GraphCoQL

A mechanized formalization of GraphQL in Coq

Tomas Diaz Federico Olmedo Eric Tanter

17 —‘,k‘

—B)— FACULTAD DE CIENCIAS

o |6 FISICAS Y MATEMATICAS
UNIVERSIDAD DE CHILE

N I'I Millennium Institute
l.l Foundational Research on Data

Certified Programs and Proofs
New Orleans, USA - January 2020

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {
artist(id:1000) {

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {
artist(id:1000) {
name
}
}

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {
artist(id:1000) {
name
artworks(role: ACTOR) {
title
}
¥
}

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {
artist(id:1000) {
name
artworks(role: ACTOR) {
title

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {
artist(id:1000) {
name
artworks(role: ACTOR) {
title

“artist” : {
“name” : “Tom Hanks”,

GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {
artist(id:1000) {
name
artworks(role: ACTOR) {
title

“artist” : {
“name” : “Tom Hanks”,
“artworks” : |

{
“title” : “Toy Story”,

’

“title” : “Forrest Gump”,

¥
{
}
-

}
}

Industry involvement with GraphQL

() shopify ; @ coursera APOLLO
infurt s
= ArangoDB KLV

a Prisma

aws @) Dgraph

v’ A ATLASSIAN
. .
velp®: GitHub K'ﬁ'w (Q) airbnb NBC lgﬂ

First language formalization [Hartig & Pérez, WWW'18]

Paper & pencil formalization to study complexity properties.

‘ f:l(u, fla]) if (u, fla]) € dom(A) |

[fladlg = { f:null else.
| AMu, fla if (u, f[a]) € dom(A)
[¢:f]l _{ {:null else.
f:I{[olg Y- {lel &3] if types(f) € Ly and {or, ..., v} = {v; | (u, fla], v;) € E}
[flelie}]s f:{ [[go]]G if typeg(f) ¢ Lt and (u, f[a],v) € E
f:null if typeg(f) ¢ Lt and thereisnov € N s.t. (u, fla],v) € E
C:I{[elg Y- {lel £ 31 if types(F) € Ly and {o1, ..., vk} = {v; | (u,), v;) € E}
[¢:flalle}] s C:{ ﬂ(p]]G if typeg(f) ¢ Lt and (u, f[a],v) € E
{:null if typeg(f) ¢ Lt and thereis nov € N s.t. (u, f[a],v) € E
lelg, ift €Orandr(u) =t ort € It and r(u) € implementationg(t), or
on t{p}]% = t € Uy and 7(u) € uniong(t)
G S
£ in other case.

[o1--- @il = collect([p1]G - - - [ex])

| Figure 5: Semantics of a GraphQL query. '

First language formalization [Hartig & Pérez, WWW'18]

Paper & pencil formalization to study complexity properties.

‘ Ay, fla]) if (u, fla]) € dom(A) |

w |
[flellg = f:null else.
u _ | C:Au, fla]) if (u, fla]) € dom(A)
[¢:flellG = {:null else.
[flaliols =4 f:{lelg2 if typeg(f) ¢ Lt and (u, f[a],v) € E

f:inull if typeg(f) ¢ Lt and there isno v € N s.t. (u, fla],v) € E

C:I{[elg Y- {lel £ 31 if types(F) € Ly and {o1, ..., vk} = {v; | (u,), v;) € E}
C:{ [eld 2 if typeg(f) ¢ Lt and (u, f[a],v) € E

[¢:flalle}] s =
{:null if typeg(f) ¢ L1 and there isno v € N s.t. (u, fla],v) € E
S

lelg, ift €Orandr(u) =t ort € It and r(u) € implementationg(t), or
t € Ur and 7(u) € uniong(t)
£ in other case.

{ f:l{folg 3 {[[(p]]gk}] if typeg(f) € Lt and {v1, ..., v} = {v; | (u, fa], v;) € E}
[on te}]g = {

[o1--- @il = collect([p1]G - - - [ex])

l Figure 5: Semantics of a GraphQL query. '

Our contribution

GraphCoQL

First mechanized formalization of
GraphQL in the

Schema

Describes how data is structured and queried

Schema

Describes how data is structured and queried

type Artist {

id: ID

object name: String

type artworks(role:Role): [Artwork]
¥

Schema

Describes how data is structured and queried

type Artist {

id: ID

object name: String

type artworks(role:Role): [Artwork]
¥

interface Movie {
id: ID

. title: String
interface year: Int
type cast: [Artist]

}

Schema

Describes how data is structured and queried

type Artist {

id: ID

object name: String

type artworks(role:Role): [Artwork]
¥

interface Movie {
id: ID

. title: String
interface year: Int
type cast: [Artist]

