Runtime Analysis of Quantum Programs A Formal Approach

Federico Olmedo Universidad de Chile Chile

Alejandro Díaz-Caro
Universidad Nacional de Quilmes & ICC
Argentina

The 1st International Workshop on Programming Languages for Quantum Computing

New Orleans, USA – January 2020

The role of quantum program resource analysis

Resource analysis is a particularly (more) relevant problem for quantum programs as it allows:

The role of quantum program resource analysis

Resource analysis is a particularly (more) relevant problem for quantum programs as it allows:

1. Validating the "effectivity" of the quantum computing model

The role of quantum program resource analysis

Resource analysis is a particularly (more) relevant problem for quantum programs as it allows:

Determining which quantum algorithms will be (shortly?) implementable in real quantum hardware

Quantum computers are getting more powerful

Number of qubits achieved by date and organization 1998 - 2020*

[Quipper, Scaffold, LIQUi|>]

1. Translate the (high-level) program into a (low-level) quantum circuit

```
#define n 1000
module foo(qbit q[n])
{
   for(int i=0;i<n;i++)
      H(q[i]);
   CNOT(q[n-1],q[0]);
}
module main()
{
   qbit b[n];
   foo(b);
}</pre>
```

```
qbit b[1000];
H ( b[0] );
H ( b[1] );
.
.
H ( b[999] );
CNOT ( b[999] , b[0] );
```

[Quipper, Scaffold, LIQ*U*i|>]

1. Translate the (high-level) program into a (low-level) quantum circuit

```
#define n 1000
module foo(qbit q[n])
{
   for(int i=0;i<n;i++)
      H(q[i]);
   CNOT(q[n-1],q[0]);
}
module main()
{
   qbit b[n];
   foo(b);
}</pre>
```

```
qbit b[1000];
H ( b[0] );
H ( b[1] );
.
.
H ( b[999] );
CNOT ( b[999] , b[0] );
```

2. Read off the **number of qubits and gates** in the circuit

Resources				
Qubit	X	Z	Н	Τ
2	400	27800	54300	55100

Severe limitations

P

Number of gates is a very poor resource measurement (likelihood of execution paths is disregarded)

Same number of gates but (very!) different resource profiles

Severe limitations

Number of gates is a very poor resource measurement (likelihood of execution paths is disregarded)

Severe limitations

Number of gates is a very poor resource measurement (likelihood of execution paths is disregarded)

Restricted to programs with statically bounded loops

Severe limitations

Number of gates is a very poor resource measurement (likelihood of execution paths is disregarded)

Restricted to programs with statically bounded loops

```
#define n 1000
module foo(qbit q[n])
{
   for(int i=0;i<n;i++)
      H(q[i]);
   CNOT(q[n-1],q[0]);
}</pre>
```

Severe limitations

Number of gates is a very poor resource measurement (likelihood of execution paths is disregarded)

Restricted to programs with statically bounded loops

Severe limitations

Restricted to programs with statically bounded loops

Sample algorithms out of scope

- BB84 quantum key distribution algorithm
- Simon's algorithm

Severe limitations

Number of gates is a very poor resource measurement (likelihood of execution paths is disregarded)

Restricted to programs with statically bounded loops

Sample algorithms out of scope

- BB84 quantum key distribution algorithm
- Simon's algorithm

Severe limitations

Number of gates is a very poor resource measurement (likelihood of execution paths is disregarded)

Restricted to programs with statically bounded loops

Sample algorithms out of scope

- BB84 quantum key distribution algorithm
- Simon's algorithm

Rigid and low-level cost model

Our contribution

Calculus à la weakest precondition for reasoning about the runtime of quantum programs

- Flexible: accommodates multiple runtime models
- Sensible: accounts for execution probabilities
- Expressive: applies to programs with unbounded loops

Based on existing techniques for probabilistic programs [Kaminski, Katoen, Matheja & Olmedo - ESOP'16, LICS'16, JACM 65:5]

