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Abstract. f -divergences form a class of measures of distance between proba-

bility distributions; they are widely used in areas such as information theory and

signal processing. In this paper, we unveil a new connection between f -diver-

gences and differential privacy, a confidentiality policy that provides strong pri-

vacy guarantees for private data-mining; specifically, we observe that the notion

of α-distance used to characterize approximate differential privacy is an instance

of the family of f -divergences. Building on this observation, we generalize to ar-

bitrary f -divergences the sequential composition theorem of differential privacy.

Then, we propose a relational program logic to prove upper bounds for the f -

divergence between two probabilistic programs. Our results allow us to revisit

the foundations of differential privacy under a new light, and to pave the way for

applications that use different instances of f -divergences.

1 Introduction

Differential privacy [12] is a policy that provides strong privacy guarantees in private

data analysis: informally, a randomized computation over a database D is differentially

private if the private data of individuals contributing to D is protected against arbitrary

adversaries with query access to D. Formally, let ǫ ≥ 0 and 0 ≤ δ ≤ 1: a randomized

algorithm c is (ǫ, δ)-differentially private if its output distributions for any two neigh-

bouring inputs x and y are (eǫ, δ)-close, i.e. for every event E:

Pr [c(x) : E] ≤ eǫ Pr [c(y) : E] + δ

where Pr [c(x) : E] denotes the probability of event E in the distribution obtained by

running c on input x. One key property of differential privacy is the existence of se-

quential and parallel composition theorems, which allows building differentially private

computations from smaller blocks. In this paper, we focus on the first theorem, which

states that the sequential composition of an (ǫ1, δ1)-differentially private algorithm with

an (ǫ2, δ2)-differentially private one yields an (ǫ1 + ǫ2, δ1 + δ2)-differentially private

algorithm.

f -divergences [2, 10] are convex functions that can be used to measure the distance be-

tween two distributions. The class of f -divergences includes many well-known notions



of distance, such as statistical distance, Kullback-Leibler divergence (relative entropy),

or Hellinger distance. Over the years, f -divergences have found multiple applications

in information theory, signal processing, pattern recognition, machine learning, and se-

curity. The practical motivation for this work is a recent application of f -divergences

to cryptography: in [24], Steinberger uses Hellinger distance to improve the security

analysis of key-alternating ciphers, a family of encryption schemes that encompasses

the Advanced Encryption Standard AES.

Deductive verification of differentially private computations. In [6], we develop an

approximate probabilistic Hoare logic, called apRHL, for reasoning about differential

privacy of randomized computations. The logic manipulates judgments of the form:

c1 ∼α,δ c2 : Ψ ⇒ Φ

where c1 and c2 are probabilistic imperative programs, α ≥ 1, 0 ≤ δ ≤ 1 and Ψ
and Φ are relations over states. As for its predecessor pRHL [5], the notion of valid

judgment rests on a lifting operator that turns a relation R over states into a relation

∼α,δ
R over distributions of states: formally, the judgment above is valid iff for every pair

of memories m1 and m2, m1 Ψ m2 implies (Jc1K m1) ∼
α,δ
Φ (Jc2K m2). The definition

of the lifting operator originates from probabilistic process algebra [15], and has close

connections with flow networks and the Kantorovich metric [11].

apRHL judgments characterize differential privacy, in the sense that c is (ǫ, δ)-dif-

ferentially private iff the apRHL judgment c ∼eǫ,δ Ψ : c ⇒ ≡ is valid, where Ψ is

a logical characterization of adjacency—for instance, two lists of the same length are

adjacent if they differ in a single element.

Problem statement and contributions. The goal of this paper is to lay the theoreti-

cal foundations for tool-supported reasoning about f -divergences between probabilistic

computations. To achieve this goal, we start from [6] and take the following steps:

1. as a preliminary observation, we prove that the notion of α-distance used to char-

acterize differential privacy is in fact an f -divergence;

2. we define a notion of composability of f -divergences and generalize the sequential

composition theorem of differential privacy to composable divergences;

3. we generalize the notion of lifting used in apRHL to composable f -divergences;
4. we define fpRHL, a probabilistic relational Hoare logic for f -divergences, and

prove its soundness.