}

type Fiction implements Movie {
Iy
type Animation implements Movie {

style: Style
Iy

[object

Schema

Describes how data is structured and queried

type

7

[

interface
type

;

enum Role {
ACTOR
DIRECTOR
WRITER

type Artist {
id: ID

name: String
artworks(role:Role): [Artwork] y

}

interface Movie {
id: ID
title: String
year: Int
cast: [Artist]

Iy

type Fiction implements Movie {

) .

type Animation implements Movie {

style: Style
Iy

{

enumeration
type

|

Schema

Describes how data is structured and queried

. enum Role {
ty‘i’ﬁ.AEElSt ¢ ACTOR { enumeration]
: : - DIRECTOR type
object name: String WRITERO yp
type artworks(role:Role): [Artwork] ,
¥
1n’;§:f?ge Movie 1 union Artwork = Fiction { union type }
tle: Strin | Animation
interface titte: g | Book
year: Int
type cast: [Artist]

; type Book { .. }

type Fiction implements Movie {
Iy
type Animation implements Movie {

style: Style
Iy

Schema

Describes how data is structured and queried

- enum Role {
typs A;ElSt { ACTOR { enumeration]
id:
i ; DIRECTOR type
object name: String i yp
type artworks(role:Role): [Artwork])
}
ln;ﬁff?ge Movie 4 union Artwork = Fi;tior) { union type J
tle: Strin | Animation
interface titte: g | Book
year: Int
type cast: [Artist]

; type Book { .. }

type Fiction implements Movie {

7

type Query A .
' artist(id:ID): Artist entry points

N - for querying
type Animation implements Movie { 1 movie(id:ID): Movie < the dataset

\.

style: Style
Iy

Schema

Describes how data is structured and queried

r X

ypeDefinition :
ScalarTypeDefinition
Object TypeDefinition
InterfaceTypeDefinition
UnionTypeDefinition
EnumTypeDefinition

L InputObjectTypeDeﬁnitionA

Inductive TypeDefinition : Type :=
| ScalarTypeDefinition (name : Name)
| ObjectTypeDefinition (name : Name)
(interfaces : seq Name)
(fields : seq FieldDefinition)
| InterfaceTypeDefinition (name : Name)
(fields : seq FieldDefinition)
| UnionTypeDefinition (name : Name)
(members : seq Name)
| EnumTypeDefinition (name : Name)
(members : seq EnumValue).

Graph data model

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

Graph data model

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

id: 1000
name; “Tom Hanks”

Graph data model

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

artworks[role:ACTOR]

artworks[role:ACTOR]
—_

id: 2000 id: 1000] id: 2007

title: “Forrest Gump” name: “Tom Hanks title: “Toy Story”

year: 1994 year: 1995
style: “3D"

_

Graph data model

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

artworks[role:ACTOR]
—_

artworks[role:ACTOR]

cast , cast
id: 2000 id: 1000] id: 2007
title: “Forrest Gump” name: “Tom Hanks title: “Toy Story”
year: 1994 year: 1995
style: “3D"

_

Graph data model

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

artworks[role:ACTOR] artworks[role:ACTOR]

—

cast , cast
id: 2000 id: 1000] id: 2007
title: “Forrest Gump” name: “Tom Hanks title: “Toy Story”
year: 1994 year: 1995
style: “3D"
artworks|role:WRITER] author -

~)
id: 3000

title: “Uncommon Type”
year: 2017

ISBN: 1101946156

- Y,

Graph data model

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

movie[id:2000] movie[id:2001]

artist[id:1000]

artworks[role:ACTOR]

artworks[role:ACTOR]

—

Animation

cast

id: 2000 id: 1000] id: 2007
title: “Forrest Gump” name: “Tom Hanks title: “Toy Story”
year: 1994 year: 1995
style: “3D"
artworks[role:WRITER] author - J

~)
id: 3000

title: “Uncommon Type”
year: 2017

ISBN: 1101946156

- Y,

Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query { {
artist(id:1000) {
name
artworks(role: ACTOR) {
title
}
}
¥ Dataset

movie[id:2000] movie[id:2001] }

artist[id:1000]

artworks[role:ACTOR] artworks|[role:ACTOR]

Fiction Animation

id: 2000 .
ot w " id: 1000
title: “Forrest Gump e "

. name: “Tom Hanks
year: 1994

artworks[role:WRITER] < > author

id: 3000

title: “Uncommon Type”
year: 2017

ISBN: 1101946156

id: 2001
title: “Toy Story”
year: 1995

style: “3D"

Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)

query { {
artist(id:1000) {
name
artworks(role: ACTOR) {
title
}

} Dataset

10

Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query A{ {
mp artist(id:1000) { “artist” : {
}
} Dataset

artist[id:1000]

id: 1000
name: “Tom Hanks”

11

Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query { {
() “artist” : {

mp name “name” : “Tom Hanks”,

}
} Dataset

.
}

id: 1000
name: “Tom Hanks”

