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Motivation Probabilistic Programs

Probabilistic Programs

® Introduce randomization into computation

Significant speed—up in solving difficult problems at cost of
tolerating incorrect results with low probability

m Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning
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| if (&) {C}else {C} | while (¢){C}
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Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if () {C}else {C} | while (¢){C}
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Probabilistic guards £: ¥ — D({true, false}):
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Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if () {C}else {C} | while (¢){C}

What is probabilistic about that language?
Probabilistic guards £: ¥ — D({true, false}):

m [¢: true](o) = 1 — [&: false] (o) is the probability of £
evaluating to true
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Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C — skip | 2z:=E | C; C | {C}o{C}
| if () {C}else {C} | while (¢){C}

What is probabilistic about that language?
Probabilistic guards £: ¥ — D({true, false}):

m [¢: true](o) = 1 — [&: false] (o) is the probability of £
evaluating to true

= Eg Z(true) + L(false), 1(z>y)+3(xz>y)
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Probabilistic Programs
What does a probabilistic program C' do?

m Run program C' on initial state o

m Obtain final set of (sub—)distributions ;. over terminal states

What is the run—time of C' on input ¢?
m Behavior of C not entirely determined by o

m Probabilistic nature of C' influences its run—time

Better Question:

What is the expected run—time (ERT) of C on input o7
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Expected Run—Time Phenomena
m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:

m ERT of C is finite

x :=1; while (1/2) {x :=2-z};
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m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:
m ERT of C is finite

m Positively almost—surely terminating programs are not closed
under sequential composition

m Reasoning about positive almost—sure termination is
computationally very difficult:

x :=1; while (1/2) {x :=2-z};
while (z > 0) {z :=2 — 1}
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m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:

m ERT of C is finite

m Positively almost—surely terminating programs are not closed
under sequential composition

m Reasoning about positive almost—sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non—probabilistic programs [MFCS 2015]

x :=1; while (1/2) {x :=2-z};
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Motivation Expected Run—-Times

Expected Run—Time Phenomena

m ERT of C can be finite even if C' admits infinite computations
m Positive almost—sure termination:

m ERT of C is finite

m Positively almost—surely terminating programs are not closed
under sequential composition

m Reasoning about positive almost—sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non—probabilistic programs [MFCS 2015]

m ERT of C can be infinite, even if C terminates almost—surely1

x :=1; while (1/2) {x :=2-z};
while (z > 0) {z :=2 — 1}

li.e. with probability 1
4.4.2016
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Expected Run—Times

m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i
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m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

m ERT if C does not terminate almost—surely on o:

o0

m In general: ERT of (' is a function

t: Y —

b
Vg
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m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

m ERT if C does not terminate almost—surely on o:

o0

m In general: ERT of (' is a function

t: Y —

b
Vg

m Call such a ¢t a run—time.
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m ERT if C terminates almost—surely on o:

= “C' terminates after

Z i-Pr . . "

— 1 steps on Input o

i

m ERT if C does not terminate almost—surely on o:
00

m In general: ERT of (' is a function

/: Z — "\‘lzjl)

m Call such a t a run—time. Denote set of run—times by T.
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Expected Run—Times

m ERT if C terminates almost—surely on o:

— “C terminates after
E i-Pr . . "
— 1 steps on Input o
i

ERT if C' does not terminate almost—surely on o:

o0

In general: ERT of (' is a function

t: 3 — R,

m Call such a t a run—time. Denote set of run—times by T.

Complete partial order on T:

t1 < to iff VUEE:tl(U)StQ(U)
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The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

C
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The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

C t

|

time needed
after executing C'
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Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

ert [C] (t) C t

|

expected time needed time needed
before executing C after executing C'
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Weakest Precondition Reasoning for Expected Run—Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C]: T — T.

ert [C] (t) C t

|

expected time needed time needed
before executing C after executing C'

ERT in Terms of ert

ert[C](0) (o) = "ERT of C on input ¢
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Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

c ert [C] ()

skip 1+t
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Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

c ert [C] ()

skip 1+t
z:=FE 1+t[z/E)
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Rules for the ert Transformer

c ert [C] ()

skip 1+t
z:=F 1+t[z/E)
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Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=F 1+t[x/E]

Cy; C ert [C1] (ert [Co] (t))
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Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=F 1+t[x/E]

Cy; C ert [C1] (ert [Co] (t))

{Ci} D {Cs} max{ert [C1] (¢), ert[C5] (1)}
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Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=F 1+t[x/E]

Cy; C ert [C1] (ert [Co] (t))

{Ci} D {Cs} max{ert [C1] (¢), ert[C5] (1)}

if (€) {C1} else {Cs} 1+ [€: true] - ert [C4] (F)
+ [&: false] - ert [Co] (t)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016



Weakest Precondition Reasoning for Expected Run—Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1+t

z:=EF 1+ t[z/E]

Cy; Cy ert [C4] (ert [C3] (¢))

{Ci} D {Cs} max{ert [C1] (¢), ert[C5] (1)}

if (£) {C1} else {Cs} 1+ [&: true] - ert [C1] (t)
+ [&: false] - ert [Co] (t)
while (¢) {C'} Ifp Xo 14 [§: false] - ¢
+ [€: true] - ert [C'] (X)
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Upper Bounds for ert of Loops

Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14 [€: false] - ¢ + [€: true] - ert [C] (X)
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Upper Bounds for ert of Loops
Recall the definition of ert [while (§) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)
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Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)

