Verified

Indifferentiable Hashing into Elliptic Curves

Santiago Zanella Béguelin¹

Gilles Barthe², Benjamin Grégoire³, Sylvain Heraud³ and Federico Olmedo²

Research

Microsoft Research Cambridge¹

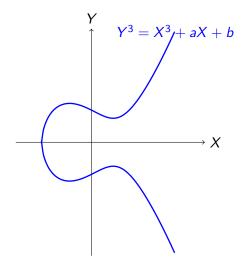
IMDEA Software Institute²

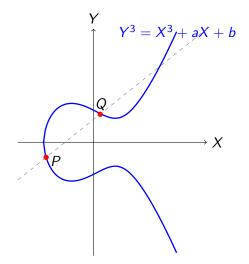
INRIA Sophia Antipolis-Méditerranée³

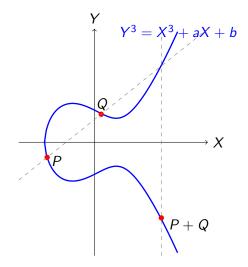
2012.03.26 POST 2012

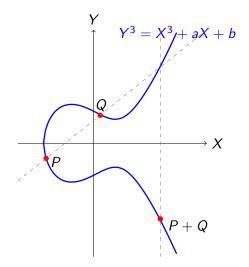
Joint work with

Gilles Barthe Benjamin Grégoire Sylvain Heraud Federico Olmedo









The points in the curve with the point at ∞ form an abelian group

Elliptic Curve Cryptography

Elliptic curve cryptography exploits the algebraic structure of elliptic curves over finite fields

- Based on the hardness of the discrete log problem on EC
- Known methods to solve ECDLP are exponential, compared to sub-exponential for solving RSA
- Achieves same level of security as e.g. RSA but more efficiently (shorter keys—224-bits vs. 2048-bits)

Why it is important to hash into an EC?

- Some useful functionalities can only be achieved efficiently using ECC
- Efficient pairings in Pairing-Based Cryptography are defined on elliptic curves
- Password Authenticated Key Exchange protocols, Identity-Based encryption, signature and signcryption schemes all require hashing into elliptic curves

Boneh-Franklin IBE

Let $e : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ be bilinear pairing and $H : \{0,1\}^* \to \mathbb{G}_1$ a cryptographic hash function [...] The public key associated to an $id \in \{0,1\}^*$ is $Q_{id} = H(id) \longleftarrow \mathbb{G}_1$ is an EC group

Why it is important to hash into an EC?

- Some useful functionalities can only be achieved efficiently using ECC
- Efficient pairings in Pairing-Based Cryptography are defined on elliptic curves
- Password Authenticated Key Exchange protocols, Identity-Based encryption, signature and signcryption schemes all require hashing into elliptic curves

Boneh-Franklin IBE

Let $e : \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ be bilinear pairing and $H : \{0,1\}^* \to \mathbb{G}_1$ a cryptographic hash function [...] The public key associated to an $id \in \{0,1\}^*$ is $Q_{id} = H(id) \longleftarrow \mathbb{G}_1$ is an EC group

Why it is difficult to hash (securely) into an EC?

Given a hash function $h: \{0,1\}^* \to \mathbb{F}_p$, how to hash $m \in \{0,1\}^*$ into $EC(\mathbb{F}_p)$?

- Compute x = h(m). If $\exists y. (x, y) \in EC(\mathbb{F}_p)$, return (x, y), otherwise *increment* x and try again.
 - Vulnerable to timing attacks
 - Inefficient
- ② Use a determinisitic encoding (e.g. lcart, SWU) $f : \mathbb{F}_p \to EC(\mathbb{F}_p)$: return f(h(m))
 - Efficient
 - Differentiable from a random oracle (not surjective / not uniform)

Security proofs of most cryptographic constructions model hash functions as ROs. Implementations are sound only if these hash functions are **indifferentiable** from a RO

Why it is difficult to hash (securely) into an EC?

Given a hash function $h: \{0,1\}^* \to \mathbb{F}_p$, how to hash $m \in \{0,1\}^*$ into $EC(\mathbb{F}_p)$?

