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MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN
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MONOMIAL AND OPTIMAL QUADRATIZATION FOR PDES

Las ecuaciones diferenciales parciales (EDP) son esenciales para representar fenómenos
y comportamientos dinámicos en áreas cient́ıficas, como la f́ısica y la ingenieŕıa. Asimismo,
los sistemas dinámicos descritos por estas estructuras matemáticas exhiben dinámicas com-
plejas, especialmente cuando las estructuras de las ecuaciones son no lineales. Además, se
ha demostrado ampliamente que los sistemas cuadráticos suelen ser más fáciles de analizar,
simular, controlar y aprender.

En la misma ĺınea de ideas, esta tesis propone un algoritmo para obtener cuadratizaciones
de EDPs. Esta es una técnica en la que un sistema de EDPs con expresiones del lado dere-
cho de grado superior a dos se eleva o transforma a un sistema de EDP con expresiones del
lado derecho de grados como máximo cuadráticos. Para lograrlo, se introducen nuevas vari-
ables, aśı como ecuaciones diferenciales parciales correspondientes a estas nuevas relaciones
provenientes de la transformación o renombramiento de expresiones. Este procedimiento se
ha utilizado en diversos campos cient́ıficos, como en el estudio de sistemas dinámicos, en
reducción de orden de modelos no lineales, en redes de reacciones qúımicas, entre otros.

Nuestro algoritmo encuentra una cuadratización para un sistema de EDP garantizando
su optimalidad (es decir, garantiza el menor número de variables) dentro del espacio de
búsqueda. Para este algoritmo se implementaron dos versiones para la búsqueda de nuevas
variables, una con un enfoque branch-and-bound y otra con un enfoque nearest-neighbor. Fi-
nalmente, mostramos resultados del rendimiento de ambas implementaciones utilizando mod-
elos de EDP provenientes de aplicaciones prácticas. A través del enlace https://github.

com/albaniolivieri/pde-quad.git es posible acceder a la implementación.
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Partial differential equations are essential to represent phenomena and dynamical behaviors in
mathematically oriented scientific fields, such as physics and engineering. Moreover, dynami-
cal systems described by these mathematical structures exhibit complex dynamics, especially
when the expression structures are nonlinear. Further, it has been widely demonstrated that
quadratic systems are often easier to analyze, simulate, control, and learn.

Therefore, this thesis introduces an algorithm for obtaining quadratizations for Partial
Differential Equations (PDE). This is a technique where a PDE system with right-hand side
expressions of degrees greater than two is lifted or transformed into a PDE system with
right-hand side expressions of at most quadratic degrees. To accomplish this, new variables
and partial differential equations corresponding to the relations of these auxiliary variables
are introduced. This procedure is used in several scientific fields, such as dynamical systems,
nonlinear model order reduction, and chemical reaction networks, among many others.

Our algorithm finds a quadratization for a given PDE system and guarantees its optimality
(i.e., it introduces the least number of variables) within the search space. Two versions of
this algorithm were implemented to search for new variables, one with a branch-and-bound
approach and the other with a nearest-neighbor approach. We show some results of the
performance of both implementations and benchmarks using PDE models obtained from
practical applications. Our software implementation is available in https://github.com/

albaniolivieri/pde-quad.git.
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Jorge Amaya y Cristóbal Navarro. Muchas gracias por tomarse el tiempo para ayudar a
mejorar la calidad de este trabajo.

Finalmente, quiero dar un especial agradecimiento a mis incodicionales compañeros que
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Chapter 1

Introduction

1.1 Motivation and Problem Introduction

One of the most important challenges in numerical analysis is the study of complex dynam-
ical processes described by Ordinary Differential Equations (ODEs) and Partial Differential
Equations (PDEs). In particular, nonpolynomial and nonquadratic PDEs describe complex
dynamical processes in science and engineering. Some examples are the cubic FitzHugh-
Nagumo model [5], which explains the activation and deactivation dynamics of a spiking
neuron; the also cubic Brusselator model [34], used to predict oscillations in chemical reac-
tions; and the quartic model of the nonadiabatic tubular reactor [31], which describes the
evolution of the species concentration and temperature.

In addition, using a specific model structure, such as quadratic PDE systems, is of broad
interest in many scientific fields. One of them is the area of Model Order Reduction (MOR),
where transforming or lifting such systems into quadratic form (as introduced by Gu [21]) has
been used to obtain better variables for several purposes: for learning low-order polynomial
reduced models of complex nonlinear systems [39], for developing system-theoretic MOR [4],
and for conducting studies of data-driven MOR [32], among others.

Also, in the context of MOR, the fluid dynamics community has shown increasing interest
in transforming a given system into a quadratic form. Balajewicz et al. [3] benefit from a
quadratic structure to develop a projection-based reduced order model (ROM) for the Navier-
Stokes equations [42], PDEs that describe the flow of incompressible fluids. Furthermore,
Guillot et al. [23] use this quadratic transformation for developing a Taylor series–based
continuation algorithm for finding the solution set of a given algebraic system.

Another field that benefits from this structure is analog computation with chemical reac-
tion networks. Lifting differential equation models into a quadratic form allows transforming
a given chemical reaction network into a bimolecular one, thus obtaining an elementary chem-
ical reaction representation. This result was fundamental in proving the Turing completeness
of elementary chemical reactions ([25, 18, 6]).

Several works mentioned above have encountered efficiency problems when finding these
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new transformation variables, especially when handling PDE systems. In contrast with the
case of ODEs, where finding a quadratic form of these systems has been widely studied,
methods for obtaining this structure for PDEs have remained unexplored.

In this thesis, we discuss the concept and study of quadratization of PDEs. This refers
to the process of finding a transformation that turns a PDE system with nonpolynomial or
higher-degree polynomial right-hand side equations into a quadratic system. To obtain a
quadratic form, one may need to add new auxiliary variables to the original PDE, where the
set of variables introduced is called a quadratization. The main problem considered in this
thesis is the optimal monomial quadratization of PDEs.

To gain some insight into this, let us first overview the quadratization problem for ODE
systems [10]. As with PDEs, the ultimate goal of the quadratization procedure for ODEs is
to decrease the right-hand side degree to at most two. To achieve this result, we introduce
to rewrite the original ODE system, resulting in a new system with lower right-hand side
degrees. For example, if we have the following ODE:

x′ = x5, (1.1)

one of the possible quadratizations is obtained by defining the new variable y := x4. With
the definition of y, we also need to add a new differential equation corresponding to this new
relation. Thus, we obtain:

x′ = xy and y′ = 4x3x′ = 4x8 = 4y2. (1.2)

In the previous example, every solution of the original system is the x-component of
some solution of Eq. (1.2). Additionally, we call a quadratization optimal if it introduces the
minimum number of variables, and a monomial quadratization if the variables introduced are
one-term polynomials. Our example shows that our quadratization is optimal as it introduces
only one new variable.

Now, the method for finding an optimal monomial quadratization for a PDE should bear
some differences from the one presented above given the mathematical nature of PDEs. A
PDE is defined by independent variables (x, y, ...) and some unknown functions of these
variables (u1(x, y, ...), . . . un(x, y, ...)). A PDE is an equation that imposes relations between
the independent variables, the functions u1, . . . un, and their partial derivatives [40].

Due to the multivariate nature of PDEs, this new problem is more complex compared
to the ODE case, since the partial derivatives of both the unknown functions and the new
variables are part of the quadratic transformation. To the best of our knowledge, no algorithm
for finding an optimal monomial quadratization for PDE systems exists to date. This is the
main goal of this work.

Let us illustrate the PDE case of the quadratization problem with an example. Let our
PDE be defined by the unknown function u(t, x) (dependent on time and space) and the
following equation:
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∂u

∂t
=

∂u

∂x
u2. (1.3)

To quadratize Eq. (1.3) we can introduce the variable y := u2. Since our differential equation
is a PDE, we can calculate y’s first derivative with respect to x:

∂y

∂x
= 2

∂u

∂x
u. (1.4)

As in the ODE case, we add a new differential equation corresponding to y. Now we write:

∂y

∂t
= 2

∂u

∂x
u3 = 2

∂u

∂x
uy =

∂y

∂x
y and

∂u

∂t
=

∂u

∂x
y. (1.5)

Looking at the transformed system in Eq. (1.5), we notice that the rewritten form of the
equation Eq. (1.3) and the new differential equation are both quadratic. Then, we say that
the set {u2} is an optimal quadratization for the example PDE in Eq. (1.3). On the other
hand, we could have accomplished a quadratic transformation for the same system using
different variables. For example, the set{

∂u

∂x
· u, u3

}
is also a quadratization, but with a higher number of variables, i.e., a nonoptimal quadrati-
zation.

This thesis centers on designing and constructing an algorithm for finding optimal quadra-
tizations for PDE systems given a number of differentiations for the auxiliary variables. In
particular, the implementation of this algorithm outputs a quadratization with an optimal
number of introduced variables, with the search space defined by the decomposition of the
polynomial terms from the nonquadratic PDE right-hand sides. Lastly, we show some bench-
marks related to performance using practical PDE examples found in the literature.

1.2 Problem Statement

In the following, we give a preliminary definition of quadratization for PDEs in order to state
more clearly the problem we want to solve. A formal definition will be presented in Section
2.2.2.

Definition 1.1 (Preliminary definition of quadratization for PDEs)

For simplicity, let us consider a PDE with a bivariate unknown function

∂u

∂t
= F

(
u,

∂u

∂x
,
∂2u

∂x2 , . . . ,
∂hu

∂xh

)
, (1.6)

where u is the unknown function depending on variables t and x, and h is the order of the
differential equation (highest order of partial derivatives). We call the set comprised of u

3



and its partial derivatives U and write F (U). Then, let us consider a set Y of n variables
consisting of the following elements:

y1 = g1 (U) , . . . , yn = gn (U) , (1.7)

where g1, . . . , gn are monomials. We also consider the partial derivatives with respect to the
second independent variable up to an order k:

∂y1
∂x

=
∂g1
∂x

, . . . ,
∂ky1
∂xk

=
∂kg1
∂xk

, . . . ,
∂yn
∂x

=
∂gn
∂x

, . . . ,
∂kyn
∂xk

=
∂kgn
∂xk

. (1.8)

We call this set Dk
Yx
. Then, the set Y of new variables in Eq. (1.7) are considered a quadra-

tization of Eq. (1.6) if:

• There exists an integer k and polynomial p of maximum degree less or equal than two
such that:

∂u

∂t
= p

(
U,Y,Dk

Yx

)
. (1.9)

• As we need to add differential equations for each new variable introduced to state their
relations (explained by Gu [21]), polynomials q1 . . . qn must also exist with degree at
most two such that:

∂yi
∂t

= qi
(
U,Y,Dk

Yx

)
for every 1 ≤ i ≤ n, (1.10)

where n is the order of the quadratization.

If we call m the minimum number of new variables needed to obtain a quadratization for
Eq. (1.6), then we say that a quadratization of order m is optimal. Knowing this definition,
it is natural to ask ourselves the following questions: How to verify if a set of variables is a
quadratization for Eq. (1.6)? Moreover, how to uncover this particular set? And lastly, how
to guarantee that it is optimal?

To gain insight into the questions above, we will present some PDE examples and attempt
to find quadratizations for them. Consider the PDE with time (t) and space (x) variables:

∂u

∂t
=

(
∂u

∂x

)3

. (1.11)

We first need to propose quadratization candidates, so we decompose the monomial in
Eq. (1.11) right-hand side to obtain the decompositions in which the expression turns quadratic
if we rename coupled variables. Among these decompositions, we choose the new variable in
Eq. (1.12) and calculate its first derivative in x:

w =

(
∂u

∂x

)2

, (1.12)

∂w

∂x
= 2

∂u

∂x

∂2u

∂x2
. (1.13)
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We must check if this new variable is a quadratization for Eq. (1.11). To do this, we verify if
we obtain only quadratic right-hand sides after performing substitutions in both the original
PDE and the new differential equation we introduce. We follow this step in our example:

∂w

∂t
= 2

∂u

∂x

(
3

(
∂u

∂x

)2
∂2u

∂x2

)
= 3

(
∂u

∂x

)2
(

2

(
∂u

∂x

)2
∂2u

∂x2

)
= 3

∂w

∂x
w,

∂u

∂t
= w

∂u

∂x
.

Now, we notice that all the system equations are quadratic on their right-hand side with only
one new auxiliary variable. Then we say that{(

∂u

∂x

)2
}

is an optimal quadratization. If the quadratization set we picked consisted of two or more
variables, guaranteeing optimality would not have been trivial, as we would need to demon-
strate that no quadratization with fewer variables exists.

By analyzing the resulting quadratization in the example above, we notice that as in the
first PDE shown in Eq. (1.3), we had to introduce only one auxiliary variable and its first
derivative in x. On the other hand, suppose we keep trying to find a quadratization with
other new variables for this PDE. In that case, we obtain that at least three more sets are
quadratizations:{(

∂u

∂x

)3

,

(
∂u

∂x

)4
}
,

{(
∂u

∂x

)3

,
∂2u

∂x2

(
∂u

∂x

)3
}
,

{(
∂u

∂x

)3

,
∂2u

∂x2

∂u

∂x

}
.

Then, when considering an algorithmic solution for finding an optimal quadratization, it
is clear that we must thoroughly think through its design, as we would like to avoid an
exhaustive search through the potentially numerous quadratization candidates.

Let us try to find a quadratization for a more complex example, a PDE model that
describes the solar wind speed [29]. This PDE depends on r, the radial distance from the
Sun, and ϕ, the Carrington longitude in the heliographic (HG) coordinate system. The
governing equation is:

∂v

∂r
= ω

∂v

∂ϕ

1

v
, (1.14)

with ω a constant. First, we notice that the right-hand side of Eq. (1.14) is not polynomial.
For this case, we can attempt the same quadratization trick of adding a new variable and its
differential equation to obtain a polynomial system (this procedure is commonly known as

polynomialization). If we introduce the variable y =
1

v
, we get the system:
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∂v

∂r
= ω

∂v

∂ϕ
y, (1.15)

∂y

∂r
= −ω ∂v

∂ϕ
y3. (1.16)

which is a polynomial system of degree greater than two. Then, we can attempt to find
a quadratization by introducing the second new auxiliary variable w = y2 with its first
derivative in ϕ:

∂w

∂ϕ
= 2y

∂y

∂ϕ
= −2y3

∂v

∂ϕ
.

