.RRR, the differences are even larger: our solution
needs only 20%–40% of the space in the most repetitive collections, only getting
closer in escherichia, which is not so repetitive.

On the larger alphabets, instead, FMI-AP.RP.WTRP outperforms FMI-GCC and uses
about the same space as the RLFMI-WTH+DELTA, while being faster or equally fast.
It is only 2–4 times slower than the statistical approaches, while using 10%–20%
of their space. However, as expected, RLCSA outperforms every FM-index on larger
alphabets. Yet, in some applications the FM-index cannot be replaced by a RLCSA,
as specific properties of the BWT are used [Ohl13].

In the sequel we call GFMI to FMI-GCC or FMI-AP.RP.WTRP, whichever is better.

11.5 Discussion
In this chapter we have presented GFMI and BTFMI, two new FM-Indexes on highly
repetitive sequences. The experimental evaluation showed that our GFMI generally
obtains the best state of the art space performance, albeit it is from 2-4 times
to an order of magnitude slower than typical solutions based on FM-Index and
CSAs. However, BTFMI is generally overcomed by its competitors, remaining as
a not recommendable solution (except in fiwikitags, where BTFMI manages to
outstand since it is one of the most repetitive datasets). If we need an FM-Index
based solution instead of an RLCSA, then the GFMI may be a good alternative.

176 Chapter 11. Self-Indexes on Highly Repetitive Sequences

 0.1

 1

 10

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=2 on fiwikitags

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=2 on influenza

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=2 on para

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=2 on escherichia

 0.1

 1

 10

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=2 on einstein

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=2 on software

FMI-AP.RP.WTRP
FMI-WMH.BT

FMI-GCC

FMI-BT
FMI-WT.RRR

FMI-WTH.RRR

RLFMI-WTH.DELTA
RLCSA

Figure 11.2: Space-time tradeoffs for operation count with m = 2.

11.5. Discussion 177

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=4 on fiwikitags

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=4 on influenza

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=4 on para

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=4 on escherichia

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=4 on einstein

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=4 on software

FMI-AP.RP.WTRP
FMI-WMH.BT

FMI-GCC

FMI-BT
FMI-WT.RRR

FMI-WTH.RRR

RLFMI-WTH.DELTA
RLCSA

Figure 11.3: Space-time tradeoffs for operation count with m = 4.

178 Chapter 11. Self-Indexes on Highly Repetitive Sequences

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=8 on fiwikitags

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=8 on influenza

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=8 on para

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=8 on escherichia

 0.1

 1

 10

 100

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=8 on einstein

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=8 on software

FMI-AP.RP.WTRP
FMI-WMH.BT

FMI-GCC

FMI-BT
FMI-WT.RRR

FMI-WTH.RRR

RLFMI-WTH.DELTA
RLCSA

Figure 11.4: Space-time tradeoffs for operation count with m = 8.

11.5. Discussion 179

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=16 on fiwikitags

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=16 on influenza

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=16 on para

 0.1

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=16 on escherichia

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=16 on einstein

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5 3

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

m=16 on software

FMI-AP.RP.WTRP
FMI-WMH.BT

FMI-GCC

FMI-BT
FMI-WT.RRR

FMI-WTH.RRR

RLFMI-WTH.DELTA
RLCSA

Figure 11.5: Space-time tradeoffs for operation count with m = 16.

180 Chapter 11. Self-Indexes on Highly Repetitive Sequences

Chapter 12

XPath on Repetitive XML

XML (eXtensible Markup Language) has become a standard in the storage,
transmission, and manipulation of data along the past few years. Some reasons of
its popularity may be the possibility of extending its mark-up, the fact of being
easy to parse, its intensive use in web-services or simply its versatility to store
semi-structured data.

Additionally, the advent of several systems that made possible to carry out
complex queries on XML might have also helped. The XQuery language [XQu]
defines a standard to query these kind of files, although implementing it can be
challenging both in theory and practice. For that reason, in this chapter we focus
only in a subset of XQuery language, XPath [XPa], which is sufficiently expressive
for most applications.

In order to carry out XPath queries, beyond several theoretical proposals,
only a few disk-oriented implementations (data + indices designed for secondary
memory) exist: Qizx/DB [Mp07], MonetDB/XQuery [BGVK+06], and Tauro [Sig08].
Trying to overcome disk latencies, several in-memory systems like Saxon [Kay08],
GALAX [FSC+03] or Qizx/Open [Mp07] were also proposed. Typically, in-memory
systems overcome disk-oriented ones, although they are not free of exceptions.
According to some previous works like Arroyuelo et al. [ACM+15], in-memory
systems can reach memory peaks of 5-10 times the size of the input XML depending
on the nature of the input file, which means having to rely on disk and the consequent
performance downgrade.

A step-forward to avoid this situation was recently taken. It consisted of using
compressed data structures to increase the chance of fitting the whole index in main
memory. The proposed solution should not only be compact but also functional,
being able to support at least an important set of XPath queries. Representatives of
this research line are systems like XXS [BCPN14] and SXSI [ACM+15].

Those compressed representations are not aimed at highly repetitive scenarios,
which also arise in XML collections. For instance, software repositories or versioning

181

182 Chapter 12. XPath on Repetitive XML

storage systems have in common the need to store and manage highly repetitive
collections of XML files. These collections usually store many versions of the same
file with probably tiny differences between one version and the next. This is an ideal
scenario for repetition-based data structures, although no XPath system has been
adapted to this scenario.

In this chapter we show how to re-engineer the internal data structures of
SXSI [ACM+15] to adapt it to highly repetitive scenarios. By doing so, we end up
obtaining an XPath system that takes a small fraction of the space of its statistically
compressed counterparts, providing the same functionality at the price of increasing
the search times. This permits to have a highly efficient storage system that still
permits to carry out search queries without decompressing the whole dataset.

This chapter is organized as follows: Section 12.1 briefly details the main
components of the SXSI system [ACM+15] and explains which data structures we
use to adapt it to highly repetitive inputs; Section 12.2 presents an brief experimental
evaluation; and finally Section 12.3 gives our conclusions.

12.1 SXSI on Highly Repetitive Scenarios
As previously said, SXSI [ACM+15] is a recent system that represents XML datasets
in compressed form and solves XPath queries on them. Its query processing strategy
uses a tree automaton that traverses the XML data, using several queries on the
content and structure to speed up navigation towards the points of interest. SXSI
represents the XML data using three separate components:

1. a text index that represents and carries out pattern searches over the text
nodes (any compressed full-text index [NM07] can be used);

2. a balanced parentheses representation of the XML topology that supports
navigation using 2 + o(1) bits per node (various alternatives exist, many of
them described in Section 2.9);

3. an rsa-capable representation of the sequence of the XML opening and closing
tags, using some sequence representation.

When the XML collection is repetitive (e.g., versioned collections like Wikipedia,
versioned software repositories, etc.), one can use the RLCSA (see Section 11.2) as
the text index for (1), but now we also consider using our GFMI of Chapter 11.
Components (2) and (3), which are usually less relevant in terms of space, may
become dominant if they are represented without exploiting repetitiveness. For (2),
we consider GCT, the grammar compressed tree topology presented in Chapter 8,
and a classical representation (FF, see Sections 2.9, and 8.1). For (3), we will use
our most compact repetition-aware sequence representation presented in Chapter 6
(GCC) as well as BT from Chapter 7, comparing them with the alternative proposed

12.2. Experimental Results 183

in SXSI (MATRIX of Section 2.7, using one compressed bitmap per tag) and a WTH
representation of Section 2.7.2.

12.2 Experimental Results

To show the performance of SXSI on highly repetitive scenarios, we use a repetitive
data-centric XML collection of 200MB from a real software repository. Its sequence
of XML tags, called software, is described in Section 5.6. As a proof of concept,
we run two XPath queries that make intensive use of the sequence of tags and the
tree topology: XQ1=//class[//methods], and XQ2=//class[methods].

We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM
memory, running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64.
All our implementations use a single thread and are coded in C++. The
compiler is g++ version 4.7, with -O9 optimization. We implemented our
solutions inside Libcds [Cla] and use Navarro’s implementation of RePair
(www.dcc.uchile.cl/gnavarro/software/repair.tgz).

Table 12.1 shows the space in bpe (bits per element) of components (2) and (3).
An element is an opening or a closing tag, so there are two elements per XML tree
node. The space of the RLCSA without sampling is always 0.18 bits per character
(bpc) of the XML document, whereas our new GFMI uses 0.15 bpc if combined with
AP.RP.WMRP. The table also shows the impact of each component in the total size of
the index, considering this last space. On the rightmost columns, it shows the time
to solve both queries.

The original SXSI (MATRIX+FF) is very fast but needs almost 14 bpe, which
amounts to 98% of the index space in this repetitive scenario (in non-repetitive
text-centric XML, this space is negligible). By replacing MATRIX by a WTH, the space
drops significantly, to slightly over 4 bpe, yet times degrade by a factor of 3–6. By
using our GCC for the tags, a new significant space reduction is obtained, to 2.65 bpe,
and the times increase by a factor of 2, becoming 6–12 times slower than the original
SXSI. If we use BT, the space increases considerably with regard to GCC while times
are approximately halved. Finally, changing FF by GCT [NO14a], we can reach as
low as 0.56 bpe, 24 times less than the original SXSI, and using around 60% of the
total space. Once again, the price is the time, which becomes 50–90 times slower
than the basic SXSI. The price of using the slower GCT is more noticeable on XQ2,
which uses more operations on the tree.

While the time penalty is 1–2 orders of magnitude, we note that the gain in
space can make the difference between running the index in memory or on disk; in
the latter case we can expect queries to be up to 6 orders of magnitude slower.

184 Chapter 12. XPath on Repetitive XML

dataset tags tree %tags %tree %text XQ1 XQ2

MATRIX+FF 12.4 1.27 88.95 9.11 1.08 16 35
WTH+FF 2.88 1.27 65.16 28.73 3.39 92 113
GCC+FF 0.37 1.27 19.37 66.49 7.85 184 226
BT +FF 1.7 1.27 52.47 39.20 4.63 98 131
GCC+GCT 0.37 0.19 44.58 22.89 18.07 807 3066
BT+GCT 1.7 0.19 78.70 8.80 6.94 690 2750

Table 12.1: Results on XML. Columns tags and tree are in bpe. Columns
XQ1 and XQ2 show query time in microseconds.

12.3 Discussion
There exist XML collections formed by highly repetitive data. Applications managing
these datasets, as well as systems to compute metrics from them, typically require
to carry out complex XPath queries. In the previous experimental evaluation we
have shown that by applying grammar or block-tree compression techniques to the
internal data structures of the original SXSI [ACM+15], the space usage is drastically
shrunk. This is of special interest on software repositories or versioning systems in
which reducing storage costs is a must. Although the time penalty is rather high, it
is still of interest in many scenarios in which this is not a limitation, for example
periodically computed metrics.

Chapter 13

GCST: Grammar
Compressed Suffix Tree

Suffix trees [Wei73, McC76, Ukk95] are a favorite data structure in stringology, with
a large number of applications in bioinformatics [Apo85, Gus97, Ohl13], thanks to
their versatility. By means of a small set of query and traversal primitives (see
Tables 2.2 and 13.1), suffix trees yield efficient solutions to many complex problems
on pattern matching, pattern discovery, string comparisons, and others. The main
problem of suffix trees is their space usage, which can easily reach 20 bytes per text
symbol. On DNA sequences, where each base can be represented in 2 bits, the suffix
tree takes up to 80 times the text size!

A solution to the space problem could be to deploy the suffix trees on secondary
memory [FG99, CF02, KR03, DKMS08, FGM12, KK14a, KK14b, GMC+14].
Unfortunately, most of the complex tasks carried out on suffix trees need to traverse
them across arbitrary access paths, in which case secondary memory representations
perform poorly due to the low locality of reference. The fact that suffix trees use
much space but need to fit in main memory to operate efficiently restricts their
applicability to small sequence collections only; for example, handling just one
human genome requires a machine with 60GB of RAM.

A number of engineered representations of suffix trees have been proposed to
cope with their space problem [Kur99, AKO04], but these still take 6 to 10 bytes
per symbol. Suffix arrays [MM93] reduce the space to about 4 bytes per symbol, but
they lose a number of suffix tree functionalities that are essential in many complex
tasks (e.g., suffix links).

The emergence of compressed suffix arrays (CSAs) (see Chapter 11), which
managed to represent both the sequence and its suffix array within the space of the
compressed sequence, paved the way to radical improvements in the area, by making
it possible to build compressed suffix trees (CSTs) on top of CSAs. Sadakane [Sad07a]

185

186 Chapter 13. GCST: Grammar Compressed Suffix Tree

introduced the first CST representation, which included a succinct representation of
the tree topology and retained full suffix tree functionality. A recent, well engineered
implementation by Gog [Gog11], requires about 10 bits per symbol (bps), that
is, slightly more than one byte per symbol, on general DNA text (this includes
the storage of the CSA, and thus of the sequence itself), and can perform all the
operations in a few microseconds; the easy ones may need just a few nanoseconds.
Fischer et al. [FMN09, Fis10] developed a new CST using even less space. An
efficient variant by Ohlebusch et al. [OFG10] was shown to use about 8 bps [Gog11].
Their main idea was to avoid the explicit representation of the tree topology. Their
operation times, as a consequence, are higher than Sadakane’s, but still within
microseconds. Russo et al. [RNO11] introduced an even smaller CST, using about 4
bps, yet raising operation times to milliseconds.

All these CSTs use space proportional to the empirical entropy of the text
collection [Man01], which is a measure of statistical compressibility. In most DNA
collections, however, the empirical entropy is also close to 2 bps, that is, DNA is
essentially incompressible with statistical compressors. Still, CSTs operating within
microseconds can be built on a human genome (of about 3 billion bases), for example,
and maintained in a main memory of about 3–4 GB.

However, the goal of maintaining one human genome in main memory has
quickly become outdated. The rapid improvements in sequencing technology
have driven the growth of large genome repositories. Modern challenges are to
handle repositories of thousand genomes (e.g., see the 1000-Genomes project,
http://www.1000genomes.org). Further, one would like to efficiently perform
complex bioinformatic analyses on those huge sequence collections, ideally maintain-
ing a suffix tree on them. Even a CST using 1 byte per symbol is problematic when
a thousand genomes must be maintained: we would need 3TB of main memory!

Fortunately, those fast-growing DNA collections are formed by the sequenced
genomes of hundreds or thousands of individuals of the same species. This makes
those collections highly repetitive.

There have been some indexes aimed at performing pattern matching (i.e.,
just simple string searches) on repetitive collections based on those techniques
[CN10b, KPZ11, KN13, CN12, DJSS12, GGK+12]. However, they do not provide
the versatile suffix tree functionality, and they do not seem to yield a way to obtain
it. Instead, the so-called run-length CSA [MNSV10] (RLCSA), although based in
principle on weaker compression techniques, yields a data structure that is useful to
achieve CSTs for repetitive collections.

Building on the RLCSA (see Section 11.2) and on the CST of Fischer et al. [FMN09],
Abeliuk et al. [AN12, ACN13] introduced the first CST for repetitive collections, by
using grammar-compressed representations of some of their internal components.
On the repetitive biological collections they tested, their CST used around 1–2 bps,
well below the spaces achieved with the general-purpose CSTs. Their operation
time was, however, in the order of milliseconds, which makes the structure far less

13.1. Current Compressed Suffix Trees 187

attractive.
Our proposal is called GCST, for “grammar-compressed suffix tree”, and achieves

low space on repetitive collections and much better times. The GCST operates in the
order of microseconds, becoming much closer to the times of general-purpose CSTs
[Sad07a, OFG10, Gog11], and actually outperforming the smallest members of that
family [RNO11, CN10a, ACN13] (which are still significantly larger than the GCST
on repetitive collections). On synthetic DNA collections with 99.9% similarity, our
GCST uses 2 bps, whereas the previous CST for repetitive collections uses 1.5 bps,
and their difference shrinks as the collections become more repetitive. In exchange
for this higher space, the GCST is up to 3 orders of magnitude faster.

