
Runtime Analysis ofQuantum Programs
A Formal Approach

FEDERICO OLMEDO, Department of Computer Science, University of Chile & IMFD, Chile
ALEJANDRO DÍAZ-CARO, Universidad Nacional de Quilmes & ICC (CONICET-UBA), Argentina

In this abstract we study the resource consumption of quantum programs. Specifically, we focus on the
expected runtime of programs and, inspired by recent methods for probabilistic programs, we develop a
calculus à la weakest precondition to formally and systematically derive the (exact) expected runtime of
quantum programs. Notably, the calculus admits a notion of loop runtime invariant that can be readily used to
derive upper bounds of their runtime. Finally, we show the applicability of our calculus analyzing the runtime
of (a simplified version of) the BB84 quantum key distribution protocol.

1 INTRODUCTION
For the past decades, quantum programs have been intensively investigated. Research efforts
have ranged from language design and formal semantics to termination analysis and verifica-
tion techniques [13]. Nevertheless, the analysis of resource consumption has received very little
attention.
The most relevant work we are aware of in this direction is the Quipper system [9], which

compiles quantum programs described in a high-level language into low-level logical circuits,
and estimates the size of the resulting circuits, in terms of their number of gates and qbits. The
ScaffCC [3] compilation framework offers similar possibilities for programs in Scaffold, a high-level
imperative language based on C. However, both these systems offer very restricted support for
programs with a recursive control flow. Concretely, they can only encode loops that are (statically)
bounded by a finite parameter known at compilation time, leaving prominent quantum algorithms
such as the BB84 key distribution protocol [1] or the Simon’s algorithm [11] out of their scope.

Another related line of research lies in the field of implicit computational complexity. Dal Lago et
al. [2] have developed a lambda calculus that captures some polynomial time quantum complexity
classes. As such, the lambda calculus can only establish asymptotic guarantees about the behaviour
of programs of a particular (polytime) class.
We believe that all players in the quantum programming community can benefit from more

effective tools to estimate the resource consumption of programs. Indeed, one of the fundamental
appeals of quantum computing is the so-called quantum speedup, that is, the possibility that a
quantum computer might efficiently solve problems that are intractable in the classical world.
Having appropriate methods to formally assess this speedup is thus of utter importance.
The goal of this work is to provide a first step in this direction. We specifically focus on the

runtime analysis of programs and, inspired by recent methods for probabilistic programs [4, 5, 7],
we develop a calculus à la weakest precondition to formally and systematically derive the (exact)
runtime of quantum programs (§ 3). Notably, the calculus admits a notion of loop runtime invariant
that can be readily used to derive upper bounds of their runtime. In comparison to previous works,
our calculus can handle programswith arbitrary loops and is flexible enough to accomodate different
runtime models. We show the applicability of the calculus analyzing the runtime of an algorithm
based on the BB84 quantum key distribution protocol [1] (§ 4).
We hope that this work serves as starting point for further developments on the resource

consumption of quantum programs; we briefly discuss some promising directions in § 5.1

1Liu et al. [6] have independently developed similar ideas to ours to reason about the expected runtime of quantum programs.
While there already exist some differences between the two approaches, we leave a thorough comparison as future work
since [6] became available after the preparation of the current work.

2 Federico Olmedo and Alejandro Díaz-Caro

2 PROGRAMMING MODEL
Quantum computations are governed by the four postules of the quantum mechanics:

1) State space: the state of a system is given by a density matrix2 acting on a Hilbert space,
referred to as the system state space;

2) Evolution: if in a time lapse a system transitions from state ρ to state ρ ′, then ρ ′ = U ρU †

for some unitary operatorU ;
3) Measurement: a measurement over a system is modeled by a set M = {Mm}m∈M of

operators satisfying the normalization condition
∑
m∈M Mm

†Mm = I . The measurement
returns an outcome from set M and modifies the system state according this outcome:
Outcomem ∈ M occurs with probability Prρ [M=m] ⊜ tr(Mm

†Mmρ) and upon this outcome
the system transitions from state ρ to state ρ |M=m ⊜ (MmρMm