The final PDE system with this new variable is:

∂v

∂r
= ω

∂v

∂ϕ
y, (1.17)

∂y

∂r
= −ω ∂v

∂ϕ
y3 =

ω

2

∂w

∂ϕ
(1.18)

∂w

∂r
= −2ωy4

∂v

∂ϕ
= ωy

∂w

∂ϕ
. (1.19)

From the resulting equations, we see that {y2} is a quadratization for the polynomial system
shown in Eq. (1.15) and Eq. (1.16). Now, there is a quadratization found for this PDE in
the literature using a dimension agnostic quadratization procedure [9]. By comparing the
results from this work with our findings we can outline some differences; first, they had to
discretize the original equation to attempt a quadratization, and second, the quadratization
they found was of size four, which provides some clues on the advantages of the method we
are proposing.

Another insight we gain from this example is that quadratization for nonpolynomial
PDEs is also an area of interest, particularly for rational functions. Therefore, finding a
quadratization algorithmically for this type of PDE becomes part of the scope of the problem
we want to tackle.

Considering the lower order of the resulting quadratizations, the simplicity of the proce-
dure, and how it compares with results in the literature, we propose the methodology used in
the examples above to find a quadratization for a PDE system, adding the implementation
of a search optimization algorithm. Moreover, we suspect this approach is more likely to
yield an optimal monomial quadratization for a given PDE. Given their relevance in practi-
cal models, we also aim to find a solution that can handle rational functions. Then, we state
the main problem we want to address in an input/output form.

Input: A PDE system of the form Eq. (1.6) and an integer p representing the number of
partial differentiations to calculate for the new variables.

Output: A quadratized form of the PDE system with new variables and their partial
derivatives within the right-hand side equations.
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1.3 Research Hypothesis

• First hypothesis: In relevant problems, it is possible to develop an algorithm that
discovers quadratizations for PDE systems that surpass the order and time performance
of the state-of-the-art approaches.

• Second hypothesis: It is possible to design and develop a practically efficient algo-
rithm that finds an optimal (lowest order) quadratization for a PDE system given a
defined order of partial derivatives for the new variables.

1.4 Research Objectives

1.4.1 Main Goal

Develop and test an algorithm that finds an optimal monomial quadratization for a given
PDE system and a defined number of partial differentiations for the new variables.

1.4.2 Specific Goals

• Design an algorithm for verifying if a given set of monomial variables and its partial
derivatives up to an order p is a quadratization for a PDE system.

• Design searching techniques for finding an optimal quadratization (set of new variables)
among all the possible ones within the search space given by the monomial decompo-
sitions of a PDE system.

• Implement and integrate the algorithms described above into software.

• Test its performance in terms of time efficiency and quality of results with practical
PDE examples. Also, compare outputs using both the proposed algorithm and the
available methods for quadratization for PDEs found in the literature.

• Enhance the existing algorithm by incorporating additional functionalities to handle a
wider range of non-linear functions, such as rational functions.

1.5 Methodology

This section outlines the methodology employed to achieve the specific objectives of the
research. In summary, the study comprises the following steps:

1. Reach a full understanding through an intensive literature review of the quadratization
algorithm for the ODE case to use it as a starting point for the design of the new
algorithm.
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2. Design an algorithm for finding optimal monomial PDE quadratizations. To divide the
problem, the development of the algorithm is divided into three different parts:

2.1 Design, implement and test a module that verifies if a set of variables is a quadra-
tization.

2.2 Develop the module that proposes variable candidates for a quadratization.

2.3 Develop an algorithm that follows a search design paradigm to find the optimal
quadratization within all the possible ones. For the algorithm search technique,
the approaches to use are branch-and-bound and nearest-neighbor algorithms.

3. Compare the performance of the implemented algorithm with the results from the
state-of-the-art approaches for finding quadratizations for PDEs.

4. Test and evaluate results obtained from practical examples of PDE models.

5. Develop improvements, functionalities, and extensions to the algorithm.

1.6 Outline

Chapter 2 discusses the theoretical background and related work that underlies our proposed
methodology. Chapter 3 explores the algorithmic foundations and implementation of our
software.

In Chapter 4, we discuss the experiments and present the main results from our bench-
marks for the quadratization algorithms using the software implementation available in
https://github.com/albaniolivieri/pde-quad.git. We analyze the performance of our
software across a range of PDE examples and give insights gained from our experiments.

Finally, in Chapter 6, we summarize our research findings, discuss the limitations of our
approach, suggest areas for improvement, and outline directions for future research.
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Chapter 2

Background and Related Work

This chapter provides an overview of the scientific disciplines related to this work. We
review the core concepts of symbolic computation and partial differential equations, which
are central to this thesis. Next, we further explore the fundamentals of this investigation
by describing the definitions of quadratization, Gaussian elimination, depth-first and best-
first searches, the branch-and-bound framework, the incremental nearest-neighbor algorithm,
Gröbner bases, and Buchberger’s algorithm. We also clarify the notation used throughout the
presented document. Finally, we review the related work and state-of-the-art quadratization
methods.

2.1 Scientific Disciplines

2.1.1 Symbolic Computation

Symbolic computation is a scientific area related to the fields of mathematics and computer
science that is concerned with the study, development, implementation, and application of
algorithms that manipulate mathematical expressions and other mathematical objects.

In contrast to numerical methods, symbolic methods treat objects that are either formal
expressions or are algebraic in nature [16]. While numerical computing helps find solutions
to desired precision for problems that do not have exact solutions, in many cases, numerical
methods will not give sufficient information about the nature of the problem. On the other
hand, symbolic methods can offer more insight into the problem we are trying to solve.
Another advantage is that, while numerical methods may simply fail to compute correct
results, symbolic methods yield closed or explicit formulas.
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2.1.2 Partial Differential Equations

A partial differential equation (PDE) [17] is an equation involving an unknown function of two
or more variables and some of its partial derivatives. Partial differential equations describe
physical systems, such as solid and fluid mechanics, the evolution of populations and disease,
and mathematical physics. They are foundational in the modern scientific understanding
of sound, heat, diffusion, electrostatics, electrodynamics, thermodynamics, fluid dynamics,
elasticity, general relativity, and quantum mechanics.

Definition 2.1 (Partial Differential Equation [17])

Let us fix an integer k > 1 and let U denote an open subset of Rn. An expression of the
form

F

(
x, u,

∂u

∂x
, . . . ,

∂k−1u

∂xk−1
,
∂ku

∂xk

)
= 0 (x ∈ U) (2.1)

is called a kth-order partial differential equation, where

F : Rnk × Rnk−1 × . . .Rn × R× U → R (2.2)

is given, and u : U → R is the unknown function. Here, Rnk
represents the space of all

k-order partial derivatives.

PDEs that describe the evolution of a system that depends on a continuous time variable t
are called evolutionary PDEs. An evolutionary PDE can be written in the following abstract
form [11]:

∂u

∂t
= A(u), u|t=0 = u0(x). (2.3)

Here u = u(x, t) represents the solution of Eq. (2.3), and x, t denote the spatial and time
variables, respectively.

2.2 Quadratization Algorithm Definitions

2.2.1 Notation

Throughout this work, we will avoid the explicit notation of functions in the PDE systems
for ease of notation; thus, we denote a function depending on some independent variables by
only its symbolic name, for example, u = u(t, x). Also, we will use the subscript notation of
partial derivatives, e.g.,

∂u

∂x
= ux,

∂2u

∂x2
= uxx,

and so on.

The sets of polynomials pertinent to this work are defined by R[U], where U is the set
of indeterminates formed by the unknown functions and their partial derivatives in a PDE
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system. A product of positive-integer powers of variables is referred to as monomial (e.g.,
u5ux), and the total degree of a monomial is the sum of the powers of the variables appearing
in it. A polynomial is a sum of monomials, e.g., u + u2

x. Let p be a polynomial, then deg(p)
denotes the total degree of p, the maximum of the total degrees of the monomials appearing
in p. For example degu(u5uxx) = 5 and deg(u5uxx) = 6.

Furthermore, given an ordering of monomials, the term that ranks the highest within a
polynomial is called its leading term. The ordering we will use throughout this work orders
power products first by their degree and then lexicographically.

2.2.2 Quadratization for PDEs

A quadratization for PDEs is a transformation of a system of PDEs with a polynomial right-
hand side into a system of PDEs with at most quadratic right-hand side via introducing new
variables. The next definition is based on the work of Pogudin and Bychkov [10, Definition
1], modified for the PDE case.

Definition 2.2 (Quadratization for PDE systems)

Consider a polynomial system of one-dimensional time-dependent PDEs of the form

u1t = p1(U), . . . , unt = pn(U), (2.4)

with p1, . . . , pn ∈ R[U], and u1, . . . , un the unknown functions of the system. Now, we define
a set W composed of the new variables

w1 = g1(U), . . . , wl = gl(U), (2.5)

with g1, . . . , gl functions of the set U. Let us call Dk
W the set of partial derivatives of each

of the variables in W up to an order k. Then, W is said to be a quadratization of Eq. (2.4)
if there exist an integer k and polynomials q1(U,W,Dk

W), . . . , qn+l(U,W,Dk
W) with total

degree at most two such that

u1t = q1(U,W,Dk
W), . . . , unt = qn(U,W,Dk

W) and

w1t = qn+1(U,W,Dk
W) . . . wlt = ql(U,W,Dk

W),

The size of the set W is called the order of quadratization. A quadratization of the small-
est possible order is called an optimal quadratization. If all functions g1(U), . . . , gl(U) are
monomials, the quadratization is called a monomial quadratization. If a monomial quadrati-
zation has the smallest possible order among all the monomial quadratizations for the system,
it is called optimal monomial quadratization.

Moreover, recent unpublished work proves that a monomial quadratization exists for every
PDE system [38]. Additionally, according to Hemery et al. [25], the optimization problem
of determining the minimum number of variables necessary to define an equivalent quadratic
polynomial ordinary differential equation system is NP-Hard. Since we can view ODEs as
particular cases of PDEs, we expect that the same problem is NP-Hard for the entire class
of PDEs.
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Figure 2.1: Figure from [43] to show LU factorization. Boldfacing indicates entries just
operated upon, and blank entries are zero.

2.2.3 Gaussian Elimination Algorithm

Gaussian elimination (GE) [26] is the standard method for solving a system of linear equa-
tions. As such, it is one of the most ubiquitous numerical algorithms and plays a fundamental
role in scientific computation. Using elementary row operations, GE aims to reduce a full
system of n linear equations in n unknowns to triangular form.

A matrix is in reduced row echelon form (RREF) [2] (for square matrices, triangular form)
if and only if all the following conditions hold:

• The first nonzero entry in each row is 1.

• Each successive row has its first nonzero entry in a later column.

• All entries (above and) below the first nonzero entry of each row are zero.

• All full rows of zeroes are the final rows of the matrix.

The idea behind Gaussian elimination [20, Section 3.2] is to convert a given system

Ax = b (2.6)

to an equivalent triangular system. This conversion is achieved by taking appropriate linear
combinations of the equations. In the language of matrix factorizations, the idea [43, Lecture
20] is to transform A into an upper-triangular matrix U by introducing zeros below the
diagonal for every column. This “elimination” process is equivalent to multiplying A by a
sequence of lower-triangular matrices Lk on the left:

Lm−1 . . . L2L1︸ ︷︷ ︸
L−1

A = U. (2.7)

Setting L = L−1
1 L−1

2 . . . L−1
m−1 gives

A = LU. (2.8)

LU is a factorization of A, where U is upper-triangular and L is lower-triangular. For
example, if we have a 4×4 matrix, the algorithm follows the three steps shown in Figure 2.1.

The kth transformation Lk introduces zeros below the diagonal in column k by subtracting
multiples of row k from rows k + 1, . . . ,m. Since the first k − 1 entries of row k are already
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Algorithm 1 Gaussian Elimination [43]

U ← A
L← I
for k ∈ {1, . . . ,m− 1} do

for j ∈ {k + 1, . . . ,m} do
ljk = ujk/ukk

uj,k:m = uj,k:m − ljkuk,k:m

end for
end for

zero, this operation does not destroy any zeros previously introduced. The algorithm shown
in Algorithm 1 is one of several formulations of GE for a A ∈ Rm×m matrix.

The Gauss-Jordan algorithm [15] is equivalent to GE, followed by a further reduction of
the resulting upper triangular system to a diagonal system. Given the system in Eq. (2.6),
the application of the Gauss-Jordan elimination algorithm is equivalent to performing n
successive transformations, starting from the original matrix A(1) = A and right-hand side
b(1) = b. The overall effect is the transformation of A(1) with permuted columns into the
identity matrix.

2.2.4 Depth-first Search

Depth-first search (DFS) [41] is a technique that has been widely used for finding solutions to
problems in combinatorial theory, algorithms on trees and graphs, and artificial intelligence.
Given a graph G we want to explore, there are many ways of searching through the vertices
of G. Consider the following selection rule: when choosing an edge to traverse, always choose
an edge starting from the last vertex reached that still has unexplored edges. A search that
uses this rule is called a depth-first search.

If n is the number of vertices and m is the number of edges, DFS takes time O(m + n)
[30], since each edge is stacked at most once in each direction, and each edge and vertex
requires a constant amount of processing.

2.2.5 Best-first Search

Of all search strategies used in problem-solving, one of the most popular methods of exploiting
heuristic information to cut down search time is the informed best-first strategy [14]. The
general philosophy of this strategy is to use the heuristic information to assess the “merit”
latent in every candidate exposed during the search and then continue the exploration along
the direction of the highest merit.