Related work. The problem of computing the distance between two probabilistic com-

putations has been addressed in different areas of computer science, including machine

learning, stochastic systems, and security. We briefly point to some recent develop-

ments.

Methods for computing the distance between probabilistic automata have been stud-

ied by Cortes and co-authors [8, 9]; their work, which is motivated by machine-learning

applications, considers the Kullback-Leibler divergence as well as the Lp distance.

Approximate bisimulation for probabilistic automata has been studied, among oth-

ers, by Segala and Turrini [23] and by Tracol, Desharnais and Zhioua [25]. The sur-

vey [1] provides a more extensive account of the field.



In the field of security, approximate probabilistic bisimulation is closely connected

to quantitative information flow of probabilistic computations, which has been stud-

ied e.g. by Di Pierro, Hankin and Wiklicky [20]. More recently, the connections be-

tween quantitative information flow and differential privacy have been explored e.g.

by Barthe and Köpf [4], and by Alvim, Andrés, Chatzikokolakis and Palamidessi [3].

Moreover, several language-based methods have been developed for guaranteeing dif-

ferential privacy; these methods are based on runtime verification, such as PINQ [17]

or Airavat [22], type systems [21, 14], or deductive verification [7]. We refer to [19] for

a survey of programming languages methods for differential privacy.

2 Mathematical Preliminaries

In this section we review the representation of distributions used in our development

and recall the definition of f -divergences.

2.1 Probability Distributions

Throughout the presentation we consider distributions and sub-distributions over dis-

crete sets only. A probability distribution (resp. sub-distribution) over a set A is an

object µ : A→ [0, 1] such that
∑

a∈A µ(a) = 1 (resp.
∑

a∈A µ(a) ≤ 1). We let D(A)
(resp. D≤1(A)) be the set of distributions (resp. sub-distributions) over A.

Distributions are closed under convex combinations: given distributions (µi)i∈N in

D(A) and weights (wi)i∈N such that
∑

i∈N
wi = 1 and wi ≥ 0 for all i ∈ N, the

convex combination
∑

i∈N
wi µi is also a distribution over A. Thus, given µ ∈ D(A)

and M : A→ D(B), we define the distribution bind µM over B as
∑

a∈A µ(a)M(a).
Likewise, sub-distributions are closed under convex combinations.

2.2 f -divergences

Let F be the set of non-negative convex functions f : R+

0 → R
+

0 such that f is contin-

uous at 0 and f(1) = 0. Then each function in F induces a notion of distance between

probability distributions as follows:

Definition 1 (f -divergence). Given f ∈ F , the f -divergence∆f (µ1, µ2) between two

distributions µ1 and µ2 in D(A) is defined as:

∆f (µ1, µ2)
def

=
∑

a∈A

µ2(a)f

(

µ1(a)

µ2(a)

)

The definition adopts the following conventions, which are used consistently throughout

the paper:

0f (0/0) = 0 and 0f (t/0) = t lim
x→0+

xf (1/x) if t > 0

Moreover, if ∆f (µ1, µ2) ≤ δ we say that µ1 and µ2 are (f, δ)-close.



f -divergence f Simplified Form

Statistical distance SD(t) = 1
2
|t− 1| ∑

a∈A
1
2
|µ1(a)− µ2(a)|

Kullback-Leibler1 KL(t) = t ln(t)− t+ 1
∑

a∈A µ1(a) ln
(

µ1(a)
µ2(a)

)

Hellinger distance HD(t) = 1
2
(
√
t− 1)2

∑

a∈A
1
2

(

√

µ1(a)−
√

µ2(a)
)2

Fig. 1. Examples of f -divergences.

When defining f -divergences one usually allows f to take positive as well as negative

values in R. For technical reasons, however, we consider only non-negative functions.

We now show that we can adopt this restriction without loss of generality.

