Weakest Precondition Reasoning for Expected
Run—Times of Probabilistic Programs

Benjamin Kaminski Joost-Pieter Katoen

Christoph Matheja Federico Olmedo

: Software Modeling

‘ Bl and Verification Chair

25th European Symposium on Programming

19th edition of the European Joint Conferences on Theory & Practice of Software

April 4, 2016, Eindhoven, Netherlands

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Motivation Probabilistic Programs

Probabilistic Programs

® Introduce randomization into computation

ki, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

® Introduce randomization into computation

m Significant speed—up in solving difficult problems at cost of
tolerating incorrect results with low probability

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

® Introduce randomization into computation

m Significant speed—up in solving difficult problems at cost of
tolerating incorrect results with low probability

m Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

® Introduce randomization into computation

m Significant speed—up in solving difficult problems at cost of
tolerating incorrect results with low probability

m Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

m Randomization of some sort occurs almost in any technique
related used in cryptography and security

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

® Introduce randomization into computation

Significant speed—up in solving difficult problems at cost of
tolerating incorrect results with low probability

m Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if (&) {C}else {C} | while (¢){C}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if (&) {C}else {C} | while (¢){C}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2:=E | C;C | {C}o{C}
| if (&) {C}else {C} | while (¢){C}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if (&) {C}else {C} | while (¢){C}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | x:=FE | C;, C ‘ {C} o {C}
| if (&) {C}else {C} | while (¢){C}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if (&) {C}else {C} | while (£){C}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if (€) {C}else {C} | while (¢){C}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if (&) {C}else {C} | while (¢){C}

What is probabilistic about that language?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if () {C}else {C} | while (¢){C}

What is probabilistic about that language?
Probabilistic guards £: ¥ — D({true, false}):

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if () {C}else {C} | while (¢){C}

What is probabilistic about that language?
Probabilistic guards £: ¥ — D({true, false}):

m [¢: true](o) = 1 — [&: false] (o) is the probability of £
evaluating to true

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if () {C}else {C} | while (¢){C}

What is probabilistic about that language?
Probabilistic guards £: ¥ — D({true, false}):

m [¢: true](o) = 1 — [&: false] (o) is the probability of £
evaluating to true

= Eg. Z(true) + 3 (false)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if () {C}else {C} | while (¢){C}

What is probabilistic about that language?
Probabilistic guards £: ¥ — D({true, false}):

m [¢: true](o) = 1 — [&: false] (o) is the probability of £
evaluating to true

= Eg Z(true) + L(false), 1(z>y)+3(xz>y)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C' do?

ki, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C' do?

m Run program C' on initial state o

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Probabilistic Programs
What does a probabilistic program C' do?

m Run program C' on initial state o

m Obtain final set of distributions 11 over terminal states

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Probabilistic Programs
What does a probabilistic program C' do?

m Run program C' on initial state o

m Obtain final set of (sub—)distributions ;i over terminal states

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C' do?
m Run program C' on initial state o

m Obtain final set of (sub—)distributions ;i over terminal states

What is the run—time of C' on input ¢?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Probabilistic Programs
What does a probabilistic program C' do?

m Run program C' on initial state o

m Obtain final set of (sub—)distributions ;i over terminal states

What is the run—time of C' on input ¢?

m Behavior of C' not entirely determined by o

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C' do?
m Run program C' on initial state o

m Obtain final set of (sub—)distributions ;i over terminal states

What is the run—time of C' on input ¢?
m Behavior of C' not entirely determined by o

m Probabilistic nature of C' influences its run—time

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Probabilistic Programs
What does a probabilistic program C' do?

m Run program C' on initial state o

m Obtain final set of (sub—)distributions ;. over terminal states

What is the run—time of C' on input ¢?
m Behavior of C not entirely determined by o

m Probabilistic nature of C' influences its run—time

Better Question:

What is the expected run—time (ERT) of C on input o7

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Motivation Expected Run—-Times

