
GraphCoQL

CertiÞed Programs and Proofs
New Orleans, USA Ñ January 2020

Federico Olmedo Tom‡s D’az ƒric Tanter

A mechanized formalization of GraphQL in Coq

!"##$%%"&'()%*+"+&+$!!
"#$%&'()#%'*!+,-,'./0!#%!1'('

Clases de c‡tedraGraphQL

2

Language for specifying the interfaces of web data services and
their query mechanism

Clases de c‡tedraGraphQL

2

HTTP GET

Language for specifying the interfaces of web data services and
their query mechanism

Clases de c‡tedraGraphQL

2

HTTP GET

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de c‡tedraGraphQL

2

HTTP GET

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de c‡tedraGraphQL

2

HTTP GET

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de c‡tedraGraphQL

2

HTTP GET

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 ÒtitleÓ : ÒToy StoryÓ ,
 },
 {
 ÒtitleÓ : ÒForrest GumpÓ ,
 },

 É
]
 }
}

Clases de c‡tedraGraphQL

2

HTTP GET

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 ÒtitleÓ : ÒToy StoryÓ ,
 },
 {
 ÒtitleÓ : ÒForrest GumpÓ ,
 },

 É
]
 }
}

Clases de c‡tedraGraphQL

2

HTTP GET

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 ÒtitleÓ : ÒToy StoryÓ ,
 },
 {
 ÒtitleÓ : ÒForrest GumpÓ ,
 },

 É
]
 }
}

Clases de c‡tedraGraphQL

2

HTTP GET

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Language for specifying the interfaces of web data services and
their query mechanism

Clases de c‡tedraIndustry involvement with GraphQL

3

2012

2015+

Clases de c‡tedraFirst language formalization [Hartig & PŽrez, WWWÕ18]

4

Paper & pencil formalization to study complexity properties.

! f [!]"u
G =

!
f : " (u, f [!]) if (u, f [!]) ! dom(")
f : null else.

! ! : f [!]"u
G =

!
! : " (u, f [!]) if (u, f [!]) ! dom(")
! : null else.

! f [!] {#}"u
G =

!""#
""
$

f : [{ !#"! 1
G } á á á{ !#"! k

G }] if typeS (f) ! LT and{$1, ... ,$k } = {$i | (u, f [!],$i) ! E}
f : { !#"!

G } if typeS (f) ! LT and (u, f [!],$) ! E
f : null if typeS (f) ! LT and there is no$! N s.t. (u, f [!],$) ! E

! ! : f [!] {#}"u
G =

!""#
""
$

! : [{ !#"! 1
G } á á á{ !#"! k

G }] if typeS (f) ! LT and{$1, ... ,$k } = {$i | (u, f [!],$i) ! E}
! : { !#"!

G } if typeS (f) ! LT and (u, f [!],$) ! E
! : null if typeS (f) ! LT and there is no$! N s.t. (u, f [!],$) ! E

!on t {#}"u
G =

!""#
""
$

!#"u
G if t ! OT and%(u) = t , or t ! I T and%(u) ! implementationS (t), or

t ! UT and%(u) ! unionS (t)
& in other case.

!#1 á á á#k "u
G = collect(!#1"u

G á á á!#k "u
G)

Figure 5: Semantics of a GraphQL query.

(2) if ' = f [!] or ' = ! : f [!] then

' { (} #1 á á á#i ' {) } #i +1 á á á#k "

' { () } #1 á á á#i #i +1 á á á#k

(3) on t { #1 á á á#k } " on t { #1 } á á áon t { #k }
(4) on t { on t { # } } " on t { # }
(5) If implementsS (t) = {t 1, ... ,t k} then

on t { # } " on t1 { # } á á áon tk { # }

(6) If unionS (t) = {t 1, ... ,t k} then

on t { # } " on t1 { # } á á áon tk { # }

(7) If t 1, t 2 ! OT andt 1 " t 2 then

on t1 { on t2 { # } } " &

In the rest of the paper we assume that every GraphQL query is a
non-redundant query in ground-typed normal form. An important,
though simple observation is that if a query does not mention
any expression of the formon t { ... } , then one can obtain an
equivalent non-redundant query in ground-typed normal in linear
time (by just using equivalences (1) and (2)). For queries that do
mentionon t { ... } a naive application of the above rules can lead
to a query of exponential size (rules (5) and (6)). We left for future
work a precise study of the complexity of the transformation.

One of the main properties of queries that satisfy the conditions
presented in this section is that they produce a unique response
object without the need of thecollect(á) operator. More formally,
let ###$$G be an evaluation function for queries de! ned in exactly
the same way as!#"G in De! nition 3.3 but replacing the last rule in
Figure 5 by###1 á á á#k $$uG = ###1$$uG á á á###k $$uG, that is, without using
collect(á). It is not di" cult to prove that if# is a non-redundant
query in ground-typed normal form, then!#"G = ###$$G for every
graphG. We shall exploit this property in the next sections.

4 THE COMPLEXITY OF GRAPHQL
In this section we study the complexity of two classical decision
problems in the context of GraphQL, namely, the evaluation prob-
lem and the enumeration problem, showing that both can be solved
e" ciently. For this analysis we make the following assumption: Let
Gbe a GraphQL graph,u be a node, andf [!] be an edge label. We as-
sume that one can access the list off [!]-neighbors ofu in timeO(1),
and one can access thef [!]-property of a node in timeO(1). Al-
though this is a standard assumption for graph databases in a RAM
computational model, we stress that a GraphQL graph is usually
implemented as aviewover another data source and, thus, the time
required to access neighbors and data may depend on the underly-
ing data storage. Our assumption allows us to study the two decision
problems independent of implementation-speci! c peculiarities.

Classical query languages, such as SQL or Relational Algebra,
take as inputs a query and a database and produce a set of tuples as
output. For these languages the standard way of de! ning a decision
problem is the following: given a queryQ, a databaseD, and a
candidate tuplet , check ift is part of the evaluation ofQ over
D [21]. In contrast to classical languages, the result of a GraphQL
query is not a set of tuples but a single response object. To de! ne a
similar decision problem for GraphQL, we consider the data values
occurring in response objects. For example, in the object

droid : { name: C3PO pF: Protocol } ship : { length : 30.0 }

the values that occur areC3PO, Protocol and30.0. Formally, we
de! ne the following decision problem.

Problem: G!"#$ QL%E&"'

Input: GraphQL query#, graphG, and valuev ! Vals
Ouput: Doesv occur in!#"G?

We next show thatG!"#$ QL%E&"' is complete for the class of
problems that can be decided in nondeterministic logarithmic space.

T$()!(* 4.1. G!"#$ QL%E&"' is NL-complete.

Clases de c‡tedraFirst language formalization [Hartig & PŽrez, WWWÕ18]

4

Paper & pencil formalization to study complexity properties.

! f [!]"u
G =

!
f : " (u, f [!]) if (u, f [!]) ! dom(")
f : null else.

! ! : f [!]"u
G =

!
! : " (u, f [!]) if (u, f [!]) ! dom(")
! : null else.

! f [!] {#}"u
G =

!""#
""
$

f : [{ !#"! 1
G } á á á{ !#"! k

G }] if typeS (f) ! LT and{$1, ... ,$k } = {$i | (u, f [!],$i) ! E}
f : { !#"!

G } if typeS (f) ! LT and (u, f [!],$) ! E
f : null if typeS (f) ! LT and there is no$! N s.t. (u, f [!],$) ! E

! ! : f [!] {#}"u
G =

!""#
""
$

! : [{ !#"! 1
G } á á á{ !#"! k

G }] if typeS (f) ! LT and{$1, ... ,$k } = {$i | (u, f [!],$i) ! E}
! : { !#"!

G } if typeS (f) ! LT and (u, f [!],$) ! E
! : null if typeS (f) ! LT and there is no$! N s.t. (u, f [!],$) ! E

!on t {#}"u
G =

!""#
""
$

!#"u
G if t ! OT and%(u) = t , or t ! I T and%(u) ! implementationS (t), or

t ! UT and%(u) ! unionS (t)
& in other case.

!#1 á á á#k "u
G = collect(!#1"u

G á á á!#k "u
G)

Figure 5: Semantics of a GraphQL query.