Proposition 1. Let F ′ be defined as F , except that we allow f ∈ F ′ to take negative

values. Then for every f ∈ F ′ there exists g ∈ F given by g(t) = f(t)− f ′
−(1)(t− 1),

such that ∆f = ∆g . (Here f ′
− denotes the left derivative of f , whose existence can be

guaranteed from the convexity of f .)

The class of f -divergences includes several popular instances; these include sta-

tistical distance, relative entropy (also known as Kullback-Leibler divergence), and

Hellinger distance. In Figure 1 we summarize the convex function used to define each

of them and we also include a simplified form, useful to compute the divergence. (In

case of negative functions, we previously apply the transformation mentioned in Propo-

sition 1, so that we are consistent with our definition of f -divergences.)

In general, ∆f does not define a metric. The symmetry axiom might be violated and

the triangle inequality holds only if f equals a non-negative multiple of the statistical

distance. The identity of indiscernibles does not hold in general, either.

3 A Sequential Composition Theorem for f -divergences

In this section we show that the notion of α-distance used to capture differential privacy

is an f -divergence. Then we define the composition of f -divergences and show that the

sequential composition theorem of differential privacy generalizes to this setting.

3.1 An f -divergence for Approximate Differential Privacy

In [6] we introduced the concept of α-distance to succinctly capture the notion of dif-

ferentially private computations. Given α ≥ 1, the α-distance between distributions µ1

and µ2 in D(A) is defined as

∆α(µ1, µ2)
def
= max

E⊆A
dα(µ1(E), µ2(E))

1 Rigorously speaking, the function used for defining the Kullback-Leibler divergence should

be given by f(t) = t ln(t) + t− 1 if t > 0 and f(t) = 1 if t = 0 to guarantee its continuity

at 0.



where dα(a, b)
def
= max{a − αb, 0}. (This definition slightly departs from that of [6],

in the sense that we consider an asymmetric version of the α-distance. The original

version, symmetric, corresponds to taking dα(a, b)
def
= max{a−αb, b−αa, 0}). Now

we can recast the definition of differential privacy in terms of the α-distance and say

that a randomized computation c is (ǫ, δ)-differentially private iff ∆eǫ(c(x), c(y)) ≤ δ
for any two adjacent inputs x and y.

Our composition result of f -divergences builds on the observation that α-distance

is an instance of the class of f -divergences.

Proposition 2. For every α ≥ 1, the α-distance ∆α(µ1, µ2) coincides with the f -di-

vergence ∆ADα
(µ1, µ2) associated to function ADα(t)

def

= max{t− α, 0}.

3.2 Composition

One key property of f -divergences is a monotonicity result referred to as the data pro-

cessing inequality [18]. In our setting, it is captured by the following proposition:

Proposition 3. Let µ1,µ2 ∈ D(A), M : A→ D(B) and f ∈ F . Then

∆f (bind µ1 M, bind µ2 M) ≤ ∆f (µ1, µ2)

In comparison, the sequential composition theorem for differential privacy [16] is cap-

tured by the following theorem.

Theorem 1. Let µ1,µ2 ∈ D(A), M1,M2 : A→ D(B) and α, α′ ≥ 1. Then

∆αα′(bind µ1 M1, bind µ2 M2) ≤ ∆α(µ1, µ2) + max
a

∆α′(M1(a),M2(a))

Note that the data processing inequality for α-distance corresponds to the composition

theorem for the degenerate case where M1 and M2 are equal. The goal of this paragraph

is to generalize the sequential composition theorem to f -divergences. To this end, we

first define a notion of composability between f -divergences.

Definition 2 (f -divergence composability). Let f1, f2, f3 ∈ F . We say that (f1, f2)
is f3-composable iff for all µ1, µ2 ∈ D(A) and M1,M2 : A → D(B), there exists

µ3 ∈ D(A) such that

∆f3(bind µ1 M1, bind µ2 M2) ≤ ∆f1(µ1, µ2) +
∑

a∈A

µ3(a)∆f2(M1(a),M2(a))

Our notion of composability is connected to the notion of additive information mea-

sures from [13, Ch. 5]. To justify the connection, we first present an adaptation of their

definition to our setting.

