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Scenario: 2 new rehab. centers to be opened; 4 feasible locations.
Goal: select locations that minimize average patient commute time.
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Scenario: 2 new rehab. centers to be opened; 4 feasible locations.
Goal: select locations that minimize average patient commute time.

Optimum Solution Approach:
s Highest utility.
'@ Leakage of sensitive information.
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The Privacy-Utility Conflict

DiIfFrereNTIAL PrIVACY (DP)
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@ Privacy realization

o Basic mechanisms for numeric/discrete-valued computations.
o Composition theorems.




' Differentially Private Location Selection

[Gupta+, SODA'10]

function KkMEeDIAN(C, Fy)

1 1<0;

» whilei < Tdo _
3 (v,y) & pick—swap(F; X Fj);
4 Fiy1 < (Fi\{x}) U {y};

5 i—i+1

6 end;

7 j <& pick—solution([1, ..., T], F);
s returnF;



Veritying Differential Privacy

Dynamic verification:

o PINQ [McSherry "09]
@ Arravat [Roy+ "10]

Static verification:

@ Fuzz [Reed & Pierce '10] and DFuzz [Gaboardi+ "13]
@ [Chaudhuri+ "11]

Limitations of theses techniques:
® Only programs that are combinations of basic mechanisms.

® Only standard differential privacy.

'@ Fixed set of domains and/or operations.



In this Dissertation

Verity differential privacy properties of probabilistic programs. I

We want our technique to

o Circumvent limitations of existing techniques.
@ Provide strong evidence of correctness.

o Be extensible to reason about other quantitative properties of
probabilistic programs.
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V Differential Privacy — Definition
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A randomized mechanism K is (e, §)-differentially private iff for all
databases /; and ,, and all events A,

A(d1,d2) €1 = Pr[K(/))€A] < e Pr[K(d>)€A] +6



Differential Privacy — Fundamentals

@ Basic mechanism for numeric queries.
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o Composition theorem.
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V Verifying Differential Privacy — Our Approach

Differential privacy is a quantitative 2-safety property:

Ady,d2) <1 = VA. Pr[K(d;)€A] < ¢ Pr[K(d2)€A] + 6

relational quantitative relational
pre-condition post-condition
We propose a quantitative probabilistic relational Hoare logic
{W}er ~a5 02 {D}
such that a program c is (¢, 6)-DP iff

& ¢ ~ep c(2)

database _/ equality on
adjacency observable output

10/26
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Standard Hoare Logic Relational Hoare Logic
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V Characterizing Differential Privacy

cis (e,0)-DP iff  {=}c~epsc{=)

To achieve so we rely on a and a distance measure.
A(\(./.) aZ].,(SZO
Dy XDy — R>0

Q Judgment {~}c ~x ;5 c{=} is interpreted as
my = my = ([l m) Le(=) ([c]my)
@ The lifting £L(=) of equality is characterized as
L) pr &= Ag(u1,p2) <6
Q cis (g, 0)-DP iff for all memories my and m;,

my = my = Ae ([c]lmy, [c]mz) <6



Characterizing Differential Privacy — Cont’d

@ Definition of the a-distance is straightforward.

Ay (1, 12) = max Pr{u€A] — aPrp2€A]

o Definition of the (a, 0)-lifting is somewhat intricate (in the
general case),
... but simpler characterization for equiv. relations.



" The Programming Language

skip

C C

V&

Ve&eD

if Ethen C else C
while Edo C
V—PeE,...,80)

nop
sequence
assignment
random sampling
conditional

while loop
procedure call



The Proof System

Weakening

E{Wlci ~as 2 (D}
UYSsVY =0 a/<a 6<H

FA{W}c1 ~a5 02 (D)



'TheI%oofSyﬂfnl

Weakening
F{¥}cr ~we {0}
VoW =20 a/<a §<0
FA{Wcr ~ap 2D}

Sequential composition

F{Wier ~ao (@) E (D'} c] ~ay0, ¢ (O}

|: {\I’} C1, Ci ~a1ap,00+02 C2, Cé {q)}




The Proof System — Cont’d

Laplacian mechanism

Output perturbation makes numerical queries e-DP

The sensitivity of a numerical query
f: D — Ris defined as:

J|r Af ér;}%? |f(d1) = f(d2)
T

d1 zdz
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" The Proof System — Cont’d

Laplacian mechanism

Output perturbation makes numerical queries e-DP

The sensitivity of a numerical query
f: D — Ris defined as:

J|r Ay ég}%? If(d1) — f(d2)l
T

d1 zdz
e-DP

Lap(1)

Lap (%) 1= 065

| SN

myWmy = |[r]m —[r]mal <k

F AW x & L1 kfe) ~ecp x & L1 kfe) {x(1) = x(2)}




Machine-Checked Proofs of Differential Privacy

CerriPrIv: framework proving interactive support for the logic built
on top of the Coq proof assistant.

@ Delivers machine-checked proofs of differential privacy.
@ Built as an extension of CERTICRYPT.
e a-distance + (a, 0)-lifting + logic soundness (+6.500 lines of Coq
proof-script)
o Several case studies:

o Laplacian, Exponential and Gaussian basic mechanisms.
o k-Median, Minimum Vertex Cover, streaming algorithm.