(2) if ' = f [!] or ' = ! : f [!] then

' { (} #1 á á á#i ' {) } #i +1 á á á#k "

' { () } #1 á á á#i #i +1 á á á#k

(3) on t { #1 á á á#k } " on t { #1 } á á áon t { #k }
(4) on t { on t { # } } " on t { # }
(5) If implementsS (t) = {t 1, ... ,t k} then

on t { # } " on t1 { # } á á áon tk { # }

(6) If unionS (t) = {t 1, ... ,t k} then

on t { # } " on t1 { # } á á áon tk { # }

(7) If t 1, t 2 ! OT andt 1 " t 2 then

on t1 { on t2 { # } } " &

In the rest of the paper we assume that every GraphQL query is a
non-redundant query in ground-typed normal form. An important,
though simple observation is that if a query does not mention
any expression of the formon t { ... } , then one can obtain an
equivalent non-redundant query in ground-typed normal in linear
time (by just using equivalences (1) and (2)). For queries that do
mentionon t { ... } a naive application of the above rules can lead
to a query of exponential size (rules (5) and (6)). We left for future
work a precise study of the complexity of the transformation.

One of the main properties of queries that satisfy the conditions
presented in this section is that they produce a unique response
object without the need of thecollect(á) operator. More formally,
let ###$$G be an evaluation function for queries de! ned in exactly
the same way as!#"G in De! nition 3.3 but replacing the last rule in
Figure 5 by###1 á á á#k $$uG = ###1$$uG á á á###k $$uG, that is, without using
collect(á). It is not di" cult to prove that if# is a non-redundant
query in ground-typed normal form, then!#"G = ###$$G for every
graphG. We shall exploit this property in the next sections.

4 THE COMPLEXITY OF GRAPHQL
In this section we study the complexity of two classical decision
problems in the context of GraphQL, namely, the evaluation prob-
lem and the enumeration problem, showing that both can be solved
e" ciently. For this analysis we make the following assumption: Let
Gbe a GraphQL graph,u be a node, andf [!] be an edge label. We as-
sume that one can access the list off [!]-neighbors ofu in timeO(1),
and one can access thef [!]-property of a node in timeO(1). Al-
though this is a standard assumption for graph databases in a RAM
computational model, we stress that a GraphQL graph is usually
implemented as aviewover another data source and, thus, the time
required to access neighbors and data may depend on the underly-
ing data storage. Our assumption allows us to study the two decision
problems independent of implementation-speci! c peculiarities.

Classical query languages, such as SQL or Relational Algebra,
take as inputs a query and a database and produce a set of tuples as
output. For these languages the standard way of de! ning a decision
problem is the following: given a queryQ, a databaseD, and a
candidate tuplet , check ift is part of the evaluation ofQ over
D [21]. In contrast to classical languages, the result of a GraphQL
query is not a set of tuples but a single response object. To de! ne a
similar decision problem for GraphQL, we consider the data values
occurring in response objects. For example, in the object

droid : { name: C3PO pF: Protocol } ship : { length : 30.0 }

the values that occur areC3PO, Protocol and30.0. Formally, we
de! ne the following decision problem.

Problem: G!"#$ QL%E&"'

Input: GraphQL query#, graphG, and valuev ! Vals
Ouput: Doesv occur in!#"G?

We next show thatG!"#$ QL%E&"' is complete for the class of
problems that can be decided in nondeterministic logarithmic space.

T$()!(* 4.1. G!"#$ QL%E&"' is NL-complete.

Missing proofs about fundamental properties

Clases de c‡tedraOur contribution

5

First mechanized formalization of
GraphQL in the Coq proof assistant

GraphCoQL

Clases de c‡tedraSchema

6

Describes how data is structured and queried

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Fiction implements Movie {
 É
}

type Animation implements Movie {
 É
 style : Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { É }

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraSchema

6

Describes how data is structured and queried

object
type

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Fiction implements Movie {
 É
}

type Animation implements Movie {
 É
 style : Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { É }

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraSchema

6

Describes how data is structured and queried

interface
type

object
type

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Fiction implements Movie {
 É
}

type Animation implements Movie {
 É
 style : Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { É }

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraSchema

6

Describes how data is structured and queried

interface
type

object
type

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Fiction implements Movie {
 É
}

type Animation implements Movie {
 É
 style : Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { É }

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraSchema

6

Describes how data is structured and queried

interface
type

object
type

enumeration
type

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Fiction implements Movie {
 É
}

type Animation implements Movie {
 É
 style : Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { É }

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraSchema

6

Describes how data is structured and queried

interface
type

object
type

enumeration
type

union type

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Fiction implements Movie {
 É
}

type Animation implements Movie {
 É
 style : Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { É }

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraSchema

6

Describes how data is structured and queried

interface
type

object
type

entry points
for querying
the dataset

enumeration
type

union type

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Fiction implements Movie {
 É
}

type Animation implements Movie {
 É
 style : Style
}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
 | Animation
 | Book

type Book { É }

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraSchema

7

Describes how data is structured and queried

Clases de c‡tedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

Clases de c‡tedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

!"#$%#

$&2!3444'
()*+ 2!56#7!8'%9-:

Clases de c‡tedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

!"#$%#,$-#$.(

$&2!;444'
#$#/+2!5"#..,-(!<$7=:!
0+)"2!3>>?!

$&2!3444'
()*+ 2!56#7!8'%9-:

!($*)#$.(

$&2!;443'
#$#/+2!56#@!A(#.@:!
0+)"2!3>>B!
%#0/+2!5C1D!

'.(E#.9-F.#*,2GH6I+J '.(E#.9-F.#*,2GH6I+J

Clases de c‡tedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

!"#$%#,$-#$.(

$&2!;444'
#$#/+2!5"#..,-(!<$7=:!
0+)"2!3>>?!

$&2!3444'
()*+ 2!56#7!8'%9-:

!($*)#$.(

$&2!;443'
#$#/+2!56#@!A(#.@:!
0+)"2!3>>B!
%#0/+2!5C1D!

'.(E#.9-F.#*,2GH6I+J '.(E#.9-F.#*,2GH6I+J

/'-(/'-(

Clases de c‡tedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

1..2

!"#$%#,$-#$.(

$&2!C444'
#$#/+2!5K%/#77#%!6@=,:!
0+)"2!;43L!
34152!3343>?M3BM

$&2!;444'
#$#/+2!5"#..,-(!<$7=:!
0+)"2!3>>?!

$&2!3444'
()*+ 2!56#7!8'%9-:

!($*)#$.(

$&2!;443'
#$#/+2!56#@!A(#.@:!
0+)"2!3>>B!
%#0/+2!5C1D!

'.(E#.9-F.#*,2GH6I+J '.(E#.9-F.#*,2GH6I+J

/'-(/'-(

'.(E#.9-F.#*,2N+O6P+J '$(0#.

Clases de c‡tedraGraph data model

8

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

67+"0

1..2

!"#$%#,$-#$.(

'.()-(F)&23444J

$&2!C444'
#$#/+2!5K%/#77#%!6@=,:!
0+)"2!;43L!
34152!3343>?M3BM

$&2!;444'
#$#/+2!5"#..,-(!<$7=:!
0+)"2!3>>?!

$&2!3444'
()*+ 2!56#7!8'%9-:

!($*)#$.(

$&2!;443'
#$#/+2!56#@!A(#.@:!
0+)"2!3>>B!
%#0/+2!5C1D!

7#Q),F)&2;443J7#Q),F)&2;444J

'.(E#.9-F.#*,2GH6I+J '.(E#.9-F.#*,2GH6I+J

/'-(/'-(

'.(E#.9-F.#*,2N+O6P+J '$(0#.

