
Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

CHAPTER 1

Introduction

1.1 Why Compact Data Structures?

Google’s stated mission, “to organize the world’s information and make it universally

accessible and useful,” could not better capture the immense ambition of modern soci-

ety for gathering all kinds of data and putting them to use to improve our lives. We are

collecting not only huge amounts of data from the physical world (astronomical, cli-

matological, geographical, biological), but also human-generated data (voice, pictures,

music, video, books, news, Web contents, emails, blogs, tweets) and society-based

behavioral data (markets, shopping, trafic, clicks, Web navigation, likes, friendship

networks).

Our hunger for more and more information is looding our lives with data. Tech-

nology is improving and our ability to store data is growing fast, but the data we are

collecting also grow fast – in many cases faster than our storage capacities. While our

ability to store the data in secondary or perhaps tertiary storage does not yet seem to

be compromised, performing the desired processing of these data in the main memory

of computers is becoming more and more dificult. Since accessing a datum in main

memory is about 105 times faster than on disk, operating in main memory is crucial for

carrying out many data-processing applications.

In many cases, the problem is not so much the size of the actual data, but that

of the data structures that must be built on the data in order to eficiently carry

out the desired processing or queries. In some cases the data structures are one or

two orders of magnitude larger than the data! For example, the DNA of a human

genome, of about 3.3 billion bases, requires slightly less than 800 megabytes if we

use only 2 bits per base (A, C, G, T), which its in the main memory of any desk-

top PC. However, the sufix tree, a powerful data structure used to eficiently perform

sequence analysis on the genome, requires at least 10 bytes per base, that is, more than

30 gigabytes.

The main techniques to cope with the growing size of data over recent years can be

classiied into three families:

1

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 introduction

Eficient secondary-memory algorithms.While accessing a random datum from disk

is comparatively very slow, subsequent data are read much faster, only 100 times

slower than from main memory. Therefore, algorithms that minimize the random

accesses to the data can perform reasonably well on disk. Not every problem,

however, admits a good disk-based solution.

Streaming algorithms. In these algorithms one goes to the extreme of allowing only

one or a small number of sequential passes over the data, storing intermediate

values on a comparatively small main memory. When only one pass over the data

is allowed, the algorithm can handle situations in which the data cannot even be

stored on disk, because they either are too large or low too fast. In many cases

streaming algorithms aim at computing approximate information from the data.

Distributed algorithms. These are parallel algorithms that work on a number of com-

puters connected through a local-area network. Network transfer speeds are around

10 times slower than those of disks. However, some algorithms are amenable to

parallelization in a way that the data can be partitioned over the processors and

little transfer of data is needed.

Each of these approaches pays a price in terms of performance or accuracy, and

neither one is always applicable. There are also cases where memory is limited and a

large secondary memory is not at hand: routers, smartphones, smartwatches, sensors,

and a large number of low-end embedded devices that are more and more frequently

seen everywhere (indeed, they are the stars of the promised Internet of Things).

A topic that is strongly related to the problem of managing large volumes of data

is compression, which seeks a way of representing data using less space. Compression

builds on Information Theory, which studies the minimum space necessary to represent

the data.

Most compression algorithms require decompressing all of the data from the begin-

ning before we can access a random datum. Therefore, compression generally serves

as a space-saving archival method: the data can be stored using less space but must be

fully decompressed before being used again. Compression is not useful for managing

more data in main memory, except if we need only to process the data sequentially.

Compact data structures aim precisely at this challenge. A compact data structure

maintains the data, and the desired extra data structures over it, in a form that not only

uses less space, but is able to access and query the data in compact form, that is, without

decompressing them. Thus, a compact data structure allows us to it and eficiently

query, navigate, and manipulate much larger datasets in main memory than what would

be possible if we used the data represented in plain form and classical data structures

on top.

Compact data structures lie at the intersection of Data Structures and Information

Theory. One looks at data representations that not only need space close to the min-

imum possible (as in compression) but also require that those representations allow

one to eficiently carry out some operations on the data. In terms of information, data

structures are fully redundant: they can be reconstructed from the data itself. However,

they are built for eficiency reasons: once they are built from the data, data structures

speed up operations signiicantly. When designing compact data structures, one strug-

gles with this tradeoff: supporting the desired operations as eficiently as possible while

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

why this book? 3

increasing the space as little as possible. In some lucky cases, a compact data struc-

ture reaches almost the minimum possible space to represent the data and provides a

rich functionality that encompasses what is provided by a number of independent data

structures. General trees and text collections are probably the two most striking success

stories of compact data structures (and they have been combined to store the human

genome and its sufix tree in less than 4 gigabytes!).

