Reasoning about Recursive Probabilistic Programs

Federico Olmedo Joost-Pieter Katoen Benjamin Kaminski Christoph Matheja

RWTH Aachen University, Germany

LICS 2016

July 8th – New York City

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

www.walldevil.com/

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

It terminates with probability 1, even though it admits arbitrarily long executions!

www.walldevil.com/

$P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

It terminates with probability 1, even though it admits arbitrarily long executions!

www.walldevil.com/

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1 Runtime:

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1 Runtime: 1 sec.

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1 Runtime: 1 min.

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1 Runtime: 1 hour

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

It terminates with probability 1, even though it admits arbitrarily long executions!

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1 Runtime: ∞

www.ragefaces.memesoftware.com/

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

It terminates with probability 1, even though it admits arbitrarily long executions!

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1 Runtime: ∞

www.ragefaces.memesoftware.com/

$P \triangleright \{ skip \} [1/2] \{ call P; call P; call P \}$

 $P \triangleright \{ skip \} [1/2] \{ call P \}$

Probability of Termination: 1

It terminates with probability 1, even though it admits arbitrarily long executions!

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P \}$

Probability of Termination: 1 Runtime: ∞

www.ragefaces.memesoftware.com/

 $P \triangleright \{ \text{skip} \} [1/2] \{ \text{call } P; \text{ call } P; \text{ call } P; \text{ call } P \}$ Probability of Termination: $\frac{\sqrt{5}-1}{2}$

"For many applications, a randomized algorithm is **the simplest** algorithm available, or **the fastest**, or **both**." [Motwani & Raghavan]

"For many applications, a randomized algorithm is **the simplest** algorithm available, or **the fastest**, or **both**." [Motwani & Raghavan]

Quicksort:

Deterministic version: O(n²) comparisons

"For many applications, a randomized algorithm is **the simplest** algorithm available, or **the fastest**, or **both**." [Motwani & Raghavan]

Randomized Quicksort:

Randomized version: O(n log(n)) comparisons

"For many applications, a randomized algorithm is **the simplest** algorithm available, or **the fastest**, or **both**." [Motwani & Raghavan]

Randomized Quicksort:

Randomized version: O(n log(n)) comparisons

Sample Randomized Recursive Algorithms:

Current Analysis Approaches are Not Satisfactory

Current Analysis Approaches:

- Mathematical ad-hoc reasoning (on involved random variables)
- Probabilistic recurrence relations
- Dedicated techniques for D&C algorithms

Current Analysis Approaches:

Current Analysis Approaches:

Our Approach:

Formal verification

- using only first principles
- directly from the program code

DEDUCTIVE VERIFICATION OF RANDOMIZED RECURSIVE ALGORITHMS

- Two calculi à la weakest pre-condition:
 - For reasoning about program outcomes, e.g. $\Pr\left[x = x^{opt}\right] \ge 0.9$
 - For reasoning about program expected runtimes, e.g. ert $\leq x + y$

Soundness of the calculi w.r.t. an operational semantics

Application: probabilistic binary search

For Program Outcomes

[Kozen '81]

wp[c]($\mathbb{1}_Q$): probability that c establishes post-condition Q.

For Program Expected Runtimes [ESOP'16]

$$\mathsf{ert}\left[c
ight]:\left(\mathbb{S}
ightarrow\mathbb{R}^{\infty}_{\geq0}
ight)
ightarrow\left(\mathbb{S}
ightarrow\mathbb{R}^{\infty}_{\geq0}
ight)$$

runtime of the computation following *c* runtime of *c*, **plus** the computation following *c*

wp[c]($\mathbb{1}_Q$): probability that c establishes post-condition Q.

ert [c](0) : expected runtime of c.

For Program Expected Runtimes [ESOP'16]

$$\mathsf{ert}\left[c\right] : \left(\mathbb{S} \to \mathbb{R}^{\infty}_{\geq 0}\right) \to \left(\mathbb{S} \to \mathbb{R}^{\infty}_{\geq 0}\right)$$

runtime of the computation following *c* runtime of *c*, **plus** the computation following *c*

wp[c]($\mathbb{1}_Q$): probability that c establishes post-condition Q.

ert [c](0) : expected runtime of c.

