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Selecting Locations for Rehabilitation Centers

Home
Feasible location
for rehab. centers

Home hosting pa-
tients in treatment
Feasible location
for rehab. centers
Rehab. center

Scenario: 2 new rehab. centers to be opened; 4 feasible locations.
Goal: select locations that minimize average patient commute time.

Optimum Solution Approach:
Highest utility.

Leakage of sensitive information.
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The Privacy–Utility Conflict

Differential Privacy (DP)
[Dwork+, ICALP ’06]

privacy utility

1 Privacy definition

Selection
Algorithm

2 Privacy realization
Basic mechanisms for numeric/discrete-valued computations.
Composition theorems.
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Differentially Private Location Selection

[Gupta+, SODA’10]

function kMedian(C,F0)
1 i← 0;
2 while i < T do
3 (x, y) $← pick−swap(Fi × Fi);
4 Fi+1 ← (Fi\{x}) ∪ {y};
5 i← i + 1
6 end;
7 j $← pick−solution([1, . . . ,T],F);
8 return F j
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Verifying Differential Privacy

Dynamic verification:

PINQ [McSherry ’09]
Airavat [Roy+ ’10]

Static verification:

Fuzz [Reed & Pierce ’10] and DFuzz [Gaboardi+ ’13]
[Chaudhuri+ ’11]

Limitations of theses techniques:
Only programs that are combinations of basic mechanisms.

Only standard differential privacy.

Fixed set of domains and/or operations.
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In this Dissertation

Our Goal
Verify differential privacy properties of probabilistic programs.

We want our technique to
Circumvent limitations of existing techniques.
Provide strong evidence of correctness.
Be extensible to reason about other quantitative properties of
probabilistic programs.
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Outline

1 Motivation

2 Verification of Differential Privacy

3 Extensions of our Technique

4 Summary and Conclusions
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Differential Privacy – Definition

Mining
Process

Location
Selection

Bounded
ratio

A randomized mechanism K is ε-differentially private iff for all
databases d1 and d2, and all events A,

∆(d1, d2) ≤ 1 =⇒ Pr [K(d1)∈A] ≤ eε Pr [K(d2)∈A]
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Differential Privacy – Definition

Mining
Process

Location
Selection

Bounded
ratio

A randomized mechanism K is (ε, δ)-differentially private iff for all
databases d1 and d2, and all events A,

∆(d1, d2) ≤ 1 =⇒ Pr [K(d1)∈A] ≤ eε Pr [K(d2)∈A] + δ
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Differential Privacy – Fundamentals

Basic mechanism for numeric queries.

d

ε-DP
f (d)

f (d) +©∼

Composition theorem.

ε+ε′-DP

ε-DP

ε′-DP
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Verifying Differential Privacy – Our Approach

Differential privacy is a quantitative 2-safety property:

∆(d1, d2)≤ 1 =⇒ ∀A • Pr [K(d1)∈A] ≤ eε Pr [K(d2)∈A] + δ

We propose a quantitative probabilistic relational Hoare logic

{Ψ} c1 ∼α,δ c2 {Φ}

such that a program c is (ε, δ)-DP iff

{'} c ∼eε,δ c {≡}

database
adjacency

equality on
observable output

10 / 26



Verifying Differential Privacy – Our Approach

Differential privacy is a quantitative 2-safety property:

∆(d1, d2)≤ 1 =⇒ ∀A • Pr [K(d1)∈A] ≤ eε Pr [K(d2)∈A] + δ

relational
pre-condition

We propose a quantitative probabilistic relational Hoare logic

{Ψ} c1 ∼α,δ c2 {Φ}

such that a program c is (ε, δ)-DP iff

{'} c ∼eε,δ c {≡}

database
adjacency

equality on
observable output

10 / 26



Verifying Differential Privacy – Our Approach

Differential privacy is a quantitative 2-safety property:

∆(d1, d2)≤ 1 =⇒ ∀A • Pr [K(d1)∈A] ≤ eε Pr [K(d2)∈A] + δ

relational
pre-condition

quantitative relational
post-condition

We propose a quantitative probabilistic relational Hoare logic

{Ψ} c1 ∼α,δ c2 {Φ}

such that a program c is (ε, δ)-DP iff

{'} c ∼eε,δ c {≡}

database
adjacency

equality on
observable output

10 / 26



Verifying Differential Privacy – Our Approach

Differential privacy is a quantitative 2-safety property:

∆(d1, d2)≤ 1 =⇒ ∀A • Pr [K(d1)∈A] ≤ eε Pr [K(d2)∈A] + δ

relational
pre-condition

quantitative relational
post-condition

We propose a quantitative probabilistic relational Hoare logic

{Ψ} c1 ∼α,δ c2 {Φ}

such that a program c is (ε, δ)-DP iff

{'} c ∼eε,δ c {≡}

database
adjacency

equality on
observable output

10 / 26



Relational Program Reasoning

Standard Hoare Logic

|= {Ψ} c {Φ}

m Ψ(m)

m′ Φ(m′)

~c�

Relational Hoare Logic

|= {Ψ} c1 ∼ c2 {Φ}

m1

m′1

~c1�

m2

m′2

~c2�

Ψ

Φ
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Characterizing Differential Privacy

Our Goal
c is (ε, δ)-DP iff {'} c ∼eε,δ c {≡}

To achieve so we rely on a lifting operation and a distance measure.