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation

9

Queries are evaluated by traversing the graph and collecting nodesÕ properties

Response (ˆ la JSON)Query

Dataset

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 É
 },
 {
 É
 },
]
 }
}

Clases de c‡tedraQuery evaluation

10

Queries are evaluated by traversing the graph and collecting nodesÕ properties

Response (ˆ la JSON)Query

Dataset

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 É
 },
 {
 É
 },
]
 }
}

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation

11

Queries are evaluated by traversing the graph and collecting nodesÕ properties

Response (ˆ la JSON)Query

Dataset

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 É
 },
 {
 É
 },
]
 }
}

query {
 artist (id : 1000) {
 name
 artworks(role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation

12

Queries are evaluated by traversing the graph and collecting nodesÕ properties

Response (ˆ la JSON)Query

Dataset

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 É
 },
 {
 É
 },
]
 }
}

query {
 artist (id : 1000) {
 name
 artworks(role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation

13

Queries are evaluated by traversing the graph and collecting nodesÕ properties

Response (ˆ la JSON)Query

Dataset

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 ÒtitleÓ : É
 },
 {
 ÒtitleÓ : É
 },
]
 }
}

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

Clases de c‡tedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

query {
 artist (id : 1000) {
 name
 }
 artist (id : 1000) {
 artworks (role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

query {
 artist (id : 1000) {
 name
 }
 artist (id : 1000) {
 artworks (role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation - Peculiarities

14

Query evaluation is not compositional

query {
 artist (id : 1000) {
 name
 }
 artist (id : 1000) {
 artworks (role : ACTOR) {
 title
 }
 }
}

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 },

 ÒartistÓ : {
 ÒartworksÓ : [
 {
 É
 },
 {
 É
 },
]
 }
}

Clases de c‡tedraQuery evaluation - Singularities

15

Selections are Òfactored-outÓ in between the recursive calls

Query evaluation is not compositional

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 É
 },
 {
 É
 },
]
 }
}

query {
 artist (id : 1000) {
 name
 }
 artist (id : 1000) {
 artworks (role : ACTOR) {
 title
 }
 }
}

Clases de c‡tedraQuery evaluation - Singularities

15

Selections are Òfactored-outÓ in between the recursive calls

This makes reasoning signiÞcantly harder

Query evaluation is not compositional

{
 ÒartistÓ : {
 ÒnameÓ : ÒTom HanksÓ,
 ÒartworksÓ : [
 {
 É
 },
 {
 É
 },
]
 }
}

query {
 artist (id : 1000) {
 name
 }
 artist (id : 1000) {
 artworks (role : ACTOR) {
 title
 }
 }
}

Application

Clases de c‡tedraNormalization [H&P, WWWÕ18]

17

Clases de c‡tedraNormalization [H&P, WWWÕ18]

17

Queries admit a normal form that can be evaluated purely compositionally
and signiÞcantly simpliÞes reasoning

Clases de c‡tedraNormalization [H&P, WWWÕ18]

17

Queries admit a normal form that can be evaluated purely compositionally
and signiÞcantly simpliÞes reasoning

! Normalization procedure not provided

! No correctness proof

ButÉ.

Clases de c‡tedraQuery normalization

18

Clases de c‡tedraQuery normalization

18

¥ Certified normalization algorithm

Anon.

in the ! rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a! eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the! eldÕs type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.

To normalize a query, we simply normalize its selection
set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form
query {

. . . on Query {
goodboi {

name
}

}
goodboi {

name
} }

// Normalized query
query {

goodboi {
. . . on Dog {

name
}
. . . on Pig {

name
}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
conditionQueryare lifted and the multiple occurrences of
! eldgoodboi are merged into a single occurrence. Since the
type of the! eld goodboi is the abstract typeAnimal, the
subselections are wrapped in fragments for each concrete
object subtype, namelyDogandPig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation

We now establish two fundamental results about the nor-
malization procedure. The! rst result states that the normal-
ization procedure iscorrectin that it does indeed produce
queries in normal form.

Lemmanormalized_selections_are_in_nf
(s : wfGraphQLSchema) (ts : Name) (! s : seq Selection) :

are_in_normal_form s (normalize_selections s ts ! s) .

Theoremnormalized_query_is_in_nf :
! (" : query) (s : wfGraphQLSchema) ,

is_in_normal_form s (normalize s ") .

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preservingin that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti! es over every node of the graph.

Lemmanormalize_selections_preserves_semantics
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

u \ in g. (nodes) ->
execute_selection_set s check_scalar g coerce

u (normalize_selections s u . (ntype) ! s) =
execute_selection_set s check_scalar g coerce

u ! s.
Theoremnormalize_preserves_semantics :

! (" : query) (s : wfGraphQLSchema) (g : conformedGraph s) ,
eval_query (normalize s ") g s = eval_query " g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli ! ed Semantics of Normalized Queries

One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de! ning a simpli! ed evaluation function whichH! P
crucially use to establish their complexity results. However,
H! P do not formally prove that this simpli! ed semantics
is equivalent to the original, when considering normalized
queries.

We de! ne the simpli! ed semantics!á"G of H! Pas shown
in Figure9 and prove that, for queries in normal form, both
!! "G and#! $G produce the same response.

Lemmaexec_sel_eq_simpl_exec
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

are_in_normal_form s ! s ->
execute_selection_set s check_scalar g coerce

u ! s =
simpl_execute_selection_set s check_scalar g coerce

u ! s.

Theoremsimpl_eval_correctness
(" : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s " ->
eval_query " g s = simpl_eval_query " g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations

Mechanizing normalization and the simpli! ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH! PÕs de! nitions. While these are admittedly
minor, they con! rm the value of mechanized formalization.

First, some queries are considered non-redundant byH! P
although they actually produce redundant results. A simple

Anon.

in the ! rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a! eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the! eldÕs type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.

To normalize a query, we simply normalize its selection
set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form
query {

. . . on Query {
goodboi {

name
}

}
goodboi {

name
} }

// Normalized query
query {

goodboi {
. . . on Dog {

name
}
. . . on Pig {

name
}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
conditionQueryare lifted and the multiple occurrences of
! eldgoodboi are merged into a single occurrence. Since the
type of the! eld goodboi is the abstract typeAnimal, the
subselections are wrapped in fragments for each concrete
object subtype, namelyDogandPig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation

We now establish two fundamental results about the nor-
malization procedure. The! rst result states that the normal-
ization procedure iscorrectin that it does indeed produce
queries in normal form.

Lemmanormalized_selections_are_in_nf
(s : wfGraphQLSchema) (ts : Name) (! s : seq Selection) :

are_in_normal_form s (normalize_selections s ts ! s) .

Theoremnormalized_query_is_in_nf :
! (" : query) (s : wfGraphQLSchema) ,

is_in_normal_form s (normalize s ") .

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preservingin that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti! es over every node of the graph.

Lemmanormalize_selections_preserves_semantics
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

u \ in g. (nodes) ->
execute_selection_set s check_scalar g coerce

u (normalize_selections s u . (ntype) ! s) =
execute_selection_set s check_scalar g coerce

u ! s.
Theoremnormalize_preserves_semantics :

! (" : query) (s : wfGraphQLSchema) (g : conformedGraph s) ,
eval_query (normalize s ") g s = eval_query " g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli ! ed Semantics of Normalized Queries

One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de! ning a simpli! ed evaluation function whichH! P
crucially use to establish their complexity results. However,
H! P do not formally prove that this simpli! ed semantics
is equivalent to the original, when considering normalized
queries.

We de! ne the simpli! ed semantics!á"G of H! Pas shown
in Figure9 and prove that, for queries in normal form, both
!! "G and#! $G produce the same response.

Lemmaexec_sel_eq_simpl_exec
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

are_in_normal_form s ! s ->
execute_selection_set s check_scalar g coerce

u ! s =
simpl_execute_selection_set s check_scalar g coerce

u ! s.

Theoremsimpl_eval_correctness
(" : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s " ->
eval_query " g s = simpl_eval_query " g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations

Mechanizing normalization and the simpli! ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH! PÕs de! nitions. While these are admittedly
minor, they con! rm the value of mechanized formalization.

First, some queries are considered non-redundant byH! P
although they actually produce redundant results. A simple

Clases de c‡tedraQuery normalization

18

¥ Certified normalization algorithm

¥ Simplified evaluation for queries in normal form

Anon.

in the ! rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a! eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the! eldÕs type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.

To normalize a query, we simply normalize its selection
set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form
query {

. . . on Query {
goodboi {

name
}

}
goodboi {

name
} }

// Normalized query
query {

goodboi {
. . . on Dog {

name
}
. . . on Pig {

name
}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
conditionQueryare lifted and the multiple occurrences of
! eldgoodboi are merged into a single occurrence. Since the
type of the! eld goodboi is the abstract typeAnimal, the
subselections are wrapped in fragments for each concrete
object subtype, namelyDogandPig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation

We now establish two fundamental results about the nor-
malization procedure. The! rst result states that the normal-
ization procedure iscorrectin that it does indeed produce
queries in normal form.

Lemmanormalized_selections_are_in_nf
(s : wfGraphQLSchema) (ts : Name) (! s : seq Selection) :

are_in_normal_form s (normalize_selections s ts ! s) .

Theoremnormalized_query_is_in_nf :
! (" : query) (s : wfGraphQLSchema) ,

is_in_normal_form s (normalize s ") .