Given a weighted directional graph G with a start node s and a set of goal nodes Γ,
the optimal path problem is to find a least-cost path from s to any member of Γ where the
cost of the path may, in general, be an arbitrary function of the weights assigned to the
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nodes and branches along that path. A general best-first (GBF) strategy will pursue this
problem by constructing a tree T of selected paths of G using the elementary operation of
node expansion, that is, generating all successors of a given node. Starting with s, GBF
will select for expansion that leaf node of T with the highest “merit” and will maintain
in T all previously encountered paths that still appear viable candidates for sprouting an
optimal solution path. The search terminates when no such candidate is available for further
expansion, in which case the best solution path found so far is issued as a solution; if none
has been found, a failure is declared.

2.2.6 Branch-and-Bound framework

The branch-and-bound (B&B) [37] framework is a fundamental and widely used methodol-
ogy for producing exact solutions to NP-hard optimization problems. B&B encapsulates a
family of algorithms that share a common core solution procedure. This procedure implicitly
enumerates all possible solutions to the problem under consideration by storing partial solu-
tions called subproblems in a tree structure. Unexplored nodes in the tree generate children
by partitioning the solution space into smaller regions that can be solved recursively (i.e.,
branching), and rules are used to prune off regions of the search space that are suboptimal
(i.e., bounding). Once the entire tree has been explored, the best solution found in the search
is returned.

Furthermore, three components can have a high impact on the efficiency of finding a
solution [37]:

• Search strategy: The search strategy in a B&B algorithm determines the order in
which unexplored subproblems in the built tree are selected for exploration. The choice
of search strategy has potentially significant consequences for the computation time
required for the B&B procedure, as well as the amount of memory used.

• Branching strategy: This component determines how the solution space is partitioned
to produce new subproblems in the tree. Branching strategies can be categorized into
two groups: binary branching strategies and non-binary or wide branching strategies.

• Pruning rules: These are rules that prevent exploration of suboptimal regions of the
tree. It is important to highlight that any node that cannot be pruned by the pruning
rules must be explored by any search strategy. The only way to reduce the size of the
search tree in this case is to use better pruning rules. Thus, this component is a critical
aspect of the B&B framework.

To give an overview of the instructions that a B&B algorithm follows, we first define
some elements of the problem. The optimization problem we are trying to solve will be
defined by P = (X, f), where X is the search space (set of valid solutions to the problem)
and f : X → R is the objective function. Then, we call x∗ ∈ arg minx∈X f(x) the optimal
solution we are trying to find. The search tree that the algorithm builds iteratively is T , and
x̂ ∈ X is a feasible solution that will be stored globally (best solution yet). In each iteration,
the algorithm selects a new subproblem S ⊆ X from a list L of unexplored subproblems.
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With these notions, we show a pseudocode for the generic B&B procedure in Algorithm 2
that describes the instructions using the elements introduced above.

Algorithm 2 Generic Branch & Bound(X, f) [37, Section 2.1]

L← {X}
Initialize x̂
while L ̸= ∅ do

Select a subproblem S from L to explore
if a solution x̂′ ∈ {x ∈ S∥f(x) < f(x̂)} is found then

x̂← x̂′

end if
if S cannot be pruned then

Partition S in S1, S2, . . . Sr

Insert S1, S2, . . . Sr into L
end if
Remove S from L

end while
return x̂

A short example of how the algorithm and the components of a B&B approach work is
to solve the classic Traveling Salesman Problem (TSP). In TSP, given a set of cities, the
goal is to find the shortest possible route that visits each city exactly once and returns to
the original city. Let us consider four cities A,B,C,D, and the distance matrix in Table 2.1
representing the distances between each pair of cities:

Table 2.1: Distance matrix for TSP B&B example

to
A B C D

fr
om

A 0 4 7 6
B 8 0 14 9
C 7 9 0 11
D 16 6 8 0

Let us start by obtaining a candidate route using a greedy approach. We begin with an
arbitrary city, in this case D, and choose the closest city (in our example B) to continue the
tour. In every step, we always pick the nearest city that has not yet been selected until we
return to the initial city. Then our candidate route is D → B → A→ C → D of cost 32.

To establish a bounding criteria that provides an underestimate of the cost to complete
a tour from any city, we define the heuristic:

h(x, y) = minroute + (cost(y)−minlocal(x)).

Where x is the last city visited, y a prospective new city to be selected, cost(y) is the cost
it would take to visit city y, and minlocal(x) is the minimum cost from city x to any other.
On the other hand, minroute relates to the minimal cost we could obtain from taking this
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Figure 2.2: First step of B&B algorithm for TSP example

specific route, which is mathematically the result of the heuristic h on the parent node x. At
the beginning of the tour, we define minroute as the minimal cost in every row of the matrix
in Table 2.1: minroute(∅) = 4 + 8 + 7 + 6 = 25, so we know the overall minimal route is no
lesser than 25.

We start again from city D and identify its minlocal as 6, which is the cost to B, the
nearest city from D. Then, we calculate the heuristic h(D, x) for every node in the second
level of the tree. We show the results in Figure 2.2.

Since we already have a candidate tour of cost 32, we can prune all branches in level two
with heuristic results greater than 32. In our case, we discard the first branch from left to
right in Figure 2.2 and decide to explore the best option so far: visiting the city B. From
city B, we expand our possibilities and calculate heuristic h for each remaining city as shown
in Figure 2.3.

Figure 2.3: Second step of B&B algorithm for TSP example
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As we can see in Figure 2.3, at the third level, we cannot prune any branch, so we
explore solutions in a best-first manner. Then, we choose city A and obtain the final route
D → B → A→ C → D, which gives us the total cost 6 + 8 + 7 + 11 = 32. After we obtain
this result, we perform backtracking until the first level, where we encounter unpruned nodes
as children, in this case, the node of city B in the second level of the tree. Then, we explore
the remaining nodes.

We keep performing the steps described above until each branch that is not pruned is
explored. We show the remaining steps of the algorithm in Figure 2.4. Finally, the algorithm
chooses the path D → C → A→ B → D as the shortest possible route.

Figure 2.4: Final steps of B&B algorithm for TSP example

2.2.7 Incremental nearest neighbor algorithm

The incremental nearest neighbor algorithm [27] is an algorithm whose main goal is to obtain
data objects in their order of distance from a given query object. Moreover, it can be applied
to virtually any hierarchical spatial data structure. This algorithm implements a best-first
traversal approach (Section 2.2.5); when deciding the next node to traverse, it selects the
node with the shortest distance in the set of all nodes that have yet to be visited. Instead of
using a stack or a plain queue to keep track of the nodes to be visited, the algorithm employs
a priority queue where the distance from the query object is the key to order the elements
on the queue.

One condition that must be met for the use of this algorithm is that the distance function
must be consistent. In a space represented by a tree hierarchy, we can express this condition
as follows: if n′ is a child node of n, then dn(q, n) ≤ dn(q, n′), where dn is the distance function
used for calculating the distance from the query object q to a node. The consistency of a
distance function is strictly tied to the hierarchy defined by the data structure. With this
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Figure 2.5: The circle around query object q depicts the search region after reporting o as
next nearest object [27].

condition, checking the head of the queue is the same as checking the next closest object since
we know that all nodes and objects that might be closer to the query object have already
been checked.

The algorithm’s progress for a query object q when q is a point (see Figure 2.5) is as
follows: we start by locating the leaf node(s) containing q. Next, we call the search region
the circle centered at q that keeps expanding from a starting radius of 0. When the circle
hits a node region’s boundary, we insert the contents of the node into the queue, and each
time the circle hits an object, the algorithm finds the object nearest to q. Note that when
the circle hits a node or an object, it is guaranteed that the node or object is already in the
priority queue since the circle must have already hit its parent node due to the consistency
condition. The general incremental nearest neighbor algorithm for spatial data structures is
shown in Algorithm 3.
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Algorithm 3 Incremental nearest neighbor algorithm for spatial data structures [27, Section
4.2]

Queue← NewPriorityQueue()
Enqueue(Queue,RootNode, 0)
while not IsEmpty(Queue) do

Element← Dequeue(Queue)
if Element is a spatial object then

while Element = First(Queue) do
DeleteF irst(Queue)

end while
Report Element

else if Element is a leaf node then
for each Object in leaf node Element do

if dn(QueryObject, Object) ≥ dn(QueryObject, Element) then
Enqueue(Queue,Object, dn(QueryObject, Object))

end if
end for

else/* Element is a non-leaf node*/
for Child node of node Element do

Enqueue(Queue, Child, dn(QueryObject, Child))
end for

end if
end while

2.2.8 Gröbner Bases

The theory of Gröbner bases [7] provides a uniform approach to solving a wide range of
problems expressed in terms of sets of multivariate polynomials. Moreover, many problems
in different areas of mathematics can be reduced to the problem of computing Gröbner bases.
To define this method clearly, let us first review the division or reduction of multivariate
polynomials. To do this, we introduce the following example polynomials:

g = x2y3 + 3xy2 − 5x, (2.9)

f1 = xy − 2y, f2 = 2y2 − x2, (2.10)

F = {f1, f2}, (2.11)

where g, f1, f2 are bivariate polynomials and F is a polynomial set. The monomials in these
polynomials follow an ordering. These orderings can be infinite, with the most important
ones being the lexicographic orderings and the orderings that, first, order power products by
their degree and then lexicographically. In the example above, the monomials are ordered
lexicographically with y ranking higher than x and are presented in descending order from
left to right.

In this setting, we could perform a reduction for g by doing the following:

h = g − 3(y)f1 = −5x + 6y2 + x2y3. (2.12)
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By subtracting a suitable monomial multiple of f1 from g, one of the monomials of g is
canceled against the leading term of −(3y)f1. To explain this situation, we say that “g is
reduced to h modulo f1” and write:

g
f1−→ h. (2.13)

Given a set F of polynomials and a polynomial g, many different reductions of g modulo
polynomials in F may be possible. For example, for g and F in Eq. (2.9) and Eq. (2.11), we
also have

h2 = g − (
1

2
x2y)f2 = −5x +

x4y

2
+ 3xy2, (2.14)

hence,

g
f2−→ h2. (2.15)

Moreover, if for some polynomial f in F g
f−→ h holds we write

g
F−→ h, (2.16)

and if g reduces to h by finitely many reduction steps with respect to F the notation is

g
F ∗
−→ h. (2.17)

Furthermore, we write hF if h cannot be reduced further with respect to F .

Now, we introduce the definition of Gröbner bases:

Definition 2.3 (Gröbner bases)

F is a Gröbner basis⇐⇒ ∀
g,h,k

(g
F ∗
−→ hF ∧ g

F ∗
−→ kF =⇒ h = k) (2.18)

In other words, this definition states that F is a Gröbner basis if and only if g
F ∗
−→ is

unique.

2.2.9 Buchberger’s algorithm

Buchberger’s algorithm is a method for transforming a given set of polynomials into a Gröbner
basis. To describe the steps of this algorithm in detail, let us introduce some definitions.

Definition 2.4 (Ideals) [13]

A subset I ⊂ k[x1, . . . , xn] is an ideal if it satisfies:

• 0 ∈ I

• If f, g ∈ I, then f + g ∈ I
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• If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I

Definition 2.5 (Polynomial ideals) [13]

Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then we set

⟨f1, . . . , fs⟩ =

{
s∑

i=1

hifi : h1, . . . , hs ∈ k[x1, . . . , xn]

}
. (2.19)

Here ⟨f1, . . . , fs⟩ is an ideal.

On the other hand, the S-polynomial of two polynomials f1 and f2 refers to the result
of applying multiplication and subtraction between them to cancel their leading terms. For
example, if we consider the functions f1 and f2 defined in Eq. (2.10), then their S-polynomial
is:

S − polynomial[f1, f2] = yf1 −
1

2
xf2 =

x3

2
− 2y2. (2.20)

The computation of the S−polynomial of two given polynomials involves multiplying the
two polynomials by such monomial factor that the leading power product of both polynomials
becomes equal, namely the least common multiple of the leading power products of the two
polynomials.

Now, given a finite set F of multivariate polynomials, Buchberger’s algorithm’s main goal
is to find a set of polynomials G such that Ideal(F ) = Ideal(G) and G is a Gröbner basis.
The description of this algorithm is shown in Algorithm 4.

Algorithm 4 Buchberger’s algorithm [7, Section 6]

G← F
for any pair of polynomials f1, f2,∈ G do

g ← S-polynomial of f1, f2
reduce g to a reduced form h with respect to G
if h = 0 then

consider the next pair
else

add h to G and iterate
end if

end for
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2.3 Related Work

2.3.1 State of the art

Optimal monomial quadratization for ODE systems [10]

In this work, quadratization is handled as a transformation of a system of ODEs with a
polynomial right-hand side into a system of ODEs with at most quadratic right-hand side
via introducing new variables.

This paper presents an algorithm that, given a system of polynomial ODEs, finds a
transformation into a quadratic ODE system by introducing new variables that are monomials
in the original variables. This algorithm is guaranteed to produce an optimal transformation
of this form for the ODE case (that is, the number of new variables is as small as possible).

This algorithm follows the general Branch-and-Bound (B&B) paradigm. To describe the
instructions followed by the designed algorithm, the next definitions are introduced:

Definition 2.6 (B&B formulation for the ODE quadratization problem)

• The search space is a set of all monomial quadratizations of the input system x̄′ = f̄(x̄).

• The objective function to be minimized is the number of new variables introduced by a
quadratization.

• Each subproblem is defined by a set of new monomial variables z1(x̄), . . . , zl(x̄) and the
corresponding subset of the search space is the set of all quadratizations including the
variables z1(x̄), . . . , zl(x̄).

Definition 2.7 (Properties of a subproblem in the ODE quadratization problem)

To each subproblem (see Definition 1) defined by new variables z1(x̄), . . . , zl(x̄), we assign:

1. the set of generalized variables, denoted by V, consisting of the polynomials 1, x1, . . . , xn,
and z1(x̄), . . . , zl(x̄);

2. the set of nonsquares, denoted by NS, consisting of all the monomials in the derivatives
of the generalized variables that do not belong to V 2 := {v1v2|v1, v2 ∈ V }. In particular,
a subproblem is a quadratization iff NS = ∅.