Compact data structures usually require more steps than classical data structures to

complete the same operations. However, if these operations are carried out on a faster

memory, the net result is a faster (and smaller) representation. This can occur at any

level of the memory hierarchy; for example, a compact data structure may be faster

because it its in cache when the classical one does not. The most dramatic improve-

ment, however, is seen when the compact data structure its in main memory while

the classical one needs to be handled on disk (even if it is a solid-state device). In

some cases, such as limited-memory devices, compact data structures may be the only

approach to operate on larger datasets.

The other techniques we have described can also beneit from the use of compact

data structures. For example, distributed algorithms may use fewer computers to carry

out the same task, as their aggregated memory is virtually enlarged. This reduces hard-

ware, communication, and energy costs. Secondary-memory algorithms may also ben-

eit from a virtually larger main memory by reducing the amount of disk transfers.

Streaming algorithms may store more accurate estimations within the samemain mem-

ory budget.

1.2 Why This Book?

The starting point of the formal study of compact data structures can be traced back

to the 1988 Ph.D. thesis of Jacobson, although earlier works, in retrospect, can also

be said to belong to this area. Since then, the study of these structures has luorished,

and research articles appear routinely in most conferences and journals on algorithms,

compression, and databases. Various software repositories offer mature libraries imple-

menting generic or problem-speciic compact data structures. There are also indications

of the increasing use of compact data structures inside the products of Google, Face-

book, and others.

We believe that compact data structures have reached a level of maturity that

deserves a book to introduce them. There are already established compact data struc-

tures to represent bitvectors, sequences, permutations, trees, grids, binary relations,

graphs, tries, text collections, and others. Surprisingly, there are no other books on this

topic as far as we know, and for many relevant structures there are no survey articles.

This book aims to introduce the reader to the fascinating algorithmic world of the

compact data structures, with a strong emphasis on practicality. Most of the struc-

tures we present have been implemented and found to be reasonably easy to code

and eficient in space and time. A few of the structures we present have not yet been

implemented, but based on our experience we believe they will be practical as well.

We have obtained the material from the large universe of published results and from

our own experience, carefully choosing the results that should be most relevant to a

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 introduction

practitioner. Each chapter inishes with a list of selected references to guide the reader

who wants to go further.

On the other hand, we do not leave aside the theory, which is essential for a solid

understanding of why and how the data structures work, and thus for applying and

extending them to face new challenges. We gently introduce the reader to the beauty

of the algorithmics and the mathematics that are behind the study of compact data

structures. Only a basic background is expected from the reader. From algorithmics,

knowledge of sorting, binary search, dynamic programming, graph traversals, hashing,

lists, stacks, queues, priority queues, trees, and O-notation sufices (we will briely

review this notation later in this chapter). This material corresponds to a irst course on

algorithms and data structures. From mathematics, understanding of induction, basic

combinatorics, probability, summations, and limits, that is, a irst-year university course

on algebra or discrete mathematics, is suficient.

We expect this book to be useful for advanced undergraduate students, graduate

students, researchers, and professionals interested in algorithmic topics. Hopefully you

will enjoy the reading as much as I have enjoyed writing it.

1.3 Organization

The book is divided into 13 chapters. Each chapter builds on previous ones to introduce

a new concept and includes a section on applications and a bibliographic discussion at

the end. Applications are smaller or more speciic problems where the described data

structures provide useful solutions. Most can be safely skipped if the reader has no

time, but we expect them to be inspiring. The bibliography contains annotated refer-

ences pointing to the best sources of the material described in the chapter (which not

always are the irst publications), the most relevant historic landmarks in the develop-

ment of the results, and open problems. This section is generally denser and can be

safely skipped by readers not interested in going deeper, especially into the theoretical

aspects.

Pseudocode is included for most of the procedures we describe. The pseudocode

is presented in an algorithmic language, not in any speciic programming language.