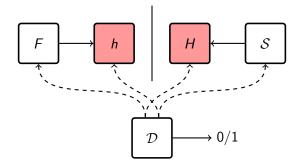
- Compute x = h(m). If $\exists y. (x, y) \in EC(\mathbb{F}_p)$, return (x, y), otherwise *increment* x and try again.
 - Vulnerable to timing attacks
 - Inefficient
- ② Use a determinisitic encoding (e.g. lcart, SWU) $f : \mathbb{F}_p \to EC(\mathbb{F}_p)$: return f(h(m))
 - Efficient
 - Differentiable from a random oracle (not surjective / not uniform)

Security proofs of most cryptographic constructions model hash functions as ROs. Implementations are sound only if these hash functions are indifferentiable from a RO

Indifferentiability

F with access to a RO h is (t_S, q, ϵ) -indifferentiable from a RO H if

 $\exists \mathcal{S} \text{ that runs in time } t_{\mathcal{S}}, \ \forall \mathcal{D} \text{ that makes at most } q \text{ queries}, \\ \left| \Pr[b \leftarrow \mathcal{D}^{F,h} : b = 1] - \Pr[b \leftarrow \mathcal{D}^{H,\mathcal{S}} : b = 1] \right| \leq \epsilon$

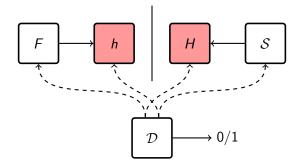


In *any* secure cryptosystem, a random oracle *H* can be replaced with the construction *F*, which uses a random oracle *h*

Indifferentiability

F with access to a RO h is (t_S, q, ϵ) -indifferentiable from a RO H if

 $\exists \mathcal{S} \text{ that runs in time } t_{\mathcal{S}}, \ \forall \mathcal{D} \text{ that makes at most } q \text{ queries}, \\ \left| \Pr[b \leftarrow \mathcal{D}^{F,h} : b = 1] - \Pr[b \leftarrow \mathcal{D}^{H,\mathcal{S}} : b = 1] \right| \leq \epsilon$

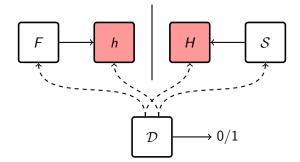


In *any* secure cryptosystem, a random oracle H can be replaced with the construction F, which uses a random oracle h

Indifferentiability

F with access to a RO h is (t_S, q, ϵ) -indifferentiable from a RO H if

 $\exists \mathcal{S} \text{ that runs in time } t_{\mathcal{S}}, \ \forall \mathcal{D} \text{ that makes at most } q \text{ queries}, \\ \left| \Pr[b \leftarrow \mathcal{D}^{F,h} : b = 1] - \Pr[b \leftarrow \mathcal{D}^{H,\mathcal{S}} : b = 1] \right| \leq \epsilon$



In any secure cryptosystem, a random oracle H into $EC(\mathbb{F}_p)$ can be replaced with the construction F, which uses a random oracle h into $\mathbb{F}_p \times \mathbb{Z}_N$

Indifferentiable Hashing into Elliptic Curves

First indifferentiable construction proposed by Brier et al. in CRYPTO 2010. Given:

- $EC(\mathbb{F}_p)\simeq \mathbb{Z}_N$ with generator g
- Efficiently invertible deterministic encoding $f : \mathbb{F}_p \to EC(\mathbb{F}_p)$
- Random Oracle $h_1: \{0,1\}^* \to \mathbb{F}_p$
- Random Oracle $h_2: \{0,1\}^* \to \mathbb{Z}_N$

The construction

$$H(m) = f(h_1(m)) \otimes g^{h_2(m)}$$

is indifferentiable from a random oracle into $EC(\mathbb{F}_p)$

Indifferentiable Hashing into Elliptic Curves

First indifferentiable construction proposed by Brier et al. in CRYPTO 2010. Given:

• $EC(\mathbb{F}_p)\simeq \mathbb{Z}_{N_1} imes \mathbb{Z}_{N_2}$ with generators g_1,g_2

- Efficiently invertible deterministic encoding $f : \mathbb{F}_p \to EC(\mathbb{F}_p)$
- Random Oracle $h_1: \{0,1\}^* \to \mathbb{F}_p$
- Random Oracle $h_2: \{0,1\}^* \to \mathbb{Z}_{N_1}$
- Random Oracle $h_3: \{0,1\}^* \to \mathbb{Z}_{N_2}$

The construction

$$H(m) = f(h_1(m)) \otimes g^{h_2(m)} \otimes g_2^{h_3(m)}$$

is indifferentiable from a random oracle into $EC(\mathbb{F}_p)$

Observation

The group $EC(\mathbb{F}_p)$ is either cyclic or a product of two cyclic groups

The Provable Security paradigm

How can we rigorously prove the indifferentiability of Brier et al. construction?

