
GraphCoQL

Certified Programs and Proofs
New Orleans, USA — January 2020

Federico Olmedo Tomás Díaz Éric Tanter

A mechanized formalization of GraphQL in Coq

Millennium Institute
Foundational Research on Data

Clases de cátedraGraphQL

2

Language for specifying the interfaces of web data services and
their query mechanism

Clases de cátedraGraphQL

2

HTTP GET

Language for specifying the interfaces of web data services and
their query mechanism

Clases de cátedraGraphQL

2

HTTP GET

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de cátedraGraphQL

2

HTTP GET

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de cátedraGraphQL

2

HTTP GET

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de cátedraGraphQL

2

HTTP GET

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 “title” : “Toy Story”,
 },
 {
 “title” : “Forrest Gump”,
 },

 …
]
 }
}

Clases de cátedraGraphQL

2

HTTP GET

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 “title” : “Toy Story”,
 },
 {
 “title” : “Forrest Gump”,
 },

 …
]
 }
}

Clases de cátedraGraphQL

2

HTTP GET

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 “title” : “Toy Story”,
 },
 {
 “title” : “Forrest Gump”,
 },

 …
]
 }
}

Clases de cátedraGraphQL

2

HTTP GET

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de cátedraIndustry involvement with GraphQL

3

2012

2015+

Clases de cátedraFirst language formalization [Hartig & Pérez, WWW’18]

4

Paper & pencil formalization to study complexity properties.

Jf[�]KuG =
(

f:�(u, f[�]) if (u, f[�]) 2 dom(�)
f:null else.

J`:f[�]KuG =
(
`:�(u, f[�]) if (u, f[�]) 2 dom(�)
`:null else.

Jf[�]{�}KuG =
8>><>>:

f:[{J�K�1
G } · · · {J�K�kG }] if typeS (f) 2 LT and {�1, ... ,�k } = {�i | (u, f[�],�i) 2 E}

f:{ J�K�G } if typeS (f) < LT and (u, f[�],�) 2 E
f:null if typeS (f) < LT and there is no � 2 N s.t. (u, f[�],�) 2 E

J`:f[�]{�}KuG =
8>><>>:
`:[{J�K�1

G } · · · {J�K�kG }] if typeS (f) 2 LT and {�1, ... ,�k } = {�i | (u, f[�],�i) 2 E}
`:{ J�K�G } if typeS (f) < LT and (u, f[�],�) 2 E
`:null if typeS (f) < LT and there is no � 2 N s.t. (u, f[�],�) 2 E

Jon t{�}KuG =
8>><>>:

J�KuG if t 2 OT and � (u) = t, or t 2 IT and � (u) 2 implementationS (t), or
t 2 UT and � (u) 2 unionS (t)

� in other case.

J�1 · · ·�k KuG = collect(J�1KuG · · · J�k KuG)

Figure 5: Semantics of a GraphQL query.

(2) if � = f[�] or � = `:f[�] then

�{�} �1 · · ·�i �{�} �i+1 · · ·�k ⌘
�{��} �1 · · ·�i�i+1 · · ·�k

(3) on t { �1 · · ·�k } ⌘ on t { �1 } · · · on t { �k }
(4) on t { on t { � } } ⌘ on t { � }
(5) If implementsS (t) = {t1, ... , tk} then

on t { � } ⌘ on t1 { � } · · · on tk { � }

(6) If unionS (t) = {t1, ... , tk} then

on t { � } ⌘ on t1 { � } · · · on tk { � }

(7) If t1, t2 2 OT and t1 , t2 then

on t1 { on t2 { � } } ⌘ �

In the rest of the paper we assume that every GraphQL query is a
non-redundant query in ground-typed normal form. An important,
though simple observation is that if a query does not mention
any expression of the form on t { ... }, then one can obtain an
equivalent non-redundant query in ground-typed normal in linear
time (by just using equivalences (1) and (2)). For queries that do
mention on t { ... } a naive application of the above rules can lead
to a query of exponential size (rules (5) and (6)). We left for future
work a precise study of the complexity of the transformation.

