Approximate Relational Reasoning for Probabilistic Programs

> PhD Candidate: Federico Olmedo Supervisor: Gilles Barthe

IMDEA Software Institute

PhD Examination – Technical University of Madrid January 9, 2014

Scenario: 2 new rehab. centers to be opened; 4 feasible locations. **Goal:** select locations that minimize average patient commute time.

Scenario: 2 new rehab. centers to be opened; 4 feasible locations. **Goal:** select locations that minimize average patient commute time.

Scenario: 2 new rehab. centers to be opened; 4 feasible locations. **Goal:** select locations that minimize average patient commute time.

Scenario: 2 new rehab. centers to be opened; 4 feasible locations. **Goal:** select locations that minimize average patient commute time.

Scenario: 2 new rehab. centers to be opened; 4 feasible locations. **Goal:** select locations that minimize average patient commute time.

Optimum Solution Approach:

Highest utility.

Leakage of sensitive information.

DIFFERENTIAL PRIVACY (DP) [Dwork+, ICALP '06]

- Privacy realization
 - Basic mechanisms for numeric/discrete-valued computations.
 - Composition theorems.

Differentially Private Location Selection

Verifying Differential Privacy

Dynamic verification:

- PINQ [McSherry '09]
- AIRAVAT [Roy+ '10]

Static verification:

- Fuzz [Reed & Pierce '10] and DFuzz [Gaboardi+ '13]
- [Chaudhuri+ '11]

Limitations of theses techniques:

- Only programs that are combinations of basic mechanisms.
- Only standard differential privacy.
- Fixed set of domains and/or operations.

In this Dissertation

Our Goal

Verify differential privacy properties of probabilistic programs.

We want our technique to

- Circumvent limitations of existing techniques.
- Provide strong evidence of correctness.
- Be extensible to reason about other quantitative properties of probabilistic programs.

- 2 Verification of Differential Privacy
- Extensions of our Technique

Summary and Conclusions

2 Verification of Differential Privacy

3 Extensions of our Technique

Summary and Conclusions

A randomized mechanism *K* is *e*-differentially private iff for all databases d_1 and d_2 , and all events *A*,

 $\Delta(d_1, d_2) \le 1 \implies \Pr[K(d_1) \in A] \le e^{\epsilon} \Pr[K(d_2) \in A]$

A randomized mechanism *K* is *e*-differentially private iff for all databases d_1 and d_2 , and all events *A*,

 $\Delta(d_1, d_2) \le 1 \implies \Pr[K(d_1) \in A] \le e^{\epsilon} \Pr[K(d_2) \in A]$

A randomized mechanism *K* is (ϵ , δ)-differentially private iff for all databases d_1 and d_2 , and all events *A*,

$$\Delta(d_1, d_2) \le 1 \implies \Pr[K(d_1) \in A] \le e^{\varepsilon} \Pr[K(d_2) \in A] + \delta$$

Differential Privacy – Fundamentals

• Basic mechanism for numeric queries.

$$\underbrace{\epsilon\text{-DP}}_{d} \xleftarrow{f(d)}_{-f(d) + \odot \rightarrow}$$

• Composition theorem.

Differential privacy is a quantitative 2-safety property:

 $\Delta(d_1, d_2) \leq 1 \implies \forall A \cdot \Pr[K(d_1) \in A] \leq e^{\epsilon} \Pr[K(d_2) \in A] + \delta$

Differential privacy is a quantitative 2-safety property:

 $\Delta(d_1, d_2) \leq 1 \implies \forall A \cdot \Pr[K(d_1) \in A] \leq e^{\epsilon} \Pr[K(d_2) \in A] + \delta$

relational pre-condition

Differential privacy is a quantitative 2-safety property:

 $\Delta(d_1, d_2) \leq 1 \implies \forall A \cdot \Pr[K(d_1) \in A] \leq e^{\epsilon} \Pr[K(d_2) \in A] + \delta$

relational pre-condition quantitative relational post-condition

Differential privacy is a **quantitative 2-safety property**:

 $\Delta(d_1, d_2) \leq 1 \implies \forall A \cdot \Pr[K(d_1) \in A] \leq e^{\epsilon} \Pr[K(d_2) \in A] + \delta$

relational pre-condition quantitative relational post-condition

We propose a quantitative probabilistic relational Hoare logic

 $\{\Psi\} c_1 \sim_{\alpha,\delta} c_2 \{\Phi\}$

such that a program *c* is (ϵ, δ) -DP iff

Relational Program Reasoning

Standard Hoare Logic

 $\models \{\Psi\} c \{\Phi\}$ $(m) \quad \Psi(m)$ $(c) \quad (m') \quad \Phi(m')$

Relational Program Reasoning

Relational Hoare Logic

 $\models \{\Psi\} c_1 \sim c_2 \{\Phi\}$

Our Goal			
c is (ϵ, δ) -DP	iff	$\{\simeq\} \ c \sim_{e^e, \delta} \ c \ \{\equiv\}$	

To achieve so we rely on a lifting operation and a distance measure.

Our Goalc is (ϵ, δ) -DPiff $\{\simeq\} c \sim_{e^{\epsilon}, \delta} c \{\equiv\}$

To achieve so we rely on a lifting operation and a distance measure.

$$\mathcal{L}^{\delta}_{\alpha}(\cdot) \qquad \Delta_{\alpha}(\cdot, \cdot) \qquad \alpha \ge 1, \delta \ge 0$$
$$\mathcal{P}(A \times B) \to \mathcal{P}(\mathcal{D}_{A} \times \mathcal{D}_{B}) \qquad \mathcal{D}_{A} \times \mathcal{D}_{A} \to \mathbb{R}^{\ge 0}$$

Our Goal		
c is (ϵ, δ) -DP	iff	$\{\simeq\} \ c \ \sim_{e^c, \delta} \ c \ \{\equiv\}$

To achieve so we rely on a lifting operation and a distance measure.

 $\begin{array}{cc} \mathcal{L}^{\delta}_{\alpha}(\cdot) & \Delta_{\alpha}\left(\cdot,\cdot\right) & \alpha \geq 1, \delta \geq 0 \\ \mathcal{P}\left(A \times B\right) \to \mathcal{P}\left(\mathcal{D}_{A} \times \mathcal{D}_{B}\right) & \mathcal{D}_{A} \times \mathcal{D}_{A} \to \mathbb{R}^{\geq 0} \end{array}$

• Judgment { Ψ } $c_1 \sim_{\alpha,\delta} c_2$ { Φ } is interpreted as $m_1 \Psi m_2 \implies (\llbracket c_1 \rrbracket m_1) \mathcal{L}^{\delta}_{\alpha}(\Phi) (\llbracket c_2 \rrbracket m_2)$

Our Goal			
c is (ϵ, δ) -DP	iff	$\{\simeq\} \ c \ \sim_{e^e,\delta} \ c \ \{\equiv\}$	

To achieve so we rely on a lifting operation and a distance measure.

 $\begin{aligned} \mathcal{L}^{\delta}_{\alpha}(\cdot) & \Delta_{\alpha}\left(\cdot,\cdot\right) & \alpha \geq 1, \delta \geq 0 \\ \mathcal{P}\left(A \times B\right) \to \mathcal{P}\left(\mathcal{D}_{A} \times \mathcal{D}_{B}\right) & \mathcal{D}_{A} \times \mathcal{D}_{A} \to \mathbb{R}^{\geq 0} \end{aligned}$

• Judgment { Ψ } $c_1 \sim_{\alpha,\delta} c_2$ { Φ } is interpreted as $m_1 \Psi m_2 \implies (\llbracket c_1 \rrbracket m_1) \mathcal{L}^{\delta}_{\alpha}(\Phi) (\llbracket c_2 \rrbracket m_2)$

• c is (ϵ, δ) -DP iff for all memories m_1 and m_2 ,

 $m_1 \simeq m_2 \implies \forall A \cdot \Pr[c(m_1) \in A] \le e^{\epsilon} \Pr[c(m_2) \in A] + \delta$

Our Goal		
c is (ϵ, δ) -DP	iff	$\{\simeq\} \ c \ \sim_{e^c, \delta} \ c \ \{\equiv\}$

To achieve so we rely on a lifting operation and a distance measure.

