Conditioning in Probabilistic Programming MFPS XXXI 2015

Friedrich Gretz Nils Jansen Benjamin Kaminski Joost-Pieter Katoen Annabelle McIver Federico Olmedo

23.6.2015

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \left\{ P \right\} \texttt{else} \left\{ P \right\} \mid \left\{ P \right\} \left[p \right] \left\{ P \right\} \\ & \quad \mid \left\{ P \right\} \square \left\{ P \right\} \mid \texttt{while} (G) \left\{ P \right\} \end{array}$$

$$\begin{array}{rcl} P & \longrightarrow & x := E \mid \texttt{if} (G) \left\{ P \right\} \texttt{else} \left\{ P \right\} \mid \left\{ P \right\} \left[p \right] \left\{ P \right\} \\ & \quad \mid \left\{ P \right\} \square \left\{ P \right\} \mid \texttt{while} (G) \left\{ P \right\} \end{array}$$

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \{P\} \texttt{else} \{P\} \mid \{P\} \ [p] \ \{P\} \\ & & \mid \{P\} \square \{P\} \mid \texttt{while} (G) \{P\} \end{array}$$

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \{P\} \texttt{else} \{P\} \mid \{P\} \ [p] \ \{P\} \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\$$

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \{P\} \texttt{else} \{P\} \mid \{P\} \ [p] \ \{P\} \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\$$

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \{P\} \texttt{else} \{P\} \mid \{P\} \ [p] \ \{P\} \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\$$

Syntax of pGCL Programs [McIver & Morgan '06]

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \{P\} \texttt{else} \{P\} \mid \{P\} \ [p] \ \{P\} \\ & & & \mid \{P\} \square \{P\} \square \{P\} \mid \texttt{while} (G) \{P\} \end{array}$$

Syntax of cpGCL Programs

$$P \longrightarrow$$
 "see pGCL" | observe G

Syntax of pGCL Programs [McIver & Morgan '06]

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \{P\} \texttt{else} \{P\} \mid \{P\} \ [p] \ \{P\} \\ & & & \mid \{P\} \square \{P\} \square \{P\} \mid \texttt{while} (G) \{P\} \end{array}$$

Syntax of cpGCL Programs

$$P \longrightarrow$$
 "see pGCL" | observe G

Syntax of pGCL Programs [Mclver & Morgan '06]

$$\begin{array}{rcl} P & \longrightarrow & x \coloneqq E \mid \texttt{if} (G) \left\{ P \right\} \texttt{else} \left\{ P \right\} \mid \left\{ P \right\} \left[p \right] \left\{ P \right\} \\ & \quad \mid \left\{ P \right\} \square \left\{ P \right\} \mid \texttt{while} (G) \left\{ P \right\} \end{array}$$

Syntax of cpGCL Programs

$$P \longrightarrow$$
 "see pGCL" | observe G

Given a probabilistic program P and a random variable f: What is the conditional expected value of f after termination of P given that no observation is violated while executing P?

Unbounded and Bounded Expectations

 $\mathbb{S} = \{ \sigma \mid \sigma \colon \mathcal{V}ars \to \mathbb{R} \}$ denotes the set of program states.

Unbounded and Bounded Expectations

 $\mathbb{S} = \{ \sigma \mid \sigma \colon \mathcal{V}ars \to \mathbb{R} \}$ denotes the set of program states. The set of expectations \mathbb{E} and the set of bounded expectations $\mathbb{E}_{<1}$ are

$$\mathbb{E} \;=\; \left\{f \;\big|\; f \colon \mathbb{S} \to \mathbb{R}^{\infty}_{\geq 0}\right\} \qquad \quad \mathbb{E}_{\leq 1} \;=\; \left\{g \;\big|\; g \colon \mathbb{S} \to [0,\,1]\right\} \,.$$

