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P ◃ {skip} [1/2] {call P}
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Randomization Leads to Intricate Behaviours

2

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!
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P ◃ {skip} [1/2] {call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!
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P ◃ {skip} [1/2] {call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

Runtime: 
Probability of Termination:   1

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!
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Randomization Leads to Intricate Behaviours

2

P ◃ {skip} [1/2] {call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

Runtime: 
Probability of Termination:   1

1 sec. 

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!
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Randomization Leads to Intricate Behaviours

2

P ◃ {skip} [1/2] {call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

Runtime: 
Probability of Termination:   1

1 min. 

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!
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Randomization Leads to Intricate Behaviours

2

P ◃ {skip} [1/2] {call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

Runtime: 
Probability of Termination:   1

1 hour 

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!
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Randomization Leads to Intricate Behaviours

2

P ◃ {skip} [1/2] {call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

Runtime: 
Probability of Termination:   1

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!

It terminates with probability 1, 
but reaching termination takes 
(in average) infinite time!∞
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P ◃ {skip} [1/2] {call P ; call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

Runtime: 
Probability of Termination:   1

It terminates with probability 1, 
even though it admits arbitrarily 
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It terminates with probability 1, 
but reaching termination takes 
(in average) infinite time!∞
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Randomization Leads to Intricate Behaviours

2

P ◃ {skip} [1/2] {call P ; call P}

P ◃ {skip} [1/2] {call P ; call P ; call P}

P ◃ {skip} [1/2] {call P}

Probability of Termination:   1

Runtime: 
Probability of Termination:   1

It terminates with probability 1, 
even though it admits arbitrarily 
long executions!

Probability of Termination:

It terminates with probability 1, 
but reaching termination takes 
(in average) infinite time!∞

√
5−1
2

It terminates with an irrational 
probability!

www.walldevil.com/

www.ragefaces.memesoftware.com/

www.gagfire.com/
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Randomized (Recursive) Algorithms are Natural and Widespread

3

“For many applications, a randomized algorithm 
is the simplest algorithm available, or the 
fastest, or both.” [Motwani & Raghavan] 
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Randomized (Recursive) Algorithms are Natural and Widespread

3

“For many applications, a randomized algorithm 
is the simplest algorithm available, or the 
fastest, or both.” [Motwani & Raghavan] 

Deterministic version: O(n2) comparisons

QS(A) ,
if (|A|  1) then return (A);
i := b|A|/2c;
A< := {a0 2 A | a0 < A[i ]};
A> := {a0 2 A | a0 > A[i ]};
return

�
QS(A<) ++ A[i ] ++ QS(A>)

�

Quicksort:
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Randomized (Recursive) Algorithms are Natural and Widespread

3

“For many applications, a randomized algorithm 
is the simplest algorithm available, or the 
fastest, or both.” [Motwani & Raghavan] 

rQS(A) ,
if (|A|  1) then return (A);
i := rand[1 . . . |A|];
A< := {a0 2 A | a0 < A[i ]};
A> := {a0 2 A | a0 > A[i ]};
return

�
QS(A<) ++ A[i ] ++ QS(A>)

�

Randomized Quicksort:

Randomized version:  O(n log(n)) comparisons
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Randomized (Recursive) Algorithms are Natural and Widespread

3

“For many applications, a randomized algorithm 
is the simplest algorithm available, or the 
fastest, or both.” [Motwani & Raghavan] 

rQS(A) ,
if (|A|  1) then return (A);
i := rand[1 . . . |A|];
A< := {a0 2 A | a0 < A[i ]};
A> := {a0 2 A | a0 > A[i ]};
return

�
QS(A<) ++ A[i ] ++ QS(A>)

�

Randomized Quicksort:

Quicksort

Median finding

Binary search

Simple path of length k

Euclidean matching

…..

Sample Randomized 
Recursive Algorithms:

Randomized version:  O(n log(n)) comparisons
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Current Analysis Approaches are Not Satisfactory

4

Current Analysis Approaches:  
Mathematical ad-hoc reasoning (on involved random variables)

Probabilistic recurrence relations

Dedicated techniques for D&C algorithms

Mathematical ad-hoc reasoning (on involved random variables)

Probabilistic recurrence relations

Dedicated techniques for D&C algorithms
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Current Analysis Approaches are Not Satisfactory

4

Current Analysis Approaches:  
Mathematical ad-hoc reasoning (on involved random variables)

Probabilistic recurrence relations

Dedicated techniques for D&C algorithmsCover only a fragment of the proof argument  

Non-trivial claims are taken for granted
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Current Analysis Approaches are Not Satisfactory

4

Current Analysis Approaches:  

Our Approach:  

using only first principles

directly from the program code

Formal verification

Mathematical ad-hoc reasoning (on involved random variables)

Probabilistic recurrence relations

Dedicated techniques for D&C algorithmsCover only a fragment of the proof argument  

Non-trivial claims are taken for granted
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Our Contribution

5

Two calculi à la weakest pre-condition:

For reasoning about program outcomes, e.g. 


