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Sylvain Heraud3 and Federico Olmedo2

Microsoft Research Cambridge1

IMDEA Software Institute2 INRIA Sophia Antipolis-Méditerranée3

2012.03.26
POST 2012



Joint work with
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What is an elliptic-curve?
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The points in the curve with the point at ∞ form an abelian group
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Elliptic Curve Cryptography

Elliptic curve cryptography exploits the algebraic structure of
elliptic curves over finite fields

Based on the hardness of the discrete log problem on EC

Known methods to solve ECDLP are exponential, compared
to sub-exponential for solving RSA

Achieves same level of security as e.g. RSA but more
efficiently (shorter keys—224-bits vs. 2048-bits)
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Why it is important to hash into an EC?

Some useful functionalities can only be achieved efficiently
using ECC

Efficient pairings in Pairing-Based Cryptography are defined
on elliptic curves

Password Authenticated Key Exchange protocols,
Identity-Based encryption, signature and signcryption schemes
all require hashing into elliptic curves

Boneh-Franklin IBE

Let e : G1 ×G1 → G2 be bilinear pairing and H : {0, 1}∗ → G1 a
cryptographic hash function [...] The public key associated to an
id ∈ {0, 1}∗ is Qid = H(id) ←− G1 is an EC group
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Why it is difficult to hash (securely) into an EC?

Given a hash function h : {0, 1}∗ → Fp, how to hash m ∈ {0, 1}∗
into EC (Fp)?

1 Compute x = h(m). If ∃y . (x , y) ∈ EC (Fp), return (x , y),
otherwise increment x and try again.

Vulnerable to timing attacks
Inefficient

2 Use a determinisitic encoding (e.g. Icart, SWU)
f : Fp → EC (Fp): return f (h(m))

Efficient
Differentiable from a random oracle (not surjective / not
uniform)

Security proofs of most cryptographic constructions model hash
functions as ROs. Implementations are sound only if these hash
functions are indifferentiable from a RO
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Indifferentiability
F with access to a RO h is (tS , q, ε)-indifferentiable from a RO H if

∃S that runs in time tS , ∀D that makes at most q queries,∣∣Pr[b ← DF ,h : b = 1]− Pr[b ← DH,S : b = 1]
∣∣ ≤ ε

F h H S

D 0/1

In any secure cryptosystem, a random oracle H

into EC (Fp)

can be replaced with the construction F , which uses a random
oracle h

into Fp × ZN
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Indifferentiable Hashing into Elliptic Curves

First indifferentiable construction proposed by Brier et al. in
CRYPTO 2010. Given:

EC (Fp) ' ZN with generator g

Efficiently invertible deterministic encoding f : Fp → EC (Fp)

Random Oracle h1 : {0, 1}∗ → Fp

Random Oracle h2 : {0, 1}∗ → ZN

1

Random Oracle h3 : {0, 1}∗ → ZN2

The construction

H(m) = f (h1(m))⊗ gh2(m)

⊗ g
h3(m)
2

is indifferentiable from a random oracle into EC (Fp)

Observation

The group EC (Fp) is either cyclic or a product of two cyclic groups
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The Provable Security paradigm

How can we rigorously prove the indifferentiability of Brier et al.
construction?

1 Define an adequate model for the distinguisher D
2 Describe a concrete simulator S
3 Define rigorously the ideal (DH,S) and real (DF ,h) scenarios

4 Bound the statistical distance between the two scenarios and
the running time of S as a function of the number of queries
made by D
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Beyond Provable Security: Verifiable Security

How can we formally prove the indifferentiability of Brier et al.
construction?