Unbounded and Bounded Expectations

 $\mathbb{S} = \{ \sigma \mid \sigma \colon \mathcal{V}ars \to \mathbb{R} \}$ denotes the set of program states. The set of expectations \mathbb{E} and the set of bounded expectations $\mathbb{E}_{<1}$ are

$$\mathbb{E} = \left\{ f \mid f \colon \mathbb{S} \to \mathbb{R}_{\geq 0}^{\infty} \right\} \qquad \mathbb{E}_{\leq 1} = \left\{ g \mid g \colon \mathbb{S} \to [0, 1] \right\}.$$

random variable = expectation

Unbounded and Bounded Expectations

 $\mathbb{S} = \{ \sigma \mid \sigma \colon \mathcal{V}ars \to \mathbb{R} \}$ denotes the set of program states. The set of expectations \mathbb{E} and the set of bounded expectations $\mathbb{E}_{<1}$ are

$$\mathbb{E} = \left\{ f \mid f \colon \mathbb{S} \to \mathbb{R}_{\geq 0}^{\infty} \right\} \qquad \mathbb{E}_{\leq 1} = \left\{ g \mid g \colon \mathbb{S} \to [0, 1] \right\}.$$

random variable = expectation \neq expected value

Operational Semantics for cpGCL

Given:

Given: $P \in cpGCL$,

Given: $P \in cpGCL$, $f \in \mathbb{E}$.

Given: $P \in cpGCL$, $f \in \mathbb{E}$.

Construct an operational RMDP à la Gretz et al. and define conditional expected rewards under a minimizing scheduler.

Given: $P \in cpGCL$, $f \in \mathbb{E}$.

- Construct an operational RMDP à la Gretz et al. and define conditional expected rewards under a minimizing scheduler.
- Schematically such RMDPs look as follows:

Given: $P \in cpGCL$, $f \in \mathbb{E}$.

- Construct an operational RMDP à la Gretz et al. and define conditional expected rewards under a minimizing scheduler.
- Schematically such RMDPs look as follows:

Only terminal states can contribute positive non-zero reward!

Denotational Semantics

Denotational Semantics for (unconditioned) pGCL

Think of a pGCL program P as a state-to-distribution transformer

 $\sigma\mapsto [\![P]\!](\sigma).$

Think of a pGCL program P as a state-to-distribution transformer

 $\sigma \mapsto [\![P]\!](\sigma).$

An expectation ${\rm wp}[P](f)$ is called the weakest pre–expectation of P with respect to post–expectation f

Think of a pGCL program P as a state-to-distribution transformer

 $\sigma \mapsto [\![P]\!](\sigma).$

An expectation wp[P](f) is called the weakest pre-expectation of P with respect to post-expectation f, if

 $\mathbf{E}_{\llbracket P \rrbracket(\sigma)}(f) = \mathbf{E}_{\delta_{\sigma}} \big(\mathsf{wp}[P](f) \big)$

Think of a pGCL program P as a state-to-distribution transformer

 $\sigma \mapsto [\![P]\!](\sigma).$

An expectation wp[P](f) is called the weakest pre-expectation of P with respect to post-expectation f, if

$$\mathbf{E}_{\llbracket P \rrbracket(\sigma)}(f) = \mathbf{E}_{\delta_{\sigma}} \big(\mathsf{wp}[P](f) \big) = \mathsf{wp}[P](f)(\sigma).$$

Think of a pGCL program P as a state-to-distribution transformer

 $\sigma \mapsto \llbracket P \rrbracket (\sigma).$

An expectation wp[P](f) is called the weakest pre-expectation of P with respect to post-expectation f, if

$$\mathbf{E}_{\llbracket P \rrbracket(\sigma)}(f) \; = \; \mathbf{E}_{\delta_{\sigma}} \big(\mathrm{wp}[P](f) \big) \; = \; \mathrm{wp}[P](f)(\sigma).$$

For $g \in \mathbb{E}_{\leq 1}$, an expectation wlp[P](g) is called the weakest liberal pre-expectation of P with respect to post-expectation g

7

Think of a pGCL program P as a state-to-distribution transformer

 $\sigma \mapsto \llbracket P \rrbracket (\sigma).$

An expectation wp[P](f) is called the weakest pre-expectation of P with respect to post-expectation f, if

$$\mathbf{E}_{\llbracket P \rrbracket(\sigma)}(f) \; = \; \mathbf{E}_{\delta_{\sigma}} \big(\mathrm{wp}[P](f) \big) \; = \; \mathrm{wp}[P](f)(\sigma).$$

For $g \in \mathbb{E}_{\leq 1}$, an expectation wlp[P](g) is called the weakest liberal pre-expectation of P with respect to post-expectation g, if

$$wlp[P](g) = wp[P](g) + Pr("P diverges")$$

7

Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers Let $P \in cpGCL^{\boxtimes}$ (i.e. P contains no non-deterministic choices) and let $f \in \mathbb{E}$. Programs as Conditional Expectation Transformers Let $P \in cpGCL^{\boxtimes}$ (i.e. P contains no non-deterministic choices) and let $f \in \mathbb{E}$.