 $wp[\{c_1\} [p] \{c_2\}](\mathbb{1}_Q) =$ $p \cdot wp[c_1](\mathbb{1}_Q) + (1-p) \cdot wp[c_2](\mathbb{1}_Q)$

ert [{ c_1 } [p] { c_2 }](t) = 1 + $p \cdot \text{ert} [c_1](t) + (1-p) \cdot \text{ert} [c_2](t)$

Calculi — **Proof Rules for Recursive Procedures**

For procedure calls, we intuitively have

"wp[call P]($\mathbb{1}_Q$) = wp[body(P)]($\mathbb{1}_Q$)"

"ert [call P](t) = 1 + ert [body(P)](t)"

but formal definitions require (higher order) fixed points.

Calculi — **Proof Rules for Recursive Procedures**

For procedure calls, we intuitively have

"wp[call P]($\mathbb{1}_Q$) = wp[body(P)]($\mathbb{1}_Q$)"

"ert [call P](t) = 1 + ert [body(P)](t)"

but formal definitions require (higher order) fixed points.

Proof Rules for Procedure Calls

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

For upper bounds

$$\begin{split} & \texttt{wp}[\texttt{call } P](\mathbb{1}_Q) \leq u \quad \Vdash \quad \texttt{wp}[body(P)](\mathbb{1}_Q) \leq u \\ & \texttt{wp}[\texttt{call } P](\mathbb{1}_Q) \leq u \end{split}$$

Dual rule for upper bounds is also sound

For lower bounds

Calculi — **Proof Rules for Recursive Procedures**

For procedure calls, we intuitively have

"wp[call P]($\mathbb{1}_Q$) = wp[body(P)]($\mathbb{1}_Q$)"

"ert [call P](t) = 1 + ert [body(P)](t)"

but formal definitions require (higher order) fixed points.

Proof Rules for Procedure Calls

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

For upper bounds

$$\begin{split} & \texttt{wp[call } P](\mathbb{1}_Q) \leq u \quad \Vdash \quad \texttt{wp}[body(P)](\mathbb{1}_Q) \leq u \\ & \texttt{wp[call } P](\mathbb{1}_Q) \leq u \end{split}$$

$$\begin{array}{l} \operatorname{ert}[\operatorname{call} P](t) \leq u + \mathbf{1} \quad \Vdash \quad \operatorname{ert}\left[body(P)\right](t) \leq u \\ \\ \operatorname{ert}\left[\operatorname{call} P\right](t) \leq u + \mathbf{1} \end{array}$$

Dual rule for upper bounds is also sound

For lower bounds

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Associated Pushdown Markov Chain

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Associated Pushdown Markov Chain

Sample Program

$$P \triangleright \{ skip^1 \} [1/2]^2 \{ call P^3; call P^4 \}$$

Associated Pushdown Markov Chain

Case Study: Probabilistic Binary Search

Input: sorted array a[left...right], value val to search in the array

Output: index of the array containing *val* (if any)

Formal Verification of Correctness & Expected Runtime

What Else is on the Paper?

Algebraic properties of both transformers wp[·] and ert [·], e.g. wp[c]($a \cdot f + b \cdot g$) = $a \cdot wp[c](f) + b \cdot wp[c](g)$ ert [c](k + t) = k + ert [c](t) ert [c](t) = ert [c](0) + wp[c](t)

Relation between finite expected runtime and program termination ert $[c](\mathbf{0})(s) < \infty \implies wp[c](\mathbf{1})(s) = 1$

Extension to mutual recursion

Summary

What we have done:

Deductive approach for the formal verification of randomized recursive algorithms

- Two calculi for reasoning about the outcome and runtime of programs
- Set of proof rules for reasoning about recursive programs
- Soundness w.r.t. an operational semantics
- Application: probabilistic binary search

What we would like to do:

- Automate the verification process
- More challenging case studies (e.g. randomized Quicksort)

Summary

What we have done:

Deductive approach for the formal verification of randomized recursive algorithms

- Two calculi for reasoning about the outcome and runtime of programs
- Set of proof rules for reasoning about recursive programs
- Soundness w.r.t. an operational semantics
- Application: probabilistic binary search

What we would like to do:

- Automate the verification process
- More challenging case studies (e.g. randomized Quicksort)

Thanks!