Definition 3 (f -divergence additivity). Let f1, f2, f3 ∈ F . We say that (f1, f2) is

f3-additive iff for all distributions µ1, µ2 ∈ D(A) and µ′
1, µ

′
2 ∈ D(B),

∆f3(µ1 × µ′
1, µ2 × µ′

2) ≤ ∆f1(µ1, µ2) +∆f2(µ
′
1, µ

′
2)

Here, µ×µ′ denotes the product distribution ofµ andµ′, i.e. (µ×µ′)(a, b) def

= µ(a)µ′(b).



It is easily seen that composability entails additivity.

Proposition 4. Let f1, f2, f3 ∈ F such that (f1, f2) is f3-composable. Then (f1, f2) is

f3-additive.

The f -divergences from Figure 1 present good behaviour under composition. The statis-

tical distance, Hellinger distance and the Kullback-Leibler divergence are composable

w.r.t. themselves. Moreover, α-divergences are composable.

Proposition 5.

• (SD, SD) is SD-composable;

• (KL,KL) is KL-composable;

• (HD,HD) is HD-composable;

• (ADα1
,ADα2

) is ADα1α2
-composable for every α1, α2 ≥ 1.

The sequential composition theorem of differential privacy extends naturally to the class

of composable divergences.

Theorem 2. Let f1, f2, f3 ∈ F . If (f1, f2) is f3-composable, then for allµ1, µ2 ∈ D(A)
and all M1,M2 : A→ D(B),

∆f3(bind µ1 M1, bind µ2 M2) ≤ ∆f1(µ1, µ2) + max
a

∆f2(M1(a),M2(a))

Theorem 2 will be the cornerstone for deriving the sequential composition rule of

fpRHL. (As an intermediate step, we first show that the composition result extends

to relation liftings.)

4 Lifting

The definition of valid apRHL judgment rests on the notion of lifting. As a last step

before defining our relational logic, we extend the notion of lifting to f -divergences.

One key difference between our definition and that of [6] is that the former uses two

witnesses, rather than one. In the remainder, we let supp (µ) denote the set of elements

a ∈ A such that µ(a) > 0. Moreover, given µ ∈ D(A×B), we define π1(µ) and π2(µ)
by the clauses π1(µ)(a) =

∑

b∈B µ(a, b) and π2(µ)(b) =
∑

a∈A µ(a, b).

Definition 4 (Lifting). Let f ∈ F and δ ∈ R
+

0
. Then (f, δ)-lifting ∼f,δ

R of a relation

R ⊆ A × B is defined as follows: given µ1 ∈ D(A) and µ2 ∈ D(B), µ1 ∼
f,δ
R µ2

iff there exist µL, µR ∈ D(A × B) such that: i) supp (µL) ⊆ R; ii) supp (µR) ⊆ R;

iii) π1(µL) = µ1; iv) π2(µR) = µ2 and v) ∆f (µL, µR) ≤ δ. The distributions µL and

µR are called the left and right witnesses for the lifting, respectively.

A pleasing consequence of our definition is that the witnesses for relating two distribu-

tions are themselves distributions, rather than sub-distributions; this is in contrast with

our earlier definition from [6], where witnesses for the equality relation are necessarily

sub-distributions. Moreover, our definition is logically equivalent to the original one

from [15], provided δ = 0, and f satisfies the identity of indiscernibles. In the case

of statistical distance and α-distance, our definition also has a precise mathematical

relationship with (an asymmetric variant of) the lifting used in [6].



Proposition 6. Let α ≥ 1, µ1 ∈ D(A) and µ2 ∈ D(B). If µ1 ∼
ADα,δ
R µ2 then there

exists a sub-distribution µ ∈ D(A × B) such that: i) supp (µ) ⊆ R; ii) π1(µ) ≤ µ1;

iii) π2(µ) ≤ µ2 and iv) ∆α(µ1, π1µ) ≤ δ, where≤ denotes the natural pointwise order

on the space of sub-distributions, i.e. µ ≤ µ′ iff µ(a) ≤ µ′(a) for all a.