Expected Run—Time Phenomena

m ERT of C can be finite even if C' admits infinite computations

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena

m ERT of C can be finite even if C' admits infinite computations

x :=1; while (1/2) {x :=2- 2}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena

m ERT of C can be finite even if C' admits infinite computations

x :=1; while (1/2) {x :=2- 2}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena
m ERT of C can be finite even if C' admits infinite computations

m Positive almost—sure termination:

x :=1; while (1/2) {z :=2- 2}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena
m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:

m ERT of C is finite

x :=1; while (1/2) {z :=2- 2}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena
m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:

m ERT of C is finite

x :=1; while (1/2) {x :=2-z};
while (z > 0) {z :=x — 1}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena
m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:
m ERT of C is finite

m Positively almost—surely terminating programs are not closed
under sequential composition

x :=1; while (1/2) {x :=2-z};
while (z > 0) {z :=x — 1}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Motivation Expected Run—-Times

Expected Run—Time Phenomena
m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:
m ERT of C is finite

m Positively almost—surely terminating programs are not closed
under sequential composition

m Reasoning about positive almost—sure termination is
computationally very difficult:

x :=1; while (1/2) {x :=2-z};
while (z > 0) {z :=2 — 1}

4.4.2016

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Motivation Expected Run—-Times

Expected Run—Time Phenomena

m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:

m ERT of C is finite

m Positively almost—surely terminating programs are not closed
under sequential composition

m Reasoning about positive almost—sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non—probabilistic programs [MFCS 2015]

x :=1; while (1/2) {x :=2-z};
while (z > 0) {z :=2 — 1}

4.4.2016

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Motivation Expected Run—-Times

Expected Run—Time Phenomena

m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:

m ERT of C is finite

m Positively almost—surely terminating programs are not closed
under sequential composition

m Reasoning about positive almost—sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non—probabilistic programs [MFCS 2015]

m ERT of C can be infinite, even if C terminates almost—surely1

x :=1; while (1/2) {x :=2-z};
while (z > 0) {z :=2 — 1}

li.e. with probability 1
4.4.2016

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Expected Run—Times

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Expected Run—Times

m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Expected Run—Times

m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

m ERT if C does not terminate almost—surely on o:

o0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Expected Run—Times

m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

m ERT if C does not terminate almost—surely on o:

o0

m In general: ERT of (' is a function

t: Y —

b
Vg

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Expected Run—Times

m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

m ERT if C does not terminate almost—surely on o:

o0

m In general: ERT of (' is a function

t: Y —

b
Vg

m Call such a ¢t a run—time.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Expected Run—Times

m ERT if C terminates almost—surely on o:

= “C' terminates after

Z i-Pr . . "

— 1 steps on Input o

i

m ERT if C does not terminate almost—surely on o:
00

m In general: ERT of (' is a function

/: Z — "\‘lzjl)

m Call such a t a run—time. Denote set of run—times by T.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Expected Run—Times

m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

ERT if C' does not terminate almost—surely on o:

o0

In general: ERT of (' is a function

t: 3 — R,

m Call such a t a run—time. Denote set of run—times by T.

Complete partial order on T:

t1 < to iff VUEE:tl(U)StQ(U)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

C

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

C t

|

time needed
after executing C'

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

C t

\/‘

time needed
after executing C'

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

ert [C] (t) C t

|

expected time needed time needed
before executing C after executing C'

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

ert [C] (t) C t

|

expected time needed time needed
before executing C after executing C'

ERT in Terms of ert

ert[C](0) (o) = "ERT of C on input ¢

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

c ert [C] ()

skip 1+t

i, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for ected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

c ert [C] ()

skip 1+t
z:=FE 1+t[z/E)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

c ert [C] ()

skip 1+t
z:=F 1+t[z/E)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=F 1+t[x/E]

Cy; C ert [C1] (ert [Co] (t))

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=F 1+t[x/E]

Cy; C ert [C1] (ert [Co] (t))

{Ci} D {Cs} max{ert [C1] (¢), ert[C5] (1)}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=F 1+t[x/E]

Cy; C ert [C1] (ert [Co] (t))

{Ci} D {Cs} max{ert [C1] (¢), ert[C5] (1)}

if (€) {C1} else {Cs} 1+ [€: true] - ert [C4] (F)
+ [&: false] - ert [Co] (t)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=EF 1+ t[z/E]

Cy; Cy ert [C4] (ert [C3] (¢))

{Ci} D {Cs} max{ert [C1] (¢), ert[C5] (1)}

if (£) {C1} else {Cs} 1+ [&: true] - ert [C1] (t)
+ [&: false] - ert [Co] (t)
while (¢) {C'} Ifp Xo 14 [§: false] - ¢
+ [€: true] - ert [C'] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Upper Bounds for ert of Loops