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preservingin that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti! es over every node of the graph.

Lemmanormalize_selections_preserves_semantics
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

u \ in g. (nodes) ->
execute_selection_set s check_scalar g coerce

u (normalize_selections s u . (ntype) ! s) =
execute_selection_set s check_scalar g coerce

u ! s.
Theoremnormalize_preserves_semantics :

! (" : query) (s : wfGraphQLSchema) (g : conformedGraph s) ,
eval_query (normalize s ") g s = eval_query " g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli ! ed Semantics of Normalized Queries

One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de! ning a simpli! ed evaluation function whichH! P
crucially use to establish their complexity results. However,
H! P do not formally prove that this simpli! ed semantics
is equivalent to the original, when considering normalized
queries.

We de! ne the simpli! ed semantics!á"G of H! Pas shown
in Figure9 and prove that, for queries in normal form, both
!! "G and#! $G produce the same response.

Lemmaexec_sel_eq_simpl_exec
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

are_in_normal_form s ! s ->
execute_selection_set s check_scalar g coerce

u ! s =
simpl_execute_selection_set s check_scalar g coerce

u ! s.

Theoremsimpl_eval_correctness
(" : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s " ->
eval_query " g s = simpl_eval_query " g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations

Mechanizing normalization and the simpli! ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH! PÕs de! nitions. While these are admittedly
minor, they con! rm the value of mechanized formalization.

First, some queries are considered non-redundant byH! P
although they actually produce redundant results. A simple

Anon.

in the ! rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a! eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the! eldÕs type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.

To normalize a query, we simply normalize its selection
set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form
query {

. . . on Query {
goodboi {

name
}

}
goodboi {

name
} }

// Normalized query
query {

goodboi {
. . . on Dog {

name
}
. . . on Pig {

name
}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
conditionQueryare lifted and the multiple occurrences of
! eldgoodboi are merged into a single occurrence. Since the
type of the! eld goodboi is the abstract typeAnimal, the
subselections are wrapped in fragments for each concrete
object subtype, namelyDogandPig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation

We now establish two fundamental results about the nor-
malization procedure. The! rst result states that the normal-
ization procedure iscorrectin that it does indeed produce
queries in normal form.

Lemmanormalized_selections_are_in_nf
(s : wfGraphQLSchema) (ts : Name) (! s : seq Selection) :

are_in_normal_form s (normalize_selections s ts ! s) .

Theoremnormalized_query_is_in_nf :
! (" : query) (s : wfGraphQLSchema) ,

is_in_normal_form s (normalize s ") .

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preservingin that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti! es over every node of the graph.

Lemmanormalize_selections_preserves_semantics
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

u \ in g. (nodes) ->
execute_selection_set s check_scalar g coerce

u (normalize_selections s u . (ntype) ! s) =
execute_selection_set s check_scalar g coerce

u ! s.
Theoremnormalize_preserves_semantics :

! (" : query) (s : wfGraphQLSchema) (g : conformedGraph s) ,
eval_query (normalize s ") g s = eval_query " g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli ! ed Semantics of Normalized Queries

One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de! ning a simpli! ed evaluation function whichH! P
crucially use to establish their complexity results. However,
H! P do not formally prove that this simpli! ed semantics
is equivalent to the original, when considering normalized
queries.

We de! ne the simpli! ed semantics!á"G of H! Pas shown
in Figure9 and prove that, for queries in normal form, both
!! "G and#! $G produce the same response.

Lemmaexec_sel_eq_simpl_exec
(s : wfGraphQLSchema) (g : conformedGraph s)
(! s : seq Selection) (u : node) :

are_in_normal_form s ! s ->
execute_selection_set s check_scalar g coerce

u ! s =
simpl_execute_selection_set s check_scalar g coerce

u ! s.

Theoremsimpl_eval_correctness
(" : query) (s : wfGraphQLSchema) (g : conformedGraph s) :

is_in_normal_form s " ->
eval_query " g s = simpl_eval_query " g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations

Mechanizing normalization and the simpli! ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH! PÕs de! nitions. While these are admittedly
minor, they con! rm the value of mechanized formalization.

First, some queries are considered non-redundant byH! P
although they actually produce redundant results. A simple

Anon.

in the ! rst occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a! eld (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the! eldÕs type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.

To normalize a query, we simply normalize its selection
set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form
query {

. . . on Query {
goodboi {

name
}

}
goodboi {

name
} }

// Normalized query
query {

goodboi {
. . . on Dog {

name
}
. . . on Pig {

name
}

} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
conditionQueryare lifted and the multiple occurrences of
! eldgoodboi are merged into a single occurrence. Since the
type of the! eld goodboi is the abstract typeAnimal, the
subselections are wrapped in fragments for each concrete
object subtype, namelyDogandPig. The normalized query
is both non-redundant and in ground-typed normal form.

4.3 Correctness and Semantic Preservation
We now establish two fundamental results about the nor-
malization procedure. The! rst result states that the normal-
ization procedure iscorrect in that it does indeed produce
queries in normal form.

Lemma normalized_selections_are_in_nf
(s : wfGraphQLSchema) (ts : Name) (�s : seq Selection) :

are_in_normal_form s (normalize_selections s ts �s) .

Theorem normalized_query_is_in_nf :
8 (� : query) (s : wfGraphQLSchema) ,

is_in_normal_form s (normalize s �) .

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preserving in that a normalized query has the
same evaluation semantics as the original query from which

it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quanti! es over every node of the graph.

Lemma normalize_selections_preserves_semantics
(s : wfGraphQLSchema) (g : conformedGraph s)
(�s : seq Selection) (u : node) :

u \ in g. (nodes) ->
execute_selection_set s check_scalar g coerce

u (normalize_selections s u . (ntype) �s) =
execute_selection_set s check_scalar g coerce

u �s.
Theorem normalize_preserves_semantics :

8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s) ,
eval_query (normalize s �) g s = eval_query � g s.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simpli�ed Semantics of Normalized Queries
One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits de! ning a simpli! ed evaluation function whichH�P
crucially use to establish their complexity results. However,
H�P do not formally prove that this simpli! ed semantics
is equivalent to the original, when considering normalized
queries.

We de! ne the simpli! ed semanticsL·MG of H�P as shown
in Figure9 and prove that, for queries in normal form, both
L�MG andJ�KG produce the same response.

Lemma exec_sel_eq_simpl_exec
(s : wfGraphQLSchema) (g : conformedGraph s)
(�s : seq Selection) (u : node) :

are_in_normal_form s �s ->
execute_selection_set s check_scalar g coerce

u �s =
simpl_execute_selection_set s check_scalar g coerce

u �s.

Theorem simpl_eval_correctness :
8 (� : query) (s : wfGraphQLSchema) (g : conformedGraph s) ,

is_in_normal_form s � ->
eval_query � g s = simpl_eval_query � g s.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations
Mechanizing normalization and the simpli! ed semantics, as
well as associated properties and proofs, led us to identify
some issues inH�PÕs de! nitions. While these are admittedly
minor, they con! rm the value of mechanized formalization.

First, some queries are considered non-redundant byH�P
although they actually produce redundant results. A simple

Formalization evaluation and details

Clases de c‡tedraEvaluation

20

Effectivity
Uncovered two issues in H&P formalization:

¥ Flawed definition of normal form
¥ Incomplete set of equivalence rules for normalization

Clases de c‡tedraEvaluation

20

Effectivity
Uncovered two issues in H&P formalization:

¥ Flawed definition of normal form
¥ Incomplete set of equivalence rules for normalization

Faithfulness
Validated with a series of examples from different sources:

¥ Examples (41) from the SPEC validation section*
¥ Star Wars example from GraphQL reference implementation
¥ Example used in H&P

* https://graphql.github.io/graphql-spec/June2018/#sec-Validation

https://graphql.github.io/graphql-spec/June2018/#sec-Validation

Clases de c‡tedraConclusion

21

¥ First mechanized formalization of GraphQL in the Coq proof assistant

¥ Certified query normalization algorithm

¥ Uncover issues in initial formalization [H&P, WWW18]

Contribution

Clases de c‡tedraConclusion

21

¥ First mechanized formalization of GraphQL in the Coq proof assistant

¥ Certified query normalization algorithm

¥ Uncover issues in initial formalization [H&P, WWW18]

¥ Further GraphQL features

¥ Extraction (certified reference implementation)

¥ More general data models

Contribution

Future work

Clases de c‡tedraConclusion

21

¥ First mechanized formalization of GraphQL in the Coq proof assistant

¥ Certified query normalization algorithm

¥ Uncover issues in initial formalization [H&P, WWW18]

Thanks!

