
Conditioning in Probabilistic Programming

MFPS XXXI 2015

Friedrich Gretz Nils Jansen Benjamin Kaminski
Joost-Pieter Katoen Annabelle McIver Federico Olmedo

23.6.2015

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 1

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Syntax of pGCL

Motivation

Syntax of pGCL Programs [McIver & Morgan ’06]

P −→ x := E | if (G) {P} else {P} | {P} [p] {P}
| {P}2 {P} | while (G) {P}

Syntax of cpGCL Programs

P −→ “see pGCL” | observe G

Given a probabilistic program P and a random variable f :
What is the conditional expected value of f after termination
of P given that no observation is violated while executing P ?

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 2

Motivation Expectations

Expectations

Unbounded and Bounded Expectations

S = {σ | σ : Vars → R} denotes the set of program states.

The
set of expectations E and the set of bounded expectations E≤1 are

E =
{
f
∣∣ f : S→ R∞≥0

}
E≤1 = {g | g : S→ [0, 1]} .

random variable = expectation 6= expected value

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 3

Motivation Expectations

Expectations

Unbounded and Bounded Expectations

S = {σ | σ : Vars → R} denotes the set of program states. The
set of expectations E and the set of bounded expectations E≤1 are

E =
{
f
∣∣ f : S→ R∞≥0

}
E≤1 = {g | g : S→ [0, 1]} .

random variable = expectation 6= expected value

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 3

Motivation Expectations

Expectations

Unbounded and Bounded Expectations

S = {σ | σ : Vars → R} denotes the set of program states. The
set of expectations E and the set of bounded expectations E≤1 are

E =
{
f
∣∣ f : S→ R∞≥0

}
E≤1 = {g | g : S→ [0, 1]} .

random variable = expectation

6= expected value

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 3

Motivation Expectations

Expectations

Unbounded and Bounded Expectations

S = {σ | σ : Vars → R} denotes the set of program states. The
set of expectations E and the set of bounded expectations E≤1 are

E =
{
f
∣∣ f : S→ R∞≥0

}
E≤1 = {g | g : S→ [0, 1]} .

random variable = expectation 6= expected value

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 3

Operational Semantics for cpGCL

Operational Semantics for cpGCL

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 4

Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given:

P ∈ cpGCL, f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 5

Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given:

P ∈ cpGCL, f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 5

Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given: P ∈ cpGCL,

f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 5

Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given: P ∈ cpGCL, f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 5

Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given: P ∈ cpGCL, f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 5

Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given: P ∈ cpGCL, f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 5

Operational Semantics for cpGCL

Operational Reward Markov Decision Process (RMDP)

Given: P ∈ cpGCL, f ∈ E.

Construct an operational RMDP à la Gretz et al. and define
conditional expected rewards under a minimizing scheduler.

Schematically such RMDPs look as follows:

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Only terminal states can contribute positive non–zero
reward!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 5

Denotational Semantics Denotational Semantics for pGCL

Denotational Semantics

for (unconditioned) pGCL

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 6

Denotational Semantics Denotational Semantics for pGCL

Denotational Semantics for (unconditioned) pGCL

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 6

Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P](f) is called the weakest pre–expectation of
P with respect to post–expectation f , if

EJP K(σ)(f) = Eδσ
(
wp[P](f)

)

= wp[P](f)(σ).

For g ∈ E≤1, an expectation wlp[P](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g, if

wlp[P](g) = wp[P](g) + Pr(“P diverges”)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 7

Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P](f) is called the weakest pre–expectation of
P with respect to post–expectation f , if

EJP K(σ)(f) = Eδσ
(
wp[P](f)

)

= wp[P](f)(σ).

For g ∈ E≤1, an expectation wlp[P](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g, if

wlp[P](g) = wp[P](g) + Pr(“P diverges”)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 7

Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P](f) is called the weakest pre–expectation of
P with respect to post–expectation f

, if

EJP K(σ)(f) = Eδσ
(
wp[P](f)

)

= wp[P](f)(σ).

