
Weakest Precondition Reasoning for Expected
Run–Times of Probabilistic Programs

Benjamin Kaminski Joost-Pieter Katoen

Christoph Matheja Federico Olmedo

25th European Symposium on Programming
19th edition of the European Joint Conferences on Theory & Practice of Software

April 4, 2016, Eindhoven, Netherlands

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 1



Motivation Probabilistic Programs

Probabilistic Programs

Introduce randomization into computation

Significant speed–up in solving difficult problems at cost of
tolerating incorrect results with low probability

Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 2



Motivation Probabilistic Programs

Probabilistic Programs

Introduce randomization into computation

Significant speed–up in solving difficult problems at cost of
tolerating incorrect results with low probability

Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 2



Motivation Probabilistic Programs

Probabilistic Programs

Introduce randomization into computation

Significant speed–up in solving difficult problems at cost of
tolerating incorrect results with low probability

Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 2



Motivation Probabilistic Programs

Probabilistic Programs

Introduce randomization into computation

Significant speed–up in solving difficult problems at cost of
tolerating incorrect results with low probability

Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 2



Motivation Probabilistic Programs

Probabilistic Programs

Introduce randomization into computation

Significant speed–up in solving difficult problems at cost of
tolerating incorrect results with low probability

Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 2



Motivation Probabilistic Programs

Probabilistic Programs

Introduce randomization into computation

Significant speed–up in solving difficult problems at cost of
tolerating incorrect results with low probability

Solution to problems where deterministic techniques fail:

E.g. symmetry breaking in Dining Philosophers, Leader
Election, Ethernet’s randomized exponential backoff

Randomization of some sort occurs almost in any technique
related used in cryptography and security

Model probability distributions in machine learning

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 2



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉

, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Syntax of Probabilistic Programs

C −→ skip
∣∣ x := E

∣∣ C; C
∣∣ {C} 2 {C}∣∣ if (ξ) {C} else {C}
∣∣ while (ξ) {C}

What is probabilistic about that language?

Probabilistic guards ξ : Σ→ D({true, false}):

Jξ : trueK(σ) = 1− Jξ : falseK(σ) is the probability of ξ
evaluating to true

E.g. 2
3 〈true〉+ 1

3 〈false〉, 1
2 〈x > y〉+ 1

2 〈x ≥ y〉

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 3



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of

(sub–)

distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of

(sub–)

distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of

(sub–)

distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of (sub–)distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of (sub–)distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of (sub–)distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of (sub–)distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Probabilistic Programs

Probabilistic Programs

What does a probabilistic program C do?

Run program C on initial state σ

Obtain final set of (sub–)distributions µ over terminal states

What is the run–time of C on input σ?

Behavior of C not entirely determined by σ

Probabilistic nature of C influences its run–time

Better Question:

What is the expected run–time (ERT) of C on input σ?

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 4



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x};
while (x > 0) {x := x− 1}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x};
while (x > 0) {x := x− 1}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x};
while (x > 0) {x := x− 1}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x};
while (x > 0) {x := x− 1}

1i.e. with probability 1

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Time Phenomena

ERT of C can be finite even if C admits infinite computations

Positive almost–sure termination:

ERT of C is finite

Positively almost–surely terminating programs are not closed
under sequential composition

Reasoning about positive almost–sure termination is
computationally very difficult:

Strictly more difficult than the termination problem for
non–probabilistic programs [MFCS 2015]

ERT of C can be infinite, even if C terminates almost–surely1

x := 1; while (1/2) {x := 2 · x};
while (x > 0) {x := x− 1}

1i.e. with probability 1
Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 5



Motivation Expected Run–Times

Expected Run–Times

ERT if C terminates almost–surely on σ:

∞∑
i=1

i · Pr

(
“C terminates after
i steps on input σ”

)
ERT if C does not terminate almost–surely on σ:

∞

In general: ERT of C is a function

t : Σ→ R∞≥0
Call such a t a run–time.

Denote set of run–times by T.

Complete partial order on T:

t1 � t2 iff ∀σ ∈ Σ: t1(σ) ≤ t2(σ)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 6



Motivation Expected Run–Times

Expected Run–Times
ERT if C terminates almost–surely on σ:

∞∑
i=1

i · Pr

(
“C terminates after
i steps on input σ”

)

ERT if C does not terminate almost–surely on σ:

∞

In general: ERT of C is a function

t : Σ→ R∞≥0
Call such a t a run–time.