 $\begin{array}{cc} \mathcal{L}^{\delta}_{\alpha}(\cdot) & \Delta_{\alpha}\left(\cdot,\cdot\right) & \alpha \geq 1, \delta \geq 0 \\ \mathcal{P}\left(A \times B\right) \to \mathcal{P}\left(\mathcal{D}_{A} \times \mathcal{D}_{B}\right) & \mathcal{D}_{A} \times \mathcal{D}_{A} \to \mathbb{R}^{\geq 0} \end{array}$

• Judgment { Ψ } $c_1 \sim_{\alpha,\delta} c_2$ { Φ } is interpreted as $m_1 \Psi m_2 \implies (\llbracket c_1 \rrbracket m_1) \mathcal{L}^{\delta}_{\alpha}(\Phi) (\llbracket c_2 \rrbracket m_2)$

• c is (ϵ, δ) -DP iff for all memories m_1 and m_2 ,

 $m_1 \simeq m_2 \implies \Delta_{e^{\epsilon}} \left(\llbracket c \rrbracket m_1, \llbracket c \rrbracket m_2 \right) \le \delta$

Our Goal		
c is (ϵ, δ) -DP	iff	$\{\simeq\} \ c \ \sim_{e^e, \delta} \ c \ \{\equiv\}$

To achieve so we rely on a lifting operation and a distance measure.

$$\mathcal{L}^{\delta}_{\alpha}(\cdot) \qquad \qquad \Delta_{\alpha}(\cdot, \cdot) \qquad \alpha \ge 1, \delta \ge 0$$
$$\mathcal{P}(A \times B) \to \mathcal{P}(\mathcal{D}_{A} \times \mathcal{D}_{B}) \qquad \mathcal{D}_{A} \times \mathcal{D}_{A} \to \mathbb{R}^{\ge 0}$$

• Judgment {
$$\simeq$$
} $c \sim_{e^e, \delta} c$ { \equiv } is interpreted as
 $m_1 \simeq m_2 \implies (\llbracket c \rrbracket m_1) \mathcal{L}_{e^e}^{\delta} (\equiv) (\llbracket c \rrbracket m_2)$

• *c* is (ϵ, δ) -DP iff for all memories m_1 and m_2 ,

$$m_1 \simeq m_2 \implies \Delta_{e^{\epsilon}} \left(\llbracket c \rrbracket m_1, \llbracket c \rrbracket m_2 \right) \le \delta$$

Our Goal		
c is (ϵ, δ) -DP	iff	$\{\simeq\} \ c \ \sim_{e^e, \delta} \ c \ \{\equiv\}$

To achieve so we rely on a lifting operation and a distance measure.

$$\begin{aligned} \mathcal{L}^{\delta}_{\alpha}(\cdot) & \Delta_{\alpha}(\cdot, \cdot) & \alpha \geq 1, \delta \geq 0 \\ \mathcal{P}(A \times B) \to \mathcal{P}(\mathcal{D}_{A} \times \mathcal{D}_{B}) & \mathcal{D}_{A} \times \mathcal{D}_{A} \to \mathbb{R}^{\geq 0} \end{aligned}$$

$$m_1 \simeq m_2 \implies \Delta_{e^{\epsilon}} \left(\llbracket c \rrbracket m_1, \llbracket c \rrbracket m_2 \right) \le \delta$$

Characterizing Differential Privacy - Cont'd

• Definition of the α -distance is straightforward.

$$\Delta_{\alpha}\left(\mu_{1},\mu_{2}\right) \triangleq \max_{A} \Pr\left[\mu_{1} \in A\right] - \alpha \Pr\left[\mu_{2} \in A\right]$$

Definition of the (α, δ)-lifting is somewhat intricate (in the general case),

... but simpler characterization for equiv. relations.

