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P > {skip} [}/2] {call P} A It terminates with probability 1,
O even though it admits arbitrarily
Probability of Termination: 1 _4) long executions!
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It terminates with probability 1,
even though it admits arbitrarily
long executions!
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P > {skip} [Y/2] {call P}

Probability of Termination: 1

P > {skip} [Y/2] {call P; call P}

It terminates with probability 1,
even though it admits arbitrarily
long executions!

Probability of Termination: 1

4]

Runtime: 1 sec. .
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P > {skip} [Y/2] {call P}

Probability of Termination: 1

P > {skip} [Y/2] {call P; call P}

It terminates with probability 1,
even though it admits arbitrarily
long executions!

Probability of Termination: 1

4]

Runtime: 1 min. .
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P > {skip} [Y/2] {call P}

Probability of Termination: 1

P > {skip} [Y/2] {call P; call P}

It terminates with probability 1,
even though it admits arbitrarily
long executions!

Probability of Termination: 1

4]

Runtime: 1 hour .
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It terminates with probability 1,
even though it admits arbitrarily
long executions!

P > {skip} [Y/2] {call P}

Probability of Termination: 1

P > {skip} [Y/2] {call P; call P}

@ It terminates with probability 1,

Probability of Termination: 1 ¢ but reaching termination takes
Runtime: oo @ (in average) infinite time!
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It terminates with probability 1,
even though it admits arbitrarily
long executions!

{skip} [Y/2] {call P}

Probability of Termination: 1

{skip} [Y/2] {call P; call P}

@ It terminates with probability 1,

Probability of Termination: 1 ¢ but reaching termination takes
Runtime: oo @ (in average) infinite time!

. 1 . . -
{skip} [Y/2] {call P; call P; call P} (7 =)\ It terminates with an irrational
V5—1 K@ probability!

Probability of Termination:

2 |
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“For many applications, a randomized algorithm
iIs the simplest algorithm available, or the
bl  fastest, or both.” [Motwani & Raghavan]
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“For many applications, a randomized algorithm
iIs the simplest algorithm available, or the
fastest, or both.” [Motwani & Raghavan]

—————T

Quicksort:

QS(A) =
if (|A| < 1)then return(A);
= |IAl/2];
A.={a eA|ad <A[l};
A= {d €Al d > Alil)
return (QS(A<) ++ Ali] ++ QS(A>))

Deterministic version: O(n?) comparisons



“For many applications, a randomized algorithm
iIs the simplest algorithm available, or the
fastest, or both.” [Motwani & Raghavan]

—————T

Randomized Quicksort:

rQS(A) £
if (|JA| < 1)then return(A);
i=rand[1...|A|];

Ao ={a e Alad < A[l};
As ={ad c Alad > Alil};
return (QS(A<) ++ Ali] ++ QS(A>))

Randomized version: O(n log(n) comparisons



“For many applications, a randomized algorithm
iIs the simplest algorithm available, or the
fastest, or both.” [Motwani & Raghavan]

Randomized Quicksort:

rQS(A) £
if (|JA| < 1)then return(A);
i=rand[1...|A|];

Ao ={a e Alad < A[l};
As ={ad c Alad > Alil};
return (QS(A<) ++ Ali] ++ QS(A>))

Randomized version: O(n log(n) comparisons

T

Sample Randomized
Recursive Algorithms:

Quicksort

Median finding

Binary search

Simple path of length k
Euclidean matching



Current Analysis Approaches:

® Mathematical ad-hoc reasoning (on involved random variables)
¥ Probabilistic recurrence relations
¥ Dedicated techniques for D&C algorithms
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Our Approach:

Formal verification

& using only first principles
@ directly from the program code



DEDUCTIVE VERIFICATION OF RANDOMIZED RECURSIVE ALGORITHMS

@ Two calculi a la weakest pre-condition:

® For reasoning about program outcomes, e.g. Pr |z =z""| > 0.9
® For reasoning about program expected runtimes, e.g. ert <z +y

B Soundness of the calculi w.r.t. an operational semantics

B Application: probabillistic binary search



Calculi — Basics

For Program Outcomes
[Kozen ’81]

probabilisitic program

wp[c|: (S — [0, 1]) — (S — [0, 1])

quantitative quantitative

post-condition pre-condition

wp|c|(1g): probability that c
establishes post-condition Q.
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For Program Outcomes For Program Expected Runtimes

[Kozen '81] [ESOP ’'16]
wp[c]: (S — [0, 1]) — (S — [0, 1]) ert[c] : (S—RZ,) — (S— RZ,)
wp[c](1lo): probability that ¢ ert[c](0) : expected runtime of c.

establishes post-condition Q.