To achieve this result, we build on the CST of Sadakane [Sad07a], but use
grammar compression on the tree topology, instead of just a succinct representation.
More precisely, we use our GCT (Grammar Compressed Tree) of Chapter 8. A
repetitive text collection turns out to have a suffix tree with repetitive topology, and
having the tree represented in this form allows us to speed up many operations that
are very slow to simulate without the explicit topology [FMN09, RNO11].

The GCST retains the full functionality of succinct tree representations [NS14]
(see also Section 8.1), but is likely to use much less space when the tree has frequent
repeated substructures. While we do not prove worst-case results on the GCST
representation, our experiments show that it performs well in the scenario studied
in this chapter.

The chapter is organized as follows: Section 13.1 presents the state of the art of
compressed suffix trees; Section 13.2 describes our proposal; Section 13.3 provides a
complete experimental evaluation of our proposal, comparing it with the state of the
art techniques previously described; and finally Section 13.4 presents our conclusions
and addresses the future work.

13.1 Current Compressed Suffix Trees
In Chapter 11 we already presented suffix arrays, compressed suffix arrays, and how
we may adapt them when dealing with highly repetitive collections with Run-Length-
or grammar-based data structures. Although these are of major interest, not less
important is the concept of longest common prefix (LCP) array, since it is a key
component of various suffix tree representations.

The LCP[1, n] array stores in LCP[i] the length of the longest common
prefix between the suffixes T [A[i], n] and T [A[i − 1], n] (with LCP[1] = 0).
Sadakane [Sad07a] showed how to represent LCP using just 2n bits, by representing
PLCP[1, n] instead, where PLCP[j] = LCP[A−1[j]] (or LCP[i] = PLCP[A[i]]), that
is, PLCP is LCP represented in text order, not in suffix array order. The key
property is that PLCP[j + 1] ≥ PLCP[j] − 1, which allows PLCP be represented
using a bitvector H[1, 2n], at the price of having to compute A[i] in order to compute
LCP[i].

188 Chapter 13. GCST: Grammar Compressed Suffix Tree

Operation Description

sDepth(v) |str(v)|
letter(v, i) str(v)[i]
child(v, a) u such that a ∈ Σ is the first letter on edge (v, u)
sLink(v) u such that str(u) = β in case str(v) = aβ and a ∈ Σ
LAQs(v, d) the highest ancestor u of v such that |str(u)| ≥ d
locate(v) i such that str(v) starts at T [i] (for a leaf v)

Table 13.1: Typical operations supported by a suffix tree (besides those of
Table 2.2). By str(v) we denote the string obtained by concatenating the
labels on the edges between the root and v.

Fischer et al. [FMN09] proved that H was in addition compressible when the
text was statistically compressible, but Cánovas and Navarro [CN10a] found out
that the compression was not significant on standard texts. Instead, Abeliuk and
Navarro [AN12] showed that the technique proposed to compress H [FMN09] worked
very well on repetitive texts.

Having this in mind, Sadakane [Sad07a] showed that a functional compressed
suffix tree (CST), that is, a data structure that solves the operations in Table 2.2 as
well as those in Table 13.1, could be represented with three components:

1. A compressed suffix array (CSA).

2. A compressed LCP array.

3. A representation of the topology of the suffix tree.
Other elements, like the string labels, were computed from these components without
representing them.

Concretely, Sadakane used an existing CSA, compressed the LCP array to 2n
bits, and represented the tree topology using succinct trees, which take 2n to 4n
bits since the suffix tree has t = n to 2n nodes. A study of such succinct tree
representations [ACNS10] shows that a Balanced Parentheses implementation like
FF (see Sections 2.9 and 8.1) is well suited for the operations required on a suffix tree.
Gog [Gog11] implemented Sadakane’s CST, obtaining extremely fast operations.

Alternatively, Fischer et al. [FMN09] showed that one can operate without
explicitly representing the tree topology, because each suffix tree node corresponds
to a distinct suffix array interval. One can operate directly on those intervals, and all
the tree operations can be simulated with three primitives on the intervals: RMQ(i, j)
finds the (leftmost) position of the smallest value in LCP[i, j], and PSV/NSV(i)
finds the position in LCP preceding/following i with a value smaller than LCP[i].

13.2. Grammar Compressed Suffix Tree 189

Cánovas and Navarro [CN10a] implemented this theoretical proposal, speeding
up the operations RMQ and PSV/NSV by building the balanced tree described in
Section 8.1 on top of the LCP array (instead of on array E) and using ideas similar
to those used to navigate trees [NS14] (albeit the application is quite different).
Ohlebusch et al. [OFG10] presented a fast alternative implementation that uses 3n
bits of space.

Abeliuk and Navarro [AN12] proposed the first CST for repetitive text collections.
They built on the representation of Cánovas and Navarro [CN10a], using the RLCSA
and the compressed version of H to represent LCP, which became compressible on
repetitive texts. The only obstacle was that the balanced tree used to speed up RMQ
and PSV/NSV operations was insensitive to repetitiveness. They overcame this by
using the fact that the differential LCP array (LCP[i] − LCP[i − 1]) is grammar-
compressible, particularly on repetitive text collections. They applied RePair
compression (see Section 5.4) to the differential LCP array and used the grammar tree
(whose nodes are the grammar nonterminals) instead of the incompressible balanced
tree. That is, they stored the information needed to compute PSV/NSV/RMQ in
the nodes of the grammar tree. As a result, they obtain very low space usage on
repetitive texts (from 0.6 to 4 bps, depending on the repetitiveness of the real-life
collections used). A drawback is that the operations require milliseconds, instead
of the microseconds required by most CSTs designed for standard text collections
[ACN13].

13.2 Grammar Compressed Suffix Tree
We introduce a new CST which builds on the original proposal of Sadakane [Sad07a]
but tailored to repetitive texts. We use the RLCSA as the suffix array, and the
compressed representation of H [FMN09, AN12] for the LCP array. Unlike the
previous CST of Abeliuk and Navarro, we do represent the suffix tree topology with
our GCT (recall Chapter 8), to avoid the huge time performance penalty of omitting
it. As a result, our GCST will use slightly more space than that of Abeliuk and
Navarro [AN12], but it will be orders of magnitude faster.

13.3 Experimental Results
In order to evaluate the performance of our proposal, we use several synthetic and real
datasets, all of them described in Section 5.6. Concretely, we used collections DNA.1,
DNA.01, DNA.001, DNA.0001, influenza, escherichia, para, and einstein.

13.3.1 Space Usage
Figure 13.1 gives a space breakdown of our GCST representation for each dataset in
bps. The breakdown has five parts: (1) the RLCSA, which is built with parameters

190 Chapter 13. GCST: Grammar Compressed Suffix Tree

blockSize = 32 and sample = 128 to provide reasonable time performance; (2)
the LCP representation; (3) the representation of the rules R of the GCT; (4)
the representation of sequence C of the GCT; (5) the extra data we store for R
and C associated with samples. For this last part, we tested various values of
y ∈ {20, 21, 22, 24, 28} and z ∈ {28, 210, 212, 214} (same as in Section 8.3). Obviously,
this is the only part of the space that changes with y and z. We used the balanced
version of RePair (see Section 5.4), which consistently gave us better results.

In the synthetic DNA collections, the space decreases as repetitiveness increases.
The fixed part of the structures (without the sampling data on R and C) goes from
about 0.85 bps on the most repetitive collection to about 4.7 bps when the mutation
rate reaches 1%. Note that, from this space, about 0.6 bps from the RLCSA are
fixed and insensitive to repetitiveness; this is the space used by the RLCSA samples.
Components LCP, R and C decrease monotonically with repetitiveness.

The space for the R and C samplings varies significantly with parameter z, but
not so much for y, as previously analyzed in Section 8.3.

On the real data, the situation is more or less the same. Using reasonable values
for z, the space is about 7 bps for escherichia, the least repetitive collection.
However, it decreases to about 3.3 bps on para and to 2.3 on influenza, which is
much more repetitive. On einstein, the most repetitive collection, this space is
below 0.7 bps.

13.3.2 Space-Time Performance of Operations
We compare space and time performance of our GCST with previous CSTs, for a
number of suffix tree operations. The CSTs considered are the following.

GCST Our new suffix tree representation. We used various combinations of
parameters y and z, obtained a cloud of points, and chose the dominant
ones. In most cases, this implies leaving y at sampling every nonterminal
and using z to reduce the space. The RLCSA parameters are fixed to 32 for
the sampling of Ψ and 128 for the text sampling (the one that affects the
computation of suffix array entries). Note the total space of a GCST is that of
the GCT of Chapter 8 plus that of the additional data structures necessary to
build a fully-functional CST (LCP and RLCSA).

Sada Sadakane’s CST [Sad07a] adapted to repetitiveness but without including our
new grammar-compressed tree topology (the actual index is too large to be of
interest in this comparison). That is, we use the RLCSA as the suffix array, the
compressed-bitvector H for the LCP, and the plain representation that uses
2 bits per node [NS14, ACNS10] for the topology. This allows us to measure
the effect of our grammar-compressed topology in time and space. We use
sampling 32 for Ψ and 64, 128, and 256 for the text sampling. Again, note the
total space of this approach of that of the Sada data structure of Chapter 8

13.3. Experimental Results 191

 0

 1

 2

 3

 4

 5

 6

 7

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

log(y),log(z)

Space breakdown of DNA 1%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of DNA 0.1%

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of DNA 0.01%

 0

 0.5

 1

 1.5

 2

 2.5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of DNA 0.001%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of escherichia

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of para

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of influenza

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

lg(y),lg(z)

Space breakdown of einstein

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0,8 1,8 2,8 4,8 8,8 0,10
1,10

2,10
4,10

8,10
0,12

1,12
2,12

4,12
8,12

0,14
1,14

2,14
4,14

8,14

bp
s

y,log(z)

Space breakdown of para

RLCSA LCP R C Extra

Figure 13.1: Space breakdown of our GCST representation for the different
collections and combinations of parameters y (rule sampling) and z (sampling
of C).

192 Chapter 13. GCST: Grammar Compressed Suffix Tree

plus that of the additional data structures necessary to build a fully-functional
CST (LCP and RLCSA).

SCT3 The fastest CST for general collections among those that use reasonable
space [OFG10]. It is also the most compact CST implemented in the SDSL
library [Gog11] (called cst_sct3 in SDSL). For the CSA it uses an FM-index
on Huffman-shaped wavelet trees [FMMN07], which makes it small and fast
on DNA. It uses a non-compressed bitvector H to represent the LCP, and a
structure of 3n bits to solve PSV/NSV operations. The tree topology is not
represented. The bitvector samplings is set to 63, the sampling to extract text
to 63, and the text sampling to 32, 64, and 128. For the rest, it was compiled
with the default configuration of SDSL.

NPR-Repet The only previous CST designed for repetitive collections [AN12,
ACN13]. We choose the best point between using balanced or unbalanced
RePair in each case. They run over the RLCSA, with sampling 32 for Ψ and 64,
128, 256, and 512 for the text.

NPR The smallest CST for general collections that achieves times within
microseconds [CN10a, ACN13]. Among their many variants, we use the
so-called FMN-RRR, which uses the least space. To make it more space-
competitive in this scenario, we change its suffix array to the RLCSA, with the
same sampling choices of NPR-Repet.

FCST The smallest CST for general collections [RNO11]. The FCST is much
slower than NPR; its times are in the range of the milliseconds, close to those
of NPR-Repet. The FCST also uses an FM-index on wavelet trees [FMMN07]
as its suffix array.

We exclude the faster and larger variants of NPR [CN10a, ACN13], as they
represent LCP values directly and these become very large on repetitive collections
(≈ 27 bps only the LCPs!). Other larger variants implemented in SDSL are also
disregarded in this comparison.

We note that not all the previous CSTs implement all the operations, so they
may not appear in some plots. In addition, we were unable to build NPR-Repet on
the most repetitive dataset, DNA 0.001, because its grammar-compression algorithm
on the differential LCP array crashed.

We ran the experiments in an isolated Intel(R) Core(TM) i7-3820 running at
3.60GHz with 62GB of RAM memory. The operating system is GNU/Linux, Ubuntu
12.04, with kernel 3.2.0-68-generic.x86_64. All our implementations use a single
thread and all of them but FCST are coded in C++ (FCST is in C). The compiler is
gcc version 4.6.3, with -O9 optimization flag set (except SCT3, which uses its own
set of optimization flags).

13.3. Experimental Results 193

We use five different strategies based on previous work [NS14, ACN13] to extract
queries, each defined to correctly measure the performance of a specific type of
queries. These strategies are described as follows:

(a) We randomly pick a leaf and collect and report all those nodes in the path
from that leaf to the root.

(b) We randomly pick a leaf and collect and report all those nodes in the path
from that leaf to the root that have more than 3 children.

(c) We randomly pick a leaf, move to its parent, and then we move towards the
root but using sLink operations.

(d) We randomly select couples of leaves.

(e) We randomly select leaves with tDepth (or sDepth) values larger than 10, and
then we report that leaf and a value in the range [1, tDepth (or sDepth)− 1].

Queries for operations fChild, tDepth, sDepth, nSibling, and parent we use strategy
(a); for letter, and child strategy (b); for sLink, strategy (c); for LCA, strategy (d);
and for tAncestor and LAQs, strategy (e). We averaged each data point over 10,000
random queries.

Space

Let us use Figure 13.2 to discuss the space usage of the indexes. The general-purpose
indexes are mostly insensitive to repetitiveness (except because in some of those we
used the RLCSA as the suffix array). Even with the sparsest samplings used, Sada
takes up to 10 bps on the least repetitive collections and then decreases to 7 bps on
the most repetitive ones. SCT3 (which does not use the RLCSA) always uses about
5.5–7 bps. NPR (which uses an RLCSA) goes from 6.5 bps on the least repetitive
collections and to 4.5 bps on the most repetitive ones. Finally, the FCST (which also
does not use an RLCSA) is the only one that increases space with repetitiveness, rarely
exceeding 4 bps but reaching 5.3 bps on einstein. The reason is that repetitive
collections induce deeper suffix trees. Since the FCST samples nodes at regular
intervals across sLink paths, a deeper suffix tree entails longer paths and thus more
samples (up to some maximum guaranteed limit).

The repetitiveness-oriented CSTs use significantly less space, NPR-Repet being
always smaller than GCST. The GCST becomes, in broad terms, more competitive
with NPR-Repet as repetitiveness increases. While, on the least repetitive DNA 1,
NPR-Repet can use as little as 2.8 bps, which is about 60% of the GCST space, the
ratio raises to 80% already for DNA 0.01. On the real texts, instead, the ratio stays
around 60%, but for the most repetitive einstein both indexes use basically the
same space.

194 Chapter 13. GCST: Grammar Compressed Suffix Tree

Note that, on the least repetitive collections, the repetitiveness-oriented CSTs
are not interesting anymore: On DNA 1 and Escherischia, the FCST is already
smaller than the GCST (albeit much slower), and uses about the same space and time
of NPR-Repet.

The comparison between GCST and Sada shows that compressing the parentheses
reduces the space by 2–6 bps, the impact being larger on the more repetitive
collections. On those, this difference dominates the total space of the structures, for
example Sada is about 7 times larger than the GCST on DNA 0.001 and on einstein.

The impact on the times is analyzed next. For the GCST, we will comment
about the choice of parameter that reaches its “sweet point”, which is roughly the
left-to-right point where the time ceases to decrease abruptly and stabilizes. This is
still a choice of good space usage.