The conditional weakest pre-expectation of P with respect to post-expectation f is a pair (f', g'), such that

Programs as Conditional Expectation Transformers Let $P \in cpGCL^{\boxtimes}$ (i.e. P contains no non-deterministic choices) and let $f \in \mathbb{E}$.

The conditional weakest pre-expectation of P with respect to post-expectation f is a pair (f', g'), such that

 \blacksquare given an initial state σ
The conditional weakest pre-expectation of P with respect to post-expectation f is a pair (f', g'), such that

- \blacksquare given an initial state σ
- $f'(\sigma)/g'(\sigma)$ is the conditional expected value of f

The conditional weakest pre-expectation of P with respect to post-expectation f is a pair (f', g'), such that

- \blacksquare given an initial state σ
- $f'(\sigma)/g'(\sigma)$ is the conditional expected value of f
- \blacksquare after termination of P on σ

The conditional weakest pre-expectation of P with respect to post-expectation f is a pair (f', g'), such that

- \blacksquare given an initial state σ
- $f'(\sigma)/g'(\sigma)$ is the conditional expected value of f
- \blacksquare after termination of P on σ
- given that no observation is violated while executing P.

The conditional weakest pre-expectation of P with respect to post-expectation f is a pair (f', g'), such that

- \blacksquare given an initial state σ
- $f'(\sigma)/g'(\sigma)$ is the conditional expected value of f
- \blacksquare after termination of P on σ
- given that no observation is violated while executing *P*.

We provide a transformer that satisfies $\exp[P](f, \mathbf{1}) = (f', g')$.

The conditional weakest pre-expectation of P with respect to post-expectation f is a pair (f', g'), such that

- \blacksquare given an initial state σ
- $f'(\sigma)/g'(\sigma)$ is the conditional expected value of f
- \blacksquare after termination of P on σ
- given that no observation is violated while executing *P*.

We provide a transformer that satisfies $\mathsf{cwp}[P](f,\,\mathbf{1})=(f',\,g').$ Furthermore:

 $\mathsf{cwp}[P](f,\,g) \;=\; \big(\mathsf{wp}[P](f),\,\mathsf{wlp}[P](g)\big)$

Let G be some event and χ_G be the characteristic function of G.

Let G be some event and χ_G be the characteristic function of G. The conditional expected value of a random variable r given event G is then given by

$$\frac{\mathbf{E}(r \cdot \chi_G)}{\Pr(G)}$$

.

Conditional Expectations

Let G be some event and χ_G be the characteristic function of G. The conditional expected value of a random variable r given event G is then given by

$$\frac{\mathbf{E}(r \cdot \chi_G)}{\Pr(G)} = \frac{\mathbf{E}(r \cdot \chi_G)}{\mathbf{E}(\chi_G)}$$

.

Conditional Expectations

Let G be some event and χ_G be the characteristic function of G. The conditional expected value of a random variable r given event G is then given by

$$\frac{\mathsf{E}(r \cdot \chi_G)}{\mathsf{Pr}(G)} = \frac{\mathsf{E}(r \cdot \chi_G)}{\mathsf{E}(\chi_G)}$$

Conditional Expectations

Let G be some event and χ_G be the characteristic function of G. The conditional expected value of a random variable r given event G is then given by

$$\frac{\mathsf{E}(r \cdot \chi_G)}{\mathsf{Pr}(G)} = \frac{\mathsf{E}(r \cdot \chi_G)}{\mathsf{E}(\chi_G)}$$

Conditional Expectations

A conditional expectation is a pair $(f, g) \in \mathbb{E} \times \mathbb{E}_{\leq 1}$.

