Verified
 Indifferentiable Hashing into Elliptic Curves

Santiago Zanella Béguelin ${ }^{1}$
Gilles Barthe ${ }^{2}$, Benjamin Grégoire ${ }^{3}$, Sylvain Heraud ${ }^{3}$ and Federico Olmedo ${ }^{2}$

Microsoft ${ }^{\text {* }}$
 Research

Microsoft Research Cambridge ${ }^{1}$

IMDEA Software Institute ${ }^{2}$

INRIA Sophia Antipolis-Méditerranée ${ }^{3}$

> 2012.03.26

POST 2012

Joint work with

Gilles Barthe

Benjamin Grégoire

Sylvain Heraud

Federico Olmedo

What is an elliptic-curve?

The points in the curve with the point at ∞ form an abelian group

Elliptic Curve Cryptography

Elliptic curve cryptography exploits the algebraic structure of elliptic curves over finite fields

- Based on the hardness of the discrete log problem on EC
- Known methods to solve ECDLP are exponential, compared to sub-exponential for solving RSA
- Achieves same level of security as e.g. RSA but more efficiently (shorter keys-224-bits vs. 2048-bits)

Why it is important to hash into an EC?

- Some useful functionalities can only be achieved efficiently using ECC
- Efficient pairings in Pairing-Based Cryptography are defined on elliptic curves
- Password Authenticated Key Exchange protocols, Identity-Based encryption, signature and signcryption schemes all require hashing into elliptic curves

Why it is important to hash into an EC?

- Some useful functionalities can only be achieved efficiently using ECC
- Efficient pairings in Pairing-Based Cryptography are defined on elliptic curves
- Password Authenticated Key Exchange protocols, Identity-Based encryption, signature and signcryption schemes all require hashing into elliptic curves

Boneh-Franklin IBE

Let $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ be bilinear pairing and $H:\{0,1\}^{*} \rightarrow \mathbb{G}_{1}$ a cryptographic hash function [...] The public key associated to an $i d \in\{0,1\}^{*}$ is $Q_{i d}=H(i d) \longleftarrow \mathbb{G}_{1}$ is an EC group

Why it is difficult to hash (securely) into an EC?

Given a hash function $h:\{0,1\}^{*} \rightarrow \mathbb{F}_{p}$, how to hash $m \in\{0,1\}^{*}$ into $E C\left(\mathbb{F}_{p}\right)$?
(1) Compute $x=h(m)$. If $\exists y$. $(x, y) \in E C\left(\mathbb{F}_{p}\right)$, return (x, y), otherwise increment x and try again.

- Vulnerable to timing attacks
- Inefficient
(2) Use a determinisitic encoding (e.g. Icart, SWU) $f: \mathbb{F}_{p} \rightarrow E C\left(\mathbb{F}_{p}\right)$: return $f(h(m))$
- Efficient
- Differentiable from a random oracle (not surjective / not uniform)

Security proofs of most cryptographic constructions model hash functions as ROs. Implementations are sound only if these hash functions are indifferentiable from a RO

Why it is difficult to hash (securely) into an EC?

Given a hash function $h:\{0,1\}^{*} \rightarrow \mathbb{F}_{p}$, how to hash $m \in\{0,1\}^{*}$ into $E C\left(\mathbb{F}_{p}\right)$?
(1) Compute $x=h(m)$. If $\exists y$. $(x, y) \in E C\left(\mathbb{F}_{p}\right)$, return (x, y), otherwise increment x and try again.