One of the main properties of queries that satisfy the conditions
presented in this section is that they produce a unique response
object without the need of the collect(·) operator. More formally,
let hh�iiG be an evaluation function for queries de�ned in exactly
the same way as J�KG in De�nition 3.3 but replacing the last rule in
Figure 5 by hh�1 · · ·�k iiuG = hh�1iiuG · · · hh�k iiuG , that is, without using
collect(·). It is not di�cult to prove that if � is a non-redundant
query in ground-typed normal form, then J�KG = hh�iiG for every
graph G. We shall exploit this property in the next sections.

4 THE COMPLEXITY OF GRAPHQL
In this section we study the complexity of two classical decision
problems in the context of GraphQL, namely, the evaluation prob-
lem and the enumeration problem, showing that both can be solved
e�ciently. For this analysis we make the following assumption: Let
G be a GraphQL graph,u be a node, and f[�] be an edge label. We as-
sume that one can access the list of f[�]-neighbors ofu in timeO (1),
and one can access the f[�]-property of a node in time O (1). Al-
though this is a standard assumption for graph databases in a RAM
computational model, we stress that a GraphQL graph is usually
implemented as a view over another data source and, thus, the time
required to access neighbors and data may depend on the underly-
ing data storage. Our assumption allows us to study the two decision
problems independent of implementation-speci�c peculiarities.

Classical query languages, such as SQL or Relational Algebra,
take as inputs a query and a database and produce a set of tuples as
output. For these languages the standard way of de�ning a decision
problem is the following: given a query Q , a database D, and a
candidate tuple t , check if t is part of the evaluation of Q over
D [21]. In contrast to classical languages, the result of a GraphQL
query is not a set of tuples but a single response object. To de�ne a
similar decision problem for GraphQL, we consider the data values
occurring in response objects. For example, in the object

droid:{ name:C3PO pF:Protocol} ship:{ length:30.0 }

the values that occur are C3PO, Protocol and 30.0. Formally, we
de�ne the following decision problem.

Problem: G����QL�E���

Input: GraphQL query �, graph G, and value v 2 Vals
Ouput: Does v occur in J�KG?

We next show that G����QL�E��� is complete for the class of
problems that can be decided in nondeterministic logarithmic space.

T������ 4.1. G����QL�E��� is NL-complete.

Clases de cátedraFirst language formalization [Hartig & Pérez, WWW’18]

4

Paper & pencil formalization to study complexity properties.

Jf[�]KuG =
(

f:�(u, f[�]) if (u, f[�]) 2 dom(�)
f:null else.

J`:f[�]KuG =
(
`:�(u, f[�]) if (u, f[�]) 2 dom(�)
`:null else.

Jf[�]{�}KuG =
8>><>>:

f:[{J�K�1
G } · · · {J�K�kG }] if typeS (f) 2 LT and {�1, ... ,�k } = {�i | (u, f[�],�i) 2 E}

f:{ J�K�G } if typeS (f) < LT and (u, f[�],�) 2 E
f:null if typeS (f) < LT and there is no � 2 N s.t. (u, f[�],�) 2 E

J`:f[�]{�}KuG =
8>><>>:
`:[{J�K�1

G } · · · {J�K�kG }] if typeS (f) 2 LT and {�1, ... ,�k } = {�i | (u, f[�],�i) 2 E}
`:{ J�K�G } if typeS (f) < LT and (u, f[�],�) 2 E
`:null if typeS (f) < LT and there is no � 2 N s.t. (u, f[�],�) 2 E

Jon t{�}KuG =
8>><>>:

J�KuG if t 2 OT and � (u) = t, or t 2 IT and � (u) 2 implementationS (t), or
t 2 UT and � (u) 2 unionS (t)

� in other case.

J�1 · · ·�k KuG = collect(J�1KuG · · · J�k KuG)

Figure 5: Semantics of a GraphQL query.