For example, well-known variables are taken as global without notice, widely known

procedures such as a binary search are not detailed, and tedious but obvious details

are omitted (with notice). This lets us focus on the important aspects that we want

the pseudocode to clear up; our intention is not that the pseudocode is a cut-and-paste

text to get the structures running without understanding them. We refrain from making

various programming-level optimizations to the pseudocode to favor clarity; any good

programmer should be able to considerably speed up a verbatim implementation of the

pseudocodes without altering their logic.

After this introductory chapter, Chapter 2 introduces the concepts of Information

Theory and compression needed to follow the book. In particular, we introduce the

concepts of worst-case, Shannon, and empirical entropy and their relations. This is

the most mathematical part of the book. We also introduce Huffman codes and codes

suitable for small integers.

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

organization 5

Permutations

Arrays

Graphs

Grids

Texts

Trees

Bitvectors

Sequences

Parentheses

Compression

Figure 1.1. The most important dependencies among Chapters 2–11.

The subsequent chapters describe compact data structures for different problems.

Each compact data structure stores some kind of data and supports a well-deined

set of operations. Chapter 3 considers arrays, which support the operations of read-

ing and writing values at arbitrary positions. Chapter 4 describes bitvectors, arrays

of bits that in addition support a couple of bit-counting operations. Chapter 5 covers

representations of permutations that support both the application of the permutation

and its inverse as well as powers of the permutation. Chapter 6 considers sequences

of symbols, which, apart from accessing the sequence, support a couple of symbol-

counting operations. Chapter 7 addresses hierarchical structures described with bal-

anced sequences of parentheses and operations to navigate them. Chapter 8 deals with

the representation of general trees, which support a large number of query and nav-

igation operations. Chapter 9 considers graph representations, both general ones and

for some speciic families such as planar graphs, allowing navigation toward neigh-

bors. Chapter 10 considers discrete two-dimensional grids of points, with operations

for counting and reporting points in a query rectangle. Chapter 11 shows how text col-

lections can be represented so that pattern search queries are supported.

As said, each chapter builds upon the structures described previously, although most

of them can be read independently with only a conceptual understanding of what the

operations on previous structures mean. Figure 1.1 shows the most important depen-

dencies for understanding why previous structures reach the claimed space and time

performance.

These chapters are dedicated to static data structures, that is, those that are built

once and then serve many queries. These are the most developed and generally the

most eficient ones. We pay attention to construction time and, especially, construction

space, ensuring that structures that take little space can also be built within little extra

memory, or that the construction is disk-friendly. Structures that support updates are

called dynamic and are considered in Chapter 12.

The book concludes in Chapter 13, which surveys some current research topics on

compact data structures: encoding data structures, indexes for repetitive text collec-

tions, and data structures for secondary storage. Those areas are not general or mature

enough to be included in previous chapters, yet they are very promising and will prob-

ably be the focus of much research in the upcoming years. The chapter then also serves

as a guide to current research topics in this area.

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 introduction

Although we have done our best to make the book error-free, and have manually

veriied the algorithms several times, it is likely that some errors remain. A Web page

with comments, updates, and corrections on the book will be maintained at http://www

.dcc.uchile.cl/gnavarro/CDSbook.

1.4 Software Resources

Although this book focuses on understanding the compact data structures so that the

readers can implement them by themselves, it is worth noting that there are several

open-source software repositories with mature implementations, both for general and

for problem-speciic compact data structures. These are valuable both for practitioners

that need a structure implemented eficiently, well tested, and ready to be used, and

for students and researchers that wish to build further structures on top of them. In

both cases, understanding why and how each structure works is essential to making the

right decisions on which structure to use for which problem, how to parameterize it,

and what can be expected from it.

Probably the most general, professional, exhaustive, and well tested of all these

libraries is Simon Gog’s Succinct Data Structure Library (SDSL), available at https://

github.com/simongog/sdsl-lite. It contains C++ implementations of compact data struc-

tures for bitvectors, arrays, sequences, text indexes, trees, range minimum queries, and

sufix trees, among others. The library includes tools to verify correctness and measure

eficiency along with tutorials and examples.

Another generic library is Francisco Claude’s Library of Compact Data Structures

(LIBCDS), available at https://github.com/fclaude/libcds. It contains optimized and

well-tested C++ implementations of bitvectors, sequences, permutations, and others.

A tutorial on how to use the library and how it works is included.