The two previously presented definitions describe the context of implementing the Branch-
and-Bound paradigm, which can also be applied to the quadratization of PDEs. This algo-
rithm was developed in Python and it is stated that this implementation compares favorably
with the existing software and finds better quadratizations for already used benchmark prob-
lems. However, it is important to note that this algorithm guarantees optimal quadratization
only for ODE systems. While it is possible to apply this method to PDE systems (as described
in the following section), optimality does not hold within the realm of PDEs.
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Dimension-agnostic quadratization for semi-discretized PDEs [9]

This paper presents theory, algorithms, and software capabilities for quadratizing non-autonomous
ODEs. Here, an algorithm was designed and implemented that generalizes the process of
quadratization for systems with arbitrary dimensions that retain the nonlinear structure
when the dimension grows. Such systems were provided with a dimension-agnostic quadra-
tization. An example of these systems is semi-discretized PDEs, where the nonlinear terms
remain symbolically identical when the discretization size increases.

The algorithm mentioned above is an extension from the previous version of QBee (algo-
rithm for quadratizing ODEs [10]), including extra functionality to (i) optimally quadratize
polynomial systems with time-dependent inputs, (ii) to find dimension-agnostic quadratiza-
tions for systems with variable dimension (e.g., semi-discretized PDEs).

Exploring more into this new quadratization method that applies to families of ODE
systems of variable dimension, for which it produces a dimension-agnostic quadratization, the
most natural use-cases of this new method are ODEs that are derived via semi-discretization
of PDEs, i.e., where the symbolic form of the nonlinear terms stays the same, but the
discretization dimension n of the system can be varied. According to this work, the definition
of dimension-agnostic quadratization is as follows:

Theorem 2.8 (Dimension-agnostic quadratization)

Consider a family of linearly coupled ODEs defined by nd + 1 polynomial vectors p0(x),
. . . ,pnd

(x) in x = [x1, . . . , xnd
]⊤, and consider a l-dimensional vector w1(x) ∈ C[x]l together

with an L-dimensional vector w2(x, x̃) ∈ C[x, x̃]L, where x̃ = [x̃1, . . . , x̃nd
]⊤ are formal vari-

ables used as placeholders for the coupled variables (to be made precise below). For every
integer n and matrices D1, . . . ,Dnd

∈ Cn×n, we define a set

M(w1,w2;D1, . . . ,Dnd
) :={w1(x

[n]
i )|1 ≤ i ≤ n} ∪

{w2(x
[n]
i0
,x

[n]
i1

)|1 ≤ i0 ̸= i1 ≤ n, and ∃k : (Dk)i0,i1 ̸= 0}.

We then say that w1 and w2 are a dimension-agnostic quadratization of the family if,
for every integer n and matrices D1, . . . ,Dnd

∈ Cn×n, the set M(w1,w2;D1, . . . ,Dnd
) is a

quadratization of the system F [n](p0(x), . . . ,pnd
(x),D1, . . . ,Dnd

).

With this definition, the extension for tackling dimension-agnostic quadratizations is
shown in Algorithm 5.3 of Section 5 from the work of Bychkov et al. [9]. In Section 6
of this work, there are some results of quadratization on PDE discretized models (Sections
6.1 and 7), obtaining quadratizations of four new variables for both models.

It is worth noting that the method described above can indeed computationally quadratize
a PDE system. However, it is important to emphasize that this requires discretizing the
system as a preprocessing step, leading, in many cases, to a large-scale system of ODEs.
Since the number of state variables of such a system easily might exceed dimensions up
to O(105) [4], a fast and reliable simulation is hardly possible, reducing the procedure’s
practicality in certain applications.

23



On the Complexity of Quadratization for Polynomial Differential Equations [25]

This paper concerns the interpretation of Chemical Reaction Networks (CRNs) as ODEs that
provide a Turing-complete model of analog computation, where any computable function over
the reals can be computed by a finite number of molecular species with a continuous CRN.
This approximates the result of that function in one of its components in arbitrary precision.
The proof of this result is based on the Turing completeness of polynomial ordinary differential
equations with polynomial initial conditions (PIVP) and uses an encoding of real variables by
two non-negative variables for concentrations and a transformation to an equivalent quadratic
PIVP (i.e., with degrees at most 2) for restricting to at most bimolecular reactions.

Particularly, they explore the theoretical and practical complexities of the quadratic trans-
formation, in our terms, quadratization. One important result from their work is that both
problems of minimizing either the number of variables (in CRN nomenclature, molecular
species) or the number of monomials (i.e. elementary reactions) in a quadratic transfor-
mation of a PIVP are NP-hard. Finally, they present an encoding of those problems in
MAX-SAT and show the practical complexity of the algorithm on a benchmark of quadrati-
zation problems inspired by CRN design problems. Nonetheless, this algorithm only handles
quadratic transformations for ODEs, and they do not present an alternative for PDE models.

Nonlinear Model Order Reduction Approach Using Quadratic-Linear Represen-
tation of Nonlinear Systems [21]

In this work, the idea of quadratization for a model order reduction method was introduced.
Here, a projection-based nonlinear model order reduction method, called model order reduc-
tion via quadratic-linear systems, is introduced with the insight of the benefit of having a
quadratic representation of nonlinear differential-algebraic equations. Mainly, it gives place
to broader applicability since there is no approximation involved for the system, and because
the reduced model has only quadratic nonlinearities, there is lesser computational complexity
than that of similar prior methods.

In Section 4 of this work, a procedure and algorithm for Quadratic-Linearization (in our
notation, quadratization) are described for polynomial ODEs. For this, it is also stated that
the Lie derivatives of the new variables need to be introduced within the system as new
differential equations to preserve dynamics and linearity. Given an ODE with x⃗ = x1, . . . , xn

as the unknown functions, the algorithm introduced in this work to accomplish quadratization
is the one described in Algorithm 5.
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Algorithm 5 Quadratic-linearization of polynomial ODEs [21, Section 2, E]

E ← [ẋ, . . . , ẋn] (list of symbolic expressions of the ODE)
Yvar ← {}
Yexpr ← {}
while All the expressions in E are linear or quadratic functions of x⃗ and variables in Yvar

do
From E pick a monomial m(x⃗) with degree > 2

Find a decomposition of m(x⃗), i.e., find g(x⃗) and h(⃗(x)) that satisfy m(x⃗) = g(x⃗)×h(x⃗)
y ← g(x⃗)
Add y into Yvar and g(x⃗) into Yexpr

ẏ ← g′(x⃗) ˙⃗x
Add ẏ to E
for m(x⃗) ∈ E do

if m(x⃗) is linear or quadratic then
Replace m(x⃗) as a linear or quadratic term

end if
end for

end while

However, they only performed this method by hand without implementing a computa-
tional algorithm. Therefore, optimality in the number of variables introduced could not be
guaranteed, the number of problems they could tackle was limited, and the process of finding
a quadratization for a system was time-consuming.

Quadratization of ODEs: monomial vs. non-monomial

In this paper, the quadratization technique is studied from the point of view of the type of
variables that can be introduced for a quadratization: monomial or non-monomial. As several
algorithms have been designed to search for a quadratization for ODEs with new variables
being monomials in the original variables, they try to understand the limitations and potential
ways of improving such algorithms. Therefore, they intend to answer the following question:
Can quadratizations including non-monomial new variables produce a model of substantially
smaller dimension than quadratizations with only monomial new variables?

The case of scalar polynomial ODEs is studied to answer the question above. The first
result shown in the paper is that a scalar polynomial ODE ẋ = p(x) = anx

n + an−1x
n−1 +

· · ·+a0 with n > 5 and an ̸= 0 can be quadratized using exactly one new variable if and only
if p(x − an−1

n·an ) = anx
n + ax2 + bx for some a, b ∈ C. In fact, the new variable can be taken

z := (x− an−1

n·an )n−1.

The second result is that two non-monomial new variables are enough to quadratize all
degree 6 scalar polynomial ODEs. Based on these results, it is concluded that a quadrati-
zation with not necessarily monomial new variables can be much smaller than a monomial
quadratization, even for scalar ODEs. This highlights the limitations of algorithms that only
find non-monomial quadratizations. The paper’s main results have been discovered using
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computational methods of applied nonlinear algebra (Gröbner bases [7]).

2.3.2 Applications

Balanced Truncation Model Reduction for Lifted Nonlinear Systems [31]

This work presents a balanced truncation model reduction approach that applies to a large
class of nonlinear systems with time-varying and uncertain inputs. As a first step, this
approach lifts (quadratizes in other words) the nonlinear system to quadratic-bilinear form
via the introduction of auxiliary variables. Because lifted systems often have system matrices
with zero eigenvalues, an artificial stabilization parameter is first introduced, and then a
balancing algorithm for those lifted quadratic-bilinear systems that only require expensive
matrix computations in the original (and not in the lifted) dimension.

We show the definition of a QB system obtained from this work.

Theorem 2.9 (Quadratic-bilinear (QB) system)

A QB system of ordinary differential equations is written as

ẋ = Ax + H(x⊗ x) +
m∑
k=1

(Nkx)uk + Bu,

y = Cx,

where x(t) ∈ Rn is the state, t ≥ 0 denotes time, the initial condition is x(0) = x0, u(t) ∈
Rn×n is the system matrix, C ∈ Rp×n is the output matrix and the Nk ∈ Rn×n, k = 1 . . . ,m
represent the bilinear coupling between input and state. The matrix H is viewed as a mode-1
matricization of the tensor H.

Balanced truncation achieves model order reduction in the dimension of the state space by
eliminating those states that are hard to control and observe. Thus, an important component
of balanced truncation model reduction is to find the coordinate transformation that ranks
the controllability and observability of the states. The Gramian matrices are central to
finding this balanced coordinate transformation for the system.

For the special case of QB systems, there is a proposition that states conditions under
which approximate algebraic Gramians exist and suggests a computational framework to find
those. Algebraic Gramians are solutions to the standard linear Lyapunov equations and are
used to obtain a QB reduced-order model (QB-ROM). Then, in this work, the pre-processing
step of rewriting a PDE or ODE system in QB form by introducing auxiliary variables is key
to obtaining a QB-ROM.

Lift & Learn: Physics-informed learning for nonlinear PDEs [39]

Lift & Learn is a method introduced in [39] for learning quadratic reduced models for dy-
namical systems governed by nonlinear PDEs. The method exposes structure in nonlinear
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PDEs by identifying a lifting transformation, where they introduce new variables in which
the PDE admits a quadratic representation. Briefly, the procedure begins with non-quadratic
state data obtained by evaluating the original nonlinear model; then, a lifting transformation
is applied to this data; finally, quadratic reduced model operators are then fit to the trans-
formed data. The result is an evaluable quadratic reduced model for the original nonlinear
PDE.

How the lifting transformations are done for PDE systems is described in Section 3.1 of
this paper. In this work, they introduce a lifting map to quadratize the target PDE system,
which follows the next definition.

Definition 2.10 (Lifting transformations for PDEs)

Let Ω ∈ Rd denote a physical domain and let [0, Tfinal] be a time domain for some final
time Tfinal > 0. The nonlinear partial differential equation (PDE)

∂s

∂t
= f(s) (2.21)

defines a dynamical system for the ds-dimensional vector state field

s(x, t) =

 s1(x, t)
...

sds(x, t)

 ,

where sj : Ω× [0, Tfinal]→ Sj ⊂ R, for j = 1, 2, . . . , ds and

f(s) =

 f1(s)
...

fds(s)


is a differentiable nonlinear function that maps the state field to its time derivative.

Now, consider the lifting map,

T : S → W ⊂ Rdw , dw ≥ ds, (2.22)

and let w(x, t) = T (s(x, t)). T is a quadratic lifting of Eq. (2.21) if the following conditions
are met:

1. the map is differentiable with respect to s with bounded derivative, i.e., id J (s) is the
Jacobian of T with respect to s, then

sup∥J (s)∥ ≤ c

for some c > 0, and

2. the lifted state w satisfies
∂w

∂t
= a(w) + h(w), (2.23)
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where
a(w) =

(
a1(w)

...adw(w)

)
, h(w) =

(
h1(w)

...hdw(w)

)
,

for some linear functions aj and quadratic functions hj, j = 1, 2, . . . , dw

The dw-dimensional vector field w(x, t) is called the lifted state, and Eq. (2.23) is the lifted
PDE.

With this definition for lifting transformations (quadratization) for PDE system, they
use this procedure as one of the first steps in their algorithm [39, Section 3.3, Algorithm 1]
for obtaining reduced models of nonlinear PDEs. However, they do not introduce a tool for
automatizing the search of a lifting transformation; instead, they rely on knowledge of the
governing PDE to identify a lifting map T by hand.

Nonlinear Model Order Reduction via Lifting Transformations and Proper Or-
thogonal Decomposition [32]

This paper presents a structure-exploiting nonlinear model reduction method for systems
with general nonlinearities. First, the nonlinear model is lifted to a model with more struc-
ture via variable transformations and the introduction of auxiliary variables. The lifted
model is equivalent to the original model, as it uses a change of variables but introduces no
approximations.

When discretized (ODE systems and discretized PDEs), the lifted model yields a polyno-
mial quadratic system of either ordinary differential equations or differential-algebraic equa-
tions, depending on the problem and lifting transformation. Proper orthogonal decompo-
sition (POD) is applied to the lifted models, yielding a reduced-order model for which all
reduced-order operators can be pre-computed. Thus, a key benefit of the approach is that
there is no need for additional approximations of nonlinear terms, in contrast with existing
nonlinear model reduction methods requiring sparse sampling or hyper-reduction.