¥ Further GraphQL features

¥ Extraction (certified reference implementation)

¥ More general data models

Contribution

Future work

22

22

Back up slides

Clases de c‡tedraFormalization details

23

¥ 3.6K LOC (language) + 1K (normalization) + 2K LOC (evaluation) = 6.6K LOC

¥ 8 man-months

Effort

Clases de c‡tedraFormalization details

23

¥ 3.6K LOC (language) + 1K (normalization) + 2K LOC (evaluation) = 6.6K LOC

¥ 8 man-months

https://github.com/imfd/GraphCoQL

Effort

Publicly available

https://github.com/imfd/GraphCoQL

Clases de c‡tedraQueries

24

Queries have a tree structure, following the fields and relations
established by the schema

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 É on Animation {
 title
 style
 }
 É on Fiction {
 title
 releaseYear : year
 }
 }
 }
}

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraQueries

25

Queries have a tree structure, following the fields and relations
established by the schema

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 É on Animation {
 title
 style
 }
 É on Fiction {
 title
 releaseYear : year
 }
 }
 }
}

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

Clases de c‡tedraQueries

26

Queries have a tree structure, following the fields and relations
established by the schema

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 É on Animation {
 title
 style
 }
 É on Fiction {
 title
 releaseYear : year
 }
 }
 }
}

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

Clases de c‡tedraQueries

27

Queries have a tree structure, following the fields and relations
established by the schema

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 É on Animation {
 title
 style
 }
 É on Fiction {
 title
 releaseYear : year
 }
 }
 }
}

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

Clases de c‡tedraQueries

28

Queries have a tree structure, following the fields and relations
established by the schema

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 É on Animation {
 title
 style
 }
 É on Fiction {
 title
 releaseYear : year
 }
 }
 }
}

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

union Artwork = Fiction
 | Animation
 | Book

Clases de c‡tedraQueries

29

Queries have a tree structure, following the fields and relations
established by the schema

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 É on Animation {
 title
 style
 }
 É on Fiction {
 title
 releaseYear : year
 }
 }
 }
}

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

union Artwork = Fiction
 | Animation
 | Book

Clases de c‡tedraQueries

30

Queries have a tree structure, following the fields and relations
established by the schema

query {
 artist (id : 1000) {
 name
 artworks (role : ACTOR) {
 É on Animation {
 title
 style
 }
 É on Fiction {
 title
 releaseYear : year
 }
 }
 }
}

type Query {
 artist (id : ID): Artist
 movie (id : ID): Movie
}

type Artist {
 id : ID
 name: String
 artworks (role : Role): [Artwork]
}

union Artwork = Fiction
 | Animation
 | Book

interface Movie {
 id : ID
 title : String
 year : Int
 cast : [Artist]
}

type Animation implements Movie {
 É
 style : Style
}

Clases de c‡tedraGraphs in GraphCoQL

31

Anon.

TypeDe�nition ::=
| scalar name
| type name (implements name+)? {Field+}
| interface name {Field+}
| union name = name (|name)⇤
| enum name {name+}

Field ::= name (Arg+)? : Type

Arg ::= name : Type

Type ::=
| name
| [Type]

Inductive TypeDefinition : Type :=

| ScalarTypeDefinition (name : Name)

| ObjectTypeDefinition (name : Name)

(interfaces : seq Name)

(fields : seq FieldDefinition)

| InterfaceTypeDefinition (name : Name)

(fields : seq FieldDefinition)

| UnionTypeDefinition (name : Name)

(members : seq Name)

| EnumTypeDefinition (name : Name)

(members : seq EnumValue).

Inductive type : Type :=

| NamedType : Name -> type

| ListType : type -> type.

Figure 4. De! nition of G!"#$ QL types: (left) S#%&grammar; (right) G!"#$ C' QL de! nition.
The (·)? notation denotes optional attributes.

• a collection of edges of the form (u, f[�], �), where
u,� are nodes and f[�] is a label with arguments.

To model graphs in C'(, we ! rst model values. This requires
! xing a domain of scalar values with decidable equality.

Variable Scalar : eqType.

Inductive Value : Type :=

| SValue : Scalar -> Value

| LValue : seq Value -> Value.

Labels, nodes and graphs are all represented as records:

Record label :=

Label { lname : string; args : seq (string * Value) }.

Record node :=

Node { ntype : Name; nprops : seq (label * Value) }.

Record graphQLGraph :=

GraphQLGraph { root : node;

edges : seq (node * label * node) }.

Note that graphs are modeled using sequences—rather
than sets—of edges. In our experience, this design decision
led to a simpler formalization, as verifying edge unicity ex-
trinsically is straightforward.

Intuitively, the dataset modeled by a G!"#$ QL graph is
built following a schema. However, the de! nition of G!"#$ QL
graph above is fully independent of any schema. To capture
this relationship, we employ the following notion of confor-
mance, partially based on H) P:

De! nition 3.3. A G!"#$ QLgraph G conformsto a schema
S if:

• the types of G root node and S query root coincide,
• every node of G conformsto S, and
• every edge of G conformsto S.

The conformance of nodes validates that a node’s type is
declared as an object type in the schema and that its prop-
erties conform. In turn, a property conformsif its key and
arguments are de! ned in a ! eld in the corresponding ob-
ject type, and any value, either in an argument or the prop-
erty’s value, is valid w.r.t. the expected types described in
the schema. For instance, if a ! eld has type Float, the S#%&
dictates that a node property matching the ! eld must have
a value that represents a double-precision fractional value
(cf. [16, §3.5.2]). To model this validation of values, we pa-
rameterize the C'(development with a Boolean predicate
check_scalar : graphQLSchema ! Name ! Scalar ! Bool.

The conformance of edges imposes some ! nal natural
restrictions on graphs. For instance, given an edge, it requires
that the label match some ! eld in the type of the source node,
and that the type of the target node be compatible with the
type of the matched ! eld.

It is worth noting that, in accordance with the " exibility
advocated by graph databases, the notion of conformance
does not require that a graph contain full information about
the represented objects. More precisely, a node need not
provide values for all the ! elds in its type. For instance, in
our running example in Figure 2, the topmost node of type
Dog need not contain a property de! ning the dog name.

With this in mind, the notion of conformance of a graph
w.r.t. a schema is formalized as follows:

Variable check_scalar :

graphQLSchema -> Name -> Scalar -> bool.

Definition is_a_conforming_graph

(s : wfGraphQLSchema)

(g : graphQLGraph) : bool :=

root_type_conforms s g.(root) &&

edges_conform s g &&

nodes_conform s g.(nodes).

Clases de c‡tedraQueries in GraphCoQL

32

A Mechanized Formalization ofG!"#$ QL

Similarly toG!"#$ QLschemas, we de! ne a structure that
encapsulates the notion of aconformedgraph, containing a
graph and a proof of its conformance to a particular schema.

Record conformedGraph(s : wfGraphQLSchema) :=
ConformedGraph{

graph : graphQLGraph;
_ : is_a_conforming_graph s graph check_scalar } .

3.3 Queries

To de! ne queries we faithfully follow theS#%&, as shown
in Figure5. A query consists of a list of selections, and can
optionally be named. Aselection! can be a single! eld with
arguments (f["]), a! eld with arguments followed by a set
of subselections (f["]{ ! }) or an inline fragment comprising
a type condition and a set of subselections (... on t { ! }).
Fields can be aliased (a:f["] , a:f["]{ ! }). For notational
simplicity, when a! eld selection contains an empty list of
arguments, we omit it and simply write the! eld name.

Intuitively, a query has a tree structure, where leaves cor-
respond to! elds of scalar types and inner nodes correspond
to either ! elds of some object type or abstract type (i.e. an
interface or union), or to inline fragments that condition
when their subselections are evaluated.

Observe that the de! nition of queries in Figure5 is not
bound to any schema, thus requiring a separate validation
process to ensure that they adhere to a given schema. We
introduce the notion of queryconformance, based on a set of
validation rules scattered throughout theS#%&(cf. [16, ¤5]).
The validity of queries depends on the validity of their selec-
tion sets, which in turn requires the notion oftype in scope

query {
goodboi {

. . . on Dog {
name
favoriteToy

}
. . . on Pig {

name
favoriteToy

} } }

at a given selection loca-
tion. To illustrate this, con-
sider the query to the right
with two occurrences of! eld
name. In the! rst occurrence,
the ! eld is requesting infor-
mation about theDogtype,
while in the second it is re-
questing information about
the Pig type. The distinction
is important because some! eld selections might be valid in
some contexts but not in others. For instance, this is the case
of ! eld favoriteToy , which is valid in the scope of theDog
type but it is invalid in the scope of thePig type, as thePig
type does not contain any such! eld.