Sebastiano Vigna’s Sux library, available at http://sux.di.unimi.it, contains high-

quality C++ and/or Java implementations of various compact data structures, includ-

ing bitvectors, arrays with cells of varying lengths, and (general and monotone) min-

imal perfect hashing. Other projects accessible from there include sophisticated tools

to manage inverted indexes and Web graphs in compressed form.

Giuseppe Ottaviano’s Succinct library provides eficient C++ implementations of

bitvectors, arrays of ixed and variable-length cells, rangeminimum queries, and others.

It is available at https://github.com/ot/succinct.

Finally, Nicola Prezza’s Dynamic library provides C++ implementations of various

data structures supporting insertions of new elements: partial sums, bitvectors, sparse

arrays, strings, and text indexes. It is available at https://github.com/nicolaprezza/

DYNAMIC.

The authors of many of these libraries have explored much deeper practical aspects

of the implementation, including cache eficiency, address translation, word align-

ments, machine instructions for long computer words, instruction pipelining, and other

issues beyond the scope of this book.

Many other authors of articles on practical compact data structures for speciic

problems have left their implementations publicly available or are willing to share

them upon request. There are too many to list here, but browsing the personal pages

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

mathematics and notation 7

of the authors, or requesting the code, is probably a fast way to obtain a good

implementation.

1.5 Mathematics and Notation

This inal technical section is a reminder of the mathematics behind the O-notation,

which we use to describe the time performance of algorithms and the space usage of

data structures. We also introduce other notation used throughout the book.

O-notation. This notation is used to describe the asymptotic growth of functions (for

example, the cost of an algorithm as a function of the size of the input) in a way that

considers only suficiently large values of the argument (hence the name “asymptotic”)

and ignores constant factors.

Formally,O(f (n)) is the set of all functions g(n) for which there exist constants c >

0 and n0 > 0 such that, for all n > n0, it holds |g(n)| ≤ c · | f (n)|. We say that g(n) is

O(f (n)), meaning that g(n) ∈ O(f (n)). Thus, for example, 3n2 + 6n− 3 isO
(

n2
)

and

alsoO
(

n3
)

, but it is notO(n log n). In particular,O(1) is used to denote a function that is

always below some constant. For example, the cost of an algorithm that, independently

of the input size, performs 3 accesses to tables and terminates is O(1). An algorithm

taking O(1) time is said to be constant-time.

It is also common to abuse the notation and write g(n) = O(f (n)) to mean g(n) ∈

O(f (n)), and even to write, say, g(n) < 2n+ O(log n), meaning that g(n) is smaller

than 2n plus a function that isO(log n). Sometimes we will write, for example, g(n) =

2n− O(log n), to stress that g(n) ≤ 2n and the function that separates g(n) from 2n is

O(log n).

Several other notations are related to O. Mostly for lower bounds, we write g(n) ∈

�(f (n)), meaning that there exist constants c > 0 and n0 > 0 such that, for all n >

n0, it holds |g(n)| ≥ c · | f (n)|. Alternatively, we can deine g(n) ∈ �(f (n)) iff f (n) ∈

O(g(n)). We say that g(n) is �(f (n)) to mean that g(n) is O(f (n)) and also �(f (n)).

This means that both functions grow, asymptotically, at the same speed, except for a

constant factor.

To denote functions that are asymptotically negligible compared to f (n), we use

g(n) = o(f (n)), which means that limn→∞
g(n)

f (n)
= 0. For example, saying that a data

structure uses 2n+ o(n) bits means that it uses 2n plus a number of bits that grows

sublinearly with n, such as 2n+ O(n/ log n). The notation o(1) denotes a function that

tends to zero as n tends to ininity, for example, log log n/ log n = o(1). Finally, the

opposite of the o(·) notation is ω(·), where g(n) = ω(f (n)) iff f (n) = o(g(n)). In par-

ticular, ω(1) denotes a function that tends to ininity (no matter how slowly) when n

tends to ininity. For example, log log n = ω(1).

When several variables are used, as in o(n log σ), it must be clear to which the o(·)

notation refers. For example, n log log σ is o(n log σ) if the variable is σ , or if the vari-

able is n but σ grows with n (i.e., σ = ω(1) as a function of n). Otherwise, if we refer

to n but σ is a constant, then n log log σ is not o(n log σ).