28



Chapter 3

QuPDE Foundations

We designed and implemented an algorithm named QuPDE to address the PDE quadrati-
zation problem. The description of how it works will be divided into three parts. The first
one describes how the algorithm decides which sets of variables are candidates for a quadra-
tization, and how it searches for the optimal one through two different design paradigms:
Branch-and-Bound (B&B) and Incremental Nearest Neighbor algorithm with best-first search
principle; the second part shows how the algorithm verifies if a set of variables is a quadrati-
zation; and the last part describes a functionality added to the algorithm to handle rational
functions within the right-hand side equations of a PDE, which are very common in systems
that model engineering problems. Lastly, we discuss a short observation related to the success
of our algorithm for finding a quadratization.

3.1 Finding Optimal Set of New Variables

To create a search space of possible quadratizations, we first need to describe how the al-
gorithm proposes new variables from the equations of a given PDE system. For this, the
algorithm finds a group of sets (decompositions) for each monomial with a degree greater
than two within the PDE’s right-hand side equations. These decompositions are all the ways
we can introduce new variables such that the original monomial in the equation will be at
most quadratic (multiplication of at most two elements). For example, the decompositions
for the monomial u2

xu
2 are {u2

x, u
2}, {1, u2

xu
2}, {u2

xu, u} and {ux, uxu
2}. If we use the first

decomposition to rewrite the original term, we must introduce two auxiliary variables: u2
x

and u2.

If we call n the degree of the monomial to decompose, finding the decompositions described
below for a given monomial is equivalent to answering the combinatorial question: In how
many ways can we divide a set of elements of size n into two subsets? Let us solve this
combinatorial problem to obtain an upper bound for the number of decompositions of a
monomial, which represents the potential new variables and our search space.

First, we can decide whether to include each element within the set in the first subset or
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not. Thus, we have two options for each element, which gives us the expression:

2n. (3.1)

Nonetheless, we are counting twice the number of cases since the decomposition {x, y} is the
same as the decomposition {y, x}. Therefore, we divide the result in Eq. (3.1) by two:

2n

2
= 2n−1. (3.2)

The expression in Eq. (3.2) is an upper bound for each nonquadratic monomial in the system,
as it assumes that each element within the monomial is distinguishable.

Now that we have stated how to obtain possible new variables and an upper bound for
the number of them, we describe the instructions that the algorithm follows for finding and
sorting candidate variables for a quadratization:

1. For every polynomial in the system that is not quadratic, store all the possible ways of
decomposing the first nonquadratic monomial encountered so that its degree is equal
to or lower than two. According to the result obtained in Eq. (3.2), this will be at most
2n−1 decompositions, where n is the maximum degree in the PDE system.

2. Sort this set of decompositions according to certain heuristics to get a ranked list of
expressions. Then, a sorted list of variables will be obtained based on whether they
have a higher chance of being a quadratization or if they derive fewer decompositions.
We list the heuristics that were implemented below.

• By order and degree: it sorts the resulting expressions of the decomposition by
giving priority to expressions of lower order of derivatives and then of lower degree.

• By degree and order: it sorts by lower degree and secondly by lower order.

• By a function of order and degree: in this case, it sorts the expressions using as a
criterion a linear function dependent on the degree and order of the derivatives.

Now, we show an example to clarify how this algorithm works.

Example Consider the PDE depending on the time t and spacial x variables:

ut = u2
xu. (3.3)

Decomposing the right-hand side of Eq. (3.3) in subsets of size two results in the set {(u2
x, u),

(u2
xu, 1), (uxu, ux)}. These decompositions represent all the ways in which the original ex-

pression can be rewritten as quadratic.

Now, we dispose of expressions that do not suppose new variables (in this example, u,
ux and 1): {(u2

x), (u2
xu), (uxu)}. Then we sort by degree and order to obtain the final set:

{u2
x, uxu, u

2
xu}.

30



Figure 3.1: Hierarchy tree made of monomial decompositions

3.1.1 Branch-and-Bound Algorithm

Now, for finding an optimal quadratization of the system, i.e., an optimal set of new variables,
a Branch-and-Bound (B&B) algorithm was implemented. This framework is often used to
find a minimal solution subset efficiently, which is the same problem to be addressed in this
case: to find the smallest set of variables that is a quadratization for a given system.

To perform this search, we organize our space search as a tree (see Figure 3.1), where the
root is an empty set, and its children nodes are all the monomial decompositions coming from
the original PDE. Each time we enter one node, its children will be the new subproblems
derived from the rewritten form of the PDE system after introducing the variables within
the parent node. Depending on which node (decomposition) we enter, we will introduce at
most two new variables in each level.

To be more precise, we define how our problem translates to the B&B framework.

Definition 3.1 (B&B formulation for the PDE quadratization problem)

• The search space is the set of all monomial decompositions of the input PDE system
and subproblems.

• The objective function to minimize is the number of new variables introduced by a
quadratization.

• Each subproblem is defined by a set of new monomial variables w1(U), . . . , wl(U) and
the corresponding subset of the search space is the set of all quadratizations including
the variables w1(U), . . . , wl(U).

We also state the components of search strategy, branching strategy, and pruning rules
[37] for our problem.
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• Search strategy: the search strategy we use is depth-first search with backtracking [41,
Section 2] [37, Section 3.1]. The order in which the subproblems are arranged in a
single level and, therefore, traversed is given by the sorting criteria chosen for the set
of potential variables.

• Branching strategy: the solution space is partitioned by all the possible new variables
that could be introduced to get a quadratization, that is, the PDE system right-hand
side monomial decompositions from the parent node (wide branching).

• Pruning rules: pruning rules are introduced to prevent the exploration of suboptimal
regions of the solutions tree. The currently implemented pruning rules are:

– The smallest order (minimal number of variables) of a quadratization found within
the visited nodes, which is our objective function to minimize.

– The order of derivatives within the new variables. Given the physical dynamics
that PDEs represent, there are, in some cases, existence or regularity restric-
tions for the differentiation order of undefined functions. Therefore, if one branch
introduces variables with higher-order derivatives than the ones allowed for the
problem, the algorithm prunes it. For the implementation of this algorithm, we
took a conservative approach. By default, we prune every branch that introduces
a derivative order higher than the one within the original equation, as the contex-
tual dynamics are unknown. Nonetheless, the user can modify this. An important
note is that by limiting the possible new variables with this rule, we could get an
unsuccessful search from the algorithm, so a successful search is only guaranteed
when relaxing this rule.

Our algorithm first checks if the branch it just entered needs to be pruned according to
the pruning rules implemented. After verifying that the current branch will not produce a
suboptimal solution, it will verify if the set of variables proposed in the current node is a
quadratization. If so, it will return the quadratization set and its order (minimal number of
variables until then). If it does not identify a quadratization with the proposed set, it will
produce the children of the current node (subproblems) and explore them in a DFS manner.
Finally, after confirming it is optimal, it will return the best quadratization set.

Now, let us see an example to have a clear idea of how the algorithm works:

Example Consider the following PDE:

ut = u3 + u3
x. (3.4)

After decomposing the first nonquadratic monomial (u3) and sorting by degree and order the
obtained tuples, we draw the tree shown in Figure 3.2.
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Figure 3.2: First level of variable tree from the PDE example in Eq. (3.4)

Now, the algorithm will enter the first branch from left to right, in this case, the system
given by introducing the variable u2. Once it adds this variable to the original PDE as w0,
we get the following system:

ut =
1

2
· uxw0xx −

1

2
· w0xuxx + w0u, (3.5)

w0t = 2u3
xu + 2w2

0. (3.6)

As we can see, it is not quadratized because deg(w0t) is greater than two. Therefore, we
explore the subproblem of the branch selected, in this case, the rewritten form of the PDE
shown in Eq (3.5) and Eq (3.6). After obtaining all the decompositions for the nonquadratic
monomials (in this case, only 2u3

xu) and sorting them by degree and order, the tree for this
search takes the form depicted in Figure 3.3.

Figure 3.3: Second level of variable tree from Eq. (3.4)

When the algorithm checks for a quadratization in the branch given by {u2, uxu, u
2
x}, it

finds that this set is indeed a quadratization. The expected behavior would be to check other
branches with fewer variables in the hope of finding a lower-order quadratization. Essentially,
to follow the path shown in Figure 3.4.
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Figure 3.4: Full variable tree from Eq. (3.4) with quadratizations found in green and branches
traversed in red.

Then, after the seventh node in Figure 3.4 is traversed, the algorithm should return the
quadratization with the minimum order within the search space. The algorithm does not
explore the last children node from the second level as it identifies it will not obtain a better
quadratization than the best one found. In the next subsection, we explain that with the
introduction of a new function, this algorithm only traverses five nodes in total.

Shrink Function

This function was implemented so that every time the algorithm finds a quadratization, it
will try to find a better one within all the subsets (powerset) of the quadratization set found.
If it finds a better one and the number of variables introduced is smaller than the global
one, it will use this new bound for the next branches, giving the algorithm one more tool for
pruning branches quicker.

Now, let us see the effect of this function using the previous example.

Example We consider the PDE
ut = u3

x + u3.

Then, the variable tree for finding the optimal quadratization takes the form shown in Figure
3.5 when the algorithm finds the first quadratization.
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Figure 3.5: State of variable tree from Eq. (3.4) when the first quadratization is found

Instead of searching for smaller quadratizations in other branches, the algorithm will
verify for each subset of the quadratization found if it is a quadratization for the system. In
this case, it will look for a quadratization among the sets {u2}, {u2

x}, {uxu}, {u2, u2
x}. In the

last one, it identifies a quadratization; then, it stops searching within the rest of the node
subsets and updates the minimum quadratization order found, i.e., the criteria for one of the
pruning rules. Given the pruning rule update, the algorithm’s search through the tree is the
one described in Figure 3.6.

Figure 3.6: The algorithm’s search through the variable tree

After traversing the fifth node, the algorithm returns the quadratization {u2, u2
x}.

3.1.2 Incremental Nearest Neighbor Algorithm

To search for an optimal quadratization, we implemented a second approach. It follows
the idea proposed by Hjaltason and Samet [27], in which they develop an algorithm called
incremental nearest neighbor algorithm, suited for search spaces that can be represented hi-
erarchically. This is the case of our problem, as seen in Figure 3.1, where the criteria for
constructing the hierarchy of the nodes is the number of variables introduced for a quadra-
tization.
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To implement this algorithm, we define a finite set S of new possible variables, a query
object q, and a tree as the data structure for organizing the elements in S. In this case, q will
represent the original system without any new auxiliary variable. Our search hierarchy will
be composed of the elements e0, . . . , em with m ≤ 2|S|, which represent subsets of S, in our
case, potential quadratizations where e0 = ∅. Then, we introduce a distance function d(q, ei)
with i ∈ 0, . . . ,m for measuring the distance from the query object q to an element ei. This
distance represents how far away a quadratization is from the original PDE system in terms
of variables introduced (the lower the order of the quadratization, the closer it is from the
original PDE). In our case, the distance function obeys the condition d(q, ei) < d(ej) for any
ej descendant of ei.

Essentially, this algorithm traverses the search hierarchy in a best-first manner instead of
the more traditional depth-first or breadth-first traversals. In each iteration, the algorithm
visits the element with the smallest distance from q among all unvisited elements whose
parents have been visited. To ensure this, we introduce a global priority queue, where the
priority of an element ei is the function d(q, ei). To break ties among elements having the
same distance (same number of new variables), we use one of the sorting functions detailed in
Section 3.1. Then, when the algorithm finds a quadratization, it executes the shrink function
to see if it can find a better quadratization. We show the pseudocode of the algorithm
implemented in Algorithm 6.

Algorithm 6 Incremental Nearest Neighbor

PQ← New Priority Queue
enqueue(PQ, e0, 0)
while not isEmpty(PQ) do

ei ← dequeue(PQ)
if ei is a quadratization then

powerset← all subsets of ei sorted by cardinality
for subset ∈ powerset do

if subset is a quadratization then return subset
else

return ei
end if

end for
else

E ← subproblems from ei
for ek ∈ E do

enqueue(PQ, ek, d(q, ek))
end for

end if
end while

We also implemented an improvement to this algorithm. In this sense, we tried to control
the size of the global priority queue by first storing the encountered subproblems in a separate
FIFO queue. Then, to insert elements to the priority queue, we wait until it is almost empty,
and then we extract a subproblem from the FIFO queue and insert its child nodes into the
global priority queue. This improvement saves computational costs by reducing the number
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of times we perform the insertion operation.

Let us use an example to illustrate the instructions that this search algorithm follows for
a specific PDE.

Example Consider the PDE dependent on time and space:

ut = u4
x. (3.7)

At the start of the search for an optimal quadratization, the priority queue is empty. When
the algorithm verifies that Eq. (3.7) is not quadratic, the possible sets of new variables for a
quadratization are enqueued. In this case, the sorting function we use is by degree and order.
Therefore, the scoring function d(q, ek) prioritizes sets with fewer variables, less degree, and
then less order.

Figure 3.7: State of the priority queue after adding the first potential quadratization sets

Next, the algorithm dequeues the set {u2
x} and tries to quadratize the system with it.

The rewritten form of Eq. (3.7) using this set is the following:

ut = w2
0, (3.8)

w0t = 2ux(4u3
xuxx) = 4u4

xuxx. (3.9)

When it verifies that {u2
x} is not a quadratization (deg(w0t) > 2), it enqueues the subproblems

of the node {u2
x} as shown in Figure 3.8. In essence, the sets of variables that could quadratize

Eq. (3.9). Then, the algorithm dequeues the set {u3
x}. With this set, it finds a quadratization

for the system, so it finalizes the search and returns {u3
x} as an optimal quadratization.

Figure 3.8: State of the priority queue after first dequeue
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3.2 Verification of a Quadratization

To design the module for verifying if a set of new variables is a quadratization up to an order
p of derivatives, we introduce three sets: V , V 2, and NS, defining them similarly as in the
work of Bychkov and Pogudin [10].

Definition 3.2 (Definition of the sets V , V 2 and NS)

Consider

w0

(
u,

∂u

∂x
, ...,

∂nu

∂xn

)
, . . . , wm

(
u,

∂u

∂x
, ...,

∂nu

∂xn

)
as new variables that are quadratization for a given PDE with one unknown function (for
simplicity of notation). Here, n is the higher order of the derivatives, and m is the number
of variables introduced.