Soundness of the calculi w.r.t. an operational semantics

Application: probabilistic binary search

For reasoning about program expected runtimes, e.g. 

DEDUCTIVE VERIFICATION OF RANDOMIZED RECURSIVE ALGORITHMS

Pr
[
x=xopt

]
≥ 0.9

ert ≤ x+ y
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Calculi — Basics

6

For Program Outcomes  
[Kozen ’81]

wp[c] : (S ! [0, 1]) ! (S ! [0, 1])

quantitative
post-condition

quantitative 
pre-condition

wp[c]( Q)                :    probability that c 
establishes post-condition Q.

probabilisitic program
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Calculi — Basics

6

For Program Outcomes  
[Kozen ’81]

For Program Expected Runtimes  
[ESOP ’16]

wp[c] : (S ! [0, 1]) ! (S ! [0, 1])

quantitative
post-condition

quantitative 
pre-condition

ert [c] :
(
S → R∞

≥0

)
→

(
S → R∞

≥0

)

runtime of the com- 
putation following c

runtime of c, plus the 
computation following c

               :    expected runtime of c.ert [c](0)wp[c]( Q)                :    probability that c 
establishes post-condition Q.

probabilisitic program
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Calculi — Basics

6

For Program Outcomes  
[Kozen ’81]

For Program Expected Runtimes  
[ESOP ’16]

wp[c] : (S ! [0, 1]) ! (S ! [0, 1])

quantitative
post-condition

quantitative 
pre-condition

ert [c] :
(
S → R∞

≥0

)
→

(
S → R∞

≥0

)

runtime of the com- 
putation following c

runtime of c, plus the 
computation following c

               :    expected runtime of c.ert [c](0)wp[c]( Q)                :    probability that c 
establishes post-condition Q.

ert [{c1} [p] {c2}](t) =

1 + p · ert [c1](t) + (1�p) · ert [c2](t)

wp
�
{c1} [p] {c2}

�
( Q) =

p · wp[c1]( Q) + (1�p) · wp[c2]( Q)

probabilisitic program
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Calculi — Proof Rules for Recursive Procedures

7

For procedure calls, we intuitively have

but formal definitions require (higher order) fixed points.

“wp[call P]( Q) = wp[body(P)]( Q)” “ert [call P](t) = 1 + ert [body(P)](t)”
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Calculi — Proof Rules for Recursive Procedures

7

For procedure calls, we intuitively have

but formal definitions require (higher order) fixed points.

For upper bounds

“Prove the desired specification for the procedure’s body assuming it 
already holds for the recursive calls in it.” 

For lower bounds

Dual rule for upper bounds is also sound

Proof Rules for Procedure Calls

“wp[call P]( Q) = wp[body(P)]( Q)” “ert [call P](t) = 1 + ert [body(P)](t)”

l0 = 0

ln ≤ wp[call P]( Q) ! ln+1 ≤ wp[body(P)]( Q)

supn ln ≤ wp[call P]( Q)

wp[call P]( Q) ≤ u ! wp[body(P)]( Q) ≤ u

wp[call P]( Q) ≤ u
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Calculi — Proof Rules for Recursive Procedures

7

For procedure calls, we intuitively have

but formal definitions require (higher order) fixed points.

For upper bounds

“Prove the desired specification for the procedure’s body assuming it 
already holds for the recursive calls in it.” 

For lower bounds

Dual rule for upper bounds is also sound

Proof Rules for Procedure Calls

“wp[call P]( Q) = wp[body(P)]( Q)” “ert [call P](t) = 1 + ert [body(P)](t)”

ert [call P](t) ≤ u + 1 ! ert [body(P)](t) ≤ u

ert [call P](t) ≤ u + 1

l0 = 0

ln ≤ wp[call P]( Q) ! ln+1 ≤ wp[body(P)]( Q)

supn ln ≤ wp[call P]( Q)

wp[call P]( Q) ≤ u ! wp[body(P)]( Q) ≤ u

wp[call P]( Q) ≤ u
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Operational Semantics 

8

P ◃ {skip1} [1/2]2 {call P3; call P4}

Associated Pushdown Markov Chain

2

3

1

1/2

1/2

# Term

empty

push(4)

4

pop(4)

push(#)

pop(#)

stack

Sample Program
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Operational Semantics 

8

P ◃ {skip1} [1/2]2 {call P3; call P4}

Associated Pushdown Markov Chain

2

3

1

1/2

1/2

# Term

empty

push(4)

4

pop(4)

push(#)

pop(#)

stack

Sample Program

SOUNDNESS RESULT

wp[call P]( true) = Pr(♦Term)
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Case Study: Probabilistic Binary Search

9

sorted array                      ,a[left ...right ]
val

Input:
value       to search in the array

index of the array containing       (if any)Output: val

Formal Verification of Correctness & Expected Runtime

CORRECTNESS FOR CASE 
val � a[left ...right ]