- Vulnerable to timing attacks
- Inefficient
(2) Use a determinisitic encoding (e.g. Icart, SWU) $f: \mathbb{F}_{p} \rightarrow E C\left(\mathbb{F}_{p}\right)$: return $f(h(m))$
- Efficient
- Differentiable from a random oracle (not surjective / not uniform)

Security proofs of most cryptographic constructions model hash functions as ROs. Implementations are sound only if these hash functions are indifferentiable from a RO

Indifferentiability

F with access to a $\mathrm{RO} h$ is $\left(t_{\mathcal{S}}, q, \epsilon\right)$-indifferentiable from a RO H if $\exists \mathcal{S}$ that runs in time $t_{\mathcal{S}}, \forall \mathcal{D}$ that makes at most q queries, $\left|\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{F, h}: b=1\right]-\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{H, S}: b=1\right]\right| \leq \epsilon$

In any secure cryptosystem, a random oracle H
can he renlaced with the construction F, which uses a random oracle h

Indifferentiability

F with access to a $\mathrm{RO} h$ is $\left(t_{\mathcal{S}}, q, \epsilon\right)$-indifferentiable from a RO H if $\exists \mathcal{S}$ that runs in time $t_{\mathcal{S}}, \forall \mathcal{D}$ that makes at most q queries, $\left|\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{F, h}: b=1\right]-\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{H, \mathcal{S}}: b=1\right]\right| \leq \epsilon$

In any secure cryptosystem, a random oracle H can be replaced with the construction F, which uses a random oracle h

Indifferentiability

F with access to a $\mathrm{RO} h$ is $\left(t_{\mathcal{S}}, q, \epsilon\right)$-indifferentiable from a RO H if $\exists \mathcal{S}$ that runs in time $t_{\mathcal{S}}, \forall \mathcal{D}$ that makes at most q queries, $\left|\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{F, h}: b=1\right]-\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{H, \mathcal{S}}: b=1\right]\right| \leq \epsilon$

In any secure cryptosystem, a random oracle H into $E C\left(\mathbb{F}_{p}\right)$ can be replaced with the construction F, which uses a random oracle h into $\mathbb{F}_{p} \times \mathbb{Z}_{N}$

Indifferentiable Hashing into Elliptic Curves

First indifferentiable construction proposed by Brier et al. in CRYPTO 2010. Given:

- $E C\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z}_{N}$ with generator g
- Efficiently invertible deterministic encoding $f: \mathbb{F}_{p} \rightarrow E C\left(\mathbb{F}_{p}\right)$
- Random Oracle $h_{1}:\{0,1\}^{*} \rightarrow \mathbb{F}_{p}$
- Random Oracle $h_{2}:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N}$

The construction

$$
H(m)=f\left(h_{1}(m)\right) \otimes g^{h_{2}(m)}
$$

is indifferentiable from a random oracle into $E C\left(\mathbb{F}_{p}\right)$

Indifferentiable Hashing into Elliptic Curves

First indifferentiable construction proposed by Brier et al. in CRYPTO 2010. Given:

- $E C\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z}_{N_{1}} \times \mathbb{Z}_{N_{2}}$ with generators g_{1}, g_{2}
- Efficiently invertible deterministic encoding $f: \mathbb{F}_{p} \rightarrow E C\left(\mathbb{F}_{p}\right)$
- Random Oracle $h_{1}:\{0,1\}^{*} \rightarrow \mathbb{F}_{p}$
- Random Oracle $h_{2}:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N_{1}}$
- Random Oracle $h_{3}:\{0,1\}^{*} \rightarrow \mathbb{Z}_{N_{2}}$

The construction

$$
H(m)=f\left(h_{1}(m)\right) \otimes g^{h_{2}(m)} \otimes g_{2}^{h_{3}(m)}
$$

is indifferentiable from a random oracle into $E C\left(\mathbb{F}_{p}\right)$

Observation

The group $E C\left(\mathbb{F}_{p}\right)$ is either cyclic or a product of two cyclic groups

The Provable Security paradigm

How can we rigorously prove the indifferentiability of Brier et al. construction?
(1) Define an adequate model for the distinguisher \mathcal{D}
(2) Describe a concrete simulator \mathcal{S}
(3) Define rigorously the ideal $\left(\mathcal{D}^{H, S}\right)$ and real $\left(\mathcal{D}^{F, h}\right)$ scenarios
(9) Bound the statistical distance between the two scenarios and the running time of \mathcal{S} as a function of the number of queries made by \mathcal{D}

Beyond Provable Security: Verifiable Security

How can we formally prove the indifferentiability of Brier et al. construction?