Direct tree operations

Figures 13.2 to 13.6 show the time-space performance for operations fChild (requiring
just an access to the parentheses), tDepth (requiring simple parenthesis operations),
nSibling, parent and tAncestor (requiring the more complex fwd and bwd operations
on the parentheses, for which a full description is given in Section 8.1). For tAncestor
we test with a random depth between 1 and the tree node depth.

Direct tree operations are particularly fast when the topology is represented with
parentheses. This is the case of Sada and the GCST. In the first case the operation
times goes from one nanosecond (ns) to at most one microsecond (µs). The faster
ones, running in at most 10 ns, are fChild, tDepth, and parent. Instead, nSibling and
tAncestor are slower, requiring 0.5–1 µs.

The GCST is not so fast because it compresses the topology, but still it performs
well. It solves fChild, tDepth and parent in 5–10 µs, tAncestor in 10–30 µs, and
nSibling 20–50 µs. That is 1–3 orders of magnitude slower than a plain parentheses
representation.

Instead, the operations are 2–3 orders of magnitude slower on NPR, which uses
much more space than GCST but does not store the tree topology. NPR requires
100–700 µs for operations fChild, nSibling, and parent, except on influenza and
einstein, where for unclear reasons the times drop to 10–80 µs.

Lacking an explicit topology, tDepth and tAncestor can only be solved via
successive parent operations until reaching the root or the desired depth difference.
This makes these two operations way slower on the other indexes. For tDepth the
time of NPR reaches 0.7–5 ms, and for tAncestor it reaches 2–50 ms (and 50–300 µs
on the two collections where it is faster).

If we consider NPR-Repet, which does not store the tree topology and in addition
is optimized for repetitiveness (reaching less space than the GCST), the times jump
one or two orders of magnitude further: fChild, nSibling, and parent require 0.6–10
ms (0.3 ms on einstein), tDepth takes 50–300 ms (10 ms on einstein), and
tAncestor uses 7–500 ms. Therefore, the only previous index that is smaller than the

13.3. Experimental Results 195

GCST on repetitive collections is 2–4 orders of magnitude slower than it. The choice
of including the parentheses, even if highly compressed and slow to use, definitely
pays off.

SCT3 does not represent the topology, but uses 3n bits to speed up the operations
PSV/NSV on the LCP values. As a consequence, it uses more space than NPR,
but it performs significantly faster. For fChild, nSibling and parent, it takes 0.2–2
µs, which is 1–2 orders of magnitude faster than GCST (but still way slower than
Sada, which uses plain parentheses). However, it is also 1–2 orders of magnitude
slower than GCST for tDepth and tAncestor, where it takes 10–40 µs and 0.2–2 ms,
respectively (for unclear reasons, SCT3 is much slower on para).

Finally, the FCST takes 0.6–7 µs on operations fChild, nSibling and parent, and
2–50 ms on tDepth and tAncestor. This is also several orders of magnitude slower
than the GCST.

Operation LCA

This is the most complex among the operations that only need the topology of the
suffix tree. Figure 13.7 shows that the GCST uses 30–100 µs to solve it. NPR requires
0.3–1 ms in most cases, and 30–200 µs on influenza and einstein. On the other
hand, NPR-Repet requires 0.7–10 ms.

The heaviest part of this operation is an RMQ. Both SCT3 and Sada have explicit
structures to carry out this operation, thus they solve it fast, in 4–5 µs. The FCST
is also particularly fast on this operation: 5–20 µs. The reason is that LCA is a core
operation for the FCST, so it is solved most efficiently and is the base for the other
operations.

Operation sLink

The suffix link operation is the first we study that is specific of suffix trees, and
can be considered as the one that distinguishes suffix trees from other digital trees.
Operation sLink requires several tree operations and interacting with the RLCSA.
For the GCST and Sada, it requires mapping the node to its suffix array interval
(which involves fwd and counting leaf nodes up to a position in P), then computing
the native function Ψ of the RLCSA [MNSV10] (or the inverse of LF in the FM-index
[FMMN07]) for both extremes of the interval, then maping them back to suffix tree
leaves (which requires finding the lth leaf in the tree), and finally computing an
LCA operation. The GCST requires 60–300 µs for operation sLink, whereas Sada
needs only 2–5 µs, profiting from its faster tree operations.

On the structures that do not use explicit tree topologies, the node identifier is
directly the suffix array interval, and thus all what is needed is to compute Ψ on
both extremes of the interval and then an LCA operation on the resulting positions.
In the case of NPR-Repet and NPR, the time for LCA dominates the others: 0.6–40
ms and 0.2–1 ms (40–100 µs on influenza and einstein), respectively. In the

196 Chapter 13. GCST: Grammar Compressed Suffix Tree

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, fChild

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, fChild

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, fChild

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, fChild

GCST
Sada
SCT3
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, fChild

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, fChild

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, fChild

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, fChild

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.2: Space-time tradeoffs for operation fChild.

13.3. Experimental Results 197

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, tDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, tDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, tDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, tDepth

GCST
Sada
SCT3
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, tDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, tDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, tDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, tDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.3: Space-time tradeoffs for operation tDepth.

198 Chapter 13. GCST: Grammar Compressed Suffix Tree

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, nSibling

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, nSibling

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, nSibling

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, nSibling

GCST
Sada
SCT3
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, nSibling

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, nSibling

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, nSibling

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, nSibling

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.4: Space-time tradeoffs for operation nSibling.

13.3. Experimental Results 199

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, parent

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, parent

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, parent

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, parent

GCST
Sada
SCT3
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, parent

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, parent

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, parent

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, parent

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.5: Space-time tradeoffs for operation parent.

200 Chapter 13. GCST: Grammar Compressed Suffix Tree

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, tAncestor(d)

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, tAncestor(d)

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, tAncestor(d)

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, tAncestor(d)

GCST
Sada
SCT3
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, tAncestor(d)

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, tAncestor(d)

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, tAncestor(d)

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, tAncestor(d)

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.6: Space-time tradeoffs for operation tAncestor.

13.3. Experimental Results 201

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, LCA

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, LCA

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, LCA

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, LCA

GCST
Sada
SCT3
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, LCA

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, LCA

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, LCA

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, LCA

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.7: Space-time tradeoffs for operation LCA.

202 Chapter 13. GCST: Grammar Compressed Suffix Tree

case of the FCST, operation LCA is fast but the other operations are not so much,
driving the time to 0.2–1.5 ms. SCT3 takes 2–5 µs, being only slower than Sada.

Operation sDepth

This operation computes the string depth of a node, and is crucial for other suffix
tree operations. In the GCST and Sada it requires mapping the second child of the
node to the CSA (and thus it involves the corresponding fwd and leaf counting
operation), whereas in NPR, NPR-Repet and SCT3 it requires a RMQ operation.
Then, both kinds of structures must accesses the LCP data, which implies using the
bitvector H plus the locating functionality of the RLCSA or FM-index. Therefore,
this is the first operation where the text sampling of the suffix array plays a role in
the time performance, actually dominating the overall time in various cases. The
FCST, instead, implements sDepth as a core operation.

The operation takes 50–100 µs on the GCST, 60–1000 µs on NPR-Repet, and
60–100 µs on NPR (6–10 µs on influenza and einstein). Sada and SCT3 require
10–100 µs, the tradeoff being also dominated by the text sampling. The FCST takes
0.7–3 ms.

Operation LAQs

This finds the ancestor of the node with the given string depth (we test with a depth
chosen at random between 1 and the node string depth). On GCST and Sada, which
can compute tAncestor fast, this operation can be carried out via a binary search
on sDepth using tAncestor. Thus it is computed in 250–700 µs on the GCST, and in
50–300 µs on Sada.

On the SCT3 and FCST, the operation must be computed via successive parent
operation and measuring sDepth at each node. Therefore, it is more expensive: 0.3–3
ms on SCT3 and 75–300 ms on FCST.

Instead, this operation is almost native on NPR and NPR-Repet [ACN13], since
they use on the LCP array a structure similar to the one we use on the excess of the
parentheses. However, it still needs to compute some sDepth values on unsampled
blocks of the LCP array, and this cost dominates. NPR takes 250–1000 µs (except
40–200 on influenza and einstein) and NPR-Repet takes 1–10 ms.

Operation letter

This is a simple operation exclusive of suffix trees. It gives the ith letter of the string
represented by a node (we test i = 4). On the GCST and Sada, it requires mapping
to the suffix array and computing Ψi−1 on the RLCSA or LF−i on the FM-index (this
is usually faster than computing a suffix array cell). The GCST solves it in 4–10 µs
and Sada in 0.75–1 µs.

The other CSTs use direct suffix array ranges, and thus do not need the mapping
step. As a result, their time depends only on the CSA they use, and are faster than

13.3. Experimental Results 203

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, sLink

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, sLink

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, sLink

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, sLink

GCST
Sada
SCT3
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, sLink

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, sLink

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, sLink

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, sLink

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.8: Space-time tradeoffs for operation sLink.

204 Chapter 13. GCST: Grammar Compressed Suffix Tree

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, sDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, sDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, sDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, sDepth

GCST
Sada
SCT3
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, sDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, sDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, sDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, sDepth

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.9: Space-time tradeoffs for operation sDepth.

13.3. Experimental Results 205

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, sAncestor(d)

GCST
SADA
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, sAncestor(d)

GCST
SADA
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, sAncestor(d)

GCST
SADA
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, sAncestor(d)

GCST
SADA
SCT3
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, sAncestor(d)

GCST
SADA
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, sAncestor(d)

GCST
SADA
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, sAncestor(d)

GCST
SADA
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, sAncestor(d)

GCST
SADA
SCT3

NPR-Repet
NPR

FCST

Figure 13.10: Space-time tradeoffs for operation LAQs.

206 Chapter 13. GCST: Grammar Compressed Suffix Tree

the GCST, and even than Sada: NPR-Repet uses 2–4 µs, NPR uses 0.3–1 µs, and
FCST takes 4 µs. The operation is not implemented in SCT3, but as it depends on
the FM-index used, it should be close to 1–4 µs as well.

Operation child

Finally, the most complex operation is child, which descends to a child by an edge
labeled with a given letter. It must first compute sDepth and then traverse linearly
the children of the node, computing letter for each until finding the desired one.

The operation takes 0.3–1 ms on the GCST, 1–10 ms on NPR (but 0.3–1 ms on
influenza and einstein), 2.5–6 ms on FCST, 2–30 ms on NPR-Repet, 70–1000
µs on Sada, and 30–200 µson SCT3 (with the exception of DNA 0.001, where it
reaches almost 3 ms). Only SCT3, which has a fast implementation of NSV to find
the successive children, and Sada, are faster than GCST.

Other Operations

We have left out other less important operations from the experiments: root is trivial
in all implementations; preorder is similar to tDepth for the GCST, and not possible to
implement in the other schemes, which do not maintain the tree topology; pSibling is
similar to nSibling; isLeaf costs the same as fChild on the GCST and is instantaneous
on the others (as they use suffix array intervals as suffix tree node identifiers, and
thus leaves correspond to intervals of length 1); ancestor is similar to nSibling and
is instantaneous on the others (as it involves checking containment of intervals);
subtree is also similar to nSibling and cannot be implemented without the explicit
topology; and locate depends exclusively on the performance of the underlying CSA
(albeit the GCST requires also counting leaves). Essentially, the cost of sDepth is that
of a nSibling plus a locate operation.

13.3.3 Discussion
Operation Times

Table 13.2 shows the ranges of the operation times of the GCST over all the collections
tested, and how many orders of magnitude are those times lower or higher than the
competitor structures1.

The differences are particularly striking on the operations that directly refer
to the tree topology: even when the GCST significantly compresses the topology,
which entails a time cost of 1–4 orders of magnitude compared to less compressed
representations (Sada), this is still 1–4 orders of magnitude faster than alternative
schemes, which use the topology in implicit form (an exception is the LCA operation

1For the sake of generalization, we omitted the 10-times faster times of NPR on influenza and
einstein, and a couple of excessively high times of SCT3.

13.3. Experimental Results 207

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, letter(i), i=4

GCST
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, letter(i), i=4

GCST
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, letter(i), i=4

GCST
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, letter(i), i=4

GCST
Sada
NPR

FCST

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, letter(i), i=4

GCST
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, letter(i), i=4

GCST
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, letter(i), i=4

GCST
Sada

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, letter(i), i=4

GCST
Sada

NPR-Repet
NPR

FCST

Figure 13.11: Space-time tradeoffs for operation letter.

208 Chapter 13. GCST: Grammar Compressed Suffix Tree

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 1%, child

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10
Ti

m
e

pe
r o

pe
ra

tio
n

(m
ic

ro
se

co
nd

s)

bpb

DNA 0.1%, child

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.01%, child

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

DNA 0.001%, child

GCST
Sada
SCT3
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

escherichia, child

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

para, child

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

influenza, child

GCST
Sada
SCT3

NPR-Repet
NPR

FCST
 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bpb

einstein, child

GCST
Sada
SCT3

NPR-Repet
NPR

FCST

Figure 13.12: Space-time tradeoffs for operation child.

13.3. Experimental Results 209

Operation Time (µs) NPR-Repet FCST NPR SCT3 Sada

fChild 3–10 2–3 2–3 2 (1) (2–3)
tDepth 5–10 2–4 3–4 2–4 0–1 (2)
nSibling 10–50 2 2 1 (1–2) (1–2)
parent 10–40 2 2 1 (1) (3–4)
tAncestor 10–30 3–4 3–4 2–3 1–2 (1–2)
LCA 30–100 1–2 (1) 1 (1) (1)

sLink 60–300 1–2 0–1 0–1 (1–2) (1–2)
sDepth 50–100 0–1 1 0 0 0
LAQs 250–700 0–1 2–3 0 0–1 0
letter 4–10 0 0 (1) 1
child 300–1000 1–2 1 0–1 (0–2) (0–1)

Table 13.2: Operation time ranges for the GCST and orders of magnitude of
difference with alternative CSTs (the other structure is slower by that order,
unless the number is in parentheses, in which case it is faster by that order).
The space increases left to right, in general terms.

on the FCST, which is very fast). On SCT3, which uses speedup structures that are
alternatives to the topology, the differences in speed are up to 2 orders of magnitude
in either direction, depending on the operation.

The difference decreases to 0–2 orders of magnitude on the operations that involve
interaction with the CSA, as this usage is common to all the CSTs and encompasses
a significant part of the total time. The general trend, within these lower gaps, is
maintained: the GCST is faster than NPR-Repet, FCST and NPR, the comparison is
mixed with SCT3, and Sada is faster. Exceptions are tAncestor on FCST, which is
2–3 orders of magnitude slower than GCST, and letter, which is faster on NPR than
on GCST, and slower on Sada than on GCST.

The effect can also be seen on the absolute operation times. While the GCST
uses 5–50 µs on direct tree operations (except on the LCA, which is by far the
most complex one), the times raise to the range 50–1000 µs on the more complex
operations that interact with the CSA. Incidentally, the LCA is the only operation
where another structure within a competitive space range, the FCST, is faster than
the GCST (other less important ones would be isLeaf and ancestor).

210 Chapter 13. GCST: Grammar Compressed Suffix Tree

Times on a Complex Process

While the operation-wise comparison gives us a fine-grained picture of the
performance differences, it may be difficult to determine how will the time differences
look along a whole process formed by various operations of different kinds. To give a
significant example of the differences between GCST and its fastest competitor, Sada,
on a real-life problem, we choose a paradigmatic example of suffix tree functionality:
find the maximal substrings of a new string S[1,m] that are also substrings of T .