- $\textcircled{O} \quad \text{Define an adequate model for the distinguisher } \mathcal{D}$
- **2** Describe a concrete simulator \mathcal{S}
- **③** Define rigorously the *ideal* $(\mathcal{D}^{H,S})$ and *real* $(\mathcal{D}^{F,h})$ scenarios
- Bound the statistical distance between the two scenarios and the running time of S as a function of the number of queries made by D

Beyond Provable Security: Verifiable Security

How can we formally prove the indifferentiability of Brier et al. construction?

Build a framework to formalize cryptographic proofs

- Provide foundations to cryptographic proofs
- Use a notation as natural as possible for cryptographers
- Automate common reasoning patterns
- Support exact security
- Provide independently and automatically verifiable proofs

CertiCrypt: Language-based cryptographic proofs

Security definitions, assumptions and games are formalized using a probabilistic programming language

pWHILE:

 $x \Leftrightarrow d$: sample the value of x according to distribution d

 $\llbracket c \in \mathcal{C} \rrbracket : \mathcal{M} \to \mathsf{Distr}(\mathcal{M})$

Probabilistic Relational Hoare Logic

Probabilistic extension of Benton's Relational Hoare Logic

Judgments are of the form $c_1 \simeq c_2 : P \Rightarrow Q$, where $P, Q \subseteq \mathcal{M} \times \mathcal{M}$ are binary relations on memories

Definition

$$\begin{array}{l} \vDash c_1 \sim c_2 : P \Rightarrow Q \stackrel{\text{def}}{=} \\ \forall m_1 \ m_2, \ m_1 \ P \ m_2 \implies \llbracket c_1 \rrbracket \ m_1 \ \mathcal{L}(Q) \ \llbracket c_2 \rrbracket \ m_2 \\ \mathcal{L}(Q) \text{ lifts } Q \text{ to a relation on distributions over memories} \end{array}$$

Observational equivalence $\vDash c_1 \simeq'_O c_2$, with $I, O \subseteq \mathcal{V}$ is a special case where:

$$P = \{ (m_1, m_2) \mid \forall x \in I , m_1(x) = m_2(x) \}$$
$$Q = \{ (m_1, m_2) \mid \forall x \in O, m_1(x) = m_2(x) \}$$

From pRHL to probabilities

Assume

$$\vDash c_1 \sim c_2 : P \Rightarrow Q$$

For all pair of memories m_1, m_2 such that

 $P m_1 m_2$

and events A, B such that

$$Q \implies (A\langle 1 \rangle \implies B\langle 2 \rangle)$$

we have

$$\Pr[c_1, m_1 : A] \leq \Pr[c_2, m_2 : B]$$

From pRHL to probabilities

Assume

$$\vDash c_1 \sim c_2 : P \Rightarrow Q$$

For all pair of memories m_1, m_2 such that

 $P m_1 m_2$

and events A, B such that

$$Q \implies (A\langle 1 \rangle \Longleftrightarrow B\langle 2 \rangle)$$

we have

$$\Pr[c_1, m_1 : A] = \Pr[c_2, m_2 : B]$$

Approximate Observational Equivalence

Simulation-based notions like ϵ -indifferentiability are naturally encoded as approximate equivalence of probabilistic programs

Definition

Approximate Observational Equivalence

$$\begin{array}{l} \models c_1 \simeq'_O c_2 \preceq \epsilon \stackrel{\text{def}}{=} \\ \forall m_1 \ m_2 \ , \ m_1 \ =_I \ m_2 \implies \\ \Delta(\llbracket c_1 \rrbracket \ m_1 / =_O, \llbracket c_2 \rrbracket \ m_2 / =_O) \leq \epsilon \end{array}$$

Can be generalized to a full-fledged Approximate pRHL

Approximate Observational Equivalence

Simulation-based notions like ϵ -indifferentiability are naturally encoded as approximate equivalence of probabilistic programs

Definition

Approximate Observational Equivalence

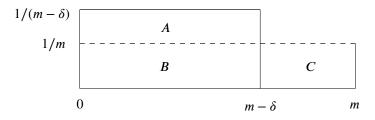
$$= c_1 \simeq'_O c_2 \preceq \epsilon \stackrel{\text{def}}{=} \\ \forall m_1 \ m_2 \ , \ m_1 \ =_I \ m_2 \implies \\ \forall A \ B, \ (m_1 =_O m_2 \implies (A(m_1) \iff B(m_2))) \implies \\ |\Pr[c_1, m_1 : A] - \Pr[c_2, m_2 : B]| \leq \epsilon$$

