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Abstract

Many cryptographic systems based on elliptic curves are proven secure in the

Random Oracle Model, assuming there exist probabilistic functions that map el-

ements in some domain (e.g. bitstrings) onto uniformly and independently dis-

tributed points in a curve. When implementing such systems, and in order for

the proof to carry over to the implementation, those mappings must be instan-

tiated with concrete constructions whose behavior does not deviate significantly

from random oracles. In contrast to other approaches to public-key cryptography,

where candidates to instantiate random oracles have been known for some time, the

first generic construction for hashing into ordinary elliptic curves indifferentiable

from a random oracle was put forward only recently by Brier et al. We present a

machine-checked proof of this construction. The proof is based on an extension of

the CertiCrypt framework with logics and mechanized tools for reasoning about

approximate forms of observational equivalence, and integrates mathematical li-

braries of group theory and elliptic curves.

Keywords: Provable security, indifferentiability, random oracle model, elliptic

curve cryptography

1 Introduction

Following an established trend [25], the prevailing methodology for building secure

cryptosystems is to conduct a rigorous analysis that proves security under standard

hypotheses. Sometimes this analysis is performed assuming that some components

of the system have an ideal behavior. However, ideal functionalities are difficult or
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even impossible to realize, leading to situations where provably secure systems have

no secure implementation. An alternative methodology is to devise systems based

on constructions that do not deviate significantly from ideal ones, and to account for

these deviations in the security analysis. Statistical distance is a natural notion for

quantifying the deviation between idealized functionalities and their implementations.

Verifiable security [4, 6] is an emerging approach that advocates the use of in-

teractive proof assistants and automated provers to establish the security of crypto-

graphic systems. It improves on the guarantees of provable security by delivering fully

machine-checked and independently verifiable proofs. The CertiCrypt framework,

built on top of the Coq proof assistant, is one prominent tool that realizes verifiable

security by using standard techniques from programming languages and program ver-

ification. CertiCrypt is built around the central notion of observational equivalence

of probabilistic programs, which unfortunately cannot model accurately other weaker,

quantitative, forms of equivalence. As a result, CertiCrypt cannot be used as it is

to reason about the statistical distance of distributions generated by probabilistic pro-

grams. More generally, the development of quantitative notions of equivalence is quite

recent and rather limited; see Section 7 for an account of related work.

One main contribution of this article is the formalization of several quantitative no-

tions of program equivalence and logics for reasoning about them. More specifically,

we extend CertiCrypt with the notion of statistical distance and develop a logic to

upper-bound the distance between distributions generated by probabilistic programs.

Moreover, we introduce approximate and conditional variants of observational equiva-

lence and develop equational theories for reasoning about them.

In a landmark article, Maurer et al. [33] introduce the concept of indifferentiabil-

ity to justify rigorously the substitution of an idealized component in a cryptographic

system by a concrete implementation. In a subsequent article, Coron et al. [17] ar-

gue that a secure hash function should be indifferentiable from a random oracle, i.e. a

perfectly random function. Although the random oracle model has been under fierce

criticism [14] and the indifferentiability framework turns out to be weaker than ini-

tially believed [22, 36], it is generally accepted that proofs in these models provide

some evidence that a system is secure. Not coincidentally, all finalists in the NIST

Cryptographic Hash Algorithm competition have been proved indifferentiable from a

random oracle.

Elliptic curve cryptography allows to build efficient public-key cryptographic sys-

tems with comparatively short keys and as such is an attractive solution for resource-

constrained applications. In contrast to other approaches to public-key cryptography,

where candidates to instantiate random oracles into bitstrings, residue classes, or finite

fields have been known for some time, constructions of random oracles into ordinary

elliptic curves have remained elusive. Informally, hash functions into elliptic curves

are typically built from a hash function G on the underlying field and a deterministic

function f that maps elements of the finite field into the elliptic curve; examples of such

mappings include Icart’s function [30] and the Shallue-Woestijne-Ulas algorithm [39].

In general, and in particular for the aforementioned mappings, the function f is not

surjective and only covers a fraction of points in the curve. Hence, the naive defini-

tion of a hash functionH as f ◦ G does not cover the whole curve, i.e. there are many

points m for which there is no x s.t. H(x) = m, contradicting the assumption that H
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behaves as a random oracle. In 2010, Brier et al. [13] proposed the first generic con-

struction indifferentiable from a random oracle into elliptic curves. This construction

is of practical significance since it allows to securely implement elliptic curve cryp-

tosystems. We present a machine-checked and independently verifiable proof of the

security of this construction. The proof involves the various notions of equivalence we

develop in this article and is thus an excellent testbed for evaluating the applicability of

our methods. Additionally, the proof builds on several large developments (including

Théry’s formalization of elliptic curves [44] and Gonthier et al.’s formalization of fi-

nite groups [26]) and demonstrates that CertiCrypt blends well with large and complex

mathematical libraries, and is apt to support proofs involving advanced algebraic and

number-theoretical reasoning.

Organization of the article. This article is an extended version of [7]. The remainder

of the article is structured as follows. Section 2 provides a brief introduction to Cer-

tiCrypt. Section 3 introduces the notion of statistical distance between probabilistic

programs and describes programming language techniques to bound it, whereas Sec-

tion 4 defines weak forms of observational equivalence and their associated reasoning

principles. Section 5 presents a machine-checked proof of the indifferentiability of a

generalization of Brier et al.’s construction from a random oracle into an abelian finite

group; its application to elliptic curves is discussed in Section 6. We survey prior art

and conclude in Sections 7 and 8.

2 An Overview of CertiCrypt

CertiCrypt is a framework built on top of the Coq proof assistant [43] for building and

verifying security proofs of cryptographic systems. CertiCrypt adopts the code-based

game-playing approach, in which probabilistic programs are used to describe security

goals and assumptions as experiments where an adversary interacts with a challenger—

these experiments are called games. Proofs are structured as a sequence (in general,

a tree) of games G0, · · · ,Gn, and the overall goal is to show that the probability of

some event in the initial game is related in some specified way to the probability of an

event in the final game of the sequence. A proof proceeds by relating the probability

of appropriate events in consecutive games, which typically boils down to proving that

the games satisfy some form of program equivalence. One fundamental advantage of

this approach, which lies at the heart of CertiCrypt, is that it enables justifying game

transformations by means of semantic arguments.

This section summarizes the main components of CertiCrypt, namely the repre-

sentation of probability distributions, the probabilistic programming language used to

model games, and the relational Probabilistic Hoare Logic for reasoning about them.

We refer the reader to [4] for further details.

2.1 Representation of Distributions

CertiCrypt adopts the monadic representation of distributions proposed by Audebaud

and Paulin-Mohring [2]. Let [0, 1] denote the unit interval. A distribution over a set A
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is a monotonic, continuous and linear function of type

D(A) def
= (A→ [0, 1])→ [0, 1]

More formally, a distribution is modeled as a function µ of type D(A) satisfying the

following (universally quantified) properties:

Monotonicity: f ≤ g =⇒ µ f ≤ µ g;

Compatibility with inverse: µ (1−f) ≤ 1−µ f , where 1 is the constant function 1;

Homogeneity: µ (k × f) = k × µ f for any k ∈ [0, 1];

Additivity: f ≤ 1− g =⇒ µ (f + g) = µ f + µ g;

Continuity: µ (sup F ) ≤ sup (µ ◦ F ) for any monotonic F : N→ (A→ [0, 1]).

Observe that we do not require that µ 1 = 1; therefore our definition corresponds to

sub-probability distributions. In particular, we let µ0 denote the null sub-distribution,

i.e. µ0 1 = 0.

Intuitively, an element µ of type D(A) models the expectation operator of a sub-

probability distribution over A: when A is a discrete set one has

µ f =
∑

a∈A

µ(a)f(a) (1)

where µ(a) denotes the probability mass function of µ at a. Thus, the probability that

the distribution µ : D(A) assigns to an event X ⊆ A can be computed by measuring

its characteristic function 1X , i.e.

Pr [µ : X ] def
= µ 1X

Distributions can be given the structure of a monad. The unit and bind operators are

defined as follows:

unit : A→ D(A) bind : D(A)→ (A→ D(B))→ D(B)
def
= λx. λf. f x def

= λµ. λM. λf. µ (λ x. M x f)

For a value a ∈ A, the expression unit a denotes the Dirac distribution on a, which

assigns probability 1 to a and 0 to all other values in A. The bind operator composes

a distribution µ over A and a conditioned distribution M over B given a ∈ A: when

A and B are discrete sets, the probability mass function of bind µ M evaluated at b is
∑

a∈A µ(a)M(a)(b).
We say that a distribution µ : D(A) is discrete when (1) holds for any function

f : A → [0, 1]. Note that if A is discrete, then any distribution on A is discrete.

However µ might be discrete even if A is not; in particular, we prove that programs

that only sample values from discrete sets output discrete distributions, even if the set

of program states is not discrete. Finally, we define the support of a discrete distribution

µ : D(A) as supp (µ) def
= {a ∈ A | µ(a) > 0}.
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2.2 Programming Model

In this section we describe the programming language adopted by CertiCrypt to de-

scribe games. Roughly speaking, games are modeled as probabilistic imperative pro-

grams with procedure calls. The set of commands C is defined inductively by the

clauses:
C ::= skip nop

| V ← E deterministic assignment

| V $← DE random assignment

| assert E runtime assertion

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

| C; C sequence

where V is a set of variables tagged with their scope (either local or global), E is a set

of deterministic expressions, and DE is a set of expressions that denote distributions

from which values can be sampled in random assignments. In the remainder, we let

true ⊕δ false denote the Bernoulli distribution with success probability δ, so that the

instruction x $← true ⊕δ false assigns true to x with probability δ, and we denote by

x $← A the instruction that assigns to x a value uniformly chosen from a finite set A.