The algorithm is as follows: We descend by the suffix tree with the symbols of
S[1, i] until descending further is not possible. Then S[1, i] is a maximal substring.
Then we take the suffix link, corresponding to S[2, i], and try to descend further.
If this is still not possible, we keep traversing suffix links until we reach a node
representing S[j, i] from where it is possible to descend, until the node representing
S[j, i′]. Then S[j, i′] is the second maximal substring, and so on. The total process
requires O(m) operations child and sLink, which are among the most important
ones on suffix trees.

The process, however, is complicated by the fact that the involved suffix tree
nodes may not be explicit. Those virtual nodes are written as (v, `), meaning the
`th child along the unary path that descends from v in the suffix trie (` = 0 for
explicit nodes). To take the suffix link of a virtual node, we can take the suffix link
v′ = sLink(v) and descend up to ` times from v′ (as there may be some intermediate
explicit nodes below v′ before reaching the suffix link of (v, `)). This amortizes to
O(m) operations, but it makes repeated use of child, which is one of the slowest
operation for all CSTs (around 1 ms in the GCST and Sada). Instead, we take
advantage of the faster LAQs operation (around 300 µs in both CSTs) and proceed
otherwise: we take the explicit descendant u of (v, `), compute u′ = sLink(u),
and finally the desired node is LAQs(u′, d), where d = sDepth(u) − sDepth(v) − `
(operation sDepth(u) takes less than 100 µs in both CSTs, whereas sDepth(v) is
known from the previous operation). This of course takes also O(m) operations,
which require less than half the time of the classical alternative.

Overall, the operations child, sLink, LAQs and sDepth are involved. These in
turn make use of the primitives fwd, counting leaves up to a position, computing
Ψ, finding a given leaf, LCA, computing LCP values (and thus locating a suffix
array position, which depends on the sampling, and accessing bitvector H), binary
searching on tAncestor (which makes use of bwd), traverse the children of a node,
and computing letter (which again applies fwd and Ψ). Therefore the test on the
suffix tree operations is rather comprehensive.

We take influenza as our text collection. For the string S, we take other
Influenza sequences2. We take one sequence of 3000 base pairs, so the process
simulates finding zones of the collection that are highly similar to a new gene. The
resulting maximal intervals have lengths around 100. To consider a longer string S,
we also concatenate 2 MB of those sequences (removing separators), which is the

2From www.cs.helsinki.fi/group/suds/rlcsa/data/influenza.gz

13.3. Experimental Results 211

approximate length of a genome in our collection. For GCST, we take the sweet point
at y = 1 and z = 210, and use the RLCSA samples of 32 for Ψ and 64, 128, and 256
for the text sampling. The RLCSA sampling used for Sada is the same.

Figure 13.13 shows the results. The differences between GCST and Sada are more
noticeable as the RLCSA sampling is denser, since the other operations take more
relevance. However, for reasonable sampling values, the differences in time are below
a factor of 3. More importantly, the GCST can reach the same time performance of
Sada while using much less space. For example, for the short string S, the GCST
speeds up to 300 µs per symbol while using around 3 bps, so the whole process takes
less than a second. If allowed to use that time, however, Sada still cannot use less
than 7 bps. The differences are higher on the longer S, where the GCST can process
the whole genome in around 15 minutes using 3 bps.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

Ti
m

e
pe

r b
as

e
(m

ic
ro

se
co

nd
s)

bps

influenza

GCT
Sada

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10

Ti
m

e
pe

r b
as

e
(m

ic
ro

se
co

nd
s)

bps

influenza

GCT
Sada

Figure 13.13: Space-time tradeoffs for finding the maximal substrings of
S[1,m] that appear in the collection. On the left, m = 3000, on the right,
m = 2MB.

Evolution of Space Usage

The times obtained on larger CSTs are, of course, lower. For example, the large
NPR structure [ACN13] reaches 1 µs in most operations (except 10 µs on LCA
and 100 µs on child). However, as explained, it would be particularly large on
repetitive collections. Other structures implemented in SDSL [Gog11] are larger
than SCT3 and faster. In particular, the original structure by Sadakane [Sad07a], as
implemented in SDSL, should use around 9–10 bps with a sampling sufficiently dense
to solve all the operations in 1–10 µs (and the direct tree operations in nanoseconds,
as shown in our experiments).

Those general-purpose suffix trees will maintain their bps value approximately
stable as the collection grows, whereas those oriented to repetitiveness like NPR-
Repet and GCST are likely to keep reducing their bps. Figure 13.14 shows how the
space of the CSTs considered evolves as repetitiveness increases on the synthetic
DNA collections (where repetitiveness can be precisely measured). As discussed,

212 Chapter 13. GCST: Grammar Compressed Suffix Tree

the FCST is the only one that worsens with repetitiveness. With mutation rates
of 1% the GCST uses less than 6 bps. Although NPR-Repet and FCST use less
space, the GCST is orders of magnitude faster than them. When the mutation rate
drops to 0.1%, the GCST becomes smaller and way faster than NPR and FCST, and
the difference widens as the mutation rate drops. Only NPR-Repet stays more
space-efficient than the GCST, but the difference decreases fast with repetitiveness
(it would probably almost disappear at 0.001%). Still, the GCST is several orders of
magnitude faster than NPR-Repet. SCT3 and Sada are faster than GCST for many
operations, but already for a mutation rate of 0.1% they use more than 3 times the
space of GCST. This raises to more than 5 times for the mutation rate 0.01%.

1% 0.1% 0.01% 0.001%

1

2

3

4

5

6

GCT

FCST

NPR

NPR−Repet

7

8

SCT3

Sada

b
p

s

Figure 13.14: Approximate space figures for the different CSTs as
repetitiveness increases on the synthetic collections. For the space of GCST we
take the sweet point, whereas for the others we show their minimum space in
the plots.

Construction

Finally, let us consider construction times. Figure 13.15 shows the cost to build the
GCST separated by collections (with the average at the end) and by subprocess in the
construction: from bottom to top, the construction of the RLCSA, the construction
of the LCP (bitvector H), the generation of the parentheses topology, and finally
its Repair-compression. This last step takes a significant portion of the total
construction time, and renders the GCST 2–5 times slower to build than the classical
CSTs (except the FCST, which builds more than 10 times slower). Analogously, the

13.4. Discussion 213

RePair-compression of the differential LCP array is what makes NPR-Repet equally
slow to build. Still, the construction of the GCST for a human genome should take
less than 2.5 hours, which seems acceptable.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

DNA1%

DNA0.1%

DNA0.01%

DNA0.001%

escherichia

para
influenza

einstein

Avg(GCT)

SCT3
NPR

Sada
NPR-Repet

se
co

dn
s/

M
B

Construction times

RLCSA
LCP
Extract_par
Grammar
Others

Figure 13.15: Construction times, in seconds per MB, for the different
indexes. The GCST is separated into the different subprocesses. The time of
FCST is over 30 seconds per MB.

13.4 Discussion
We have shown the GCST allows representing explicitly the topology of compressed
suffix trees within very little space on repetitive sequence collections, using less than
2 bits per symbol (bps) for synthetic mutation rates under 0.1%, and within 2–3 bps
on actual repetitive DNA sequence collections. Thanks to the explicit representation
of the topology, the GCST is fast, solving the query and navigation operations in
the range of the microseconds. This is generally several orders of magnitude faster
than alternative representations that achieve competitive space [AN12] (and not so
competitive [RNO11, CN10a]) by managing the topology in implicit form. From
those alternatives, only one [AN12, ACN13] is actually smaller than the GCST (with
the difference shrinking as repetitiveness increases), but its operation times are
in the range of milliseconds. Only larger CSTs [Sad07a, OFG10, CN10a, Gog11],
which on these collections would use 3–7 times the space of the GCST, operate within
microseconds and can be faster than the GCST (sometimes orders of magnitude faster)
for most operations.

Some important challenge remain open, though. We have been so successful
in compressing the various components of the suffix tree, that the sampling of the

214 Chapter 13. GCST: Grammar Compressed Suffix Tree

RLCSA [MNSV10], which is not compressed, starts to dominate. For example, on
DNA with 0.001% of mutations, the whole GCST uses 0.9 bps, from where 0.6 bps owe
to the RLCSA sampling. Finding ways to compress this sampling when the collection
is repetitive is becoming a pressing issue. Some recent and promising results in this
aspect point to new research directions [NPC+13].

Part IV

Thesis Summary

215

Chapter 14

Conclusions and Future
Work

In this chapter we present our conclusions about the work carried out to complete
this thesis, addressing also some future research lines that would be interesting to
explore in more detail.

14.1 Conclusions
In this thesis we have focused mainly in two kinds of databases: statistically-
compressible and highly repetitive databases. We have proposed compressed data
structures that address problems of interest regarding each of these two areas, which
may open the door to new developments and applications.

Regarding stastistically-compressible databases, we have focused on sequences
with large alphabets, that is, in which the number of different symbols is large.
This implies some challenges that were not previously faced, resulting in novel
compressed data structures with applications such as grid representations, word-
based self-indexes, Web graphs, and others.

Our first contribution addressed the problem of space efficiently representing
prefix free codes in case of large alphabets. We experimentally evaluate the space
and compression efficiency of optimal and suboptimal codes, showing that various
combinations offer useful tradeoffs that can be applied in highly space-restricted
environments.

Our second contribution consist of a new rank and select compressed data
structure especially suited for sequences with large alphabets. It obtains zero-order
compression and it outperforms all wavelet tree based data structures.

In the second part of the thesis, we have focused on highly repetitive databases,
presenting several data structures that deal with typical problems that appear in

217

218 Chapter 14. Conclusions and Future Work

these kinds of contexts. Note that tackling these kinds of problems is of major
interest since not many compressed data structures are available to deal with highly
repetitive data. Classical statistical-compressed representations are known to be
useless at capturing repetitiveness.

Our third contribution deals with solving rank and select queries on highly
repetitive databases. To do so, we propose a new compressed data structure based
on grammar compression that obtains the best space performance among all the
state of the art, especially outperforming those specifically designed for these kinds
of scenarios.

Our fourth contribution also deals with solving rank and select queries on
highly repetitive databases. In this case, we obtain the first LZ77 space bounded
compressed data structure that solves this kind of queries in O(1) time. In practice,
this data structure almost obtains the same time performance than statistically-based
compressed data structures, but using many times less space.

Our fifth contribution faces another interesting problem related to highly
repetitive databases. We proposed the first grammar-compressed tree topology,
which is of interest in case we have trees with many isomorphic subtrees. The
results we obtained have no precedent, and have applications in many contexts like
compressed suffix trees.

Additionally, we present several applications to point grids, inverted indexes,
self-indexes, XPath query systems, and compressed suffix trees, in which these data
structures apply. Concretely, we present new count and report query algorithms
for the wavelet matrix that outperforms those based on wavelet trees; we present
an experimental evaluation involving inverted indexes simulated with rank and
select data structures and classical inverted indexes; we present the most compact
self-index up to date by using our rank and select data structures for highly
repetitive scenarios; we present the most space efficient XPath system; and we also
present one of the most space and time efficient compressed suffix trees for highly
repetitive collections based on our grammar compressed tree topologies proposal. In
general, we obtain large space savings at the cost of worse time performance. This
may be a convenient tradeoff in many scenarios.

14.2 Future work
In this section do not focus on the particular research lines derived from each of
the proposals as that was already done at the end of each corresponding chapters.
Instead, we will try to summarize the future research lines that would be interesting
to continue in the following years. As claimed on the previous section and in the
introduction, the field of highly repetitive databases is relatively new, and there
are still more problems than solutions. As a result, many classical compressed
representations are still being used instead of compressed data structures. For
instance, file versioning systems still use the classical approach of storing the deltas

14.2. Future work 219

between versions, which is very space efficient but which does not offer practically
anything but space-efficiency and document recovery. However, by using compressed
data structures, we could manage to have all the versions available while offering
richer functionalities beyond document recovery. This would be interesting, for
instance, to extract metrics in software repositories by having access to all versions
efficiently, to carry out complex queries on the compressed data.

To keep pushing on this direction, and in order to convince the community that
this new approach is better than what they already have, new complete systems
have to be built and tested against classical approaches. Besides, we still have to
provide more space and time efficient compressed data structures, especially faster
algorithms.

Another aspect that deserves more attention are the construction algorithms.
It is fundamental for these algorithms to run fast in order to be attractive and
applicable in any context, and most of them are not. But not only the construction
speed is a limitation. For instance, the best implementation of RePair construction
algorithm is only able to process relatively small datasets. Being able to handle
larger datasets becomes fundamental to apply many of the proposals presented in
this thesis to actual problems.

Another avenue that seems actually very interesting is to use the Block Tree
construction algorithm to exploit repetitiveness in other domains like trees or graphs.
This will have applications to the so demanded graph databases, among others.

Additionally, how to turn these data structures into dynamic approaches is
actually a challenge. There has been little effort to study this kind of scenario,
but providing compressed data structures able to handle some degree of dynamism
would also be a tremendous step forward in this field.

Not less important is the fact that, for highly repetitive scenarios, we are not
aware of lower bounds that tell us how far can we go in terms of compression
performance. This is mainly because of the relatively recent nature of these kinds of
databases.

220 Chapter 14. Conclusions and Future Work

Appendices

221

Appendix A

Publications and Other
Research Results

This chapter summarizes the research publications as well as the research visits
directly related with this thesis.

Publications
Journals

• F. Claude, G. Navarro, and A. Ordóñez. The wavelet matrix: An efficient
wavelet tree for large alphabets. Information Systems, 47:15–32, 2015.

• T. Gagie, G. Navarro, Y. Nekrich, and A. Ordóñez. Efficient and compact
representations of prefix codes. IEEE Transactions on Information Theory,
61(9):4999–5011, 2015.

• G. Navarro, A. Ordóñez. Faster Compressed Suffix Trees for Repetitive Text
Collections. ACM Journal of Experimental Algorithmics, (To appear).

• A. Ordóñez., G. Navarro, N. R. Brisaboa Grammar Compressed Sequences
with Rank/Select Support. Information Systems, (Submitted).

International Conferences

• Belazzougui, D.; Gagie, T.; Gawrychowski, P.; Kärkkäinen, J.; Ordóñez, A.;
Puglisi, S.J.; Tabei, Y.: Queries on LZ-Bounded Encodings. In Proc. of the
2015 Data Compression Conference (DCC 2015), IEEE Computer Society,
Salt Lake City, Utah (United States), 2015, pp. 83-92.

223

224 Appendix A. Publications and Other Research Results

• Navarro, G.; Ordóñez, A.: Grammar Compressed Sequences with Rank/Select
Support. In Proc. of the 21th International Symposium on String Processing
and Information Retrieval (SPIRE 2014) - LNCS 8799, Springer , Ouro Preto
(Brazil), 2014, pp. 31-44.

• Navarro, G.; Ordóñez, A.: Faster Compressed Suffix Trees for Repetitive
Text Collections. In Proc. 13th International Symposium on Experimental
Algorithms (SEA 2014) - LNCS 8504, Springer, Copenhagen (Denmark), 2014,
pp. 424-435.

• Navarro, G.; Ordóñez, A.: Compressing Huffman Models on large Alphabets, In
Proc. of the 2013 Data Compression Conference (DCC 2013), IEEE Computer
Society, Snowbird, Utah (United States), 2013, pp. 381-390.

• Brisaboa, N. R.; Navarro, G.; Ordóñez, A.: Smaller Self-Indexes for Natural
Language. In Proc. of the 19th International Symposium on String Processing
and Information Retrieval (SPIRE 2012) - LNCS 7608, Springer, Cartagena
de Indias (Colombia), 2012, pp. 372-378.

International research visits
• March, 2012 - June, 2012. Departamento de Ciencias de la Computación,

Universidad de Chile, Santiago, Chile, with Gonzalo Navarro.