The Programming Language

nop sequence assignment random sampling conditional while loop procedure call

The Proof System

Weakening

-

$$\models \{\Psi'\} c_1 \sim_{\alpha',\delta'} c_2 \{\Phi'\}$$

$$\Psi \Rightarrow \Psi' \quad \Phi' \Rightarrow \Phi \quad \alpha' \le \alpha \quad \delta' \le \delta$$

$$\models \{\Psi\} c_1 \sim_{\alpha,\delta} c_2 \{\Phi\}$$

The Proof System

Weakening

$$\models \{\Psi'\} c_1 \sim_{\alpha',\delta'} c_2 \{\Phi'\}$$

$$\Psi \Rightarrow \Psi' \quad \Phi' \Rightarrow \Phi \quad \alpha' \le \alpha \quad \delta' \le \delta$$

$$\models \{\Psi\} c_1 \sim_{\alpha,\delta} c_2 \{\Phi\}$$

Sequential composition

$$\frac{\models \{\Psi\} c_1 \sim_{\alpha_1,\delta_1} c_2 \{\Phi'\} \models \{\Phi'\} c'_1 \sim_{\alpha_2,\delta_2} c'_2 \{\Phi\}}{\models \{\Psi\} c_1; c'_1 \sim_{\alpha_1,\alpha_2,\delta_1+\delta_2} c_2; c'_2 \{\Phi\}}$$

The Proof System – Cont'd

Laplacian mechanism

Output perturbation makes numerical queries ϵ *-DP*

The Proof System – Cont'd

Laplacian mechanism

Output perturbation makes numerical queries ϵ *-DP*

$$\begin{array}{c} \underbrace{m_1 \, \Psi \, m_2 \implies |\llbracket r \rrbracket \, m_1 - \llbracket r \rrbracket \, m_2| \leq k } \\ \models \{\Psi\} \, x \xleftarrow{\hspace{0.5mm} {\scriptstyle {\scriptstyle \leftarrow}}} \, \mathcal{L}(r, {\hspace{0.5mm} {\scriptstyle k}/ \hspace{-0.5mm} {\scriptstyle \leftarrow}}) \, \sim_{e^e, 0} x \xleftarrow{\hspace{0.5mm} {\scriptstyle {\scriptstyle \leftarrow}}} \, \mathcal{L}(r, {\hspace{0.5mm} {\scriptstyle k}/ \hspace{-0.5mm} {\scriptstyle \leftarrow}}) \, \{x \langle 1 \rangle = x \langle 2 \rangle\} \end{array}$$

Machine-Checked Proofs of Differential Privacy

CERTIPRIV: framework proving interactive support for the logic built on top of the Coq proof assistant.

- Delivers machine-checked proofs of differential privacy.
- Built as an extension of CERTICRYPT.
 - α-distance + (α, δ)-lifting + logic soundness (+6.500 lines of Coq proof-script)
- Several case studies:
 - Laplacian, Exponential and Gaussian basic mechanisms.
 - k-Median, Minimum Vertex Cover, streaming algorithm.

Case Study: k-Median Problem

```
function \kappaMedian(C, F_0)
```

```
i \leftarrow 0;
while i < T do
(x, y) \Leftrightarrow pick-swap(F_i \times \overline{F_i});
F_{i+1} \leftarrow (F_i \setminus \{x\}) \cup \{y\};
i \leftarrow i + 1
end;
j \Leftrightarrow pick-solution([1, ..., T], F);
return F_i
```

 $C\langle 1 \rangle \simeq C\langle 2 \rangle \wedge F_0\langle 1 \rangle = F_0\langle 2 \rangle$

Differential privacy is captured by judgment

 $\{\Psi\}$ kMedian $\sim_{\alpha,0}$ kMedian $\{\Phi\}$

 $\rho^{2\epsilon\Delta(T+1)}$

 $F_i \langle 1 \rangle = F_i \langle 2 \rangle$

Judgment + Verification of derivation + side conditions ≈ 450 lines proof-script

Verifying Differential Privacy – Summary

- Program logic for reasoning about DP.
- Framework for building machined-checked proofs of DP

With G. Barthe, B. Köpf and S. Zanella Béguelin [POPL '12] [TOPLAS '13]

Our Goal

Verify differential privacy properties of probabilistic programs.

We want our technique to

- Provides strong evidence of correctness. \checkmark
- Circumvent limitations of existing techniques. \checkmark
- Be extensible to reason about other quantitative properties of probabilistic programs.

Verification of Differential Privacy

Scope of our Approach

Differential privacy is a **quantitative relational property** of probabilistic programs:

 $m_1 \Psi m_2 \implies \Delta\left(\llbracket c_1 \rrbracket m_1, \llbracket c_2 \rrbracket m_2\right) \le \delta$

But it is not the only one!