Denote set of run–times by T.

Complete partial order on T:

t1 � t2 iff ∀σ ∈ Σ: t1(σ) ≤ t2(σ)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 6



Motivation Expected Run–Times

Expected Run–Times
ERT if C terminates almost–surely on σ:

∞∑
i=1

i · Pr

(
“C terminates after
i steps on input σ”

)
ERT if C does not terminate almost–surely on σ:

∞

In general: ERT of C is a function

t : Σ→ R∞≥0
Call such a t a run–time.

Denote set of run–times by T.

Complete partial order on T:

t1 � t2 iff ∀σ ∈ Σ: t1(σ) ≤ t2(σ)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 6



Motivation Expected Run–Times

Expected Run–Times
ERT if C terminates almost–surely on σ:

∞∑
i=1

i · Pr

(
“C terminates after
i steps on input σ”

)
ERT if C does not terminate almost–surely on σ:

∞

In general: ERT of C is a function

t : Σ→ R∞≥0

Call such a t a run–time.

Denote set of run–times by T.

Complete partial order on T:

t1 � t2 iff ∀σ ∈ Σ: t1(σ) ≤ t2(σ)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 6



Motivation Expected Run–Times

Expected Run–Times
ERT if C terminates almost–surely on σ:

∞∑
i=1

i · Pr

(
“C terminates after
i steps on input σ”

)
ERT if C does not terminate almost–surely on σ:

∞

In general: ERT of C is a function

t : Σ→ R∞≥0
Call such a t a run–time.

Denote set of run–times by T.

Complete partial order on T:

t1 � t2 iff ∀σ ∈ Σ: t1(σ) ≤ t2(σ)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 6



Motivation Expected Run–Times

Expected Run–Times
ERT if C terminates almost–surely on σ:

∞∑
i=1

i · Pr

(
“C terminates after
i steps on input σ”

)
ERT if C does not terminate almost–surely on σ:

∞

In general: ERT of C is a function

t : Σ→ R∞≥0
Call such a t a run–time. Denote set of run–times by T.

Complete partial order on T:

t1 � t2 iff ∀σ ∈ Σ: t1(σ) ≤ t2(σ)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 6



Motivation Expected Run–Times

Expected Run–Times
ERT if C terminates almost–surely on σ:

∞∑
i=1

i · Pr

(
“C terminates after
i steps on input σ”

)
ERT if C does not terminate almost–surely on σ:

∞

In general: ERT of C is a function

t : Σ→ R∞≥0
Call such a t a run–time. Denote set of run–times by T.

Complete partial order on T:

t1 � t2 iff ∀σ ∈ Σ: t1(σ) ≤ t2(σ)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 6



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Weakest Precondition Reasoning for Expected Run–Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C] : T→ T.

C tert [C] (t)

time needed
after executing C

expected time needed
before executing C

ERT in Terms of ert

ert [C] (0) (σ) = “ERT of C on input σ”

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 7



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Weakest Precondition Reasoning for Expected Run–Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C] : T→ T.

C tert [C] (t)

time needed
after executing C

expected time needed
before executing C

ERT in Terms of ert

ert [C] (0) (σ) = “ERT of C on input σ”

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 7



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Weakest Precondition Reasoning for Expected Run–Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C] : T→ T.

C

tert [C] (t)

time needed
after executing C

expected time needed
before executing C

ERT in Terms of ert

ert [C] (0) (σ) = “ERT of C on input σ”

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 7



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Weakest Precondition Reasoning for Expected Run–Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C] : T→ T.

C t

ert [C] (t)

time needed
after executing C

expected time needed
before executing C

ERT in Terms of ert

ert [C] (0) (σ) = “ERT of C on input σ”

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 7



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Weakest Precondition Reasoning for Expected Run–Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C] : T→ T.

C t

ert [C] (t)

time needed
after executing C

expected time needed
before executing C

ERT in Terms of ert

ert [C] (0) (σ) = “ERT of C on input σ”

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 7



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Weakest Precondition Reasoning for Expected Run–Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C] : T→ T.