These notations are also used on decreasing functions of n, to describe error mar-

gins. For example, we may approximate the harmonic number Hn =
∑n

k=1
1
k

= ln

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 introduction

n+ γ + 1
2n

− 1
12n2

+ 1
120n4

− . . ., where γ ≈ 0.577 is a constant, with any of the fol-

lowing formulas, having a decreasing level of detail:1

Hn = ln n+ γ +
1

2n
+ O

(

1

n2

)

= ln n+ γ + O

(

1

n

)

= ln n+ O(1)

= O(log n),

depending on the degree of accuracy we want. We can also use o(·) to give less details

about the error level, for example,

Hn = ln n+ γ +
1

2n
+ o

(

1

n

)

= ln n+ γ + o(1)

= ln n+ o(log n).

We can also write the error in relative form, for example,

Hn = ln n+ γ +
1

2n
·

(

1 + O

(

1

n

))

= ln n ·

(

1 + O

(

1

log n

))

= ln n · (1 + o(1)).

When using the notation to denote errors, the inequality 1
1+x

= 1 − x+ x2 − . . . =

1 − O(x), for any 0 < x < 1, allows us to write 1
1+o(1)

= 1 + o(1), which is useful for

moving error terms from the denominator to the numerator.

Logarithm. This is a very important function in Information Theory, as it is the key to

describing the entropy, or amount of information, in an object. When the entropy (or

information) is described in bits, the logarithm must be to the base 2. We use log to

denote the logarithm to the base 2. When we use a logarithm to some other base b, we

write logb. As shown, the natural logarithm is written as ln. Of course, the base of the

logarithm makes no difference inside O-formulas (unless it is in the exponent!).

The inequality x
1+x

≤ ln(1 + x) ≤ x is useful in many cases, in particular in combi-

nation with the O-notation. For example,

ln(n(1 + o(1))) = ln n+ ln(1 + o(1)) ≤ ln n+ o(1).

It also holds

ln(n(1 + o(1))) ≥ ln n+
o(1)

1 + o(1)
= ln n+ o(1).

1 In the irst line, we use the fact that the tail of the series converges to c

n2
, for some constant c.

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

mathematics and notation 9

Therefore, ln(n(1 + o(1))) = ln n+ o(1). More generally, if f (n) = o(1), and b is any

constant, we can write logb(n(1 + f (n))) = logb n+ O(f (n)). For example, log(n+

log n) = log n+ O(log n/n).

Model of computation. We consider realistic computers, with a computer word of w

bits, where we can carry out in constant time all the basic arithmetic (+, −, ·, /, mod,

ceilings and loors, etc.) and logic operations (bitwise and, or, not, xor, bit shifts, etc.).

In modern computers w is almost always 32 or 64, but several architectures allow for

larger words to be handled natively, reaching, for example, 128, 256, or 512 bits.

When connecting with theory, this essentially corresponds to the RAM model of

computation, where we do not pay attention to restrictions in some branches of the

RAM model that are unrealistic on modern computers (for example, some variants

disallow multiplication and division). In the RAMmodel, it is usually assumed that the

computer word has w = �(log n) bits, where n is the size of the data in memory. This

logarithmic model of growth of the computer word is appropriate in practice, as w has

been growing approximately as the logarithm of the size of main memories. It is also

reasonable to expect that we can store any memory address in a constant number of

words (and in constant time).

For simplicity and practicality, we will use the assumption w ≥ log n, which means

that with one computer word we can address any data element. While the assumption

w = O(log n) may also be justiied (we may argue that the data should be large enough

for the compact storage problem to be of interest), this is not always the case. For exam-

ple, the dynamic structures (Chapter 12) may grow and shrink over time. Therefore, we

will not rely on this assumption. Thus, for example, we will say that the cost of an algo-

rithm that inspects n bits by chunks of w bits, processing each chunk in constant time,

isO(n/w) = O(n/ log n) = o(n). Instead, we will not take anO(w)-time algorithm to

be O(log n).

Strings, sequences, and intervals. In most cases, our arrays start at position 1. With

[a, b] we denote the set {a, a+ 1, a+ 2, . . . , b}, unless we explicitly imply it is a real

interval. For example, A[1, n] denotes an array of n elements A[1],A[2], . . . , A[n].

A string is an array of elements drawn from a inite universe, called the alphabet.