• June, 2013 - July, 2013. Department of Computer Science, University of
Oxford, Oxford, UK, with Sebastian Maneth and Michael Benedikt.

• November, 2013. Departamento de Ciencias de la Computación, Universidad
de Chile, Santiago, Chile, with Gonzalo Navarro.

• March, 2014. Departamento de Ciencias de la Computación, Universidad de
Chile, Santiago, Chile, with Gonzalo Navarro.

• September, 2014 - October 2014. Department of Computer Science, University
of Helsinki, Helsinki, Finland, with Travis Gagie, Veli Mäkinen, and Simon J.
Puglisi.

• March, 2015. Departamento de Ciencias de la Computación, Universidad de
Chile, Santiago, Chile, with Gonzalo Navarro.

Appendix B

Resumen del Trabajo
Realizado

La cantidad de información almacenada a lo largo de las últimas décadas ha
crecido exponencialmente, y parece que las cosas van a cambiar poco en un futuro
reciente. Las bases de datos están siendo inundadas con cantidades ingentes de
datos provenientes de fuentes muy diversas y con propiedades igual de diversas. Por
ejemplo, existen bases de datos textuales que contienen el resultado de procesos
de crawling Web o digitalización de documentos que han crecido más rápido que
la capacidad de muchas organizaciones para almacenarlas. El problema es aún
más grande en aplicaciones tales como los sistemas de control de versiones o los
repositorios de software en los que queremos acceder el histórico o las versiones de un
documento, con el tremendo impacto en términos de espacio que esto implica ya que
debemos almacenar todas las versiones de cada documento. También tenemos bases
de datos que contienen secuencias de ADN en las cuales almacenamos los genomas
de muchos individuos de la misma especie. Esto supone todo un reto ya que este
tipo de bases de datos han crecido al mismo ritmo que el coste para obtenerlas ha
decrecido, es decir, más rápido que la capacidad del hardware. Almacenar y hacer
consultas sobre la estructura de una red social o un grafo Web es también un reto
debido a la cantidad de nodos y conexiones presentes en este tipo de redes. Los
Sistemas de Información Geográfica son otro ejemplo de aplicaciones en los que la
cantidad de datos generados es masiva.

Sin embargo, no siempre el incremento en la cantidad de datos a almacenar es el
problema ya que la otra cara de la moneda es la capacidad de almacenamiento. Con
el uso masivo de dispositivos móviles (smartphones, tablets o sensores), es común
tener que procesar grandes cantidades de datos en entornos con capacidades, tanto de
procesamiento como de almacenamiento, muy restringidas. Este tipo de dispositivos
deben ser capaces de procesar muchísimos datos en un entorno altamente limitado y

225

226 Appendix B. Resumen del Trabajo Realizado

sin la posibilidad de recurrir a mecanismos de almacenamiento adicionales. Además,
en entornos móviles transmitir datos en formato comprimido es fundamental para
ahorrar ancho de banda y batería.

Afortunadamente, la mayoría de los datos que se generan y manejan en cualquiera
de estos escenarios es de naturaleza no aleatoria. Generalmente, dichos datos se
pueden modelar a través de modelos estadísticos o al menos son, en algún sentido,
más o menos predecibles. Y predecible en teoría de la información es sinónimo
de compresible. Desde la publicación de la tesis de Shannon, muchas son las
representaciones comprimidas que han sido diseñadas para representar datos con
diferentes orígenes. Encontrar las representaciones comprimidas que permitan
representar un conjunto de datos utilizando el menor espacio posible es un problema
de primer orden. Y no solo por los evidentes motivos económicos que suponen
necesitar menos dispositivos de almacenamiento. La compresión de datos es también
fundamental para aumentar la velocidad de transmisión en redes, lo que implica
una mejora de rendimiento en entornos cluster. También es fundamental para
ahorrar energía en dispositivos móviles mediante la reducción del tamaño de los
paquetes que se envían a través de redes sin hilos. Sin embargo, el principal
problema de las representaciones comprimidas clásicas es que simplemente ofrecen
compresión. Si quisiésemos hacer búsquedas dentro de los datos comprimidos
tendríamos que descomprimir los datos y luego hacer la búsqueda sobre el resultado
de la descompresión. Esto significa que en caso de necesitar funcionalidades más
avanzadas, los beneficios de las representaciones comprimidas pueden llegar a
desaparecer.

Con el objetivo de lidiar con este problema, la aparición de las estructuras de datos
compactas ha sido un auténtico alivio. Una estructura de datos comprimida no se
preocupa únicamente por el espacio sino que también se centra en las funcionalidades.
Usar la mínima cantidad de espacio posible sigue siendo uno de los objetivos,
aunque las estructuras de datos comprimidas van más allá permitiendo realizar
operaciones directamente sobre los datos comprimidos. Esto significa que, por
ejemplo, si queremos realizar una búsqueda dentro de una estructura de datos
comprimida, lo podemos hacer directamente sin descomprimir antes los datos. O si
queremos acceder a una porción de dichos datos, lo podemos hacer sin descomprimir
toda la representación. Es decir, la estructuras de datos comprimidas permiten
realizar operaciones sobre los datos comprimidos, lo cual supone un paso adelante
significativo con respecto a las representaciones comprimidas por los siguientes
motivos: (a) seguimos teniendo los mismos beneficios que aportan las representaciones
comprimidas, (b) ahorramos mucho tiempo si evitamos tener que descomprimir toda
la representación sólo para acceder a una porción de la misma, (c) la eficiencia de las
búsquedas aumenta ya que no tenemos que buscar en la secuencia descomprimida,
que generalmente es mucho más larga, (d) obtenemos estructuras más rápidas ya
que podemos operar directamente en memoria RAM o cache, y (e) permiten ahorrar
energía.

227

El problema de las estructuras de datos comprimidas es que son mucho más
recientes que la representaciones comprimidas clásicas, lo que significa que, en
realidad, tenemos muchísimos más problemas abiertos que soluciones disponibles.
Necesitamos estructuras de datos comprimidas más eficientes, tanto en términos
espaciales como de tiempo, para problemas la búsqueda indexada de texto, para tratar
problemas de biología computacional, para problemas relativos a la recuperación de
información, para mejorar el rendimiento en motores de búsqueda, para representar
información jerárquica, para mejorar las búsquedas dentro de ficheros XML, para
mejorar las comunicaciones en redes, para mejorar el rendimiento en clusters de
computadores, para proporcionar sistemas de búsqueda en sistemas con capacidades
limitadas como dispositivos móviles y sensores, para mejorar sistemas de información
geográfica, y para un largo etcétera de aplicaciones.

En esta tesis nos hemos centrado en algunas de estos problemas pero teniendo
muy en cuenta la naturaleza de los datos que estamos procesando, distinguiendo entre
conjuntos de datos estadísticamente compresibles y conjuntos de datos altamente
repetitivos.

Los compresores estadísticos aprovechan la distribución de los símbolos en un
conjunto de datos para asignar códigos más cortos a los símbolos más frecuentes. Es
un área de investigación muy robusta ya que ha estado activa desde hace décadas y
porque se conocen multitud de cotas inferiores que nos permiten saber lo lejos que
podemos llegar en términos de compresión. Sin embargo, y a pesar de su madurez,
aún existe muchos problemas que no han sido resueltos o tan siquiera considerados.
Hay que tener en cuenta que la compresión estadística fue inicialmente pensada para
secuencias provenientes de una fuente de información infinita en la que el número
de símbolos diferentes (el alfabeto) era finito. Y no sólo finito, sino que en muchos
casos considerado relativamente pequeño. Sin embargo, con la introducción de las
estructuras de datos comprimidas, las fuentes de información pasan a ser finitas
(un documento a comprimir, por ejemplo), y el alfabeto no puede ser considerado
pequeño, siendo un problema en muchos casos precisamente por esto. Por ejemplo, si
consideramos un texto como una secuencia de palabras y no de letras, el tamaño del
alfabeto aumenta dramáticamente. Si modelamos una grilla n× n de puntos como
una secuencia de coordenadas, el tamaño del alfabeto es tan grande como la grilla.
Las listas de adyacencia en sistemas de recuperación de información o grafos Web
suelen presentar problemas similares. En cualquiera de estos escenarios, simplemente
representar el alfabeto es un problema, y cómo lidiar con ello no ha sido considerado
aún. La primera parte de la tesis se ha centrado en la propuesta de nuevas estructuras
de datos comprimidas que se centran en bases de datos estadísticamente compresibles
en las que el tamaño del alfabeto es grande.

Por otro lado, un conjunto de datos altamente repetitivo es aquel en el que
tenemos muchas copias o quasi-copias del mismo documento. Esto ocurre, por
ejemplo, en repositorios software o en sistemas de control de versiones en los que se
esperan muchas versiones del mismo documento pero con sólo ligeras variaciones

228 Appendix B. Resumen del Trabajo Realizado

entre versiones sucesivas del mismo. Las bases de datos de ADN son otro claro
ejemplo ya que en ellas se almacenan muchos genomas de individuos de la misma
especie, sabiéndose que dos individuos de la misma especie comparten la mayoría
de su material genético, lo cual resulta en bases de datos altamente repetitivas. El
problema es que los compresores estadísticos no ofrecen un buen rendimiento en
conjuntos de datos repetitivos ya que no son capaces de capturar la repetitividad.
Muchas son las representaciones comprimidas para conjuntos de datos altamente
repetitivos, pero muy pocas la estructuras de datos compactas y aún menos las
cotas inferiores que se conocen. Una explicación obvia es que las bases de datos
altamente repetitivas solo han sido posibles debido al incremento exponencial en
la capacidades de almacenamiento experimentado recientemente. Es decir, es una
área de investigación muy joven y el número de propuestas es bastante limitado.
En general, aquellas estructuras que ofrecen un buen rendimiento en teoría no
suelen ser prácticas, mientras que aquellas que son prácticas suelen ser bastante
ineficientes comparadas con la entropía de los datos. Esto es un impedimento tal
que muchas aplicaciones que manejan bases de datos altamente repetitivas aún
siguen usando representaciones comprimidas clásicas en lugar de estructuras de
datos comprimidas. Esto es un problema grande ya que, por ejemplo, usando
representaciones comprimidas clásicas, los sistemas de control de versiones pueden
únicamente acceder a una versión determinada de un documento, mientras que poder
hacer búsquedas dentro de cada versión de un documento sería mucho más útil, pero
a su vez supondría un reto desde el punto de vista tecnológico. La segunda parte de
esta tesis la hemos dedicado a la propuesta de estructuras de datos comprimidas y
eficientes para conjuntos de datos altamente repetitivos. Estas propuestas, aparte
de todos los beneficios descritos hasta el momento, podrían abrir la puerta a nuevas
funcionalidades para diversas aplicaciones que no serían posibles mediante el uso de
representaciones comprimidas clásicas.

B.1 Estructura de la Tesis y Contribuciones
En este punto describimos cómo hemos estructurado la tesis, así como las
contribuciones específicas relacionadas con cada una de la partes. En general,
y tal como se ha descrito en el apartado anterior, esta tesis consta principalmente
de dos grandes bloques. El primero está completamente dedicado a estructuras de
datos comprimidas para bases de datos estadísticamente compresibles que necesitan
manejar alfabetos grandes, mientras que el segundo gran bloque se centra en los
conjuntos de datos altamente repetitivos. Al inicio de cada bloque hemos incluido
un capítulo en el que se explican los conceptos necesarios así como las estructuras
conocidas en el estado del arte necesarios para entender las contribuciones que
presentamos a lo largo de la tesis. Adicionalmente, en la tercera parte de la tesis
hemos presentamos un conjunto de aplicaciones en las que las estructuras de datos
presentadas son de gran utilidad.

B.1. Estructura de la Tesis y Contribuciones 229

Más concretamente, podemos desgranar esta tesis en una serie de contribuciones
que se detallan a continuación:

1. La primera contribución de esta tesis, presentada en el capítulo 3, trata sobre
cómo representar de manera eficiente código libres de prefijo tanto óptimos
como sub-óptimos. Presentamos varias implementaciones de ideas previas
y las evaluamos experimentalmente para mostrar que dichas estructuras no
son únicamente relevantes desde un punto de vista teórico sino que son muy
interesantes desde el punto de vista práctico si se implementan adecuadamente.
La idea principal sobre la que se sustenta esta contribución es un trabajo previo
del doctorando [BNO12] en el que se exploraba el uso de alphabetic codes para
representar modelos grandes de manera eficiente en términos de espacio. En
otro trabajo previo del doctorando [NO13], se demostró que una representación
basada en permutaciones de códigos Huffman era en realidad más eficiente.
Después de esto se extendió este último trabajo con una publicación previa de
Gagie et al. [GNN10] que se centraba en la representación de códigos libres de
prefijo sub-óptimos. El resultado ha sido finalmente publicado en la revista
JCR IEEE Transaction on Information Theory [GNNO15].
Mi contribución concreta se centra en la implementación, el proceso de
ingeniería así como en la evaluación de las representaciones para códigos
óptimos y sub-óptimos.

2. Nuestra segunda contribución, presentada en el capítulo 4 se denomina
compressed wavelet matrix y es una representación alternativa para secuencias
con alfabetos largos que retiene todas las propiedades de los wavelet trees
comprimidos pero siendo significativamente más rápida. Esta contribución se
basa en un trabajo previo [CN12] en el que se propuso la wavelet matrix sin
comprimir. Sin embargo, resulta que los códigos ya conocidos para obtener
compresión de orden cero en wavelet trees no funcionan cuando los aplicamos
sobre wavelet matrices debido al reordenamiento de bits que se originan.
Por lo tanto, para obtener compresión de orden cero en wavelet matrices
hemos desarrollado una manera alternativa de asignar códigos a los símbolos
basándonos en la desigualdad de Kraft que es óptima y compatible con las
wavelet matrices. Con este nuevo algoritmo para generar los códigos, en teoría
obtenemos compresión de orden cero mientras que en la práctica obtenemos
una estructura de datos que es dominante tanto en términos de espacio como
de tiempo sobre las demás implementaciones de wavelet trees sobre alfabetos
grandes.
Mi contribución han sido el nuevo algoritmo para generar códigos óptimos
para las wavelet matrices comprimidas, la demostración de que dicho esquema
es óptimo y correcto, la implementación y así como la evaluación experimental.
El resultado de este trabajo ha sido publicado en la revista JCR Information
Systems [CNO15].

230 Appendix B. Resumen del Trabajo Realizado

3. Nuestra tercera contribución, presentada en el capítulo 6, es una estructura
de datos comprimida para representar secuencias altamente repetitivas.
Aplicaciones recientes necesitan representar este tipo de secuencias pero las
estructuras de datos comprimidas basadas en compresión estadística se han
mostrado ineficientes a la hora de capturar la repetitividad y, por tanto, a
la hora de ahorrar una cantidad de espacio significativa. Nuestras propuesta
consisten en dos estructuras de datos comprimidas basadas en gramáticas
para representar secuencias en entornos altamente repetitivos. La primera
de ellas, a la que llamamos GCC de Grammar Compression with Counters
se centra en secuencias con alfabetos pequeños y es capaz de obtener en
teoría el mismo espacio que estructuras de datos que obtienen espacio óptimo
pero con la diferencia de que nuestra propuesta es también de orden práctico.
Nuestra segunda propuesta consiste en la combinación del GCC con técnicas
de partición del alfabeto que obtienen muy buenos resultados en la práctica
cuando el alfabeto de la secuencia a representar es grande.
Respecto a esta contribución, he sido el autor principal, incluída la idea,
implementación, proceso de ingeniería y la evaluación experimental. El trabajo
resultado ha sido publicado en Proc. of the 21th International Symposium on
String Processing and Information Retrieval (SPIRE) [NO14b] y la versión de
revista ha sido enviada a la revista JCR Information Systems [ONB15].