Let G be some event and χ_G be the characteristic function of G. The conditional expected value of a random variable r given event G is then given by

$$\frac{\mathsf{E}(r \cdot \chi_G)}{\mathsf{Pr}(G)} = \frac{\mathsf{E}(r \cdot \chi_G)}{\mathsf{E}(\chi_G)}$$

Conditional Expectations

A conditional expectation is a pair $(f, g) \in \mathbb{E} \times \mathbb{E}_{\leq 1}$. Intuitively, f represents the numerator and g represents the denominator above.

wp wlp

 $\frac{\mathsf{wp}}{\mathsf{wlp}}\sim \mathsf{cwp}$

 $rac{\mathsf{wp}}{\mathsf{wlp}}\sim\mathsf{cwp}$

$$\begin{array}{l} P_{div} = \\ x \coloneqq 1; \\ \texttt{while} \ (x = 1) \ \{ \\ x \coloneqq 1 \\ \} \end{array}$$

$$\begin{array}{l} P_{andiv} = & \\ x \coloneqq 1; & \\ & \text{while } (x=1) \; \{ & \\ & \; \{x \coloneqq 1\} \; [1/2] \; \{x \coloneqq 0\}; & \\ & \text{observe } x = 1 & \\ \} \end{array}$$

$$\begin{array}{l} P_{div} = \\ x \coloneqq 1; \\ \texttt{while} \ (x = 1) \ \{ \\ x \coloneqq 1 \\ \} \end{array}$$

$$\begin{array}{l} P_{andiv} = & \\ x \coloneqq 1; & \\ & \text{while } (x=1) \; \{ & \\ & \; \{x \coloneqq 1\} \; [1/2] \; \{x \coloneqq 0\}; & \\ & \text{observe } x = 1 & \\ \} \end{array}$$

cwp of P_{div} and P_{andiv} yields:

$$\begin{array}{l} P_{div} = \\ x \coloneqq 1; \\ \texttt{while} \ (x = 1) \ \{ \\ x \coloneqq 1 \\ \} \end{array}$$

$$\begin{array}{l} P_{andiv} = & \\ x \coloneqq 1; & \\ & \text{while } (x=1) \; \{ & \\ & \; \{x \coloneqq 1\} \; [1/2] \; \{x \coloneqq 0\}; & \\ & \; \text{observe } x = 1 & \\ & \} \end{array}$$

cwp of
$$P_{div}$$
 and P_{andiv} yields:
 $\mathbf{wp}[P_{div}](f, \mathbf{1}) = (\mathbf{0}, \mathbf{1})$
 $\mathbf{cwp}[P_{andiv}](f, \mathbf{1}) = (\mathbf{0}, \mathbf{0})$

$$P_{div} = x \coloneqq 1;$$

while $(x = 1) \{$
 $x \coloneqq 1$
 $\}$

cwp of P_{div} and P_{andiv} yields: • $cwp[P_{div}](f, 1) = (0, 1)$ $cwp[P_{andiv}](f, 1) = (0, 0)$

P_{div} and P_{andiv} are not semantically equivalent!

 P_a

$$P_{div} = x \coloneqq 1;$$

while $(x = 1) \{$
 $x \coloneqq 1$
 $\}$

$$\begin{array}{l} {}_{ndiv} = \\ x \coloneqq 1; \\ \texttt{while} \; (x = 1) \; \{ \\ & \{x \coloneqq 1\} \; [^1\!/2] \; \{x \coloneqq 0\}; \\ & \texttt{observe} \; x = 1 \\ \} \end{array}$$

 P_a

P_{div} and P_{andiv} are not semantically equivalent!

$$P_{div} = x \coloneqq 1;$$

while $(x = 1) \{$
 $x \coloneqq 1$
 $\}$

$$\begin{array}{l} P_{andiv} = & \\ x \coloneqq 1; & \\ & \text{while } (x=1) \; \{ & \\ & \; \{x \coloneqq 1\} \; [1/2] \; \{x \coloneqq 0\}; & \\ & \text{observe } x = 1 & \\ & \} \end{array}$$

 P_{div} and P_{andiv} are not semantically equivalent! Not distinguished by Nori et al.'s semantics!