Now that we have clari! ed the notion of type in scope,
we de! ne the notion of conformance for selection sets.

De! nition 3.4. A G!"#$ QL selection set! conformsto a
schemaS over a type in scopets if:

¥ every selection in! is well-formed w.r.tts, and

::= query (name)? { ! }

! ::= f["]
| a:f["]
| f["] { ! }
| a:f["] { ! }
| ... on t { ! }

Record query :=
Query { qname: option string ;

selection_set : seq Selection }.

Inductive Selection : Type :=
| SingleField (name: Name)

(arguments : seq (Name* Value))
| SingleAliasedField (alias : Name)

(name: Name)
(arguments : seq (Name* Value))

| NestedField (name: Name)
(arguments : seq (Name* Value))
(subselections : seq Selection)

| NestedAliasedField (alias : Name)
(name: Name)
(arguments : seq (Name* Value))
(subselections : seq Selection)

| InlineFragment (type_condition : Name)
(subselections : seq Selection).

Figure 5. De! nition of G!"#$ QL queries: (top)S#%&gram-
mar; (bottom)G!"#$ C' QL de! nition.
In the S#%&grammar, symbolsf , a andt correspond to identi! ers for! eld

name,! eld alias, and type condition, respectively. Symbol! corresponds

to a key-value pair.

¥ any two ! eld selections in! are type-compatible and
renaming-consistent.4

The! rst rule ensures that every selection is well-formed
on its own, w.r.t. the type in scope. This requirement depends
on to the kind of selection. For instance, if the selection is a
! eld, the rule checks that the! eld is part of the type in scope
and that its arguments are correctly provided; if the selection
is an inline fragment, then the type condition must share
at least one subtype with the type in scope. This rule also
includes validating the values used in arguments, similarly
to the case of graphs.

In the second rule, the type-compatibility requirement
forbids the selection set to produce results of di" erent types
for the same key; e.g. the following query

4In the S#%&, these two notions roughly correspond tohaving-the-same-
response-shapeand! elds-can-merge, respectively (cf. [16, ¤5.3.2]).

A Mechanized Formalization ofG!"#$ QL

Similarly toG!"#$ QLschemas, we de! ne a structure that
encapsulates the notion of aconformedgraph, containing a
graph and a proof of its conformance to a particular schema.

Record conformedGraph(s : wfGraphQLSchema) :=
ConformedGraph{

graph : graphQLGraph;
_ : is_a_conforming_graph s graph check_scalar } .

3.3 Queries

To de! ne queries we faithfully follow theS#%&, as shown
in Figure5. A query consists of a list of selections, and can
optionally be named. Aselection! can be a single! eld with
arguments (f["]), a! eld with arguments followed by a set
of subselections (f["]{ ! }) or an inline fragment comprising
a type condition and a set of subselections (... on t { ! }).
Fields can be aliased (a:f["] , a:f["]{ ! }). For notational
simplicity, when a! eld selection contains an empty list of
arguments, we omit it and simply write the! eld name.

Intuitively, a query has a tree structure, where leaves cor-
respond to! elds of scalar types and inner nodes correspond
to either ! elds of some object type or abstract type (i.e. an
interface or union), or to inline fragments that condition
when their subselections are evaluated.

Observe that the de! nition of queries in Figure5 is not
bound to any schema, thus requiring a separate validation
process to ensure that they adhere to a given schema. We
introduce the notion of queryconformance, based on a set of
validation rules scattered throughout theS#%&(cf. [16, ¤5]).
The validity of queries depends on the validity of their selec-
tion sets, which in turn requires the notion oftype in scope

query {
goodboi {

. . . on Dog {
name
favoriteToy

}
. . . on Pig {

name
favoriteToy

} } }

at a given selection loca-
tion. To illustrate this, con-
sider the query to the right
with two occurrences of! eld
name. In the! rst occurrence,
the ! eld is requesting infor-
mation about theDogtype,
while in the second it is re-
questing information about
the Pig type. The distinction
is important because some! eld selections might be valid in
some contexts but not in others. For instance, this is the case
of ! eld favoriteToy , which is valid in the scope of theDog
type but it is invalid in the scope of thePig type, as thePig
type does not contain any such! eld.

Now that we have clari! ed the notion of type in scope,
we de! ne the notion of conformance for selection sets.

De! nition 3.4. A G!"#$ QL selection set! conformsto a
schemaS over a type in scopets if:

¥ every selection in! is well-formed w.r.tts, and

::= query (name)? { ! }

! ::= f["]
| a:f["]
| f["] { ! }
| a:f["] { ! }
| ... on t { ! }

Record query :=
Query { qname: option string ;

selection_set : seq Selection }.

Inductive Selection : Type :=
| SingleField (name: Name)

(arguments : seq (Name* Value))
| SingleAliasedField (alias : Name)

(name: Name)
(arguments : seq (Name* Value))

| NestedField (name: Name)
(arguments : seq (Name* Value))
(subselections : seq Selection)

| NestedAliasedField (alias : Name)
(name: Name)
(arguments : seq (Name* Value))
(subselections : seq Selection)

| InlineFragment (type_condition : Name)
(subselections : seq Selection).

Figure 5. De! nition of G!"#$ QL queries: (top)S#%&gram-
mar; (bottom)G!"#$ C' QL de! nition.
In the S#%&grammar, symbolsf , a andt correspond to identi! ers for! eld

name,! eld alias, and type condition, respectively. Symbol! corresponds

to a key-value pair.

¥ any two ! eld selections in! are type-compatible and
renaming-consistent.4

The! rst rule ensures that every selection is well-formed
on its own, w.r.t. the type in scope. This requirement depends
on to the kind of selection. For instance, if the selection is a
! eld, the rule checks that the! eld is part of the type in scope
and that its arguments are correctly provided; if the selection
is an inline fragment, then the type condition must share
at least one subtype with the type in scope. This rule also
includes validating the values used in arguments, similarly
to the case of graphs.

In the second rule, the type-compatibility requirement
forbids the selection set to produce results of di" erent types
for the same key; e.g. the following query

4In the S#%&, these two notions roughly correspond tohaving-the-same-
response-shapeand! elds-can-merge, respectively (cf. [16, ¤5.3.2]).

Clases de c‡tedraGraphCoQL responses

33

A Mechanized Formalization ofG!"#$ QL

! ::= v
| { (f : !) . . . (f : !)}
| [! . . . !]

Inductive ResponseValue: Type :=
| ScalarVal : option Scalar -> ResponseValue
| ObjectVal : seq (Name* ResponseValue) -> ResponseValue
| ArrayVal : seq ResponseValue-> ResponseValue.

Definition GraphQLResponse:= seq (Name* ResponseValue).

Figure 6. De! nition of G!"#$ QL responses: (left) grammar ˆ la JSON; (right)G!"#$ C%QL de! nition.
The keywordsv andf represent leaf values and keys in a key-value pair, respectively.

! á"u
G : seq Selection! GraphQLResponse

(1) ! á"u
G = [á]

(2) ! f["] :: #"u
G = f: (complete_value(! ype(u.type, f), u.property(f["]))) :: ! " lter(f ,#)"u

G

(3) ! f["] { $} :: #"u
G =

!""""""""#

""""""""
$

f:[map(%&i . { ! $ ++ merge(collect(u.type, f ,#))"! i
G }) u.neighborsG(f["])] :: ! " lter(f ,#)"u

G
if ! ype(u.type, f) = list and{&1, . . . ,&k } = {&i | (u, f ["],&i) " edges(G)}

f : { ! $ ++ merge(collect(u.type, f ,#))"!
G} :: ! " lter(f ,#)"u

G
if ! ype(u.type, f) ! list and(u, f ["],&) " edges(G)

f:null :: ! " lter(f ,#)"u
G if ! ype(u.type, f) ! list and#& s.t.(u, f ["],&) " edges(G)

(4) ! ... on t { $} :: #"u
G =

%
! $ ++ #"u

G if fragment_type_applies(u.type, t)

!#"u
G otherwise

Figure 7. Semantics ofG!"#$ QL selection sets, adapted fromH&Pand theS#'(.
As usual, notationx :: " on the left denotes pattern matching deconstruction of a list into its headx and tail" ; on the right, it denotes list construction.

propertyandtypeare accessors to a node property and type.neighborsgets the neighbors of a node whose edge is labeled with the given! eld.edgesgets the

set of edges of a graph.! yperetrieves the type of a! eld from the underlying schema.list represents the list type (over any other type).

graphG from nodeu " nodes(G) is de! ned by the rules in
Figure7. The evaluation function is parametrized by a co-
ercing functioncoerce: Scalar! Scalarand a value valida-
tion predicatecheck_scalar: graphQLSchema! Name!
Scalar ! Bool.