C tert [C] (t)

time needed
after executing C

expected time needed
before executing C

ERT in Terms of ert

ert [C] (0) (σ) = “ERT of C on input σ”

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 7



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Weakest Precondition Reasoning for Expected Run–Times

The ert Transformer

Use a continuation passing style ERT transformer ert[C] : T→ T.

C tert [C] (t)

time needed
after executing C

expected time needed
before executing C

ERT in Terms of ert

ert [C] (0) (σ) = “ERT of C on input σ”

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 7



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1 + t

x := E 1 + t [x/E]

C1; C2 ert [C1] (ert [C2] (t))

{C1} 2 {C2} max{ert [C1] (t) , ert [C2] (t)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (t)

+ Jξ : falseK · ert [C2] (t)

while (ξ) {C ′} lfpX• 1 + Jξ : falseK · t
+ Jξ : trueK · ert [C ′] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 8



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1 + t

x := E 1 + t [x/E]

C1; C2 ert [C1] (ert [C2] (t))

{C1} 2 {C2} max{ert [C1] (t) , ert [C2] (t)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (t)

+ Jξ : falseK · ert [C2] (t)

while (ξ) {C ′} lfpX• 1 + Jξ : falseK · t
+ Jξ : trueK · ert [C ′] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 8



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1 + t

x := E 1 + t [x/E]

C1; C2 ert [C1] (ert [C2] (t))

{C1} 2 {C2} max{ert [C1] (t) , ert [C2] (t)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (t)

+ Jξ : falseK · ert [C2] (t)

while (ξ) {C ′} lfpX• 1 + Jξ : falseK · t
+ Jξ : trueK · ert [C ′] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 8



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1 + t

x := E 1 + t [x/E]

C1; C2 ert [C1] (ert [C2] (t))

{C1} 2 {C2} max{ert [C1] (t) , ert [C2] (t)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (t)

+ Jξ : falseK · ert [C2] (t)

while (ξ) {C ′} lfpX• 1 + Jξ : falseK · t
+ Jξ : trueK · ert [C ′] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 8



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1 + t

x := E 1 + t [x/E]

C1; C2 ert [C1] (ert [C2] (t))

{C1} 2 {C2} max{ert [C1] (t) , ert [C2] (t)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (t)

+ Jξ : falseK · ert [C2] (t)

while (ξ) {C ′} lfpX• 1 + Jξ : falseK · t
+ Jξ : trueK · ert [C ′] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 8



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1 + t

x := E 1 + t [x/E]

C1; C2 ert [C1] (ert [C2] (t))

{C1} 2 {C2} max{ert [C1] (t) , ert [C2] (t)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (t)

+ Jξ : falseK · ert [C2] (t)

while (ξ) {C ′} lfpX• 1 + Jξ : falseK · t
+ Jξ : trueK · ert [C ′] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 8



Weakest Precondition Reasoning for Expected Run–Times The ert Transformer

Rules for the ert Transformer

C ert [C] (t)

skip 1 + t

x := E 1 + t [x/E]

C1; C2 ert [C1] (ert [C2] (t))

{C1} 2 {C2} max{ert [C1] (t) , ert [C2] (t)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (t)

+ Jξ : falseK · ert [C2] (t)

while (ξ) {C ′} lfpX• 1 + Jξ : falseK · t
+ Jξ : trueK · ert [C ′] (X)

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 8



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Upper Bounds for ert of Loops

Recall the definition of ert [while (ξ) {C}] (t):

lfpX• 1 + Jξ : falseK · t+ Jξ : trueK · ert [C] (X)

Theorem: Upper Bounds from Upper Invariants

If I ∈ T is an upper invariant of while (ξ) {C}, i.e. if

F (I) � I

then
ert [while (ξ) {C}] (t) � I .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 9



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Upper Bounds for ert of Loops

Recall the definition of ert [while (ξ) {C}] (t):

lfpX• 1 + Jξ : falseK · t+ Jξ : trueK · ert [C] (X)

Theorem: Upper Bounds from Upper Invariants

If I ∈ T is an upper invariant of while (ξ) {C}, i.e. if

F (I) � I

then
ert [while (ξ) {C}] (t) � I .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 9



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Upper Bounds for ert of Loops

Recall the definition of ert [while (ξ) {C}] (t):

lfpX• 1 + Jξ : falseK · t+ Jξ : trueK · ert [C] (X)︸ ︷︷ ︸
=: F (X)