We briefly review some key properties of liftings. The first result characterizes liftings

over equivalence relations, and will be used to show that f -divergences can be charac-

terized by our logic.

Proposition 7 (Lifting of equivalence relations). Let R be an equivalence relation

over A and let µ1, µ2 ∈ D(A). Then,

µ1 ∼
f,δ
R µ2 ⇐⇒ ∆f (µ1/R, µ2/R) ≤ δ,

where µ/R is a distribution over the quotient set A/R, defined as (µ/R)([a]) def

= µ([a]).
In particular, if R is the equality relation ≡, we have

µ1 ∼
f,δ
≡ µ2 ⇐⇒ ∆f (µ1, µ2) ≤ δ

Our next result allows deriving probability claims from lifting judgments. Given

R ⊆ A× B we say that the subsets A0 ⊆ A and B0 ⊆ B are R-equivalent, and write

A0 =R B0, iff for every a ∈ A and b ∈ B, a R b implies a ∈ A0 ⇐⇒ b ∈ B0.

Proposition 8 (Fundamental property of lifting). Let µ1 ∈ D(A), µ2 ∈ D(B), and

R ⊆ A×B. Then, for any two events A0 ⊆ A and B0 ⊆ B,

µ1 ∼
f,δ
R µ2 ∧A0 =R B0 =⇒ µ2(B0) f

(

µ1(A0)

µ2(B0)

)

≤ δ

Our final result generalizes the sequential composition theorem from the previous

section to arbitrary liftings.

Proposition 9 (Lifting composition). Let f1, f2, f3 ∈ F such that (f1, f2) is f3-

composable. Moreover let µ1 ∈ D(A), µ2 ∈ D(B), M1 : A → D(A′) and

M2 : B → D(B′). If µ1 ∼
f1,δ1
R1

µ2 and M1(a) ∼
f2,δ2
R2

M2(b) for all a and b such

that a R b, then

(bind µ1 M1) ∼
f3,δ1+δ2
R2

(bind µ2 M2)

5 A Relational Logic for f -divergences

Building on the results of the previous section, we define a relational logic, called

fpRHL, for proving upper bounds for the f -divergence between probabilistic com-

putations written in a simple imperative language.



5.1 Programming Language

We consider programs written in a probabilistic imperative language pWHILE. The

syntax of the programming language is defined inductively as follows:

C ::= skip nop

| V ← E deterministic assignment

| V $← DE random assignment

| if E then C else C conditional

| while E do C while loop

| C; C sequence

Here V is a set of variables, E is a set of deterministic expressions, and DE is a set

of expressions that denote distributions from which values are sampled in random as-

signments. Program states or memories are mappings from variables to values. More

precisely, memories map a variable v of type T to a value in its interpretation JT K. We

useM to denote the set of memories. Programs are interpreted as functions from initial

memories to sub-distributions over memories. The semantics, which is given in Fig-

ure 2, is based on two evaluation functions J·KE and J·KDE for expressions and distribu-

tion expressions; these functions respectively map memories to values and memories to

sub-distributions of values. Moreover, the definition uses the operator unit, which maps

every a ∈ A to the unique distribution over A that assigns probability 1 to a and proba-

bility 0 to every other element of A, and the null distribution µ0, that assigns probability

0 to all elements of A. Note that the semantics of programs is a map from memories to

sub-distributions over memories. Sub-distributions, rather than distributions, are used to

model probabilistic non-termination. However, for the sake of simplicity, in the current

development of the logic, we only consider programs that terminate with probability 1
on all inputs and leave the general case for future work.

JskipK m = unit m

Jc; c′K m = bind (JcK m) Jc′K

Jx← eK m = unit (m {JeKE m/x})
Jx $← µK m = bind (JµKDE m) (λv. unit (m {v/x}))
Jif e then c1 else c2K m = if (JeKE m = true) then (Jc1K m) else (Jc2K m)

Jwhile e do cK m = λf. supn∈N
(J[while e do c]nK m f)

where
[while e do c]0 = if (JeKE m = true) then (unitm) else µ0

[while e do c]n+1 = if e then c; [while e do c]n

Fig. 2. Semantics of programs.

