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The role of quantum program resource analysis

Resource analysis is a particularly (more) relevant problem for quantum
programs as it allows:

2. Determining which quantum algorithms will be (shortly?)
implementable in real quantum hardware

&5 Quantum computers are getting more powerful
Number of qubits achieved by date and organization 1998 - 2020*

128 qubits
Rnl"gs:til ’/
201 ’
7 qubits /)
Los Alamos National . ’
Laboratory 72 qubits !
2000 G,?.?]g,;le ,I
2018,
28 aubit 50 qubits
. . qubits IBM
5 qublts 12 qubits D-Wave Systems 2016
. Technical  Institute for Quantum 2008
2 qubits University of  Computing, Perimeter
IBM, Oxford, Munich  |nstitute for Theoretical
Berkeley, Stanford, 2000 Physics, and MIT
MIT 2006
1998
—-—""—/—

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020



Current approach to quantum program resource analysis

1.

##tdefine n 1000

module foo( q[nl)
{
for( i=0;i<n;i++)
H(q[il);

CNOT(q[n-11,q[0]);
+
module main()
{
b[n];
foo(b);
+

[Quipper, Scaffold, LIQUI|>]

Translate the (high-level) program into a (low-level) quantum circuit

b[1000];
H ( b[0] );
H ( b[1] );

H ( b[999] )
CNOT ( b[999]

, b[0] );
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{
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+

[Quipper, Scaffold, LIQUI|>]

Translate the (high-level) program into a (low-level) quantum circuit

b[1000];
H ( b[0] );
H ( b[1] );

H ( b[999] )
CNOT ( b[999]

, b[0] );

Read off the number of qubits and gates in the circuit
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Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

'® Restricted to programs with statically bounded loops

Sample algorithms out of scope

e BB84 quantum key distribution algorithm

e Simon’s algorithm

'® Rigid and low-level cost model



Our contribution

Calculus a la weakest precondition for reasoning
about the runtime of quantum programs

* Flexible: accommodates multiple runtime models
e Sensible: accounts for execution probabilities

 Expressive: appliesto programs with unbounded loops

Based on existing techniques for probabilistic programs
[Kaminski, Katoen, Matheja & Olmedo - ESOP'16, LICS'16, JACM 65:5]
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The programming model (qGCL)

Core imperative language over quantum variables with classical control flow

c .= q:=|b) varaible initialization
qg=Uqg unitary transformation
O M[q] = m— ¢, quantum case

while (M[q] = 1) doc quantum loop

skip no-op

C1; Co sequential composition
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Our approach to the runtime of quantum programs

[ set of program states ]
vV

. X . 00
GoAL [c]*: S— R,
[c]®* p = runtime of c from initial state p
APPROACH: Continuation passing style through runtime transformer

ert [c] : (8 — U?(:O) — (S — R;oo)
/\

runtime of the program runtime of ¢, plus the
following ¢ program following c

In particular,

( ert [c] (\0'.0) = [[C]]XJ
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FMy < & /isaloopinvariant
ert|while (M =1)doc|(t) =< | &= /isanupperbound of the loop runtime
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e Connection to an operational model
e Language extensions

e Automation
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13






BACKUP SLIDES



Language semantics

[skip]l(p) = p

[q = 10)]I(p) = plg— |b)]

[q = U gll(p) = UlpU' W 1))

[c1;e2]l(p) = [erl(lezli(p))

[OMlg] = m > cnll(p) = 2umPrpiM=m]-[cnl(p]pipm)

[while (M[q] = 1) docll(p) = Ifp(M) /A\4 _
/\ [ tr(/\;:* Mn;p) ]

[ AX. AP Pry[M=0]- | \yeg + X (Pry[M=1] - [[C]](p/|/\/l:1))}




Full definition of ert transformer

ert|skip]|(t) = Ap.1+t(p)

ertlg == |b)](?) = Ap. TIIb)] + t(plg = 1b)])

ert[q = U g(t) - p. TIU] + t(UquUTq*)

ert[cy; c2](t) = ert[e](ert[c2](2))

ertfd M[q] = m—cp](t) = Ap. TIM]+ X, Prp[M=m]- ert[cm () (ol mem)
ert[while (M[q] = 1) doc](t) = Ifp(F M)

A

[ At Ap. TIM] + Pro[M=1] - ert[c](t')(p| py=1) + Pro[M=0] - t(leO)J