A program (or game) consists of a command c and an environmentE that maps pro-

cedure identifiers to their declaration, specifying their formal parameters, their body,

and a return expression that is evaluated upon exit.

decl
def
= {args : list V ; body : C; re : E}

Although procedures are single-exit, we often write games using explicit return ex-

pressions for the sake of readability. Declarations are subject to well-formedness and

well-typedness conditions; these conditions are enforced using the underlying depen-

dent type system of Coq.

Adversaries are procedures whose code and return expression are unknown. How-

ever, adversaries are required to respect basic interface conditions; such conditions

enforce scoping, and may ensure for example that the adversary cannot read or write

values that it has to guess. Formally, an interface is a triple (O,RW ,R), where O
is a set of oracles, and RW and R are sets of variables. An adversary respects an

interface (O,RW ,R) if it only reads variables in RW ∪ R, only writes variables in

RW , and only call oracles in O or procedures that respect the same interface as itself.

If this is the case, we say thatA is well-formed w.r.t. interface (O,RW ,R) and note it

⊢wf A. This condition is defined inductively by the rules of Figure 1. We remark that

this set of rules only aims at ensuring the correct use of variables and procedure calls

by the adversary and are general enough as to capture the behavior of any legitimate

adversary in standard cryptographic security models. Any additional constraints, such

as conditions on the number or form of oracle calls may be stated as post-conditions of

security experiments.

The system of Figure 1 yields an induction principle for well-formed adversaries

of key importance in our development, since it allows to extend any proof system for
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I ⊢ skip :I
I ⊢ i :I ′ I ′ ⊢ c :O

I ⊢ i; c :O

writable(x) fv(e) ⊆ I

I ⊢ x← e :I ∪ {x}

writable(x)

I ⊢ x $← T :I ∪ {x}

fv(e) ⊆ I I ⊢ ci :Oi, i = 1, 2

I ⊢ if e then c1 else c2 :O1 ∩O2

fv(e) ⊆ I I ⊢ c :I

I ⊢ while e do c :I

fv(~e) ⊆ I writable(x) p ∈ O

I ⊢ x← p(~e) :I ∪ {x}

fv(~e) ⊆ I writable(x) p 6∈ O ⊢wf p

I ⊢ x← p(~e) :I ∪ {x}

RW ∪R ∪A.args ⊢ A.body :O fv(A.re) ⊆ O

⊢wf A

writable(x) def
= local(x) ∨ x ∈ RW

Figure 1: Rules for well-formedness of an adversary against interface (O,RW ,R). A

judgment of the form I ⊢ c :O reads as follows: assuming variables in I may be read,

the adversarial code fragment c respects the interface, and after its execution variables

in O may be read. Thus, I ⊢ c :O =⇒ I ⊆ O.

closed programs to programs with calls to well-formed adversaries. Specifically, in

Section 3.1 we present a logic to bound the statistical distance between the output

distributions of two (structurally similar) programs. The soundness of the rule for

calling a well-formed adversary is proved by structural induction on the derivation of

its well-formedness.

Program states (or memories) are dependently typed functions that map a variable

of type T to a value in its interpretation JT K; we letM denote the set of states. Expres-

sions have a deterministic semantics: an expression e ∈ E of type T is interpreted as a

function JeK :M→ JT K. The semantics of a distribution expression d ∈ DE of type

T is given by a function JdK :M→D(JT K). Finally the semantics of a command c in

an environment E relates an initial memory to a sub-probability distribution over final

memories: Jc, EK :M→D(M). We often omit the environment when it is irrelevant.

The semantics of programs verifies the expected equations for language constructs (see

Figure 2). In particular, the semantics of a while loop can be given in terms of its n-th

unrolling [while e do c]n, defined recursively by the equations

[while e do c]0
def
= assert ¬e

[while e do c]n+1
def
= if e then c; [while e do c]n

By specializing the definition of probability Pr [µ : X ] from Section 2.1 to pro-

grams, we have that the probability Pr [G,m : X ] of an event X w.r.t. the distribution

obtained by running a game G with initial memory m is given by JGK m 1X . In par-

ticular, the probability the game terminates is Pr [G,m : true]. We say that a game is

lossless if it terminates with probability 1 independently of the initial memory.
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Jx← eK m = unit (m {JeK m/x})

Jx $← dK m = bind (JdK m) (λv. unit (m {v/x}))

Jassert eK m =

{

unitm if JeK m = true

µ0 if JeK m = false

Jif e then c1 else c2K m =

{

Jc1K m if JeK m = true

Jc2K m if JeK m = false

Jwhile e do cK m = λf. supn∈N (J[while e do c]nK m f)

Figure 2: Denotatonial semantics of programs

In order to reason about program complexity and define the class of probabilistic

polynomial-time computations, the semantics of programs is indexed by a security

parameter (a natural number) and instrumented to compute the time and memory cost

of evaluating a command, given the time and memory cost of each construction in the

expression language. We chose not to make this parameterization explicit to avoid

cluttering the presentation.

2.3 Reasoning Tools

CertiCrypt provides several tools for reasoning about games. One main tool is a prob-

abilistic relational Hoare logic. Its judgments are of the form |= G1 ∼ G2 : Ψ ⇒ Φ,

where G1 and G2 are games, and Ψ and Φ are relations over states. We represent re-

lations as first-order formulae over tagged program variables; we use the tags 〈1〉 and

〈2〉 to distinguish between the value of a variable or formula in the left and right-hand

side program, respectively. A judgment

|= G1 ∼ G2 : Ψ⇒ Φ

is valid, iff for all memories m1 and m2 we have

m1 Ψ m2 =⇒ (JG1K m1)L(Φ) (JG2K m2),

where L(Φ) denotes the lifting of Φ to distributions. The lifting operator L(·) trans-

forms a binary relation R ⊆ A×B into a binary relation L(R) ⊆ D(A)×D(B). We

adopt the following definition, from probabilistic process algebra [32]:

µ1 L(R)µ2
def
= ∃µ : D(A×B).







µ(a, b) > 0 =⇒ a R b for all (a, b) ∈ A×B
(π1µ)(a) = µ1(a) for all a ∈ A
(π2µ)(b) = µ2(b) for all b ∈ B

where π1µ ∈ D(A) and π2µ ∈ D(B) denote the first and second projections of µ
respectively, i.e. (π1µ)(a) = µ(a,B) and (π2µ)(b) = µ(A, b) or, in monadic notation,

π1(µ)
def
= bind µ (unit ◦ fst) π2(µ)

def
= bind µ (unit ◦ snd)
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|= skip ∼ skip : Φ⇒ Φ [Skip]
|= c1 ∼ c2 : Ψ⇒ Θ |= c′1 ∼ c′2 : Θ⇒ Φ

|= c1; c
′
1 ∼ c2; c

′
2 : Ψ⇒ Φ

[Seq]

m1 Ψm2 = (m1 {Je1Km1/x1}) Φ (m2 {Je2Km2/x2})

|= x1 ← e1 ∼ x2 ← e2 : Ψ⇒ Φ
[Assn]

m1 Ψm2 =⇒ (Jd1K m1)L(Θ) (Jd2K m2)
where v1 Θ v2 = (m1 {v1/x1}) Φ (m2 {v2/x2})

|= x1
$← d1 ∼ x2

$← d2 : Ψ⇒ Φ
[Rnd]

m1 Ψ m2 =⇒ Je1K m1 = Je2K m2

|= c1 ∼ c2 : Ψ ∧ e1〈1〉 ⇒ Φ |= c′1 ∼ c′2 : Ψ ∧ ¬e1〈1〉 ⇒ Φ

|= if e1 then c1 else c
′
1 ∼ if e2 then c2 else c

′
2 : Ψ⇒ Φ

[Cond]

m1 Φ m2 =⇒ Je1K m1 = Je2K m2 |= c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Φ

|= while e1 do c1 ∼ while e2 do c2 : Φ⇒ Φ ∧ ¬e1〈1〉
[While]

Ψ ⊆ Ψ′ |= c1 ∼ c2 : Ψ′ ⇒ Φ′ Φ′ ⊆ Φ

|= c1 ∼ c2 : Ψ⇒ Φ
[Sub]

|= c1 ∼ c2 : Ψ ∧Ψ′ ⇒ Φ |= c1 ∼ c2 : Ψ ∧ ¬Ψ′ ⇒ Φ

|= c1 ∼ c2 : Ψ⇒ Φ
[Case]

Figure 3: Selected rules of probabilistic Relational Hoare Logic

Figure 3 provides an excerpt of the set of rules of the relational Hoare logic. The

logic can be used to prove (in)equalities between probability quantities; for instance,

using the following rules:

m1 Ψm2 |= G1 ∼ G2 : Ψ⇒ Φ Φ =⇒ (A〈1〉=⇒B〈2〉)

Pr [G1,m1 : A] ≤ Pr [G2,m2 : B]

m1 Ψm2 |= G1 ∼ G2 : Ψ⇒ Φ Φ =⇒ (A〈1〉⇐⇒B〈2〉)

Pr [G1,m1 : A] = Pr [G2,m2 : B]

Observational equivalence is defined by specializing judgments to relations Ψ and Φ
corresponding to the equality relation on subsets of program variables. Formally, let X
be a set of variables, m1,m2 ∈M and f1, f2 :M→ [0, 1]. We define

m1 =X m2
def
= ∀x ∈ X. m1(x) = m2(x)

f1 =X f2
def
= ∀m1,m2. m1 =X m2 =⇒ f1(m1) = f2(m2)

Then, two games G1 and G2 are observationally equivalent w.r.t. an input set of vari-

ables I and an output set of variables O, written |= G1 ≃I
O G2, iff

|= G1 ∼ G2 : =I ⇒ =O
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Equivalently, |= G1 ≃I
O G2 iff for all memories m1,m2 ∈ M and functions f1, f2 :

M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒ JG1K m1 f1 = JG2K m2 f2

Observational equivalence is amenable to automation. CertiCrypt provides mecha-

nized tactics based on dependency analyses to perform common program transforma-

tions and to prove that two programs satisfy an observational equivalence specification.