Theorem: Upper Bounds from Upper Invariants

If I ∈ T is an upper invariant of while (ξ) {C}, i.e. if

F (I) � I

then
ert [while (ξ) {C}] (t) � I .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 9



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Upper Bounds for ert of Loops

Recall the definition of ert [while (ξ) {C}] (t):

lfpX• 1 + Jξ : falseK · t+ Jξ : trueK · ert [C] (X)︸ ︷︷ ︸
=: F (X)

Theorem: Upper Bounds from Upper Invariants

If I ∈ T is an upper invariant of while (ξ) {C}, i.e. if

F (I) � I

then
ert [while (ξ) {C}] (t) � I .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 9



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Upper Bounds for ert of Loops

Recall the definition of ert [while (ξ) {C}] (t):

lfpX• 1 + Jξ : falseK · t+ Jξ : trueK · ert [C] (X)︸ ︷︷ ︸
=: F (X)

Theorem: Upper Bounds from Upper Invariants

If I ∈ T is an upper invariant of while (ξ) {C}, i.e. if

F (I) � I

then
ert [while (ξ) {C}] (t) � I .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 9



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Upper Bounds for ert of Loops

Recall the definition of ert [while (ξ) {C}] (t):

lfpX• 1 + Jξ : falseK · t+ Jξ : trueK · ert [C] (X)︸ ︷︷ ︸
=: F (X)

Theorem: Upper Bounds from Upper Invariants

If I ∈ T is an upper invariant of while (ξ) {C}, i.e. if

F (I) � I
then

ert [while (ξ) {C}] (t) � I .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 9



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower ω–Invariants

If {In}n∈N ⊆ T is a lower ω–invariant, i.e. if

I0 � F (0), and

In+1 � F (In)

then
sup
n∈N

In � ert [while (ξ) {C}] (t) .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 10



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower ω–Invariants

If {In}n∈N ⊆ T is a lower ω–invariant, i.e. if

I0 � F (0), and

In+1 � F (In)

then
sup
n∈N

In � ert [while (ξ) {C}] (t) .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 10



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower ω–Invariants

If {In}n∈N ⊆ T is a lower ω–invariant, i.e. if

I0 � F (0), and

In+1 � F (In)

then
sup
n∈N

In � ert [while (ξ) {C}] (t) .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 10



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower ω–Invariants

If {In}n∈N ⊆ T is a lower ω–invariant, i.e. if

I0 � F (0), and

In+1 � F (In)

then
sup
n∈N

In � ert [while (ξ) {C}] (t) .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 10



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Lower Bounds for ert of Loops

Reasoning on lower bounds is more involved:

Find an argument for being below a least fixed point

Theorem: Lower Bounds from Lower ω–Invariants

If {In}n∈N ⊆ T is a lower ω–invariant, i.e. if

I0 � F (0), and

In+1 � F (In)
then

sup
n∈N

In � ert [while (ξ) {C}] (t) .

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 10



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete

, since I = lfpF is an upper
invariant and a lower ω–invariant is given by

In = F ◦ · · · ◦ F︸ ︷︷ ︸
n times

(0) .

Theorem: Bound Refinement

If I is an upper bound and F (I) � I, then F (I) is also an upper
bound.

Dually for lower bounds.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 11



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = lfpF is an upper
invariant

and a lower ω–invariant is given by

In = F ◦ · · · ◦ F︸ ︷︷ ︸
n times

(0) .

Theorem: Bound Refinement

If I is an upper bound and F (I) � I, then F (I) is also an upper
bound.

Dually for lower bounds.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 11



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = lfpF is an upper
invariant and a lower ω–invariant is given by

In = F ◦ · · · ◦ F︸ ︷︷ ︸
n times

(0) .

Theorem: Bound Refinement

If I is an upper bound and F (I) � I, then F (I) is also an upper
bound.

Dually for lower bounds.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 11



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = lfpF is an upper
invariant and a lower ω–invariant is given by

In = F ◦ · · · ◦ F︸ ︷︷ ︸
n times

(0) .

Theorem: Bound Refinement

If I is an upper bound and F (I) � I, then F (I) is also an upper
bound.