RUNTIME FOR CASE 
val �� a[left ...right ]

left � right � sorted(a[left ...right ]) � val � a[left ...right ]

left � right � sorted(a[left ...right ]) � val �� a[left ...right ]
�n

i=1
1/i with

n = right � left + 1

PBS �
pivot := rand[left ...right ];
if (left < right)

if (a[pivot ] < val)
left := min{pivot + 1, right};
call PBS

if (a[pivot ] > val)
right := max{pivot � 1, left};
call PBS

Reasoning about Recursive Probabilistic Programs — Olmedo, Kaminski, Katoen & Matheja


1 · G ≤ wp[call PBS]
(

a[pivot ] = val

)

ert [call PBS](0) ≤ 4 + ¬G ·∞ + G ·
∈Θ(log n)︷ ︸︸ ︷

(6Hn − 2.5)



What Else is on the Paper?

10

Algebraic properties of both transformers          and          , e.g. ert [·]wp[·]
wp[c](a · f + b · g) = a · wp[c](f) + b · wp[c](g)
ert [c](k + t) = k + ert [c](t)

ert [c](t) = ert [c](0) + wp[c](t)

Extension to mutual recursion

Relation between finite expected runtime and program termination


ert [c](0)(s) < ∞ =⇒ wp[c](1)(s) = 1

10Reasoning about Recursive Probabilistic Programs — Olmedo, Kaminski, Katoen & Matheja




Summary

11

Deductive approach for the formal verification of randomized recursive algorithms

Two calculi for reasoning about the outcome and runtime of programs

Set of proof rules for reasoning about recursive programs

Soundness w.r.t. an operational semantics 

Application: probabilistic binary search


What we have done:

Automate the verification process

What we would like to do:

More challenging case studies (e.g. randomized Quicksort)
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Summary

11

Deductive approach for the formal verification of randomized recursive algorithms

Two calculi for reasoning about the outcome and runtime of programs

Set of proof rules for reasoning about recursive programs

Soundness w.r.t. an operational semantics 

Application: probabilistic binary search


What we have done:

Automate the verification process

What we would like to do:

More challenging case studies (e.g. randomized Quicksort)

Thanks!
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BACKUP SLIDES



What is a Probabilistic Program?

13

Probabilistic program 
that simulates a 
geometric distribution

Program Output 
Distribution

Program Runtime

Average (or Expected) Runtime:

3 5 7 9 11

1/2

1/4

1/8

1/16

1/32

Run–Time

P
r
o
b
a
b
i
l
i
t
y

3 · 1
2 + 5 · 1

4 + · · ·+ (2n+1) · 1
2n + · · · = 5

1 2 3 4 5

1/2

1/4

1/8

1/16

1/32

Output

P
ro
b
a
b
il
it
y

C
geo

: n := 0;
repeat

n := n+ 1;
c := coin flip(0.5)

until (c=heads);
return n



Our Programming Model

14

We assume only one procedure P


No argument passing or return expression in P (it manipules the 
global program state).

Language Syntax

C := skip nop

| abort abortion

| x

:= E assignment

| if (G ) then {C} else {C} conditional

| {C} [p] {C} probabilistic choice

| call P procedure call

| C; C sequence



Our Programming Model

14

We assume only one procedure P


No argument passing or return expression in P (it manipules the 
global program state).

Language Syntax

C := skip nop

| abort abortion

| x

:= E assignment

| if (G ) then {C} else {C} conditional

| {C} [p] {C} probabilistic choice

| call P procedure call

| C; C sequence

Example: Factorial

P � if (x � 0) then {y := 1} else
�

x := x�1; call P ;

x := x+1; y := y · x
�



Our Programming Model

14

We assume only one procedure P


No argument passing or return expression in P (it manipules the 
global program state).

Language Syntax

C := skip nop

| abort abortion

| x

:= E assignment

| if (G ) then {C} else {C} conditional

| {C} [p] {C} probabilistic choice

| call P procedure call

| C; C sequence

Example: 

P � if (x � 0) then {y := 1} else
�

x := x�1; call P ;

x := x+1; {y := y · x}[1/2]{skip}
�

Faulty factorial



The Probabilistic Predicate Transformer — Inductive Definition

15

wp[skip](f ) = f

wp[abort](f ) = 0

wp[x := E ](f ) = f [x/E ]

wp[if (G ) then {c1} else {c2}](f ) = [G ] · wp[c1](f ) + [¬G ] · wp[c2](f )
wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + (1−p) · wp[c2](f )
wp[c1; c2](f ) = (wp[c1] ◦ wp[c2])(f )
wp[call P] = supn wp[ calln P ]

n-inlining of P 
call0 P = abort

calln+1 P = body(P)[call P/calln P]
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ert [skip](t) = 1+ t

ert [abort](t) = 0

ert [x := E ](t) = 1+ t[x/E ]

ert [if (G ) then {c1} else {c2}](t) = 1+ [G ] · ert [c1](t) + [¬G ] · ert [c2](t)
ert [{c1} [p] {c2}](t) = 1+ p · ert [c1](t) + (1−p) · ert [c2](t)
ert [c1; c2](t) = (ert [c1] ◦ ert [c2]) (t)

ert [call P](t) = lfp
(
λη • 1⊕ ert [body(P)]♯η

)
(t)