Build a framework to formalize cryptographic proofs

- Provide foundations to cryptographic proofs
- Use a notation as natural as possible for cryptographers
- Automate common reasoning patterns
- Support exact security
- Provide independently and automatically verifiable proofs

CertiCrypt: Language-based cryptographic proofs

Security definitions, assumptions and games are formalized using a probabilistic programming language
pWhile:

skip
$\mathcal{C} ; \mathcal{C}$
$\mathcal{V} \leftarrow \mathcal{E}$
$\mathcal{V} \leftarrow \mathcal{D} \mathcal{E}$
if \mathcal{E} then \mathcal{C} else \mathcal{C}
while \mathcal{E} do \mathcal{C}
$\mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E})$

$$
\begin{aligned}
& \text { nop } \\
& \text { sequence } \\
& \text { assignment } \\
& \text { random sampling } \\
& \text { conditional } \\
& \text { while loop } \\
& \text { procedure call }
\end{aligned}
$$

$x \leftrightarrow d$: sample the value of x according to distribution d

$$
\llbracket c \in \mathcal{C} \rrbracket: \mathcal{M} \rightarrow \operatorname{Distr}(\mathcal{M})
$$

Probabilistic Relational Hoare Logic

Probabilistic extension of Benton's Relational Hoare Logic
Judgments are of the form $c_{1} \simeq c_{2}: P \Rightarrow Q$, where $P, Q \subseteq \mathcal{M} \times \mathcal{M}$ are binary relations on memories

Definition

$$
\vDash c_{1} \sim c_{2}: P \Rightarrow Q \stackrel{\text { def }}{=}
$$

$$
\forall m_{1} m_{2}, m_{1} P m_{2} \Longrightarrow \llbracket c_{1} \rrbracket m_{1} \mathcal{L}(Q) \llbracket c_{2} \rrbracket m_{2}
$$

$\mathcal{L}(Q)$ lifts Q to a relation on distributions over memories
Observational equivalence $\vDash c_{1} \simeq_{O}^{\prime} c_{2}$, with $I, O \subseteq \mathcal{V}$ is a special case where:

$$
\begin{aligned}
& P=\left\{\left(m_{1}, m_{2}\right) \mid \forall x \in I, m_{1}(x)=m_{2}(x)\right\} \\
& Q=\left\{\left(m_{1}, m_{2}\right) \mid \forall x \in O, m_{1}(x)=m_{2}(x)\right\}
\end{aligned}
$$

From pRHL to probabilities

Assume

$$
\vDash c_{1} \sim c_{2}: P \Rightarrow Q
$$

For all pair of memories m_{1}, m_{2} such that

$$
P m_{1} m_{2}
$$

and events A, B such that

$$
Q \Longrightarrow(A\langle 1\rangle \Longrightarrow B\langle 2\rangle)
$$

we have

$$
\operatorname{Pr}\left[c_{1}, m_{1}: A\right] \leq \operatorname{Pr}\left[c_{2}, m_{2}: B\right]
$$

From pRHL to probabilities

Assume

$$
\vDash c_{1} \sim c_{2}: P \Rightarrow Q
$$

For all pair of memories m_{1}, m_{2} such that

$$
P m_{1} m_{2}
$$

and events A, B such that

$$
Q \Longrightarrow(A\langle 1\rangle \Longleftrightarrow B\langle 2\rangle)
$$

we have

$$
\operatorname{Pr}\left[c_{1}, m_{1}: A\right]=\operatorname{Pr}\left[c_{2}, m_{2}: B\right]
$$