Dually for lower bounds.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 11



Weakest Precondition Reasoning for Expected Run–Times Reasoning about ert

Theorem: Completeness of Proof Rules

The presented proof rules are complete, since I = lfpF is an upper
invariant and a lower ω–invariant is given by

In = F ◦ · · · ◦ F︸ ︷︷ ︸
n times

(0) .

Theorem: Bound Refinement

If I is an upper bound and F (I) � I, then F (I) is also an upper
bound. Dually for lower bounds.

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 11



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Correspondence to Other Run–Time Models

Is the ert Calculus a Reasonable Run–Time Model?

Correspondence to an operational semantics:

Operational model defined in terms of a reward MDP à la
[QEST 2012] and [MFPS 2015]

ert coincides with expected reward in the operational MDP

Enables bounded model checking of expected run–times

Nielson’s Hoare–style logic for reasoning about run–time
orders of magnitude of deterministic programs:

Nielson’s logic relies on introducing additional logical variables

ert is sound and complete with respect to Nielson’s logic

ert calculus is arguably easier to apply — no additional
variables!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 12



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Weakest Precondition Reasoning for Expected Run–Times Case Study

Case Study: The Coupon Collector’s Problem

The coupon collector is a well–known problem

We model it by the following algorithm:

cp := [0, . . . , 0]; i := 1; x := N;

while (x > 0) {
while (cp[i] 6= 0) { i :≈ Unif[1 . . . N ] };
cp[i] := 1; x := x− 1 }

Using ert, we can analyze the ERT of the above algorithm
directly on the source code given above:

ert [coup. coll .] (0) = 4 + [N > 0] · 2N · (2 +HN−1)

Harmonic number HN−1 is in Θ(logN)

Coupon collector program runs in Θ(N · logN) for N > 0

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 13



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniques

Tobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Summary

ert is an easy to understand weakest–precondition–style
calculus for reasoning about ERT of probabilistic programs

ert is sound and complete for reasoning about expected
run–times and positive almost–sure termination

ert comes with proof rules for reasoning about loops

ert is a powerful alternative to ranking super–martingales

ert is applicable to tricky real–world examples which are
difficult to reason about by formal verification techniquesTobias Nipkow Lawrence C. Paulson

Markus Wenzel

λ
→

∀
=Is

ab
el
le

β

α

HOL

A Proof Assistant for
Higher-Order Logic

February 17, 2016

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

ert is Isabelle/HOL certified (courtesy of Johannes Hölzl, TUM)

Future work: recursion, conditioning, run–time variance

Thank you for your kind attention!

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 14



Het Einde Summary

Backup Slides: The Actual Rule for Assignments

C ert [C] (t)

x :≈ µ 1 + λσ• EJµK(σ) (λv. t [x/v] (σ))

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 15



Het Einde Summary

Backup Slides: ert Calculations and Proof Rule Application

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 16



Het Einde Summary

Backup Slides: Operational RMDP

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 17



Het Einde Summary

Backup Slides: Park’s Lemma

F (I) ≤ I implies lfpF ≤ I

∞

0

gfpF

lfpF

•• •

•• •

I

F (I)

≤

I

F (I)

≤

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 18



Het Einde Summary

Backup Slides: Park’s Lemma

F (I) ≤ I implies lfpF ≤ I

∞

0

gfpF

lfpF

•• •

•• •

I

F (I)

≤

I

F (I)

≤

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 18



Het Einde Summary

Backup Slides: Park’s Lemma

F (I) ≤ I implies lfpF ≤ I

∞

0

gfpF

lfpF

•• •

•• •

I

F (I)

≤

I

F (I)

≤

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 18



Het Einde Summary

Backup Slides: Park’s Lemma

F (I) ≤ I implies lfpF ≤ I

∞

0

gfpF

lfpF

•• •

•• •

I

F (I)

≤

I

F (I)

≤

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 18



Het Einde Summary

Backup Slides: Park’s Lemma

F (I) ≤ I implies lfpF ≤ I

∞

0

gfpF

lfpF

•• •

•• •

I

F (I)

≤

I

F (I)

≤

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 18



Het Einde Summary

Backup Slides: Park’s Lemma

F (I) ≤ I implies lfpF ≤ I

∞

0

gfpF

lfpF

•• •

•• •

I

F (I)

≤

I

F (I)

≤

Kaminski, Katoen, Matheja, Olmedo Weakest Precondition Reasoning for Expected Run–Times 4.4.2016 18