BACKUP SLIDES

What is a Probabilistic Program?

Probabilistic program that simulates a geometric distribution

```
\begin{array}{ll} C_{\texttt{geo}} \colon & n \coloneqq 0; \\ & \texttt{repeat} \\ & n \coloneqq n+1; \\ & c \coloneqq \texttt{coin\_flip}(0.5) \\ & \texttt{until} \ (c{=}heads); \\ & \texttt{return} \ n \end{array}
```


Average (or Expected) Runtime: $3 \cdot \frac{1}{2} + 5 \cdot \frac{1}{4} + \dots + (2n+1) \cdot \frac{1}{2^n} + \dots = 5$

Our Programming Model

Language Syntax

nop abortion assignment conditional **probabilistic choice procedure call** sequence

- We assume only one procedure P
- No argument passing or return expression in P (it manipules the global program state).

Our Programming Model

Language Syntax

nop abortion assignment conditional **probabilistic choice procedure call** sequence

- We assume only one procedure P
- No argument passing or return expression in P (it manipules the global program state).

Example: Factorial

$$P \triangleright$$
 if $(x \le 0)$ then $\{y \coloneqq 1\}$ else
 $\{x \coloneqq x-1; \text{ call } P; x \coloneqq x+1; y \coloneqq y \cdot x\}$

Our Programming Model

Language Syntax

nop abortion assignment conditional **probabilistic choice procedure call** sequence

- We assume only one procedure P
- No argument passing or return expression in P (it manipules the global program state).

Example: Faulty factorial

$$\begin{array}{ll} P \vartriangleright \text{ if } (x \leq 0) \text{ then } \{y \coloneqq 1\} \text{ else} \\ & \left\{ x \coloneqq x-1; \text{ call } P; \\ & x \coloneqq x+1; \ \{y \coloneqq y \cdot x\} [1/2] \{ \texttt{skip} \} \right\} \end{array}$$

The Probabilistic Predicate Transformer — Inductive Definition

$$\begin{split} & \text{wp[skip]}(f) &= f \\ & \text{wp[abort]}(f) &= 0 \\ & \text{wp[x := E]}(f) &= f[x/E] \\ & \text{wp[if (G) then } \{c_1\} \text{ else } \{c_2\}](f) &= [G] \cdot \text{wp[}c_1](f) + [\neg G] \cdot \text{wp[}c_2](f) \\ & \text{wp[}\{c_1\} \ [p] \ \{c_2\}](f) &= p \cdot \text{wp[}c_1](f) + (1-p) \cdot \text{wp[}c_2](f) \\ & \text{wp[}c_1; c_2](f) &= (\text{wp[}c_1] \circ \text{wp[}c_2])(f) \\ & \text{wp[call } P] &= \text{sup}_n \text{ wp[call}_n P] \end{split}$$

n-inlining of P $call_0 P = abort$ $call_{n+1} P = body(P)[call P/call_n P]$

The Expected Runtime Transformer — Inductive Definition

 $\begin{aligned} \text{ert} [\text{skip}](t) &= 1 + t \\ \text{ert} [\text{abort}](t) &= 0 \\ \text{ert} [x := E](t) &= 1 + t[x/E] \\ \text{ert} [\text{if} (G) \text{then} \{c_1\} \text{else} \{c_2\}](t) &= 1 + [G] \cdot \text{ert} [c_1](t) + [\neg G] \cdot \text{ert} [c_2](t) \\ \text{ert} [\{c_1\} [p] \{c_2\}](t) &= 1 + p \cdot \text{ert} [c_1](t) + (1-p) \cdot \text{ert} [c_2](t) \\ \text{ert} [c_1; c_2](t) &= (\text{ert} [c_1] \circ \text{ert} [c_2])(t) \\ \text{ert} [\text{call } P](t) &= lfp (\lambda \eta \cdot \underline{1} \oplus \text{ert} [body(P)]_{\eta}^{\sharp})(t) \end{aligned}$