Note that since observational equivalence is only a partial equivalence relation, it might

be of interest to prove that a program is observational equivalent to itself—this actually

encompasses information flow security. Relevant mechanized transformations used in

the context of this article include dead code elimination, procedure call inlining, code

motion and expression propagation.

We sometimes use a standard Hoare logic for reasoning about individual programs.

Its judgments are of the form {P} G {Q}, where G is a game and P and Q are predi-

cates on states. Formally, a judgment {P}G {Q} is valid iff for every memorym ∈M
and function f :M→ [0, 1],

P m ∧ (∀m. Q m =⇒ f(m) = 0) =⇒ JGK m f = 0

3 Statistical Distance

Statistical distance quantifies the largest difference between the probability that two

distributions assign to the same event, and underlies many concepts in cryptography,

such as indifferentiability [33] and statistical zero-knowledge proofs [24]. We review

its definition next, and provide below an alternative characterization that is more ap-

propriate for reasoning about the monadic representation of distributions that we use

in our development; we refer to Shoup [40] or Sahai and Vadhan [37] for an in-depth

presentation of statistical distance and its properties.

Definition 1. The statistical distance (i.e. total variation distance) ∆(µ1, µ2) between

two distributions µ1 and µ2 over a set A is defined as

∆(µ1, µ2)
def

= sup
f :A→{0,1}

|µ1 f − µ2 f | (2)

Note that for any f , the expression |µ1f − µ2f | is upper-bounded by 1; hence

the supremum exists and ∆(µ1, µ2) is well defined. Statistical distance satisfies the

metric axioms, and is non-increasing under function application, i.e. for all sets A and

B, distributions µ1, µ2, and µ3 over D(A) and functions f : D(A)→ D(B):

i) ∆(µ1, µ2) ≥ 0, and ∆(µ1, µ2) = 0 iff µ1 = µ2;

ii) ∆(µ1, µ2) = ∆ (µ2, µ1);

iii) ∆(µ1, µ3) ≤ ∆(µ1, µ2) + ∆ (µ2, µ3);

iv) ∆(f µ1, f µ2) ≤ ∆(µ1, µ2).
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For discrete distributions, an equivalent definition is obtained if one lets f in (2) range

over the real interval [0, 1] rather than over Boolean values. This characterization of

statistical distance is more convenient for reasoning about our monadic formalization

of distributions.

Lemma 1. For any pair of discrete distributions µ1 and µ2 over a set A,

∆(µ1, µ2) = sup
f :A→[0,1]

|µ1 f − µ2 f |

Proof. Inequality ∆(µ1, µ2) ≤ supf :A→[0,1] |µ1f − µ2f | is trivial. For the proof of

the reverse inequality, observe that distributions µ1 and µ2 partition A into two sets

Ao = {a ∈ A | µ1(a) ≥ µ2(a)} and A1 = {a ∈ A | µ1(a) < µ2(a)}.
We claim that for any pair of functions g, g′ : A→ [0, 1] s.t. g ≥ g′ and g = g′ = 0

in A1, we have |µ1 g − µ2 g| ≥ |µ1 g
′ − µ2 g

′|. Indeed, as g ≥ g′, there exists a non-

negative h s.t. g = g′ + h. Moreover h = 0 in A1. Hence:

|µ1 g − µ2 g| = |µ1 g
′ − µ2 g

′ + µ1 h− µ2 h|
= |µ1 g

′ − µ2 g
′|+ |µ1 h− µ2 h|

≥ |µ1 g
′ − µ2 g

′|

The second equality holds because as g′ and h are null in A1, we have µ1 g′ ≥ µ2 g′

and µ1 h ≥ µ2 h. This concludes the proof of the claim.

To prove the lemma, we define for every set X and [0, 1]-valued function f , the

function fX(x) def
= f(x) 1X(x). Since A = A0 ⊎ A1, we have that f = fA0

+ fA1

and hence:

|µ1 f − µ2 f | = |(µ1 fA0
− µ2 fA0

)− (µ2 fA1
− µ1 fA1

)|

≤ max{|µ1 fA0
− µ2 fA0

|, |µ2 fA1
− µ1 fA1

|}

≤ max{|µ1 1A0
− µ2 1A0

|, |µ2 1A1
− µ1 1A1

|}

≤ ∆(µ1, µ2)

The first inequality holds because for non-negativea, b, one has |a−b| ≤ max(|a|, |b|),
whereas the second inequality holds by the above claim (and its dual).

3.1 A Logic for Bounding Statistical Distance

In this section, we consider the problem of bounding the statistical distance between

the distributions output by two games given the same initial memory. Formally, let

G1 and G2 be two games, which we assume to be executed in two fixed environments

E1 and E2, and let ∆m (G1,G2) denote ∆(JG1K m, JG2K m). We define a logic that

allows upper-bounding ∆m (G1,G2) by a function of the memory m. We consider

judgments of the form LG1,G2M � g; such a judgment is valid iff

∀m. ∆m (G1,G2) ≤ g(m)

Figure 4 presents the main rules of the logic; contrary to the logic of Barthe et al. [8],

this logic is not restricted to constant functions g. The logic deals with programs that
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Lskip, skipM � λm. 0

Lc1, c2M � g Lc′1, c
′
2M � g′

Lc1; c
′
1, c2; c

′
2M � λm. Jc1K m g′ + g(m)

Lx← e, x← eM � λm. 0

∀m. ∆(Jd1K m, Jd2K m) ≤ g(m)

Lx $← d1, x $← d2M � g

Lc1, c
′
1M � g1 Lc2, c

′
2M � g2

Lif b then c1 else c2, if b then c′1 else c
′
2M � λm. if JbK m then g1(m) else g2(m)

Lc1, c2M � g g0(m) = 0 gn+1(m) = if JbK m then Jc1K m gn + g(m) else 0

Lwhile b do c1,while b do c2M � λm. supn∈N(gn(m))

LE1(p), E2(p)M � g g =X g ∀x. x ∈ X ⇒ global(x)

Ly ← p(x), y ← p(x)M � g

Figure 4: Logic to bound the statistical distance between two probabilistic programs

are structurally similar, and as shown by Lemma 2, supports a rule for reasoning about

adversaries.

To prove the soundness, for instance, of the rule for sequential composition, we

introduce an intermediate program c1; c
′
2 (where c1 is executed in environment E1 and

c′2 in environmentE2) and prove that the distance between Jc1; c
′
1K m and Jc1; c

′
2K m is

bounded by Jc1Km g′, while the distance between Jc1; c
′
2K m and Jc2; c

′
2Km is bounded

by g(m). The rule for loops relies on the characterization of the semantics of a while

loop as the least upper bound of its n-th unrolling [while e do c]n (see Figure 2), and

on the auxiliary rule

L[while b do c1]n, [while b do c2]nM � gn

Lwhile b do c1,while b do c2M � λm. supn∈N(gn(m))

The rule for procedure calls builds on the fact that the semantics of a call y ← p(x) in

memorym is basically given by an unfolding of p’s code, where the resulting command

is executed in a memory m′ that only differs from m in the set of (local) variables that

correspond to p’s formal parameters; global variables have the same values in m and

m′. The last two premises of the rule are thus required to guarantee that g(m′) = g(m).
While the rules in Figure 4 are sufficient to reason about closed programs, they do

not allow to reason about games in the presence of adversaries. We enhance the logic

with a rule that allows to draw conclusions of the form LA,AM � g, i.e. to bound the

statistical distance between calls to an adversary A executed in two different environ-

ments E1 and E2.1 Although the code ofA is unknown, the only statements in its code

that can increase statistical distance are calls to oracles (since these are the only in-

structions whose semantics may vary between the two environments E1 and E2). The

1For the sake of readability, we write LA,AM � g instead of Lx← A(~e), x← A(~e)M � g, and likewise

for oracles.
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rule we formalize captures this intuition, by providing an upper bound for the statisti-

cal distance between the final distributions in terms of the statistical distance induced

by individual oracle calls, and the number of oracle calls made by the adversary. In

its simplest formulation, the rule assumes that oracles are instrumented with a counter

that keeps track of the number of queries made by the adversary, and that the statistical

distance between the distributions induced by a call to an oracle x ← O(~e) in E1 and

E2 is upper-bounded by a constant ǫ, i.e. LO,OM � λm. ǫ. In this case, the statistical

distance between calls to the adversaryA in E1 and E2 is upper-bounded by q ·ǫ, where

q is an upper bound on the number of oracle calls made.

For the application presented in Section 5, we need to formalize a more expressive

rule, in which the statistical distance between two oracle calls can also depend on the

program state. Moreover, we allow the counter to be any integer expression, and only

require that it does not decrease across oracle calls.