- Indifferentiability
- Zero Knowledge
- Pseudo-randomness
- ...

Can we use our logic as it is to reason about these properties as well? NO. They use distance measures different from the α -distance.

Extending our Logic

Our logic is extensible to the class of *f*-divergences.

The class of *f*-divergences comprises well-know examples of distance measures and finds applications in multiple areas:

Extending our Logic

Our logic is extensible to the class of *f*-divergences.

With G. Barthe [ICALP '13]

The class of *f*-divergences comprises well-know examples of distance measures and finds applications in multiple areas:

Our Goal

Verify differential privacy properties of probabilistic programs.

We want our technique to

- Provides strong evidence of correctness. \checkmark
- Circumvent limitations of existing technique. \checkmark
- $\bullet\,$ Be extensible to reason about other quantitative properties of probabilistic programs. $\checkmark\,$

What else is in the dissertation?

Crypto Case Study: Secure Hash Functions into Elliptic Curves [Brier+ '10]

Security is captured by formula

$$\forall \mathcal{D} \cdot \Delta_{\mathsf{SD}} \left(\mathcal{D}^{H,h}, \mathcal{D}^{\mathcal{R}O,S} \right) \leq \epsilon$$

Our machine-checked proof

- Approximate observational equivalence (specialization of our Hoare logic) + adversary rule.
- Requires heavy algebraic reasoning (elliptic curves and group theory).
- 10.000+ lines of Coq proof-script.

With G. Barthe, B. Grégoire, S. Heraud, S. Zanella [POST '12, JCS '14]

Conclusions

Summary of contributions

- Quantitative relational Hoare logic for approximate reasoning about probabilistic programs.
- Framework for building machined-checked proofs of differential privacy (and other quantitative properties).
- Verification of several constructions from the recent literature.

Future work

- Improve automation (e.g. inference of loop invariants).
- Lipschitz continuity of probabilistic programs.
- Combination of different techniques.

The (α, δ) -lifting

Witness distributions in $\mathcal{D}_{A \times B}$ $\mu_1 \mathcal{L}^{\delta}_{\alpha}(R) \mu_2 \triangleq \exists \mu_L, \mu_R \cdot \begin{cases} \Delta_{\alpha} (\mu_L, \mu_R) \leq \delta \\ \pi_1(\mu_L) = \mu_1 \land \pi_2(\mu_R) = \mu_2 \\ supp (\mu_L) \subseteq R \land supp (\mu_R) \subseteq R \end{cases}$

- Admits an inductive characterization.
- For equivalence relations, it can be characterized as a closeness condition.

$$\mu_1 \mathcal{L}^{\delta}_{\alpha}(R) \, \mu_2 \iff \Delta_{\alpha} \left(\mu_1/R, \mu_2/R \right) \leq \delta$$

• For finite relations, it can be modeled as network-flow problem.

Generalized Data Processing Theorem

For any distribution transformer $h : \mathcal{D}_A \to \mathcal{D}_B$

 $\Delta_f(h(\mu_1), h(\mu_2)) \leq \Delta_f(\mu_1, \mu_2)$

$$\frac{\forall m_1, m_2 \cdot m_1 \Psi m_2 \implies (m_1 \{\llbracket e_1 \rrbracket m_1/x_1\}) \Phi (m_2 \{\llbracket e_2 \rrbracket m_2/x_2\})}{\vdash \{\Psi\} x_1 \leftarrow e_1 \sim_{f,0} x_2 \leftarrow e_2 \{\Phi\}} \text{[assn]}$$

$$\frac{\forall m_1, m_2 \cdot m_1 \Psi m_2 \implies \Delta_f (\llbracket \mu_1 \rrbracket m_1, \llbracket \mu_2 \rrbracket m_2) \leq \delta}{\vdash \{\Psi\} x_1 \notin \mu_1 \sim_{f,\delta} x_2 \notin \mu_2 \{x_1(1) = x_2(2)\}} \text{[rand]}$$