Core imperative language over quantum variables with classical control flow

$$c ::= q := |b\rangle$$

varaible initialization

Core imperative language over quantum variables with classical control flow

$$c ::= q := |b\rangle$$
$$\overline{q} := U \overline{q}$$

varaible initialization unitary transformation

$$c::=q:=|b\rangle$$
 variable initialization $\overline{q}:=U\,\overline{q}$ unitary transformation $\square\,\mathcal{M}[\overline{q}]=\overline{m\to c_m}$ quantum case

$$c::= q:=|b\rangle$$
 varaible initialization $\overline{q}:=U\,\overline{q}$ unitary transformation $\square\,\mathcal{M}[\overline{q}]=\overline{m}\to c_m$ quantum case while $(\mathcal{M}[\overline{q}]=1)$ do c quantum loop

$$c::= q:=|b\rangle$$
 varaible initialization $\overline{q}:=U\,\overline{q}$ unitary transformation $\square \, \mathcal{M}[\overline{q}]=\overline{m} \to \overline{c_m}$ quantum case while $(\mathcal{M}[\overline{q}]=1)$ do c quantum loop skip no-op $c_1; c_2$ sequential composition

GOAL:

$$\llbracket c \rrbracket^{\triangledown} : \mathcal{S} \to \mathbb{R}^{\infty}_{>0}$$

$$\llbracket c \rrbracket^{\times} \rho = \text{runtime of } c \text{ from initial state } \rho$$

GOAL:

$$\llbracket c \rrbracket^{\triangledown} : \mathcal{S} \to \mathbb{R}^{\infty}_{>0}$$

$$\llbracket c \rrbracket^{\mathbb{X}} \rho = \text{runtime of } c \text{ from initial state } \rho$$

APPROACH:

Continuation passing style through runtime transformer

$$\mathsf{ert}\left[\mathit{c}\right]:\;\left(\mathcal{S}\to\mathbb{R}_{\scriptscriptstyle{\geq 0}}^{\scriptscriptstyle{\infty}}\right)\to\left(\mathcal{S}\to\mathbb{R}_{\scriptscriptstyle{\geq 0}}^{\scriptscriptstyle{\infty}}\right)$$

GOAL:

set of program states
$$\llbracket c \rrbracket^{\,\boxtimes}:\; \mathcal{S} \to \mathbb{R}^{\infty}_{\geq 0}$$

 $\llbracket c \rrbracket^{\Xi} \rho = \text{runtime of } c \text{ from initial state } \rho$

APPROACH:

Continuation passing style through runtime transformer

$$\mathsf{ert}\left[\mathit{c}\right] : \; \left(\mathcal{S} \to \mathbb{R}^{\scriptscriptstyle{\infty}}_{\scriptscriptstyle{\geq 0}}\right) \to \left(\mathcal{S} \to \mathbb{R}^{\scriptscriptstyle{\infty}}_{\scriptscriptstyle{\geq 0}}\right)$$

runtime of the program following c

GOAL:

set of program states
$$\llbracket c \rrbracket^{\, \boxtimes} : \; \mathcal{S} \to \mathbb{R}^{\infty}_{\geq 0}$$

 $\llbracket c \rrbracket^{\boxtimes} \rho = \text{runtime of } c \text{ from initial state } \rho$

APPROACH:

Continuation passing style through runtime transformer

$$\mathsf{ert}\left[\mathit{c}\right]:\;\left(\mathcal{S}\to\mathbb{R}_{\scriptscriptstyle{\geq 0}}^{\scriptscriptstyle{\infty}}\right)\to\left(\mathcal{S}\to\mathbb{R}_{\scriptscriptstyle{\geq 0}}^{\scriptscriptstyle{\infty}}\right)$$

runtime of the program following c

runtime of c, plus the program following c

GOAL:

$$\llbracket c \rrbracket^{\triangledown} : \ \mathcal{S} \to \mathbb{R}^{\infty}_{\geq 0}$$

 $\llbracket c \rrbracket^{\mathbb{X}} \rho = \text{runtime of } c \text{ from initial state } \rho$

APPROACH:

Continuation passing style through runtime transformer

$$\mathsf{ert}\left[\mathit{c}\right]:\;\left(\mathcal{S}\to\mathbb{R}^{\scriptscriptstyle{\infty}}_{\scriptscriptstyle{\geq0}}\right)\to\left(\mathcal{S}\to\mathbb{R}^{\scriptscriptstyle{\infty}}_{\scriptscriptstyle{\geq0}}\right)$$

runtime of the program following c

runtime of c, plus the program following c

In particular,

$$\operatorname{ert}[c](\lambda \rho'.0) = [c]^{\mathbb{Z}}$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \operatorname{ert}[\square \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) = \operatorname{ert}[c_1; c_2](t) = \operatorname{ert}[c_1; c_2](t)$$

$$\overline{q} := U \overline{q} ; \cdots t$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) =$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\overline{q} := U \overline{q} ; \cdots$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) =$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\overline{q} := U \overline{q} ; \cdots$$

$$t \rightarrow$$

$$\mathcal{T}[U] \rightarrow$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) =$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\overline{q} := U \overline{q} ; \cdots t$$

$$\mathcal{T}[U] + t$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) =$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\overline{q} := U \overline{q} ; \cdots \cdots$$

$$t \longrightarrow t$$

$$\mathcal{T}[U] + t \circ \llbracket U \rrbracket$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) =$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\overline{q} := U \overline{q} ; \cdots$$

$$t \longrightarrow t$$

$$T[U] + t \circ [U]$$

$$\lambda \rho. U \rho U^{\dagger}$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) =$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\overline{q} := U \overline{q} ; \dots \dots \underbrace{t}$$

$$\mathcal{T}[U] + t \circ [U]$$

$$\lambda \rho \cdot U \rho U^{\dagger}$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\square \mathcal{M}[\overline{q}] = m_1 \to c_1 \mid m_2 \to c_2 \quad ; \quad \dots$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\square \mathcal{M}[\overline{q}] = m_1 \to c_1 \mid m_2 \to c_2 \quad ; \quad \dots \quad t \quad ;$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\square \mathcal{M}[\overline{q}] = m_1 \to c_1 \mid m_2 \to c_2 ; \dots$$

$$\mathcal{T}[\mathcal{M}]$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\square \mathcal{M}[\overline{q}] = m_1 \to c_1 \mid m_2 \to c_2 \quad ; \quad \dots$$

$$\downarrow t \quad \downarrow t \quad \downarrow t$$

$$T[\mathcal{M}] + \qquad \text{ert}[c_1](t) \circ [\mathcal{M}=m_1] + \qquad \text{ert}[c_2](t) \circ [\mathcal{M}=m_2]$$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\operatorname{ert}[\overline{q} := U \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$
 $\operatorname{ert}[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) =$
 $\operatorname{ert}[c_1; c_2](t) =$

$$\square \mathcal{M}[\overline{q}] = m_1 \to c_1 \mid m_2 \to c_2 \; ; \; \dots \dots$$

$$\downarrow t \to t$$

$$\mathcal{T}[\mathcal{M}] + \Pr[\mathcal{M}=m_1] \cdot \operatorname{ert}[c_1](t) \circ [\mathcal{M}=m_1] + \Pr[\mathcal{M}=m_2] \cdot \operatorname{ert}[c_2](t) \circ [\mathcal{M}=m_2]$$

$$\operatorname{ert}[\overline{q} := U \, \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$

$$\operatorname{ert}[\Box \, \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) = \mathcal{T}[\mathcal{M}] + \sum_{m} \Pr[\mathcal{M} = m] \cdot \operatorname{ert}[c_m](t) \circ \llbracket \mathcal{M}[\overline{q}] \rrbracket$$

$$\operatorname{ert}[c_1; c_2](t) =$$

$$\operatorname{ert}[\overline{q} := U \, \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$

$$\operatorname{ert}[\Box \, \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) = \mathcal{T}[\mathcal{M}] + \sum_m \Pr[\mathcal{M} = m] \cdot \operatorname{ert}[c_m](t) \circ \llbracket \mathcal{M}[\overline{q}] \rrbracket$$

$$\operatorname{ert}[c_1; c_2](t) = \operatorname{ert}[c_1](\operatorname{ert}[c_2](t))$$

$$\operatorname{ert}[\overline{q} := U \, \overline{q}](t) = \mathcal{T}[U] + t \circ \llbracket U \rrbracket$$