†)/Prρ [M=m];
4) Composition: the state space of a system composed of several subsystems is the tensor

product of the state spaces of its components.
To describe quantum programs we use a core imperative language [8], coined qGCL. Programs

are defined over a set of quantum variables (ranged over by q). Variable types are interpreted as
Hilbert spaces. Here, we consider only variables of type Bool (interpreted as the 2-dimensional
Hilbert space C2 with basis {|0⟩, |1⟩}) and Int (interpreted as the infinite-dimensional Hilbert space
Cω with basis {|i⟩}i ∈Z). Programs in qGCL adhere to the following syntax:

c ::= skip | q B |b⟩ | q B U q | c1; c2 | □M[q] = m → cm | while (M[q] = 1) do c

Most language constructs have similar meaning to their classical counterpart. skip corresponds to
a no-operation. q B |b⟩ initializes variable q with density operator |b⟩⟨b |, where |b⟩ lies in the basis
of its type interpretation. q B U q updates the set of variables q according to the unitary operatorU .
c1; c2 represents the sequential composition of programs c1 and c2. □ M[q] = m → cm represents
the quantum counterpart of the traditional case statement; it performs a measurement M on
variables q, and according to the observed outcome, execution continues with the corresponding
branch. Finally, while (M[q] = 1) do c represents a loop, guarded by a binary measurement M on
q. Outcome 0 represents the loop termination and outcome 1 a further loop iteration.

The Hilbert state space Hc of a program c is given by (the class of unit vectors in) the tensor
product

⊗
q∈Var(c) Hq of the Hilbert spaces associated to each of the variables in c . To properly

capture the semantics of c in case it is non-terminating3, we need to generalize the notion of density
matrix to that of partial densitymatrix4 [10]. Then, we interpret c as a transformer ⟦c⟧ : PHc → PHc

of partial density matrices, where PHc denotes the set of all partial density matrices over c state
space Hc . Transformer ⟦c⟧ is defined by induction on the structure of c as follows:

⟦skip⟧(ρ) = ρ

⟦q B |b⟩⟧(ρ) = ρ[q 7→ |b⟩]

⟦q B U q⟧(ρ) = U ↑qρU ↑q†

⟦c1; c2⟧(ρ) = ⟦c1⟧(⟦c2⟧(ρ))
⟦□ M[q] = m → cm⟧(ρ) =

∑
m Prρ [M=m] · ⟦cm⟧(ρ |M=m)

⟦while (M[q] = 1) do c⟧(ρ) = lfp
(
Φ⟨M,c ⟩)

2A density matrix is a square positive matrix with trace 1.
3By non-terminating programs we mean programs that terminate with probability less than 1.
4Partial density matrices generalize density matrices by allowing traces less or equal than 1.

Runtime Analysis of Quantum Programs 3

In the second rule, the resulting state ρ[q 7→ |b⟩] is defined as
∑

i ∈{0,1} (|b⟩⟨i |)
↑qρ(|i⟩⟨b |)↑q if type(q) =

Bool and as
∑

i ∈Z (|b⟩⟨i |)
↑qρ(|i⟩⟨b |)↑q if type(q) = Int, where A↑q is the canonical extension of the

matrix A acting on q to the dimension of ρ. In the third rule, U denotes an unitary operator
over

⊗
q∈q Hq . Finally, in the last rule Φ⟨M,c ⟩(X) ⊜ λρ ′. Prρ′[M=0] · ρ ′ |M=0 + X

(
Prρ′[M=1] ·

⟦c⟧(ρ ′ |M=1)
)
.

3 PROGRAM RUNTIMES
Runtime model. Observe that the presence of measurements endows programs with a probabilistic
behaviour: programs admit multiple executions, each occurring with a given probability. Here,
we focus on the expected or average runtime of programs, which refers to the weighted sum of
the runtime of their individual executions, where each execution is weighted according to its
probability. In turn, to model the runtime of an individual program execution we asume that a
skip statement consumes 1 unit of time and parametrize the runtime specification of the quantum
operations by means of a function T[·]: a variable initialization with vector |b⟩ takes T[|b⟩] units of
time, a state update induced by a unitary operatorU takes T[U] units of time and a measurement
M (together with the modification it induces on the program state) takes T[M] units of time.

Runtime transformer ert. To formally capture the expected runtime of programs we use a contin-
uation passing style, materialized by transformer ert. If c is a program with state space Hc and
we let T = PHc → R

∞
≥0, then ert[c] : T→ T , and acts as follows: Assume that t : T represents the

runtime of the program following c , i.e. its continuation. Then ert[c](t) : T represents the runtime
of c plus its continuation. Here, both ert[c](t) and t have type T (rather than simply R∞≥0) because
the runtime of programs (in particular, of c and its continuation) depends on the particular partial
density matrix in PHc from which their execution is started. Finally, observe that to recover the
runtime of a plain program c , it suffices to set the runtime of its continuation to 0. Symbolically,
ert[c](λρ ′. 0)(ρ) gives the runtime of c when executed from initial partial density matrix ρ.