“ert [call P](t) = 1 + ert [body(P)](t)”
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The derivation goes as follows:
wp[D(P

rec

3

)](1)

= {def. of wp}
1
2 · wp[skip](1) + 1

2 · wp[callP
rec

3

; callP
rec

3

; callP
rec

3

](1)

= {def. of wp}
1
2 +

1
2 · wp[callP

rec

3

; callP
rec

3

]

�
wp[callP

rec

3

](1)
�

� {assumption, monot. of wp}
1
2 +

1
2 · wp[callP

rec

3

; callP
rec

3

](')

= {def. of wp, scalab. of wp twice}
1
2 +

1
2 ' · wp[callP

rec

3

]

�
wp[callP

rec

3

](1)
�

� {assumption, monot. of wp}
1
2 +

1
2 ' · wp[callP

rec

3

](')

= {scalab. of wp}
1
2 +

1
2 '2

· wp[callP
rec

3

](1)

� {assumption, monot. of wp}
1
2 +

1
2 '3

= {algebra}
'

4

An appealing feature of our approximation semantics is that to
prove the following soundness result we do not need to resort to a
continuity argument on the expectation transformers.

Theorem 4.1 (Soundness of rules [w(l)p-rec]). Rules [wp-rec] and
[wlp-rec] are sound w.r.t. the w(l)p semantics in Figure 1.

Proof. See Appendix A.3.

Rules [w(l)p-rec] allow deriving only one–sided bounds for the
weakest (liberal) pre–expectation of a procedure call. It is also
possible to derive two–sided bounds by means of the following
rules:

l0 = 0, u0 = 0,

l
n

� wp[callP ](f) � u
n

� l
n+1 � wp[D(P)](f) � u

n+1

sup

n

l
n

� wp[callP ,D](f) � sup

n

u
n

[wp-rec

!

]

l0 = 1, u0 = 1,

l
n

� wlp[callP ](f) � u
n

� l
n+1 � wlp[D(P)](f) � u

n+1

inf

n

l
n

� wlp[callP ,D](f) � inf

n

u
n

[wlp-rec

!

]

In constrast to rules [w(l)p-rec], these rules require exhibiting
two sequences of expectations hl

n

i and hu
n

i rather than a single
expectation g to bound the weakest (liberal) pre–expectation of
a procedure call. Intuitively l

n

(u
n

) represents a lower (upper)
bound for the weakest pre–expectation of the n-inlining of the
procedure, i.e. from the premises of the rules we will have l

n

�

w(l)p[callD
n

P ](f) � u
n

for all n 2 N.
Observe that both rules can be specialized to reason about one–

sided bounds. For instance, by setting u
n+1 = 1 in [wp-rec

!

]

we can reason about lower bounds of wp[callP ,D](f), which is
not supported by rule [wp-rec]. Similarly, by taking l

n

= 0 in rule
[wlp-rec

!

] we can reason about upper bounds of wlp[callP ,D](f).
Example 4. Reconsider the procedure P

rec

3

from Example 3. Now
we prove that the procedure terminates with probability at least
' =

p
5�1
2 from any initial state. To this end, we rely on the

fact that ' can be characterized by the asymptotic behavior of the
sequence h'

n

i, where '0 = 0 and '
n+1 =

1
2 +

1
2 '3

n

. In symbols,
' = sup

n

'
n

. We wish then to prove that

sup

n

'n � wp[callP
rec

3

,D](1) .

To establish this formula we apply the one side variant of rule [wp-

rec

!

] to reason about lower bounds of wp[callP
rec

3

,D](1), that is,

we implicitly take u
n+1 = 1. We must then establish

'n � wp[callP
rec

3

](1) � 'n+1 � wp[D(P
rec

3

)](1) .

The derivation follows the same steps as those taken in Example 3
to give upper bounds on wp[callP

rec

3

,D](1). Combining the result
proved with that in Example 3, we conclude that ' =

p
5�1
2 is the

exact termination probability of hcallP
rec

3

,Di. 4

Lastly, we can establish the correctness our rules.

Theorem 4.2 (Soundness of rules [w(l)p-rec
!

]). Rules [w(l)p-rec

!

]

are sound w.r.t. the w(l)p semantics in Figure 1.

Proof. See Appendix A.3.

To conclude the section we would like to point out that the
rule [wp-rec

!

] is related to previous work on proof rules. It can
be viewed as a generalization of Jones’s loop rule [16] to the case
of recursion (even though Jones originally presented a one–sided
version) and as an adaptation of Audebaud and Paulin-Mohring’s
rule [1] to our weakest pre–expectation semantics. The counterpart
of the rule for partial correctness, on the other hand, is, to the best
of our knowledge, novel.