Can be generalized to a full-fledged Approximate pRHL

Example: random sampling

$$\frac{\epsilon = \Delta(\mu_1, \mu_2)}{\models x \nleftrightarrow \mu_1 \simeq'_{I \cup \{x\}} x \nleftrightarrow \mu_2 \preceq \epsilon}$$

Sampling from uniform distributions:



$$\vDash x \mathrel{\bigstar} \{0,..,m-\delta\} \simeq'_{I \cup \{x\}} x \mathrel{\bigstar} \{0,..,m\} \preceq 1/2(A+C) = \delta/m$$

Recap: what we want to prove

Given:

- An elliptic curve group $EC(\mathbb{F}_p)\simeq \mathbb{Z}_N$ with generator g
- An efficiently invertible deterministic encoding
 f : 𝔽_p → EC(𝔽_p)
- A Random Oracle $h: \{0,1\}^* \to \mathbb{F}_p \times \mathbb{Z}_N$

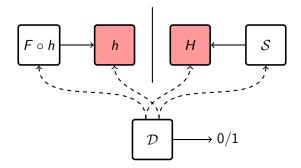
Define

$$F(u,z) \stackrel{\text{\tiny def}}{=} f(u) + g^z$$

The construction $F \circ h : \{0,1\}^* \to EC(\mathbb{F}_p)$ is indifferentiable from a random oracle.

Recap: what we want to prove

 $\exists \mathcal{S} \text{ that runs in time } t_{\mathcal{S}}, \ \forall \mathcal{D} \text{ that makes at most } q \text{ queries}, \\ \left| \Pr[b \leftarrow \mathcal{D}^{F \circ h, h} : b = 1] - \Pr[b \leftarrow \mathcal{D}^{H, \mathcal{S}} : b = 1] \right| \leq \epsilon$



Proof sketch

- We show that an invertible encoding f : S → R is a weak encoding
- We show that a weak encoding is also an *admissible encoding*
- We show that an admissible encoding f composed with a random oracle $h: \{0,1\}^* \to S$ is indifferentiable from a random oracle into R

Theorem (Indifferentiability)

An ϵ -admissible encoding $f : S \to R$ composed with a random oracle $h : \{0, 1\}^* \to S$ is indifferentiable from a random oracle

An ϵ -admissible encoding comes with an efficient inverter \mathcal{I}_f that satisfies:

$$\vDash r \stackrel{\hspace{0.1em} \scriptscriptstyle \bullet}{\leftarrow} R; \ s \leftarrow \mathcal{I}_f(r) \simeq^{\emptyset}_{\{s\}} s \stackrel{\hspace{0.1em} \scriptscriptstyle \bullet}{\leftarrow} S \preceq \epsilon$$

We prove first that

$$\vDash s \triangleq S; \ r \leftarrow f(s) \simeq^{\emptyset}_{\{r,s\}} r \triangleq R; \ s \leftarrow \mathcal{I}_{f}(r) \preceq 2\epsilon$$

Define

20/1

$$\begin{array}{ll} c_i & \stackrel{\mathrm{def}}{=} s \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} S; \ r \leftarrow f(s) \\ c_f & \stackrel{\mathrm{def}}{=} r \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} R; \ s \leftarrow \mathcal{I}_f(r) \\ c_1 & \stackrel{\mathrm{def}}{=} c_i; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ r \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_2 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true}; \ r \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_3 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true} \ \mathrm{else} \ r \leftarrow f(s) \end{array}$$

The conditional in c_1 is dead-code:

$$\vDash c_i \simeq^{\emptyset}_{\{r,s\}} c_1$$

Since sequential composition preserves statistical distance:

$$\models c_1 \simeq^{\emptyset}_{\{r,s\}} c_2 \preceq \epsilon$$

Since $\vDash s \triangleq S \simeq_{\{s\}}^{\emptyset} c_f \preceq \epsilon$, $\Pr[c_2 : \mathsf{bad}] = \Pr[s \triangleq S : s \neq \bot] - \Pr[c_f : s \neq \bot] \leq \epsilon$ $\vDash c_2 \simeq_{\{r,s\}}^{\emptyset} c_3 \preceq \epsilon$

Since the *else* branch in c_3 is dead-code: $\vDash c_3 \simeq^{\emptyset}_{\{r,s\}} c_{i}$