The fundamental appeal of this continuation-based approach to model the runtime of programs
is that transforer ert admits a simple and elegant definition by induction on the program structure:

ert[skip](t) = λρ . 1 + t(ρ)
ert[q B |b⟩](t) = λρ . T[|b⟩] + t

(
ρ[q 7→ |b⟩]

)
ert[q B U q](t) = λρ . T[U] + t

(
U ↑qρU ↑q†

)
ert[c1; c2](t) = ert[c1](ert[c2](t))

ert[□M[q] = m → cm](t) = λρ . T[M] +
∑
m Prρ [M=m] · ert[cm](t)

(
ρ |M=m

)
ert[while (M[q] = 1) do c](t) = lfp

(
F
⟨M[q],c ⟩
t

)
Here, F ⟨M[q],c ⟩

t (t ′) ⊜ λρ. T[M] + Prρ [M=1] · ert[c](t ′)(ρ |M=1) + Prρ [M=0] · t(ρ |M=0) and its
least fixed point lfp

(
F
⟨M[q],c ⟩
t

)
is taken w.r.t. the pointwise order over T, i.e. t1 ⪯ t2 if t1(ρ) ≤ t2(ρ)

for every ρ.

Invariant-based reasoning. Reasoning about the runtime of loop-free programs is rather straightfor-
ward following the rules above. On the contrary, reasoning about the runtime of loopy programs
requieres determining the least fixed point of transformers, which is not a simple task. Nevertheless,
if we are interested in establishing upper bounds —rather than exact values— for the runtime of
loopy programs, we can employ an invariant-based argument. Concretely,

F ⟨M,c ⟩
t (I) ⪯ I =⇒ ert[while (M = 1) do c](t) ⪯ I . (1)

The results follows from a direct application of Park’s Theorem [12], exploiting ert continuity.

4 Federico Olmedo and Alejandro Díaz-Caro

\\ initialize counter
k := |0⟩;
\\ while not reachedm bits
while (Mm[k] = 1) do

\\ flip Alice’s and Bob’s coins
A := |++⟩; B := |+⟩;
\\ measure Alice’s coins
□ · MA[A] =

\\ measure Bob’s coin
|eb⟩ → □ · MB [B]

\\ if Alice’s and Bob’s basis agree
\\ store bit b and increment counter
|e⟩ → k,Q := UPb [k,Q];

k := U≻[k];
\\ if Alice’s and Bob’s basis disagree
\\ discard bit b
|¬e⟩ → skip

Here e,b in |eb⟩ range over {0, 1}.

(a) Simplified BB84 algorithm

ert[cBB84](λρ ′.0)
= ert[k B |0⟩](ert[while (Mm[k] = 1) do c](λρ ′.0))

= ert[k B |0⟩]
(
lfp

(
F ⟨Mm [k],c ⟩
λρ′ .0

))
= λρ. T[|0⟩] + lfp

(
F ⟨Mm [k],c ⟩
λρ′ .0

) (
ρ[k 7→ |0⟩]

)
≤ λρ. T[|0⟩]+(
λρ ′. T[Mm] + 2T

m∑
h=−∞

(m − h)tr(|h⟩⟨h |↑kρ ′)

)
(
ρ[k 7→ |0⟩]

)
= λρ. T[|0⟩] + T[Mm]

+ 2T
m∑

h=−∞

(m − h)tr
(
|h⟩⟨h |↑k

(
ρ[k 7→ |0⟩]

))
= λρ. T[|0⟩] + T[Mm] + 2mT

where T = T[Mm] + T[|++⟩] + T[|+⟩]+T[MA] +

T[MB] +
1
2

(
1
2T[UP0] +

1
2T[UP1] + T[U≻]

)
+ 1

2

(b) Expected runtime

Fig. 1. Program cBB84 encoding (a simplified version of) the BB84 key distribution algorithm together with
the derivation of its expected runtime.