• V is the set of variables that are a potential quadratization, consisting of the polynomials

1, u,
∂u

∂x
, . . . ,

∂n+pu

∂xn+p
, w0, . . . , wm,

∂w0

∂x
, . . . ,

∂pw0

∂xp
, . . . ,

∂wm

∂x
, . . . ,

∂pwm

∂xp

with p the number of differentiations calculated in the independent variable x.

• V 2 is the set defined by {v1v2 | v1, v2 ∈ V }.

• NS is the set of polynomials from the PDE right-hand side expressions that could not
be expressed in a quadratic form using linear combinations of V 2 elements.

Considering the introduced sets V , V 2, and NS, the general idea is: if the set {w0, ..., wl}
is a quadratization for a given PDE, then each equation within the system can be expressed
as a linear combination of elements in V 2. Therefore, the problem is reduced to verifying if
each right-hand side expression within the equation system is a linear combination of V 2.

Moreover, let us first define a base that follows an ordering of all the monomials within
V 2. This base takes the form: 

m1

m2
...
mq

 (3.10)

where m1,m2, . . . ,mq are all unique monomials present in the set V 2, and the restriction
m1 < m2 < · · · < mq holds according to the monomial ordering defined. Now, let us express
polynomials as vectors where each non-empty row represents a term present in the specific
polynomial as follows

v =

{
vi = termi if monomial mi is within the polynomial

vi = 0 otherwise,
(3.11)

and assume that in the root of the search tree (Figure 3.2), the elements in NS are the
nonquadratic right-hand side expressions of the original system. Then, the goal is to verify
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if for every i ∈ {1, . . . |NS|} the equality NSi +
∑n

k=0 αk · ck = 0 is true, where ck ∈ V 2,
n = |V 2| and {αi, . . . αn} is a set of scalars.

Then, to design the algorithm that verifies this proposition, let us define a matrix com-
posed of all the polynomials in V 2 in its vector representation, as in Eq. (3.12). In this matrix,
each polynomial vector is expressed using the base defined in Eq. (3.10) and is transposed to
constitute the rows of the matrix. In Figure 3.9 we show an example of this representation
for a given V 2 of size four.

M =

{
ai,j = termj if monomial mj is present in polynomial i

ai,j = 0 otherwise
(3.12)

Figure 3.9: Example of the matrix representation of a given V 2.

Now, the idea of having this matrix representation is to apply the Gaussian elimination
method. In this setting, we want to reduce every polynomial vector in NS using rows from
the V 2 matrix. To try the reduction only once with each polynomial in V 2 and guarantee
that we obtain an irreducible expression for each of them, we will transform the matrix
representation of V 2 to a reduced row-echelon form (RREF) [2]. Then, we ensure that V 2 is
linearly independent and the resulting polynomials in NS are irreducible.

Given the sets V and V 2, if one of the expressions to quadratize in NS is not a polynomial
that can be simply expressed using just one element from V 2, the designed algorithm does
the following:

1. First, modify V 2 by applying the Gaussian elimination method to reduce the polyno-
mials based on their leading terms. Throughout this process, maintain the polynomial
representation rather than switching to the matrix representation. In detail, the per-
formed operations are:

1.1 Iterate over every polynomial pk with {p1, . . . pn} ∈ V 2. In each iteration:

i. Start an iteration over {p1, . . . pk−1}. For every pj in this set, first check if the
leading term from pj is present in pk. If that is the case, try to reduce pk by
multiplying it with the coefficient c of the leading term of pj in pk, then do
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the subtraction pk = c · pk − pj. In consequence, the leading term of pj will
be removed from pk.

ii. Remove the leading term coefficient of the new reduced polynomial pk.

iii. Finally, perform another loop for every pj with j < k, this time reducing pj,
with respect to pk.

2. Then, for every polynomial NSi in NS try the following:

2.1 If NSi is a polynomial that can be simply expressed using elements within V 2

(without performing any linear combination between them), remove it from NS
and keep iterating over the loop. If this is not the case:

i. With the reduced set V 2, try to reduce the problematic expressions similarly
as explained above. Iterate over the reduced set V 2, and for each polynomial,
try to reduce NSi with the same algorithm used for reducing V 2.

ii. If the expression obtained from the reduction for NSi is equal to zero, then
remove this polynomial from NS. Otherwise, save this reduced form in NS.

3. After the loop ends, check the size of NS. If the set is empty, the variables {w0, ..., wm}
are a quadratization of the system, and the new representation of the PDE is returned.
Otherwise, the set of proposed variables is not a quadratization; therefore, return NS,
the set of reduced polynomials that could not be transformed into quadratic form.

To understand the algorithm in more detail, we offer the following example:

Example Consider the same PDE introduced in Eq. (3.3). We introduce the new variable
w = u2 and calculate its derivative in x: wx = 2uxu. Also, we write the new differential
equation wt = 2u(u2

xu) = 2u2u2
x. In this case, V = {1, u, ux, u

2, 2uxu} and therefore

V 2 = {1, u, ux, u
2, 2uxu, uxu, u

3, 2uxu
2, u2

x, u
2ux, 2u

2
xu, u

4, 2uxu
3, 4u2

xu
2}.

Thus, if we define our monomial base as: 

1
u
ux

u2

u2
x

uxu
u3

u2ux

u2
xu
u4

uxu
3

u2
xu

2



, (3.13)

the matrix representation of V 2 is:
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

1 0 0 0 0 0 0 0 0 0 0 0
0 u 0 0 0 0 0 0 0 0 0 0
0 0 ux 0 0 0 0 0 0 0 0 0
0 0 0 u2 0 0 0 0 0 0 0 0
0 0 0 0 0 2uxu 0 0 0 0 0 0
0 0 0 0 0 uxu 0 0 0 0 0 0
0 0 0 0 0 0 u3 0 0 0 0 0
0 0 0 0 0 0 0 2uxu

2 0 0 0 0
0 0 0 0 u2

x 0 0 0 0 0 0 0
0 0 0 0 0 0 0 u2ux 0 0 0 0
0 0 0 0 0 0 0 0 2u2

xu 0 0 0
0 0 0 0 0 0 0 0 0 u4 0 0
0 0 0 0 0 0 0 0 0 0 2uxu

3 0
0 0 0 0 0 0 0 0 0 0 0 4u2

xu
2



. (3.14)

We notice that neither ut nor wt can be easily expressed using original elements from V 2,
indicating that it is necessary to perform linear combinations between the polynomials in V 2

to reduce ut and wt. Then, we perform the reduction algorithm in V 2 and we obtain the set:

V 2 = {1, u, ux, u
2, 0, uxu, u

3, 0, u2
x, u

2ux, u
2
xu, u

4, uxu
3, u2

xu
2},

with the corresponding RREF matrix representation:

1 0 0 0 0 0 0 0 0 0 0 0
0 u 0 0 0 0 0 0 0 0 0 0
0 0 ux 0 0 0 0 0 0 0 0 0
0 0 0 u2 0 0 0 0 0 0 0 0
0 0 0 0 u2

x 0 0 0 0 0 0 0
0 0 0 0 0 uxu 0 0 0 0 0 0
0 0 0 0 0 0 u3 0 0 0 0 0
0 0 0 0 0 0 0 u2ux 0 0 0 0
0 0 0 0 0 0 0 0 u2

xu 0 0 0
0 0 0 0 0 0 0 0 0 u4 0 0
0 0 0 0 0 0 0 0 0 0 uxu

3 0
0 0 0 0 0 0 0 0 0 0 0 u2

xu
2

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



. (3.15)

Finally the reduction of our problematic expressions (ut, wt) is as follows:

ut = u2
xu− V 2

11 = u2
xu− u2

xu = 0,

wt = 2u2
xu

2 − 2V 2
14 = 2u2

xu
2 − 2 · u2

xu
2 = 0.

As ut and wt are both equal to zero and therefore NS = ∅, we say that w is a quadratization
for the PDE in Eq. (3.1).
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3.2.1 Other Methods

Another method was also implemented to do this verification. This one is based on con-
structing a system of linear equations and then solving it through its matrix form with the
Gauss-Jordan elimination method. A base following a monomial order is built using all the
monomials in the V 2 set. This base is of the same form as shown in Eq. (3.10). Then, the
system of equations is

Aλ = b. (3.16)

In Eq. (3.16), A ∈ Rm×n is a matrix where each column is a polynomial in V 2 expressed with
respect to the monomial base where each entry is the monomial coefficient. Further, λ ∈ Rn

is a vector of the coefficients that satisfy the system of equations, in this case, the unknown
variables. Finally, b ∈ Rm is a vector that represents each expression in NS in terms of the
base (Eq. (3.11)), with each entry being the coefficient of that specific monomial. Therefore,
if the expression can be written using elements in V 2, then a λ exists that satisfies the system
of equations.

3.2.2 Implementations

Three different methods were implemented to do this verification. The first one used the ma-
trices A, λ, and b described in Eq (3.16) to build a system of equations. To solve this system,
we used the function linsolve from the Sympy library [36], which internally implements
an algorithm that considers the sparsity of matrix A. This is our case because not every
monomial within the system is present in each polynomial of V 2. With this algorithm, the
solver’s complexity depends only on non-zero entries [36] instead of the generic Gauss-Jordan
complexity (O(n3)). However, to compute the input system, we still need to create and store
the sparse matrix and vectors A, b, and λ, which grow with the number of monomials in the
system, making this solution timely complex.

The second method implemented is the polynomial reduction algorithm described in Sec-
tion 3.2, using the dense polynomial representation of the SymPy library [36], which treats
polynomials as Python lists. Despite being more efficient in terms of time and memory than
the method described in Section 3.2.1, it still takes a considerable amount of time when
dealing with a larger number of variables.

The third method also implemented the polynomial reduction via the Gaussian elimina-
tion algorithm, but this time, it used the sparse representation of polynomials in the Sympy
library, which represents polynomials as dictionaries. Since these dictionaries considerably
reduce manipulation time, better results were obtained in terms of efficiency using this im-
plementation. A graph comparing the results obtained in terms of execution time is shown
in Section 4.1 (Figure 4.1).
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3.3 Rational Functions

We encounter rational functions in the governing equations of multiple nonlinear PDE models.
This can become problematic if we want to find a quadratization for any of these models, as
this method can only be applied to polynomial equations. To solve this, we could attempt
to transform the right-hand side equations into polynomials by introducing new variables to
the system as we do to solve the quadratization problem (polynomialization procedure). For
example, if we consider the PDE

ut =
1

u + 1
,

we could introduce a new variable

y =
1

u + 1
,

and our system would have differenial equations:

ut = y and yt = − 1

(u + 1)3
= −y3.

We now have a PDE with polynomial equations, so we can try to run our quadratization
algorithm.

However, the problem with this approach lies in the omission of the relation

y =
1

u + 1

by the algorithm, which incurs in disregarding some simplifications such as (u + 1) · y = 1.
This problem then affects the ability of the algorithm to find lower-order quadratizations
for the original PDE, since it could identify that a polynomial is not quadratic when it is
according to a fractional relation (false negatives).

To address this type of PDEs and to ensure the algorithm does the simplifications men-
tioned above, we implemented a module that finds the partial fraction decomposition of a
multivariate rational function, introduces new variables to the system according to this de-
composition, and retains the definition of these new variables for further calculations related
to the quadratization steps. The overview of this algorithm is as follows:

1. First, find the fraction decomposition of the multivariate rational function present in
the PDE of the form r(u1, . . . ) ∈ K[u1, . . . ], with u1, . . . being the undefined functions
of the PDE. To do this, follow the steps described in the work of Heller and von
Manteuffel [24, Section 3.1], which translates into:

1.1 Rewrite every left-hand side equation within the PDE as n/d. If, in an equation
p, d is identified as a function of (u1, . . . ), then p has the form

n(u1, . . . )

d(u1, . . . )

. Then, cancel common factors in n and d and factorize d over K.
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1.2 For each factor di with i ∈ [1, . . . ,m] introduce a new variable qi such that
qi = 1/di. This new set {q1, . . . , qm} represents the new variables needed for
polynomializing the PDE.

1.3 Now, calculate the Gröbner basis [7] of the ideal I generated by the set {q1d1 −
1, . . . , qmdm − 1}.

1.4 For every equation within the PDE, express the left-hand side in terms of the set
{q1, . . . , qm} and then reduce it with respect to the calculated Gröbner basis.

2. Then, calculate the first order derivative with respect to the first independent variable
for every qi introduced to obtain the new polynomial PDE system.

3. After every basic algebraic operation (multiplication, division, etc.) between polyno-
mials coming from the PDE equations, perform a reduction to the results with respect
to the Gröbner basis.

By performing step three, we guarantee that every expression coming from differentiations
or basic operations that the algorithm handles is irreducible with respect to the fractional
relations we are adding for the polynomialization step. To illustrate the algorithm’s instruc-
tions more clearly, let us look at an example.

Example Consider the following PDE with time (t) and space (x) independent variables:

ut =
ux

u
. (3.17)

As it is already expressed in the form

n(u1, . . . )

d(u1, . . . )
,

we immediately introduce the new variable q = 1/u. Then the set for the ideal I we will use
for the Gröbner basis is {qu − 1}. Now, we calculate the Gröbner basis using Buchberger’s
Algorithm [7, Section 6]. After expressing the original PDE in terms of q, we calculate the
derivative with respect to t of q and reduce all results with respect to the Gröbner basis.
Then, we get the following PDE:

ut = uxq

qt = −q3ux.

We perform the quadratization algorithm, obtaining the following rewritten form of our
original PDE:

ut = uxq

qt = qxq.

44



3.4 Observation on the Search Success of the Algo-

rithm

As established in Section 2.2.2, we know that for every PDE system there is a quadratization.
However, our approach also depends on the number of partial differentiations we perform on
the new variables, as they are also part of the rewritten form of the system coming from the
transformation procedure. This could result in the algorithm not finding a quadratization
because either the number of partial differentiations of the new variables was not enough
or the bound defined for the number of nodes to traverse did not suffice. One approach we
could take to guarantee a successful search is the following:

• Fix N to a high number (for example N = 100) and fix an arbitrary number of differ-
entiations (for example p = 5)

• Run any of the search algorithms with the chosen p until it either finds a result or
traverses N nodes. If a quadratization was found, return it.