Build a framework to formalize cryptographic proofs

Provide foundations to cryptographic proofs

Use a notation as natural as possible for cryptographers

Automate common reasoning patterns

Support exact security

Provide independently and automatically verifiable proofs

10/1



CertiCrypt: Language-based cryptographic proofs

Security definitions, assumptions and games are formalized using a
probabilistic programming language

pWhile:

C ::= skip nop
| C; C sequence
| V ← E assignment
| V $← DE random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

x $← d : sample the value of x according to distribution d

Jc ∈ CK :M→ Distr(M)
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Probabilistic Relational Hoare Logic

Probabilistic extension of Benton’s Relational Hoare Logic

Judgments are of the form c1 ' c2 : P ⇒ Q, where
P,Q ⊆M×M are binary relations on memories

Definition

� c1 ∼ c2 : P ⇒ Q def
=

∀m1 m2, m1 P m2 =⇒ Jc1K m1 L(Q) Jc2K m2

L(Q) lifts Q to a relation on distributions over memories

Observational equivalence � c1 'I
O c2, with I ,O ⊆ V is a special

case where:

P = {(m1,m2) | ∀x ∈ I , m1(x) = m2(x)}
Q = {(m1,m2) | ∀x ∈ O, m1(x) = m2(x)}
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From pRHL to probabilities

Assume
� c1 ∼ c2 : P ⇒ Q

For all pair of memories m1,m2 such that

P m1 m2

and events A,B such that

Q =⇒ (A〈1〉 =⇒ B〈2〉)

we have
Pr[c1,m1 : A] ≤ Pr[c2,m2 : B]
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Approximate Observational Equivalence

Simulation-based notions like ε-indifferentiability are naturally
encoded as approximate equivalence of probabilistic programs

Definition

Approximate Observational Equivalence

� c1 'I
O c2 � ε def

=
∀m1 m2 , m1 =I m2 =⇒
∆(Jc1K m1/ =O , Jc2K m2/ =O) ≤ ε

∀A B, (m1 =O m2 =⇒ (A(m1) ⇐⇒ B(m2))) =⇒
|Pr[c1,m1 : A]− Pr[c2,m2 : B]| ≤ ε

Can be generalized to a full-fledged Approximate pRHL
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Example: random sampling

ε = ∆(µ1, µ2)

� x $← µ1 'I
I∪{x} x

$← µ2 � ε
Sampling from uniform distributions:8.8 Statistical distance 261

m − δ m

1/m

1/(m − δ)
A

B C

0

The statistical distance between X and Y is just 1/2 times the area of regions A
and C in the diagram. Moreover, because probability distributions sum to 1, we
must have

area of B + area of A = 1 = area of B + area of C,

and hence, the areas of region A and region C are the same. Therefore,

∆[X; Y] = area of A = area of C = δ/m. ✷

The following characterization of statistical distance is quite useful:

Theorem 8.31. Let X and Y be random variables taking values in a set S. For
every S � ⊆ S, we have

∆[X; Y] ≥ |P[X ∈ S �] − P[Y ∈ S �]|,

and equality holds for some S � ⊆ S, and in particular, for the set

S � := {s ∈ S : P[X = s] < P[Y = s]},

as well as its complement.

Proof. Suppose we split the set S into two disjoint subsets: the set S0 consisting
of those s ∈ S such that P[X = s] < P[Y = s], and the set S1 consisting of those
s ∈ S such that P[X = s] ≥ P[Y = s]. Consider the following rough graph of
the distributions of X and Y, where the elements of S0 are placed to the left of the
elements of S1:

Y

X
B

C

S1S0

A

� x $← {0, ..,m − δ} 'I
I∪{x} x

$← {0, ..,m} � 1/2(A + C ) = δ/m
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Recap: what we want to prove

Given:

An elliptic curve group EC (Fp) ' ZN with generator g

An efficiently invertible deterministic encoding
f : Fp → EC (Fp)

A Random Oracle h : {0, 1}∗ → Fp × ZN

Define
F (u, z) def

= f (u) + g z

The construction F ◦ h : {0, 1}∗ → EC (Fp) is indifferentiable from
a random oracle.
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Recap: what we want to prove

∃S that runs in time tS , ∀D that makes at most q queries,∣∣Pr[b ← DF◦h,h : b = 1]− Pr[b ← DH,S : b = 1]
∣∣ ≤ ε

F ◦ h h H S

D 0/1
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Proof sketch

1 We show that an invertible encoding f : S → R is a weak
encoding

2 We show that a weak encoding is also an admissible encoding

3 We show that an admissible encoding f composed with a
random oracle h : {0, 1}∗ → S is indifferentiable from a
random oracle into R
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Example: main theorem

Theorem (Indifferentiability)