Let $Q \in pGCL$ (i.e. Q contains no observations),

Let $Q \in \mathsf{pGCL}$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$

Let $Q \in \text{pGCL}$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and $(f', g') = \exp[Q](f, \mathbf{1})$.

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$\mathrm{wp}[Q](f)(\sigma) \ = \ \frac{f'(\sigma)}{g'(\sigma)}$$

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$wp[Q](f)(\sigma) = \frac{f'(\sigma)}{g'(\sigma)} = \frac{wp[Q](f)}{wlp[Q](1)}$$

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$wp[Q](f)(\sigma) = \frac{f'(\sigma)}{g'(\sigma)} = \frac{wp[Q](f)}{wlp[Q](1)} \neq \frac{wp[Q](f)}{wp[Q](1)}$$

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$wp[Q](f)(\sigma) = \frac{f'(\sigma)}{g'(\sigma)} = \frac{wp[Q](f)}{wlp[Q](1)} \neq \frac{wp[Q](f)}{wp[Q](1)}$$

Theorem: Correspondence Theorem

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$wp[Q](f)(\sigma) = \frac{f'(\sigma)}{g'(\sigma)} = \frac{wp[Q](f)}{wlp[Q](1)} \neq \frac{wp[Q](f)}{wp[Q](1)}$$

Theorem: Correspondence Theorem

Let $P \in \mathsf{cpGCL}^{\boxtimes}$,

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$wp[Q](f)(\sigma) = \frac{f'(\sigma)}{g'(\sigma)} = \frac{wp[Q](f)}{wlp[Q](1)} \neq \frac{wp[Q](f)}{wp[Q](1)}$$

Theorem: Correspondence Theorem

Let $P \in \mathsf{cpGCL}^{\boxtimes}$, $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$wp[Q](f)(\sigma) = \frac{f'(\sigma)}{g'(\sigma)} = \frac{wp[Q](f)}{wlp[Q](1)} \neq \frac{wp[Q](f)}{wp[Q](1)}$$

Theorem: Correspondence Theorem

Let $P \in \mathsf{cpGCL}^{\boxtimes}$, $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and $(f', g') = \mathsf{cwp}[P](f, \mathbf{1})$.
Theorem: cwp is "Backward Compatible"

Let $Q \in pGCL$ (i.e. Q contains no observations), $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[Q](f, 1). Then

$$wp[Q](f)(\sigma) = \frac{f'(\sigma)}{g'(\sigma)} = \frac{wp[Q](f)}{wlp[Q](1)} \neq \frac{wp[Q](f)}{wp[Q](1)}$$

Theorem: Correspondence Theorem

Let $P \in cpGCL^{\boxtimes}$, $f \in \mathbb{E}$, $\sigma \in \mathbb{S}$ and (f', g') = cwp[P](f, 1). Then $f'(\sigma)/g'(\sigma)$ corresponds to the conditional expected reward of the operational RMDP.

The non–deterministic choice $\{P_1\} \square \{P_2\}$ is an implementation choice.

The non-deterministic choice $\{P_1\} \square \{P_2\}$ is an implementation choice. More formally: If it holds that

 $\mathsf{cwp}\big[\{P_1\} \,\square\, \{P_2\}\big] = \mathsf{cwp}[P_1]$

The non–deterministic choice $\{P_1\} \square \{P_2\}$ is an implementation choice. More formally: If it holds that

$$\mathsf{cwp}\big[\{P_1\} \square \{P_2\}\big] = \mathsf{cwp}[P_1]$$

then it should also hold that

 $\mathsf{cwp}\big[\{\{P_1\} \,\square\, \{P_2\}\} \ [p] \ \{P_3\}\big] = \mathsf{cwp}\big[\{P_1\} \ [p] \ \{P_3\}\big].$

The non–deterministic choice $\{P_1\} \square \{P_2\}$ is an implementation choice. More formally: If it holds that

$$\mathsf{cwp}\big[\{P_1\} \square \{P_2\}\big] = \mathsf{cwp}[P_1]$$

then it should also hold that

$$\mathsf{cwp}\big[\{\{P_1\} \Box \{P_2\}\} \ [p] \ \{P_3\}\big] = \mathsf{cwp}\big[\{P_1\} \ [p] \ \{P_3\}\big].$$

Theorem: Adding Non-Determinism to cwp

Under this mild assumption, it is not possible to extend the rules for cwp by a rule for non-deterministic choice.