$$\frac{\Psi \implies b\langle 1 \rangle \equiv b'\langle 2 \rangle}{\vdash \{\Psi \land b\langle 1 \rangle\} c_1 \sim_{f,\delta} c'_1 \{\Phi\} \qquad \vdash \{\Psi \land \neg b\langle 1 \rangle\} c_2 \sim_{f,\delta} c'_2 \{\Phi\}} \text{[cond]}$$

$$\frac{(f_1, \dots, f_n) \text{ composable and monotonic}}{\oplus \triangleq b\langle 1 \rangle \equiv b'\langle 2 \rangle \qquad \Psi \land e\langle 1 \rangle \leq 0 \implies \neg b\langle 1 \rangle} \text{[cond]}$$

$$\frac{(f_1, \dots, f_n) \text{ composable and monotonic}}{\oplus \triangleq b\langle 1 \rangle \equiv b'\langle 2 \rangle \land e\langle 1 \rangle \equiv k \} c \sim_{f,\delta} c' \{\Psi \land \Theta \land e\langle 1 \rangle < k\}} \text{[while]}$$

$$\frac{1}{\vdash \{\Psi\} \operatorname{skip} \sim_{f,0} \operatorname{skip}\{\Psi\}} [\operatorname{skip}] \quad \frac{\vdash \{\Psi\} c_1 \sim_{f_i,\delta_1} c_2 \langle\Psi\} \vdash \{\Phi\} c_1' \sim_{f_2,\delta_2} c_2' \langle\Phi\}}{\vdash \{\Psi\} c_1; c_1' \sim_{f_3,\delta_1+\delta_2} c_2; c_2' \langle\Phi\}} [\operatorname{seq}]$$

$$\vdash \{\Psi \land \Theta\} c_1 \sim_{f,\delta} c_2 \langle\Phi\} \\ \vdash \{\Psi \land \neg\Theta\} c_1 \sim_{f,\delta} c_2 \langle\Phi\} [\operatorname{case}] \quad \frac{\vdash \{\Psi'\} c_1 \sim_{f',\delta'} c_2 \langle\Phi'\}}{\vdash \{\Psi\} c_1 \sim_{f,\delta} c_2 \langle\Phi\}} [\operatorname{weak}]$$

- You need to:
 - trust the type checker of Coq;
 - trust the language semantics;
 - make sure the security statement (a few lines in Coq) is as expected.
- You don't need to
 - understand or even read the proof;
 - trust program logics,

Case Study: *k*-Median Problem

Problem's solution may leak the presence/absence of clients

Assume k = 2

Solution = $\{f_2, f_3\} \implies$ World 1 Solution = $\{f_1, f_2\} \implies$ World 2

Case Study: *k*-Median Problem

 $2\epsilon\Delta(T+1)$ -DP

In our formalism,

f-divergences in Crypto

Improving security bounds for *Key-Alternating Cipher* via Hellinger Distance.

f-divergences

The *f*-divergence between two distributions μ_1 and μ_2 over a set *A* is defined as

$$\Delta_f(\mu_1,\mu_2) \triangleq \sum_{a \in A} \mu_2(a) f\left(\frac{\mu_1(a)}{\mu_2(a)}\right)$$

where $f : \mathbb{R}^{\geq 0} \to \mathbb{R}$ is a continuous convex function s.t. f(1) = 0.

Some examples

- Statistical distance (Δ_{SD})
- Kullback-Leibler (Δ_{KL})
- Hellinger distance (Δ_{HD})
- α -distance (Δ_{α})

$$f(t) = \frac{1}{2} |t - 1|$$

$$f(t) = t \ln(t)$$

$$f(t) = \frac{1}{2} (\sqrt{t} - 1)^2$$

$$f(t) = \max\{t - \alpha, 0\}$$

Indifferentiability

F with access to a RO *h* is (t_S, q, ϵ) -indifferentiable from a RO H if

 $\exists S$ that runs in time t_S , $\forall D$ that makes at most q queries,

$$\Pr\left[b \leftarrow \mathcal{D}^{F,h} : b = 1\right] - \Pr\left[b \leftarrow \mathcal{D}^{H,S} : b = 1\right] \le \epsilon$$