Lemma 2 (Adversary rule). Let A be an adversary and let cntr be an integer expres-

sion whose variables are global and cannot be written by A. Let h : N → [0, 1] and

define

h̄cntr(m,m′) def

= min



1,

JcntrKm′−1
∑

i=JcntrKm

h(i)





Assume that for every oracle O,

LO,OM � λm. JE1(O)K m (λm′. h̄cntr(m,m′))

and moreover {cntr = i} E1(O) {i ≤ cntr}. Then,

LA,AM � λm. JE1(A)K m
(

λm′. h̄cntr(m,m′)
)

.

The first hypothesis states that the distance ∆m (O,O) can be bounded in terms

of the value of cntr before and after executing O; for instance, if a call to O al-

ways increments cntr by 2, then the distance ∆m (O,O) is bounded by h (JcntrKm) +
h (JcntrKm+ 1). The second hypothesis captures the monotonicity property of the

counter.

Proof. As in [5], the rule is derived from the induction principle induced by the defini-

tion of well-formed adversary using the rules in Figure 4.

3.2 Reasoning about Failure Events

Transitions based on failure events allow to transform a game into another game that is

semantically equivalent unless some failure condition is triggered. This kind of game

transformations rely on the following lemma:

Lemma 3 (Fundamental Lemma). Consider two games G1, G2 and let A,B, and F be

events. For every initial memory m, if

Pr [G1,m : A ∧ ¬F ] = Pr [G2,m : B ∧ ¬F ] ,

12



then

|Pr [G1,m : A]− Pr [G2,m : B] | ≤ max{Pr [G1,m : F ] ,Pr [G2,m : F ]}

Note that if, for instance, game G2 is lossless, then Pr [G1,m : F ] ≤ Pr [G2,m : F ].

When A = B and F = bad for some Boolean variable bad, the hypothesis of the

lemma can be automatically established by inspecting the code of both games: it holds

if their code differs only after program points setting bad to true and bad is never

reset to false.

As a corollary, and in view of of Lemma 1, one can establish that if two programs

G1 and G2 satisfy the above conditions and, for instance, G2 is lossless, then

LG1,G2M � λm. Pr [G2,m : bad]

4 Weak Equivalences

In this section we introduce quantitative notions of program equivalence and equational

theories to reason about them.

4.1 Approximate Observational Equivalence

Approximate observational equivalence generalizes observational equivalence between

two games by allowing that their output distributions differ up to some quantity ǫ. In-

formally, two games G1 and G2 are ǫ-observationally equivalent w.r.t. an input set of

variables I and an output set of variables O iff for every pair of memories m1,m2 coin-

ciding on I , the statistical distance between the quotient distributions (JG1K m1)/ =O

and (JG2Km2)/ =O overM/ =O is upper-bounded by ǫ. For the purpose of formal-

ization, it is more convenient to rely on the following alternative characterization that

does not use quotient distributions.

Definition 2. Two games G1 and G2 are ǫ-observationally equivalent w.r.t. an input set

of variables I and an output set of variables O, written |= G1 ≃I
O G2 � ǫ, iff for all

memories m1,m2 ∈M and functions f1, f2 :M→ [0, 1]

m1 =I m2 ∧ f1 =O f2 =⇒ |JG1K m1 f1 − JG2K m2 f2| ≤ ǫ

Figure 5 provides an excerpt of an equational theory for approximate observational

equivalence; further and more general rules appear in the formal development. Most

rules generalize observational equivalence in the expected way. For instance, the rule

for random assignments considers the case of two distribution expressions ǫ-away from

each other. Let µ1 and µ2 be their interpretation. In case µ1 = µ2, one obtains ǫ = 0.

Furthermore, if µ1 and µ2 are uniform distributions over subsets A1, A2 ⊆ T of some

underlying type, one has

∆(µ1, µ2) = max

{

#(A1 \A2)

#A1
,
#(A2 \A1)

#A2

}

.
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|= c1 ≃I
O c2 � ǫ1 |= c2 ≃I

O c3 � ǫ2

|= c1 ≃I
O c3 � ǫ1 + ǫ2

|= c1 ≃I
O′ c2 � ǫ1 |= c′1 ≃

O′

O c′2 � ǫ2

|= c1; c
′
1 ≃

I
O c2; c

′
2 � ǫ1 + ǫ2

|= c1 ≃I′

O′ c2 � ǫ′ I ′ ⊆ I O ⊆ O′ ǫ′ ≤ ǫ

|= c1 ≃I
O c2 � ǫ

|= c1 ≃I
O c′1 � ǫ |= c2 ≃I

O c′2 � ǫ ∀m1,m2. m1 =I m2 =⇒ JbK m1 = Jb′K m2

|= if b then c1 else c2 ≃I
O if b′ then c′1 else c

′
2 � ǫ

∀m1,m2. m1 =I m2 =⇒ ∆(Jd1K m1, Jd2K m2) ≤ ǫ

|= x $← d1 ≃I
I∪{x} x $← d2 � ǫ

Figure 5: Selected rules for reasoning about approximate observational equivalence

As an illustrative example we sketch a proof of the soundness of the rule for random

assignments.

Consider m1,m2 ∈ M and f1, f2 : M → [0, 1] such that m1 =I m2 and

f1 =I∪{x} f2. Define distributions µ1 = Jd1K m1 and µ2 = Jd2K m2 and let

S1 = supp (µ1), S2 = supp (µ2), A0 = {a ∈ S1 ∩ S2 | µ1(a) ≥ µ2(a)} ∪ (S1 \ S2)
and A1 = {a ∈ S1 ∩ S2 | µ1(a) < µ2(a)} ∪ (S2 \ S1). We have

|Jx $← d1K m1 f1 − Jx $← d2K m2 f2|

(1)
=

∣

∣

∣

∣

∣

∑

a∈S1

µ1(a)f1(m1 {a/x})−
∑

a∈S2

µ2(a)f2(m2 {a/x})

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

a∈S1∩S2

µ1(a)f1(m1 {a/x})− µ2(a)f2(m2 {a/x}) +

∑

a∈S1\S2

µ1(a)f1(m1 {a/x})−
∑

a∈S2\S1

µ2(a)f2(m2 {a/x})

∣

∣

∣

∣

∣

∣

(2)
=

∣

∣

∣

∣

∣

∑

a∈A0

(µ1(a)− µ2(a))f1(m1 {a/x})−
∑

a∈A1

(µ2(a)− µ1(a))f2(m2 {a/x})

∣

∣

∣

∣

∣

(3)

≤ max

{

∑

a∈A0

µ1(a)− µ2(a),
∑

a∈A1

µ2(a)− µ1(a)

}

≤ ∆(µ1, µ2)

Equation (1) follows from unfolding the semantics of random assignments; equality (2)

follows from the definitions of A0, A1, S1 and S2, and the fact that f1(m1 {a/x}) =
f2(m2 {a/x}) for all a ∈ S1 ∩ S2. Finally inequality (3) holds since for all reals x, y
satisfying 0 ≤ x, y ≤ ǫ one has |x− y| ≤ ǫ and functions f1 and f2 take values in the

interval [0, 1].
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4.2 A Conditional Variant

The application we describe in Section 5 requires reasoning about conditional approx-

imate observational equivalence, a generalization of approximate observational equiv-

alence. We define for a distribution µ and event P the conditional distribution µ ↓P
as

µ ↓P
def
= λf. µ

(

λa.
f(a) 1P (a)

µ 1P

)

Intuitively, µ ↓P 1Q yields the conditional probability of Q given P .

Definition 3. A game G1 conditioned on predicate P1 is ǫ-observationally equivalent

to a game G2 conditioned on P2 w.r.t. an input set of variables I and an output set

of variables O, written |= [G1]P1
≃I

O [G2]P2
� ǫ, iff for any m1,m2 ∈ M and

f1, f2 :M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒ |(JG1K m1) ↓P1
f1 − (JG2K m2) ↓P2

f2| ≤ ǫ

Conditional approximate observational equivalence subsumes classic approximate

observational equivalence, which can be recovered by taking P1 = P2 = true.

4.3 Generalization to Arbitrary Relations

In order to formalize the result of Brier et al. [13], it suffices to reason about approxi-

mate observational equivalence. However we can obtain a full-fledged relational Hoare

logic for approximate reasoning by considering as pre- and post-conditions arbitrary re-

lations instead of just equality over a set of program variables. This can be achieved by

considering an approximate notion of lifting, which generalizes the notion of lifting de-

fined in Section 2.3. For any relation R ⊆ A×B and any ǫ ∈ [0, 1], the ǫ-approximate

lifting of R, noted Lǫ(R), is defined as

µ1 L
ǫ(R)µ2

def
= ∃µ : D(A×B).







µ(a, b) > 0 =⇒ a R b for all (a, b) ∈ A×B
∆(π1µ, µ1) ≤ ǫ ∧∆(π2µ, µ2) ≤ ǫ
π1µ ≤ µ1 ∧ π2µ ≤ µ2

where≤ is the pointwise partial order on D(A).
Judgments in the proposed logic are of the form

|= G1 ≃
ǫ G2 : Ψ =⇒ Φ.

where G1 and G2 are games, Ψ and Φ are binary relations on program memories, and

ǫ ∈ [0, 1]. We say that such a judgment is valid iff for all memories m1,m2 ∈ M one

has:

m1 Ψm2 =⇒ (JG1K m1)L
ǫ(Φ) (JG2K m2).