Alphabets are usually denoted � = [1, σ], where σ is some integer, meaning that

� = {1, 2, . . . , σ }. The alphabet elements are called symbols, characters, or letters.

The length of the string S[1, n] is |S| = n. The set of all the strings of length n over

alphabet � is denoted �n, and the set of all the strings of any length over � is denoted

�∗ = ∪n≥0�
n. Strings and sequences are basically synonyms in this book; however,

substring and subsequence are different concepts. Given a string S[1, n], a substring

S[i, j] is, precisely, the array S[i], S[i+ 1], . . . , S[j]. Particular cases of substrings are

preixes, of the form S[1, j], and sufixes, of the form S[i, n]. When i > j, S[i, j] denotes

the empty string ε, that is, the only string of length zero. A subsequence is more general

than a substring: it can be any S[i1] . S[i2] . . . S[ir] for i1 < i2 < . . . < ir, where we use

the dot to denote concatenation of symbols (we might also simply write one symbol

after the other, or mix strings and symbols in a concatenation). Sometimes we will also

use 〈a, b〉 to denote the same as [a, b] or write sequences as 〈a1, a2, . . . , an〉. Finally,

given a string S[1, n], Srev denotes the reversed string, S[n] . S[n− 1] . . . S[2] . S[1].

www.cambridge.org/9781107152380
www.cambridge.org

Cambridge University Press
978-1-107-15238-0 — Compact Data Structures
Gonzalo Navarro
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 introduction

1.6 Bibliographic Notes

Growth of information and computing power. Google’s mission is stated in http://

www.google.com/about/company.

There are many sources that describe the amount of information the world is gather-

ing. For example, a 2011 study from International Data Corporation (IDC) found that

we are generating a few zettabytes per year (a zettabyte is 270, or roughly 1021, bytes),

and that data are more than doubling per year, outperforming Moore’s law (which gov-

erns the growth of hardware capacities).2 A related discussion from 2013, arguing that

we are much better at storing than at using all these data, can be read in Datamation.3

For a shocking and graphical message, the 2012 poster of Domo is also telling.4

There are also many sources about the differences in performance between CPU,

caches, main memory, and secondary storage, as well as how these have evolved over

the years. In particular, we used the book of Hennessy and Patterson (2012, Chap. 1)

for the rough numbers shown here.

Examples of books about the mentioned algorithmic approaches to solve the prob-

lem of data growth are, among many others, Vitter (2008) for secondary-memory algo-

rithms, Muthukrishnan (2005) for streaming algorithms, and Roosta (1999) for dis-

tributed algorithms.

Sufix trees. The book by Gusield (1997) provides a good introduction to sufix trees

in the context of bioinformatics. Modern books pay more attention to space issues and

make use of some of the compact data structures we describe here (Ohlebusch, 2013;

Mäkinen et al., 2015). Our size estimates for compressed sufix trees are taken from

the Ph.D. thesis of Gog (2011).

Compact data structures. Despite some previous isolated results, the Ph.D. thesis

of Jacobson (1988) is generally taken as the starting point of the systematic study of

compact data structures. Jacobson coined the term succinct data structure to denote a

data structure that uses logN + o(logN) bits, where N is the total number of different

objects that can be encoded. For example, succinct data structures for arrays of n bits

must use n+ o(n) bits, since N = 2n. To exclude mere data compressors, succinct data

structures are sometimes required to support queries in constant time (Munro, 1996).

In this bookwe use the term compact data structure, which refers to the broader class

of data structures that aim at using little space and query time. Other related terms are

used in the literature (not always consistently) to refer to particular subclasses of data

structures (Ferragina and Manzini, 2005; Gál and Miltersen, 2007; Fischer and Heun,

2011; Raman, 2015): compressed or opportunistic data structures are those usingH +

o(logN) bits, whereH is the entropy of the data under some compression model (such

as the bit array representations we describe in Section 4.1.1); data structures usingH +

o(H) bits are sometimes called fully compressed (for example, the Huffman-shaped

wavelet trees of Section 6.2.4 are almost fully compressed). A data structure that adds

2 http://www.emc.com/about/news/press/2011/20110628-01.htm.
3 http://www.datamation.com/applications/big-data-analytics-overview.html.
4 http://www.domo.com/blog/2012/06/how-much-data-is-created-every-minute.

www.cambridge.org/9781107152380
www.cambridge.org