For Program Outcomes
[Kozen '81]

wp[c]: (S — [0, 1]) — (S — [0, 1])

wp|c](1g): probability that ¢
establishes post-condition Q.

wp|{ci} [p] {e2}](1q) =
p-wplal(le) + (1-p) - wp[c](1g)

For Program Expected Runtimes
[ESOP ’16]

ert[c] : (S—RZ,) — (S— RZ,)

ert[c](0) : expected runtime of c.

ert[{a1} [p] {}](t) =

1 + p-ert[c](t) + (1—p) - ert[c](t)



For procedure calls, we intuitively have

“‘wp[call P](1g) = wp[body(P)](1g)” “ert[call P|(t) = 1+ ert[body(P)](t)”

but formal definitions require (higher order) fixed points.



For procedure calls, we intuitively have

“wp[call P](1) = wp[body(P)|(1q)” “ert [cal 1l P](2) =S eI

but formal definitions require (higher order) fixed points.

Proof Rules for Procedure Calls

® For upper bounds ® For lower bounds
Ipb =0
wp[call P](1g) < u |- wp[body(P)](1lg) < u I <wplcall P|(1q) IF lny1 < wp[body(P)](1q)
wp[call P](1g) < u sup, I, < wp[call P](1p)

» Dual rule for upper bounds is also sound



For procedure calls, we intuitively have

“wp[call P](1) = wp[body(P)|(1q)” “ert [cal 1l P](2) =S eI

but formal definitions require (higher order) fixed points.

Proof Rules for Procedure Calls

® For upper bounds ® For lower bounds
lb=20
wpl[call Pl(1g) < u IF wp[body(P)](1g) < u [, <wp[call Pl(1g) IF /1 < wp[body(P)](1g)
wp[call P](1g) < u sup, I, < wp[call P](1p)
ert[call P](t) <u-+1 IF ert[body(P)|(t) < u » Dual rule for upper bounds is also sound

ert[call P|(t) <u+1



Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)




Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)

stack




Sample Program
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Associated Pushdown Markov Chain

pop({)
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Sample Program

P > {skipl} [1/2]2 {call P3: call P4}

Associated Pushdown Markov Chain

pop({)
A empty
O/
pop(4)
(4
wp[call P|(1iyywe) = Pr(OTerm)
stack




PBS £

' V0t = d[left...right];
Input:  sorted array alleft...right)], ﬁ”?leﬁ ia;gi[we)f right]

value val to search in the array if (a[pivot] < wal)
left := min{pivot + 1, right };

Output: index of the array containing val (if any) call PBS
if (a[pivot] > wval)

right = max{pivot — 1, left };
call PBS

Formal Verification of Correctness & Expected Runtime

1- -ﬂGn/j@ S Wp[Call PBS](ﬂa[pivot]:UCLl)

€ O(log n)

' N\

ert[call PBS|(0) < 4 + 1_cr 00 + lgr - (6 H, — 2.5



Algebraic properties of both transformers wp|-| and ert [-], e.g.

wplc|(a- f+b-g) = a-wp[c|(f) + b-wp[c|(g)
ert|c](k+1t) = k + ert|c](t)
ert [c](t) = ert|c](0) + wpl[c|(?)