This logic generalizes simultaneously approximate observational equivalence and the

probabilistic Relational Hoare Logic of CertiCrypt. Most of the rules of Figure 3 admit

a direct transposition. For instance, the rule for sequential composition reads:

|= c1 ≃
ǫ1 c2 : Ψ =⇒ Θ |= c′1 ≃

ǫ2 c′2 : Θ =⇒ Φ

|= c1; c
′
1 ≃

ǫ1+ǫ2 c2; c
′
2 : Ψ =⇒ Φ
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The logic also allows inferring claims about probability quantities:

m1 Ψm2 |= G1 ≃ǫ G2 : Ψ =⇒ Φ Φ =⇒ (A〈1〉⇐⇒B〈2〉)

|Pr [G1,m1 : A]− Pr [G2,m2 : B]| ≤ ǫ

The logic can be further generalized by considering a weaker notion of distance be-

tween distributions instead of statistical distance. For instance Barthe et al. [8, 9] define

for α ≥ 1, the α-distance between µ1 and µ2 as

∆α(µ1, µ2)
def
= max

f :A→[0,1]
{µ1f − α µ2f, µ2f − α µ1f, 0}.

This generalization allows reasoning about differential privacy [20].

5 Construction of Indifferentiable Hash Functions

In this section we apply the techniques introduced above to prove the security of cryp-

tographic constructions in the indifferentiability framework of Maurer et al. [33]. In

particular, we consider the notion of indifferentiability from a random oracle. A ran-

dom oracle is an ideal primitive that maps elements in some domain into uniformly

and independently distributed values in a finite set; queries are answered consistently

so that identical queries are given the same answer. A proof conducted in the random

oracle model for a functionH assumes thatH is a random oracle and makes it publicly

available to all parties. In games, we represent random oracles as stateful procedures.

Definition 4 (Indifferentiability). A construction H built from a primitive G is said to

be (tS , tD, q1, q2, ǫ)-indifferentiable from an ideal primitive F if there exists a simula-

tor S with oracle access to F such that any distinguisherD running within time tD has

at most probability ǫ of distinguishing a scenario where it is givenH and G as oracles

from a scenario where it is given F and S instead:

∣

∣

∣Pr
[

b← DHG,G( ) : b = true
]

− Pr
[

b← DF ,SF

( ) : b = true
]∣

∣

∣ ≤ ǫ

The distinguisher D is allowed to make at most q1 queries to H (resp. F ) and at most

q2 queries to G (resp. S).

Intuitively, S must simulate the primitive G so that no distinguisher can tell whether

it is interacting with HG and G or with F and SF (see Figure 6). The simulator must

do so without access to the internal state (if any) of F or to its interaction with the

distinguisher.

Random oracles into elliptic curves over finite fields are typically built from a ran-

dom oracle G on the underlying field and a deterministic encoding f that maps elements

of the field into the elliptic curve. Examples of such encodings include Icart’s func-

tion [30] and the Shallue-Woestijne-Ulas (SWU) algorithm [39]. In general (and for

the aforementioned mappings) the function f is not surjective and only covers a frac-

tion of points in the curve. Hence, the naive definition of a hash function H as f ◦ G
would not cover the whole curve, contradicting the assumption that H behaves as a
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H G F S

D

Figure 6: The two scenarios in the definition of indifferentiability of construction H
from an ideal primitive F

random oracle. In a recent paper, Brier et al. [13] show how to build hash functions

into elliptic curves that are indifferentiable from a random oracle for a particular class

of encodings, including both SWU and Icart’s encodings.

Brier et al. [13] prove that if (G,⊗) is a finite cyclic group of order N with gener-

ator g, a function into G indifferentiable from a random oracle can be built from any

polynomially invertible function f : A→ G and hash functions G1 : {0, 1}∗ → A and

G2 : {0, 1}∗ → ZN that behave as random oracles as follows:

H(m) def
= f(G1(m))⊗ gG2(m) (3)

Intuitively, the term gG2(m) behaves as a one-time pad and ensures that H covers all

points in the group even if f covers only a fraction. This construction can be seen as

the composition of the function F (a, p) = f(a)⊗gp and a random oracle into A×ZN .

We prove in CertiCrypt the indifferentiability of a generalization of Brier et al.’s

construction to finitely generated abelian groups. The proof introduces two intermedi-

ate constructions and is structured in three steps:

1. We first prove that any efficiently invertible encoding f can be turned into a weak

encoding (Theorem 1);

2. We then show an efficient construction to transform any weak encoding f into

an admissible encoding (Theorem 2);

3. Finally, we prove that any admissible encoding can be turned into a hash function

indifferentiable from a random oracle (Theorem 3).

Moreover, we show in Sect. 6 that Icart’s encoding is efficiently invertible and thus

yields a hash function indifferentiable from a random oracle when plugged in into the

above construction.

We recall the alternative definitions of weak and admissible encoding from [31].

Note that these do not match the definitions of [13], but, in comparison, are better

behaved: e.g. admissible encodings as we define them are closed under functional

composition and Cartesian product.

Definition 5 (Weak encoding). A function f : S → R is an (α, ǫ)-weak encoding if

it is computable in polynomial-time and there exists a probabilistic polynomial-time

algorithm If : R→ S⊥ such that
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i) {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r}

ii) |= [r $← R; s← If (r)]s6=⊥ ≃
∅
{s} [s $← S] � ǫ

iii) Pr [r $← R; s← If (r) : s = ⊥] ≤ 1− α−1

Condition i) states that If either inverts f or fails; ii) states that given a random

input, If returns a pre-image chosen almost uniformly when it does not fail; while iii)

states that If does not fail too often.

Definition 6 (Admissible encoding). A function f : S → R is an ǫ-admissible encod-

ing if it is computable in polynomial-time and there exists a probabilistic polynomial-

time algorithm If : R→ S⊥ such that

i) {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r}

ii) |= r $← R; s← If (r) ≃
∅
{s} s $← S � ǫ

Compared to a weak encoding, an admissible encoding may seem to impose no

explicit bound on the probability of If failing. However, condition ii) requires the out-

put of inverter If on a random input be statistically indistinguishable from the uniform

distribution on S; the bound ǫ must account for the probability of If failing.

We begin our proof by showing that any efficiently invertible encoding is a weak

encoding.

Theorem 1. Let f : S → R be a function computable in polynomial-time such that

for any r ∈ R, #f−1(r) ≤ B. Assume there exists a polynomial-time algorithm I
that given r ∈ R outputs the set f−1(r). Then, f is an (α, 0)-weak encoding, with

α = B #R/#S.

Proof. Using I, we build a partial inverter If : R→ S⊥ of f that satisfies the proper-

ties in Definition 5:

If (r) : X ← I(r); b $← true⊕#X/B false;
if b = true then s $← X ; return s else return ⊥

First observe that If (r) fails with probability 1 − #f−1(r)/B or else returns an el-

ement uniformly chosen from the set of pre-images of r, and thus satisfies the first

property trivially. In addition we have

Pr [r $← R; s← If (r) : s 6= ⊥] =
∑

r∈R

1

#R

#f−1(r)

B
=

#S

B#R

and for any x ∈ S,

Pr [r $← R; s← If (r) : s = x] =
∑

r∈R

1

#R

#f−1(r)

B

1f−1(r)(x)

#f−1(r)
=

1

B#R

Hence, for a uniformly chosen r, the probability of If (r) failing is exactly 1 − α−1,

and the probability of returning any particular value in S conditioned to not failing is

uniform.
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We show next how to construct an admissible encoding F : A × P → Q from a

weak encoding f : A→ Q for appropriate sets P and Q. This construction generalizes

Brier et al.’s original result (see [13, Theorem 3]) that restricts the analysis to the case

where Q is a cyclic group of order N and P is ZN .

The proof that we present relies on the application of two padding lemmas involv-

ing a pair of expressions of type P and Q. To capture these properties we introduce a

novel algebraic structure coined padding algebra.

Definition 7 (Padding algebra). Let P and Q be two finite sets equipped with binary

operations ⊛,⊙ : P ×Q→ Q and ⊘ : Q×Q→ P . We say that (P,Q,⊛,⊙,⊘) is a

padding algebra iff:

i) (p⊛ q)⊘ q = p for all p ∈ P, q ∈ Q;

ii) q ⊘ (p⊙ q) = p for all p ∈ P, q ∈ Q;

iii) for all q ∈ Q, the function λp. p⊛ q is an isomorphism between P and Q; and

iv) for all q ∈ Q, the function λp. p⊙ q is an isomorphism between P and Q.

For such a structure one can prove the following algebraic equivalences:

|= p $← P ; q2 ← p⊛ q1 ≃
{q1}
{q1,q2,p}

q2 $← Q; p← q2 ⊘ q1 (4)

|= q2 $← Q; p← q1 ⊘ q2 ≃
{q1}
{q1,q2,p}

p $← P ; q2 ← p⊙ q1 (5)

To do so we need to rely on the rules for random assignments and sequential com-

position Rnd and Seq of CertiCrypt’s logic (see Figure 3) and on the above set of

axioms—axioms i) and iii) for the former equivalence and axioms ii) and iv) for the

latter. In Section 6 we show that every finite abelian group induces a padding algebra

and use this fact to instantiate the results presented in this section.

We now show how to turn a weak encoding f : A→ Q into an admissible encoding

F : A× P → Q when P and Q can be given the structure of a padding algebra.

Theorem 2. Let (P,Q,⊛,⊙,⊘) be a padding algebra such that

(q1 ⊘ q2)⊙ q1 = q2 ∀q1, q2 ∈ Q,

and operations ⊛ and ⊙ can be computed in polynomial-time. Then, for any (α, ǫ)-
weak encoding f : A→ Q, the function

F : A× P → Q
F (a, p) def

= p⊙ f(a)

is an ǫ′-admissible encoding into Q, with ǫ′ = ǫ +
(

1− α−1
)T+1

for any value T
polynomial in the security parameter.