4. Nuestra cuarta contribución, presentada en el capítulo 7, es la primera
representación de secuencias que obtiene espacio proporcional al de un
compresor LZ77 y es capaz de resolver consultas access, rank y select
en tiempo O

(
logr n lgσ

z lgn

)
usando O

(
σzr lgn logr n lgσ

z lgn

)
bits de espacio, siendo

z el número de frase en un parseado LZ77 de una secuencia S[1, n] con alfabeto
Σ = [1, σ]. Alternativamente, mostramos cómo podemos obtener tiempo
O(1) para access, rank y select si usamos O(σznε) space (ε < 1). Hemos
denominado a esta estructura de datos como Block Tree y, más allá de sus
propiedades teóricas también mostramos que funciona muy bien en la práctica
cuando la aplicamos sobre secuencias con alfabetos pequeños.
En este caso he estado involucrado en la concepción teórica de la estructura
aunque centrándome en cómo hacer que fuese eficiente y competitiva en
la práctica. Esto incluye todo el proceso de implementación, ingeniería y
evaluación experimental. El trabajo resultado ha sido publicado en Proc. of
the 2015 Data Compression Conference (DCC) [BGG+15].

5. Nuestra quinta contribución, presentada en el capítulo 8, está relacionada
con Los árboles altamente repetitivos. Resulta que en contextos de alta
repetitividad en los que utilizamos estructuras en forma de árbol para almacenar
información, y dependiendo de la aplicación, aparecen muchos isomorfismos en
la topología del árbol (subárboles repetidos). Estos isomorfismos podrían ser

B.1. Estructura de la Tesis y Contribuciones 231

aprovechados por técnicas de compresión basadas en gramáticas para ahorrar
espacio, aunque ninguna que sea completamente funcional y aproveches dicha
repetitividad es conocida. Nuestra contribución, a la que denominamos GCT
de Grammar Compressed Tree, es la primera implementación de una topología
de árboles comprimida con gramáticas y que mantiene toda la funcionalidad
de representaciones clásicas. Presentamos los algoritmos para llevar a cabo las
operaciones más comunes así como una completa evaluación experimental en
la que mostramos el rendimiento de esta estructura en la práctica.
Una idea similar a esta ha sido independientemente propuesta de manera
muy superficial por Bille et al. [BLR+11], y reciente y más detalladamente
presentada por los mismos autores [BLR+15]. Mientras que su objetivo es
únicamente teórico, el nuestro se centra más en aspectos prácticos.
En este caso he sido el autor principal de este desarrollo, desde la idea original
hasta la implementación, aspectos de ingeniería y la evaluación experimental.
Los resultados derivados de esta investigación fueron inicialmente publicados
en Proc. of the 13th International Symposium on Experimental Algorithms
(SEA 2014) [NO14a]. En ese congreso, dicho trabajo fue seleccionado entre los
mejores e invitado, y posteriormente aceptado [NO15], a la edición especial de
la revista ACM Journal of Experimental Algorithmics dedicada a los mejores
trabajos de esa conferencia.

6. Finalmente, en la tercera parte de esta tesis hemos explorado varias aplicaciones
reales en las que las estructuras de datos comprimidas que hemos presentado
son de gran utilidad. Dichas aplicaciones son las siguientes:

(a) Hemos presentado nuevos algoritmos para realizar orthogonal range
queries utilizando wavelet matrices y evaluado dichos algoritmos com-
parándolos con las versiones para wavelet trees, mostrando que nuestras
propuestas mejoran sus resultados.

(b) Hemos presentado una evaluación experimental de índices invertidos
simulados mediante estructuras de datos que soportan consultas rank y
select. Los índices invertidos clásicos generalmente obtienen mejores
resultados, aunque nuestras propuestas son más versátiles, pudiendo
realizar operaciones que no son posibles en caso de utilizar enfoques
clásicos.

(c) Hemos presentado un nuevo FM-Index para secuencias altamente
repetitivas que usan algunas de las estructuras de datos presentadas
a lo largo de la tesis. Hemos comparando nuestras propuestas con el
estado del arte mostrando además que generalmente somos capaces de
obtener las representaciones más compactas aunque siendo más lentos.

(d) Hemos presentado un sistema de consultas XPath para secuencias
altamente repetitivas que consiste en la re-ingeniería de un sistema XPath

232 Appendix B. Resumen del Trabajo Realizado

para secuencias estadísticamente compresibles. Hemos construido un
prototipo de dicho sistema y hemos realizado una evaluación experimental
que sugiere que mediante el uso de estructuras de datos comprimidas
para secuencias altamente repetitivas podemos reducir significativamente
el coste espacial de sistemas clásicos cuando los aplicamos a secuencias
en las que la repetitividad es alta.

(e) Hemos presentado el Grammar Compressed Suffix Tree (GCST), que es
uno de los árboles de sufijos más eficientes para secuencias altamente
repetitivas. Además, hemos presentado una completa evaluación
experimental en la que comparamos nuestra estructura con aquellas
más eficientes en el estado del arte, mostrando que nuestra propuesta
obtiene rendimientos espaciales y temporales muy competitivos.

B.2 Trabajo Futuro
En esta sección trataremos de resumir las líneas de trabajo futuro que se derivan
de esta tesis en términos generales, más que centrarnos en las mejoras concretas o
líneas de investigación que se derivan de cada una de las contribuciones propuestas.

Como ya ha sido mencionado con anterioridad, el área de las bases de datos con
contenido altamente repetitivo es relativamente joven, con lo que actualmente nos
encontramos con más problemas abiertos que soluciones reales. Como resultado, aún
se siguen usando más representaciones comprimidas clásicas que estructuras de datos
comprimidas para este tipo de problemas. Por ejemplo, los sistemas de control de
versiones aún siguen utilizando el clásico enfoque de almacenar las diferencias entre
versiones sucesivas de documentos, lo cual es muy eficiente en términos de espacio
pero en términos de funcionalidad es bastante limitado: simplemente permiten
recuperar una versión determinada. Sin embargo, y tal y como hemos demostrado a
lo largo de la tesis, el simple hecho de usar estructuras de datos comprimidas nos
permitiría ofrecer funcionalidades mucho más avanzadas usando muy poco espacio
de almacenamiento. Esto sería interesante, por ejemplo, para extraer métricas en
procesos de ingeniería del software de repositorios de código fuente si tuviésemos
acceso eficiente a cada una de las versiones.

Con el objetivo de seguir empujando en esta dirección y para convencer a la
comunidad de que este nuevo enfoque es más adecuado que el del uso de estructuras
clásicas, construir sistemas completos bajo este enfoque para compararlo con los
esquemas clásicos sería fundamental. Además, también sería muy interesante y
necesario seguir trabajando para obtener estructuras de datos comprimidas más
eficientes tanto en términos de espacio como de tiempo, en especial algoritmos y
estructuras más rápidas.

Otro aspecto que merece más atención son los algoritmos de construcción.
Es fundamental que estos algoritmos sean rápidos para que resulten atractivos
y aplicables a cualquier contexto y, desafortunadamente, la mayoría de ellos no lo

B.2. Trabajo Futuro 233

son. Pero no solo la velocidad de construcción es un factor limitante. Muchos de ellos
solo funcionan para entradas de un determinado tamaño, tal y como hace RePair, el
mejor algoritmo que conocemos para construir gramáticas. Ser capaces de manejar
cualquier entrada de cualquier tamaño es fundamental para que las propuestas que
hemos presentado a lo largo de esta tesis sean de utilidad en problema reales.

Otra línea que suena realmente prometedora consiste en aplicar el algoritmo
de construcción de los Block Trees para explotar la repetitividad estructuras más
complejas tales como árboles o grafos. Esto tendría aplicaciones tan interesantes
como los bases de datos de grafos, tan de moda hoy en día.

Adicionalmente, conseguir cierto grado de dinamismo en las estructuras de datos
comprimidas sería un gran paso adelante y una limitación menos que superar para
que este tipo de estructuras resulten más interesantes en un contexto general.

No menos importante es el hecho de que para contextos altamente repetitivos no
disponemos de cotas inferiores para el espacio de las estructuras de datos comprimidas,
con lo cual aún no sabemos cuán lejos podemos llega. Esto es, muy probablemente,
consecuencia de la reciente naturaleza de este tipo de bases de datos.

234 Appendix B. Resumen del Trabajo Realizado

Bibliography

[ACM+15] D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen, G. Navarro,
K. Nguy˜̂en, J. Sirén, and N. Välimäki. Fast in-memory XPath search
using compressed indexes. Software Practice and Experience, 45(3):399–
434, 2015.

[ACN13] A. Abeliuk, R. Cánovas, and G. Navarro. Practical compressed suffix
trees. Algorithms, 6(2):319–351, 2013.

[ACNS10] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees
in practice. In Proc. of the 11th Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 84–97, 2010.

[AF92] P. G. Anick and R. A Flynn. Versioning a full-text information retrieval
system. In Proc. of the 15th Annual International ACM Conference on
Research and Development in Information Retrieval (SIGIR), pages
98–111, 1992.

[AGO10] D. Arroyuelo, S. González, and M. Oyarzún. Compressed self-indices
supporting conjunctive queries on document collections. In Proc. of the
17th International Symposium on String Processing and Information
Retrieval (SPIRE), pages 43–54, 2010.

[AKO04] M. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86,
2004.

[AM01] M. Adler and B. M. Maggs. Protocols for asymmetric communication
channels. Journal of Computer and System Sciences, 63(4):573–596,
2001.

[AN12] A. Abeliuk and G. Navarro. Compressed suffix trees for repetitive texts.
In Proc. of the 19th International Symposium on String Processing and
Information Retrieval (SPIRE), LNCS 7608, pages 30–41, 2012.

235

236 Bibliography

[Apo85] A. Apostolico. The myriad virtues of subword trees, pages 85–96.
Combinatorial Algorithms on Words. NATO ISI Series. Springer-Verlag,
1985.

[BAHM12] J. Barbay, L.C. Aleardi, M. He, and J.I. Munro. Succinct representation
of labeled graphs. Algorithmica, 62(1-2):224–257, 2012.

[BCG+14] J. Barbay, F. Claude, T. Gagie, G. Navarro, and Y. Nekrich. Efficient
fully-compressed sequence representations. Algorithmica, 69(1):232–268,
2014.

[BCN10] J. Barbay, F. Claude, and G. Navarro. Compact rich-functional binary
relation representations. In Proc. of the 9th Latin American Symposium
on Theoretical Informatics (LATIN), LNCS 6034, pages 170–183, 2010.

[BCPN14] N. Brisaboa, A. Cerdeira-Pena, and G. Navarro. Xxs: Efficient XPath
evaluation on compressed xml documents. ACM Transactions on
Information Systems, 32(3):13, 2014.

[BDM+05] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S.
Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292,
2005.

[BEF+06] A. Z. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel,
J. McPherson, R. Qi, and E. Shekita. Indexing shared content in
information retrieval systems. In Proc. of the Advances in Database
Technology (EDBT), pages 313–330, 2006.

[Ben79] J. L. Bentley. Decomposable searching problems. Information
Processing Letters, 8(5):244–251, 1979.

[Ben80] J. L. Bentley. Multidimensional divide-and-conquer. Communications
of the ACM, 23(4):214–229, 1980.

[BFLN12] N. Brisaboa, A. Fariña, S. Ladra, and G. Navarro. Implicit indexing of
natural language text by reorganizing bytecodes. Information Retrieval,
15(6):527–557, 2012.

[BFNP07] N. Brisaboa, A. Fariña, G. Navarro, and J. Paramá. Lightweight
natural language text compression. Information Retrieval, 10:1–33,
2007.

[BGG+15] D. Belazzougui, T. Gagie, P. Gawrychowski, J. Kärkkäinen, A. Ordóñez,
S.J. Puglisi, and Y. Tabei. Queries on LZ-bounded encodings. In Proc.
of the 25th Data Compression Conference (DCC 2015), pages 83–92,
Salt Lake City, Utah, 2015.

Bibliography 237

[BGMR07] J. Barbay, A. Golynski, I. Munro, and S. Srinivasa Rao. Adaptive
searching in succinctly encoded binary relations and tree-structured
documents. Theoretical Computer Science, 387(3):284–297, 2007.

[BGOS11] T. Beller, S. Gog, E. Ohlebusch, and T. Schnattinger. Computing
the longest common prefix array based on the Burrows-Wheeler
transform. In Proc 18th International Symposium on String Processing
and Information Retrieval (SPIRE), LNCS 7024, pages 197–208, 2011.

[BGVK+06] P. Boncz, T. Grust, M. Van Keulen, S. Manegold, J. Rittinger, and
J. Teubner. MonetDB/XQuery: a fast XQuery processor powered by a
relational engine. In Proc. of the 2006 ACM SIGMOD international
conference on Management of data, pages 479–490. ACM, 2006.

[BHMM09] P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal
range search structures on a grid with applications to text indexing.
In Proc. of the 11th International Symposium on Algorithms and Data
Structures (WADS), LNCS 5664, pages 98–109, 2009.

[BHMR11] J. Barbay, M. He, I. Munro, and S. Srinivasa Rao. Succinct indexes
for strings, binary relations and multilabeled trees. ACM Transactions
on Algorithms, 7(4):article 52, 2011.

[BLN13] N. Brisaboa, S. Ladra, and G. Navarro. DACs: Bringing direct access
to variable-length codes. Information Processing and Management,
49(1):392–404, 2013.

[BLNS10] N. Brisaboa, M. Luaces, G. Navarro, and D. Seco. A fun application of
compact data structures to indexing geographic data. In Proc. of the
5th International Conference on Fun with Algorithms (FUN), pages
77–88, 2010.

[BLR+11] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. S. Rao, and
O. Weimann. Random access to grammar-compressed strings. In Proc.
of the 22th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 373–389. SIAM, 2011.

[BLR+15] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. S. Rao, and
O. Weimann. Random access to grammar-compressed strings and trees.
SIAM Journal on Computing, 44(3):513–539, 2015.

[BN09] J. Barbay and G. Navarro. Compressed representations of permutations,
and applications. In Proc. of the 26th International Symposium on
Theoretical Aspects of Computer Science (STACS), pages 111–122,
2009.

238 Bibliography

[BN13] J. Barbay and G. Navarro. On compressing permutations and adaptive
sorting. Theoretical Computer Science, 513:109–123, 2013.

[BN15] D. Belazzougui and G. Navarro. Optimal lower and upper bounds for
representing sequences. ACM Transactions on Algorithms, 11(4):article
31, 2015.

[BNO12] N. Brisaboa, G. Navarro, and A. Ordóñez. Smaller self-indexes for
natural language. In Proc. of the 19th International Symposium on
String Processing and Information Retrieval (SPIRE), LNCS 7608,
pages 372–378, 2012.

[Bow10] A. Bowe. Multiary Wavelet Trees in Practice. Honours thesis, RMIT
University, Australia, 2010.

[BPT15] D. Belazzougui, S. J. Puglisi, and Y. Tabei. Access, rank, and select in
grammar-compressed strings. In Proc. of the 23rd Annual European
Symposium on Algorithms (ESA), pages 142–154, 2015.

[BSTW86] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally
adaptive data compression scheme. Communications of the ACM, 29(4),
1986.

[Bur93] M. Buro. On the maximum length of Huffman codes. Information
Processing Letters, 45(5):219–223, 1993.

[BW94] M. Burrows and D. Wheeler. A block sorting lossless data compression
algorithm. Tech. Rep. 124, Digital Equipment Corporation, 1994.

[BYRN11] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 2nd edition, 2011.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques
and Applications. INRIA, 2007.