Define

$$\begin{array}{ll} c_i & \stackrel{\mathrm{def}}{=} s \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} S; \ r \leftarrow f(s) \\ c_f & \stackrel{\mathrm{def}}{=} r \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} R; \ s \leftarrow \mathcal{I}_f(r) \\ c_1 & \stackrel{\mathrm{def}}{=} c_i; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ r \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_2 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true}; \ r \stackrel{\hspace{0.1em}{\scriptstyle{\$}}}{=} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_3 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true} \ \mathrm{else} \ r \leftarrow f(s) \end{array}$$

The conditional in c_1 is dead-code:

$$\vDash c_i \simeq^{\emptyset}_{\{r,s\}} c_1$$

Since sequential composition preserves statistical distance:

$$\vDash c_1 \simeq^{\emptyset}_{\{r,s\}} c_2 \preceq \epsilon$$

Since $\vDash s \mathrel{\stackrel{\circ}{\leftarrow}} S \simeq_{\{s\}}^{\emptyset} c_f \preceq \epsilon$, $\Pr[c_2 : \mathsf{bad}] = \Pr[s \mathrel{\stackrel{\circ}{\leftarrow}} S : s \neq \bot] - \Pr[c_f : s \neq \bot] \leq \epsilon$ $\vDash c_2 \simeq_{\{r,s\}}^{\emptyset} c_3 \preceq \epsilon$ Since the else branch in c_2 is dead order $\vDash c_2 \simeq_{\{r,s\}}^{\emptyset} c_3 \preceq \epsilon$

Define

$$\begin{array}{ll} c_i & \stackrel{\mathrm{def}}{=} s \stackrel{\hspace{0.1em} \$}{\bullet} S; \ r \leftarrow f(s) \\ c_f & \stackrel{\mathrm{def}}{=} r \stackrel{\hspace{0.1em} \$}{\bullet} R; \ s \leftarrow \mathcal{I}_f(r) \\ c_1 & \stackrel{\mathrm{def}}{=} c_i; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ r \stackrel{\hspace{0.1em} \$}{\bullet} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_2 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true}; \ r \stackrel{\hspace{0.1em} \$}{\bullet} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_3 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true} \ \mathrm{else} \ r \leftarrow f(s) \end{array}$$

The conditional in c_1 is dead-code:

$$\vDash c_i \simeq^{\emptyset}_{\{r,s\}} c_1$$

Since sequential composition preserves statistical distance:

$$\vDash c_1 \simeq^{\emptyset}_{\{r,s\}} c_2 \preceq \epsilon$$

Since $\vDash s \mathrel{\bigstar} S \simeq_{\{s\}}^{\emptyset} c_f \preceq \epsilon$, $\Pr[c_2 : \mathsf{bad}] = \Pr[s \mathrel{\bigstar} S : s \neq \bot] - \Pr[c_f : s \neq \bot] \leq \epsilon$ $\vDash c_2 \simeq_{\{r,s\}}^{\emptyset} c_3 \preceq \epsilon$

Since the *else* branch in c_3 is dead-code: $\models c_3 \simeq^{\emptyset}_{\{r,s\}} c_f$

20/1

Define

$$\begin{array}{ll} c_i & \stackrel{\mathrm{def}}{=} s \stackrel{\hspace{0.1em} \$}{\bullet} S; \ r \leftarrow f(s) \\ c_f & \stackrel{\mathrm{def}}{=} r \stackrel{\hspace{0.1em} \$}{\bullet} R; \ s \leftarrow \mathcal{I}_f(r) \\ c_1 & \stackrel{\mathrm{def}}{=} c_i; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ r \stackrel{\hspace{0.1em} \$}{\bullet} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_2 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true}; \ r \stackrel{\hspace{0.1em} \$}{\bullet} R \ \mathrm{else} \ r \leftarrow f(s) \\ c_3 & \stackrel{\mathrm{def}}{=} c_f; \ \mathrm{if} \ s = \bot \ \mathrm{then} \ \mathrm{bad} \leftarrow \mathrm{true} \ \mathrm{else} \ r \leftarrow f(s) \end{array}$$

The conditional in c_1 is dead-code:

$$\vDash c_i \simeq^{\emptyset}_{\{r,s\}} c_1$$

Since sequential composition preserves statistical distance:

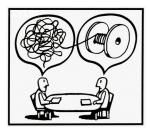
$$\vDash c_1 \simeq^{\emptyset}_{\{r,s\}} c_2 \preceq \epsilon$$