Proof. Since f is a weak encoding, there exists a polynomial-time computable inverter

If of f satisfying the conditions in Definition 5. Let T be polynomial in the security
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Game G1 : q $← Q; s← IF (q)

Game G2 :
q $← Q;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← Q; p← x⊘ q;
a← If (x); i← i+ 1

end;
if a 6= ⊥ then s← (a, p) else s← ⊥

Game G3 :
q $← Q;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← Q; a← If (x); i← i+ 1
end;
p← x⊘ q;
if a 6= ⊥ then s← (a, p) else s← ⊥

Game G4 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← Q; a← If (x); i← i+ 1
end;
p $← P ;
if a 6= ⊥ then s← (a, p) else s← ⊥

Game G5 G6 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← Q; a← If (x); i← i+ 1
end;
p $← P ;
if a 6= ⊥ then a $← A; s← (a, p)
else bad← true;

s← ⊥ a $← A; s← (a, p)

Game G7 : s $← A× P

Figure 7: Sequence of games used in Theorem 2

parameter. Using If , we build a partial inverter IF of F that satisfies the properties in

Definition 6:

IF (q) : i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
p $← P ;
x← p⊛ q;
a← If (x);
i← i+ 1

end;
if a 6= ⊥ then return (a, p) else return ⊥

The partial inverter IF runs in time tIF
= (T + 1) tIf

, where tIf
is a bound on the

running time of If . Hence, IF is polynomial-time.

We prove that

|= q $← Q; s← IF (q) ≃
∅
{s} s $← A× P � ǫ′ (6)

using the sequence of games G1, . . . ,G7 shown in Figure 7, the mechanized program

transformations of CertiCrypt, and the proof rules for observational and approximate

observational equivalence. We briefly describe the proof below.

We obtain game G2 by first inlining the call to IF in the initial game and then

applying the algebraic equivalence (4) to transform the body of the while loop.

Game G3 is obtained by moving the assignment to p outside the loop in game G2.

This transformation is semantics-preserving because p is never used inside the loop
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and the value that it has when exiting the loop only depends on the value of x in the

last iteration. Formally, this is proven by unfolding the first iteration of the loop and

establishing that the relation

={i,x,a,q} ∧ (p = x⊘ q)〈1〉

is a relational invariant between the loop in G2 and the loop resulting from removing

the assignment to p. By appending p← x⊘q to the latter loop, we recover equivalence

on p.

Observe that games G2 and G3 use operation ⊘, which might not be computable

in polynomial-time (for elliptic curve groups, it would require computing a discrete

logarithm). This is a valid proof technique that does not undermine the validity of the

analysis; we prove all necessary equivalences.

Since q is no longer used inside the loop, we can postpone choosing it after the

loop and use the algebraic equivalence (5) to sample p instead of q. We obtain G4 by

additionally removing the assignment to q, which is now dead code.

For the next step in the proof we use the fact that f is a weak encoding and therefore

the distribution of a after a call a ← If (x) conditioned to a 6= ⊥ is ǫ-away from the

uniform distribution. This allows us to re-sample the value of a after the loop, provided

a 6= ⊥, incurring a penalty ǫ on the statistical distance of the distribution of s between

G4 and G5. To prove this formally, let b be the condition of the loop and c its body.

Observe that the semantics of the loop coincides with the semantics of its (T + 1)-
unrolling [while b do c]T+1. We show by induction on T that for any [0, 1]-valued

functions f, g s.t. f ={a′} g,

m1={a,i}m2 ∧ m1(a) = ⊥ =⇒ |Jc1Km1 f
′−Jc2Km2 g

′| ≤ ǫ

where
c1 = [while b do c]T+1; if a 6= ⊥ then a′ ← a
c2 = [while b do c]T+1; if a 6= ⊥ then a′ $← A
f ′(m) = if m(a) 6= ⊥ then f(m) else 0
g′(m) = if m(a) 6= ⊥ then g(m) else 0

and use this to conclude the ǫ-approximate equivalence of G4 and G5.

Since G5 and G6 are syntactically equivalent except for code appearing after the

flag bad is set, we apply the corollary of the Fundamental Lemma in Section 3.2 to

obtain the bound

LG5,G6M � Pr [G5 : bad]

Since the probability of failure of If on a uniformly chosen input is upper-bounded by

1− α−1, we can show by induction on T that

Pr [G5 : bad] ≤
(

1− α−1
)T+1

,

from which we conclude |= G5 ≃
∅
{s} G6 �

(

1− α−1
)T+1

.

By coalescing the branches in the conditional at the end of G6 and removing dead

code, we prove that the game is observational equivalent w.r.t. a and p to the game

a $← A; p $← P ; s← (a, p), which is trivially equivalent to G7.
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By composing the above results, we conclude

|= G1 ≃
∅
{s} G7 � ǫ+

(

1− α−1
)T+1

(7)

We must also show that s = ⊥ ∨ F (s) = q is a post-condition of G1. As G1 and

G3 are observationally equivalent with respect to s and q, it is sufficient to establish the

validity of the post-condition for G3. We show that a 6= ⊥ ⇒ x = f(a) is an invariant

of the loop. When the loop finishes, either a = ⊥ and in this case s = ⊥, or a 6= ⊥
and we have F (s) = p⊙ f(a) = (x⊘ q)⊙ x = q.

Finally, we show that the composition of an admissible encoding f : S → R and a

random oracle into S is indifferentiable from a random oracle into R.

Theorem 3. Let f : S → R be an ǫ-admissible encoding with inverter algorithm

If and let G : {0, 1}∗ → S be a random oracle. Then, f ◦ G is (tS , tD, q1, q2, ǫ
′)-

indifferentiable from a random oracle into R, where tS = q1 tIf
and ǫ′ = 2(q1 + q2)ǫ.

Before moving to the proof of Theorem 3, we prove the following useful result.

Lemma 4. Let f : S → R be an ǫ-admissible encoding with inverter algorithm If .

Then

|= s $← S; r ← f(s) ≃∅
{r,s} r $← R; s← If (r) � 2ǫ

Proof. Define

ci
def
= s $← S; r← f(s)

cf
def
= r $← R; s← If (r)

c1
def
= ci; if s = ⊥ then r $← R else r ← f(s)

c2
def
= cf ; if s = ⊥ then bad← true; r $← R else r ← f(s)

c3
def
= cf ; if s = ⊥ then bad← true else r← f(s)

Since the first branch of the conditional in c1 is never executed, we have:

|= ci ≃
∅
{r,s} c1

Due to the second property of Definition 6, the distributions of s after executing ci and

cf are ǫ-away. Using the rules for approximate observational equivalence, we obtain

|= c1 ≃
∅
{r,s} c2 � ǫ

The corollary to the Fundamental Lemma in Section 3.2 implies that Lc2, c3M �
Pr [c2 : bad]. Moreover,

Pr [c2 : bad] = 1− Pr [cf : s 6= ⊥] = Pr [s $← S : s 6= ⊥]− Pr [cf : s 6= ⊥] ≤ ǫ

where the last inequality holds again because of the second property of Definition 6.

Since the final values of r and s in programs c2 and c3 are independent of the initial

memory, we have

|= c2 ≃
∅
{r,s} c3 � ǫ

Because If is a partial inverter for f , the else branch of the conditional in c3 has

no effect and can be removed, and thus |= c3 ≃
∅
{r,s} cf . We conclude by transitivity of

approximate observational equivalence.
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Game G : L1,L2 ← nil; b← DHG ,G( )

OracleHG(x) :
if x /∈ dom(L2) then
s← G(x); r← f(s); L2(x)← r

return L2(x)

Oracle G(x) :
if x /∈ dom(L1) then
s $← S; L1(x)← s

return L1(x)

Game G′ : L1,L2 ← nil; b← DF ,SF

( )

Oracle F(x) :
if x /∈ dom(L2) then
r $← R; L2(x)← r

return L2(x)

Oracle SF (x) :
if x /∈ dom(L1) then
r← F(x); s← If (r); L1(x)← s

return L1(x)

Game G1 : L← nil; b← AO( )

Oracle O(x) :
if x /∈ dom(L) then
s $← S; r ← f(s); L(x)← (s, r)

return L(x)

Game G2 : L← nil; b← AO( )

Oracle O(x) :
if x /∈ dom(L) then
r $← R; r ← If (r); L(x)← (s, r)

return L(x)

Game Gbad

1 : L← nil; b← AO( )

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then
s $← S; r ← f(s)

else bad← true; s $← S; r← f(s)
L(x)← (s, r)

return L(x)

Game Gbad

2 : L← nil; b← AO( )

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then
s $← S; r ← f(s)

else bad←true; r $← R; s← If (r)
L(x)← (s, r)

return L(x)

Figure 8: Games used in the proof of Theorem 3

Proof of Theorem 3. Let D be a distinguisher against the indifferentiability of H =
f ◦ G from a random oracle F into R. We show that the simulator S constructed

as If ◦ F is good enough, i.e. D cannot distinguish with probability greater than ǫ′

between a game G where it is givenH and G as oracles and a game G′ where it is given

F and S instead. An overview of the proof, including these two games is shown in

Figure 8.

Our goal is to prove

|Pr [G : b = true]− Pr [G′ : b = true] | ≤ 2(q1 + q2)ǫ (8)

The crux of the proof is an application of Lemma 2. In order to apply it, we need

first to transform game G (resp. G′) to replace oracles H and G (resp. F and S) by

a single joint oracle that simultaneously returns the responses of both. Using D, we

construct an adversary A with access to a single joint oracle, such that game G (resp.