4 CASE STUDY
We demonstrate the applicability of our approach by formally analyzing the runtime of a simplified
version of the BB84 quantum key distribution algorithm [1]. BB84 is a protocol to securely create
and distribute a shared (i.e. symmetric) key between two parties, say Alice and Bob. Assume the
key consists ofm bits. To begin with, Alice sendsm encoded bits to Bob. To determine each of these
bits, Alice flips two quantum coins; the first coin determines whether the encoded bit will be 0 or
1; the second coin determines whether she will encode it using basis {|0⟩, |1⟩} or {|+⟩, |−⟩}. Then
Bob continues by measuring each of the received (encoded) bits. For each of them, he flips a coin to
determine the basis (either {|0⟩, |1⟩} or {|+⟩, |−⟩}) he will use for the measurement. Finally, Alice
and Bob publish the basis they employed to respectively encode and measure each bit. Bits whose
respective basis coincide are kept as part of the resulting key; the remaining bits are discarded. The
process continues until completing them bits.
Here we abstract the basis exchange step. We assume that for each bit, Alice and Bob flip their

coins, and immediately determine whether the basis used by Alice and Bob coincide, keeping or
discarding the bit at hand accordingly. The qGCL program cBB84 representing this algorithm is
depicted on Figure 1a. Variable k (over space Cω) keeps track of the number of completed key
bits; variable A and B (over space C4 and C2, respectively) represent the coin flips of Alice and
Bob, respectively. Finally, variable Q stores (the successive bits of) the key. SetMm = {M≥,M<}

measures counter k , distinguishing whether it reached m or not (M≥ =
∑∞

i=m |i⟩⟨i | and M< =

I −M≥). Set MA = {|00⟩⟨00|, |01⟩⟨01|, |10⟩⟨10|, |11⟩⟨11|} measures Alice’s coin outcomes yielding
the encoded bit and the employed basis. Finally, set MB = {|0⟩⟨0|, |1⟩⟨1|} measures Bob’s coin
outcome, yielding his employed basis. Unitary operatorUPb acts on variables k,Q setting the k-th

Runtime Analysis of Quantum Programs 5

bit of Q to |b⟩ (and leaving variable k untouched). Finally, unitary operator U≻ acts on variable k
by updating its value from |i⟩ to |i + 1⟩.

The runtime analysis of the program is depicted in Figure 1b. The crux of the analysis is proving
that runtime λρ ′. T[Mm]+2T

∑m
h=−∞(m−h)·tr(|h⟩⟨h |↑kρ ′) is a fixed point of transformer F ⟨Mm [k],c ⟩

λρ′ .0 ,
where c stands for the body of cBB84 loop and T is as specified in Figure 1b; full derivation can be
found in the Appendix. The overall analysis yields that program cBB84 has (at most) runtime

T[|0⟩] + T[Mm] + 2mT

for any initial partial density matrix (from which it is executed), which matches the anticipated
result: in average, the program terminates after 2m iterations; each iteration takes T units of
time, there is a final measurement upon loop exit requiring T[Mm] units of time, and the upfront
initialization requires T[|0⟩] units of time.

5 FUTUREWORK
The current work opens several research directions we plan to address shortly. Among them are
i) defining an operational notion of expected runtime (e.g. based on quantum Markov chains) and
proving a correspondence with our approach; ii) relating the ert transformer with the termination
behavior of programs, showing that a finite expected runtime implies termination with probability
1; and iii) studying the effect of entangled states in the runtime of programs. Another long-term,
more challenging goals comprise i) studying the problem of automation, more specifically loop
invariant synthesis; ii) reasoning about the asymptotic runtime of programs; and iii) extending the
language with further constructs such as general recursion or non-determinism.

REFERENCES
[1] C. H. Bennett and G. Brassard. Quantum cryptography: public key distribution and coin tossing. Theoretical Compututer

Science, 560(12):7–11, 2014.
[2] U. Dal Lago, A. Masini, and M. Zorzi. Quantum implicit computational complexity. Theoretical Computer Science,

411(2):377–409, 2010.
[3] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi. Scaffcc: A framework for

compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing
Frontiers, CF ’14, pages 1:1–1:10. ACM, 2014.

[4] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. Weakest precondition reasoning for expected run–times of
probabilistic programs. In P. Thiemann, editor, Proceedings of the 25th European Symposium on Programming (ESOP
2016), volume 9632 of Lecture Notes in Computer Science, pages 364–389, Cham, 2016. Springer.

[5] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. Weakest precondition reasoning for expected runtimes of
randomized algorithms. Journal of the ACM, 65(5):30:1–30:68, 2018.