Approximate Observational Equivalence

Simulation-based notions like ϵ-indifferentiability are naturally encoded as approximate equivalence of probabilistic programs

Definition

Approximate Observational Equivalence

$$
\begin{aligned}
\vDash & c_{1} \simeq_{O}^{\prime} c_{2} \preceq \epsilon \stackrel{\text { def }}{=} \\
& \forall m_{1} m_{2}, m_{1}=, m_{2} \Longrightarrow \\
& \Delta\left(\llbracket c_{1} \rrbracket m_{1} /=O, \llbracket c_{2} \rrbracket m_{2} /=0\right) \leq \epsilon
\end{aligned}
$$

Can be generalized to a full-fledged Approximate pRHL

Approximate Observational Equivalence

Simulation-based notions like ϵ-indifferentiability are naturally encoded as approximate equivalence of probabilistic programs

Definition

Approximate Observational Equivalence

$$
\begin{aligned}
\vDash & c_{1} \simeq_{O}^{\prime} c_{2} \preceq \epsilon \stackrel{\text { def }}{=} \\
& \forall m_{1} m_{2}, m_{1}=। m_{2} \Longrightarrow \\
& \forall A B,\left(m_{1}=O m_{2} \Longrightarrow\left(A\left(m_{1}\right) \Longleftrightarrow B\left(m_{2}\right)\right)\right) \Longrightarrow \\
& \left|\operatorname{Pr}\left[c_{1}, m_{1}: A\right]-\operatorname{Pr}\left[c_{2}, m_{2}: B\right]\right| \leq \epsilon
\end{aligned}
$$

Can be generalized to a full-fledged Approximate pRHL

Example: random sampling

$$
\frac{\epsilon=\Delta\left(\mu_{1}, \mu_{2}\right)}{\vDash x \underbrace{\S} \mu_{1} \simeq_{\prime \cup\{x\}}^{\prime} \times \stackrel{\&}{\leftarrow} \mu_{2} \preceq \epsilon}
$$

Sampling from uniform distributions:

$$
\vDash x \leftrightarrow\{0, . ., m-\delta\} \simeq_{\prime \cup\{x\}}^{\prime} x \leftrightarrow\{0, . ., m\} \preceq 1 / 2(A+C)=\delta / m
$$

Recap: what we want to prove

Given:

- An elliptic curve group $E C\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z}_{N}$ with generator g
- An efficiently invertible deterministic encoding $f: \mathbb{F}_{p} \rightarrow E C\left(\mathbb{F}_{p}\right)$
- A Random Oracle $h:\{0,1\}^{*} \rightarrow \mathbb{F}_{p} \times \mathbb{Z}_{N}$

Define

$$
F(u, z) \xlongequal{\text { def }} f(u)+g^{z}
$$

The construction $F \circ h:\{0,1\}^{*} \rightarrow E C\left(\mathbb{F}_{p}\right)$ is indifferentiable from a random oracle.

Recap: what we want to prove

$\exists \mathcal{S}$ that runs in time $t_{\mathcal{S}}, \forall \mathcal{D}$ that makes at most q queries, $\left|\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{F \circ h, h}: b=1\right]-\operatorname{Pr}\left[b \leftarrow \mathcal{D}^{H, \mathcal{S}}: b=1\right]\right| \leq \epsilon$

Proof sketch

(1) We show that an invertible encoding $f: S \rightarrow R$ is a weak encoding
(2) We show that a weak encoding is also an admissible encoding
(3) We show that an admissible encoding f composed with a random oracle $h:\{0,1\}^{*} \rightarrow S$ is indifferentiable from a random oracle into R

Example: main theorem

Theorem (Indifferentiability)
An ϵ-admissible encoding $f: S \rightarrow R$ composed with a random oracle $h:\{0,1\}^{*} \rightarrow S$ is indifferentiable from a random oracle