G′) is equivalent to game G1 (resp. G2) in the figure. Adversary A simply calls the

distinguisherD and forwards the value it returns; it simulatesH and G (resp. F and S)

by using its own oracle O.
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We assume, as Brier et al. [13] do, that whenever the distinguisher makes a query

x to one of its oracles, it also makes the same query to its other oracle. Under this

assumption, game G is equivalent to G1, and game G′ is equivalent to G2. We thus

have:

Pr [G : b = true] = Pr [G1 : b = true] Pr [G′ : b = true] = Pr [G2 : b = true]

Furthermore, since D makes at most q1 and q2 queries to each of its oracles, A makes

at most q = q1 + q2 queries to its joint oracle.

We next transform the implementation of oracle O in game G1 so that its behavior

after the first q queries is the same as in G2. This transformation will pave the way to

applying Lemma 2. The desired behavior of oracle O is represented in game Gbad
2 .

Observe that Gbad

2 is annotated with a flag bad that is set to true when the allotted

number of queries is reached. This is because we essentially rely on Lemma 3 to

justify the equivalence between G1 and Gbad

2 . To apply this lemma we need however

to introduce an intermediate game Gbad

1 . Since G1 and Gbad

1 are trivially equivalent,

we have

Pr [G1 : b = true] = Pr
[

Gbad

1 : b = true
]

An application of Lemma 3 between games Gbad

1 and Gbad

2 gives

Pr
[

Gbad

1 : b = true ∧ ¬bad
]

= Pr
[

Gbad

2 : b = true ∧ ¬bad
]

But since bad =⇒ q < |L| is an invariant and |L| ≤ q a post-condition of both Gbad

1

and Gbad
2 , we have

Pr
[

Gbad

1 : b = true
]

= Pr
[

Gbad

2 : b = true
]

We can now apply Lemma 2 to the games G2 and Gbad

2 , defining cntr = |L| and

h(i) = if i < q then 2ǫ else 0. The second hypothesis of the lemma, i.e. that a call to

E2(O) cannot decrease |L|, is immediate. We can assume that 2qǫ < 1 (otherwise the

theorem is trivially true). Then for any pair of initial and final memories m and m′,

∑

JcntrKm≤i<JcntrKm′

h(i) ≤ 2qǫ < 1, and h̄cntr(m,m′) =
∑

JcntrKm≤i<JcntrKm′

h(i)

We are only left to prove that

LE2(O), E
bad

2 (O)M � λm. JE2(O)K m (λm′. h̄cntr(m,m′))

A case analysis on the conditions x ∈ dom(L) and |L| < q yields three cases; two of

them yield a null distance and are immediate. The remaining case, where x /∈ dom(L)
and |L| < q, yields a distance of 2ǫ and follows from Lemma 4. We finally obtain

LG2,G
bad

2 M � 2(q1 + q2)ǫ, which entails

∣

∣Pr [G2 : b = true]− Pr
[

Gbad

2 : b = true
]∣

∣ ≤ 2(q1 + q2)ǫ

This, combined with the previous results implies the desired inequality.
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6 Application to Elliptic Curves

This section discusses the instantiation of the proof presented in the previous section

to hashing into elliptic curves. We proceed in two steps. First, we show that every

finite abelian group with an efficiently computable law can be given the structure of

a padding algebra that satisfies the hypotheses of Theorem 2. It follows that any effi-

ciently invertible encoding into such a group induces a hash function onto the group

that is indifferentiable from a random oracle. Second, we show that the set of points of

an elliptic curve form a finite abelian group with an efficiently computable law, and that

Icart’s function is an efficiently invertible encoding. The formalization of both steps in

the Coq proof assistant relies on independently developed libraries of mathematics. In

addition, it assumes standard mathematical results that are not formalized in Coq (e.g.

Cassels’ theorem).

We begin with some mathematical background, before describing the Coq formal-

ization.

6.1 Mathematical Background

6.1.1 Fundamental theorem of finite groups

The fundamental theorem of finite groups states that every finite abelian group (G,⊗)
is isomorphic to a product of cyclic groups Zn1

× · · · × Znk
. Moreover the decompo-

sition can be made unique by fixing additional conditions on n1 . . . nk. Assume that gi
is a generator of the group Zni

, for all 1 ≤ i ≤ k. Then for every group element x ∈ G

there exists a unique vector (z1, . . . , zk) ∈ Zn1
× · · · × Znk

such that

x = gz11 ⊗ · · · ⊗ gzkk

In the sequel, we use log x to denote (z1, . . . , zk) and ~g ~z to denote gz11 ⊗ · · · ⊗ gzkk , as

above.

6.1.2 Elliptic Curves over Finite Fields

Recall that the order of a finite field is of the form pm, where p is a prime number

called the characteristic of the field, and that finite fields of the same order are unique

up to isomorphism. In the following, we let Fn refer to any finite field of order n (i.e.

containing n elements).

For our purposes, it is sufficient to consider elliptic curves over fields of order pm

with p > 3, that is, finite fields of characteristic different from 2 and 3. For the sake

of readability, we specialize all our definitions to this case. Let a, b ∈ Fpm such that

4a3 + 27b2 6= 0. The elliptic curve induced by a and b contains all points (X,Y ) ∈
Fpm × Fpm that satisfy the Weierstrass equation

Y 2 = X3 + aX + b. (9)

Note that the condition on a and b is equivalent to requiring that the polynomial X3 +
aX+b has distinct roots, and ensures that the curve is non-singular (i.e. it has no cusps

or self-intersections) and is thus a proper elliptic curve.
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The set of points of an elliptic curve can be given the structure of an abelian group

by adding an additional “idealized” point at infinity O:

Ea,b(Fpm) = {(X,Y ) ∈ Fpm × Fpm | Y 2 = X3 + aX + b} ∪ {O}

The pointO behaves as the identity; the inverse of an element is given by equations

−O def
= O and − (X,Y ) def

= (X,−Y ).

The definition of the group law rests on the following property of elliptic curves, which

follows from Bézout’s theorem [28, Corollary 7.8]: The line defined by two points P1

and P2 in a curve2 intersects the curve at a third point P3 (which might coincide with

P1 or P2). The group law is defined as

P1 ⊕ P2
def
= − P3.

For an in-depth algebraic description of elliptic curves we refer the interested reader

to Hankerson et al. [27] or Silverman [41].

The construction of hash functions onto elliptic curves exploits the particular group

structure of this kind of curves; Cassels’ theorem [27, Theorem 3.12] states that every

elliptic curve Ea,b(Fn) over a finite field Fn is isomorphic to the product of the two

cyclic groups Zn1
× Zn2

where n1 and n2 are uniquely determined; moreover n2

divides both n1 and n−1. As an immediate corollary, observe that #Ea,b(Fn) = n1n2,

and that the group is cyclic when n2 = 1.

6.1.3 Encodings into elliptic curves

Brier et al. [13] present two encodings into elliptic curves: Icart’s function [30] and (a

simplified version of) the Shallue-Woestijne-Ulas (SWU) algorithm [39]. We review

their definition and prove that they can be computed and inverted in polynomial-time.

Icart’s encoding. Let p > 3 be a prime such that pm ≡ 2 (mod 3). Icart’s function

fa,b : Fpm → Ea,b(Fpm) is defined as:

fa,b(t)
def
=







(x, tx+ v) if t 6= 0

((−b)
1

3 , 0) if t = 0 ∧ a = 0
O if t = 0 ∧ a 6= 0

where x =

(

v2 − b−
t6

27

)
1

3

+
t2

3
v =

3a− t4

6t

As a side remark, observe that the original definition only deals with the case a 6= 0; the

definition for the case a = 0 was suggested to us by Icart in a private communication.

One can prove by computation that the image of t through fa,b belongs to the curve

Y 2 = X3 + aX + b for every t in Fpm . Moreover, the set of pre-images under Icart’s

2If P1 = P2 = (X0, Y0) we let {(X, Y ) ∈ Fn × Fn | α(X −X0) + β(Y − Y0) = 0} be the line

defined by P1 and P2, where α = 3X2

0
+ a and β = −2Y0.
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function of a point in the curve can be characterized as the set of roots of a polynomial

over Fpm :

f−1
a,b (O) =

{

{0} if a 6= 0
∅ if a = 0

f−1
a,b (X,Y ) =

{

{t | t3 − 6tX + 6Y = 0} if a = 0
{t | t4 − 6t2X + 6tY = 3a} if a 6= 0

Since the polynomials are of degree at most 4, every point in the curve has at most 4

pre-images. Moreover, the pre-images can be computed in polynomial-time using al-

gorithms for factoring polynomials over finite fields, e.g. Berlekamp’s algorithm. Thus,

Icart’s encoding is polynomially invertible.