Indifferentiability

F with access to a RO *h* is (t_S, q, ϵ) -indifferentiable from a RO H if

 $\exists S$ that runs in time t_S , $\forall D$ that makes at most q queries,

 $\left| \Pr\left[b \leftarrow \mathcal{D}^{\textit{F}, h} : b = 1 \right] - \Pr\left[b \leftarrow \mathcal{D}^{\textit{H}, \textit{S}} : b = 1 \right] \right| \leq \epsilon$

In **any** secure cryptosystem, a random oracle *H* can be replaced with the construction *F*, which uses a random oracle *h*

Indifferentiability

F with access to a RO *h* is (t_S, q, ϵ) -indifferentiable from a RO H if

 $\exists S$ that runs in time t_S , $\forall D$ that makes at most q queries,

 $\left| \Pr\left[b \leftarrow \mathcal{D}^{\textit{F}, h} : b = 1 \right] - \Pr\left[b \leftarrow \mathcal{D}^{\textit{H}, \textit{S}} : b = 1 \right] \right| \leq \epsilon$

In **any** secure cryptosystem, a random oracle *H* into $EC(\mathbb{F}_p)$ can be replaced with the construction *F*, which uses a random oracle *h* into $\mathbb{F}_p \times \mathbb{Z}_N$

Constructing Secure Hash Functions into Elliptic Curves (EC)

Constructing Secure Hash Functions into Elliptic Curves (EC)

Constructing Secure Hash Functions into Elliptic Curves (EC)

Constructing Secure Hash Functions into Elliptic Curves (EC)

Constructing Secure Hash Functions into Elliptic Curves (EC)

Constructing Secure Hash Functions into Elliptic Curves (EC)

- Building blocks of numerous cryptosystems: encryption schemes, signature schemes, etc.
- Their output should "look like" uniformly distributed.

Constructing Secure Hash Functions into Elliptic Curves (EC)

- Building blocks of numerous cryptosystems: encryption schemes, signature schemes, etc.
- Their output should "look like" uniformly distributed.
- Hash functions into elliptic curve allow an efficient implementation of some functionalities.

A Crypto Case Study - Cont'd I

What is an elliptic curve?

Given a finite field \mathbb{F} and two scalars $a, b \in \mathbb{F}$,

 $EC(\mathbb{F}) \triangleq \{(X,Y) \in \mathbb{F} \times \mathbb{F} \mid Y^2 = X^3 + aX + b\}$

A Crypto Case Study – Cont'd I

What is an elliptic curve?

Given a finite field \mathbb{F} and two scalars $a, b \in \mathbb{F}$,

$$EC(\mathbb{F}) \triangleq \{(X, Y) \in \mathbb{F} \times \mathbb{F} \mid Y^2 = X^3 + aX + b\} \cup \{O\}$$

Theorem: the points in $EC(\mathbb{F})$ have a group structure.

A Crypto Case Study – Cont'd I

What is an elliptic curve?

Given a finite field \mathbb{F} and two scalars $a, b \in \mathbb{F}$,

$$EC(\mathbb{F}) \triangleq \{ (X, Y) \in \mathbb{F} \times \mathbb{F} \mid Y^2 = X^3 + aX + b \} \cup \{ O \}$$

Theorem: the points in $EC(\mathbb{F})$ have a group structure.

How to securely hash into an elliptic curve *EC*(**F**)? [Brier+ '10]

$$H(m) = f(h_1(m)) \otimes g^{h_2(m)}$$

: $\mathbb{F} \to EC(\mathbb{F})$: $\mathcal{M} \to \mathbb{F}$: $\mathcal{M} \to [1, ..., N]$

A Crypto Case Study – Cont'd II

Indifferentiability from a Random Oracle

H is called ϵ -indifferentiable from a random oracle iff

$$\forall \mathcal{D} \cdot \Delta_{\mathsf{SD}} \left(\mathcal{D}^{H}, \mathcal{D}^{\mathcal{R}O} \right) \leq \epsilon$$

Machine-checked version of Brier et al's proof

- Equational theory for approximate observational equivalence (specialization of our Hoare logic) + adversary rule.
- Requires heavy algebraic reasoning (elliptic curves and group theory).
- 10.000+ lines of Coq proof-script.

With G. Barthe, B. Grégoire, S. Heraud, S. Zanella [POST '12, JCS '14]