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Upper Bounds for ert of Loops

Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14 [€: false] - ¢ + [€: true] - ert [C] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Upper Bounds for ert of Loops
Recall the definition of ert [while (§) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Upper Bounds for ert of Loops

Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)

Theorem: Upper Bounds from Upper Invariants

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Upper Bounds for ert of Loops

Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)

Theorem: Upper Bounds from Upper Invariants

If I € T is an upper invariant of while (§) {C}, i.e. if

F(I) <1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Upper Bounds for ert of Loops

Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)

Theorem: Upper Bounds from Upper Invariants

If I € T is an upper invariant of while (§) {C}, i.e. if

F(I) <1

then
ert[while (§) {C} (t) < I.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower w—Invariants

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower w—Invariants

If {I.},.x € T is a lower w—invariant, i.e. if

Iy < F(0), and
I’n,+1 j F(Irz)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower w—Invariants

If {I.},.x € T is a lower w—invariant, i.e. if

Iy < F(0), and

I’n,+1 j F(Irz)
then

sgg I, < ert[while () {C}](¢t) .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant and a lower w—invariant is given by

I, = Fo---0F(0) .
——

n times

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant and a lower w—invariant is given by

I, = Fo---0F(0) .
——

n times

Theorem: Bound Refinement

If I is an upper bound and F'(I) =< I, then F'(I) is also an upper
bound.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant and a lower w—invariant is given by

I, = Fo---0F(0) .
——

n times

Theorem: Bound Refinement

If I is an upper bound and F'(I) =< I, then F'(I) is also an upper
bound. Dually for lower bounds.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

ki, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

m ert coincides with expected reward in the operational MDP

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

m ert coincides with expected reward in the operational MDP

m Enables bounded model checking of expected run—times

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

m ert coincides with expected reward in the operational MDP

m Enables bounded model checking of expected run—times

m Nielson's Hoare—style logic for reasoning about run—time
orders of magnitude of deterministic programs:

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

m ert coincides with expected reward in the operational MDP

m Enables bounded model checking of expected run—times

m Nielson's Hoare—style logic for reasoning about run—time
orders of magnitude of deterministic programs:

m Nielson's logic relies on introducing additional logical variables

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

m ert coincides with expected reward in the operational MDP

m Enables bounded model checking of expected run—times

m Nielson's Hoare—style logic for reasoning about run—time
orders of magnitude of deterministic programs:

m Nielson's logic relies on introducing additional logical variables

m ert is sound and complete with respect to Nielson's logic

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

m ert coincides with expected reward in the operational MDP

m Enables bounded model checking of expected run—times

m Nielson's Hoare—style logic for reasoning about run—time
orders of magnitude of deterministic programs:

m Nielson's logic relies on introducing additional logical variables
m ert is sound and complete with respect to Nielson's logic

m ert calculus is arguably easier to apply — no additional
variables!

4.4.2016

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Case Study: The Coupon Collector’'s Problem

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Case Study: The Coupon Collector’'s Problem

m The coupon collector is a well-known problem

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Weakest Prec

on Re i
asoning for Expected
ed Run—

Case S
tUdy Th Case Study
e Coupon Collector's P
roblem

m Th
e CcCou
pon collector is a
well=L-~

aNox\ogged i Talk Con

Article Talk Read gdit View history search

]
it Coupon collector s prob m
The P Encycl di

B neyclope e From \N'\\dped'\a, tne free encyc\oped'\a
Main pag° \n probah'\\'\\\j theorys upon collecto! 1 proble™ descrioes e scollect all coupons and win'
i"“‘f"‘z . contests: 1t asks the following question* Suppose nat there i an um of gifferent VPO from

e ure conte

g A2 which coupons are beind col ected equaly likelys ith Y€l \acemen\. Whatis ine probah'\\‘\t\/ {hat more

current events)

Random aricle than tsamp\e yrials ar€ neede {0 ¢O! ectal n

ponate 10 \wikipedia
\Wikipedia store each coupon at\east once? e mat! ematic
urmber of trials needed grows as @(n 0g, n)).\‘\ For example:

coupons: fnow many coupons 4° you exP’

\merac(\on
frials 10 collect all 50 coupons:

elp
Aoout Wikipedia -
Gommunity portal contents & B
Recent changes
Contact page A
Undetstandmg, the prob\em (edit]
00\S
\What iinks here The key 10 sONING ine roblem is unde\'s\and'\ng that it 1akes very itle time 10 collect tne first few
Related changes coupons: n the other nand, it takes ime ast ns. \n fact, fof 50
upload fi couponss it takes O averag® wrials 1o €0 \ect the yery \ast coup tner 49 pons hav
i 0.The idea

peen co\\ac\ed. This is why the expec\ed time 10 collect all coupons ¥
the {otal time into 50 intervals where ine expec\ed {ime can e ca\cu\aled.