The Shallue-Woestijne-Ulas (SWU) encoding. Let p > 3 be a prime such that

pm ≡ 3 (mod 4) and let a, b 6= 0 belong to Fpm . We use g(X) as a shorthand for

the polynomial X3 + aX + b. For every t ∈ Fpm we let

X1(t) = −ba
−1

(

1 + (t4 − t2)−1
)

X2(t) = −t
2X1(t) U(t) = t3g(X1(t))

Note that U(t)2 = −g(X1(t))g(X2(t)). As −1 is a quadratic non-residue in Fpm , it

follows that exactly one of g(X1(t)) and g(X2(t)) is a square and thus either X1(t)
or X2(t) is the abscissa of a point on the curve Y 2 = g(X) [23]. This motivates the

definition of the SWU function f ′
a,b as follows:

f ′
a,b(t)

def
=

{

(X1(t), g(X1(t))
1

2 ) if g(X1(t)) is a square

(X2(t), g(X2(t))
1

2 ) otherwise

To compute the pre-images t of a point (X,Y ) we need to solve equations X1(t) = X
and X2(t) = X , keeping the solutions that verify g(X1(t)) = Y 2 and g(X2(t)) = Y 2

respectively. Each of the constraints X1(t) = X and X2(t) = X can be reduced to a

polynomial equation and the inverse of the SWU function can be computed as

f ′−1
a,b(O) = ∅

f ′−1
a,b(X,Y ) =

{

t | −α1t
4 + α1t

2 − ba−1 = 0 ∧ g(X1(t)) = Y 2
}

∪
{

t | −ba−1t4 + α2t
2 − α2 = 0 ∧ g(X2(t)) = Y 2

}

where α1 = ba−1 + X and α2 = ba−1 − X . Since each polynomial has degree 4
and for every t, exactly one of g(X1(t)) and g(X2(t)) is a square, every point in the

curve admits at most 4 pre-images. As with Icart’s function, they can be computed in

polynomial-time using, for instance, the Berlekamp’s algorithm. Therefore, the SWU

encoding can be inverted in polynomial time.

Finally we claim that both encodings can be computed in polynomial time. This

basically amounts to verifying that square (in the case of the SWU function) and cubic

roots (in the case of Icart’s function) can be computed in polynomial-time, which is in

turn entailed by the restrictions imposed on the order pm of the field. More precisely,

for every x ∈ Fpm , condition pm ≡ 2 (mod 3) entails formula x1/3 = x2pm−1 while

condition pm ≡ 3 (mod 4) implies that x1/2 = x(pm+1)/4.
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6.2 Formalization in Coq

To instantiate our generic proof of indifferentiability to Icart’s encoding, we proceeded

as follows:

1. We showed that every finite abelian group G can be given the structure of a

padding algebra. The formalization exploits the fundamental theorem of finite

groups to decompose G as a product of cyclic groups Zn1
× · · · × Znk

. We set

P = Zn1
× · · · × Znk

, Q = G and:

~z ⊛ x = x⊗ ~g −~z ~z ⊙ x = x⊗ ~g ~z x1 ⊘ x2 = log (x1
−1 ⊗ x2).

Our formalization relies on the SSREFLECT standard library [26], which pro-

vides a wealth of results on finite abelian groups, including the fundamental

theorem of finite groups.

It follows from Theorems 1, 2 and 3 that one can build a hash function onto

G from a polynomially invertible function f : A → G and random oracles

G1 : {0, 1}∗ → A and G2 : {0, 1}∗ → Zn1
× · · · × Znk

.

Lemma 5 (Indifferentiable hashing into finite abelian groups). Let G be a finite

abelian group with an efficiently computable law. Let Zn1
× · · · × Znk

be the

decomposition of G as a product of cyclic groups and let gi be a generator of

Zni
for i = 1 . . . k. Assume that f : A→ G is a polynomial-time function such

that for each x, the set f−1(x) can be computed by a probabilistic polynomial-

time algorithm If and its size is bounded by B. Then, for any pair of random

oracles G1 : {0, 1}∗ → A and G2 : {0, 1}∗ → Zn1
× · · · ×Znk

and any value T
polynomial in the security parameter, the construction

H(m) def

= f(G1(m))⊗ ~g G2(m)

is (tS , tD, q1, q2, ǫ)-indifferentiable from a random oracle into G, where tS =

q1 (T + 1)tIf
and ǫ = 2(q1 + q2) (1−#A/(B #G))

T+1

2. We showed that the set of points of the elliptic curve Ea,b(Fpm) can be construed

as a finite abelian group. To carry out this step, we adapted Théry’s formaliza-

tion of elliptic curves [44] to match the definition of finite group used by SSRE-

FLECT. As a result, one obtains an instantiation of Lemma 5 to elliptic curves

(the fact that the group law is efficiently computable is assumed).

Given its complexity, we have not attempted to formalize the proof of Cassels’

theorem. However, Bartzia [10] are working towards completing a formalization

of Cassels’ theorem. Since their formalization is based on the SSREFLECT li-

brary of finite groups, it would be immediate to use it for specializing the lemma

further. Specifically, one could define G2,1 and G2,2 as the first and second pro-

jections of G2 and let

H(m) def
= f(G1(m))⊗ g1

G2,1(m) ⊗ g2
G2,2(m)

Under the previous assumptions, the function H is indifferentiable from a ran-

dom oracle;
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3. We defined Icart’s function fa,b, and showed that it generates points in the curve

Ea,b. This required showing the existence of cubic roots in the field Fpm when

pm ≡ 2 (mod 3). Moreover, we defined the inverse of Icart’s function, and

assumed that it is polynomially computable. Discharging this assumption would

require to show the existence of an efficient method for factoring polynomials

over the underlying field, and is left as future work (Berlekamp’s algorithm, for

instance, computes the roots of a polynomial of degree d over field Fn in time

O(d2 log3 n)). It then follows from Lemma 5 that fa,b induces a hash function

onto Ea,b(Fpm) that is (tS , tD, q1, q2, 2(q1 + q2)ǫ)-indifferentiable from a ran-

dom oracle into Ea,b(Fpm), where tS = q1 tIF
= q1 (T + 1) tf−1 and tf−1 is

an upper bound on the time needed to compute the pre-image of a point under

Icart’s function, i.e. to solve a polynomial of degree 4 in Fpm .

We could also instantiate Lemma 5 to the SWU encoding. However, this would

require showing that equality U(t)2 = −g(X1(t))g(X2(t)) entails that either X1(t) or

X2(t) is the abscissa of point on the curve Y 2 = g(X), which involves some reasoning

about quadratic residues. Nowak’s formalization of quadratic residues [34] would be a

good starting point.

Overall, the formalization consists of over 65,000 lines of Coq (without counting

components reused from the standard libraries of Coq and SSReflect), which break

down as follows: 45,000 lines corresponding to the original CertiCrypt framework,

3,500 lines of extensions to CertiCrypt, 7,000 lines written originally for our appli-

cation to indifferentiability, and 10,000 lines of a slightly adapted version of Théry’s

elliptic curve library [44].

We conclude this section with the observation that our work points to some un-

derdeveloped areas in formalized mathematics. Although there have been substantial

efforts to develop machine-checked libraries of mathematics, covering relevant topics

such as polynomials and finite fields, the libraries lack many important results. For

instance, we are not aware of any formalization of factorization algorithms for polyno-

mials over finite fields. Since such algorithms, and in particular Berlekamp’s algorithm,

are used by many computer algebra systems, we believe that it would be of general in-

terest to provide a machine-checked proof of their correctness. Moreover, elliptic curve

theory is a fascinating area of mathematics, and it would be particularly appealing to

develop formalizations of some of the most important results in the area.

7 Related Work

Weak Equivalences. Approximate observational equivalence can be construed as a

quantitative hyperproperty [16], and is closely related to approximate notions of prob-

abilistic bisimulations, see e.g. [18, 38, 45], and to quantitative information flow poli-

cies, see e.g. [15, 16, 35, 42]. Approximate observational equivalence can be further

generalized by adding a multiplicative skew to statistical distance, as sketched at the

end of Section 4. The resulting notion is able to characterize differential privacy [19],

a notion of privacy that enjoys good composition results and enforces strong privacy

guarantees. Barthe et al. [8] report on extending the CertiCrypt framework with an

approximate probabilistic relational logic for reasoning about differential privacy.
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Hashing into Elliptic Curves. A number of highly relevant cryptographic construc-

tions, including identity based schemes [12] and password based key exchange pro-

tocols [11], require hashing into elliptic curves. Indeed, there have been a number of

proposals for such hash functions, e.g. [23, 30, 39]. Recently, Farashahi et al. [21] de-

veloped powerful techniques to show the indifferentiability of hash function construc-

tions based on deterministic encodings. Their results improve on [13], in the sense that

they apply to a larger class of encodings, including encodings to hyperelliptic curves,

and that they provide tighter bounds for encodings that are covered by both methods.

Formalization and Verification of Cryptography Despite their widespread use,

hash functions and elliptic curves have received little attention from the formal verifica-

tion community. To our best knowledge, our work provides the first machine-checked

proof of security for a cryptographic primitive based on elliptic curves, and the first

proof of security for a cryptographic hash function.

Previous works on the formalization of elliptic curves include [29, 44]. Hurd et al.

[29] report on the verification in HOL of the group axioms and an application to the

functional correctness of ElGamal encryption. Théry and Hanrot [44] use Coq to for-

malize the group axioms, and show how the formalization of elliptic curves can be used

to build efficient reflective tactics for testing primality.

Other works on the formalization of hash functions include [3, 46]. Toma and Bor-

rione [46] use ACL2 to reason about functional properties of SHA-1. Backes et al.

[3] prove that the Merkle-Damgård construction is collision-resistant and indifferen-

tiable from a random oracle, provided the underlying compression function is collision-

resistant and input messages are padded using a prefix-free function.

8 Conclusion

This article reports on a machine-checked proof of a recent construction to build hash

functions that are indifferentiable from a random oracle into an elliptic curve. The

example is singular among other examples that have been formalized using CertiCrypt,

because it builds on large libraries of formalized mathematics.

Our work paves the way for further developments around CertiCrypt and Easy-

Crypt. We have already used approximate observational equivalence to verify in Cer-

tiCrypt statistical zero-knowledge for the so-called Generalized Schnorr Protocols, and

used the formalization as a back-end for a certified zero-knowledge compiler [1]. We

have also enhanced EasyCrypt [6], an SMT-based verification tool based on the same

logic as CertiCrypt, so that it can manipulate the notions of approximate equivalence

considered in this article and in [8].
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