5.2 Judgments

fpRHL judgments are of the form c1 ∼f,δ c2 : Ψ ⇒ Φ, where c1 and c2 are programs,

Ψ and Φ are relational assertions, f ∈ F and δ ∈ R
+

0 . Relational assertions are first-



order formulae over generalized expressions, i.e. expressions in which variables are

tagged with a 〈1〉 or 〈2〉. Relational expressions are interpreted as formulae over pairs

of memories, and the tag on a variable is used to indicate whether its interpretation

should be taken in the first or second memory. For instance, the relational assertion

x〈1〉 = x〈2〉 states that the values of x coincide in the first and second memories. More

generally, we use ≡ to denote the relational assertion that states that the values of all

variables coincide in the first and second memories.

An fpRHL judgment is valid iff for every pair of memories related by the pre-

condition Ψ , the corresponding pair of output distributions is related by the (f, δ)-lifting

of the post-condition Φ.

Definition 5 (Validity in fpRHL). A judgment c1 ∼f,δ c2 : Ψ ⇒ Φ is valid, written

|= c1 ∼f,δ c2 : Ψ ⇒ Φ, iff

∀m1,m2 •m1 Ψ m2 =⇒ (Jc1K m1) ∼
f,δ
Φ (Jc2K m2)

fpRHL judgments provide a characterization of f -divergence. Concretely, judgments

with the identity relation as post-condition can be used to derive (f, δ)-closeness results.

Proposition 10. If |= c1 ∼f,δ c2 : Ψ ⇒ ≡, then for all memories m1,m2,

m1 Ψ m2 =⇒ ∆f (Jc1K m1, Jc2K m2) ≤ δ

Moreover, fpRHL characterizes continuity properties of probabilistic programs. We

assume a continuity model in which programs are executed on random inputs, i.e. dis-

tributions of initial memories, and we use f -divergences as metrics to compare program

inputs and outputs.

Proposition 11. Let f1, f2, f3 ∈ F such that (f1, f2) is f3-composable. If we have

|= c1 ∼f2,δ2 c2 : ≡ ⇒ ≡, then for any two distributions of initial memories µ1 and µ2,

∆f1(µ1, µ2) ≤ δ1 =⇒ ∆f3(bind µ1 Jc1K, bind µ2 Jc2K) ≤ δ1 + δ2

Finally, we can use judgments with arbitrary post-condictions to relate the probabili-

ties of single events in two programs. This is used, e.g. in the context of game-based

cryptographic proofs.

Proposition 12. If |= c1 ∼f,δ c2 : Ψ ⇒ Φ, then for all memories m1,m2 and events

E1, E2,

m1 Ψ m2 ∧ E1 =Φ E2 =⇒ Pr [c2(m2) : E2] f

(

Pr [c1(m1) : E1]

Pr [c2(m2) : E2]

)

≤ δ

5.3 Proof System

Figure 3 presents a set of core rules for reasoning about the validity of an fpRHL

judgment. All the rules are transpositions of rules from apRHL [6]. However, fpRHL

rules do no directly generalize their counterparts from apRHL. This is because both

logics admit symmetric and asymmetric versions, but apRHL and fpRHL are opposite



∀m1,m2 •m1 Ψ m2 =⇒ (m1 {Je1K m1/x1}) Φ (m2 {Je2K m2/x2})
⊢ x1 ← e1 ∼f,0 x2 ← e2 : Ψ ⇒ Φ

[assn]

∀m1, m2 •m1 Ψ m2 =⇒ ∆f (Jµ1KDE m1, Jµ2KDE m2) ≤ δ

⊢ x1
$← µ1 ∼f,δ x2

$← µ2 : Ψ ⇒ x1〈1〉 = x2〈2〉
[rand]