An ϵ-admissible encoding comes with an efficient inverter \mathcal{I}_{f} that satisfies:

$$
\vDash r \leftrightarrow R ; s \leftarrow \mathcal{I}_{f}(r) \simeq_{\{s\}}^{\emptyset} s \longleftarrow S \preceq \epsilon
$$

We prove first that

$$
\vDash s \nLeftarrow S ; r \leftarrow f(s) \simeq_{\{r, s\}}^{\emptyset} r \nleftarrow R ; s \leftarrow \mathcal{I}_{f}(r) \preceq 2 \epsilon
$$

Example: main theorem

Define

$$
\begin{array}{ll}
c_{i} & \stackrel{\text { def }}{=} s \nLeftarrow S ; r \leftarrow f(s) \\
c_{f} & \stackrel{\text { def }}{=} r \longleftarrow R ; s \leftarrow \mathcal{I}_{f}(r)
\end{array}
$$

$$
c_{1} \stackrel{\text { def }}{=} c_{i} ; \text { if } s=\perp \text { then } r \leftrightarrow R \text { else } r \leftarrow f(s)
$$

$$
c_{2} \stackrel{\text { def }}{=} c_{f} ; \text { if } s=\perp \text { then bad } \leftarrow \text { true; } r \leftrightarrow R \text { else } r \leftarrow f(s)
$$

$$
c_{3} \stackrel{\text { def }}{=} c_{f} ; \text { if } s=\perp \text { then bad } \leftarrow \text { true else } r \leftarrow f(s)
$$

The conditional in c_{1} is dead-code:

$$
\vDash c_{i} \simeq_{\{r, s\}}^{\emptyset} c_{1}
$$

Since sequential composition preserves statistical distance:

Since $\vDash s \nLeftarrow S \simeq_{\{s\}}^{\emptyset} c_{f} \preceq \epsilon$,

Example: main theorem

Define

$$
\begin{array}{ll}
c_{i} & \stackrel{\text { def }}{=} s \leftarrow S ; r \leftarrow f(s) \\
c_{f} & \stackrel{\text { def }}{=} r \longleftarrow R ; s \leftarrow \mathcal{I}_{f}(r)
\end{array}
$$

$c_{1} \quad \stackrel{\text { def }}{=} c_{i}$; if $s=\perp$ then $r \stackrel{\&}{\leftarrow}$ else $r \leftarrow f(s)$
$c_{2} \quad \stackrel{\text { def }}{=} c_{f}$; if $s=\perp$ then bad \leftarrow true; $r \leftarrow R$ else $r \leftarrow f(s)$
$c_{3} \stackrel{\text { def }}{=} c_{f}$; if $s=\perp$ then bad \leftarrow true else $r \leftarrow f(s)$
The conditional in c_{1} is dead-code:

$$
\vDash c_{i} \simeq_{\{r, s\}}^{\emptyset} c_{1}
$$

Since sequential composition preserves statistical distance:

$$
\vDash c_{1} \simeq_{\{r, s\}}^{\emptyset} c_{2} \preceq \epsilon
$$

Since $\vDash s \& S \simeq_{\{s\}}^{0} C_{f} \preceq \epsilon$,

Example: main theorem

Define

$$
\begin{aligned}
& c_{i} \quad \stackrel{\text { def }}{=} s \longleftarrow S ; r \leftarrow f(s) \\
& c_{f} \stackrel{\text { def }}{=} r \leftrightarrow R ; s \leftarrow \mathcal{I}_{f}(r) \\
& c_{1} \stackrel{\text { def }}{=} c_{i} \text {; if } s=\perp \text { then } r \notin R \text { else } r \leftarrow f(s) \\
& c_{2} \quad \stackrel{\text { def }}{=} c_{f} \text {; if } s=\perp \text { then bad } \leftarrow \text { true; } r \leftarrow R \text { else } r \leftarrow f(s) \\
& c_{3} \stackrel{\text { def }}{=} c_{f} \text {; if } s=\perp \text { then bad } \leftarrow \text { true else } r \leftarrow f(s)
\end{aligned}
$$

