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GraphQL

Language for specitying the interfaces of web data services and
their query mechanism

query {
artist(id:1000) {
name
artworks(role: ACTOR) {
title

“artist” : {
“name” : “Tom Hanks”,
“artworks” : |

{
“title” : “Toy Story”,

’

“title” : “Forrest Gump”,

¥
{
}
-

}
}
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First language formalization [Hartig & Pérez, WWW'18]

Paper & pencil formalization to study complexity properties.
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[fladlg = { f:null else.
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| Figure 5: Semantics of a GraphQL query. '



First language formalization [Hartig & Pérez, WWW'18]

Paper & pencil formalization to study complexity properties.

‘ Ay, fla])  if (u, fla]) € dom(A) |

w |
[flellg = f:null else.
u _ | C:Au, fla])  if (u, fla]) € dom(A)
[¢:flellG = {:null else.
[flaliols =4 f:{lelg2 if typeg(f) ¢ Lt and (u, f[a],v) € E

f:inull if typeg(f) ¢ Lt and there isno v € N s.t. (u, fla],v) € E

C:I{[elg Y- {lel £ 31 if types(F) € Ly and {o1, ..., vk} = {v; | (u, ), v;) € E}
C:{ [eld 2 if typeg(f) ¢ Lt and (u, f[a],v) € E

[¢:flalle}] s =
{:null if typeg(f) ¢ L1 and there isno v € N s.t. (u, fla],v) € E
S

lelg, ift €Orandr(u) =t ort € It and r(u) € implementationg(t), or
t € Ur and 7(u) € uniong(t)
£ in other case.

{ f:l{folg 3 {[[(p]]gk}] if typeg(f) € Lt and {v1, ..., v} = {v; | (u, fa], v;) € E}
[on te}]g = {

[o1--- @il = collect([p1]G - - - [ex] )

l Figure 5: Semantics of a GraphQL query. '



Our contribution

GraphCoQL

First mechanized formalization of
GraphQL in the



Schema

Describes how data is structured and queried



Schema

Describes how data is structured and queried

type Artist {

id: ID

object name: String

type artworks(role:Role): [Artwork]
¥




Schema

Describes how data is structured and queried

type Artist {

id: ID

object name: String

type artworks(role:Role): [Artwork]
¥

interface Movie {
id: ID

. title: String
interface year: Int
type cast: [Artist]

}




Schema

Describes how data is structured and queried

type Artist {

id: ID

object name: String

type artworks(role:Role): [Artwork]
¥

interface Movie {
id: ID

. title: String
interface year: Int
type cast: [Artist]

}

type Fiction implements Movie {
Iy
type Animation implements Movie {
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Schema

Describes how data is structured and queried

type

7

[

interface
type

;

enum Role {
ACTOR
DIRECTOR
WRITER

type Artist {
id: ID

name: String
artworks(role:Role): [Artwork] y

}

interface Movie {
id: ID
title: String
year: Int
cast: [Artist]

Iy

type Fiction implements Movie {

) .

type Animation implements Movie {

style: Style
Iy

{

enumeration
type

|
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Describes how data is structured and queried

. enum Role {
ty‘i’ﬁ.AEElSt ¢ ACTOR { enumeration ]
: : - DIRECTOR type
object name: String WRITERO yp
type artworks(role:Role): [Artwork] ,
¥
1n’;§:f?ge Movie 1 union Artwork = Fiction { union type }
tle: Strin | Animation
interface titte: g | Book
year: Int
type cast: [Artist]

; type Book { .. }

type Fiction implements Movie {
Iy
type Animation implements Movie {
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Schema

Describes how data is structured and queried

- enum Role {
typs A;ElSt { ACTOR { enumeration ]
id:
i ; DIRECTOR type
object name: String i yp
type artworks(role:Role): [Artwork] )
}
ln;ﬁff?ge Movie 4 union Artwork = Fi;tior) { union type J
tle: Strin | Animation
interface titte: g | Book
year: Int
type cast: [Artist]

; type Book { .. }

type Fiction implements Movie {
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type Query A .
' artist(id:ID): Artist entry points

N - for querying
type Animation implements Movie { 1 movie(id:ID): Movie < the dataset

\.

style: Style
Iy



Schema

Describes how data is structured and queried

r X

ypeDefinition :
ScalarTypeDefinition
Object TypeDefinition
InterfaceTypeDefinition
UnionTypeDefinition
EnumTypeDefinition

L InputObjectTypeDeﬁnitionA

Inductive TypeDefinition : Type :=
| ScalarTypeDefinition (name : Name)
| ObjectTypeDefinition (name : Name)
(interfaces : seq Name)
(fields : seq FieldDefinition)
| InterfaceTypeDefinition (name : Name)
(fields : seq FieldDefinition)
| UnionTypeDefinition (name : Name)
(members : seq Name)
| EnumTypeDefinition (name : Name)
(members : seq EnumValue).
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Graph data model

Datasets are modeled as directed property graphs, with labeled
edges and typed nodes.

movie[id:2000] movie[id:2001]

artist[id:1000]

artworks[role:ACTOR]

artworks[role:ACTOR]

—

Animation

cast

id: 2000 id: 1000 ] id: 2007
title: “Forrest Gump” name: “Tom Hanks title: “Toy Story”
year: 1994 year: 1995
style: “3D"
artworks[role:WRITER] author - J

