Runtime Analysis of Quantum Programs
A Formal Approach

Federico Olmedo

Universidad de Chile
Chile

Alejandro Diaz-Caro

Universidad Nacional de Quilmes & ICC
Argentina

The 1st International Workshop on
Programming Languages for Quantum Computing

New Orleans, USA - January 2020

The role of quantum program resource analysis

Resource analysis is a particularly (more) relevant problem for quantum
programs as it allows:

The role of quantum program resource analysis

Resource analysis is a particularly (more) relevant problem for quantum
programs as it allows:

1. Validating the "effectivity” of the quantum computing model

Quantum speedup

Computational steps to factor a number
10*®
10'
10"
10*

1010

B Conventional computer

B Quantum computer

| | |
0 200 400 600 800 1000

Number of digits

The role of quantum program resource analysis

Resource analysis is a particularly (more) relevant problem for quantum
programs as it allows:

2. Determining which quantum algorithms will be (shortly?)
implementable in real quantum hardware

&5 Quantum computers are getting more powerful
Number of qubits achieved by date and organization 1998 - 2020*

128 qubits
Rnl"gs:til ’/
201 ’
7 qubits /)
Los Alamos National . ’
Laboratory 72 qubits !
2000 G,?.?]g,;le ,I
2018,
28 aubit 50 qubits
. . qubits IBM
5 qublts 12 qubits D-Wave Systems 2016
. Technical Institute for Quantum 2008
2 qubits University of Computing, Perimeter
IBM, Oxford, Munich |nstitute for Theoretical
Berkeley, Stanford, 2000 Physics, and MIT
MIT 2006
1998
—-—""—/—

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Current approach to quantum program resource analysis

1.

##tdefine n 1000

module foo(q[nl)
{
for(i=0;i<n;i++)
H(q[il);

CNOT(q[n-11,q[0]);
+
module main()
{
b[n];
foo(b);
+

[Quipper, Scaffold, LIQUI|>]

Translate the (high-level) program into a (low-level) quantum circuit

b[1000];
H (b[0]);
H (b[1]);

H (b[999])
CNOT (b[999]

, b[0]);

Current approach to quantum program resource analysis

1.

2.

##tdefine n 1000

module foo(q[nl)
{
for(i=0;i<n;i++)
H(q[il);

CNOT(q[n-11,q[0]);
+
module main()
{
b[n];
foo(b);
+

[Quipper, Scaffold, LIQUI|>]

Translate the (high-level) program into a (low-level) quantum circuit

b[1000];
H (b[0]);
H (b[1]);

H (b[999])
CNOT (b[999]

, b[0]);

Read off the number of qubits and gates in the circuit

Qubit

Resources
X Z H T

2

400 27800 54300 55100

Current approach to quantum program resource analysis

Severe limitations

Current approach to quantum program resource analysis

Severe limitations

/&39\7‘ 50 gates
M
\/0})1/\I 10 gates

Current approach to quantum program resource analysis

Severe limitations

/&ag\ﬂ 50 gates /31\7' 50 gates
M M
\/0})1/\I 10 gates \/0\99/\I 10 gates

Current approach to quantum program resource analysis

Severe limitations

/&ag\ﬂ 50 gates /31\7' 50 gates
M M
\/0})1/\l 10 gates \/0\99/\l 10 gates

4 4

Same number of gates but (very!) different resource profiles

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement

(likelihood of execution paths is disregarded)
/g_ag\]' 50 gates /331\]' 50 gates

M M
\/0.\01/\l 10 gates \/O\Qg\' 10 gates

—{r A —r A
4 4

Same number of gates but (very!) different resource profiles

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

'® Restricted to programs with statically bounded loops

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

'® Restricted to programs with statically bounded loops

#define n 1000
module foo(q[nl)
{
for(i=0;i<n;i++)
H(ql[il]);
CNOT (q[n-1],q[0]1);
+

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

'® Restricted to programs with statically bounded loops

#define n 1000
module foo(q[nl)

{

for(i=0;i<n;i++)

b

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

'® Restricted to programs with statically bounded loops

Sample algorithms out of scope #define n 1000
i))] module foo(q[n])
e BB84 quantum key distribution algorithm {

for(i=0;i<n;i++)

b

e Simon’s algorithm

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

'® Restricted to programs with statically bounded loops

Sample algorithms out of scope

e BB84 quantum key distribution algorithm

e Simon’s algorithm

Current approach to quantum program resource analysis

Severe limitations

'® Number of gates is a very poor resource measurement
(likelihood of execution paths is disregarded)