5. The Expected Runtime of Programs
To further our study of recursive probabilistic programs we now
develop a calculus for reasoning about the expected or average run-
time of pRGCL programs. This calculus builds upon our previous
work in [18] and is able to handle recursive procedures.

5.1 The Expected Runtime Transformer ert

We assume a runtime model where executing a skip statement, an
assignment, evaluating the guard in a conditional branching and in-
voking a procedure7 consumes one unit of time. On the other hand,
combining two programs by means of a sequential composition or
a probabilistic choice consumes no additional time other than that
consumed by the original programs. Likewise, halting a program
execution with an abort statement consumes no unit of time.

Since the runtime of a program varies according to the initial
state from which it is executed, our aim is to associate to each
program hc,Di a mapping that takes each state s to the expected
time until hc,Di terminates on s. Such mappings will range over
the set of runtimes T ,

�
t
�� t : S ! [0, 1]

 
.8

To associate each program to its runtime we use a continuation
passing style formalized by the transformer

ert [ · ] : T ! T .

If t 2 T represents the runtime of the computation that follows
program hc,Di, then ert [c,D](t) represents the overall runtime of
hc,Di, plus the computation following hc,Di. Runtime t is usually
referred to as the continuation of hc,Di. In particular, by setting
the continuation of a program to zero we recover the runtime of the
plain program. That is, for every initial state s,

ert [c,D](0)(s)

gives the expected runtime of program hc,Di from state s.
The transformer ert [c,D] is defined by induction on the struc-

ture of c, following the rules in Figure 2. The rules are defined
so as to correspond to the aforementioned runtime model. That is,

7 Loosely speaking, the overall runtime of a procedure call is then one plus
the runtime of executing the procedure’s body.
8 Strictly speaking, the set of runtimes T coincides with the set of un-
bounded expectations E but we prefer to distinguish the two sets since they
are to represent different objects. We will, however, keep the same notations
for runtimes as for expectations, for example t[x/E], t1 � t2, etc.
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= wp[c1]
�
wp[c2]([x=y])

�

= wp[c1]
�
1
3 · wp[y :

= 0]([x=y]) + 2
3 · wp[y :

= 1]([x=y])
�

= wp[c1]
�
1
3 · [x=0] +

2
3 · [x=1]

�

=

1
2 · wp[x :

= 0]

�
1
3 · [x=0] +

2
3 · [x=1]

�

+

1
2 · wp[x :

= 1]

�
1
3 · [x=0] +

2
3 · [x=1]

�

=

1
2 ·

�
1
3 · [0=0] +

2
3 · [0=1]

�
+

1
2 ·

�
1
3 · [1=0] +

2
3 · [1=1]

�

=

1
2 ·

1
3 +

1
2 ·

2
3 =

1
2 4

The transformers wp and wlp enjoy several appealing algebraic
properties, which we summarize below.

Lemma 3.1 (Basic properties of w(l)p). For every program hc,Di,
every f1, f2, and increasing !–chain f0 � f1 � · · · in E, g1, g2,
and every decreasing !–chain g0 ⌫ g1 ⌫ · · · in E1, and scalars
↵1,↵2 2 R�0 it holds:

Continuity: sup

n

wp[c,D](f
n

) = wp[c,D](sup
n

f
n

)

inf

n

wlp[c,D](g
n

) = wlp[c,D](inf
n

g
n

)

Monotonicity: f1 � f2 =) wp[c,D](f1) � wp[c,D](f2)

g1 � g2 =) wlp[c,D](g1) � wlp[c,D](g2)

Linearity: wp[c,D](↵1 · f1 + ↵2 · f2)

= ↵1 · wp[c,D](f1) + ↵2 · wp[c,D](f2)

Preserv. of 0,1: wp[c,D](0) = 0 and wlp[c,D](1) = 1

Proof. See Appendix A.1.

Program termination. Since the termination behavior of a pro-
gram is given by the probability that it establishes true, we can
readily use the transformer wp to reason about program termi-
nation. It suffices to consider the weakest pre–expectation of
the program w.r.t. post–expectation [true] = 1. Said otherwise,
wp[c,D](1)(s) gives the termination probability of program hc,Di
from state s. In particular, if the program terminates with probabil-
ity 1, we say that it terminates almost–surely.