[6] J. Liu, L. Zhou, and M. Ying. Expected runtime of quantum programs. arXiv:1911.12557, 2019.
[7] F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. Reasoning about recursive probabilistic programs. In

Proccedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), pages 672–681, NY,
USA, 2016. IEEE Computer Society.

[8] J. W. Sanders and P. Zuliani. Quantum programming. In R. B. N. Oliveira, editor, Proceedings of the 5th International
Conference on Mathematics of Program Construction (MPC 2000), volume 1837, pages 80–99, Berlin, Heidelberg, 2000.
Springer.

[9] A. Scherer, B. Valiron, S.-C. Mau, S. Alexander, E. Van den Berg, and T. E. Chapuran. Concrete resource analysis of
the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2d target.
Quantum Information Processing, 16(3):16–60, 2017.

[10] P. Selinger. Towards a quantum programming language. Mathematical Structures in Computer Science, 14(4):527–586,
2004.

[11] D. R. Simon. On the power of quantum computation. SIAM journal on computing, 26(5):1474–1483, 1997.
[12] W. Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS Monographs on Theoretical Computer

Science. Springer, Berlin, Heidelberg, 1992.
[13] M. Ying. Foundations of Quantum Programming. Morgan Kaufmann, Cambridge, USA, 2016.

6 Federico Olmedo and Alejandro Díaz-Caro

APPENDIX: OMITTED CALCULATIONS FROM CASE STUDY IN § 4
In this appendix we include the omitted calculations in the runtime derivation sketched in Fig. 1b,
that is, the application of the proof rule in Equation (1) to upper bound the runtime of the program
loop. We apply the proof rule with runtime invariant

I ⊜ λρ . T[Mm] + 2(T [Mm] + T⋆)

m∑
h=−∞

(m − h) · tr(|h⟩⟨h |↑kρ) ,

where T⋆ ⊜ T[|++⟩] + T[|+⟩] + T[MA] + T[MB] +
1
2
(1
2T[UP0] +

1
2T[UP1] + T[U≻]

)
+ 1

2 . The
proof rule application requires showing that I is a pre-fixpoint of runtime transformer

F ⟨Mm [k],c ⟩
λρ′ .0 (t ′) = λρ. T[Mm] + Prρ [Mm=1] · ert[c](t ′)

(
ρ |Mm=1

)
.

(Recall that Mm[k] stands for the loop guard measurement and c for the loop body.) We thus
continue unfolding the above definition calculating ert[c](t ′). To this end we let c1 = A := |++⟩;B :=
|+⟩ be the first two initializations in c , c2 = □ · MA[A] = . . . be the remaining case statement in c
and finally for each e,b ∈ {0, 1}, we let c2eb = |eb⟩ → □ · MB [B] . . . be the corresponding branch
of c2 case statement. Then we have,

ert[c](t ′) = ert[c1](ert[c2](t ′)) = ert[c1]
©«λρ. T[MA] +

1
4

∑
e ,b ∈{0,1}

ert[c2eb](t ′)
(
ρ |MA=eb

)ª®¬ (2)

where

ert[c2eb](t ′)

= λρ. T[MB] +
1
2
.ert

[
[k,Q] := UPb [k,Q];k := U≻ k

]
(t ′)

(
ρ |MB=e

)
+
1
2
.ert[skip](t ′)

(
ρ |MB=¬e

)
= λρ. T[MB] +

1
2
.ert

[
[k,Q] := UPb [k,Q];k := U≻ k

]
(t ′)

(
ρ |MB=e

)
+
1
2
.
(
1 + t ′

(
ρ |MB=¬e

))
= λρ. T[MB] +

1
2
.ert

[
[k,Q] := UPb [k,Q]

] (
ert[k := U≻ k](t ′)

) (
ρ |MB=e

)
+
1
2
.
(
1 + t ′

(
ρ |MB=¬e

))
= λρ. T[MB] +

1
2
.ert

[
[k,Q] := UPb [k,Q]

] (
λρ. T[U≻] + t

′(U ↑k
≻ ρU

↑k
≻

†
)

) (
ρ |MB=e

)
+
1
2
.
(
1 + t ′

(
ρ |MB=¬e

))
= λρ. T[MB] +

1
2
.