Probabilistic Predicate Transformer — Calculation Example

Example 3. Reconsider the procedure P_{rec_3} with declaration

 $\mathcal{D}(P_{\mathsf{rec}_3}): \{\mathsf{skip}\} [1/2] \{\mathsf{call} P_{\mathsf{rec}_3}; \mathsf{call} P_{\mathsf{rec}_3}; \mathsf{call} P_{\mathsf{rec}_3}\}$

presented in the introduction. We prove that it terminates with probability at most $\varphi = \frac{\sqrt{5}-1}{2}$ from any initial state. Formally, this is captured by wp[call P, \mathcal{D}](1) $\leq \varphi$. To prove this, we apply rule [wp-rec]. We must then establish the derivability claim

$$\operatorname{wp}[\operatorname{call} P](\mathbf{1}) \preceq \varphi \Vdash \operatorname{wp}[\mathcal{D}(P_{\operatorname{rec}_3})](\mathbf{1}) \preceq \varphi$$
.

The derivation goes as follows:

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

 $wp[call P](f) \le u \Vdash wp[body(P)](f) \le u$ $wp[call P](f) \le u$

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

$$wp[call P](f) \le u \Vdash wp[body(P)](f) \le u$$

 $wp[call P](f) \le u$

 $\langle u \rangle$

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

$$wp[call P](f) \le u \Vdash wp[body(P)](f) \le u$$

 $wp[call P](f) \le u$

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

 $wp[call P](f) \le u \Vdash wp[body(P)](f) \le u$ $wp[call P](f) \le u$

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

 $wp[call P](f) \le u \Vdash wp[body(P)](f) \le u$ $wp[call P](f) \le u$

"Prove the desired specification for the procedure's body assuming it already holds for the recursive calls in it."

$$egin{aligned} & ext{wp[call $P](f) \leq u$} & ext{wp[call $P](f) \leq u$} \ & ext{wp[call $P](f) \leq u$} \end{aligned}$$

Proof rule for lower bounds

$$l_0 = 0$$

 $l_n \le wp[call P](f) \Vdash l_{n+1} \le wp[body(P)](f)$
 $sup_n l_n \le wp[call P](f)$

Dual rule for upper bounds is also sound

The Expected Runtime Transformers — Proof Rules for Recursion

Rules from the wp-calculus can be easily adapted for the ert-calculus

Proof rule for upper bounds

 $\operatorname{ert}[\operatorname{call} P](t) \leq u + 1 \quad \Vdash \quad \operatorname{ert}[\operatorname{body}(P)](t) \leq u$ $\operatorname{ert}[\operatorname{call} P](t) \leq u + 1$

Proof rule for upper bounds

 $egin{aligned} &I_0=0\ &I_n+1\leq ext{ert}\left[ext{call}\ P
ight](t)\ &dash \ I_{n+1}\leq ext{ert}\left[ext{body}(P)
ight](t)\ & ext{sup}_n\ I_n+1\leq ext{ert}\left[ext{call}\ P
ight](t) \end{aligned}$

$$\begin{split} & \texttt{wp}[\texttt{call } P_1](f_1) \leq g_1, \dots, \texttt{wp}[\texttt{call } P_m](f_m) \leq g_m \Vdash \texttt{wp}[body(P_1)](f_1) \leq g_1 \\ & \vdots \\ & \texttt{wp}[\texttt{call } P_1](f_1) \leq g_1, \dots, \texttt{wp}[\texttt{call } P_m](f_m) \leq g_m \Vdash \texttt{wp}[body(P_m)](f_m) \leq g_m \\ & \texttt{wp}[\texttt{call } P_i](f_i) \leq g_i \quad \texttt{for all } i = 1 \dots m \end{split}$$