Case Study: k-Median Problem

function KMepI1AN(C, Fp)

1 0;

while i < T do .
(x, y) & pick—swap(F; X F;);
Fivp < (F\{x}) U {y};
Te—i+1

end;

j ¢ pick—solution([1, ..., T, F);

return F;

[T B N L S S

Differential privacy is captured by judgment
{W} KMEDIAN ~¢ 0 KMEDIAN {D}

C(1y=C{2) A Fo{1)=Fy{2) 2eA(T+1) Fi(1)=F2)

Judgment Verification of

derivation + side conditions 450 lines proof-script



Veritying Differential Privacy — Summary

@ Program logic for reasoning about DP.
@ Framework for building machined-checked proofs of DP

With G. Barthe, B. Kopf and S. Zanella Béguelin
- [POPL "12] [TOPLAS "13]



Verify differential privacy properties of probabilistic programs. I

We want our technique to

e Provides strong evidence of correctness.
e Circumvent limitations of existing techniques. /

@ Be extensible to reason about other quantitative properties of
probabilistic programs.
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© Extensions of our Technique



Scope of our Approach

Differential privacy is a quantitative relational property of
probabilistic programs:

mWmy = A([ci]lmy, [c2llm2) <6

But it is not the only one!

o Indifferentiability

@ Zero Knowledge

@ Pseudo-randomness
° ...

Can we use our logic as it is to reason about these properties as well?

NO. They use distance measures different from the a-distance.



' Extending our Logic

Our logic is extensible to the class of f-divergences. ]

The class of f-divergences comprises well-know examples of
distance measures and finds applications in multiple areas:

o Statistical distance Cryptography '
. . Pattern Information
o Hellinger distance Recognition Theory
@ Relative entropy f-divergences
o a-distance - Image MDa'ta
o x’-distance rocessing ining
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Verify differential privacy properties of probabilistic programs. I

We want our technique to

e Provides strong evidence of correctness.
e Circumvent limitations of existing technique. /

@ Be extensible to reason about other quantitative properties of
probabilistic programs. /



What else is in the dissertation?

Crypto Case Study: Secure Hash Functions into Elliptic Curves
[Brier+ "10]

Security is captured by formula

YD . Asp (DH’h,DRO’S) <e

Our machine-checked proof
o Approximate observational equivalence (specialization of our
Hoare logic) + adversary rule.

@ Requires heavy algebraic reasoning (elliptic curves and group
theory).

@ 10.000+ lines of Coq proof-script.

‘ With G. Barthe, B. Grégoire, S. Heraud, S. Zanella [POST "12, JCS
"14]



Conclusions

Summary of contributions

@ Quantitative relational Hoare logic for approximate reasoning
about probabilistic programs.

@ Framework for building machined-checked proofs of differential
privacy (and other quantitative properties).

@ Verification of several constructions from the recent literature.

Future work
o Improve automation (e.g. inference of loop invariants).
@ Lipschitz continuity of probabilistic programs.
o Combination of different techniques.






The (o, 6)-lifting

Witness distributions in D 4«3
_ Ay (ur, ur) <0
p1 LR o = Apr, pir + 4 ma(ue) = p1 A ma(UR) = pho

supp (u) € R A supp (ur) € R
C (AXB)

@ Admits an inductive characterization.

o For equivalence relations, it can be characterized as a closeness
condition.

1 LYR) pa & Ao (u1/R, 12/R) <6

o For finite relations, it can be modeled as network-flow problem.



Generalized Data Processing Theorem

For any distribution transformer h : D4 — Dg

Ag (), h(u2)) < Af (w1, pha)



Vmy,my e my Wmy = (my {[ler] mi/x1}) @ (ma {[lex]] m2/x2})
F{Wlx) <61 ~p0 X2 « e {D}

[assn]

Vmy,my e my Wmy = Ap ([l ma, [u2ll ma) <6

[rand]
F{Wlar &y ~ps 2o & pp {ra(1) = 22(2)}

¥V = 1) =b'(2)
F{W AL} e ~f5 c1 (D) F{W A =b{D}ca ~55 5 {D)

F {W}if bthen c; else c; ~ if b’ then ¢ else ¢} {D}

[cond]

(fi,--., fu) composable and monotonic
O K1) =b{2) WAel) <0= -b(1)
FIWABLYAD 2y Ae{l) =k}c ~h6C {(WAOAe) <k}

F{WA® Ae(l) < njwhile bdo ¢ ~f, ., while b’ do ¢’ {W A —b(1) A ~b/(2)

jwhile]

(fi, f2) is f3-composable
F{Wer ~p 2 @) F{DYc] ~p 0, ¢ 0}

ski se
[skip] W, < e @)ool

F {W}skip ~fo skip (W}

F{W A®}cr ~p5 2 (O} F{Wher ~p 5 c2{D'}

F{W A =B} ~f/(ch{CD}[ | YoSW¥W =0 f<f 6’§6[ K
case wea
F{Wher ~f5 02 (P} F{Wher ~f6 02 {D}