In order not to clutter the notation, we omit the underly-
ing schema when de! ning !#"u

G in Figure7. The schema is
implicitly used e.g. when invoking functioncomplete_value.

The de! nition starts with the base case of empty selection
set (1), which results in an empty response. Single! elds (2)
correspond to accessing a nodeÕs property that matches the
! eld name and using functioncomplete_valueto coerce and
validate the requested value. This function is implemented
by simply callingcoerceandcheck_scalar.

Nested! elds (3) represent a traversal to neighboring nodes:
the evaluation function searches for nodes that are connected
to the current node by an edge whose label matches the! eld
name and then evaluates the subselections on these nodes.
If the ! eld has list type, there is no constraint on the num-
ber of such neighboring nodes to recursively continue the
evaluation. On the contrary, if the! eld does not have list
type, then there should be exactly one neighboring node to
successfully continue the recursive evaluation on this node
(the case of multiple neighboring nodes is discarded by the

conformance assumption); if there is no neighbor, the result
is considerednull .

To avoid the duplication of responses, rules (2) and (3)
handling the evaluation of! elds ensure that within a selec-
tion set,! elds with the same response name are evaluated
only once. This is achieved by collecting and merging all
! elds in subsequent selections that have the same response
name as the current! eld being evaluated (using auxiliary
functionscollectandmerge) and removing these! elds from
subsequent selections (using auxiliary function" lter), before
they are evaluated.

Finally, inline fragments (4) simply condition whether
their subselections are evaluated (in the current node) or not.
The decision is based on thefragment_type_appliespredicate
(cf. [16, ¤6.3.2]) that veri! es whether the guard type matches
the current node type or supertype thereof.7

For space reason, Figure7 does not present aliased! elds.
They are evaluated the same way as unaliased! elds, but
di" er in that the produced key-value pairs are renamed ac-
cordingly.

De! nition 3.8. Let G be a graph and' a query, both con-
forming to a schemaS. The result of evaluating' over G is
7Functionfragment_type_appliesis calleddoes_fragment_type_appliesin
the S#'(.

A Mechanized Formalization ofG!"#$ QL

! ::= v
| { (f : !) . . . (f : !)}
| [! . . . !]

Inductive ResponseValue: Type :=
| ScalarVal : option Scalar -> ResponseValue
| ObjectVal : seq (Name* ResponseValue) -> ResponseValue
| ArrayVal : seq ResponseValue-> ResponseValue.

Definition GraphQLResponse:= seq (Name* ResponseValue).

Figure 6. De! nition of G!"#$ QL responses: (left) grammar ˆ la JSON; (right)G!"#$ C%QL de! nition.
The keywordsv andf represent leaf values and keys in a key-value pair, respectively.

! á"u
G : seq Selection! GraphQLResponse

(1) ! á"u
G = [á]

(2) ! f["] :: #"u
G = f: (complete_value(! ype(u.type, f), u.property(f["]))) :: ! " lter(f ,#)"u

G

(3) ! f["] { $} :: #"u
G =

!""""""""#

""""""""
$

f:[map(%&i . { ! $ ++ merge(collect(u.type, f ,#))"! i
G }) u.neighborsG(f["])] :: ! " lter(f ,#)"u

G
if ! ype(u.type, f) = list and{&1, . . . ,&k } = {&i | (u, f ["],&i) " edges(G)}

f : { ! $ ++ merge(collect(u.type, f ,#))"!
G} :: ! " lter(f ,#)"u

G
if ! ype(u.type, f) ! list and(u, f ["],&) " edges(G)

f:null :: ! " lter(f ,#)"u
G if ! ype(u.type, f) ! list and#& s.t.(u, f ["],&) " edges(G)

(4) ! ... on t { $} :: #"u
G =

%
! $ ++ #"u

G if fragment_type_applies(u.type, t)

!#"u
G otherwise

Figure 7. Semantics ofG!"#$ QL selection sets, adapted fromH&Pand theS#'(.
As usual, notationx :: " on the left denotes pattern matching deconstruction of a list into its headx and tail" ; on the right, it denotes list construction.

propertyandtypeare accessors to a node property and type.neighborsgets the neighbors of a node whose edge is labeled with the given! eld.edgesgets the

set of edges of a graph.! yperetrieves the type of a! eld from the underlying schema.list represents the list type (over any other type).

graphG from nodeu " nodes(G) is de! ned by the rules in
Figure7. The evaluation function is parametrized by a co-
ercing functioncoerce: Scalar! Scalarand a value valida-
tion predicatecheck_scalar: graphQLSchema! Name!
Scalar ! Bool.

In order not to clutter the notation, we omit the underly-
ing schema when de! ning !#"u

G in Figure7. The schema is
implicitly used e.g. when invoking functioncomplete_value.

The de! nition starts with the base case of empty selection
set (1), which results in an empty response. Single! elds (2)
correspond to accessing a nodeÕs property that matches the
! eld name and using functioncomplete_valueto coerce and
validate the requested value. This function is implemented
by simply callingcoerceandcheck_scalar.

Nested! elds (3) represent a traversal to neighboring nodes:
the evaluation function searches for nodes that are connected
to the current node by an edge whose label matches the! eld
name and then evaluates the subselections on these nodes.
If the ! eld has list type, there is no constraint on the num-
ber of such neighboring nodes to recursively continue the
evaluation. On the contrary, if the! eld does not have list
type, then there should be exactly one neighboring node to
successfully continue the recursive evaluation on this node
(the case of multiple neighboring nodes is discarded by the

conformance assumption); if there is no neighbor, the result
is considerednull .

To avoid the duplication of responses, rules (2) and (3)
handling the evaluation of! elds ensure that within a selec-
tion set,! elds with the same response name are evaluated
only once. This is achieved by collecting and merging all
! elds in subsequent selections that have the same response
name as the current! eld being evaluated (using auxiliary
functionscollectandmerge) and removing these! elds from
subsequent selections (using auxiliary function" lter), before
they are evaluated.

Finally, inline fragments (4) simply condition whether
their subselections are evaluated (in the current node) or not.
The decision is based on thefragment_type_appliespredicate
(cf. [16, ¤6.3.2]) that veri! es whether the guard type matches
the current node type or supertype thereof.7

For space reason, Figure7 does not present aliased! elds.
They are evaluated the same way as unaliased! elds, but
di" er in that the produced key-value pairs are renamed ac-
cordingly.

De! nition 3.8. Let G be a graph and' a query, both con-
forming to a schemaS. The result of evaluating' over G is
7Functionfragment_type_appliesis calleddoes_fragment_type_appliesin
the S#'(.

Clases de c‡tedraQuery evaluation

34

A Mechanized Formalization ofG!"#$ QL

! ::= v
| { (f : !) . . . (f : !)}
| [! . . . !]

Inductive ResponseValue: Type :=
| ScalarVal : option Scalar -> ResponseValue
| ObjectVal : seq (Name* ResponseValue) -> ResponseValue
| ArrayVal : seq ResponseValue-> ResponseValue.

Definition GraphQLResponse:= seq (Name* ResponseValue).

Figure 6. De! nition of G!"#$ QL responses: (left) grammar ˆ la JSON; (right)G!"#$ C%QL de! nition.
The keywordsv andf represent leaf values and keys in a key-value pair, respectively.