(2) if � = f[�] or � = `:f[�] then

�{�} �1 · · ·�i �{�} �i+1 · · ·�k ⌘
�{��} �1 · · ·�i�i+1 · · ·�k

(3) on t { �1 · · ·�k } ⌘ on t { �1 } · · · on t { �k }
(4) on t { on t { � } } ⌘ on t { � }
(5) If implementsS (t) = {t1, ... , tk} then

on t { � } ⌘ on t1 { � } · · · on tk { � }

(6) If unionS (t) = {t1, ... , tk} then

on t { � } ⌘ on t1 { � } · · · on tk { � }

(7) If t1, t2 2 OT and t1 , t2 then

on t1 { on t2 { � } } ⌘ �

In the rest of the paper we assume that every GraphQL query is a
non-redundant query in ground-typed normal form. An important,
though simple observation is that if a query does not mention
any expression of the form on t { ... }, then one can obtain an
equivalent non-redundant query in ground-typed normal in linear
time (by just using equivalences (1) and (2)). For queries that do
mention on t { ... } a naive application of the above rules can lead
to a query of exponential size (rules (5) and (6)). We left for future
work a precise study of the complexity of the transformation.

One of the main properties of queries that satisfy the conditions
presented in this section is that they produce a unique response
object without the need of the collect(·) operator. More formally,
let hh�iiG be an evaluation function for queries de�ned in exactly
the same way as J�KG in De�nition 3.3 but replacing the last rule in
Figure 5 by hh�1 · · ·�k iiuG = hh�1iiuG · · · hh�k iiuG , that is, without using
collect(·). It is not di�cult to prove that if � is a non-redundant
query in ground-typed normal form, then J�KG = hh�iiG for every
graph G. We shall exploit this property in the next sections.

4 THE COMPLEXITY OF GRAPHQL
In this section we study the complexity of two classical decision
problems in the context of GraphQL, namely, the evaluation prob-
lem and the enumeration problem, showing that both can be solved
e�ciently. For this analysis we make the following assumption: Let
G be a GraphQL graph,u be a node, and f[�] be an edge label. We as-
sume that one can access the list of f[�]-neighbors ofu in timeO (1),
and one can access the f[�]-property of a node in time O (1). Al-
though this is a standard assumption for graph databases in a RAM
computational model, we stress that a GraphQL graph is usually
implemented as a view over another data source and, thus, the time
required to access neighbors and data may depend on the underly-
ing data storage. Our assumption allows us to study the two decision
problems independent of implementation-speci�c peculiarities.

Classical query languages, such as SQL or Relational Algebra,
take as inputs a query and a database and produce a set of tuples as
output. For these languages the standard way of de�ning a decision
problem is the following: given a query Q , a database D, and a
candidate tuple t , check if t is part of the evaluation of Q over
D [21]. In contrast to classical languages, the result of a GraphQL
query is not a set of tuples but a single response object. To de�ne a
similar decision problem for GraphQL, we consider the data values
occurring in response objects. For example, in the object

droid:{ name:C3PO pF:Protocol} ship:{ length:30.0 }

the values that occur are C3PO, Protocol and 30.0. Formally, we
de�ne the following decision problem.

Problem: G����QL�E���

Input: GraphQL query �, graph G, and value v 2 Vals
Ouput: Does v occur in J�KG?

We next show that G����QL�E��� is complete for the class of
problems that can be decided in nondeterministic logarithmic space.

T������ 4.1. G����QL�E��� is NL-complete.

Missing proofs about fundamental properties

Clases de cátedraOur contribution

5

First mechanized formalization of
GraphQL in the Coq proof assistant

GraphCoQL

Clases de cátedraSchema

6

Describes how data is structured and queried

type Artist {
 id: ID
 name: String
 artworks(role:Role): [Artwork]
}

interface Movie {
 id: ID
 title: String
 year: Int
 cast: [Artist]
}

type Fiction implements Movie {
 …
}

type Animation implements Movie {
 …
 style: Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { … }

type Query {
 artist(id:ID): Artist
 movie(id:ID): Movie
}

Clases de cátedraSchema

6

Describes how data is structured and queried

object
type

type Artist {
 id: ID
 name: String
 artworks(role:Role): [Artwork]
}

interface Movie {
 id: ID
 title: String
 year: Int
 cast: [Artist]
}

type Fiction implements Movie {
 …
}

type Animation implements Movie {
 …
 style: Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { … }

type Query {
 artist(id:ID): Artist
 movie(id:ID): Movie
}

Clases de cátedraSchema

6

Describes how data is structured and queried

interface
type

object
type

type Artist {
 id: ID
 name: String
 artworks(role:Role): [Artwork]
}

interface Movie {
 id: ID
 title: String
 year: Int
 cast: [Artist]
}

type Fiction implements Movie {
 …
}

type Animation implements Movie {
 …
 style: Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { … }

type Query {
 artist(id:ID): Artist
 movie(id:ID): Movie
}

Clases de cátedraSchema

6

Describes how data is structured and queried

interface
type

object
type

type Artist {
 id: ID
 name: String
 artworks(role:Role): [Artwork]
}

interface Movie {
 id: ID
 title: String
 year: Int
 cast: [Artist]
}

type Fiction implements Movie {
 …
}

type Animation implements Movie {
 …
 style: Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { … }

type Query {
 artist(id:ID): Artist
 movie(id:ID): Movie
}

Clases de cátedraSchema

6

Describes how data is structured and queried

interface
type

object
type

enumeration
type

type Artist {
 id: ID
 name: String
 artworks(role:Role): [Artwork]
}

interface Movie {
 id: ID
 title: String
 year: Int
 cast: [Artist]
}

type Fiction implements Movie {
 …
}

type Animation implements Movie {
 …
 style: Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { … }

type Query {
 artist(id:ID): Artist
 movie(id:ID): Movie
}

Clases de cátedraSchema

6

Describes how data is structured and queried

interface
type

object
type

enumeration
type

union type

type Artist {
 id: ID
 name: String
 artworks(role:Role): [Artwork]
}

interface Movie {
 id: ID
 title: String
 year: Int
 cast: [Artist]
}

type Fiction implements Movie {
 …
}

type Animation implements Movie {
 …
 style: Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { … }

type Query {
 artist(id:ID): Artist
 movie(id:ID): Movie
}

Clases de cátedraSchema

6

Describes how data is structured and queried

interface
type

object
type

entry points
for querying
the dataset

enumeration
type

union type

type Artist {
 id: ID
 name: String
 artworks(role:Role): [Artwork]
}

interface Movie {
 id: ID
 title: String
 year: Int
 cast: [Artist]
}

type Fiction implements Movie {
 …
}

type Animation implements Movie {
 …
 style: Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { … }

type Query {
 artist(id:ID): Artist
 movie(id:ID): Movie
}

Clases de cátedraSchema

7

Describes how data is structured and queried

Clases de cátedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

Clases de cátedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

Artist

id: 1000
name: “Tom Hanks”

Clases de cátedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

ArtistFiction

id: 2000
title: “Forrest Gump”
year: 1994

id: 1000
name: “Tom Hanks”

Animation

id: 2001
title: “Toy Story”
year: 1995
style: “3D"

artworks[role:ACTOR] artworks[role:ACTOR]

Clases de cátedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

ArtistFiction

id: 2000
title: “Forrest Gump”
year: 1994

id: 1000
name: “Tom Hanks”

Animation

id: 2001
title: “Toy Story”
year: 1995
style: “3D"

artworks[role:ACTOR] artworks[role:ACTOR]

cast cast

Clases de cátedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

Book

ArtistFiction

id: 3000
title: “Uncommon Type”
year: 2017
ISBN: 1101946156

id: 2000
title: “Forrest Gump”
year: 1994

id: 1000
name: “Tom Hanks”

Animation

id: 2001
title: “Toy Story”
year: 1995
style: “3D"

artworks[role:ACTOR] artworks[role:ACTOR]

cast cast

artworks[role:WRITER] author

Clases de cátedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

Query

Book

ArtistFiction

artist[id:1000]

id: 3000
title: “Uncommon Type”
year: 2017
ISBN: 1101946156

id: 2000
title: “Forrest Gump”
year: 1994

id: 1000
name: “Tom Hanks”