~ )
id: 3000

title: “Uncommon Type”
year: 2017

ISBN: 1101946156

- Y,




Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query { {
artist(id:1000) {
name
artworks(role: ACTOR) {
title
}
}
¥ Dataset

movie[id:2000] movie[id:2001] }

artist[id:1000]

artworks[role:ACTOR] artworks|[role:ACTOR]

Fiction Animation

id: 2000 .
ot w " id: 1000
title: “Forrest Gump e "

. name: “Tom Hanks
year: 1994

artworks[role:WRITER] < > author

id: 3000

title: “Uncommon Type”
year: 2017

ISBN: 1101946156

id: 2001
title: “Toy Story”
year: 1995

style: “3D"
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query { {
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Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query A{ {
mp artist(id:1000) { “artist” : {
}
} Dataset

artist[id:1000]
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name: “Tom Hanks”
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Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query { {
( ) “artist” : {

mp name “name” : “Tom Hanks”,

}
} Dataset

.
}

id: 1000
name: “Tom Hanks”
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Query evaluation

Queries are evaluated by traversing the graph and collecting nodes’ properties

Query Response (a la JSON)
query { {
( ) “artist” : {
“name” : “Tom Hanks”,
mp artworks(role: ACTOR) { “artworks” : [
title {
} “title” : ..
} ¥
} Dataset {
“title” : ..
¥}y
]
}
}

artworks|[role:ACTOR]

artworks|[role:ACTOR]

Animation

id: 2000
title: “Forrest Gump”
year: 1994

id: 2001
title: “Toy Story”
year: 1995

style: “3D"

id: 1000
name: “Tom Hanks”

13



Query evaluation - Peculiarities

Query evaluation is not compositional

14



Query evaluation - Peculiarities

Query evaluation is not compositional

query {
artist(id:1000) {
name
}

artist(id:1000) {
artworks(role: ACTOR) {
title
}

14



Query evaluation - Peculiarities

Query evaluation is not compositional

query {
artist(id:1000) {
name
}

s artist(id:1000) {
artworks(role: ACTOR) {
title
}

14



Query evaluation - Peculiarities

Query evaluation is not compositional

query {
artist(id:1000) {
name
}

s artist(id:1000) {
artworks(role: ACTOR) {
title
}

“artist”
“name”

I

“artist” :

{

“Tom Hanks”,

{

“artworks” : |

{
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Query evaluation - Singularities

Query evaluation is not compositional

Selections are "factored-out” in between the recursive calls

{
query { “artist” : {
_ - “name” : “Tom Hanks”,
artlzgééd.1@®0) { “artworks” : [
) {
artist(id:1000) { .
artworks(role: ACTOR) { {'
title
}
o
} } !
}
}
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Query evaluation is not compositional

Selections are "factored-out” in between the recursive calls

{
query 1 “artist” : {
, . “name” : “Tom Hanks”,
artlzgééd.1@®0) { “artworks” : [
\ {
artist(id:1000) { Y
artworks(role: ACTOR) { {'
title
}
|
} } ]
¥
}
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Normalization [H&P, WWW’'18]

Queries admit a normal form that can be evaluated purely compositionally
and significantly simplifies reasoning

But...'
+*  Normalization procedure not provided

< No correctness proof

17
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Query normalization

» Certified normalization algorithm

Theorem normalized_query_is_in_nf :
V (¢ : query) (s : wfGraphQLSchema),
is_in_normal_form s (normalize s ¢).

Theorem normalize_preserves_semantics :
V (¢ : query) (s : wfGraphQLSchema) (g : conformedGraph s),
eval_query (normalize s ¢) g s = eval_query ¢ g s.
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Query normalization

Certified normalization algorithm

Theorem normalized_query_is_in_nf :
V (¢ : query) (s : wfGraphQLSchema),
is_in_normal_form s (normalize s ¢).

Theorem normalize_preserves_semantics :

V (¢ : query) (s : wfGraphQLSchema) (g :

conformedGraph s),

eval_query (normalize s ¢) g s = eval_query ¢ g s.

Simplified evaluation for queries in normal form

Theorem simpl_eval_correctness :
V (¢ : query) (s : wfGraphQLSchema) (g :
is_in_normal_form s ¢ ->
eval_query ¢ g s = simpl_eval_query ¢

conformedGraph s),

g s.
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Evaluation

Effectivity
Uncovered two issues in H&P formalization:

* Flawed definition of normal form
* Incomplete set of equivalence rules for normalization
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Evaluation

Effectivity
Uncovered two issues in H&P formalization:

* Flawed definition of normal form
* Incomplete set of equivalence rules for normalization

Faithfulness
Validated with a series of examples from different sources:

* Examples (41) from the SPEC validation section*
» Star Wars example from GraphQL reference implementation

* Example used in H&P

* https://graphgl.github.io/graphgl-spec/June2018/#sec-Validation

20
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Conclusion

Contribution
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Conclusion

Contribution

* First mechanized formalization of GraphQL in the Coq proof assistant
» Certified query normalization algorithm

« Uncover issues in initial formalization [H&P, WWW 18]

Future work

* Further GraphQL features
* Extraction (certified reference implementation)

* More general data models

Thanks!
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