' Trusted Code Base

@ You need to:

o trust the type checker of Cog;

o trust the language semantics;

o make sure the security statement (a few lines in Coq) is as expected.
@ You don’t need to

e understand or even read the proof;
e trust program logics,



“Case Study: k-Median Problem

Problem’s solution may leak the presence/absence of clients

World 1
3
) )
& & &% &
i f LM »
3

Assume k =2

Solution = {f,, 3} = World 1
Solution = {f1, f} = World 2

World 2
i§ \’:3
f f
3



“Case Study: k-Median Problem

function KkMep1aN(C, Fp)

1< 0;

while i < T do .
(x, y) & pick—swap(F; X F;);
Fiy1 < (F\{x}) U {y}
Te—i+1

end;

j ¢ pick—solution([1, ..., T], F);

return F;

Pr(x, y) o e—cr(ﬂ—xﬂ/)

Pr(j) oc ¢

@ N O G N =

Each iteration of the loop (3-5) ~~~~% 2¢A-DP
Selection of the solution (7) ~~~~~~3 2¢A-DP

2eA(T+1)-DP
In our formalism,

{W} KMEDIAN ~¢ 0 KMEDIAN {D}

C(1y=C{2) A Fo{1)=Fy{(2) Q26T +1) Fi{1)=Fi2)



f-divergences in Crypto
Improving security bounds for Key-Alternating Cipher via Hellinger
Distance.

Ep(k,-) : {0,1}" — {0,1}"

01001 11010

PERMUTATION

26/26



f-divergences

The f-divergence between two distributions p; and p; over a set A is

defined as @
s Hila
Af (i, 1) 2
£ (u1, ) ;‘Hz(ﬂ)f( #Z(a))

where f : R*® — R is a continuous convex function s.t. f(1) =

Some examples
@ Statistical distance (Agp) ft)=3 Lt =1
o Kullback-Leibler (AkL) f#) =tn(¢)
e Hellinger distance (Anp) f(t) = L(VE-1)?
o a-distance (A,) f(#) = max{t — «,0}



Indifferentiability

F with access to a RO & is (tg, g, €)-indifferentiable from a RO H if

3S that runs in time tg, Y9 that makes at most g queries,
‘Pr[b<—DFf’7:b=1]—Pr[b<—1)H'S:b=1” <e




Indifferentiability

F with access to a RO & is (tg, g, €)-indifferentiable from a RO H if

3S that runs in time tg, Y9 that makes at most g queries,
‘Pr[b<—DFf’7:b=1]—Pr[b<—Z)H'S:b=1” <e

F h H S
0 v 7 1+
\\\ \\ ,, ’,/
.~ < L - -
——llNy Lol
N L 4 4
VARV
L1
D ——0/1

In any secure cryptosystem, a random oracle H
can be replaced with the construction F, which uses a random oracle k




' Indifferentiability

F with access to a RO & is (tg, g, €)-indifferentiable from a RO H if

3S that runs in time tg, Y9 that makes at most g queries,
‘Pr[b<—DFf’7:b=1]—Pr[b<—Z)H'S:b=1” <e

F h H S
0 1+
\\\ ‘\\ ,,' ’//
.~ < L - -
——llNy Lol
N L 4 4
VARV
L1
D H——0/1

In any secure cryptosystem, a random oracle H into EC(IF,)
can be replaced with the construction F, which uses a random oracle k
into IF, X Zn
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A Crypto Case Study

Constructing Secure Hash Functions into Elliptic Curves (EC)

Arb. size Fix size
input Hash output
_— . _—

Function EC

o Building blocks of numerous cryptosystems: encryption
schemes, signature schemes, etc.

@ Their output should “look like” uniformly distributed.

o Hash functions into elliptic curve allow an efficient
implementation of some functionalities.



A Crypto Case Study — Cont’d I
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Given a finite field F and two scalars a,b € F,

ECIF) 2 {(X,Y) e FxF|Y?=X3+aX+b}
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A Crypto Case Study — Cont’d I

What is an elliptic curve?
Given a finite field F and two scalarsa,b € T,

ECIF) 2 {(X,Y)e FxF|Y?=X®+aX +b}Uu{O)}

Theorem: the points in EC(IF) have a group structure.

How to securely hash into an elliptic curve EC(IF)?
[Brier+ "10]

H(m) = f (hy(m)) ® g"™

FoECE) ok :M>I1,..,N]



A Crypto Case Study — Cont’d II

Indifferentiability from a Random Oracle

Real World Ideal World
H is called e-indifferentiable
H RO .
R N from a random oracle iff
VD Agp (D", D"0) < e
0/1
D — (guess)

Machine-checked version of Brier et al’s proof
o Equational theory for approximate observational equivalence
(specialization of our Hoare logic) + adversary rule.
o Requires heavy algebraic reasoning (elliptic curves and group
theory).
@ 10.000+ lines of Coq proof-script.

‘ With G. Barthe, B. Grégoire, S. Heraud, S. Zanella [POST "12, JCS
- 14]
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