Weakest Precondition Reasoning for Expected Run—Times Case Study
ain Talk contr

Case Study: The Coupon Collector’'s Problem

m The coupon collector i

Talk

Avticle | Y
TS
NG Coupon collecto
> edia
e encycloP!
— yiipedia, the ¢
“(Xyﬁz\zéed"a rrom oo -]
. the © :
The Free -
: ing Ques
. pmbab‘\w s the fo! owing &
= e re beind collecte
= ‘ - o 5\?3\5 are needed 1o
) 1
Fea\ured conte e oo - g :
current events ;
rticle »
andom ™
Y?)or\a(e 10 \wikipedia
\Wikipedia store
\merac(\on
Help .
Aoout \Wikipedia \
ity porté! g | :
COT\'\\’\'\\.\Y\\\\[“‘g t
Recent changes U“det Sta“d F
= - key 10 S wing the o
e
. o ns. ON he otner
\What finks here i oo -
nanges - o
o o co\\ec\ed. This ¥

ad file
Uplo N o

) Not 1099

search

sant

P. ERDGs and A. RENyT

We consider t,
A B followi .
are n urns given, 9 Ing classica] <. -
::;fi (iutwfr Jat 5“;:%::]?}?;;8{11? are placed atnn?;gzﬁr?n‘tﬁup Pose that the,
© be e 3 © urns are Iy}, . ese urn,

i qual to £ if 4 abelled with, S one aft

pose th If the j.th ba] j ith the nump,
at the random variables & J?,“ fs Placed into the k.fhelrlsrx:., ile suy
i are independent, 5y
) ang

ball may b i “% By
| ma, placed in st Y other words each
choices of the yrpg for the (I;;'rfotr::gtulf:ﬁ i
R S

Pt — 1 e
(’/*'l)=;forj:], % and ke g SN2 o5

evaluated (here and jp o],

variable in the brgcll\x']o‘t‘sl;a::}“f’t“? M() denotes the S]:,:;n)) T Y
A 1t has been shown 1 value of the

that random

1) M(»
(x,,,(n)): n logn (m‘l) n lﬂglogn)
T Cp - o(n)

where € s o cons
n'the presg;tta::é't:h;}? ending on m, (Th, value of 0_
bl €0 8 8t further anq o, 2t €iven in [1)).
ermine asymptotj-

cally the ba bili: i5tni

real 2 we E;(".:‘ablhty distribution of »,(n); we shal]
v Prove that for ay,
ery

(2) lim p (",m@
nee = <h)g7l+rlll‘l)logjog"+_r}:(\‘p{ -

(Her S5
bra(-(.: and in what follows

Case Study: The Coupon Collector’'s Problem

m The coupon collector is a well-known problem

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Case Study: The Coupon Collector’'s Problem

m The coupon collector is a well-known problem

m We model it by the following algorithm:
cp :=[0,...,0];i:=1;x:=N;
while (z > 0) {
while (¢pli] #0) { ¢ :~ Unif[l...N] };
epli) i=1; 2= -1}

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Case Study: The Coupon Collector’'s Problem

m The coupon collector is a well-known problem

m We model it by the following algorithm:
cp :=[0,...,0];i:=1;x:=N;
while (z > 0) {
while (¢pli] #0) { ¢ :~ Unif[l...N] };
epli) i=1; 2= -1}

m Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Case Study: The Coupon Collector’'s Problem

m The coupon collector is a well-known problem

m We model it by the following algorithm:
cp :=[0,...,0];i:=1;x:=N;
while (z > 0) {
while (¢pli] #0) { ¢ :~ Unif[l...N] };
epli) i=1; 2= -1}

m Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll.] (0) = 4+ [N >0]-2N-(2+Hn_1)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Case Study: The Coupon Collector’'s Problem
m The coupon collector is a well-known problem
m We model it by the following algorithm:
cp :=[0,...,0];i:=1;x:=N;
while (z > 0) {
while (¢pli] #0) { ¢ :~ Unif[l...N] };
epli) i=1; 2= -1}

m Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll.] (0) = 4+ [N >0]-2N-(2+Hn_1)

m Harmonic number Hx_1 is in ©(log N)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Case Study: The Coupon Collector’'s Problem
m The coupon collector is a well-known problem

m We model it by the following algorithm:
cp :=[0,...,0];i:=1;x:=N;
while (z > 0) {
while (¢pli] #0) { ¢ :~ Unif[l...N] };
epli) i=1; 2= -1}
m Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:
ert [coup. coll.] (0) = 4+ [N >0]-2N-(2+Hn_1)
m Harmonic number Hx_1 is in ©(log N)

m Coupon collector program runs in ©(N -log NV) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

i, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

m ert comes with proof rules for reasoning about loops

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

m ert comes with proof rules for reasoning about loops

m ert is a powerful alternative to ranking super—martingales

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

m ert comes with proof rules for reasoning about loops
m ert is a powerful alternative to ranking super—martingales

m ert is applicable to tricky real-world examples which are
difficult to reason about by formal verification techniques

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

m ert comes with proof rules for reasoning about loops
m ert is a powerful alternative to ranking super—martingales

m ert is applicable to tricky real-world examples which are
difficult to reason about by formal verification techniques

@ ert is Isabelle/HOL certified (courtesy of Johannes Holzl, TUM)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

m ert comes with proof rules for reasoning about loops
m ert is a powerful alternative to ranking super—martingales

m ert is applicable to tricky real-world examples which are
difficult to reason about by formal verification techniques

@ ert is Isabelle/HOL certified (courtesy of Johannes Holzl, TUM)

m Future work: recursion, conditioning, run—time variance

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

m ert comes with proof rules for reasoning about loops
m ert is a powerful alternative to ranking super—martingales

m ert is applicable to tricky real-world examples which are
difficult to reason about by formal verification techniques

\@"Qz@ ert is Isabelle/HOL certified (courtesy of Johannes Hdlzl, TUM)

m Future work: recursion, conditioning, run—time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Backup Slides: The Actual Rule for Assignments

C ert [C] (t)

TR 1+ Aoe Efupo) (M. t[z/v] (0))

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Backup Slides: ert Calculations and Proof Rule Application

Ezample 4 (Geometric distribution). Consider loop
Cgeo: while (¢ =1) {c := V2 (0) + 1/2- (1)} .

From the calculations below we conclude that 7 = 1+ [¢ = 1] - 4 is an upper
invariant with respect to 0:

1+ [c#1]-0+4 [e=1] -ert]e := /2-(0) + 1/2- (1)] (1)

1+fe=1]-(1+3%-I[c/0]+ 3% 1[c/1])

1+fe=1]-1+3-Q+[0=1]-9+1 Q+[1=1]-4)
— —_—

=1 =5

=1+Jc=1]4=1 =<1
Then applying Theorem 3 we obtain
ert [Cgeo] (0) = 1+[c=1]-4.

In words, the expected run—time of Cge, is at most 5 from any initial state where
¢ =1 and at most 1 from the remaining states. A

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary

Backup Slides: Operational RMDP

Cirunc: if (1/2-(true) + 1/2 -(false)) {succ := true} else {
if (1/2-(true) + /2 -(false)) {succ := true}

else {succ := false}

1

— (C, o)
1z 1/2
/2
) (Cho) 1

1 (succ :=true, o

L

flo[suce/true]) ({, o [suce/true]) (succ :=false, o) 1

| |

0 (sink) «——————— (|, o[succ/false]) (o [succ/false])

9]

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Backup Slides: Park’'s Lemma

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Backup Slides: Park’'s Lemma

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times

Backup Slides: Park’'s Lemma

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

Het Einde Summary
o @]

Backup Slides: Park’'s Lemma ‘
F(I)<I implies IfpF <I afp
|

4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

ki, Katoen, Matheja, Olmedo

Het Einde Summary
o @]

Backup Slides: Park’'s Lemma ‘
F(I)<I implies IfpF <I afp
|

4.4.2016

Weakest Precondition Reasoning for Expected Run—Times

ki, Katoen, Matheja, Olmedo

Backup Slides: Park’'s Lemma
F(I)<1 implies IfpF<I

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016