3.3 Characterization based on Fixed Points
Next we use a continuity argument on the transformer w(l)p to
prove that its action on recursive procedures can also be defined
using fixed point techniques. This alternative characterization rests
on a subsidiary transformer w(l)p[ · ]]

✓

, which is a slight variant
of w(l)p[ · ]. The main difference between these transformers is
the mechanism that they use to give semantics to procedure calls:
w(l)p[ · ] relies on a declaration D, while w(l)p[ · ]]

✓

relies on a so–
called (liberal) semantic environment ✓ : E ! E (✓ : E1 ! E1)
which is meant to directly encode the semantics of procedure calls.
Then w(l)p[callP ]

]

✓

(f) gives ✓(f), while for all other program
constructs c, w(l)p[c]]

✓

(f) agrees with w(l)p[c](f); see Figure 8
in Section A.2 for details. For technical reasons, in the remainder
of our development we will consider only continuous semantic
environments in SEnv , {f | f : E ! E is upper continuous}
and LSEnv , {f | f : E1 ! E1 is lower continuous}.6 This
is a natural assumption since we are interested only in semantic
environments that are obtained as the w(l)p–semantics of a pRGCL
program, which are continuous by Lemma 3.1.

The semantics of recursive procedures can now be readily given
as the fixed point of a semantic environment transformer.

6 A (liberal) semantic environment ✓ is upper (lower) continuous iff for
every increasing !-chain f0 � f1 � · · · (decreasing !-chain f0 ⌫ f1 ⌫
· · · ), sup

n

✓(f
n

) = ✓(sup
n

f
n

) (inf
n

✓(f
n

) = ✓(inf
n

f
n

)).

Theorem 3.1 (Fixed point characterization for procedure calls).
Given a declaration D : {P} ! C for procedure P ,

wp[callP ,D] = lfpv

⇣
�✓ :SEnv

•

wp[D(P)]

]

✓

⌘

wlp[callP ,D] = gfpv

⇣
�✓ :LSEnv

•

wlp[D(P)]

]

✓

⌘
.

Proof. See Appendix A.2.

The fixed points above are taken w.r.t. the pointwise order “v”
over semantic environments: given ✓1, ✓2 2 SEnv (resp. ✓1, ✓2 2

LSEnv), ✓1 v ✓2 iff ✓1(f) � ✓2(f) for all f 2 E (resp. f 2 E1).
Theorem 3.1 reveals an inherent difference between the com-

plexities of reasoning about loops and general recursion: The se-
mantics of loops can be given as the fixed point of an expectation
transformer (see e.g. [26]), while the semantics of recursion re-
quires the fixed point of a (higher order) environment transformer.
As a consequence, proving our results for recursive programs re-
quires new insights not present in the proofs for while–programs.
This fact was already noticed by Dijkstra [7, p. xvii] and later on
confirmed by Nelson [27, p. 517] for non–probabilisitic programs.

4. Correctness of Recursive Programs
In this section we introduce some proof rules for effectively reason-
ing about the behavior of recursive programs. For that we require
the notion of constructive derivability. Given logical formulae A
and B, we use A � B to denote that B can be derived assuming
A. In particular, we will consider claims of the form

w(l)p[callP ](f1) ./ g1 � w(l)p[c](f2) ./ g2 ,

where ./2{�,⌫}, f1, g1 give the specification of callP and f2, g2
the specification of c. Notice that in such a claim we omit any
procedure declaration as the derivation is independent of P ’s body.

Our first two rules are extensions of well–known rules for ordi-
nary recursive programs (see e.g. [15]) to a probabilistic setting:

wp[callP ](f) � g � wp[D(P)](f) � g

wp[callP ,D](f) � g
[wp-rec]

g � wlp[callP ](f) � g � wlp[D(P)](f)

g � wlp[callP ,D](f)
[wlp-rec]

So for proving that a procedure call satisfies a specification (given
by f, g), it suffices to show that the procedure’s body satisfies the
specification, assuming that the recursive calls in the body do, too.

Example 3. Reconsider the procedure P
rec

3

with declaration

D(P
rec

3

) : {skip} [

1/2] {callP
rec

3

; callP
rec

3

; callP
rec

3

}

presented in the introduction. We prove that it terminates with
probability at most ' =

p
5�1
2 from any initial state. Formally,

this is captured by wp[callP ,D](1) � '. To prove this, we apply
rule [wp-rec]. We must then establish the derivability claim

wp[callP ](1) � ' � wp[D(P
rec

3

)](1) � ' .
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wp[call P](f ) ≤ u ! wp[body(P)](f ) ≤ u

wp[call P](f ) ≤ u

Proof rule for upper bounds

“Prove the desired specification for the procedure’s body 
assuming it already holds for the recursive calls in it.” 

call P

⟨f ⟩

...

...

⟨u⟩

body(P)
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wp[call P](f ) ≤ u ! wp[body(P)](f ) ≤ u

wp[call P](f ) ≤ u

Proof rule for upper bounds

“Prove the desired specification for the procedure’s body 
assuming it already holds for the recursive calls in it.” 

call P
⟨f ′⟩

⟨f ⟩

...

...

⟨u⟩

body(P)
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wp[call P](f ) ≤ u ! wp[body(P)](f ) ≤ u

wp[call P](f ) ≤ u

Proof rule for upper bounds

“Prove the desired specification for the procedure’s body 
assuming it already holds for the recursive calls in it.” 

call P
⟨u⟩

⟨f ′⟩

⟨f ⟩

...