Animation

id: 2001
title: “Toy Story”
year: 1995
style: “3D"

movie[id:2001]movie[id:2000]

artworks[role:ACTOR] artworks[role:ACTOR]

cast cast

artworks[role:WRITER] author

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation

9

Queries are evaluated by traversing the graph and collecting nodes’ properties

Response (à la JSON)Query

Dataset

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 …
 },
 {
 …
 },
]
 }
}

Clases de cátedraQuery evaluation

10

Queries are evaluated by traversing the graph and collecting nodes’ properties

Response (à la JSON)Query

Dataset

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 …
 },
 {
 …
 },
]
 }
}

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation

11

Queries are evaluated by traversing the graph and collecting nodes’ properties

Response (à la JSON)Query

Dataset

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 …
 },
 {
 …
 },
]
 }
}

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation

12

Queries are evaluated by traversing the graph and collecting nodes’ properties

Response (à la JSON)Query

Dataset

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 …
 },
 {
 …
 },
]
 }
}

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation

13

Queries are evaluated by traversing the graph and collecting nodes’ properties

Response (à la JSON)Query

Dataset

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 “title” : …
 },
 {
 “title” : …
 },
]
 }
}

query {
 artist(id:1000) {
 name
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

Clases de cátedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

query {
 artist(id:1000) {
 name
 }
 artist(id:1000) {
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

query {
 artist(id:1000) {
 name
 }
 artist(id:1000) {
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

query {
 artist(id:1000) {
 name
 }
 artist(id:1000) {
 artworks(role: ACTOR) {
 title
 }
 }
}

{
 “artist” : {
 “name” : “Tom Hanks”,
 },

 “artist” : {
 “artworks” : [
 {
 …
 },
 {
 …
 },
]
 }
}

Clases de cátedraQuery evaluation - Singularities

15

Selections are “factored-out” in between the recursive calls

Query evaluation is not compositional

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 …
 },
 {
 …
 },
]
 }
}

query {
 artist(id:1000) {
 name
 }
 artist(id:1000) {
 artworks(role: ACTOR) {
 title
 }
 }
}

Clases de cátedraQuery evaluation - Singularities

15

Selections are “factored-out” in between the recursive calls

This makes reasoning significantly harder

Query evaluation is not compositional

{
 “artist” : {
 “name” : “Tom Hanks”,
 “artworks” : [
 {
 …
 },
 {
 …
 },
]
 }
}

query {
 artist(id:1000) {
 name
 }
 artist(id:1000) {
 artworks(role: ACTOR) {
 title
 }
 }
}

Application

Clases de cátedraNormalization [H&P, WWW’18]

17

Clases de cátedraNormalization [H&P, WWW’18]

17

Queries admit a normal form that can be evaluated purely compositionally
and significantly simplifies reasoning

Clases de cátedraNormalization [H&P, WWW’18]

17

Queries admit a normal form that can be evaluated purely compositionally
and significantly simplifies reasoning

👎 Normalization procedure not provided

👎 No correctness proof

But….

Clases de cátedraQuery normalization

18

Clases de cátedraQuery normalization

18

• Certified normalization algorithm

Anon.

in the �rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a �eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the �eld’s type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.
To normalize a query, we simply normalize its selection

set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form

query {

. . . on Query {

goodboi {

name

}

}

goodboi {

name

} }

// Normalized query

query {

goodboi {

. . . on Dog {

name

}

. . . on Pig {

name

}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
condition Query are lifted and the multiple occurrences of
�eld goodboi are merged into a single occurrence. Since the
type of the �eld goodboi is the abstract type Animal, the
subselections are wrapped in fragments for each concrete
object subtype, namely Dog and Pig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation
We now establish two fundamental results about the nor-
malization procedure. The �rst result states that the normal-
ization procedure is correct in that it does indeed produce
queries in normal form.

Lemma normalized_selections_are_in_nf

(s : wfGraphQLSchema) (ts : Name) (�s : seq Selection) :

are_in_normal_form s (normalize_selections s ts �s).

Theorem normalized_query_is_in_nf :

8 (� : query) (s : wfGraphQLSchema),

is_in_normal_form s (normalize s �).

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preserving in that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti�es over every node of the graph.