Since $\vDash s \nleftrightarrow S \simeq_{\{s\}}^{\emptyset} c_f \preceq \epsilon$, $\Pr[c_2 : \mathsf{bad}] = \Pr[s \nleftrightarrow S : s \neq \bot] - \Pr[c_f : s \neq \bot] \leq \epsilon$ $\vDash c_2 \simeq_{\{r,s\}}^{\emptyset} c_3 \preceq \epsilon$

Since the *else* branch in c_3 is dead-code: $\vDash c_3 \simeq^{\emptyset}_{\{r,s\}} c_f$

Game $G' : L \leftarrow nil; b \leftarrow D()$ **Game** G : L \leftarrow nil: $b \leftarrow \mathcal{D}()$ **Oracle** $\mathcal{O}_1(x)$: **Oracle** $\mathcal{O}_1(x)$: if $x \notin dom(\mathbf{L}_1)$ then if $x \notin dom(\mathbf{L}_1)$ then $r \leftarrow \mathcal{O}_2(x); s \leftarrow \mathcal{I}_f(r); \mathbf{L}_1(x) \leftarrow s$ $s \notin S; \mathbf{L}_1(x) \leftarrow s$ return $\mathbf{L}_{1}(x)$ return $\mathbf{L}_{1}(x)$ **Oracle** $\mathcal{O}_2(x)$: **Oracle** $\mathcal{O}_2(x)$: if $x \notin dom(\mathbf{L_2})$ then if $x \notin dom(\mathbf{L}_2)$ then $s \leftarrow \mathcal{O}_1(x); r \leftarrow f(s); \mathbf{L}_2(x) \leftarrow r$ $r \notin R; \mathbf{L}_2(x) \leftarrow r$ return $\mathbf{L}_{2}(x)$ return $\mathbf{L}_{2}(x)$ **Game** $G_1 : \mathbf{L} \leftarrow \mathsf{nil}: b \leftarrow \mathcal{A}()$ **Game** G_2 : $\mathbf{L} \leftarrow \mathsf{nil}$: $b \leftarrow \mathcal{A}()$ **Oracle** $\mathcal{O}(x)$: **Oracle** $\mathcal{O}(x)$: if $x \notin \operatorname{dom}(\mathbf{L})$ then if $x \notin \operatorname{dom}(\mathbf{L})$ then $s \notin S; r \leftarrow f(s); \mathbf{L}(x) \leftarrow (s, r)$ $r \ll R; s \leftarrow \mathcal{I}_f(r); \mathbf{L}(x) \leftarrow (s, r)$ return $\mathbf{L}(x)$ return $\mathbf{L}(x)$ **Game** G_1^{bad} : $\mathbf{L} \leftarrow \text{nil}; b \leftarrow \mathcal{A}()$ **Game** G_2^{bad} : $\mathbf{L} \leftarrow \text{nil}$: $b \leftarrow \mathcal{A}()$ **Oracle** $\mathcal{O}(x)$: **Oracle** $\mathcal{O}(x)$: if $x \notin dom(\mathbf{L})$ then if $x \notin dom(\mathbf{L})$ then if $|\mathbf{L}| < q_1 + q_2$ then if $|\mathbf{L}| < q_1 + q_2$ then $s \notin S; r \leftarrow f(s)$ $s \notin S; r \leftarrow f(s)$ else bad \leftarrow true; $s \notin S$; $r \leftarrow f(s)$ else bad \leftarrow true; $r \notin R$; $s \leftarrow I_f(r)$ $\mathbf{L}(x) \leftarrow (s, r)$ $\mathbf{L}(x) \leftarrow (s, r)$ return $\mathbf{L}(x)$ return $\mathbf{L}(x)$

Summary



- Extended CertiCrypt with a novel notion of approximate program equivalence
- First machine-checked security proof of an EC construction
- First machine-checked proof of (exact) indifferentiability

The proof is a *tour-de-force*:

- More than 10,000 original lines of Coq (65k lines in total)
- Approximately 1 man-year effort
- Integrates independently-developed mathematical libraries
- Requires heavy algebraic reasoning

Some directions of research

http://certicrypt.gforge.inria.fr

- Generalizations of approximate equivalence to encode DP
- Use approximate equivalence to capture Statistical ZK
- Verifiable proofs of indifferentiability of SHA-3 finalists
- Extend EasyCrypt to reason about approximate equivalence