L
δ
α(·) ∆α (·, ·) α≥1, δ≥0

P (A×B)→ P (DA×DB) DA ×DA → R≥0

1 Judgment {Ψ} c1 ∼α,δ c2 {Φ} is interpreted as

m1 Ψ m2 =⇒ (~c1�m1)Lδα(Φ) (~c2�m2)

2 The lifting Lδα(≡) of equality is characterized as

µ1 L
δ
α(≡)µ2 ⇐⇒ ∆α

(
µ1, µ2

)
≤ δ

3 c is (ε, δ)-DP iff for all memories m1 and m2,

m1 ' m2 =⇒

∆eε (~c�m1, ~c�m2) ≤ δ
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Characterizing Differential Privacy – Cont’d

Definition of the α-distance is straightforward.

∆α
(
µ1, µ2

)
, max

A
Pr

[
µ1∈A

]
− αPr

[
µ2∈A

]

Definition of the (α, δ)-lifting is somewhat intricate (in the
general case),

. . . but simpler characterization for equiv. relations.
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The Programming Language

C ::= skip nop
| C; C sequence
| V ← E assignment
| V $←D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E, . . . ,E) procedure call

14 / 26



The Proof System

Weakening

|= {Ψ′} c1 ∼α′,δ′ c2 {Φ
′
}

Ψ⇒ Ψ′ Φ′ ⇒ Φ α′ ≤ α δ′ ≤ δ

|= {Ψ} c1 ∼α,δ c2 {Φ}

Sequential composition

|= {Ψ} c1 ∼α1,δ1 c2 {Φ
′
} |= {Φ′} c′1 ∼α2,δ2 c′2 {Φ}

|= {Ψ} c1; c′1 ∼α1α2,δ1+δ2 c2; c′2 {Φ}
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The Proof System – Cont’d

Laplacian mechanism

Output perturbation makes numerical queries ε-DP

ε-DP

f

⊕

Lap
(
∆ f
ε

)

The sensitivity of a numerical query
f : D→ R is defined as:

∆ f , max
d1,d2
d1'd2

| f (d1) − f (d2)|

Lap(λ)
λ = 0.40
λ = 0.65

m1 Ψ m2 =⇒ |~r�m1 − ~r�m2| ≤ k
|= {Ψ} x $← L(r, k/ε) ∼eε,0 x $← L(r, k/ε) {x〈1〉 = x〈2〉}
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Machine-Checked Proofs of Differential Privacy

CertiPriv: framework proving interactive support for the logic built
on top of the Coq proof assistant.

Delivers machine-checked proofs of differential privacy.
Built as an extension of CertiCrypt.

α-distance + (α, δ)-lifting + logic soundness (+6.500 lines of Coq
proof-script)

Several case studies:
Laplacian, Exponential and Gaussian basic mechanisms.
k-Median, Minimum Vertex Cover, streaming algorithm.
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Case Study: k-Median Problem

function kMedian(C,F0)
1 i← 0;
2 while i < T do
3 (x, y) $← pick−swap(Fi × Fi);
4 Fi+1 ← (Fi\{x}) ∪ {y};
5 i← i + 1
6 end;
7 j $← pick−solution([1, . . . ,T],F);
8 return F j

Differential privacy is captured by judgment

{Ψ} kMedian ∼α,0 kMedian {Φ}

C〈1〉'C〈2〉 ∧ F0〈1〉=F0〈2〉 e2ε∆(T+1) F j〈1〉=F j〈2〉

Judgment
derivation +

Verification of
side conditions ≈ 450 lines proof-script
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Verifying Differential Privacy – Summary

Program logic for reasoning about DP.
Framework for building machined-checked proofs of DP

With G. Barthe, B. Köpf and S. Zanella Béguelin
[POPL ’12] [TOPLAS ’13]
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Our Goal
Verify differential privacy properties of probabilistic programs.

We want our technique to
Provides strong evidence of correctness. X
Circumvent limitations of existing techniques. X
Be extensible to reason about other quantitative properties of
probabilistic programs.
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Outline

1 Motivation

2 Verification of Differential Privacy

3 Extensions of our Technique

4 Summary and Conclusions
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Scope of our Approach

Differential privacy is a quantitative relational property of
probabilistic programs:

m1Ψm2 =⇒ ∆ (~c1�m1, ~c2�m2) ≤ δ

But it is not the only one!