For g ∈ E≤1, an expectation wlp[P](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g, if

wlp[P](g) = wp[P](g) + Pr(“P diverges”)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 7

Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P](f) is called the weakest pre–expectation of
P with respect to post–expectation f , if

EJP K(σ)(f) = Eδσ
(
wp[P](f)

)

= wp[P](f)(σ).

For g ∈ E≤1, an expectation wlp[P](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g, if

wlp[P](g) = wp[P](g) + Pr(“P diverges”)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 7

Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P](f) is called the weakest pre–expectation of
P with respect to post–expectation f , if

EJP K(σ)(f) = Eδσ
(
wp[P](f)

)
= wp[P](f)(σ).

For g ∈ E≤1, an expectation wlp[P](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g, if

wlp[P](g) = wp[P](g) + Pr(“P diverges”)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 7

Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P](f) is called the weakest pre–expectation of
P with respect to post–expectation f , if

EJP K(σ)(f) = Eδσ
(
wp[P](f)

)
= wp[P](f)(σ).

For g ∈ E≤1, an expectation wlp[P](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g

, if

wlp[P](g) = wp[P](g) + Pr(“P diverges”)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 7

Denotational Semantics Denotational Semantics for pGCL

Programs as Unconditional Expectation Transformers

Think of a pGCL program P as a state–to–distribution transformer

σ 7→ JP K(σ).

An expectation wp[P](f) is called the weakest pre–expectation of
P with respect to post–expectation f , if

EJP K(σ)(f) = Eδσ
(
wp[P](f)

)
= wp[P](f)(σ).

For g ∈ E≤1, an expectation wlp[P](g) is called the weakest liberal
pre–expectation of P with respect to post–expectation g, if

wlp[P](g) = wp[P](g) + Pr(“P diverges”)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 7

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Denotational Semantics for Fully Probabilistic cpGCL

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 8

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers

Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).

Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Programs as Conditional Expectation Transformers
Let P ∈ cpGCL� (i.e. P contains no non–deterministic choices)
and let f ∈ E.

The conditional weakest pre–expectation of P with respect to
post–expectation f is a pair (f ′, g′), such that

given an initial state σ

f ′(σ)/g′(σ) is the conditional expected value of f

after termination of P on σ

given that no observation is violated while executing P .

We provide a transformer that satisfies cwp[P](f, 1) = (f ′, g′).
Furthermore:

cwp[P](f, g) =
(
wp[P](f), wlp[P](g)

)
Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 9

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.

The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1. Intuitively, f
represents the numerator and g represents the denominator above.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 10

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.

The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1. Intuitively, f
represents the numerator and g represents the denominator above.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 10

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.
The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1. Intuitively, f
represents the numerator and g represents the denominator above.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 10

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.
The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1. Intuitively, f
represents the numerator and g represents the denominator above.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 10

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.
The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1. Intuitively, f
represents the numerator and g represents the denominator above.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 10

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.
The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1.

Intuitively, f
represents the numerator and g represents the denominator above.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 10

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

Conditional Expectations

Let G be some event and χG be the characteristic function of G.
The conditional expected value of a random variable r given event
G is then given by

E(r · χG)
Pr(G)

=
E(r · χG)
E(χG)

.

Conditional Expectations

A conditional expectation is a pair (f, g) ∈ E× E≤1. Intuitively, f
represents the numerator and g represents the denominator above.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 10

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp

∼ cwp
wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp

= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp
= Nori et al.

wlp

wlp

∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp
= Nori et al.

wlp

wlp
∼ cwlp

wlp

wp

= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

The Four Possibilities

wp

wlp
∼ cwp

wp

wp
= Nori et al.

wlp

wlp
∼ cwlp

wlp

wp
= bogus

〈init〉 ↓

〈6〉

〈sink 〉

diverge

↓
↓ ↓
↓ ↓

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 11

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

A Somewhat Intricate Example

Pdiv = Pandiv =
x := 1; x := 1;
while (x = 1) { while (x = 1) {

x := 1 {x := 1} [1/2] {x := 0};
} observe x = 1

}

cwp of Pdiv and Pandiv yields:

cwp[Pdiv](f, 1) = (0, 1) cwp[Pandiv](f, 1) = (0, 0)

“ wp
wp ”[Pdiv](f) =

0
0 = undef. “ wp

wp ”[Pandiv](f) =
0
0 = undef.