An ε-admissible encoding f : S → R composed with a random
oracle h : {0, 1}∗ → S is indifferentiable from a random oracle

An ε-admissible encoding comes with an efficient inverter If that
satisfies:

� r $← R; s ← If (r) '∅{s} s $← S � ε
We prove first that

� s $← S ; r ← f (s) '∅{r ,s} r $← R; s ← If (r) � 2ε
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Example: main theorem
Define

ci
def
= s $← S ; r ← f (s)

cf
def
= r $← R; s ← If (r)

c1
def
= ci ; if s = ⊥ then r $← R else r ← f (s)

c2
def
= cf ; if s = ⊥ then bad← true; r $← R else r ← f (s)

c3
def
= cf ; if s = ⊥ then bad← true else r ← f (s)

The conditional in c1 is dead-code:

� ci '∅{r ,s} c1

Since sequential composition preserves statistical distance:

� c1 '∅{r ,s} c2 � ε

Since � s $← S '∅{s} cf � ε,

Pr[c2 : bad] = Pr[s $← S : s 6= ⊥]− Pr[cf : s 6= ⊥] ≤ ε
� c2 '∅{r ,s} c3 � ε

Since the else branch in c3 is dead-code: � c3 '∅{r ,s} cf
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Example: main theorem
Game G : L ← nil; b ← D( )

Oracle O1(x) :
if x /∈ dom(L1) then

s $← S; L1(x) ← s
return L1(x)

Oracle O2(x) :
if x /∈ dom(L2) then

s ← O1(x); r ← f(s); L2(x) ← r
return L2(x)

Game G′ : L ← nil; b ← D( )

Oracle O1(x) :
if x /∈ dom(L1) then

r ← O2(x); s ← If (r); L1(x) ← s
return L1(x)

Oracle O2(x) :
if x /∈ dom(L2) then

r $← R; L2(x) ← r
return L2(x)

Game G1 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then

s $← S; r ← f(s); L(x) ← (s, r)
return L(x)

Game G2 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then

r $← R; s ← If (r); L(x) ← (s, r)
return L(x)

Game Gbad
1 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then

if |L| < q1 + q2 then
s $← S; r ← f(s)

else bad ← true; s $← S; r ← f(s)
L(x) ← (s, r)

return L(x)

Game Gbad
2 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then

if |L| < q1 + q2 then
s $← S; r ← f(s)

else bad ← true; r $← R; s ← If (r)
L(x) ← (s, r)

return L(x)

Fig. 4. Games used in the proof of Theorem 3

of the proof, including these two games and the definition of the simulator is shown in
Figure 4.

Our goal is to prove

|Pr [G : b = true] − Pr [G′ : b = true] | ≤ 2(q1 + q2)ε (3)

The crux of the proof is an application of Lemma 1. In order to apply it, we need first
to transform the initial games to replace oracles O1 and O2 by a single joint oracle that
simultaneously returns the responses of both. Using D, we construct an adversary A
with access to a single joint oracle, such that games G and G′ are equivalent to games
G1 and G2 in the figure. Adversary A simply calls the distinguisher D and forwards the
value it returns; it simulates O1 and O2 by using its own oracle O.

We assume without loss of generality the equivalence between games G and G1,
and G′ and G2, respectively. This is identical to the assumption in [9] that the distin-
guisher always makes the same queries to both its oracles. Games G1 and G2 satisfy the
equalities:

Pr [G : b = true] = Pr [G1 : b = true] Pr [G′ : b = true] = Pr [G2 : b = true]
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Summary

Extended CertiCrypt with a novel notion of approximate
program equivalence

First machine-checked security proof of an EC construction

First machine-checked proof of (exact) indifferentiability

The proof is a tour-de-force:

More than 10,000 original lines of Coq (65k lines in total)

Approximately 1 man-year effort

Integrates independently-developed mathematical libraries

Requires heavy algebraic reasoning
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Some directions of research

http://certicrypt.gforge.inria.fr

Generalizations of approximate equivalence to encode DP

Use approximate equivalence to capture Statistical ZK

Verifiable proofs of indifferentiability of SHA-3 finalists

Extend EasyCrypt to reason about approximate equivalence
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