Lemma normalize_selections_preserves_semantics

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

u \in g.(nodes) ->

execute_selection_set s check_scalar g coerce

u (normalize_selections s u.(ntype) �s) =

execute_selection_set s check_scalar g coerce

u �s.
Theorem normalize_preserves_semantics :

8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s),

eval_query (normalize s �) g s = eval_query � g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli�ed Semantics of Normalized Queries
One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de�ning a simpli�ed evaluation function whichH�P
crucially use to establish their complexity results. However,
H�P do not formally prove that this simpli�ed semantics
is equivalent to the original, when considering normalized
queries.

We de�ne the simpli�ed semantics L·MG of H�P as shown
in Figure 9 and prove that, for queries in normal form, both
L�MG and J�KG produce the same response.

Lemma exec_sel_eq_simpl_exec

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

are_in_normal_form s �s ->

execute_selection_set s check_scalar g coerce

u �s =

simpl_execute_selection_set s check_scalar g coerce

u �s.

Theorem simpl_eval_correctness

(� : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s � ->

eval_query � g s = simpl_eval_query � g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations
Mechanizing normalization and the simpli�ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH�P’s de�nitions. While these are admittedly
minor, they con�rm the value of mechanized formalization.

First, some queries are considered non-redundant byH�P
although they actually produce redundant results. A simple

Anon.

in the �rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a �eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the �eld’s type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.
To normalize a query, we simply normalize its selection

set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form

query {

. . . on Query {

goodboi {

name

}

}

goodboi {

name

} }

// Normalized query

query {

goodboi {

. . . on Dog {

name

}

. . . on Pig {

name

}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
condition Query are lifted and the multiple occurrences of
�eld goodboi are merged into a single occurrence. Since the
type of the �eld goodboi is the abstract type Animal, the
subselections are wrapped in fragments for each concrete
object subtype, namely Dog and Pig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation
We now establish two fundamental results about the nor-
malization procedure. The �rst result states that the normal-
ization procedure is correct in that it does indeed produce
queries in normal form.

Lemma normalized_selections_are_in_nf

(s : wfGraphQLSchema) (ts : Name) (�s : seq Selection) :

are_in_normal_form s (normalize_selections s ts �s).

Theorem normalized_query_is_in_nf :

8 (� : query) (s : wfGraphQLSchema),

is_in_normal_form s (normalize s �).

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preserving in that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti�es over every node of the graph.

Lemma normalize_selections_preserves_semantics

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

u \in g.(nodes) ->

execute_selection_set s check_scalar g coerce

u (normalize_selections s u.(ntype) �s) =

execute_selection_set s check_scalar g coerce

u �s.
Theorem normalize_preserves_semantics :

8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s),

eval_query (normalize s �) g s = eval_query � g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli�ed Semantics of Normalized Queries
One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de�ning a simpli�ed evaluation function whichH�P
crucially use to establish their complexity results. However,
H�P do not formally prove that this simpli�ed semantics
is equivalent to the original, when considering normalized
queries.

We de�ne the simpli�ed semantics L·MG of H�P as shown
in Figure 9 and prove that, for queries in normal form, both
L�MG and J�KG produce the same response.

Lemma exec_sel_eq_simpl_exec

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

are_in_normal_form s �s ->

execute_selection_set s check_scalar g coerce

u �s =

simpl_execute_selection_set s check_scalar g coerce

u �s.

Theorem simpl_eval_correctness

(� : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s � ->

eval_query � g s = simpl_eval_query � g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations
Mechanizing normalization and the simpli�ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH�P’s de�nitions. While these are admittedly
minor, they con�rm the value of mechanized formalization.

First, some queries are considered non-redundant byH�P
although they actually produce redundant results. A simple

Clases de cátedraQuery normalization

18

• Certified normalization algorithm

• Simplified evaluation for queries in normal form

Anon.

in the �rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a �eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the �eld’s type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.
To normalize a query, we simply normalize its selection

set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form

query {

. . . on Query {

goodboi {

name

}

}

goodboi {

name

} }

// Normalized query

query {

goodboi {

. . . on Dog {

name

}

. . . on Pig {

name

}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
condition Query are lifted and the multiple occurrences of
�eld goodboi are merged into a single occurrence. Since the
type of the �eld goodboi is the abstract type Animal, the
subselections are wrapped in fragments for each concrete
object subtype, namely Dog and Pig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation
We now establish two fundamental results about the nor-
malization procedure. The �rst result states that the normal-
ization procedure is correct in that it does indeed produce
queries in normal form.