Pdiv and Pandiv are not semantically equivalent!

Not distinguished by Nori et al.’s semantics!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 12

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

A Somewhat Intricate Example

Pdiv = Pandiv =
x := 1; x := 1;
while (x = 1) { while (x = 1) {

x := 1 {x := 1} [1/2] {x := 0};
} observe x = 1

}

cwp of Pdiv and Pandiv yields:

cwp[Pdiv](f, 1) = (0, 1) cwp[Pandiv](f, 1) = (0, 0)

“ wp
wp ”[Pdiv](f) =

0
0 = undef. “ wp

wp ”[Pandiv](f) =
0
0 = undef.

Pdiv and Pandiv are not semantically equivalent!

Not distinguished by Nori et al.’s semantics!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 12

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

A Somewhat Intricate Example

Pdiv = Pandiv =
x := 1; x := 1;
while (x = 1) { while (x = 1) {

x := 1 {x := 1} [1/2] {x := 0};
} observe x = 1

}

cwp of Pdiv and Pandiv yields:

cwp[Pdiv](f, 1) = (0, 1) cwp[Pandiv](f, 1) = (0, 0)

“ wp
wp ”[Pdiv](f) =

0
0 = undef. “ wp

wp ”[Pandiv](f) =
0
0 = undef.

Pdiv and Pandiv are not semantically equivalent!

Not distinguished by Nori et al.’s semantics!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 12

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

A Somewhat Intricate Example

Pdiv = Pandiv =
x := 1; x := 1;
while (x = 1) { while (x = 1) {

x := 1 {x := 1} [1/2] {x := 0};
} observe x = 1

}

cwp of Pdiv and Pandiv yields:

cwp[Pdiv](f, 1) = (0, 1) cwp[Pandiv](f, 1) = (0, 0)

“ wp
wp ”[Pdiv](f) =

0
0 = undef. “ wp

wp ”[Pandiv](f) =
0
0 = undef.

Pdiv and Pandiv are not semantically equivalent!

Not distinguished by Nori et al.’s semantics!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 12

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

A Somewhat Intricate Example

Pdiv = Pandiv =
x := 1; x := 1;
while (x = 1) { while (x = 1) {

x := 1 {x := 1} [1/2] {x := 0};
} observe x = 1

}

cwp of Pdiv and Pandiv yields:

cwp[Pdiv](f, 1) = (0, 1) cwp[Pandiv](f, 1) = (0, 0)

“ wp
wp ”[Pdiv](f) =

0
0 = undef. “ wp

wp ”[Pandiv](f) =
0
0 = undef.

Pdiv and Pandiv are not semantically equivalent!

Not distinguished by Nori et al.’s semantics!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 12

Denotational Semantics Denotational Semantics for Fully Probabilistic cpGCL

A Somewhat Intricate Example

Pdiv = Pandiv =
x := 1; x := 1;
while (x = 1) { while (x = 1) {

x := 1 {x := 1} [1/2] {x := 0};
} observe x = 1

}

cwp of Pdiv and Pandiv yields:

cwp[Pdiv](f, 1) = (0, 1) cwp[Pandiv](f, 1) = (0, 0)

“ wp
wp ”[Pdiv](f) =

0
0 = undef. “ wp

wp ”[Pandiv](f) =
0
0 = undef.

Pdiv and Pandiv are not semantically equivalent!

Not distinguished by Nori et al.’s semantics!

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 12

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)

=
wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations),

f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)

=
wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S

and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)

=
wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1).

Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)

=
wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)

=
wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)
=

wp[Q](f)

wlp[Q](1)

6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)
=

wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)
=

wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)
=

wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�,

f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)
=

wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S

and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)
=

wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).

Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Backward Compatibility and Correspondence

Theorem: cwp is “Backward Compatible”

Let Q ∈ pGCL (i.e. Q contains no observations), f ∈ E, σ ∈ S and
(f ′, g′) = cwp[Q](f, 1). Then

wp[Q](f)(σ) =
f ′(σ)

g′(σ)
=

wp[Q](f)

wlp[Q](1)
6= wp[Q](f)

wp[Q](1)

Theorem: Correspondence Theorem

Let P ∈ cpGCL�, f ∈ E, σ ∈ S and (f ′, g′) = cwp[P](f, 1).
Then f ′(σ)/g′(σ) corresponds to the conditional expected reward of
the operational RMDP.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 13

Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice.

More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14

Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice. More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14

Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice. More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14

Results on cwp Failure to Add Non–Determinism

A Mild Assumption

The non–deterministic choice {P1}2 {P2} is an implementation
choice. More formally: If it holds that

cwp
[
{P1}2 {P2}

]
= cwp[P1]

then it should also hold that

cwp
[
{{P1}2 {P2}} [p] {P3}

]
= cwp

[
{P1} [p] {P3}

]
.

Theorem: Adding Non–Determinism to cwp

Under this mild assumption, it is not possible to extend the rules
for cwp by a rule for non–deterministic choice.

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 14

Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15

Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15

Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15

Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15

Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15

Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15

Conditional Expectation Transformers

Conclusion

We introduce operational semantics à la Gretz et al. for
probabilistic programs with conditioning.

We introduce a reasonable, backward compatible denotational
semantics à la McIver & Morgan.

We prove that operational and denotational semantics
coincide for the fully probabilistic fragment of cpGCL.

We prove that cwp cannot be extended to non–deterministic
choice.

We can use cwp to prove the correctness of several program
transformations.

Thank you for your attention! :-)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 15

Conditional Expectation Transformers

Operational Semantics for cpGCL

〈skip, σ〉

0

〈↓, σ〉

f(σ)

〈sink 〉

0

〈abort, σ〉

0

〈sink 〉

0

〈{P} [p] {Q}, σ〉

0

〈P, σ〉
0

〈Q, σ〉
0

. . .

. . .

p

1− p

〈P ; Q, σ〉
0

〈↓; Q, σ′〉
0

〈Q, σ′〉
0

〈↓; Q, σ′′〉

0

〈Q, σ′′〉

0
...

. . .

. . .

〈observe G, σ〉

0

〈↓, σ〉

f(σ)

〈sink 〉

0

〈observe G, σ〉

0

〈6〉

0

〈sink 〉

0

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 16

Conditional Expectation Transformers

Rules for cwp

P cwp[P](f, g)

x := E (f [x/E], g[x/E])

observeG χG · (f, g)

P1; P2 (cwp[P1] ◦ cwp[P2])(f, g)

if (G) {P1} else {P2} χG · cwp[P1](f, g) + χ¬G · cwp[P2](f, g)

{P1} [p] {P2} p · cwp[P1](f, g) + (1− p) · cwp[P2](f, g)

{P1}2 {P2} — not defined —

while (G) {P ′} µv,w(f̂, ĝ)•
(
χG · cwp[P ′](f̂, ĝ) + χ¬G · (f, g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 17

Conditional Expectation Transformers

Rules for cwp

P cwp[P](f, g)

x := E (f [x/E], g[x/E])

observeG χG · (f, g)

P1; P2 (cwp[P1] ◦ cwp[P2])(f, g)

if (G) {P1} else {P2} χG · cwp[P1](f, g) + χ¬G · cwp[P2](f, g)

{P1} [p] {P2} p · cwp[P1](f, g) + (1− p) · cwp[P2](f, g)

{P1}2 {P2} — not defined —

while (G) {P ′} µv,w(f̂, ĝ)•
(
χG · cwp[P ′](f̂, ĝ) + χ¬G · (f, g)

)

Benjamin Kaminski Conditioning in Probabilistic Programming 23.6.2015 17

	Motivation
	Syntax of pGCL
	Expectations

	Operational Semantics for cpGCL
	Denotational Semantics
	Denotational Semantics for pGCL
	Denotational Semantics for Fully Probabilistic cpGCL

	Results on cwp
	Backward Compatibility and Correspondence
	Failure to Add Non–Determinism

	Conditional Expectation Transformers