[CF02] A. Crauser and P. Ferragina. A theoretical and experimental study
on the construction of suffix arrays in external memory. Algorithmica,
32(1):1–35, 2002.

[CFMPN11] F. Claude, A. Fariña, M. Martínez-Prieto, and G. Navarro. Indexes
for highly repetitive document collections. In Proc. of the 20th CIKM,
pages 463–468, 2011.

[Cha88] B. Chazelle. A functional approach to data structures and its use in
multidimensional searching. SIAM Journal on Computing, 17(3):427–
462, 1988.

Bibliography 239

[CHSV08] Y.-F. Chien, W.-K. Hon, R. Shah, and J. Vitter. Geometric Burrows-
Wheeler transform: Linking range searching and text indexing. In Proc.
of the 18th Data Compression Conference (DCC), pages 252–261, 2008.

[CKP85] Y. Choueka, S. T. Klein, and Y. Perl. Efficient variants of Huffman
codes in high level languages. In Proc. of the 8th Annual International
ACM Conference on Research and development in Information Retrieval
(SIGIR), pages 122–130. ACM, 1985.

[Cla] F. Claude. Libcds. https://github.com/fclaude/libcds.
Downloaded: 2011.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, Univ. of Waterloo, Canada,
1996.

[CLL+05] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and A. Shelat. The smallest grammar problem. IEEE
Transactions on Information Theory, 51(7):2554–2576, 2005.

[CM07] J. Culpepper and A. Moffat. Compact set representation for information
retrieval. In Proc. of the 14th International Symposium on String
Processing and Information Retrieval (SPIRE), pages 137–148, 2007.

[CN08] F. Claude and G. Navarro. Practical rank/select queries over arbitrary
sequences. In Proc. of the 15th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 5280, pages
176–187, 2008.

[CN10a] R. Cánovas and G. Navarro. Practical compressed suffix trees. In
Proc. of the 9th International Symposium on Experimental Algorithms
(SEA), LNCS 6049, pages 94–105, 2010.

[CN10b] F. Claude and G. Navarro. Self-indexed grammar-based compression.
Fundamenta Informaticae, 111(3):313–337, 2010.

[CN12] F. Claude and G. Navarro. The wavelet matrix. In Proc. of the
19th International Symposium on String Processing and Information
Retrieval (SPIRE), LNCS 7608, pages 167–179, 2012.

[CNO15] F. Claude, G. Navarro, and A. Ordóñez. The wavelet matrix: An
efficient wavelet tree for large alphabets. Information Systems, 47:15–
32, 2015.

[CNS11] F. Claude, P. Nicholson, and D. Seco. Space efficient wavelet tree
construction. In Proc. of the 18th International Symposium on String
Processing and Information Retrieval (SPIRE), pages 185–196, 2011.

https://github.com/fclaude/libcds

240 Bibliography

[DJSS12] H.-H. Do, J. Jansson, K. Sadakane, and W.-K. Sung. Fast relative
Lempel-Ziv self-index for similar sequences. In Proc. of the Joint
International Conference on Frontiers in Algorithmics and Algorithmic
Aspects in Information and Management (FAW-AAIM), pages 291–302,
2012.

[DKMS08] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better
external memory suffix array construction. ACM Journal of
Experimental Algorithmics, 12:article 3.4, 2008.

[DRR06] O. Delpratt, N. Rahman, and R. Raman. Engineering the LOUDS
succinct tree representation. In Proc. of the 5th International Workshop
on Experimental Algorithms Experimental Algorithms (WEA), volume
4007, page 134. Springer, 2006.

[DRS12] P. Davoodi, R. Raman, and S. Rao Satti. Succinct representations
of binary trees for range minimum queries. In Proc. of the 18th
Annual International Conference on Computing and Combinatorics
(COCOON), LNCS 7434, pages 396–407, 2012.

[FBN+12] A. Fariña, N. Brisaboa, G. Navarro, F. Claude, A. Places, and
E. Rodríguez. Word-based self-indexes for natural language text. ACM
Transactions on Information Systems, 30(1):article 1, 2012.

[FG99] P. Ferragina and R. Grossi. The string B-tree: A new data structure
for string search in external memory and its applications. Journal of
the ACM, 46(2):236–280, 1999.

[FGM09] P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of
wavelet trees. Information and Computation, 207(8):849–866, 2009.

[FGM12] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and
compression in external memory. Algorithmica, 63(3):707–730, 2012.

[FGMS05] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting
textual compression in optimal linear time. Journal of the ACM,
52(4):688–713, 2005.

[Fis10] J. Fischer. Wee LCP. Information Processing Letters, 110:317–320,
2010.

[FKS84] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table
with O(1) worst case access time. Journal of the ACM, 31(3):538–544,
1984.

Bibliography 241

[FLMM09] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan.
Compressing and indexing labeled trees, with applications. Journal of
the ACM, 57(1):article 4, 2009.

[FM05] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of
the ACM, 52(4):552–581, 2005.

[FMMN07] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions
on Algorithms, 3(2):article 20, 2007.

[FMN09] J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-bounded
compressed suffix trees. Theoretical Computer Science, 410(51):5354–
5364, 2009.

[FOP14] A. Fariña, A. Ordóñez, and J. R. Paramá. Indexing and self-
indexing sequences of IEEE 754 double precision numbers. Information
Processing & Management, 50(6):857 – 875, 2014.

[FSC+03] M. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur.
Implementing XQuery 1.0: The GALAX experience. In Proc. of
the 29th international conference on Very Large Databases (VLDB),
volume 29, pages 1077–1080, 2003.

[FW93] M. L. Fredman and D. E. Willard. Surpassing the information theoretic
bound with fusion trees. Journal of Computer and System Sciences,
47(3):424–436, 1993.

[Gag06a] T. Gagie. Compressing probability distributions. Information
Processing Letters, 97(4):133–137, 2006.

[Gag06b] T. Gagie. Large alphabets and incompressibility. Information
Processing Letters, 99(6):246–251, 2006.

[Gag08] T. Gagie. Dynamic asymmetric communication. Information Processing
Letters, 108(6):352–355, 2008.

[GGK+12] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S.J.
Puglisi. A faster grammar-based self-index. In Proc. of the 6th
International Conference on Language and Automata Theory and
Applications (LATA), LNCS 7183, pages 240–251, 2012.

[GGMN05] R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical
implementation of rank and select queries. In Proc. of the 4th
International Workshop on Experimental Algorithms (WEA), pages
27–38, 2005.

242 Bibliography

[GGP11] T. Gagie, P. Gawrychowski, and S. J. Puglisi. Faster approximate
pattern matching in compressed repetitive texts. In Proc. of the 22nd
International Symposium Algorithms and Computation (ISAAC), pages
653–662, 2011.

[GGV03] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed
text indexes. In Proc. of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 841–850, 2003.

[GHP14] T. Gagie, C. Hoobin, and S. J. Puglisi. Block graphs in practice. In
Proc. of the 2nd International Conference on Algorithms for Big Data
(ICABD), pages 30–36, 2014.

[GKNP13] T. Gagie, J. Kärkkäinen, G. Navarro, and S.J. Puglisi. Colored range
queries and document retrieval. Theoretical Computer Science, 483:36–
50, 2013.

[GM59] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell
System Technical Journal, 38:933–967, 1959.

[GMC+14] S. Gog, A. Moffat, J. S. Culpepper, A. Turpin, and A. Wirth. Large-
scale pattern search using reduced-space on-disk suffix arrays. IEEE
Transactions on Knowledge and Data Engineering, 26(8):1918–1931,
2014.

[GMR06] A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations
on large alphabets: a tool for text indexing. In Proc. of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
368–373, 2006.

[GN09] T. Gagie and Y. Nekrich. Worst-case optimal adaptive prefix coding.
In Proc. of the 9th Symposium on Algorithms and Data Structures
(WADS), pages 315–326, 2009.

[GNN10] T. Gagie, G. Navarro, and Y. Nekrich. Fast and compact prefix codes.
In Proc. of the 36th International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM), LNCS 5901,
pages 419–427, 2010.

[GNNO15] T. Gagie, G. Navarro, Y. Nekrich, and A. Ordóñez. Efficient and
compact representations of prefix codes. IEEE Transactions on
Information Theory, 61(9):4999–5011, 2015.

[GNP12] T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet
trees and applications to information retrieval. Theoretical Computer
Science, 426-427:25–41, 2012.

Bibliography 243

[Gog11] S. Gog. Compressed Suffix Trees: Design, Construction, and
Applications. PhD thesis, University of Ulm, Germany, 2011.

[Gol07] A. Golynski. Optimal lower bounds for rank and select indexes.
Theoretical Computer Science, 387(3):348–359, 2007.

[GOR10] R. Grossi, A. Orlandi, and R. Raman. Optimal trade-offs for succinct
string indexes. In Proc. of the 37th International Colloquium on
Algorithms, Languages and Programming (ICALP), pages 678–689,
2010.

[GP14] S. Gog and M. Petri. Optimized succinct data structures for massive
data. Software, Practice, and Experience., 44(11):1287–1314, 2014.

[GPT09] T. Gagie, S. J. Puglisi, and A. Turpin. Range quantile queries: Another
virtue of wavelet trees. In Proc. of the 16th International Symposium
on String Processing and Information Retrieval (SPIRE), LNCS 5721,
pages 1–6, 2009.

[Gus97] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.

[GV06] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on
Computing, 35(2):378–407, 2006.

[GVX11] R. Grossi, J. Vitter, and B. Xu. Wavelet trees: From theory to practice.
In Proc. of the 1st International Conference on Data Compression,
Communications and Processing (CCP), pages 210–221, 2011.

[Has95] R. Hashemian. Memory efficient and high-speed search Huffman coding.
IEEE Transactions on Communications, 43(10):2576–2581, 1995.

[HM10] M. He and I. Munro. Succinct representations of dynamic strings. In
Proc. of the 17th International Symposium on String Processing and
Information Retrieval (SPIRE), pages 334–346, 2010.

[Hor77] Y. Horibe. An improved bound for weight-balanced tree. Information
and Control, 34(2):148–151, 1977.

[HT71] T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-
length alphabetical codes. SIAM Journal of Applied Mathematics,
21(4):514–532, 1971.

[Huf52] D. Huffman. A method for the construction of minimum-redundancy
codes. volume 40, pages 1090–1101, 1952.

244 Bibliography

[HYS09] J. He, H. Yan, and T. Suel. Compact full-text indexing of versioned
document collections. In Proc. of the 18th ACM International
Conference on Information and Knowledge Management (CIKM), pages
415–424, 2009.

[HZS10] J. He, J. Zeng, and T. Suel. Improved index compression techniques for
versioned document collections. In Proc. of the 19th ACM International
Conference on Information and Knowledge Management (CIKM), pages
1239–1248, 2010.

[Jac89] G. Jacobson. Space-efficient static trees and graphs. In Proc. of the
30th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 549–554, 1989.

[JSS12] J. Jansson, K. Sadakane, and W-K. Sung. Ultra-succinct representation
of ordered trees with applications. Journal of Computer and System
Sciences, 78(2):619–631, 2012.

[JW04] L.B. Jorde and S.P. Wooding. Genetic variation, classification and
’race’. Nature Genetics, 36(11s):S28–33, 2004.

[Kay08] M. Kay. Ten reasons why Saxon XQuery is fast. IEEE Data Engineering
Bulletin, 31(4):65–74, 2008.

[KK14a] J. Kärkkäinen and D. Kempa. Engineering a lightweight external
memory suffix array construction algorithm. In Proc. of the 2nd
International Conference on Algorithms for Big Data (ICABD), pages
53–60. CEUR, 2014.

[KK14b] J. Kärkkäinen and D. Kempa. LCP array construction in external
memory. In Proc. of the 13th International Symposium on Experimental
Algorithms (SEA), LNCS 8504, pages 412–423. Springer, 2014.

[KN76] G. O. H. Katona and T. O. H. Nemetz. Huffman codes and self-
information. IEEE Transactions on Information Theory, 22(3):337–340,
1976.

[KN09] M. Karpinski and Y. Nekrich. A fast algorithm for adaptive prefix
coding. Algorithmica, 55(1):29–41, 2009.

[KN13] S. Kreft and G. Navarro. On compressing and indexing repetitive
sequences. Theoretical Computer Science, 483:115–133, 2013.

[Knu73] D. E. Knuth. The Art of Computer Programming. Vol. 3: Sorting and
Searching. Addison-Wesley, 1973.

Bibliography 245

[Kol65] A. Kolmogorov. Three approaches to the quantitative definition of
information’. Problems of information transmission, 1(1):1–7, 1965.

[Kol68] A. Kolmogorov. Logical basis for information theory and probability
theory. Information Theory, IEEE Transactions on, 14(5):662–664,
1968.

[KP11] J. Kärkkäinen and S. J. Puglisi. Fixed block compression boosting in
FM-indexes. In Proc. of the 18th International Symposium on String
Processing and Information Retrieval (SPIRE), pages 174–184, 2011.

[KPZ11] S. Kuruppu, S.J. Puglisi, and J. Zobel. Optimized relative Lempel-Ziv
compression of genomes. In Proc. of the 34th Australasian Computer
Science Conference (ACSC), pages 91–98, 2011.

[KR87] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249–260,
1987.

[KR03] J. Kärkkäinen and S. Rao. Algorithms for Memory Hierarchies, chapter
7: Full-text indexes in external memory, pages 149–170. LNCS 2625.
Springer, 2003.

[Kur99] S. Kurtz. Reducing the space requirements of suffix trees. Software
Practice and Experience, 29(13):1149–1171, 1999.

[LH90] L. L. Larmore and D. S. Hirschberg. A fast algorithm for optimal
length-limited Huffman codes. Journal of the ACM, 37(3):464–473,
1990.

[LM00] J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc.
of the IEEE, 88(11):1722–1732, 2000.

[LM06] M. Liddell and A. Moffat. Decoding prefix codes. Software, Practice
and Experience, 36(15):1687–1710, 2006.

[LMM13] M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure
compression using repair. Information Systems, 38(8):1150–1167, 2013.

[Lue78] G. S. Lueker. A data structure for orthogonal range queries. In Proc.
of the 19th Annual Symposium on Foundations of Computer Science
(FOCS), pages 28–34. IEEE, 1978.

[LW80] D. T. Lee and C. K. Wong. Quintary trees: a file structure for
multidimensional datbase sytems. ACM Transactions on Database
Systems, 5(3):339–353, 1980.

246 Bibliography

[Mak12] C. Makris. Wavelet trees: a survey. Computer Science and Information
Systems, 9(2):585–625, 2012.

[Man01] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal
of the ACM, 48(3):407–430, 2001.

[MB04] S. Maneth and G. Busatto. Tree transducers and tree compressions. In
Proc. of the 7th International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS), LNCS 2987, pages
363–377, 2004.

[McC76] E. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 32(2):262–272, 1976.

[MK95] A. Moffat and J. Katajainen. In-place calculation of minimum-
redundancy codes. In Proc. of the 4th International Workshop
Algorithms and Data Structures (WADS), pages 393–402, 1995.

[ML01] R. L. Milidiú and E. S. Laber. Bounding the inefficiency of length-
restricted prefix codes. Algorithmica, 31(4):513–529, 2001.

[MLMD03] R. L. Milidiú, E. S. Laber, L. O. Moreno, and J. C Duarte. A
fast decoding method for prefix codes. In Proc. of the 13th Data
Compression Conference (DCC), page 438, 2003.

[MM93] U. Manber and E. Myers. Suffix arrays: a new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[MN05] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length
encoding. Nordic Journal of Computing, 12(1):40–66, 2005.

[MN06] V. Mäkinen and G. Navarro. Position-restricted substring searching. In
Proc. of the 7th Latin American Symposium on Theoretical Informatics
(LATIN), pages 703–714, 2006.