'® Restricted to programs with statically bounded loops

Sample algorithms out of scope

e BB84 quantum key distribution algorithm

e Simon’s algorithm

'® Rigid and low-level cost model

Our contribution

Calculus a la weakest precondition for reasoning
about the runtime of quantum programs

* Flexible: accommodates multiple runtime models
e Sensible: accounts for execution probabilities

 Expressive: appliesto programs with unbounded loops

Based on existing techniques for probabilistic programs
[Kaminski, Katoen, Matheja & Olmedo - ESOP'16, LICS'16, JACM 65:5]

The programming model (qGCL)

The programming model (qGCL)

Core imperative language over quantum variables with classical control flow

The programming model (qGCL)

Core imperative language over quantum variables with classical control flow

c .= q:=|b) varaible initialization

The programming model (qGCL)

Core imperative language over quantum variables with classical control flow

|
=
~—

varaible initialization

Ql Q
|
-
Q|

unitary transformation

The programming model (qGCL)

Core imperative language over quantum variables with classical control flow

c .= q:=|b) varaible initialization

qg=Uq unitary transformation

O M[q] = m— ¢, quantum case

The programming model (qGCL)

Core imperative language over quantum variables with classical control flow

c .= q:=|b) varaible initialization
qg=Uqg unitary transformation
O M[q] = m— ¢, quantum case

while (M[q] = 1) doc quantum loop

The programming model (qGCL)

Core imperative language over quantum variables with classical control flow

c .= q:=|b) varaible initialization
qg=Uqg unitary transformation
O M[q] = m— ¢, quantum case

while (M[q] = 1) doc quantum loop

skip no-op

C1; Co sequential composition

Our approach to the runtime of quantum programs

Our approach to the runtime of quantum programs

[set of program states]

. V
GOAL. [[C]] X : S N [R;OO

X . —
[c]® o = runtime of ¢ from initial state p

Our approach to the runtime of quantum programs

[set of program states]
vV

AL: X . 50
Go [c]*: S— R,
[c]®* p = runtime of c from initial state p
APPROACH: Continuation passing style through runtime transformer

ert [c] : (8 — U?(:O) — (S — R;oo)

Our approach to the runtime of quantum programs

[set of program states]
vV

AL: X . 50
Go [c]*: S— R,
[c]®* p = runtime of c from initial state p
APPROACH: Continuation passing style through runtime transformer

ert [c] : (8 — U?(:O) — (S — R;oo)
/\

runtime of the program
following ¢

Our approach to the runtime of quantum programs

[set of program states]
vV

. X . 00
GoAL [c]*: S— R,
[c]®* p = runtime of c from initial state p
APPROACH: Continuation passing style through runtime transformer

ert [c] : (8 — U?(:O) — (S — R;oo)
/\

runtime of the program runtime of ¢, plus the
following ¢ program following c

Our approach to the runtime of quantum programs

[set of program states]
vV

. X . 00
GoAL [c]*: S— R,
[c]®* p = runtime of c from initial state p
APPROACH: Continuation passing style through runtime transformer

ert [c] : (8 — U?(:O) — (S — R;oo)
/\

runtime of the program runtime of ¢, plus the
following ¢ program following c

In particular,

(ert [c] (\0'.0) = [[C]]XJ

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

10

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[g == U G](t) _

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[g == U G](t) _

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[g == U G](t) _

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[g == U G](t) _

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[g == U G](t) _

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[g == U G](t) _

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[g == U G](t) _

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[q .= U q|(t) = TIU] + to|U]
ert[d M[q] = m—=<¢,|(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

ert[q .= U q|(t) = TIU] + to|U]
ert[d M[q] = m—=<¢,|(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>cl|m2—>cg e

ert[q .= U q|(t) = TIU] + to|U]
ert[d M[q] = m—=<¢,|(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[a]:m1—>C1|m2—>C2 e

ert[q .= U q|(t) = TIU] + to|U]
ert[d M[q] = m—=<¢,|(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>C1|m2—>C2 e

ert[q .= U q|(t) = TIU] + to|U]
ert[d M[q] = m—=<¢,|(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>C1|m2—>C2 e

TIM] + ert[c1](t) + ert[c] (1)

ert[q .= U q|(t) = TIU] + to|U]
ert[d M[q] = m—=<¢,|(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>C1|m2—>C2 e

Lt
| TIM] + ert[c1](t) o [M=my] + ert[c](t) o [M=ms]
ert[q .= U q|(t) = TIU] + to|U]

ert|d M[q] = m—=C,l(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>C1|m2—>C2 e