Relation between finite expected runtime and program termination

ert [c](0)(s) < oo = wplc|](1)(s) =1

Extension to mutual recursion

10



What we have done:

Deductive approach for the formal verification of randomized recursive algorithms

2 Two calculi for reasoning about the outcome and runtime of programs
2 Set of proof rules for reasoning about recursive programs

2 Soundness w.r.t. an operational semantics

2 Application: probabilistic binary search

What we would like to do:

B Automate the verification process

B More challenging case studies (e.g. randomized Quicksort)

11



What we have done:
Deductive approach for the formal verification of randomized recursive algorithms

2 Two calculi for reasoning about the outcome and runtime of programs
2 Set of proof rules for reasoning about recursive programs

2 Soundness w.r.t. an operational semantics

2 Application: probabilistic binary search

What we would like to do:

B Automate the verification process

B More challenging case studies (e.g. randomized Quicksort)

Thanks!
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BACKUP SLIDES
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Probability

Probabilistic program
that simulates a
geometric distribution

Program Output
2 Distribution

1/4
1/8
1/16
1/32
2 3 4

5 Output

Cgeo: 1= 0;

Probability

repeat

n:=n-++1;

¢ == coin f1ip(0.5)
until (c=heads);
return n

Program Runtime

1/2
1/4
1/8
1/16
1/32
3 5 7 9

11 Run—Time

Average (or Expected) Runtime:
3-5+5-7+---+Cretlis

13



Language Syntax

€2 — chkip nop
abort abortion
=l assignment
if (G)then{C}else{C} conditional
e pl @ probabilistic choice
call P procedure call
€ C sequence

® We assume only one procedure P

® No argument passing or return expression in P (it manipules the
global program state).

14



Language Syntax

€2 — chkip nop
abort abortion
=l assignment
if (G)then{C}else{C} conditional
e pl @ probabilistic choice
call P procedure call
€ C sequence

® We assume only one procedure P

® No argument passing or return expression in P (it manipules the
global program state).

Example: Factorial

P> if (x <0) then {y =1} else
{X = x—1: call P:
x=x+1; y ::y-x}

14



Language Syntax

€2 — chkip nop
abort abortion
=l assignment
if (G)then{C}else{C} conditional
e pl @ probabilistic choice
call P procedure call
€ C sequence

® We assume only one procedure P

® No argument passing or return expression in P (it manipules the
global program state).

Example: Faulty factorial

P> if (x <0) then {y =1} else
{x = x—1: call P;
x = x+1; {y =y -x}[Y/2]{skip}}

14



The Probabilistic Predicate Transformer — Inductive Definition

wp[skip](f) = f

wp[abort|(f) =0

wp[x = E](f) = f[x/E]

wp[if (G)then{ci}else{c}|(f) = [G]-wp[a](f) + [-G] - wp[c](f)
wp[{ci} [p] {e2}](f) = p-wpla(f) + (1—p) - wp[c](f)
wp[cr; ] (f) = (wpla] o wp[e])(f)

wp[call P] = sup, wp[call, P]

n-inlining of P
cally P = abort

call,y; P = body(P)[call P/call, P]




ert
ert
ert
ert
ert

ert

ert

skip](t)

abort](t)

x = E|(t)

if (G)then{c;}else{c}|(t)
{a} [p] {e2)](t)

c1; 2] (1)

call P](t)

1+t

0

1+ t[x/E]

1+ [G]-ert[a](t) + [-G] - ert[c](t)
1+ p-ertfc](t) + (1—p) - ert[c](t)
(ert[ci] oert[c]) (t)

o (A + L ert [body(P)J: ) (2)

16



Example 3. Reconsider the procedure Prec, with declaration
D(Prec;) ¢ {skip} [1/2] {call Prec;; call Precs; call Precs }

presented in the introduction. We prove that it terminates with
probability at most ¢ = \/52_1 from any initial state. Formally,
this is captured by wp[call P, D](1) < ¢. To prove this, we apply

rule [wp-rec]. We must then establish the derivability claim

wplcall P](1) = ¢ I wp[D(Prec;)](1) <X ¢p .

The derivation goes as follows:

Wp[D(Prec; )] (1)

{def. of wp}

% . Wp[sk|p](1) —|— % ° Wp[Ca” Prec:a,; Ca” Prec3; Ca” Prec3](]-)
{def. of wp}

% L = Wp[ca” PreC3; call Prec3](Wp[Ca” PreC3](1)>

1
2
{assumption, monot. of wp}
% + % * Wp[Ca” Prec3; Ca” Precg](cp)
{def. of wp, scalab. of wp twice}
% + % ()0 ° Wp[Ca” Prec3] (Wp[Ca” Prec3](1))
{assumption, monot. of wp}
L4 L wplcall Pec] ()
{scalab. of wp}
L4162 wplcall Py ](1)
{assumption, monot. of wp}
1,1 3
2 T32¢®
{algebra}