[MN07a] V. Mäkinen and G. Navarro. Implicit compression boosting with
applications to self-indexing. In Proc. of the 14th International
Symposium on String Processing and Information Retrieval (SPIRE),
LNCS 4726, pages 214–226, 2007.

[MN07b] V. Mäkinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science, 387(3):332–347, 2007.

[MN08] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences
and full-text indexes. ACM Transactions on Algorithms, 4(3):article
32, 2008.

Bibliography 247

[MNKS13] S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto. Esp-index:
A compressed index based on edit-sensitive parsing. Journal of Discrete
Algorithms, 18:100–112, 2013.

[MNSV10] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage
and retrieval of highly repetitive sequence collections. Journal of
Computational Biology, 17(3):281–308, 2010.

[MNZB00] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible
word searching on compressed text. ACM Transactions on Information
Systems, 18(2):113–139, 2000.

[Mof89] A. Moffat. Word-based text compression. Software Practice and
Experience, 19(2):185–198, 1989.

[Mp07] XML Mind products. Qizx XML query engine. http://www.xmlmind.
com/qizx, 2007.

[MR01] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing, 31(3):762–
776, 2001.

[MRRR03] J. Munro, R. Raman, V. Raman, and S. Srinivasa Rao. Succinct
representations of permutations. In Proc. of the 30th International
Colloquium on Automata, Languages, and Programming (ICALP),
LNCS 2719, pages 345–356, 2003.

[MT97] A. Moffat and A. Turpin. On the implementation of minimum-
redundancy prefix codes. IEEE Transactions on Communications,
45(10):1200–1207, 1997.

[Mun96] I. Munro. Tables. In Proc. of the 16th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS),
LNCS 1180, pages 37–42, 1996.

[Nak91] N. Nakatsu. Bounds on the redundancy of binary alphabetical codes.
IEEE Transactions on Information Theory, 37(4):1225–1229, 1991.

[Nav04] G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of
Discrete Algorithms, 2(1):87–114, 2004.

[Nav09] G. Navarro. Implementing the LZ-index: Theory versus practice. ACM
Journal of Experimental Algorithmics, 13:article 2, 2009.

[Nav12] G. Navarro. Indexing highly repetitive collections. In Proc. of the
23rd International Workshop on Combinatorial Algorithms (IWOCA),
LNCS 7643, pages 274–279, 2012.

http://www.xmlmind.com/qizx
http://www.xmlmind.com/qizx

248 Bibliography

[Nav14] G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms,
25:2–20, 2014.

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):article 2, 2007.

[NMWM94] C. G. Nevill-Manning, I. H. Witten, and D. L. Maulsby. Compression by
induction of hierarchical grammars. In Proc. of the Data Compression
Conference (DCC), pages 244–253, 1994.

[NN12] G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time
and linear space. In Proc. of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1066–1078, 2012.

[NN14] G. Navarro and Y. Nekrich. Optimal dynamic sequence representations.
SIAM Journal on Computing, 43(5):1781–1806, 2014.

[NNR13] G. Navarro, Y. Nekrich, and L. Russo. Space-efficient data-analysis
queries on grids. Theoretical Computer Science, 482:60–72, 2013.

[NO13] G. Navarro and A. Ordóñez. Compressing Huffman models on large
alphabets. In Proc. of the 23rd Data Compression Conference (DCC),
pages 381–390, 2013.

[NO14a] G. Navarro and A. Ordóñez. Faster compressed suffix trees for repetitive
text collections. In Proc. of the 13th International Symposium on
Experimental Algorithms (SEA), LNCS 8504, pages 424–435, 2014.

[NO14b] G. Navarro and A. Ordóñez. Grammar compressed sequences with
rank/select support. In Proc. of the 21st International Symposium
on String Processing and Information Retrieval (SPIRE), LNCS 8799,
pages 31–44, 2014.

[NO15] G. Navarro and A. Ordóñez. Faster compressed suffix trees for repetitive
collections. ACM Journal of Experimental Algorithmics, 2015. To
appear.

[NP10] G. Navarro and S. J. Puglisi. Dual-sorted inverted lists. In Proc. of the
17th International Symposium on String Processing and Information
Retrieval (SPIRE), pages 310–322, 2010.

[NP12] G. Navarro and E. Providel. Fast, small, simple rank/select on
bitmaps. In Proc. of the 11th International Symposium on Experimental
Algorithms (SEA), LNCS 7276, pages 295–306, 2012.

Bibliography 249

[NPC+13] J. C. Na, H. Park, M. Crochemore, J. Holub, C. S. Iliopoulos,
L. Mouchard, and K. Park. Suffix tree of alignment: An efficient
index for similar data. In Proc. of the International Workshop on
Combinatorial Algorithms (IWOCA), LNCS 8288, pages 337–348.
Springer, 2013.

[NPV14] G. Navarro, S. J. Puglisi, and D. Valenzuela. General document
retrieval in compact space. ACM Journal of Experimental Algorithmics,
19(2):article 3, 2014. 46 pages.

[NS14] G. Navarro and K. Sadakane. Fully-functional static and dynamic
succinct trees. ACM Transactions on Algorithms, 10(3):article 16,
2014.

[OFG10] E. Ohlebusch, J. Fischer, and S. Gog. CST++. In Proc. of the
17th International Symposium on String Processing and Information
Retrieval (SPIRE), LNCS 6393, pages 322–333, 2010.

[Ohl13] E. Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome
Rearrangements, and Phylogenetic Reconstruction. Oldenbusch Verlag,
2013.

[ONB15] A. Ordóñez, G. Navarro, and N. Brisaboa. Grammar compressed
sequences with rank/select support. In Submitted to Information
Systems Jouranl, 2015.

[OS07] D. Okanohara and K. Sadakane. Practical entropy-compressed
rank/select dictionary. In Proc. of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 60–70, 2007.

[Pag01] Rasmus Pagh. Low redundancy in static dictionaries with constant
query time. SIAM Journal on Computing, 31(2):353–363, 2001.

[PT08] S. Puglisi and A. Turpin. Space-time tradeoffs for longest-common-
prefix array computation. In Proc. of the 19th International Symposium
on Algorithms and Computation (ISAAC), pages 124–135, 2008.

[PV10] M. Pǎtraşcu and E. Viola. Cell-probe lower bounds for succinct partial
sums. In Proc. of the 21st annual ACM-SIAM symposium on Discrete
Algorithms (SODA), pages 117–122, 2010.

[RNO11] L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees.
ACM Transactions on Algorithms, 7(4):article 53, 2011.

[RRR07] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets.
ACM Transactions on Algorithms, 3(4):article 43, 2007.

250 Bibliography

[Ryt03] W. Rytter. Application of Lempel-Ziv factorization to the
approximation of grammar-based compression. Theoretical Computer
Science, 302(1):211–222, 2003.

[Sad03] K. Sadakane. New text indexing functionalities of the compressed suffix
arrays. J. Algor., 48(2):294–313, 2003.

[Sad07a] K. Sadakane. Compressed suffix trees with full functionality. Theory
of Computing Systems, 41(4):589–607, 2007.

[Sad07b] K. Sadakane. Succinct data structures for flexible text retrieval systems.
Journal of Discrete Algorithms, 5(1):12–22, 2007.

[Sak05] H. Sakamoto. A fully linear-time approximation algorithm for grammar-
based compression. Journal of Discrete Algorithms, 3:416–430, 2005.

[Sal07] D. Salomon. Data Compression. Springer, 2007.

[SC07] T. Strohman and B. Croft. Efficient document retrieval in main memory.
In Proc. of the 30th Annual International ACM Conference on Research
and Development in Information Retrieval (SIGIR), pages 175–182,
2007.

[She92] D. Sheinwald. On binary alphabetic codes. In Proc. of the 2nd Data
Compression Conference (DCC), pages 112–121, 1992.

[Sie88] A. Siemiński. Fast decoding of the Huffman codes. Information
Processing Letters, 26(5):237–241, 1988.

[Sig08] Signum. Tauro. http://tauro.signum.sns.it/, 2008.

[SK64] E. S. Schwarz and B. Kallick. Generating a canonical prefix encoding.
Communications of the ACM, 7(3):166–169, 1964.

[SOG10] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectional search in
a string with wavelet trees. In Proc. of the 21st Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 6129, pages 40–50,
2010.

[ST07] P. Sanders and F. Transier. Intersection in integer inverted indices. In
Proc. of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX), 2007.

[SW49] C. E. Shannon and W. Weaver. A mathematical theory of
communication, 1949.

http://tauro.signum.sns.it/

Bibliography 251

[SWYZ02] F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression
of inverted indexes for fast query evaluation. In Proc. of the 25th
Annual International ACM Conference on Research and Development
in Information Retrieval (SIGIR), pages 222–229, 2002.

[Tis11] G. Tischler. On wavelet tree construction. In Proc. of the 22nd Annual
Symposium on Combinatorial Pattern Matching (CPM), pages 208–218,
2011.

[TK04] S.A. Tishkoff and K.K. Kidd. Implications of biogeography of human
populations for ’race’ and medicine. Nature Genetics, 36(11s):S21–27,
2004.

[TM00] A. Turpin and A. Moffat. Housekeeping for prefix coding. IEEE
Transactions on Communications, 48(4):622–628, 2000.

[TTS13] Y. Tabei, Y. Takabatake, and H. Sakamoto. A succinct grammar
compression. In Proc. of the 24th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 7922, pages 235–246, 2013.

[TTS14] Y. Takabatake, Y. Tabei, and H. Sakamoto. Improved esp-index: A
practical self-index for highly repetitive texts. In Proc. of the 13th
International Symposium on Experimental Algorithms (SEA), pages
338–350. 2014.

[Ukk95] E. Ukkonen. Constructing suffix trees on-line in linear time.
Algorithmica, 14(3):249–260, 1995.

[vEBKZ77] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an efficient priority queue. Mathematical Systems Theory, 10:99–127,
1977.

[Vig08] S. Vigna. Broadword implementation of rank/select queries. In Proc.
of the 7th International Workshop on Experimental Algorithms (WEA),
LNCS 5038, pages 154–168, 2008.

[VM07] N. Välimäki and V. Mäkinen. Space-efficient algorithms for document
retrieval. In Proc. of the 18th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 4580, pages 205–215, 2007.

[VY13] E. Verbin and W. Yu. Data structure lower bounds on random access to
grammar-compressed strings. In Proc. of the 24th Annual Symposium
on Combinatorial Pattern Matching (CPM), LNCS 7922, pages 247–
258, 2013.

[Wei73] P. Weiner. Linear pattern matching algorithms. In IEEE Symposium
on Switching and Automata Theory, pages 1–11, 1973.

252 Bibliography

[WMB99] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kaufmann,
2nd edition, 1999.

[WZ99] H. E. Williams and J. Zobel. Compressing integers for fast file access.
The Computer Journal, 42(3):193–201, 1999.

[XPa] XPath. W3C recommendation of XML path language (XPath). www.
w3.org/TR/xpath/. Accessed: 10/2015.

[XQu] XQuery. W3C recommendation of XML query language (XQuery).
www.w3.org/TR/xquery/. Accessed: 10/2015.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–
343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24(5):530–536,
1978.

[ZPYL08] Y. Zhang, Z. Pei, J. Yang, and Y. Liang. Canonical Huffman code
based full-text index. Progress in Natural Science, 18(3):325–330, 2008.

www.w3.org/TR/xpath/
www.w3.org/TR/xpath/
www.w3.org/TR/xquery/

	Introduction
	Motivation
	Contributions
	Structure of the Thesis

	I Statistical Encodings
	Previous Concepts on Statistical Encodings
	Model of Computation
	Information Theory, Entropy, and Encodings
	Empirical Entropy
	Entropy Bounded Encodings
	Shannon-Fano Encoding
	Huffman Encoding
	Canonical Huffman

	Encoding Schemes for Integers
	Encodings for Small Integers
	Encodings for Large Integers

	Rank, Select, and Access on Bitmaps
	Rank, Select and Access on Sequences
	Wavelet Trees
	Huffman-Shaped Wavelet Trees
	GMR Representation
	Alphabet Partitioning

	Directly Addressable Codes
	Static Succinct Tree Representations
	Text

	Efficient Representation of Prefix Codes
	Related Work
	Representing Optimal Codes
	Additive Approximation
	Multiplicative Approximation
	Experimental Results
	Implementations
	Classical Huffman codes
	Hu-Tucker codes

	Experimental Setup
	Representing Optimal Codes
	Length-Limited Codes
	Approximations

	Discussion

	The Compressed Wavelet Matrix
	Related Work
	Pointerless Wavelet Trees
	The Strict Variant
	The Extended Variant

	The Wavelet Matrix
	The Strict Variant
	The Extended Variant
	Construction

	Pointerless Huffman Shaped Wavelet Trees

	The Compressed Wavelet Matrix
	Experimental Results
	Datasets
	Measurements
	Results on Sequences
	Space
	Time
	Bottom Line

	Discussion

	II Repetition-based Data Structures
	Previous Concepts on Repetitive Scenarios
	Why Repetition-based Data Structures?
	Kolmogorov Complexity
	Lempel-Ziv Parsings
	LZ77
	LZ78
	LZ-End

	Grammar Compression
	Rank, Select, and Access on Repetitive Scenarios
	Rank, Select, and Access on Repetitive Bitmaps
	Rank, Select, and Access on Repetitive Sequences

	Repetitive Datasets

	Grammar Compressed Sequences
	Efficient rsa for Sequences on Small Alphabets
	Efficient rsa for Sequences on Large Alphabets
	AP with GCC in Practice

	Experimental Results
	Setup and Datasets
	Parameterizing the Data Structures
	Performance on Small Alphabets
	Performance on Large Alphabets

	Discussion

	Block Trees for Sequences
	Block Graphs
	Block Trees
	Block Trees Structure
	Analysis

	Construction
	Queries on a Block Tree
	Access and Extract
	Rank
	Select

	Block Trees for Sequences for Large Alphabets
	Block Trees in Practice
	Experimental Results
	Performance on Bitmaps
	Performance on Sequences With Small Alphabets

	Discussion

	Grammar Compressed Trees
	Related Work
	Grammar Compressed Tree
	GCT Structure
	Storing the Rules R
	Storing Information on the Rules
	Storing the Array C

	Basic Operations
	Operations fwd and bwd
	Operation RMQ
	Mapping with Leaves

	Experimental Results
	Environmental Set-up and Datasets
	Parameterizing the Data Structures
	Space Performance
	Time Performance

	Discussion

	III Applications
	Representation of Point Grids
	Representing Grids with Wavelet Trees
	Experimental Results
	Discussion

	Inverted Indexes
	Inverted Indexes with rsa Data Structures
	Experimental Results
	Discussion

	Self-Indexes on Highly Repetitive Sequences
	Statistically-bounded Self-Indexes
	Compressed Suffix Arrays
	Compressing
	Compressing the Suffix Array
	Compressing the Inverse of the Suffix Array

	FM-Indexes

	Self-Indexes on Highly Repetitive Scenarios
	Grammar and Block-Tree FM-Indexes
	Experimental Results
	Discussion

	XPath on Repetitive XML
	SXSI on Highly Repetitive Scenarios
	Experimental Results
	Discussion

	GCST: Grammar Compressed Suffix Tree
	Current Compressed Suffix Trees
	Grammar Compressed Suffix Tree
	Experimental Results
	Space Usage
	Space-Time Performance of Operations
	Discussion

	Discussion

	IV Thesis Summary
	Conclusions and Future Work
	Conclusions
	Future work

	Appendices
	Publications and Other Research Results
	Resumen del Trabajo Realizado
	Estructura de la Tesis y Contribuciones
	Trabajo Futuro

	Bibliography