Lemma normalized_selections_are_in_nf

(s : wfGraphQLSchema) (ts : Name) (�s : seq Selection) :

are_in_normal_form s (normalize_selections s ts �s).

Theorem normalized_query_is_in_nf :

8 (� : query) (s : wfGraphQLSchema),

is_in_normal_form s (normalize s �).

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preserving in that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti�es over every node of the graph.

Lemma normalize_selections_preserves_semantics

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

u \in g.(nodes) ->

execute_selection_set s check_scalar g coerce

u (normalize_selections s u.(ntype) �s) =

execute_selection_set s check_scalar g coerce

u �s.
Theorem normalize_preserves_semantics :

8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s),

eval_query (normalize s �) g s = eval_query � g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli�ed Semantics of Normalized Queries
One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de�ning a simpli�ed evaluation function whichH�P
crucially use to establish their complexity results. However,
H�P do not formally prove that this simpli�ed semantics
is equivalent to the original, when considering normalized
queries.

We de�ne the simpli�ed semantics L·MG of H�P as shown
in Figure 9 and prove that, for queries in normal form, both
L�MG and J�KG produce the same response.

Lemma exec_sel_eq_simpl_exec

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

are_in_normal_form s �s ->

execute_selection_set s check_scalar g coerce

u �s =

simpl_execute_selection_set s check_scalar g coerce

u �s.

Theorem simpl_eval_correctness

(� : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s � ->

eval_query � g s = simpl_eval_query � g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations
Mechanizing normalization and the simpli�ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH�P’s de�nitions. While these are admittedly
minor, they con�rm the value of mechanized formalization.

First, some queries are considered non-redundant byH�P
although they actually produce redundant results. A simple

Anon.

in the �rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a �eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the �eld’s type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.
To normalize a query, we simply normalize its selection

set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form

query {

. . . on Query {

goodboi {

name

}

}

goodboi {

name

} }

// Normalized query

query {

goodboi {

. . . on Dog {

name

}

. . . on Pig {

name

}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
condition Query are lifted and the multiple occurrences of
�eld goodboi are merged into a single occurrence. Since the
type of the �eld goodboi is the abstract type Animal, the
subselections are wrapped in fragments for each concrete
object subtype, namely Dog and Pig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation
We now establish two fundamental results about the nor-
malization procedure. The �rst result states that the normal-
ization procedure is correct in that it does indeed produce
queries in normal form.

Lemma normalized_selections_are_in_nf

(s : wfGraphQLSchema) (ts : Name) (�s : seq Selection) :

are_in_normal_form s (normalize_selections s ts �s).

Theorem normalized_query_is_in_nf :

8 (� : query) (s : wfGraphQLSchema),

is_in_normal_form s (normalize s �).

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preserving in that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti�es over every node of the graph.

Lemma normalize_selections_preserves_semantics

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

u \in g.(nodes) ->

execute_selection_set s check_scalar g coerce

u (normalize_selections s u.(ntype) �s) =

execute_selection_set s check_scalar g coerce

u �s.
Theorem normalize_preserves_semantics :

8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s),

eval_query (normalize s �) g s = eval_query � g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli�ed Semantics of Normalized Queries
One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de�ning a simpli�ed evaluation function whichH�P
crucially use to establish their complexity results. However,
H�P do not formally prove that this simpli�ed semantics
is equivalent to the original, when considering normalized
queries.

We de�ne the simpli�ed semantics L·MG of H�P as shown
in Figure 9 and prove that, for queries in normal form, both
L�MG and J�KG produce the same response.

Lemma exec_sel_eq_simpl_exec

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

are_in_normal_form s �s ->

execute_selection_set s check_scalar g coerce

u �s =

simpl_execute_selection_set s check_scalar g coerce

u �s.

Theorem simpl_eval_correctness

(� : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s � ->

eval_query � g s = simpl_eval_query � g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations
Mechanizing normalization and the simpli�ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH�P’s de�nitions. While these are admittedly
minor, they con�rm the value of mechanized formalization.