(
λρ ′. T[UPb] +

(
λρ .T[U≻] + t

′(U ↑k
≻ ρU

↑k
≻

†
)

) (
U ↑k ,Q
Pb

ρ ′U ↑k ,Q
Pb

†
)) (

ρ |MB=e

)
+
1
2
.
(
1 + t ′

(
ρ |MB=¬e

))
= λρ. T[MB] +

1
2
.
(
λρ ′. T[UPb] + T[U≻] + t

′(U ↑k
≻ U

↑k ,Q
Pb

ρ ′U ↑k ,Q
Pb

†
U ↑k
≻

†
)

) (
ρ |MB=e

)
+
1
2
.
(
1 + t ′

(
ρ |MB=¬e

))
= λρ. T[MB] +

1
2
.
(
T[UPb] + T[U≻] + t

′(U ↑k
≻ U

↑k ,Q
Pb

(
ρ |MB=e

)
U ↑k ,Q
Pb

†
U ↑k
≻

†
)

)
+
1
2
.
(
1 + t ′

(
ρ |MB=¬e

))

Runtime Analysis of Quantum Programs 7

Plugging the above expansion of ert[c2eb] into (2) yields:

ert[c1]
©«λρ. T[MA] +

1
4

∑
e ,b ∈{0,1}

ert[c2eb](t ′)
(
ρ |MA=eb

)ª®¬
= ert[c1]

©«

λρ. T[MA]+
1
4

∑
e ,b ∈{0,1}

(T [MB]

+
1
2
.

(
T[UPb] + T[U≻] + t

′(U ↑k
≻ U

↑k ,Q
Pb

((
ρ |MA=eb

)���
MB=e

)
U ↑k ,Q
Pb

†
U ↑k
≻

†
)

)
+
1
2
.

(
1 + t ′

((
ρ |MA=eb

)���
MB=¬e

)))
ª®®®®®®®®®®®¬

= ert
[
c1

]©«
λρ. T[MA] + T[MB] +

1
2
.(
1
2
.T[UP0] +

1
2
.T[UP1] + T[U≻]) +

1
2

+
1
8

∑
e ,b ∈{0,1}

(
t ′

(
U ↑k
≻ U

↑k ,Q
UPb

((
ρ |MA=eb

)���
MB=e

)
U ↑k ,Q
UPb

†
U ↑k
≻

†

)
+ t ′

((
ρ |MA=eb

)���
MB=¬e

))ª®®®®¬
= ert

[
A := |++⟩

]©«

λρ . T[|+⟩] + T[MA] + T[MB] +
1
2
.(
1
2
.T[UP0] +

1
2
.T[UP1] + T[U≻]) +

1
2

+
1
8

∑
e ,b ∈{0,1}

(
t ′

(
U ↑k
≻ U

↑k ,Q
UPb

((
(ρ[B 7→ |+⟩⟨+|])|MA=eb

)���
MB=e

)
U ↑k ,Q
UPb

†
U ↑k
≻

†

)
+t ′

((
(ρ[B 7→ |+⟩⟨+|])|MA=eb

)���
MB=¬e

))
ª®®®®®®®®¬

= λρ. T⋆ +
1
8

∑
e ,b ∈{0,1}

(t ′ψeb (ρ) + t
′ϕeb (ρ))

where
• T⋆ is as already defined on the previous page,

• ψeb (ρ) = U
↑k
≻ U

↑k ,Q
UPb

((
(ρ[AB 7→ |+ + +⟩⟨+ + +|])|MA=eb

)���
MB=e

)
U ↑k ,Q
UPb

†
U ↑k
≻

†, and

• ϕeb (ρ) =
(
(ρ[AB 7→ |+ + +⟩⟨+ + +|])|MA=eb

)���
MB=¬e

.

All in all, we have:

F ⟨Mm [k],c ⟩
λρ′ .0 (t ′) = λρ. T[Mm] + Prρ [Mm=1].