$$\operatorname{ert}[\Box \, \mathcal{M}[\overline{q}] = \overline{m \to c_m}](t) = \mathcal{T}[\mathcal{M}] + \sum_{m} \Pr[\mathcal{M} = m] \cdot \operatorname{ert}[c_m](t) \circ \llbracket \mathcal{M}[\overline{q}] \rrbracket$$

$$\operatorname{ert}[c_1; c_2](t) = \operatorname{ert}[c_1](\operatorname{ert}[c_2](t))$$

$$\vdots$$

Invariant-based reasoning for the runtime of loops

We can establish upper bounds for the runtime of loops using a notion of **loop invariant**:

Invariant-based reasoning for the runtime of loops

We can establish upper bounds for the runtime of loops using a notion of **loop invariant**:

$$\frac{F_t^{\langle \mathcal{M}, c \rangle}(I) \preceq I}{\text{ert}[\text{while } (\mathcal{M} = 1) \text{ do } c](t) \preceq I}$$

- / is a loop invariant
- / is an upper bound of the loop runtime

```
\\ initialize counter
k := |0\rangle;
\\ while not reached m bits
while (\mathcal{M}[k] = 1) do
   \\ flip Alice's and Bob's coins
   A := |++\rangle; B := |+\rangle;
   \\ measure Alice's coins
   \Box \cdot \mathcal{M}_A[A] =
               \\ measure Bob's coin
       |eb\rangle \rightarrow \Box \cdot \mathcal{M}_B[B]
                   \\ if Alice's and Bob's basis agree
                   \\ store bit b and increment counter
                   |e\rangle \rightarrow k, Q := U_{P_h}[k, Q];
                             k := U_{>}[k];
                   \\ if Alice's and Bob's basis disagree
                   \\ discard bit b
                    |\neg e\rangle \rightarrow \text{skip}
```

GOAL: securely create and distribute a shared (symmetric) key between two parties.

```
\\ initialize counter
k := |0\rangle;
\\ while not reached m bits
while (\mathcal{M}[k] = 1) do
   \\ flip Alice's and Bob's coins
   A := |++\rangle; B := |+\rangle;
   \\ measure Alice's coins
   \Box \cdot \mathcal{M}_A[A] =
                \\ measure Bob's coin
       |eb\rangle \rightarrow \Box \cdot \mathcal{M}_B[B]
                   \\ if Alice's and Bob's basis agree
                    \\ store bit b and increment counter
                    |e\rangle \rightarrow k, Q := U_{P_h}[k, Q];
                             k := U_{>}[k];
                    \\ if Alice's and Bob's basis disagree
                    \\ discard bit b
                    |\neg e\rangle \rightarrow \text{skip}
```

Average time required to generate a key of *m* bits:

$$\mathcal{T}[|0\rangle] + 2\mathcal{T}m + \mathcal{T}[\mathcal{M}] \in \mathcal{O}(m)$$

```
\\ initialize counter
k := |0\rangle;
\\ while not reached m bits
while (\mathcal{M}[k] = 1) do
   \\ flip Alice's and Bob's coins
   A := |++\rangle; B := |+\rangle;
   \\ measure Alice's coins
   \Box \cdot \mathcal{M}_A[A] =
                \\ measure Bob's coin
       |eb\rangle \rightarrow \Box \cdot \mathcal{M}_B[B]
                   \\ if Alice's and Bob's basis agree
                    \\ store bit b and increment counter
                    |e\rangle \rightarrow k, Q := U_{P_h}[k, Q];
                             k := U_{>}[k];
                    \\ if Alice's and Bob's basis disagree
                    \\ discard bit b
                    |\neg e\rangle \rightarrow \text{skip}
```



```
\\ initialize counter
k := |0\rangle;
\\ while not reached m bits
while (\mathcal{M}[k] = 1) do
   \\ flip Alice's and Bob's coins
   A := |++\rangle; B := |+\rangle;
   \\ measure Alice's coins
   \Box \cdot \mathcal{M}_A[A] =
                \\ measure Bob's coin
       |eb\rangle \rightarrow \Box \cdot \mathcal{M}_B[B]
                   \\ if Alice's and Bob's basis agree
                    \\ store bit b and increment counter
                    |e\rangle \rightarrow k, Q := U_{P_h}[k, Q];
                             k := U_{>}[k];
                    \\ if Alice's and Bob's basis disagree
                    \\ discard bit b
                    |\neg e\rangle \rightarrow \text{skip}
```



```
\\ initialize counter
k := |0\rangle;
\\ while not reached m bits
while (\mathcal{M}[k] = 1) do
   \\ flip Alice's and Bob's coins
   A := |++\rangle; B := |+\rangle;
   \\ measure Alice's coins
   \Box \cdot \mathcal{M}_A[A] =
                \\ measure Bob's coin
       |eb\rangle \rightarrow \Box \cdot \mathcal{M}_B[B]
                   \\ if Alice's and Bob's basis agree
                    \\ store bit b and increment counter
                    |e\rangle \rightarrow k, Q := U_{P_h}[k, Q];
                             k := U_{>}[k];
                    \\ if Alice's and Bob's basis disagree
                    \\ discard bit b
                    |\neg e\rangle \rightarrow \text{skip}
```



```
\\ initialize counter
k := |0\rangle;
\\ while not reached m bits
while (\mathcal{M}[k] = 1) do
   \\ flip Alice's and Bob's coins
   A := |++\rangle; B := |+\rangle;
   \\ measure Alice's coins
   \square \cdot \mathcal{M}_A[A] =
                \\ measure Bob's coin
       |eb\rangle \rightarrow \Box \cdot \mathcal{M}_B[B]
                    \\ if Alice's and Bob's basis agree
                    \\ store bit b and increment counter
                    |e\rangle \rightarrow k, Q := U_{P_h}[k, Q];
                             k := U_{>}[k];
                    \\ if Alice's and Bob's basis disagree
                    \\ discard bit b
                    |\neg e\rangle \rightarrow \text{skip}
```


$$\mathcal{T} = \mathcal{T}[\mathcal{M}] + \mathcal{T}[|++\rangle] + \mathcal{T}[|+\rangle] + \mathcal{T}[\mathcal{M}_A] + \mathcal{T}[\mathcal{M}_B] + \frac{1}{2}(\frac{1}{2}\mathcal{T}[U_{P_0}] + \frac{1}{2}\mathcal{T}[U_{P_1}] + \mathcal{T}[U_{\succ}]) + \frac{1}{2}$$

First step to a *formal and compelling* resource analysis of quantum programs

Existing techniques for probabilistic programs extend smoothly to quantum programs

First step to a *formal and compelling* resource analysis of quantum programs

 Existing techniques for probabilistic programs extend smoothly to quantum programs

Future work

- Connection to an operational model
- Language extensions
- Automation

First step to a *formal and compelling* resource analysis of quantum programs

 Existing techniques for probabilistic programs extend smoothly to quantum programs

Future work

- Connection to an operational model
- Language extensions
- Automation

Thanks!

Language semantics

$$[skip][\rho) = \rho$$

$$[q := |b\rangle][\rho) = \rho[q \mapsto |b\rangle]$$

$$[\overline{q} := U \overline{q}][\rho) = U^{\uparrow q} \rho U^{\uparrow q^{\dagger}}$$

$$[c_1; c_2][\rho) = [c_1][[c_2][\rho])$$

$$[\Box \mathcal{M}[\overline{q}] = \overline{m \to c_m}][\rho) = \sum_m \Pr_{\rho}[\mathcal{M}=m] \cdot [c_m][\rho|_{\mathcal{M}=m})$$

$$[while (\mathcal{M}[\overline{q}] = 1) \operatorname{do} c][\rho) = lfp(\Phi^{\langle \mathcal{M}, c \rangle})$$

$$[\lambda_{X. \lambda \rho'. \Pr_{\rho'}[\mathcal{M}=0] \cdot \rho'|_{\mathcal{M}=0} + X(\Pr_{\rho'}[\mathcal{M}=1] \cdot [c][\rho'|_{\mathcal{M}=1})) }$$

Full definition of ert transformer