The conditional in c_{1} is dead-code:

$$
\vDash c_{i} \simeq_{\{r, s\}}^{\emptyset} c_{1}
$$

Since sequential composition preserves statistical distance:

$$
\vDash c_{1} \simeq_{\{r, s\}}^{\emptyset} c_{2} \preceq \epsilon
$$

Since $\vDash s \nLeftarrow S \simeq_{\{s\}}^{\emptyset} c_{f} \preceq \epsilon$,

$$
\begin{gathered}
\operatorname{Pr}\left[c_{2}: \text { bad }\right]=\operatorname{Pr}[s \leftrightarrow S: s \neq \perp]-\operatorname{Pr}\left[c_{f}: s \neq \perp\right] \leq \epsilon \\
\vDash c_{2} \simeq_{\{r, s\}}^{\emptyset} c_{3} \preceq \epsilon
\end{gathered}
$$

Example: main theorem

Define

$$
\begin{aligned}
& c_{i} \quad \stackrel{\text { def }}{=} s \longleftarrow S ; r \leftarrow f(s) \\
& c_{f} \stackrel{\text { def }}{=} r \leftrightarrow R ; s \leftarrow \mathcal{I}_{f}(r) \\
& c_{1} \quad \stackrel{\text { def }}{=} c_{i} \text {; if } s=\perp \text { then } r \stackrel{\&}{\leftarrow} \text { else } r \leftarrow f(s) \\
& c_{2} \quad \stackrel{\text { def }}{=} c_{f} \text {; if } s=\perp \text { then bad } \leftarrow \text { true; } r \leftarrow R \text { else } r \leftarrow f(s) \\
& c_{3} \stackrel{\text { def }}{=} c_{f} \text {; if } s=\perp \text { then bad } \leftarrow \text { true else } r \leftarrow f(s)
\end{aligned}
$$

The conditional in c_{1} is dead-code:

$$
\vDash c_{i} \simeq_{\{r, s\}}^{\emptyset} c_{1}
$$

Since sequential composition preserves statistical distance:

$$
\vDash c_{1} \simeq_{\{r, s\}}^{\emptyset} c_{2} \preceq \epsilon
$$

Since $\vDash s \nLeftarrow S \simeq_{\{s\}}^{\emptyset} c_{f} \preceq \epsilon$,

$$
\begin{gathered}
\operatorname{Pr}\left[c_{2}: \text { bad }\right]=\operatorname{Pr}[s \leftrightarrow S: s \neq \perp]-\operatorname{Pr}\left[c_{f}: s \neq \perp\right] \leq \epsilon \\
\vDash c_{2} \simeq_{\{r, s\}}^{\emptyset} c_{3} \preceq \epsilon
\end{gathered}
$$

Since the else branch in c_{3} is dead-code: $\vDash c_{3} \simeq \nsimeq_{\{r, s\}}^{\emptyset} c_{f}$