TIM] + PriM=my] - ert[c|(t) o [M=m] + PrM=m;] - ert[c;](t) o [M=m;]

' >

ert[qg .= U 7q](t) = TIU] + to|U]
ert[d M[q] = m—=<¢,|(t) =

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>C1|m2—>C2 e

TIM] + PriM=my] - ert[c|(t) o [M=m] + PrM=m;] - ert[c;](t) o [M=m;]

' >

ert[qg .= U 7q](t) = TIU] + to|U]
ertf M[q] = m—=c,|(t) = TIM]| + >, PriM=m]| - ert[cy](t) o [M][q]]

ert:Cl; CQ](t) —

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>C1|m2—>C2 e

TIM] + PriM=my] - ert[c|(t) o [M=m] + PrM=m;] - ert[c;](t) o [M=m;]

' >

ert[qg .= U 7q](t) = TIU] + to|U]
ertf M[q] = m—=c,|(t) = TIM]| + >, PriM=m]| - ert[cy](t) o [M][q]]

ert[c1; c](1) = ert[c](ert[c](t))

Definition of runtime transformer ert

Transformer ert[c] admits an elegant definition by induction on the structure of ¢

M[G]:m1—>C1|m2—>C2 e

TIM] + PriM=my] - ert[c|(t) o [M=m] + PrM=m;] - ert[c;](t) o [M=m;]

' >

ert[qg .= U 7q](t) = TIU] + to|U]
ertf M[q] = m—=c,|(t) = TIM]| + >, PriM=m]| - ert[cy](t) o [M][q]]

ert[c1; c](1) = ert[c](ert[c](t))

Invariant-based reasoning for the runtime of loops

We can establish upper bounds for the runtime of loops using a notion
of loop invariant:

11

Invariant-based reasoning for the runtime of loops

We can establish upper bounds for the runtime of loops using a notion
of loop invariant:

FMy < & /isaloopinvariant
ert|while (M =1)doc|(t) =< | &= /isanupperbound of the loop runtime

11

Case study: BB84 quantum key distribution algorithm

12

Case study: BB84 quantum key distribution algorithm

GOAL: securely create and distribute a shared (symmetric) key between two parties.

12

Case study: BB84 quantum key distribution algorithm

GOAL: securely create and distribute a shared (symmetric) key between two parties.

\\ initialize counter
k :=10);
\\ while not reached m bits
while (M[k] = 1) do
\\ flip Alice’s and Bob’s coins
A= |[++); B:=|+);
\\ measure Alice’s coins
L1 MalA] =
\\ measure Bob’s coin
leb) — [0 - Mg[B]
\\ if Alice’s and Bob’s basis agree
\\ store bit b and increment counter

|€> — kv Q = UPb [k’ Q]a
k :=U.[k];
\\ if Alice’s and Bob’s basis disagree

\\ discard bit b
|—e) — skip

12

Case study: BB84 quantum key distribution algorithm
GOAL: securely create and distribute a shared (symmetric) key between two parties.

\\ initialize counter

k :=10); . . .
W\ W,lfli ot reached m bits Average time required to generate a key of m bits:
while (M[k] = 1) do
\\ flip Alice’s and Bob’s coins T”O>] + QTm + T[M] - (’)(m)
A= |++); B:=|+);

\\ measure Alice’s coins
L1 MalA] =
\\ measure Bob’s coin
leb) — [0 - Mg[B]
\\ if Alice’s and Bob’s basis agree
\\ store bit b and increment counter

|€> — k’ Q = UPb [k’ Q]a
k :=U.[k];
\\ if Alice’s and Bob’s basis disagree

\\ discard bit b
|-e) — skip

Case study: BB84 quantum key distribution algorithm

GOAL: securely create and distribute a shared (symmetric) key between two parties.

\\ initialize counter
k :=10);
\\ while not reached m bits
while (M[k] = 1) do
\\ flip Alice’s and Bob’s coins
A= |[++); B:=|+);
\\ measure Alice’s coins
L1 MalA] =
\\ measure Bob’s coin
leb) — [0 - Mg[B]
\\ if Alice’s and Bob’s basis agree
\\ store bit b and increment counter

|€> — k’ Q = UPb [k’ Q]a
k :=U.[k];
\\ if Alice’s and Bob’s basis disagree

\\ discard bit b
|-e) — skip

Average time required to generate a key of m bits:
TIO)] +2Tm + T(M] € O(m)

/\

counter k
initialization

12

Case study: BB84 quantum key distribution algorithm

GOAL: securely create and distribute a shared (symmetric) key between two parties.