12

Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query { {
() “artist” : {
“name” : “Tom Hanks”,
mp artworks(role: ACTOR) { “artworks” : [
title {
} “title” : ..
} ¥
} Dataset {
“title” : ..
¥}y
]
}
}

artworks|[role:ACTOR]

artworks|[role:ACTOR]

Animation

id: 2000
title: “Forrest Gump”
year: 1994

id: 2001
title: “Toy Story”
year: 1995

style: “3D"

id: 1000
name: “Tom Hanks”

13

Query evaluation - Peculiarities

Query evaluation is not compositional

14

Query evaluation - Peculiarities

Query evaluation is not compositional

query {
artist(id:1000) {
name
}

artist(id:1000) {
artworks(role: ACTOR) {
title
}

14

Query evaluation - Peculiarities

Query evaluation is not compositional

query {
artist(id:1000) {
name
}

s artist(id:1000) {
artworks(role: ACTOR) {
title
}

14

Query evaluation - Peculiarities

Query evaluation is not compositional

query {
artist(id:1000) {
name
}

s artist(id:1000) {
artworks(role: ACTOR) {
title
}

“artist”
“name”

I

“artist” :

{

“Tom Hanks”,

{

“artworks” : |

{

14

Query evaluation - Singularities

Query evaluation is not compositional

Selections are "factored-out” in between the recursive calls

{
query { “artist” : {
_ - “name” : “Tom Hanks”,
artlzgééd.1@®0) { “artworks” : [
) {
artist(id:1000) { .
artworks(role: ACTOR) { {'
title
}
o
} } !
}
}

15

Query evaluation - Singularities

Query evaluation is not compositional

Selections are "factored-out” in between the recursive calls

{
query 1 “artist” : {
, . “name” : “Tom Hanks”,
artlzgééd.1@®0) { “artworks” : [
\ {
artist(id:1000) { Y
artworks(role: ACTOR) { {'
title
}
|
} }]
¥
}

15

Application

Normalization [H&P, WWW’'18]

17

Normalization [H&P, WWW’'18]

Queries admit a normal form that can be evaluated purely compositionally
and significantly simplifies reasoning

17

Normalization [H&P, WWW’'18]

Queries admit a normal form that can be evaluated purely compositionally
and significantly simplifies reasoning

But...'
+* Normalization procedure not provided

< No correctness proof

17

18

Query normalization

» Certified normalization algorithm

Theorem normalized_query_is_in_nf :
V (¢ : query) (s : wfGraphQLSchema),
is_in_normal_form s (normalize s ¢).

Theorem normalize_preserves_semantics :
V (¢ : query) (s : wfGraphQLSchema) (g : conformedGraph s),
eval_query (normalize s ¢) g s = eval_query ¢ g s.

18

Query normalization

Certified normalization algorithm

Theorem normalized_query_is_in_nf :
V (¢ : query) (s : wfGraphQLSchema),
is_in_normal_form s (normalize s ¢).

Theorem normalize_preserves_semantics :

V (¢ : query) (s : wfGraphQLSchema) (g :

conformedGraph s),

eval_query (normalize s ¢) g s = eval_query ¢ g s.

Simplified evaluation for queries in normal form

Theorem simpl_eval_correctness :
V (¢ : query) (s : wfGraphQLSchema) (g :
is_in_normal_form s ¢ ->
eval_query ¢ g s = simpl_eval_query ¢

conformedGraph s),

g s.

18

Formalization evaluation and details

Evaluation

Effectivity
Uncovered two issues in H&P formalization:

* Flawed definition of normal form
* Incomplete set of equivalence rules for normalization

20

Evaluation

Effectivity
Uncovered two issues in H&P formalization:

* Flawed definition of normal form
* Incomplete set of equivalence rules for normalization

Faithfulness
Validated with a series of examples from different sources:

* Examples (41) from the SPEC validation section*
» Star Wars example from GraphQL reference implementation

* Example used in H&P

* https://graphgl.github.io/graphgl-spec/June2018/#sec-Validation

20

https://graphql.github.io/graphql-spec/June2018/#sec-Validation

Conclusion

Contribution

* First mechanized formalization of GraphQL in the Coq proof assistant
» Certified query normalization algorithm

« Uncover issues in initial formalization [H&P, WWW 18]

21

Conclusion

Contribution

* First mechanized formalization of GraphQL in the Coq proof assistant
» Certified query normalization algorithm

« Uncover issues in initial formalization [H&P, WWW 18]

Future work

* Further GraphQL features
* Extraction (certified reference implementation)

* More general data models

21

Conclusion

Contribution

* First mechanized formalization of GraphQL in the Coq proof assistant
» Certified query normalization algorithm

« Uncover issues in initial formalization [H&P, WWW 18]

Future work

* Further GraphQL features
* Extraction (certified reference implementation)

* More general data models

Thanks!

21

