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Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?
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Motivation Expectations

Expectations

Unbounded and Bounded Expectations

S = {σ | σ : Vars → R} denotes the set of program states.

The
set of expectations E and the set of bounded expectations E≤1 are

E =
{
f
∣∣ f : S→ R∞≥0

}
E≤1 = {g | g : S→ [0, 1]} .

random variable = expectation 6= expected value
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Operational Semantics for cpGCL

Operational Semantics for cpGCL
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Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given:

P ∈ cpGCL, f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!
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Denotational Semantics Denotational Semantics for pGCL

Denotational Semantics

for (unconditioned) pGCL
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Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P ](f) is called the weakest pre–expectation of
P with respect to post–expectation f , if

EJP K(σ)(f) = Eδσ
(
wp[P ](f)

)

= wp[P ](f)(σ).

For g ∈ E≤1, an expectation wlp[P ](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g, if

wlp[P ](g) = wp[P ](g) + Pr(“P diverges”)
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Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Denotational Semantics for Fully Probabilistic cpGCL
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Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers

Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P ](f, 1) = (f ′, g′).
Furthermore:

cwp[P ](f, g) =
(
wp[P ](f), wlp[P ](g)

)
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Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.

The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1. Intuitively, f
represents the numerator and g represents the denominator above.
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Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp

∼ cwp
wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11



Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11



Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11



Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11



Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp
= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11



Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp
= Nori et al.

wlp

wlp
∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11



Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp
= Nori et al.

wlp

wlp
∼ cwlp

wlp

wp
= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11



Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

A Somewhat Intricate Example

Pdiv = Pandiv =
x := 1; x := 1;
while (x = 1) { while (x = 1) {

x := 1 {x := 1} [1/2] {x := 0};
} observe x = 1

}

cwp of Pdiv and Pandiv yields:

cwp[Pdiv ](f, 1) = (0, 1) cwp[Pandiv ](f, 1) = (0, 0)

“ wp
wp ”[Pdiv ](f) =

0
0 = undef. “ wp

wp ”[Pandiv ](f) =
0
0 = undef.

Pdiv and Pandiv are not semantically equivalent!

Not distinguished by Nori et al.’s semantics!
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Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)

=
wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P ](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.
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Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice.

More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14



Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice. More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14



Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice. More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14



Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice. More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14



Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15



Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
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Conditional Expectation Transformers

Operational Semantics for cpGCL

〈skip, σ〉

0

〈↓, σ〉

f(σ)

〈sink 〉

0

〈abort, σ〉

0

〈sink 〉

0

〈{P} [p] {Q}, σ〉

0

〈P, σ〉
0

〈Q, σ〉
0

. . .

. . .

p

1− p

〈P ; Q, σ〉
0

〈↓; Q, σ′〉
0

〈Q, σ′〉
0

〈↓; Q, σ′′〉

0

〈Q, σ′′〉

0
...

. . .

. . .

〈observe G, σ〉

0

〈↓, σ〉

f(σ)

〈sink 〉

0

〈observe G, σ〉

0

〈6〉

0

〈sink 〉

0
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Conditional Expectation Transformers

Rules for cwp

P cwp[P ](f, g)

x := E (f [x/E], g[x/E])

observeG χG · (f, g)

P1; P2 (cwp[P1] ◦ cwp[P2])(f, g)

if (G) {P1} else {P2} χG · cwp[P1](f, g) + χ¬G · cwp[P2](f, g)

{P1} [p] {P2} p · cwp[P1](f, g) + (1− p) · cwp[P2](f, g)

{P1}2 {P2} — not defined —

while (G) {P ′} µv,w(f̂, ĝ)•
(
χG · cwp[P ′](f̂, ĝ) + χ¬G · (f, g)

)
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