Indifferentiability
Zero Knowledge
Pseudo-randomness
. . .

Can we use our logic as it is to reason about these properties as well?

NO. They use distance measures different from the α-distance.
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Extending our Logic

Our logic is extensible to the class of f -divergences.

With G. Barthe [ICALP ’13 ]

The class of f -divergences comprises well-know examples of
distance measures and finds applications in multiple areas:

Statistical distance
Hellinger distance
Relative entropy
α-distance
χ2-distance

Image
Processing

Data
Mining

Pattern
Recognition

Cryptography
Information

Theory
f -divergences
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Our Goal
Verify differential privacy properties of probabilistic programs.

We want our technique to
Provides strong evidence of correctness. X
Circumvent limitations of existing technique. X
Be extensible to reason about other quantitative properties of
probabilistic programs. X
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What else is in the dissertation?

Crypto Case Study: Secure Hash Functions into Elliptic Curves
[Brier+ ’10]

Security is captured by formula

∀D • ∆SD

(
D

H,h,DRO,S
)
≤ ε

Our machine-checked proof

Approximate observational equivalence (specialization of our
Hoare logic) + adversary rule.
Requires heavy algebraic reasoning (elliptic curves and group
theory).
10.000+ lines of Coq proof-script.

With G. Barthe, B. Grégoire, S. Heraud, S. Zanella [POST ’12, JCS
’14]
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Conclusions

Summary of contributions
Quantitative relational Hoare logic for approximate reasoning
about probabilistic programs.
Framework for building machined-checked proofs of differential
privacy (and other quantitative properties).
Verification of several constructions from the recent literature.

Future work
Improve automation (e.g. inference of loop invariants).
Lipschitz continuity of probabilistic programs.
Combination of different techniques.
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The (α, δ)-lifting

µ1 L
δ
α(R)µ2 , ∃µL, µR •


∆α

(
µL, µR

)
≤ δ

π1(µL) = µ1 ∧ π2(µR) = µ2
supp

(
µL

)
⊆ R ∧ supp

(
µR

)
⊆ R

⊆ (A × B)

Witness distributions inDA×B

Admits an inductive characterization.

For equivalence relations, it can be characterized as a closeness
condition.

µ1 L
δ
α(R)µ2 ⇐⇒ ∆α

(
µ1/R, µ2/R

)
≤ δ

For finite relations, it can be modeled as network-flow problem.
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Generalized Data Processing Theorem

For any distribution transformer h : DA →DB

∆ f
(
h(µ1), h(µ2)

)
≤ ∆ f

(
µ1, µ2

)
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∀m1,m2 • m1 Ψ m2 =⇒ (m1 {~e1� m1/x1}) Φ (m2 {~e2� m2/x2})
` {Ψ} x1 ← e1 ∼ f ,0 x2 ← e2 {Φ}

[assn]

∀m1,m2 • m1 Ψ m2 =⇒ ∆ f
(
~µ1� m1, ~µ2� m2

)
≤ δ

` {Ψ} x1 $
← µ1 ∼ f ,δ x2 $

← µ2 {x1〈1〉 = x2〈2〉}
[rand]

Ψ =⇒ b〈1〉 ≡ b′〈2〉
` {Ψ ∧ b〈1〉} c1 ∼ f ,δ c′1 {Φ} ` {Ψ ∧ ¬b〈1〉} c2 ∼ f ,δ c′2 {Φ}

` {Ψ} if b then c1 else c2 ∼ f ,δ if b′ then c′1 else c′2 {Φ}
[cond]

( f1, . . . , fn) composable and monotonic
Θ , b〈1〉 ≡ b′〈2〉 Ψ ∧ e〈1〉 ≤ 0 =⇒ ¬b〈1〉

` {Ψ ∧ b〈1〉 ∧ b′〈2〉 ∧ e〈1〉 = k} c ∼ f1 ,δ c′ {Ψ ∧Θ ∧ e〈1〉 < k}

` {Ψ ∧Θ ∧ e〈1〉 ≤ n}while b do c ∼ fn ,nδ while b′ do c′ {Ψ ∧ ¬b〈1〉 ∧ ¬b′〈2〉}
[while]

` {Ψ} skip ∼ f ,0 skip {Ψ}
[skip]

( f1, f2) is f3-composable
` {Ψ} c1 ∼ f1 ,δ1 c2 {Φ

′
} ` {Φ′} c′1 ∼ f2 ,δ2 c′2 {Φ}

` {Ψ} c1; c′1 ∼ f3 ,δ1+δ2 c2; c′2 {Φ}
[seq]