Ψ =⇒ b〈1〉 ≡ b′〈2〉
⊢ c1 ∼f,δ c′1 : Ψ ∧ b〈1〉 ⇒ Φ ⊢ c2 ∼f,δ c′2 : Ψ ∧ ¬b〈1〉 ⇒ Φ

⊢ if b then c1 else c2 ∼f,δ if b′ then c′1 else c′2 : Ψ ⇒ Φ
[cond]

(f1, . . . , fn) composable and monotonic

Θ def
= b〈1〉 ≡ b′〈2〉 Ψ ∧ e〈1〉 ≤ 0 =⇒ ¬b〈1〉

⊢ c ∼f1,δ c′ : Ψ ∧ b〈1〉 ∧ b′〈2〉 ∧ e〈1〉 = k ⇒ Ψ ∧ Θ ∧ e〈1〉 < k

⊢ while b do c ∼fn,nδ while b′ do c′ : Ψ ∧Θ ∧ e〈1〉 ≤ n⇒ Ψ ∧ ¬b〈1〉 ∧ ¬b′〈2〉 [while]

⊢ skip ∼f,0 skip : Ψ ⇒ Ψ
[skip]

(f1, f2) is f3-composable

⊢ c1 ∼f1,δ1 c2 : Ψ⇒Φ′ ⊢ c′1 ∼f2,δ2 c′2 : Φ′⇒Φ

⊢ c1; c
′
1 ∼f3,δ1+δ2 c2; c

′
2 : Ψ ⇒ Φ

[seq]

⊢ c1 ∼f,δ c2 : Ψ ∧ Θ ⇒ Φ
⊢ c1 ∼f,δ c2 : Ψ ∧ ¬Θ ⇒ Φ

⊢ c1 ∼f,δ c2 : Ψ ⇒ Φ
[case]

⊢ c1 ∼f ′,δ′ c2 : Ψ ′ ⇒ Φ′

Ψ ⇒ Ψ ′ Φ′ ⇒ Φ f ≤ f ′ δ′ ≤ δ

⊢ c1 ∼f,δ c2 : Ψ ⇒ Φ
[weak]

Fig. 3. Core proof rules.

variants: fpRHL is asymmetric and apRHL is symmetric. Refer to Section 5.4 for a

discussion about the symmetric version of fpRHL.

We briefly describe some main rules, and refer the reader to [6] for a longer de-

scription about each of them. Rule [seq] relates two sequential compositions and is a

direct consequence from the lifting composition (see Proposition 9). Rule [while] re-

lates two loops that terminate in lockstep. The bound depends on the maximal number

of iterations of the loops, and we assume given a loop variant e that decreases at each

iteration, and is initially upper bounded by some constant n. We briefly explain the

side conditions: (f1, . . . , fn) is composable iff (fi, f1) is fi+1-composable for every

1 ≤ i < n. Moreover, (f1, . . . , fn) is monotonic iff fi ≤ fi+1 for 1 ≤ i < n. Note

that the rule is given for n ≥ 2; specialized rules exist for n = 0 and n = 1. This

rule readily specializes to reason about (ǫ, δ)-differential privacy by taking fi = ADαi ,

where α = eǫ.

If an fpRHL judgment is derivable using the rules of Figure 3, then it is valid.

Formally,

Proposition 13 (Soundness). If ⊢ c1 ∼f,δ c2 : Ψ ⇒ Φ then |= c1 ∼f,δ c2 : Ψ ⇒ Φ.



5.4 Symmetric Logic

One can also define a symmetric version of the logic by adding as an additional clause

in the definition of the lift relation that ∆f (µR, µL) ≤ δ. An instance of this logic is the

symmetric apRHL logic from [6]. All rules remain unchanged, except for the random

sampling rule that now requires the additional inequality to be checked in the premise

of the rule.

6 Conclusion

This paper makes two contributions: first, it unveils a connection between differen-

tial privacy and f -divergences. Second, it lays the foundations for reasoning about

f -divergences between randomized computations. As future work, we intend to im-

plement support for fpRHL in EasyCrypt [4], and formalize the results from [24].

We also intend to investigate the connection between our notion of lifting and flow

networks.
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