...

⟨u⟩

body(P) f ′ ≤ f
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wp[call P](f ) ≤ u ! wp[body(P)](f ) ≤ u

wp[call P](f ) ≤ u

Proof rule for upper bounds

“Prove the desired specification for the procedure’s body 
assuming it already holds for the recursive calls in it.” 

call P
⟨u⟩

⟨u′⟩

⟨f ′⟩

⟨f ⟩

...

...

⟨u⟩

body(P) f ′ ≤ f
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wp[call P](f ) ≤ u ! wp[body(P)](f ) ≤ u

wp[call P](f ) ≤ u

Proof rule for upper bounds

“Prove the desired specification for the procedure’s body 
assuming it already holds for the recursive calls in it.” 

call P
⟨u⟩

⟨u′⟩

⟨f ′⟩

⟨f ⟩

...

...

u′ ≤ u
⟨u⟩

body(P) f ′ ≤ f
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wp[call P](f ) ≤ u ! wp[body(P)](f ) ≤ u

wp[call P](f ) ≤ u

l0 = 0

ln ≤ wp[call P](f ) ! ln+1 ≤ wp[body(P)](f )

supn ln ≤ wp[call P](f )

Proof rule for upper bounds

Proof rule for lower bounds

Dual rule for upper bounds is also sound

“Prove the desired specification for the procedure’s body 
assuming it already holds for the recursive calls in it.” 

call P
⟨u⟩

⟨u′⟩

⟨f ′⟩

⟨f ⟩

...

...

u′ ≤ u
⟨u⟩

body(P) f ′ ≤ f
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Rules from the wp—calculus can be easily adapted for the ert—calculus

l0 = 0

ln + 1 ≤ ert [call P](t) ! ln+1 ≤ ert [body(P)](t)

supn ln + 1 ≤ ert [call P](t)

Proof rule for upper bounds

Proof rule for upper bounds

ert [call P](t) ≤ u + 1 ! ert [body(P)](t) ≤ u

ert [call P](t) ≤ u + 1
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wp[call P1](f1) ≤ g1, ... , wp[call Pm](fm) ≤ gm ! wp[body(P1)](f1) ≤ g1...
wp[call P1](f1) ≤ g1, ... , wp[call Pm](fm) ≤ gm ! wp[body(Pm)](fm) ≤ gm

wp[call Pi ](fi ) ≤ gi for all i = 1 . . .m
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SOUNDNESS RESULT

Example:

ER(♦Term) =
∑

π : ⟨ℓ0, s0⟩! ⟨Term, s′⟩

Pr(π) · f (s ′)

= 1
2 + 1

2 ·
(
1
2

)2
+ · · ·

       f =1

P ◃ {skip1} [1/2]2 {call P3; call P4}

To each program c, initial state s0 and post-condition f we associate a reward 
pushdown Markov chain


We prove that the weakest pre-condition                     coincides with the expected 
reward                    upon reaching a terminal state in the Markov chain 

Mf
s0!c"

ER(♦Term)
wp[c](f )(s0)

wp[c](f )(s0) = ER(♦Term)

2

3

1

1/2

1/2

# Term

empty

push(4)

4

pop(4)

push(#)

pop(#)

stack
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stmt (`) = skip succ1 (`) = `0

h`, si �, 1, �����! h`0, si
[skip]

stmt (`) = x := E succ1 (`) = `0

h`, si �, 1, �����!
⌦
`0, s

⇥
x 7! s(E)

⇤↵ [assign]
stmt (`) = abort

h`, si �, 1, �����! h`, si
[abort]

stmt (`) = if (G) {c1} else {c2} s |= G succ1 (`) = `0

h`, si �, 1, �����! h`0, si
[if1]

stmt (`) = if (G) {c1} else {c2} s 6|= G succ2 (`) = `0

h`, si �, 1, �����! h`0, si
[if2]

stmt (`) = {c1} [p] {c2} succ1 (`) = `0

h`, si �, p, �����! h`0, si
[prob1]

stmt (`) = {c1} [p] {c2} succ2 (`) = `0

h`, si �, 1�p, �������! h`0, si
[prob2]

stmt (`) = callP succ1 (`) = `0

h`, si �, 1, �·`0������!
⌦
init

�
D(P )

�
, s

↵ [call]
h#, si `

0
, 1, "����! h`0, si

[return]
h#, si �0, 1, �0������! hTerm, si

[terminate]

Figure 3. Rules for defining an operational semantics for pRGCL programs. For sequential composition there is no dedicated rule as the
control flow is encoded via the succ1 and the succ2 functions.