Theorem: Upper Bounds from Upper Invariants
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Upper Bounds for ert of Loops

Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)

Theorem: Upper Bounds from Upper Invariants

If I € T is an upper invariant of while (§) {C}, i.e. if

F(I) <1
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Upper Bounds for ert of Loops

Recall the definition of ert [while (£) {C}] (¢):

Ifp Xo 14+ [€: false] - ¢ + [€: true] - ert [C] (X)

=: F(X)

Theorem: Upper Bounds from Upper Invariants

If I € T is an upper invariant of while (§) {C}, i.e. if

F(I) <1

then
ert[while (§) {C} (t) < I.
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower w—Invariants
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower w—Invariants

If {I.},.x € T is a lower w—invariant, i.e. if

Iy < F(0), and
I’n,+1 j F(Irz)
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower w—Invariants

If {I.},.x € T is a lower w—invariant, i.e. if

Iy < F(0), and

I’n,+1 j F(Irz)
then

sgg I, < ert[while () {C}](¢t) .
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016



Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run—Times 4.4.2016



Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant and a lower w—invariant is given by

I, = Fo---0F(0) .
——

n times
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant and a lower w—invariant is given by

I, = Fo---0F(0) .
——

n times

Theorem: Bound Refinement

If I is an upper bound and F'(I) =< I, then F'(I) is also an upper
bound.
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Weakest Precondition Reasoning for Expected Run—Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = Ifp F' is an upper
invariant and a lower w—invariant is given by

I, = Fo---0F(0) .
——

n times

Theorem: Bound Refinement

If I is an upper bound and F'(I) =< I, then F'(I) is also an upper
bound. Dually for lower bounds.
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Weakest Precondition Reasoning for Expected Run—Times Correspondence to Other Run—Time Models

Is the ert Calculus a Reasonable Run—Time Model?

m Correspondence to an operational semantics:

m Operational model defined in terms of a reward MDP a la
[QEST 2012] and [MFPS 2015]

m ert coincides with expected reward in the operational MDP

m Enables bounded model checking of expected run—times

m Nielson's Hoare—style logic for reasoning about run—time
orders of magnitude of deterministic programs:

m Nielson's logic relies on introducing additional logical variables
m ert is sound and complete with respect to Nielson's logic

m ert calculus is arguably easier to apply — no additional
variables!

4.4.2016
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m The coupon collector is a well-known problem
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m We model it by the following algorithm:
cp :=[0,...,0];i:=1;x:=N;
while (z > 0) {
while (¢pli] #0) { ¢ :~ Unif[l...N] };
epli) i=1; 2= -1}
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Case Study: The Coupon Collector’'s Problem
m The coupon collector is a well-known problem

m We model it by the following algorithm:
cp :=[0,...,0];i:=1;x:=N;
while (z > 0) {
while (¢pli] #0) { ¢ :~ Unif[l...N] };
epli) i=1; 2= -1}
m Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:
ert [coup. coll.] (0) = 4+ [N >0]-2N-(2+Hn_1)
m Harmonic number Hx_1 is in ©(log N)

m Coupon collector program runs in ©(N -log NV) for N > 0
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Het Einde Summary

Summary

m ert is an easy to understand weakest—precondition—style
calculus for reasoning about ERT of probabilistic programs

m ert is sound and complete for reasoning about expected
run—times and positive almost—sure termination

m ert comes with proof rules for reasoning about loops
m ert is a powerful alternative to ranking super—martingales

m ert is applicable to tricky real-world examples which are
difficult to reason about by formal verification techniques

\@"Qz@ ert is Isabelle/HOL certified (courtesy of Johannes Hdlzl, TUM)

m Future work: recursion, conditioning, run—time variance

Thank you for your kind attention!
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Backup Slides: The Actual Rule for Assignments

C ert [C] (t)

TR 1+ Aoe Efupo) (M. t[z/v] (0))
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Backup Slides: ert Calculations and Proof Rule Application

Ezample 4 (Geometric distribution). Consider loop
Cgeo: while (¢ =1) {c := V2 (0) + 1/2- (1)} .

From the calculations below we conclude that 7 = 1+ [¢ = 1] - 4 is an upper
invariant with respect to 0:

1+ [c#1]-0+4 [e=1] -ert]e := /2-(0) + 1/2- (1)] (1)

1+fe=1]-(1+3%-I[c/0]+ 3% 1[c/1])

1+fe=1]-1+3-Q+[0=1]-9+1 Q+[1=1]-4)
— —_—

=1 =5

=1+Jc=1]4=1 =<1
Then applying Theorem 3 we obtain
ert [Cgeo] (0) = 1+[c=1]-4.

In words, the expected run—time of Cge, is at most 5 from any initial state where
¢ =1 and at most 1 from the remaining states. A
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Het Einde Summary

Backup Slides: Operational RMDP

Cirunc: if (1/2-(true) + 1/2 -(false)) {succ := true} else {
if (1/2-(true) + /2 -(false)) {succ := true}

else {succ := false}

1

— (C, o)
1z 1/2
/2
) (Cho) 1

1 (succ :=true, o

L

flo[suce/true])  ({, o [suce/true]) (succ :=false, o) 1

| |

0 (sink) «——————— (|, o[succ/false]) (o [succ/false])

9]
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Backup Slides: Park’'s Lemma
F(I)<1 implies IfpF<I
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