` {Ψ ∧Θ} c1 ∼ f ,δ c2 {Φ}

` {Ψ ∧ ¬Θ} c1 ∼ f ,δ c2 {Φ}

` {Ψ} c1 ∼ f ,δ c2 {Φ}
[case]

` {Ψ′} c1 ∼ f ′ ,δ′ c2 {Φ
′
}

Ψ⇒ Ψ′ Φ′ ⇒ Φ f ≤ f ′ δ′ ≤ δ

` {Ψ} c1 ∼ f ,δ c2 {Φ}
[weak]
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Trusted Code Base

You need to:
trust the type checker of Coq;
trust the language semantics;
make sure the security statement (a few lines in Coq) is as expected.

You don’t need to
understand or even read the proof;
trust program logics,
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Case Study: k-Median Problem

Problem’s solution may leak the presence/absence of clients

World 1

f2 f3f1

World 2

f2 f3f1

Assume k = 2

Solution = { f2, f3} =⇒ World 1
Solution = { f1, f2} =⇒ World 2
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Case Study: k-Median Problem

function kMedian(C,F0)
1 i← 0;
2 while i < T do
3 (x, y) $← pick−swap(Fi × Fi);
4 Fi+1 ← (Fi\{x}) ∪ {y};
5 i← i + 1
6 end;
7 j $← pick−solution([1, . . . ,T],F);
8 return F j

Pr(x, y) ∝ e−ε c(Fi−x+y)

Each iteration of the loop (3-5) 2ε∆-DP

Pr( j) ∝ e−ε c(F j)

Selection of the solution (7) 2ε∆-DP

2ε∆(T+1)-DP
In our formalism,

{Ψ} kMedian ∼α,0 kMedian {Φ}

C〈1〉'C〈2〉 ∧ F0〈1〉=F0〈2〉 e2ε∆(T+1) F j〈1〉=F j〈2〉
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f -divergences in Crypto

Improving security bounds for Key-Alternating Cipher via Hellinger
Distance.

EP(k, ·) : {0,1}n → {0,1}n

PERMUTATION

01001 11010
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f -divergences

The f -divergence between two distributions µ1 and µ2 over a set A is
defined as

∆ f
(
µ1, µ2

)
,

∑
a∈A

µ2(a) f
(
µ1(a)
µ2(a)

)
where f : R≥0

→ R is a continuous convex function s.t. f (1) = 0.

Some examples

Statistical distance (∆SD) f (t) = 1
2 |t − 1|

Kullback-Leibler (∆KL) f (t) = t ln(t)

Hellinger distance (∆HD) f (t) = 1
2 (
√

t − 1)2

α-distance (∆α) f (t) = max{t − α, 0}
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Indifferentiability

F with access to a RO h is (tS, q, ε)-indifferentiable from a RO H if

∃S that runs in time tS, ∀D that makes at most q queries,∣∣∣∣Pr
[
b←DF,h : b = 1

]
− Pr

[
b←DH,S : b = 1

]∣∣∣∣ ≤ ε
F h H S

D 0/1

In any secure cryptosystem, a random oracle H

into EC(Fp)

can be replaced with the construction F, which uses a random oracle h

into Fp ×ZN
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A Crypto Case Study

Constructing Secure Hash Functions into Elliptic Curves (EC)

Hash
Function

Arb. size
input

Fix size
output

{0,1}? {0,1}kN [1, . . . ,N]

Building blocks of numerous cryptosystems: encryption
schemes, signature schemes, etc.
Their output should “look like” uniformly distributed.
Hash functions into elliptic curve allow an efficient
implementation of some functionalities.
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A Crypto Case Study – Cont’d I

What is an elliptic curve?
Given a finite field F and two scalars a, b ∈ F,

EC(F) , {(X,Y) ∈ F × F | Y2 = X3 + aX + b}

∪ {O}

Theorem: the points in EC(F) have a group structure.

How to securely hash into an elliptic curve EC(F)?
[Brier+ ’10]

H(m) = f (h1(m)) ⊗ gh2(m)

:M→F
:M→[1,...,N]:F→EC(F)
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A Crypto Case Study – Cont’d II

Indifferentiability from a Random Oracle

H

Real World

RO

Ideal World

D
0/1

(guess)

H is called ε-indifferentiable
from a random oracle iff

∀D • ∆SD

(
D

H,DRO
)
≤ ε

Machine-checked version of Brier et al’s proof
Equational theory for approximate observational equivalence
(specialization of our Hoare logic) + adversary rule.
Requires heavy algebraic reasoning (elliptic curves and group
theory).
10.000+ lines of Coq proof-script.

With G. Barthe, B. Grégoire, S. Heraud, S. Zanella [POST ’12, JCS
’14]
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