 We introduce operational semantics à la Gretz et al. for probabilistic programs with conditioning.

- We introduce operational semantics à la Gretz et al. for probabilistic programs with conditioning.
- We introduce a reasonable, backward compatible denotational semantics à la Mclver & Morgan.

- We introduce operational semantics à la Gretz et al. for probabilistic programs with conditioning.
- We introduce a reasonable, backward compatible denotational semantics à la McIver & Morgan.
- We prove that operational and denotational semantics coincide for the fully probabilistic fragment of cpGCL.

- We introduce operational semantics à la Gretz et al. for probabilistic programs with conditioning.
- We introduce a reasonable, backward compatible denotational semantics à la McIver & Morgan.
- We prove that operational and denotational semantics coincide for the fully probabilistic fragment of cpGCL.
- We prove that cwp cannot be extended to non-deterministic choice.

- We introduce operational semantics à la Gretz et al. for probabilistic programs with conditioning.
- We introduce a reasonable, backward compatible denotational semantics à la McIver & Morgan.
- We prove that operational and denotational semantics coincide for the fully probabilistic fragment of cpGCL.
- We prove that cwp cannot be extended to non-deterministic choice.
- We can use cwp to prove the correctness of several program transformations.

- We introduce operational semantics à la Gretz et al. for probabilistic programs with conditioning.
- We introduce a reasonable, backward compatible denotational semantics à la McIver & Morgan.
- We prove that operational and denotational semantics coincide for the fully probabilistic fragment of cpGCL.
- We prove that cwp cannot be extended to non-deterministic choice.
- We can use cwp to prove the correctness of several program transformations.

Thank you for your attention! :-)

Operational Semantics for cpGCL

Rules for cwp

Р	cwp[P](f,g)
$x \coloneqq E$	(f[x/E], g[x/E])
${\tt observe}G$	$\chi_G \cdot (f,g)$
$P_1; P_2$	$(cwp[P_1] \circ cwp[P_2])(f,g)$
$\texttt{if}\left(G\right)\left\{P_{1}\right\}\texttt{else}\left\{P_{2}\right\}$	$\chi_G \cdot cwp[P_1](f,g) + \chi_{\neg G} \cdot cwp[P_2](f,g)$
$\{P_1\} [p] \{P_2\}$	$p\cdot cwp[P_1](f,g) + (1-p)\cdot cwp[P_2](f,g)$
$\{P_1\} \square \{P_2\}$	— not defined —
$\texttt{while}\left(G\right)\left\{P'\right\}$	$\pmb{\mu}_{\sqsubseteq, \sqsupseteq}(\widehat{f}, \widehat{g}) \bullet \; \left(\chi_G \cdot cwp[P'](\widehat{f}, \widehat{g}) + \chi_{\neg G} \cdot (f, g) \right)$

Rules for cwp

Р	cwp[P](f,g)
$x \coloneqq E$	(f[x/E], g[x/E])
${\tt observe}G$	$\chi_G \cdot (f,g)$
$P_1; P_2$	$(cwp[P_1] \circ cwp[P_2])(f,g)$
$\texttt{if}\left(G\right)\left\{P_{1}\right\}\texttt{else}\left\{P_{2}\right\}$	$\chi_G \cdot cwp[P_1](f,g) + \chi_{\neg G} \cdot cwp[P_2](f,g)$
$\{P_1\} [p] \{P_2\}$	$p\cdot cwp[P_1](f,g) + (1-p)\cdot cwp[P_2](f,g)$
$\{P_1\} \square \{P_2\}$	— not defined —
$\texttt{while}\left(G\right)\left\{P'\right\}$	$\boldsymbol{\mu}_{\sqsubseteq, \sqsupseteq}(\hat{f}, \hat{g}) \bullet \; \left(\chi_G \cdot cwp[P'](\hat{f}, \hat{g}) + \chi_{\neg G} \cdot (f, g) \right)$