First, some queries are considered non-redundant byH�P
although they actually produce redundant results. A simple

Anon.

in the �rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a �eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the �eld’s type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.
To normalize a query, we simply normalize its selection

set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form

query {

. . . on Query {

goodboi {

name

}

}

goodboi {

name

} }

// Normalized query

query {

goodboi {

. . . on Dog {

name

}

. . . on Pig {

name

}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
condition Query are lifted and the multiple occurrences of
�eld goodboi are merged into a single occurrence. Since the
type of the �eld goodboi is the abstract type Animal, the
subselections are wrapped in fragments for each concrete
object subtype, namely Dog and Pig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation
We now establish two fundamental results about the nor-
malization procedure. The �rst result states that the normal-
ization procedure is correct in that it does indeed produce
queries in normal form.

Lemma normalized_selections_are_in_nf

(s : wfGraphQLSchema) (ts : Name) (�s : seq Selection) :

are_in_normal_form s (normalize_selections s ts �s).

Theorem normalized_query_is_in_nf :

8 (� : query) (s : wfGraphQLSchema),

is_in_normal_form s (normalize s �).

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preserving in that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti�es over every node of the graph.

Lemma normalize_selections_preserves_semantics

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

u \in g.(nodes) ->

execute_selection_set s check_scalar g coerce

u (normalize_selections s u.(ntype) �s) =

execute_selection_set s check_scalar g coerce

u �s.
Theorem normalize_preserves_semantics :

8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s),

eval_query (normalize s �) g s = eval_query � g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli�ed Semantics of Normalized Queries
One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de�ning a simpli�ed evaluation function whichH�P
crucially use to establish their complexity results. However,
H�P do not formally prove that this simpli�ed semantics
is equivalent to the original, when considering normalized
queries.

We de�ne the simpli�ed semantics L·MG of H�P as shown
in Figure 9 and prove that, for queries in normal form, both
L�MG and J�KG produce the same response.

Lemma exec_sel_eq_simpl_exec

(s : wfGraphQLSchema) (g : conformedGraph s)

(�s : seq Selection) (u : node) :

are_in_normal_form s �s ->

execute_selection_set s check_scalar g coerce

u �s =

simpl_execute_selection_set s check_scalar g coerce

u �s.

Theorem simpl_eval_correctness :

8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s),

is_in_normal_form s � ->

eval_query � g s = simpl_eval_query � g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations
Mechanizing normalization and the simpli�ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH�P’s de�nitions. While these are admittedly
minor, they con�rm the value of mechanized formalization.

First, some queries are considered non-redundant byH�P
although they actually produce redundant results. A simple

Formalization evaluation and details

Clases de cátedraEvaluation

20

Effectivity
Uncovered two issues in H&P formalization:

• Flawed definition of normal form
• Incomplete set of equivalence rules for normalization

Clases de cátedraEvaluation

20

Effectivity
Uncovered two issues in H&P formalization:

• Flawed definition of normal form
• Incomplete set of equivalence rules for normalization

Faithfulness
Validated with a series of examples from different sources:

• Examples (41) from the SPEC validation section*
• Star Wars example from GraphQL reference implementation
• Example used in H&P

* https://graphql.github.io/graphql-spec/June2018/#sec-Validation

https://graphql.github.io/graphql-spec/June2018/#sec-Validation

Clases de cátedraConclusion

21

• First mechanized formalization of GraphQL in the Coq proof assistant

• Certified query normalization algorithm

• Uncover issues in initial formalization [H&P, WWW18]

Contribution

Clases de cátedraConclusion

21

• First mechanized formalization of GraphQL in the Coq proof assistant

• Certified query normalization algorithm

• Uncover issues in initial formalization [H&P, WWW18]

• Further GraphQL features

• Extraction (certified reference implementation)

• More general data models

Contribution

Future work

Clases de cátedraConclusion

21

• First mechanized formalization of GraphQL in the Coq proof assistant

• Certified query normalization algorithm

• Uncover issues in initial formalization [H&P, WWW18]

Thanks!

• Further GraphQL features

• Extraction (certified reference implementation)

• More general data models

Contribution

Future work