\\ initialize counter
k :=10);
\\ while not reached m bits
while (M[k] = 1) do
\\ flip Alice’s and Bob’s coins
A= |[++); B:=|+);
\\ measure Alice’s coins
L1 MalA] =
\\ measure Bob’s coin
leb) — [0 - Mg[B]
\\ if Alice’s and Bob’s basis agree
\\ store bit b and increment counter

|€> — k’ Q = UPb [k’ Q]a
k :=U.[k];
\\ if Alice’s and Bob’s basis disagree

\\ discard bit b
|-e) — skip

Average time required to generate a key of m bits:
TIO)] +2Tm + T(M] € O(m)

/\

counter k loop
initialization body

12

Case study: BB84 quantum key distribution algorithm

GOAL: securely create and distribute a shared (symmetric) key between two parties.

\\ initialize counter
k :=10);
\\ while not reached m bits
while (M[k] = 1) do
\\ flip Alice’s and Bob’s coins
A= |[++); B:=|+);
\\ measure Alice’s coins
L1 MalA] =
\\ measure Bob’s coin
leb) — [0 - Mg[B]
\\ if Alice’s and Bob’s basis agree
\\ store bit b and increment counter

|€> — kv Q = UPb [k’ Q]a
k :=U.[k];
\\ if Alice’s and Bob’s basis disagree

\\ discard bit b
|-e) — skip

Average time required to generate a key of m bits:
TIO)] +2Tm + T(M] € O(m)

/\ /\

[counter k] [loop] [Final measurement]

initialization body upon loop exit

12

Case study: BB84 quantum key distribution algorithm

GOAL: securely create and distribute a shared (symmetric) key between two parties.

\\ initialize counter
k :=10);
\\ while not reached m bits
while (M[k] = 1) do
\\ flip Alice’s and Bob’s coins
A= |[++); B:=|+);
\\ measure Alice’s coins
L1 MalA] =
\\ measure Bob’s coin
leb) — [0 - Mg[B]
\\ if Alice’s and Bob’s basis agree
\\ store bit b and increment counter

|€> — k’ Q = UPb [k’ Q]a
k :=U.[k];
\\ if Alice’s and Bob’s basis disagree

\\ discard bit b
|-e) — skip

Average time required to generate a key of m bits:
TI0)] +2Tm + TIM] € O(m)

/\ /\

counter k loop Final measurement
initialization body upon loop exit

T = TIM] + Tl++H)] + TlIH)] + TIMal + T[Meg]
+ 3(3TWR]+ 3TIUR] + TIU-]) + 3

12

13

Conclusion

First step to a formal and compelling
resource analysis of quantum programs

¥ Existing techniques for probabilistic programs extend smoothly to
quantum programs

13

Conclusion

First step to a formal and compelling
resource analysis of quantum programs

¥ Existing techniques for probabilistic programs extend smoothly to
quantum programs

Future work

e Connection to an operational model
e Language extensions

e Automation

13

Conclusion

First step to a formal and compelling
resource analysis of quantum programs

¥ Existing techniques for probabilistic programs extend smoothly to
quantum programs

Future work

e Connection to an operational model
e Language extensions

e Automation

hanks!

13

BACKUP SLIDES

Language semantics

[skip]l(p) = p

[q = 10)]I(p) = plg— |b)]

[q = U gll(p) = UlpU' W 1))

[c1;e2]l(p) = [erl(lezli(p))

[OMlg] = m > cnll(p) = 2umPrpiM=m]-[cnl(p]pipm)

[while (M[q] = 1) docll(p) = Ifp(M) /A\4 _
/\ [tr(/\;:* Mn;p)]

[AX. AP Pry[M=0]- | \yeg + X (Pry[M=1] - [[C]](p/|/\/l:1))}

Full definition of ert transformer

ert|skip]|(t) = Ap.1+t(p)

ertlg == |b)](?) = Ap. TIIb)] + t(plg = 1b)])

ert[q = U g(t) - p. TIU] + t(UquUTq*)

ert[cy; c2](t) = ert[e](ert[c2](2))

ertfd M[q] = m—cp](t) = Ap. TIM]+ X, Prp[M=m]- ert[cm () (ol mem)
ert[while (M[q] = 1) doc](t) = Ifp(F M)

A

[At Ap. TIM] + Pro[M=1] - ert[c](t')(p| py=1) + Pro[M=0] - t(leO)J