Compared to the proof rules from the wp–calculus, these proof
rules require incrementing by one unit some of the bounds. Loosely
speaking, this is because the runtime of a procedure call is one plus
the runtime of its body, whereas the semantics of a procedure call
fully agrees with the semantics of its body.
Example 5. To illustrate the use of the rules, consider the faulty
factorial procedure with declaration

D(P
fact

) : if (x  0) {{y :

= 1} else {{c1} [5/6] {c2}; y :

= y ·x} ,

where c1 = x :

= x�1; callP
fact

; x :

= x+1 and c2 = x :

= x�2;

callP
fact

; x :

= x+2. We prove that on input x = k � 0, the
expected runtime of the procedure is 2 + ↵

k

, where

↵
k

=

1

49

⇣
121 + 210k + 432

�
�

1
6

�
k+1

⌘
.

Since the term 432(

�1/6)k+1 is negligible, we can approximate the
procedure’s runtime by 4.5 + 4.3k. We can formally capture our
exact runtime assertion by

ert [callP
fact

,D](0) = 1+ sup

n

t
n

,

where t
n

= 1+[x < 0]·1+[0  x  n]·↵
x

+[x > n]·↵
n+1. To

see this, observe that the sequence h↵
k

i is increasing and therefore,
sup

n

t
n

= 1 + [x < 0] · 1 + [0  x] · ↵
x

. We prove the runtime
assertion using rule [eet-rec

!

] with instantiations t = 0 and l
n

=

u
n

= t
n

for n � 1. We have to discharge the premise

ert [callP
fact

](0) = 1+ t
n

� ert [D(P
fact

)](0) = t
n+1 .

Since some simple calculations yield

ert [D(P
fact

)](0) = 1+ [x  0] · 1

+ [x > 0] ·

�
5
6 · ert [c1](1) + 1

6 · ert [c2](1)
�
,

our next step is to compute ert [c1](1) (the calculations are identical
for ert [c2](1)). To do so, we rely on assumption ert [callP ](0) =
1+ t

n

and the propagation of constants property of ert.

ert [c1](1) = ert [x :

= x�1; callP
fact

]

�
ert [x :

= x+1](1)
�

= 2+ ert [x :

= x�1; callP
fact

](0)

= 2+ ert [x :

= x�1](1+ t
n

)

= 4+ t
n

[x/x+ 1]

The derivation then concludes by showing that

t
n+1 = 1+ [x  0] · 1

+ [x > 0] ·

⇣
5
6

�
4+ t

n

[x/x+1]

�
+

1
6

�
4+ t

n

[x/x+2]

�⌘
,

which after some term reordering reduces to proving that ↵0 = 1,
↵1 = 7 and ↵

k+2 = 5 +

5
6↵k+1 +

1
6↵k

. 4

We conclude the section establishing the soundness of the rules.

Theorem 5.4 (Soundness of rules [eet-rec], [eet-rec
!

]). Rules [eet-

rec] and [eet-rec

!

] are sound w.r.t. the ert–calculus in Figure 2.

Proof. See Appendix A.8.

6. Operational Semantics
We provide an operational semantics for pRGCL programs in terms
of pushdown Markov chains with rewards (PRMC) [3] and prove
the transformer wp to be sound with respect to this semantics. Due
to space limitations, this section contains an informal introduction
only. Corresponding formal definitions are found in Appendix A.9.

For simplicity, we assume a canonical labeling for each com-
mand c 2 C together with auxiliary functions init, succ1, succ2 and
stmt determining the initial location, the first and second successor
of a location and the program statement corresponding to a label.
As an example, the labels attached to each statement of program c
from Example 3 are as follows:

c : {skip

1
} [

1/2]2 {callP3
; callP4

; callP5
} .

The definition of the auxiliary functions is straightforward. For
instance, we have init(c) = 2, succ1(1) = #, succ2(2) = 3, and
stmt (2) = c, where # is a special symbol indicating termination
of a procedure. Moreover, label Term stands for termination of the
whole program.

Our operational semantics of pRGCL programs is given as an
execution relation, where each step is of the form

h`, si
�, p, �

0
����!

⌦
`0, s0

↵
.

Here, `, `0 are program labels, s, s0 2 S are program states, � is
a program label being popped from and �0 a finite sequence of
labels being pushed on the stack, respectively. p 2 [0, 1] denotes
the probability of executing this step.

This execution relation corresponds to the transition relation of
a PRMC, where each pair h`, si is a state and the stack alphabet is
given by the set of all labels of a given pRGCL program. Moreover,
given f 2 E, a reward of f(s) is assigned to each state of the form
hTerm, si. Otherwise, the reward of a state is 0. Figure 3 shows the
rules defining the operational semantics of pRGCL programs. The
rules in Figure 3 are self–explanatory. In case of a procedure call,
the calls successor label is pushed on the stack and execution con-
tinues with the called procedure. Whenever a procedure terminates,
i.e. reaches a state h#, si, and the stack is non–empty, a return ad-
dress is popped from and execution continues at this address.

Figure 4 shows the PRMC of example program c. The initial
state is 2 (the probabilistic choice). Say the right branch is chosen;
we move to 3. The statement at 3 is a call, and the address after the
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