- To each program c, initial state s_0 and post-condition f we associate a reward pushdown Markov chain $\mathfrak{M}_{s_0}^f [c]$
- We prove that the weakest pre-condition wp[c](f)(s₀) coincides with the expected reward ER((Term) upon reaching a terminal state in the Markov chain

$$wp[c](f)(s_0) = ER(\Diamond Term)$$

Example:

$$P \triangleright \{ \operatorname{skip}^1 \} [1/2]^2 \{ \operatorname{call} P^3; \operatorname{call} P^4 \}$$

$$\mathsf{ER}(\Diamond \mathsf{Term}) = \sum_{\pi : \langle \ell_0, s_0 \rangle \rightsquigarrow \langle \mathsf{Term}, s' \rangle} \mathsf{Pr}(\pi) \cdot f(s') \qquad \searrow_{f=1} \\ = \frac{1}{2} + \frac{1}{2} \cdot \left(\frac{1}{2}\right)^2 + \cdots$$

SOUNDNESS RESULT

$$\frac{\operatorname{stmt}(\ell) = \operatorname{skip} \operatorname{succ}_{1}(\ell) = \ell'}{\langle \ell, s \rangle \xrightarrow{\gamma, 1, \gamma} \langle \ell', s \rangle} [\operatorname{skip}] \qquad \qquad \frac{\operatorname{stmt}(\ell) = x \coloneqq E \operatorname{succ}_{1}(\ell) = \ell'}{\langle \ell, s \rangle \xrightarrow{\gamma, 1, \gamma} \langle \ell', s [x \mapsto s(E)] \rangle} [\operatorname{assign}] \qquad \qquad \frac{\operatorname{stmt}(\ell) = \operatorname{abort}}{\langle \ell, s \rangle \xrightarrow{\gamma, 1, \gamma} \langle \ell, s \rangle} [\operatorname{abort}] \\ \frac{\operatorname{stmt}(\ell) = \operatorname{if}(G) \{c_{1}\} \operatorname{else}\{c_{2}\} \quad s \models G \quad \operatorname{succ}_{1}(\ell) = \ell'}{\langle \ell, s \rangle \xrightarrow{\gamma, 1, \gamma} \langle \ell', s \rangle} [\operatorname{if1}] \qquad \qquad \frac{\operatorname{stmt}(\ell) = \operatorname{if}(G) \{c_{1}\} \operatorname{else}\{c_{2}\} \quad s \not\models G \quad \operatorname{succ}_{2}(\ell) = \ell'}{\langle \ell, s \rangle \xrightarrow{\gamma, 1, \gamma} \langle \ell', s \rangle} [\operatorname{if2}] \\ \frac{\operatorname{stmt}(\ell) = \{c_{1}\} [p] \{c_{2}\} \quad \operatorname{succ}_{1}(\ell) = \ell'}{\langle \ell, s \rangle \xrightarrow{\gamma, 1, \gamma} \langle \ell', s \rangle} [\operatorname{prob1}] \qquad \qquad \frac{\operatorname{stmt}(\ell) = \operatorname{call} P \quad \operatorname{succ}_{1}(\ell) = \ell'}{\langle \ell, s \rangle \xrightarrow{\gamma, 1, \gamma + \ell'} \langle \operatorname{init}(\mathcal{D}(P)), s \rangle} [\operatorname{call}] \qquad \qquad \frac{\langle \psi, s \rangle \xrightarrow{\ell', 1, \varepsilon} \langle \ell', s \rangle}{\langle \psi, s \rangle} [\operatorname{return}] \qquad \qquad \frac{\langle \psi, s \rangle \xrightarrow{\gamma_{0}, 1, \gamma_{0}} \langle \operatorname{Term}, s \rangle}{\langle \psi, s \rangle \xrightarrow{\gamma_{0}, 1, \gamma_{0}} \langle \operatorname{Term}, s \rangle} [\operatorname{terminate}] \end{cases}$$

Figure 3. Rules for defining an operational semantics for pRGCL programs. For sequential composition there is no dedicated rule as the control flow is encoded via the succ₁ and the succ₂ functions.