• Else, set p = p + 1 and N = 2 ·N , and go back to step 2.

Moreover, we can analyze the complexity of this algorithm. Let us suppose that every
search for each p and N takes O(N c) where c is a constant. Then, if N0 is the minimum
value of N we tried, the final cost of the algorithm is

m∑
i=1

(N0 · 2i)c = O((N0 · 2m)c) = O(N∗c), (3.18)

where N∗ is the value of N at which we find a quadratization.
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Chapter 4

Experiments and Results

To analyze the performance of QuPDE, we ran some tests over practical PDE examples with
different conditions. The results were obtained on a personal laptop with the specifications
of Apple M2, macOS Sonoma 14, and Python version 3.10.12. It is also worth mentioning
that our implementation only supports one-dimensional PDEs (two independent variables).
The link to the repository with the implemented software in Python is https://github.

com/albaniolivieri/pde-quad.git.

4.1 PDE Models Used

We describe some practical examples of PDE models used to test the algorithm:

• Dym equation [33]: The Harry Dym equation is an important dynamical equation that
is integrable and finds applications in several physical systems. The Dym equation
represents a system in which dispersion anonlinearityity are coupled together:

ut = u3uxxx. (4.1)

• Variation of non-adiabatic tubular reactor model [31]: This model describes species
concentration and temperature evolution in a single reaction:

ut =
1

Pe
uss − us −Df(v) (4.2)

vt =
1

Pe
vss − vs − β(v + θref ) + BDf(v), (4.3)

where f(v) is a polynomial nonlinear term defined as f(v) = up with p = c0 + c1v +
c2v

2+c3v
3+ . . . a Taylor expansion of an exponential function. In this section, we show

results with p of degree three and four. Also, D is Damköhler number, Pe is Pèclet
number and B, β, θref are known constants.

• Modified KdV equation (mKdV) [44]: The KdV equation is a generic model for the
study of weakly nonlinear long waves, incorporating leading nonlinearity and dispersion.
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Also, it describes surface waves of long wavelength and small amplitude in shallow
water:

ut = au2ux − uxxx, (4.4)

with a > 0.

• Solar wind model [29]: The HUX (Heliospheric Upwinding eXtrapolation) model is a
two-dimensional time-stationary model that predicts the heliospheric solar wind speed:

ur =
Ωrotuϕ

u
, (4.5)

with Ωrot the angular frequency on the Sun’s rotation evaluated at a constant Carring-
ton latitude.

• Schlögl model [8]: Schlögl’s model is a simple example of a chemical reaction system
that exhibits bistability. Next, we show a version of this model without input functions:

ut = uxx − k(u− u1)(u− u2)(u− u3), (4.6)

with k ≥ 0 and u1 < u2 < u3.

• Euler equations [28]: The Euler equations are derived from tile physical principles of
conservation of mass, momentum, and energy:

ρt = −uρx − ρux (4.7)

ut = −uxu−
px
ρ

(4.8)

pt = −uxp− upx. (4.9)

• FitzHugh-Nagamo (FHN) system [5]: A simplified neuron model of the Hodgkin-Huxley
model, which describes activation and deactivation dynamics of a spiking neuron:

vt = εvxx +
1

ε
v(v − 0.1)(1− v)− 1

ε
u +

1

ε
q (4.10)

ut = hv − γu + q, (4.11)

with ε = 0.015, h = 0.5, γ = 2, q = 0.05.

• Schnakenberg equations [35]: Evolution equations for reaction-diffusion systems with
cross-diffusion:

ut = Duuxx + Duvvxx + k1a1 − k2u + k3u
2v (4.12)

vt = Dvvxx + Dvuuxx + k4b1 − k3u
2v, (4.13)

where Du > 0, Dv > 0, Duv and Dvu are diffusion and cross-diffusion coefficients
respectively, and a1, b1, k1, k2, k3, k4 are all positive constants.

• Brusselator system [34]: The Brusselator system was developed to model morphogenesis
and pattern formation in chemical reactions:

ut = d1ux + λ(1− (b + 1)u + bu2v) (4.14)

vt = d2vx + λa2(u− u2v), (4.15)

with d1, d2, λ, a and b positive constants.

47



• Allen–Cahn equation [19]: Describes the motion of antiphase boundaries in crystalline
solids. It was proposed as a simple model for the process of phase separation of a binary
alloy at a fixed temperature:

ut = uxx + u− u3. (4.16)

• 1D nonlinear heat equation [22]: Among the most widely studied models, it presents a
rich mathematical structure for studying “blow-up” functions:

ut = uxx + up, (4.17)

with p > 1. For our benchmark, we perform tests with p = 6.

4.2 Comparison between Implementations for Verify-

ing a Quadratization

To compare the efficiency between the methods described in Section 3.2.2, we tried to confirm
that the variables w0 = u3 and w1 = u2

xu were a quadratization for the equation ut = u3uxxx

(Dym equation [33]). We increased the differentiation order of the new variables introduced
to see how each algorithm performed in terms of time with the growth of V 2 cardinality. The
results of this experiment are shown through the graph in Figure 4.1 (to see explicit results,
see Table A.1 in the Appendix).

In Figure 4.1, the x-axis represents the number of differentiations calculated for w0 and
w1, and the y-axis is the time that it took to deliver a response for each of the cases. From
this graph, it is clear that the Gauss-Jordan method with the matrix representation is the
one that performed worst, growing exponentially with the number of monomials in V 2. The
wide difference between this implementation and the other two could result from ignoring
the sparsity of the matrix representation of V 2 (as explained in Section 3.2.1).

4.3 General Results for Branch & Bound and Incre-

mental Nearest Neighbor Algorithms

In Table 4.1, we show the results obtained by running QuPDE for the examples described
in Section 4.1, using both search algorithms B&B and Incremental Nearest Neighbor (INN),
and the best sorting heuristic for each example.

48



Figure 4.1: Efficiency comparison between quadratization verification algorithms.
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Table 4.1: New variables introduced, time elapsed using the best heuristic, and number of
nodes traversed for each example using B&B search.

PDE Quad
B&B

Time B&B
(ms)

Nodes
trav.

Quad INN Time INN
(ms)

Nodes
trav.

Solar wind 1/u 14.1 ± 0.2 1 1/u 14.0 ± 0.2 1
mKdV eq. u2 30.1 ± 0.2 4 u2 30.1 ± 0.3 2
Allen-Cahn eq. u2 35.6 ± 0.7 3 u2 35.2 ± 0.5 2
Schlögl eq. u2 40.9 ± 0.3 3 u2 40.6 ± 0.8 2
Euler eq. 1/ρ 96.9 ± 0.5 1 1/ρ 97.5 ± 5.4 1
FHN v2 155.8 ± 0.7 3 v2 156.3 ± 2.2 2
Dym eq. u3, u2

xu 609.1 ± 11.7 21 u3, u2
xu 1182.3 ± 78.3 10

Brusselator u2, uv 598.0 ± 26.5 8 u2, uv 595.4 ± 12.2 5
Schnakenberg uv, u2 839.2 ± 6.5 8 uv, u2 847.1 ± 9.1 5
Heat eq. u3, uxu, u5 2591.1 ± 7.0 30 u3, u2

x, u5 1591.2 ± 9.3 17
Tubular reac-
tor

uv, v2,
v2u, v3

16862.3 ±
309.2

89 uv, v2,
v2u, v4

17726.8 ±
704.0

78

In most of the examples, the performance in terms of efficiency is more or less the same
for both algorithms. We see greater differences in the heat equation (Eq. (4.17)), the Dym
equation (Eq. (4.1)), and the tubular reactor model (Eq. (4.2)). Some of these differences are
due to the implementation of the shrink function (Section 3.1.1). With this functionality, the
B&B algorithm can find a high-order quadratization and, from the subsets of this suboptimal
solution, identify a better quadratization, helping to quickly prune many branches (including
those of the same order as the optimal one).

Particularly, in the Dym equation execution, the B&B algorithm performed best, where
it skipped almost every node with potential quadratizations of order two or higher by finding
an optimal one through the shrink function in the first branch traversed. Meanwhile, the
INN algorithm visited multiple nodes with variable sets of cardinality two before arriving at
an optimal quadratization. On the contrary, the INN approach yielded the best result for the
heat equation example. In this case, the B&B algorithm found a suboptimal quadratization
before reaching the best one, which forced it to run the shrink function twice. Alternatively,
in the INN execution, the algorithm only had to run this function once.

On the other hand, in the tubular reactor example, as well as in the rest of the PDEs
where the B&B algorithm performed better, the difference in times can be explained by the
implementation of the pruning rule related to the existence of higher-order derivatives. This
rule is implemented only in the B&B approach, and its effect is more significant in examples
where the best quadratization for the system is of higher order since, in these cases, the
treewidth grows considerably before the optimal solution is reached.
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4.4 Effect of Shrink Function

To highlight the impact on the efficiency of using the shrink function within the B&B algo-
rithm and the Neatest Neighbor approach, we ran executions with some examples with and
without the use of this function. The results of these experiments are shown in Table 4.2 for
the B&B algorithm and Table 4.3 for the Incremental Nearest Neighbor approach.

Table 4.2: Performance of B&B search with and without the use of the shrink function.

PDE with shrink function (ms) without shrink function (ms)
Brusselator 598.0 ± 26.5 460.3 ± 13.3
Dym eq. 609.1 ± 11.7 718.4 ± 22.6
Schnakenberg eq. 839.2 ± 6.5 642.5 ± 7.5
Heat eq. 2591.1 ± 7.0 2037.2 ± 15.0

Table 4.3: Performance of Incremental Nearest Neighbor search with and without the shrink
function.

PDE with shrink function (ms) without shrink function (ms)
Brusselator 595.4 ± 12.2 461.3 ± 12.8
Schnakenberg eq. 847.1 ± 9.1 645.7 ± 4.4
Dym eq. 1182.3 ± 78.3 2212.0 ± 4.8
Heat eq. 1591.2 ± 9.3 1313.8 ± 42.1

When analyzing results in Table 4.2, we can see the impact of the shrink function in the
B&B search approach. While in the Schnakenberg (Eq. (4.12)), Brusselator (Eq. (4.14)), and
heat equation (Eq. (4.17)) examples, the algorithm shows a better performance without the
shrink function, meaning that it does not need it to find an optimal quadratization quicker,
the difference in time is less than 0.6 seconds for these experiments. On the other hand,
if we compare the execution times for the Dym equation (Eq. (4.1)), we can see that the
implementation of the shrink function had a high positive impact.

In Table 4.3, we see more or less the same result pattern for the Incremental Nearest
Neighbor algorithm. Furthermore, the distance between both executions for the Dym exam-
ple is broader than in the B&B search, and more importantly, as the optimal quadratization
of order two comes from the subsets generated by the shrink equation and not the general
decompositions, the best quadratization it finds without the shrink function is of order three
for both algorithms, which highlights the importance of this functionality.

Thus, it is shown that implementing this step can yield better results in terms of better
quadratizations for the B&B and Incremental Nearest Neighbor search algorithms in general,
making it worthwhile to sacrifice small efficiency differences in cases where the algorithms do
not need the shrink function to find an optimal quadratization.
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4.5 Sorting Heuristics Comparison

We compared the three implemented sorting functions to analyze how sensible both algo-
rithms (B&B and Incremental Nearest Neighbor) are in terms of efficiency to the sorting
heuristics (Section 3.1). The B&B and Incremental Nearest Neighbor algorithm results are
shown in Table 4.4 and Table 4.5, respectively. In each table, h1 is the heuristic by order and
degree, h2 is by degree and order and h3 is the heuristic given by the function degree+2·order.

Table 4.4: Comparison of sorting heuristics for B&B algorithm.

PDE h1 (ms) h2 (ms) h3 (ms)
Solar wind 23.7 ± 30.1 14.2 ± 0.2 14.1 ± 0.15
mKdV eq. 39.0 ± 27.7 30.1 ± 0.2 32.2 ± 0.6
Allen-Cahn eq. 43.8 ± 27.1 35.6 ± 0.7 35.9 ± 2.3
Schlögl 51.1 ± 32.1 41.1 ± 0.4 40.9 ± 0.3
Euler eq. 106.2 ± 32.5 99.0 ± 7.0 96.9 ± 0.5
FHN 169.9 ± 36.8 156.1 ± 2.5 155.8 ± 0.7
Dym eq. 655.7 ± 115.5 609.1 ± 11.7 629.1 ± 40.0
Brusselator 601.6 ± 31.7 598.0 ± 26.5 613.9 ± 68.9
Schnakenberg eq. 855.2 ± 34.1 854.4 ± 36.3 839.2 ± 6.5
Heat eq. 2672.6 ± 70.6 2591.1 ± 7.0 2646.9 ± 124.1

Table 4.5: Comparison of sorting heuristics for Incremental Nearest Neighbor algorithm.

PDE h1 (ms) h2 (ms) h3 (ms)
Solar wind 23.9 ± 30.8 14.3 ± 0.3 14.0 ± 0.2
mKdV eq. 38.8 ± 27.4 30.1 ± 0.3 32.3 ± 2.8
Allen-Cahn eq. 43.7 ± 28.2 35.2 ± 0.5 36.0 ± 2.5
Schlögl 51.2 ± 31.5 40.8 ± 0.7 40.6 ± 0.8
Euler eq. 115.4 ± 32.4 97.5 ± 5.4 100.2 ± 12.0
FHN 172.1 ± 35.9 166.4 ± 18.9 156.3 ± 2.2
Dym eq. 1171.7 ± 35.5 1182.3 ± 78.3 1182.8 ± 30.0
Brusselator 615.0 ± 37.1 597.8 ± 13.0 595.4 ± 12.2
Schnakenberg eq. 863.1 ± 43.4 847.1 ± 9.1 865.5 ± 41.0
Heat eq. 1611.5 ± 36.9 1658.4 ± 169.9 1591.2 ± 9.3

The results of this experiment in both cases suggest that neither of the search algorithms
is highly sensitive to the selected sorting heuristic. The difference between execution times for
each example is less than 100 milliseconds in both B&B and Incremental Nearest Neighbor
approaches. However, we do notice that executions with h2 are the fastest in almost every
instance, which corresponds to the combinatorial result described in Section 3.1, where we
show that a higher polynomial degree translates into more branches (wider treewidth) in the
search tree.
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4.6 Effect of Pruning Rules

As described in Section 3.1.1, we implemented two pruning rules for the B&B search approach.
The first one is given by the smallest order quadratization found, essential for bounding and
pruning branches. The second pruning rule is related to the order of the derivatives allowed
within the new variables. Table 4.6 shows time comparisons with and without implementing
the second pruning rule for a group of PDE examples.