¥ A

17



% Proof rule for upper bounds

“Prove the desired specification for the procedure’s body
assuming it already holds for the recursive calls in it.”

wp[call P|(f) < u IF wp[body(P)|(f) < u
wp[call P|(f) < u

body(P) 1

call P

18



% Proof rule for upper bounds

“Prove the desired specification for the procedure’s body (u)
assuming it already holds for the recursive calls in it.”

wp[call P](f) < u Ik wp[body(P)](f) < u body(P) { call P
wp[call P|(f) < u (f7)
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% Proof rule for upper bounds

“Prove the desired specification for the procedure’s body (u)
assuming it already holds for the recursive calls in it.” (u”)
(u)

wp[call P](f) < u Ik wp[body(P)](f) < u body(P) { call P
wp[call P|(f) < u (")
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“Prove the desired specification for the procedure’s body (u)
assuming it already holds for the recursive calls in it.” (u”)
(u)

wp[call P](f) < u Ik wp[body(P)](f) < u body(P) { call P
wp[call P|(f) < u (")
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% Proof rule for upper bounds

“Prove the desired specification for the procedure’s body (u)
assuming it already holds for the recursive calls in it.” (u”)
(u)

wp[call P](f) < u Ik wp[body(P)](f) < u body(P) { call P
wp[call P|(f) < u (")

% Proof rule for lower bounds
lh =0
I, <wpl[call P|(f) IF [lp1 < wplbody(P)|(f)
sup, I, < wp[call P](f)

» Dual rule for upper bounds is also sound

18



Rules from the wp—calculus can be easily adapted for the ert—calculus

® Proof rule for upper bounds

ert[call P|(t) <u+1 I ert[body(P)|(t) < u
ert[call P|(t) < u+1

¥ Proof rule for upper bounds

lb =20
[, +1 <ert[call P](t) Ik [,1 <ert[body(P)](t)
sup, I, + 1 < ert[call P|(t)

19



Proof Rule for Mutually Recursive Procedures

wpl[call P1](f1) < g1, ..., wp[call P,|(fn) < gm II.— wp[body(P1)](f1) < g1

wp[call Pi|(f) < g1, ..., wp[call Py|(fm) < gn IF wp[body(Pm)](fn) < gm
wp[call P;|(f;) <g; foralli=1...m




® To each program c, initial state sp and post-condition f we associate a reward
pushdown Markov chain Dt [c]

B We prove that the weakest pre-condition wp[c](f)(so) coincides with the expected
reward ER({)Term) upon reaching a terminal state in the Markov chain

wp[c|(f)(sop) = ER(OTerm)

Example:

P > {skipl} [1/2]2 {call P3: call P4}

©
®)
©
—~
<
~

(=

empty ER(OTerm) = > Pr(m)-£(s)
T 3 <£0, S()> ~ <Term, 5’> \

f=1
pop(4)

|
N|—=
_I_
N
~—~
N =
N—
N

_|_

stack

21



stmt (¢) = skip succy (£) =¥’

stmt({) =z =F

succy (£) = ¢/ stmt (¢) = abort

[assign] [abort]

[skip]

@, s) 22 (¢!, 5)
stmt (¢) = if (G){c1}else{ca} sEG succy (¢)=7¢
@, sy 222 (e, 5)

stmt (¢) = {c1} [p] {c2} succi (¢) =¥

[if1]

€, sy 220 (0 s[z s s(E)])

€, sy 2205 (e, s)

/

stmt (¢) = if (G) {c1}else{ca} s G succy (¥) =4

0, sy 22T () s) )
stmt (£) :1 caI!/P succy (£) = ¢/ feall]
(£, sy L= (init(D(P)), s) (1, s)

0,1, ¢
—_—

[i£2]
(£, s) SRR (¢, s)
stmt (£) = {c1} [pl] _{02} succz (§) =& [prob2]
(£, s) Lt (¢, s)
returm] — [terminate]
o () 22 (Term,

Figure 3. Rules for defining an operational semantics for pRGCL programs. For sequential composition there is no dedicated rule as the

control flow 1s encoded via the succy; and the succs functions.
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