Example: main theorem

Game G : L \leftarrow nil; $b \leftarrow \mathcal{D}()$	Game ${ }^{\prime}: \mathbf{L} \leftarrow$ nil; $b \leftarrow \mathcal{D}()$		
```Oracle \(\mathcal{O}_{1}(x)\) : if \(x \notin \operatorname{dom}\left(\mathbf{L}_{1}\right)\) then \(s \stackrel{\oplus}{\leftarrow} ; \mathbf{L}_{\mathbf{1}}(x) \leftarrow s\) return \(\mathbf{L}_{\mathbf{1}}(x)\) Oracle \(\mathcal{O}_{2}(x)\) : if \(x \notin \operatorname{dom}\left(\mathbf{L}_{2}\right)\) then \(s \leftarrow \mathcal{O}_{1}(x) ; r \leftarrow f(s) ; \mathbf{L}_{\mathbf{2}}(x) \leftarrow r\) return \(\mathbf{L}_{\mathbf{2}}(x)\)```	```Oracle \(\mathcal{O}_{1}(x)\) : if \(x \notin \operatorname{dom}\left(\mathbf{L}_{\mathbf{1}}\right)\) then \(r \leftarrow \mathcal{O}_{2}(x) ; s \leftarrow \mathcal{I}_{f}(r) ; \mathbf{L}_{\mathbf{1}}(x) \leftarrow s\) return \(\mathbf{L}_{\mathbf{1}}(x)\) Oracle \(\mathcal{O}_{2}(x)\) : if \(x \notin \operatorname{dom}\left(\mathbf{L}_{2}\right)\) then \(r \leftarrow{ }_{\leftarrow}^{\leftarrow} ; \mathbf{L}_{\mathbf{2}}(x) \leftarrow r\) return \(\mathbf{L}_{\mathbf{2}}(x)\)```		
-	$\uparrow$		
Game $\mathrm{G}_{1}: \mathbf{L} \leftarrow$ nil; $b \leftarrow \mathcal{A}()$	Game $\mathrm{G}_{2}: \mathbf{L} \leftarrow \mathrm{nil} ; b \leftarrow \mathcal{A}()$		
```Oracle \(\mathcal{O}(x)\) : if \(x \notin \operatorname{dom}(\mathbf{L})\) then \(s \notin S ; r \leftarrow f(s) ; \mathbf{L}(x) \leftarrow(s, r)\) return \(\mathbf{L}(x)\)```	```Oracle \(\mathcal{O}(x)\) : if \(x \notin \operatorname{dom}(\mathbf{L})\) then \(r \nleftarrow R ; s \leftarrow \mathcal{I}_{f}(r) ; \mathbf{L}(x) \leftarrow(s, r)\) return \(\mathbf{L}(x)\)```		
\downarrow	\uparrow		
Game $\mathrm{G}_{1}^{\text {bad }}: \mathbf{L} \leftarrow$ nil; $b \leftarrow \mathcal{A}()$	Game $\mathrm{G}_{2}^{\text {bad }}: \mathbf{L} \leftarrow$ nil; $b \leftarrow \mathcal{A}()$		
```Oracle \(\mathcal{O}(x)\) : if \(x \notin \operatorname{dom}(\mathbf{L})\) then if \(\|\mathbf{L}	<q_{1}+q_{2}\) then \(s \stackrel{\$}{\leftarrow} ; r \leftarrow f(s)\) else bad \(\leftarrow\) true; \(s \leftarrow S ; r \leftarrow f(s)\) \(\mathbf{L}(x) \leftarrow(s, r)\) return \(\mathbf{L}(x)\)```	```Oracle \(\mathcal{O}(x)\) : if \(x \notin \operatorname{dom}(\mathbf{L})\) then if \(\|\mathbf{L}	<q_{1}+q_{2}\) then \(s \leftarrow S ; r \leftarrow f(s)\) else bad \(\leftarrow\) true; \(r \leftarrow R ; s \leftarrow I_{f}(r)\) \(\mathbf{L}(x) \leftarrow(s, r)\) return \(\mathbf{L}(x)\)```

## Summary



- Extended CertiCrypt with a novel notion of approximate program equivalence
- First machine-checked security proof of an EC construction
- First machine-checked proof of (exact) indifferentiability

The proof is a tour-de-force:

- More than 10,000 original lines of Coq (65k lines in total)
- Approximately 1 man-year effort
- Integrates independently-developed mathematical libraries
- Requires heavy algebraic reasoning


## Some directions of research

## http://certicrypt.gforge.inria.fr



- Generalizations of approximate equivalence to encode DP
- Use approximate equivalence to capture Statistical ZK
- Verifiable proofs of indifferentiability of SHA-3 finalists
- Extend EasyCrypt to reason about approximate equivalence