! á"u
G : seq Selection! GraphQLResponse

(1) ! á"u
G = [á]

(2) ! f["] :: #"u
G = f: (complete_value(! ype(u.type, f), u.property(f["]))) :: ! " lter(f ,#)"u

G

(3) ! f["] { $} :: #"u
G =

!""""""""#

""""""""
$

f:[map(%&i . { ! $ ++ merge(collect(u.type, f ,#))"! i
G }) u.neighborsG(f["])] :: ! " lter(f ,#)"u

G
if ! ype(u.type, f) = list and{&1, . . . ,&k } = {&i | (u, f ["],&i) " edges(G)}

f : { ! $ ++ merge(collect(u.type, f ,#))"!
G} :: ! " lter(f ,#)"u

G
if ! ype(u.type, f) ! list and(u, f ["],&) " edges(G)

f:null :: ! " lter(f ,#)"u
G if ! ype(u.type, f) ! list and#& s.t.(u, f ["],&) " edges(G)

(4) ! ... on t { $} :: #"u
G =

%
! $ ++ #"u

G if fragment_type_applies(u.type, t)

!#"u
G otherwise

Figure 7. Semantics ofG!"#$ QL selection sets, adapted fromH&Pand theS#'(.
As usual, notationx :: " on the left denotes pattern matching deconstruction of a list into its headx and tail" ; on the right, it denotes list construction.

propertyandtypeare accessors to a node property and type.neighborsgets the neighbors of a node whose edge is labeled with the given! eld.edgesgets the

set of edges of a graph.! yperetrieves the type of a! eld from the underlying schema.list represents the list type (over any other type).

implicitly used e.g. when invoking functioncomplete_value.
The de! nition starts with the base case of empty selection

set (1), which results in an empty response. Single! elds (2)
correspond to accessing a nodeÕs property that matches the
! eld name and using functioncomplete_valueto coerce and
validate the requested value. This function is implemented
by simply callingcoerceandcheck_scalar.

Nested! elds (3) represent a traversal to neighboring nodes:
the evaluation function searches for nodes that are connected
to the current node by an edge whose label matches the! eld
name and then evaluates the subselections on these nodes.
If the ! eld has list type, there is no constraint on the num-
ber of such neighboring nodes to recursively continue the
evaluation. On the contrary, if the! eld does not have list
type, then there should be exactly one neighboring node to
successfully continue the recursive evaluation on this node
(the case of multiple neighboring nodes is discarded by the
conformance assumption); if there is no neighbor, the result
is considerednull .

To avoid the duplication of responses, rules (2) and (3)
handling the evaluation of! elds ensure that within a selec-
tion set,! elds with the same response name are evaluated
only once. This is achieved by collecting and merging all
! elds in subsequent selections that have the same response

name as the current! eld being evaluated (using auxiliary
functionscollectandmerge) and removing these! elds from
subsequent selections (using auxiliary function" lter), before
they are evaluated.

Finally, inline fragments (4) simply condition whether
their subselections are evaluated (in the current node) or not.
The decision is based on thefragment_type_appliespredicate
(cf. [16, ¤6.3.2]) that veri! es whether the guard type matches
the current node type or supertype thereof.7

For space reason, Figure7 does not present aliased! elds.
They are evaluated the same way as unaliased! elds, but
di" er in that the produced key-value pairs are renamed ac-
cordingly.

De! nition 3.8. Let G be a graph and' a query, both con-
forming to a schemaS. The result of evaluating' over G is
obtained by evaluating the selection set of' from the root
node ofG, that is,! ' "G = ! ' .selection_set"G.root

G .

In G!"#$ C%QL we have:

Definition execute_query (s : wfGraphQLSchema)
(g : conformedGraph s check_scalar)

7Functionfragment_type_appliesis calleddoes_fragment_type_appliesin
the S#'(.

Clases de c‡tedraQuery normalization

35

A Mechanized Formalization ofG!"#$ QL

Nts(á): seq Selection! seq Selection

(1) Nts(á) = [á]

(2) Nts(f[!] :: ") = f[!] :: Nts(! lter(f , "))

(3) Nts(f[!] { #} :: ") =

!"""#

"""
$

f[!] { N" ype(ts,f)(# ++ merge(collect(ts, f , ")))} :: Nts(! lter(f , ")) if is_object_type(" ype(ts, f))

f[!] { map($ti on ti { Nti (# ++ merge(collect(ts, f , ")))}) get_possible_types(ts)} :: Nts(! lter(f , "))

otherwise

(4) Nts(... on t { #} :: ") =

%
Nts(# ++ ") if fragment_type_applies(ts, t)

Nts(") otherwise

Figure 8. Normalization procedure forG!"#$ QL selections.
is_object_typechecks whether the given type is an object type in the schema.get_possible_typesget all object subtypes of the given type.

4.1 De! ning Normal Forms

The notion ofnormal formintroduced by Hartig and PŽrez
consists of the conjunction of two conditions: being inground-
typed normal formand beingnon-redundant.

Ground-typed normal form. Informally, a query is in ground-
typed normal form, orgroundedfor short, if it is completely
speci! ed down to object types. Consider the queries below,
based on the schema from Figure1, which request the name
of an animal:

// Not grounded query
query {

goodboi {
name

}
}

// Grounded query
query {

goodboi {
. . . on Dog {

name
}
. . . on Pig {

name
} } }

The left query is not grounded because the! eldnameis se-
lected on the abstract typeAnimal type. In contrast, the right
query is grounded because it speci! es the (concrete) object
typesDogandPig on which it requests the information.

De! nition 4.1 ([18]). A G!"#$ QLselection set" is in ground-
typed normal formif it can be generated by the following
grammar, wheret is an object type:

" ::= %. . . % % ::= f[!]
| & . . .& | a:f[!]

| f[!] { " }
& ::= ... on t { %. . . %} | a:f[!] { " }

A G!"#$ QL query ' is in ground-typed normal formif its
selection set is in ground-typed normal form.

Non-redundancy. Informally, a non-redundant query is a
query that does not produce repeated results. For example,
consider the two queries below:

// Redundant query
query {

goodboi {
name
name
. . . on Dog {

name
}
. . . on Dog {

friends { . . . }
} } }

// Non-redundant query
query {

goodboi {
. . . on Dog {

name
}
. . . on Pig {

name
}

}
}

The left query is redundant for two reasons: it requests the
! eldnametwice to the same type, and it uses two fragments
with the same type condition. If no collection and merger of
! elds is performed during the evaluation, this will produce
two (or three) values with the keyname. Conversely, the
right query is non-redundant because it requests information
about each type only once; only one fragment will actually
be executed at a time, depending on the concrete object value
that is used to evaluate the query.

De! nition 4.2 (Adapted from [18]). A G!"#$ QL selection
set" is non-redundantif:

¥ there is at most one! eld selection with a given re-
sponse name,

¥ at most one inline fragment with a given type condi-
tion, and

¥ subselections are non-redundant.

A G!"#$ QL query' is non-redundantif its selection set is
non-redundant.

4.2 De! ning Normalization

The normalization procedure of selection sets is described
in Figure8. It is parametrized by a type in scope and acts
as follows. Whenever a! eld selection is encountered (2-
3), normalization removes any! eld that shares the same
response name. This step ensures the non-redundancy of
the resulting selection set. However, in order not to lose
information during ! ltering, normalization collects! elds
with the same response name and merges their subselections

Clases de c‡tedraQuery normalization

36

query {

 movie (id : 2000) {
 title
 }

 movie (id : 2000) {
 É on Animation {
 style
 }
 }
}

query {

 movie (id : 2000) {

 É on Animation {
 title
 style
 }

 É on Fiction {
 title
 }
 }
 }

Clases de c‡tedraEvaluation

37

Effectivity
Uncovered two issues in H&P formalization

query {
 artist (id : 1000) {
 name
 name:name
 }
}

query {
 movie (id : 2000) {
 title
 }
 É on Query {
 movie (id : 2000) {
 style
 }
 }
}

Clases de c‡tedraEvaluation

37

Effectivity
Uncovered two issues in H&P formalization

¥ Definition of normal form doesnÕt properly handle the case where
unaliased and aliased fields share the same response name

Wrongly recognized as
being in normal form

query {
 artist (id : 1000) {
 name
 name:name
 }
}

query {
 movie (id : 2000) {
 title
 }
 É on Query {
 movie (id : 2000) {
 style
 }
 }
}

Clases de c‡tedraEvaluation

37

Effectivity
Uncovered two issues in H&P formalization

¥ Definition of normal form doesnÕt properly handle the case where
unaliased and aliased fields share the same response name

Wrongly recognized as
being in normal form

¥ Set of equivalence rules for normalization is incomplete

Cannot be normalized

query {
 artist (id : 1000) {
 name
 name:name
 }
}

query {
 movie (id : 2000) {
 title
 }
 É on Query {
 movie (id : 2000) {
 style
 }
 }
}