T⋆ +
1
8

∑
e ,b ∈{0,1}

(
t ′ψeb

(
ρ |Mm=1

)
+ t ′ϕeb

(
ρ |Mm=1

))
Now we proceed to verify that I is a (pre-)fixpoint of F ⟨Mm [k],c ⟩

λρ′ .0 :

F ⟨Mm [k],c ⟩
λρ′ .0 (I)

definition of F ⟨Mm [k],c ⟩
λρ′ .0

8 Federico Olmedo and Alejandro Díaz-Caro

= λρ. T[Mm] + Prρ [Mm=1]
T⋆ +

1
8

∑
e ,b ∈{0,1}

(
Iψeb

(
ρ |Mm=1

)
+ Iϕeb

(
ρ |Mm=1

))
definition of I and application

= λρ. T[Mm] + Prρ [Mm=1]
T⋆ +

1
8

∑
e ,b ∈{0,1}(

T[Mm] + 2(T [Mm] + T⋆)

m∑
h=−∞

(m − h)tr
(
|h⟩⟨h |↑kψeb

(
ρ |Mm=1

))
+T[Mm] + 2(T [Mm] + T⋆)

m∑
h=−∞

(m − h)tr(|h⟩⟨h |↑kϕeb
(
ρ |Mm=1

)
)
ª®¬
∑m

h=−∞(m − h)tr(|h⟩⟨h |↑kϕeb
(
ρ |Mm=1

)
) =

∑m−1
h=−∞(m − h)

tr(|h ⟩⟨h |↑k ρ)
Prρ [Mm=1]

= λρ. T[Mm] + Prρ [Mm=1]
T⋆ +

1
8

∑
e ,b ∈{0,1}©«T[Mm] + 2(T [Mm] + T⋆)

m∑
h=−∞

(m − h)tr
(
|h⟩⟨h |↑kψeb

(
ρ |Mm=1

))
+T[Mm] + 2(T [Mm] + T⋆)

m−1∑
h=−∞

(m − h)
tr(|h⟩⟨h |↑kρ)
Prρ [Mm=1]

)}
∑m
h=−∞(m − h)tr(|h⟩⟨h |↑kψeb

(
ρ |Mm=1

)
) =

∑m
h=−∞(m − h)

tr(|h−1⟩⟨h−1 |↑k ρ)
Prρ [Mm=1]

= λρ. T[Mm] + Prρ [Mm=1]
T⋆ +

1
8

∑
e ,b ∈{0,1}(

T[Mm] + 2(T [Mm] + T⋆)

m∑
h=−∞

(m − h)
tr(|h − 1⟩⟨h − 1|↑kρ)

Prρ [Mm=1]

+T[Mm] + 2(T [Mm] + T⋆)

m−1∑
h=−∞

(m − h)
tr(|h⟩⟨h |↑kρ)
Prρ [Mm=1]

)}
Removing the summation

Runtime Analysis of Quantum Programs 9

= λρ. T[Mm] + Prρ [Mm=1]
{
T⋆ +

1
2©«T[Mm] + 2(T [Mm] + T⋆)

m∑
h=−∞

(m − h)
tr(|h − 1⟩⟨h − 1|↑kρ)

Prρ [Mm=1]

+T[Mm] + 2(T [Mm] + T⋆)

m−1∑
h=−∞

(m − h)
tr(|h⟩⟨h |↑kρ)
Prρ [Mm=1]

ª®¬

Adding up

= λρ. T[Mm] + Prρ [Mm=1]
{
T⋆ + T[Mm] + (T [Mm] + T⋆)(

m∑
h=−∞

(m − h)
tr(|h − 1⟩⟨h − 1|↑kρ)

Prρ [Mm=1]
+

m−1∑
h=−∞

(m − h)
tr(|h⟩⟨h |↑kρ)
Prρ [Mm=1]

)}
Factoring (T [Mm] + T⋆) out and distributing Prρ [Mm=1]

= λρ. T[Mm] + (T [Mm] + T⋆){
Prρ [Mm=1] +

m∑
h=−∞

(m − h)tr(|h − 1⟩⟨h − 1|↑kρ) +
m−1∑
h=−∞

(m − h)tr(|h⟩⟨h |↑kρ)

}
Prρ [Mm=1] =

∑m
h=−∞ tr(|h⟩⟨h |↑kρ)

= λρ. T[Mm] + (T [Mm] + T⋆)
m∑

h=−∞

tr(|h⟩⟨h |↑kρ) +
m∑

h=−∞

(m − h)tr(
��h − 1

〉〈
h − 1

��↑kρ) + m−1∑
h=−∞

(m − h)tr(|h⟩⟨h |↑kρ)

Summing up

= λρ. T[Mm] + 2(T [Mm] + T⋆)

m∑
h=−∞

(m − h)tr(|h⟩⟨h |↑kρ)

Definition of I

= I

	Abstract
	1 Introduction
	2 Programming Model
	3 Program Runtimes
	4 Case study
	5 Future Work
	References