Table 4.6: Performance of B&B search with and without the derivative-order pruning rule.

PDE with prune rule (ms) without prune rule (ms)
Solar wind 14.1 ± 0.2 13.9 ± 0.2
mKdV eq. 30.1 ± 0.2 30.0 ± 0.4
Allen-Cahn eq. 35.6 ± 0.7 35.6 ± 0.7
Schlögl 40.9 ± 0.3 40.5 ± 0.4
Euler eq. 96.9 ± 0.5 97.7 ± 2.6
FHN 155.8 ± 0.7 156.9 ± 8.3
Dym eq. 609.1 ± 11.7 1301.8 ± 20.6
Brusselator 598.0 ± 26.5 575.3 ± 3.4
Schnakenberg eq. 839.2 ± 6.5 851.5 ± 11.4
Heat eq. 2591.1 ± 7.0 2591.3 ± 10.9

Looking at Table 4.6, we can see that the algorithm does better or more or less the same
with the derivative-order prune rule implemented for all the examples. Particularly for the
Dym equation, the implementation of this prune rule yields a significant speed-up.

4.7 Comparison with Other Approaches

4.7.1 Comparison with QBee Dimension-agnostic Quadratization

In the next table, we compare results obtained from the QBee algorithm used for semi-
discretized PDEs [9, Algorithm 5.3 Section 5] with our algorithm’s performance on the solar
wind, tubular reactor, and Allen-Cahn equations, in which a discretization was done in the
works of Issan and Kramer [29], Kramer and Willcox [32], and Yang et al. [45], respectively.
For this experiment, we executed both algorithms on the same machine.

Table 4.7: Comparison between QBee dimension-agnostic quadratization and QuPDE

PDE
QBee QuPDE

Time (s) Quad order Time (s) Quad order
Solar wind 0.34 4 0.01 1
Allen-Cahn eq. 0.07 1 0.04 1
Tubular reactor 0.68 4 16.9 4
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Looking at Table 4.7, we can see significant differences in the results of both software.
In the solar wind example, our algorithm outperforms QBee in both time and number of
variables; additionally, we get a PDE quadratic system of dimension two (two differential
equations), in contrast with the system resulting from using QBee, where the final quadratic
PDE is of dimension six [9]. For the Allen-Cahn equation, we also do better in terms of time.
On the other hand, for the tubular example case, our algorithm outputs the same number of
variables but takes longer to return the optimal quantization.

It is also important to highlight that we can only compare both algorithms with a few
examples, as the discretization procedure for a PDE is not trivial; it depends on the PDE’s
structure and is a field of study by itself.

4.7.2 Comparison with Quadratizations done by hand

As discussed earlier, the quadratization procedure for PDEs is useful for solving certain
problems and is often used as a preprocessing step. In the majority of these works, this
procedure was done by hand. In Table 4.8, we compare the quadratizations shown in the
works of Kramer and Willcox ([32, Section 4], [31, Section 3.2]), and Qian et al. [39, Section
5.2] with results obtained from our algorithm.

Table 4.8: Comparison of lifting procedures done by hand and the quadratizations found by
our algorithm

PDE Lifting by hand Lifting with QuPDE
Euler eq. 1/ρ 1/ρ
FHN v2 v2

Tubular reactor uv, v2u, v3u, v2, v3 uv, v2, v2u, v3

When analyzing Table 4.8, we notice that our algorithm found a better quadratization
for the tubular reactor model, yielding a quadratization of order four instead of five. For
the other examples, our algorithm found the same quadratizations, and for both the Euler
equations and FitzHugh-Nagamo system, the solution is returned in less than half a second.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

To solve various engineering and science problems, the concept of variable transformation
has been widely explored to bring a complex problem to a simpler plane, where analysis, ma-
nipulation, and study become easier tasks. While this technique can be applied to problems
modeled with ODEs using several available tools, a wide range of more complex dynamics
must be modeled with PDEs to capture all their characteristics. However, limited tools are
available to handle these types of problems in the context of variable transformation or lifting.

In this regard, we present the software QuPed, an algorithm for finding optimal quadra-
tizations for PDE systems. Throughout this work, we described its construction, where we
relied on implementing optimization algorithms such as the branch-and-bound framework
and nearest-neighbor search. Moreover, we included additional tools, such as the polynomi-
alization step for rational functions, which enabled us to handle a wider range of scientific
nonlinear models.

Additionally, we measured the performance of QuPed by conducting a benchmark study,
where we tested the algorithm and its variations (branch-and-bound and nearest neighbor
search) with several PDE models from practical applications and scientific studies found in
the literature. Throughout these experiments and tests, we obtained quadratic transforma-
tions for complex examples that were out of reach using state-of-the-art tools, such as the
Dym equation (Eq. (4.1)), Heat equation (Eq. (4.17)), and the Schlögl model (Eq. (4.6)).
Furthermore, for most examples, the algorithm (with both the B&B and Nearest Neighbor
approaches) delivered an optimal quadratization within the first second of execution. We
also depicted the effect of some functionalities added to improve efficiency and the impact of
pruning rules in the branch-and-bound case.

Moreover, we also showed the results of alternative implementations built for our algo-
rithm, where we demonstrated that the Gaussian elimination algorithm with a polynomial
sparse representation performs best in terms of efficiency for verifying if a set of variables is
a quadratization.
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Furthermore, when we compared our software performance with the QBee dimension-
agnostic quadratization, we unveiled considerable differences between the results obtained
from both algorithms. We conclude that our algorithm can find quadratizations of fewer
auxiliary variables, while the QBee approach does not guarantee optimality. Nonetheless,
given the unfavorable result in terms of time when handling the Tubular reactor model
example, we also confirm that there is room for improvement in terms of efficiency for the
algorithm that we proposed in this work.

5.2 Future Work

Our study focuses on the quadratization of polynomial PDEs. However, many scientific
problems are models with nonlinear and nonpolynomial PDEs. To address these problems,
a polynomialization algorithm must be developed, where the goal is to find a polynomial
representation of any system by adding new variables.

Moving forward, we plan to keep searching and studying ways of improving the algorithm’s
efficiency. In this context, our efforts will be divided into several ideas. We will keep exploring
the definition of new pruning rules for the branch-and-bound approach and make changes
regarding memory usage for both search algorithms.

Additionally, we aim to develop methods to reduce the number of equations of the result-
ing quadratic PDE systems. We plan to add a priority system for the monomials used within
the final quadratic equations to the reduction step in the verification algorithm. This would
pose a considerable improvement, as one of the challenges or downsides of this procedure is
the increase of the original system dimension.

Finally, we hope our work will inspire further research into the variable transformation
field for PDEs. With all the complex phenomena surrounding us, these tools can potentially
increase our general understanding, insight, and analysis of problems that presently are out
of reach.
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Appendix A

Results Tables

In this section, we present the result table for the experiments described in Section 4.

Number of
differentiations

Matrix
representation (s)

Dense polynomial
representation (s)

Sparse polynomial
representation (s)

1 0.015 ± 0.006 0.034 ± 0.009 0.027 ± 0.025
2 0.034 ± 0.032 0.063 ± 0.007 0.046 ± 0.002
3 0.429 ± 0.041 0.186 ± 0.027 0.104 ± 0.011
4 1.146 ± 0.047 0.362 ± 0.021 0.253 ± 0.003
5 2.271 ± 0.043 0.680 ± 0.023 0.457 ± 0.004
6 4.591 ± 0.054 1.269 ± 0.039 0.839 ± 0.010
7 8.599 ± 0.119 2.162 ± 0.038 1.463 ± 0.015
8 15.455 ± 0.237 3.635 ± 0.062 2.410 ± 0.043
9 26.377 ± 0.207 6.034 ± 0.167 3.856 ± 0.137
10 42.593 ± 0.219 9.711 ± 0.083 5.985 ± 0.084

Table A.1: Comparison between implementation for verifying a quadratization.
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Appendix B

Example systems after quadratization

B.1 Dym Equation

w0 = u3 w1 = u2
xu

ut = uxxxw0

w0t = w0w0xxx − 2w0xw0xx + 10w0xw1

w1t = w0w1xxx −
2

3
w0xxw0xxx + 4w0xxw1x + 4w0xxxw1 − 24w1w1x

B.2 Non-adiabatic Tubular Reactor Model

w0 = uv w1 = v2 w2 = v2u w3 = v3

ut = −DPec0u−DPec1uv −DPec2w2 −DPec3w0w1 − Peus + uss

vt = BDPec0u + BDPec1uv + BDc2w2 + BDPec3w0w1 − Peβv + Peβθref − Pevs + vss

w0t = BDPec0u
2 + BDPec1w0u + BDPec2w

2
0 + BDPec3w0w2 −DPec1w2 −DPec2w0w1−

DPec3w0w3 + Peβθrefu− Pevsu− Peusv + uv(−DPec0 − Peβ) + vssu + ussv

w1t = 2BDPec0uv + 2BDPec1w2 + 2BDPec2w0w1 + 2BDPec3w0w3 − 2Peβv2 + 2Peβθrefv

− Pew1s + 2θrefvss

w2t = 2BDPec0uw0 + 2BDPec1w
2
0 + 2BDPec2w0w2 + 2BDPec3w

2
2 −DPec1w0w1−

DPec2w0w3 −DPec3w2w3 + 2Peβθrefuv − Peusw1 − 2Pevsw0 + w1ssu− 4vsws−
2vssw0 + w2(−DPec0 − 2Peβ) + w2ss

w3t = 3BDPec0w2 + 3BDPec1w0w1 + 3BDPec2w0w3 + 3BDPec3w2w3 + 3Peβθrefv
2−

3Peβvw1 − Pew3s + 3w1ssv − w3ss
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B.3 mKdV Equation

w0 = u2

ut = auxw0 − uxxx

w0t = aw0w0x − 2uxxxu

B.4 Solar Wind Model

w0 =
1

u
ur = Ωrotw0uϕ

w0r = Ωrotw0w0ϕ

B.5 Schlögl Model

w0 = u2

ut = ku2(u1 +2 +u3)− kw0u + ku(−u1u2 − u1u3 − u2u3) + uxx + ku1u2u3

w0t = 2ku2(−u1u2 − u1u3 − u2u3) + 2ku1u2u3u + 2kuw0(u1 + u2 + u3)− 2uxxu− 2kw2
0

B.6 Euler Equations

w0 =
1

ρ

ρt = −ρux − ρxu

ut = −pxw0 − uxu

pt = −uxp− pxu

w0t = w0ux − w0xu
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B.7 FitzHugh-Nagamo System

w0 = v2

vt = 100ε2vxx + 100r + 100w0v + 10v − 110w0 − 100u

ut = −γu + hv + r

w0t = 200ε2
(
−v2x −

w0xx

2

)
+ 200rv − 220w0v − 200vu + 200w2

0 + 20w0

B.8 Schnakenberg Equations

w0 = u2 w1 = vu

ut = aγ + Duuxx + Duvvxx − γu + γvw0

vt = bγ + Dvvxx + Dvuuxx − γvw0

w0t = 2aγu + Du(−2u2
x + w0xx) + 2Duvuvxx + 2γw0w1 − 2γw0

w1t = aγv + bγu + Du(−vxxu− 2uxvx + w1xx) + Duvvvxx + Dvuvxx + Dvu(−u2
x +

w0xx

2
)

− γuv − γw0w1 + γw2
1

B.9 Brusselator System

w0 = u2 w1 = uv

ut = bγvw1 + d1ux + λ + u(−bλ− λ)

vt = a2λu− a2λuw1 + d2vx

w0t = 2bλw0w1 + 2d1uxu + 2λu + u2(−2bλ− 2λ)

w1t = a2λu2 − a2λw0w1 + bλw2
1 + d1uxv + d2uvx + λv + w1(−bλ− λ)

B.10 Allen-Cahn Equation

w0 = u2

ut = −uw0 + u + uxx

w0t = −2u2
x − 2w2

0 + 2w0 + w0xx
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B.11 Heat Equation

The quadratic system below corresponds to the one yielded by setting the equation parameter
p = 6 and running the Nearest Neighbor search algorithm.

w0 = u5 w1 = u2
x w2 = u3

ut = w2
2 + uxx

w0t = 5w2
0 + w0xx − 20w1w2

w1t = −2u2
xx + 12w0w1 + w1xx

w2t = −6w1u + 3w0w2 + w2xx
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Appendix C

Package Use

The code snippet below shows how to use our software to obtain a quadratization for a given
PDE system.

# de f i n i t i o n o f f unc t i on s and independent v a r i a b l e s o f the PDE
t , x = symbols ( ’ t  x ’ )
u = Function ( ’u ’ ) ( t , x )

# de f i n i t i o n o f the PDE
u t = u∗∗3 ∗ D(u , x , 3)

# func t i on f o r f i n d i n g a quad ra t i z a t i on
# input : system of equat ions , number o f d i f f e r e n t i a t i o n s f o r
# the new va r i a b l e s , s o r t i n g func t i on
# output : a quad ra t i z a t i on s e t o f the system of equa t i ons
quadrat i z e ( func eq =[(u , u t ) ] , n d i f f =4, s o r t f u n=by fun )
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